Edited by
Sushil Jajodia
Leon Strous

KLUWER
ACADEMIC
PUBLISHERS

INTEGRITY AND INTERNAL CONTROL IN
INFORMATION SYSTEMS VI

IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World Computer
Congress held in Paris the previous year. An umbrella organization for societies working in
information processing, IFIP’s aim is two-fold: to support information processing within its
member countries and to encourage technology transfer to developing nations. As its mission
statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical organization
which encourages and assists in the development, exploitation and application of
information technology for the benefit of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates through
a number of technical committees, which organize events and publications. IFIP’s events range
from an international congress to local seminars, but the most important are:

e The IFIP World Computer Congress, held every second year;
e Open conferences;
® Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and contributed
papers are presented. Contributed papers are rigorously refereed and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may be
invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working group and
attendance is small and by invitation only. Their purpose is to create an atmosphere conducive to
innovation and development. Refereeing is less rigorous and papers are subjected to extensive
group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World Computer
Congress and at open conferences are published as conference proceedings, while the results of
the working conferences are often published as collections of selected and edited papers.

Any national society whose primary activity is in information may apply to become a full member
of IFIP, although full membership is restricted to one society per country. Full members are
entitled to vote at the annual General Assembly, National societies preferring a less committed
involvement may apply for associate or corresponding membership. Associate members enjoy the
same benefits as full members, but without voting rights. Corresponding members are not
represented in IFIP bodies. Affiliated membership is open to non-national societies, and
individual and honorary membership schemes are also offered.

INTEGRITY AND
INTERNAL CONTROL
IN INFORMATION
SYSTEMS VI

IFIP TC11/ WG11.5 Sixth Working Conference on
Integrity and Internal Control in Information Systems (lICIS)
13-14 November 2003, Lausanne, Switzerland

Edited by

Sushil Jajodia
George Mason University
Fairfax, Virginia, USA

Leon Strous
De Nederlandsche Bank NV
Amsterdam, The Netherlands

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 1-4020-7901-X
Print ISBN: 1-4020-7900-1

©2004 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2004 Kluwer Academic Publishers
Boston

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

CONTENTS

Preface

Acknowledgements

Part one. Refereed papers

L

10.

11.

Remote Integrity Checking
Yves Deswarte, Jean-Jacques Quisquater, Ayda Saidane

Automated Checking of SAP Security Permissions
Sebastian Hohn, Jan Jiirjens

A Formal Analysis of a Digital Signature Architecture
David Basin, Kunihiko Miyazaki, Kazuo Takaragi

Using Parameterized UML to Specify and Compose Access
Control Models
Indrakshi Ray, Na Li, Dae-Kyoo Kim, Robert France

Enforcing Integrity in Multimedia Surveillance
Naren B. Kodali, Csilla Farkas, Duminda Wijesekera

A Learning-based Approach to Information Release Control
Claudio Bettini, X. Sean Wang, Sushil Jajodia

Information Security Governance using 1SO 17799 and COBIT
Elmari Pretorius, Basie von Solms

Tracing Attacks and Restoring Integrity with LASCAR
Alexandre Aellig, Philippe Oechslin

A Secure Multi-sited Version Control System
Indrajit Ray, Junxing Zhang

Integration of Integrity Constraints in Database Federations
Herman Balsters, Bert de Brock

Reducing Disruption in Time-Tabled Condition Monitoring
Binling Jin, Suzanne M. Embury

vii

13

31

49

67

83

107

115

125

143

159

vi Integrity and Internal Control in Information Systems

12. A Service Oriented System Based Information Flow Model
for Damage Assessment
Yanjun Zuo, Brajendra Panda

13. An Efficient OODB Model for Ensuring the Integrity of
User-defined Constraints
Belal Zaqaibeh, Hamidah Ibrahim, Ali Mamat, Md. Nasir Sulaiman

Part two. Invited papers

14. From Security Culture to Effective E-security Solutions
Solange Ghernaouti-Hélie

15. Consistent Query Answering: Recent Developments and Future
Directions
Jan Chomicki

16. Role of Certification in Meeting Organisation Security Requirements
William List

Part three. Panel session

17. Grand Challenges in Data Integrity and Quality
Bhavani Thuraisingham

Index of contributors

Index of keywords

177

195

209

219

241

249

255

257

PREFACE

The development and integration of integrity and internal control

mechanisms into information system infrastructures is a challenge for

researchers, IT personnel and auditors. Since its beginning in 1997, the IICIS

international working conference has focused on the following questions:

¢ what precisely do business managers need in order to have confidence in
the integrity of their information systems and their data and what are the
challenges IT industry is facing in ensuring this integrity;

® what are the status and directions of research and development in the area
of integrity and internal control;

® where are the gaps between business needs on the one hand and research /
development on the other; what needs to be done to bridge these gaps.

This sixth volume of IICIS papers, like the previous ones, contains
interesting and valuable contributions to finding the answers to the above
questions. We want to recommend this book to security specialists, IT
auditors and researchers who want to learn more about the business concerns
related to integrity. Those same security specialists, IT auditors and
researchers will also value this book for the papers presenting research into
new techniques and methods for obtaining the desired level of integrity.

It is the hope of all who contributed to IICIS 2003 that these proceedings
will inspire readers to join the organizers for the next conference on integrity
and internal control in information systems. You are invited to take the
opportunity to contribute to next year’s debate with colleagues and submit a
paper or attend the working conference. Check the websites given below
regularly for the latest information.

We thank all those who have helped to develop these proceedings and the
conference. First of all, we thank all the authors who submitted papers as
well as the keynote and invited speakers, and those who presented papers
and participated in the panel. Finally, we would like to thank all conference
participants, IFIP and the sponsors and supporters of this conference.

January 2004

Sushil Jajodia
Leon Strous

viii

Websites:

Integrity and Internal Control in Information Systems

IFIP TC-11 Working group 11.5 IICIS 2004
http://www.cs.colostate.edu/~iicis04/

IFIP TC-11 Working group 11.5
http://csis.emu.edu/faculty/T'c11_5.html

IFIP TC-11

http://www.ifip.tu-graz.ac.at/TC11

IFIP

http://www.ifip.org

Still available:

IICIS 2002:

IICIS 2001:

IICIS 1999:

IICIS 1998:

IICIS 1997:

Integrity and internal control in information systems V

ed. Michael Gertz

ISBN 1-4020-7473-5

Integrity, internal control and security in information systems:
Connecting governance and technology

ed. Michael Gertz, Erik Guldentops, Leon Strous

ISBN 1-4020-7005-5

Integrity and internal control in information systems: Strategic
views on the need for control

ed. Margaret E. van Biene-Hershey, Leon Strous

ISBN 0-7923-7821-0

Integrity and internal control in information systems

ed. Sushil Jajodia, William List, Graeme McGregor, Leon Strous
ISBN 0-412-84770-1

Integrity and internal control in information systems: Volume 1,
Increasing the confidence in information systems

ed. Sushil Jajodia, William List, Graeme McGregor, Leon Strous
ISBN 0-412-82600-3

ACKNOWLEDGEMENTS

Conference chairs:
Stefano Spaccapietra, Swiss Federal Institute of Techn., Lausanne, CH

Serge Vaudenay, Swiss Federal Institute of Technology, Lausanne, CH

Programme Committee:
Co-Chairs:
Sushil Jajodia, George Mason University, USA
Leon Strous, De Nederlandsche Bank, The Netherlands

Members/reviewers:
David Basin, ETH Ziirich, Switzerland
Sabrina de Capitani di Vimercati, University of Milan, Italy
Michael Gertz, University of California at Davis, USA
Erik Guldentops, University of Antwerp, Belgium
Klaus Kursawe, IBM, Switzerland
Detlef Kraus, SRC, Germany
William List, William List & Co., UK
Refik Molva, Eurecom, France
David Naccache, GEMPLUS, France
Philippe Oechslin, EPF Lausanne, Switzerland
Indrakshi Ray, Colorado State University, USA
Arnie Rosenthal, The MITRE Corporation, USA
Adrian Spalka, University of Bonn, Germany
Bhavani Thuraisingham, NSF, USA

Organizing Committee
Christelle Vangenot (chair)
Marlyse Taric (secretariat)
Swiss Federal Institute of Technology, Lausanne, Switzerland

REMOTE INTEGRITY CHECKING

How to Trust Files Stored on Untrusted Servers

Yves Deswarte*, Jean-Jacques Quisquater**, Ayda Saidane*
* LAAS-CNRS, France
** Université Catholique de Louvain, Belgium

Abstract: This paper analyzes the problem of checking the integrity of files stored on
remote servers. Since servers are prone to successful attacks by malicious
hackers, the result of simple integrity checks run on the servers cannot be
trusted. Conversely, downloading the files from the server to the verifying host
is impractical. Two solutions are proposed, based on challenge-response
protocols.

Key words: file integrity checking, intrusion detection, challenge-response protocols.

1. INTRODUCTION

The integrity of files stored on servers is crucial for many applications
running on the Internet. A recent example has shown that Trojan Horses can
be largely distributed in security critical software, due to a successful attack
on one server [CERT 2002]. This kind of damage could have been hindered
if this particular software distribution was secured by digital signatures (as is
currently done for some other software distribution on the Internet). In other
cases, damage may vary from web page defacing to circulation of false
information, maliciously modified execution of remote services or diverse
frauds in electronic commerce. The detection of such wrong behavior can be
more difficult than for software distribution, since in most cases it is not
possible to just check a signature on a content. The current state of the
Internet security is such that most servers are vulnerable to dedicated attacks
and in most cases the detection of such attacks happens several hours, days

2 Integrity and Internal Control in Information Systems

or weeks after the real attacks have occurred (one or two days in the case
cited above). Indeed, new vulnerabilities are discovered frequently on most
commercial operating systems and applications, and current intrusion
detection systems do not detect or misidentify a too large proportion of
attacks, in particular when the attacks are new and slow [Green et al. 1999].

It is thus of tremendous importance for system administrators to check
frequently that no critical file has been modified on the servers they manage.
The classical way to do so is to reboot the server from a secure storage (a
CDROM for instance) and then to launch locally (from the secure storage) a
program to compute cryptographic checksums (using one-way hash
functions) on the critical files and compare the results with reference
checksums stored on a secure storage. Tripwire' is a well-known example of
such programs. It is important to reboot the system from a secure storage
since a malicious hacker could have installed and launched a program on the
server which, for instance, could modify the disk drive handler to return the
original file content to the integrity checking program instead of a modified
version actually stored on the disk. Some viruses and Trojan horses are using
such stealth techniques. This is also why such a program has to be run
locally, after a secure reboot, before any insecure application (which could
have been modified by a hacker) is run.

Such a technique is impractical in most Internet server systems:
~ This task requires a lot of time: halting operational applications; halting

the system in a safe way; rebooting form a CDROM; running the

integrity checking program on all critical files; restarting the operational
applications. This is hardly compatible with 24/7 operation required from
most Internet servers and, anyway, would be too costly ifrun frequently.

— Competent system administrators are a scarce resource, and thus most
servers are managed remotely: it would be impractical for the
administrators to go to each server to execute this routine task in a secure
way.

Running remotely an integrity check program is inefficient, since it is
impossible to be sure if the program that is run is the original one and not a
fake, if the reference checksums are the correct ones, and if the operating
system has not been modified for some stealth operation.

Conversely, it is impractical for the administrator to download all critical
files to his local host, to compute locally the checksums and then to compare
the results with reference checksums: this would cause too much overhead
on the network and on the administrator host, as soon as the numbers of files

Tripwire® is a registered trademark of Tripwire, Inc.
The reference checksums can be signed, but then the integrity of the signature verification
key must be also checked.

Remote Integrity Checking 3

and of servers are high, the mean file length is large, and this task has to be
run frequently.

This paper proposes two solutions to this problem. The first one,
described in Section 2, is a challenge-response protocol using conventional
methods, which lead to some engineering trade-offs. Section 3 presents
another protocol, based on a modular exponentiation cryptographic
technique, to solve this problem in a more elegant way, but at the price of
more complex computations. These solutions are then compared to
alternative solutions and related work.

2. A CONVENTIONAL CHALLENGE-RESPONSE
PROTOCOL

2.1 General approach

In this solution, the administrator’s host (called hereafter the verifier)
sends periodically a request to the server for it to compute a checksum on a
file (specified as a request parameter) and return the result to the verifier.
The verifier then compares the returned result with a locally-stored reference
checksum for the same file.

A naive implementation of this protocol would be inefficient: a malicious
attacker could precompute the checksums on all files he intends to modify,
store these checksums, and then modify the checksum computation program
to retrieve the original checksum rather than compute it. The attacker can
then modify any file, while remaining able to return the expected checksums
when requested by the verifier. This protocol has to be modified to guarantee
the freshness of the checksum computation.

This can be achieved by adding a challenge C in the request parameters.
With this new protocol, the server has to compute a response R depending
on the challenge. More precisely, instead of a checksum computed as the
result of a one-way hash function on the content of the file, the response
must be computed as the hash of the challenge concatenated with the file
content:

R = #(CIFile) M

Of course, the challenge must be difficult to guess for the attacker. In
particular it must be changed at each request. But then the verifier cannot
simply compare the response with a reference checksum. A solution would
be to maintain a copy of all the original files on the verifier and run the same
response computation on the verifier as on the server. But this is impractical

4 Integrity and Internal Control in Information Systems

if the numbers of files and of servers are high and the mean file length is
large.

A better solution would be for the verifier to use two functions f and #,
of which at least one of them is kept secret’, such that # is a one-way hash
function, and fis such that:

f(C, H(File)) = H(C|File) =R 2)

Unfortunately, we have not found (yet) functions f, # and H" satisfying
this property.

To workaround this problem, a finite number N of random challenges can
be generated off-line for each file to be checked, and the corresponding
responses computed off-line too. The results are then stored on the verifier.
At each integrity check period, one of the N challenges is sent to the server
and the response is compared with the precomputed response stored on the
verifier. In order to guarantee that a different challenge is issued at each
request, and thus that an attacker cannot predict which will be the next
challenge(s), the server has to be rebooted periodically” so that:

N> (frequency of challenge-response protocol for the same file) /
(reboot frequency) 3)

A possible way for the attacker to circumvent this freshness checking
could be to keep copies of both the original and the modified files. But this
should be easy to detect, either by checking the integrity of the concerned
directories and system tables, or by intrusion detection sensors tuned to
detect this specific abnormal behavior.

The table of precomputed responses, stored on the verifier, is thus
composed of N entries with, for each entry, a challenge and the expected
corresponding response. It is possible to reduce the size of the table, by
exploiting a technique presented in [Lamport 1981]: rather than generating a
specific random number as a challenge for each entry, only one random
number Cy is generated for a file, and each challenge C; is computed as
H(Cj41) for each i from (N-1) to 1 (by step of -1). The precomputed response
table contains only the N expected responses, the last challenge Cy and the

3 At least 2’ or f must be kept secret, because if both were public, it would be easy for the
attacker to precompute all needed #’(File) and then dynamically compute the expected
response f (C, #H’(File)).

Our current implementation exploits the fact that the servers are periodically rebooted
(e.g., once a day), as a measure for software rejuvenation [Huang et al. 1995]: at reboot all
files and programs are restored from a secure copy. This would erase any Trojan horse
implemented previously by a malicious hacker, as well as any table of precomputed
responses he could have built with previous challenges.

Remote Integrity Checking 5

number N. The challenges are sent in the increasing order from Cj to Cy,
each challenge C; being dynamically computed by the verifier:

Ci= H™P(Cy), where #*(X) = H(H*'(X)) and #H'(X) = H(X) ~ (4)

2.2 A practical example: integrity checking for a
distributed web server

The above protocol has been implemented in a distributed, intrusion-
tolerant web server [Valdes et al. 2002]. The system consists of a set of
verifiers managing and monitoring a bank of web servers (see Figure 1).

4-_._.-4-“""—' Ve‘ﬂﬁef

i

Verifier

" 3. The verifier compares the
response with the pre-computed

AaAnswer.

1. The verifier generates the
challenge and sendsittoa
server

2. The server computes the
response and sends it back
to the verifier.

Serverl

Figure 1. Intrusion-tolerant web server architecture

The challenge-response protocol is launched periodically by each verifier
to check each server and each other verifier. This protocol is used for three
purposes:

6 Integrity and Internal Control in Information Systems

— As a heart beat: since this protocol is launched periodically on each
proxy, if a proxy does not receive a challenge from another proxy for a
time greater than the period, it can raise an alarm.

— To check the liveness of the servers and other proxies: if, after emitting a
challenge, a proxy does not receive a response within some delay, it can
raise an alarm.

— To check the integrity of some files, directories or tables located on
remote servers and proxies.

The challenge-response protocol (CRP) was created to check the integrity
of some files which are not modified during normal operation, such as
sensitive system files (e.g., boot files and OS code files) or security-critical
files (e.g., /etc/passwd on a UNIX system). The role of a web server is to
produces HTML documents that could be static files (web pages) or
dynamically produced (by CGI or ASP scripts) from static data (e.g., a read-
only database). So CRP checks important HTML files, scripts and system
and security files. It can also check the identity of sensitive active processes
on the machine (e.g., httpd, security processes, etc.).

If the server is rebooted periodically for “software rejuvenation™, there is
a relation between the frequency of the CRP, the duration of one CRP
exchange, the number of files to be checked, and the number of servers:

If the server is rebooted periodically for “software rejuvenation”, there is
a relation between the frequency of the CRP, the duration of one CRP
exchange, the number of files to be checked, and the number of servers:

Considering n the number of the checked files, f the frequency of CRP
(f< 1/d, d being the duration of one CRP exchange), and N the number of
challenges per file, the relation is:

(n x N x #servers / f) >= time between reboots &)

There is a minimal value of 1/f that corresponds to the maximal value of
the duration of an execution of CRP which is related to a request on the
biggest checked file. The next table gives examples of the performance of
CRP (when using MD5 as hash function, on Pentium III, 600 Mhz):

Table 1. Execution duration

File size Duration of one execution of CRP
2,2 Mbytes ~0,66s
13,5 Kbytes ~ 0,008 s

So if we consider that the biggest file to check is about 2 Mbytes, we
must choose a value of 1/f> 0,66 sec.

Remote Integrity Checking

The following table gives the size of the precomputed response table for

different values of n, 1/f and N, considering 4 servers and a reboot frequency
of one per 24 hours.

Table 2. Frequency and size

n 1/f N Table size

50 5s 87 ~578 Kbytes

500 1s 44 ~2. 92 Mbytes
5000 0,7s 7 ~4.76 Mbytes

3. A SOLUTION BASED ON THE PROTOCOL OF

DIFFIE-HELLMAN

We here describe a generic solution based on the well-known

cryptographic protocol of Diffie-Hellman for key exchange [Diffie &
Hellman 1976].

Let:

m denotes the value of the file to be remotely verified on a server; it is an
integer,

N, a RSA modulus, with two prime factors or more, of length of around
1024 bits; this value is public, that is, considered as known by everybody
including any malicious hacker with a lot of computing power,

phi(N) = L is secret and only known by the verifier; this function is the
Euler function (if N=pgq, then L = (p-1)(q-1)),

a, an element between 2 and N-2, randomly chosen and public.

The protocol is the following one:
the verifier stores the following precomputed value

ad"mod N =M, (6)

this computation is easy thanks to the knowledge of L (the theorem of
Euler allows us to replace the exponent m by the short value (m mod L)
of length around 1024 bits, independent of the length of the protected
file) and using, if necessary, the Chinese remainder theorem using the
knowledge of the prime factors;

the verifier chooses a random value r (the domain is the same as a) and
sends the following value A as a challenge to the server with the file to be
verified:

amodN=A Q)

8 Integrity and Internal Control in Information Systems

— the server computes
A"modN=B (8)

and sends B to the verifier,
- the verifier computes in parallel

M modN=C)]
and verifies if B = C thanks to the equation (10).

It is easy to see that the next equation (10) is correct by using the
equations (6) and (9),

B=A"modN=a"modN=MmodN=C (10)

The security of the protocol follows from the security of the Diffie-Hellman
protocol. The freshness of computation (8) on the whole file is guaranteed
by the random selection of r by the server. Another paper will describe a lot

of optimisations of this generic protocol.

4. DISCUSSION

In this section, we discuss how an attacker can defeat the proposed
solutions and compare these solutions with conventional signature schemes.

To defeat our solutions, a hacker could save each file before modifying
them. In that case, the hacked server would serve modified files to innocent
users while still being able to compute fresh responses by using the saved
file copies. But counter-measures can easily prevent and/or detect the saving
of critical files:

— To prevent the hacker to copy the files, the server file system can be
dimensioned in such a way that there would be no room for critical file
copies.

— It is easy for a host-based intrusion detection system to discriminate the
file copying from the normal server behavior. Moreover, the challenge-
response protocol can be applied not only to data files, but also to
directories, and even system tables, which stay mostly static on,
dedicated servers. This would make the hacker’s job much more
complex.

An alternative, conventional way to check file integrity consists in
signing every file by using a private owner’s key, while each user would be

Remote Integrity Checking 9

able to check the file integrity by retrieving the corresponding public key

through a public key infrastructure. But this solution, while well adapted for

software distribution, presents many drawbacks for other applications:

— It is not directly applicable to web services: the replies to http requests
are generally not a simple file content, and even when it is the case, the
integrity checks would have to be integrated in browsers, with all the
complexity associated with PKI management.

~ A hacker could still replace the current copies of the files with obsolete
copies with their original signatures.

— It would not solve the remote server management problem: the
administrator would still have to retrieve the contents of all the files to
check their integrity.

S. RELATED WORK

Tripwire® [Kim & Spafford 1993] is the most famous file integrity
checker. It has been designed to monitor a set of files and directories for any
changes according to signatures previously stored. Tripwire proposes a set of
signature functions (MDS5, MD4, MD2, Snefru and SHA). By default, MD5
and Snefru are stored and checked for each file but the selection-mask can
be customized and any of these functions can be selected. The user must first
generate, offline, a configuration file containing the list of the files to be
monitored and constitute a database of signatures corresponding to this
configuration file. When running, Tripwire scans periodically the file system
for added or deleted files in the directories specified in the configuration file,
and computes the signatures of the monitored files to compare them with the
signatures stored in the database. As previously stated, this approach cannot
be directly applied to check the integrity of files stored on a remote server: a
corrupted server can store locally the signatures of monitored files before
modifying them and, on request by the verifier, return these signatures
instead of freshly computed ones.

The SOFFIC project (Secure On-the-Fly File Integrity Checker) is
carried out at UFRGS (Brasil) [Serafim & Weber 2002]. Their goal is to
create a framework for intercepting file system calls and checking the
correctness of any request to access a file (read/write/execute). It should be
able to deny access to illegally modified files and to protect itself against
tampering. The SOFFIC is implemented as a patch to the Linux kernel so the
majority of its components resides in the kernel. The idea is to generate off-
line hashes for all the files to be checked (Hash List) and generate a list of
non-checked files (Trusted File List). Each time a user process attempts to
access a file (which is not in the Trusted File List), SOFFIC is activated to

10 Integrity and Internal Control in Information Systems

grant or deny the access: the access is denied if the hash stored in the Hash
List differs from the hash computed on-the-fly. For writable files, a new
hash is computed after modification.

Rather than modifying the kernel, it is possible to insert a middleware
layer between the application software and the system kernel. This solution
is more portable and easier to maintain than kernel modifications. Jones
[Jones 1993] has proposed to implement this approach by Interposing
Agents that control all or parts of the system interface. These agents can be
used to implement monitors to check the correctness of system calls, in
particular for accessing files. Fraser et al. propose a similar approach, based
on software wrappers, to augment the security functionality of COTS
software [Fraser et al. 1999]. Such wrappers could be used to protect kernel
and critical system files from non-authorized changes.

All these approaches suffer the same problems as Tripwire: if a server is
corrupted, its kernel can be modified or the middleware can be bypassed to
remove all integrity checks.

6. CONCLUSION

In this paper, we proposed two methods for remote file integrity
checking. The first one is based on a table of multiple challenges and
precomputed responses for each file to be checked, the response being
computed by the hash of the challenge concatenated with the content of the
file. The freshness of the response computation by the server is guaranteed
by the fact that a challenge is never reused before reboot of the server. With
the second method, a single value is precomputed and stored on the verifier
for each file to be checked, and the challenge is generated randomly. This
second method requires more computation (modular exponentiation instead
of a hash on the content of the file), but does not require a large table to be
stored by the verifier. Many optimizations are possible on the second method
to reduce the computation cost, and they will be presented in a future article,
with performance comparison with the first method.

ACKNOWLEDGEMENTS

This research was initiated during collaboration between LAAS-CNRS
and SRI International, partially supported by DARPA under contract number
N66001-00-C-8058. The views herein are those of the authors and do not
necessarily reflect the views of SRI International or DARPA. We are deeply

Remote Integrity Checking 11

grateful to our SRI International colleagues for the fruitful cooperation on
this project, and for their help in improving this paper.

REFERENCES

[CERT 2002] CERT Advisory CA-2002-24, Trojan Horse OpenSSH Distribution, August 1,
2002.

[Diffie & Hellman 1976] W. Diffie and M.E. Hellman, “New Directions in Cryptography”,
IEEE Transactions in Information Theory, 22(1976), pp. 644-654.

[Fraser et al. 1999] T. Fraser, L. Badger and M. Feldman, “Hardening COTS Software With
Generic Software Wrappers”, Proc. of IEEE Symposium on Security and Privacy, 1999,
pp- 2-16.

[Green et al. 1999] John Green, David Marchette, Stephen Northcutt, Bill Ralph, “Analysis
Techniques for Detecting Coordinated Attacks and Probes”, in Proc. Ist USENIX
Workshop on Intrusion Detection and Network Monitoring, Santa Clara, California, USA,
April 9-12, 1999, available at:
<http://www.usenix.org/publications/library/proceedings/detection99/full_papers/green/green_html/>

[Huang et al. 1995] Y. Huang, C. Kintala, N. Kolettis, N.D. Fulton, “Software Rejuvenation:
Analysis, Module and Applications”, in Proc. 25th IEEE Symposium on Fault Tolerant
Computing Conference (FTCS-25), Pasadena, CA, USA, June 1995, pp. 381-390.

[Jones 1993] M. Jones, “Interposition Agents: Transparently Interposing User Code at the
System Interface”, Proc. 14th ACM Symp. on Operating Systems Principles, Operating
Systems Review, 27[5], December 1993, pp. 80-93.

[Kim & Spafford 1993] G.H. Kim and E.H. Spafford, The Design and Implementation of
Tripwire: a File System Integrity Checker, Technical Report CSD-TR-93-071, Computer
Science Dept, Purdue University, 1993.

[Lamport 1981] Leslie Lamport, “Password Authentication with Insecure Communication”,
Comunications of the ACM, 24(11), pp. 770-772, November 1981.

[Serafim & Weber 2002] Vinicius da Silveira Serafim and Raul Fernando Weber, The
SOFFIC Project, < http://www.inf.ufrgs.br/~gseg/projetos/the_soffic_project.pdf>.

[Valdes et al. 2002] A. Valdes, M. Almgren, S. Cheung, Y. Deswarte, B. Dutertre, J. Levy,
H. Saidi, V. Stavridou and T. Uribe, “An Adaptative Intrusion-Tolerant Server
Architecture”, in Proc. 10th International Workshop on Security Protocols, Cambridge
(UK), April 2002, to appear in Springer LNCS Series.

AUTOMATED CHECKING OF SAP SECURITY
PERMISISONS

Sebastian Hohn
Software & Systems Engineering, Informatics, TU Munich, Germany
hoehn@in.tum.de

Jan Jiirjens

Software & Systems Engineering, Informatics, TU Munich, Germany
Jjuerjens@in.tum.de
http:/fwww.jurjens.de/jan

Abstract:

Key words:

Configuring user security permissions in standard business applications (such
as SAP systems) is difficult and error-prone. There are many examples of
wrongly configured systems that are open to misuse by unauthorized parties.

To check permission files of a realistic size in a medium to large organization
manually can be a daunting task which is often neglected.

We present research on construction of a tool which automatically checks the
SAP configuration for security policy rules (such as separation of duty). The
tool uses advanced methods of automated software engineering: The permis-
sions are given as input in an XML format through an interface from the SAP
system, the business application is described ba a diagram modeled with stan-
dard UML CASE (Computer-Aided Software Engineering) - tools and output
as XMI, and our tool checks the permissions against the rules using an ana-
lyzer written in Prolog. Because of its modular architecture and its standard-
ized interfaces, the tool can be easily adapted to check security constraints in
other kinds of application software (such as firewall or other access control
configurations).

integrity and internal control in financial systems, automated configuration
review, security restraints

14 Integrity and Internal Control in Information Systems
1. INTRODUCTION

The management and configuration of security-related resources in stan-
dard business applications is one of the most important tasks in mission-
critical departments. There is not only the potential of a negative impact of
public disclosure of confidential information and a resulting loss of faith
among customers, but the threat of direct financial losses. Computer
breaches are a real threat as a study by the Computer Security Institute
shows:

— Ninety percent of the respondents detected computer security breaches
within the last twelve months.

— Forty-four percent of them were willing and/or able to quantify their
losses. These 223 firms reported $455,848,000 in financial losses
[Pow02].

It is important to realize that the existence of security mechanisms itself
does not provide any level of security unless they are properly configured.
That this is actually the case is often non-trivial to see. One example is the
rule of “separation-of-duty”, meaning that a certain transaction should only
be performed jointly among two distinct employees (for example, granting a
large loan). Difficulties arise firstly from the inherent dynamics of permis-
sion assignment in real-life applications, for example due to temporary dele-
gation of permissions (for example to vacation substitutes). Secondly, they
arise from the sheer size of data that has to be analyzed (in the case of the
large German bank, which motivated the current work, some 60,000 data
entries). A manual analysis of the security-critical configurations through
system administrators on a daily basis is thus practically impossible, which
might result in security weaknesses in practice. This observation motivated
the current research which has been initialized in cooperation with a large
German bank and their security consulting partner. The goal was to develop
a tool which can be used to automatically check security permissions against
given rules in a specific application context (such as the separation of duty
rule in the banking sector). The tool should in particular be applied to ana-
lyze the SAP security permissions of the bank at hand. The current paper
reports on the design and development of this tool.

The permissions are given as input in an XML format through an interface

from the SAP system, the business application is described by a diagram

modeled with standard UML CASE-tools and output as XMI, and our tool
checks the permissions against the rules using an analyzer written in Prolog.

Because of it’s modular architecture and it’s standardized interfaces, the tool

can be easily adapted to check constraints in other kinds of application soft-

ware (such as firewalls or other access control configurations).

Automated Checking of SAP Security Permisisons 15

In the next section, we explain the task the tool is supposed to solve in more
detail (including the format of permissions and rules to be supported), as
well as the architecture of and the underlying concepts and important design
decisions regarding the tool. Section 3 explains the actual analysis performed
in the tool at the hand of some examples. We close with a discussion of re-
lated work and a conclusion.

2. AUTOMATED ANALYSIS OF SECURITY RULES

2.1 The Goals

As explained above, the correct configuration of secure business applications
is a challenging task. So there is a need for automated tool-support. The tool
presented here takes a detailed description of the relevant data structure of
the business application, the business data, and some rules written by the
administrator. Using this information, the tool checks whether the rules hold
for the given configuration. If the rules do not hold this is written to the gen-
erated security-report. The tool should be able to accomplish the following
specific tasks:

— It should read the configuration from the business application.

— It should automatically generate a report of possible weaknesses.

— It should provide a flexible configuration of the report’s data.

— It should be easily configurable for different business applications.

— It should be able to check large-scale databases.

— The checking should be based on freely configurable rules.

Two other goals are particularly important to enable use of the tool beyond
the specific task of checking SAP permissions of the SAP installation at
hand: it has to be easy to integrate the tool with different business applica-
tions, and the rules that have to be checked need to be very flexible.

2.2 Architecture

The tool mainly consists of three parts. They store the information describ-
ing the relevant data structure of the business application, define the rules
and evaluate the rules. An additional part is needed to import the data from
the business application (such as the SAP system). As in our example this is
the user data and some structural information about transactions.

The complete separation of the tool and the business application provides
additional security and privacy: Firstly, by separating the tool from the busi-
ness application, there is no way the tool could add any weaknesses to this
security-critical part of the company’s IT-system. The tool does not interact

16 Integrity and Internal Control in Information Systems

with the system at all, the only interaction the tool requires is data export.
When the tool has completed it’s task, there is a list of proposals for the ad-
ministrator to review. So it is the administrator’s task to decide whether he
will follow the proposal or not. So there is no way the tool itself could add
any weaknesses to the system.

Figure 1. Overview of the Tool's Architecture

Secondly, this way it can be made sure that only the information needed for
the analysis is exported to a foreign tool, which is important privacy matters.
Both aspects should facilitate adoption of the tool.

The information itself is completely stored in XML. The business applica-
tion’s data has to be exported to XML files. In the specific application of the
tool — the analysis of SAP security permissions — this task is outside the
scope of the current paper.

The data structure of the business application is defined by UML class dia-
grams. Any case tool capable of saving XMI data can thus be used to do the
modeling. The modeling in the current project will be done manually, be-
cause that will add some additional security (misconfiguration could result in
a wrong model which will not be recognized as wrong then) and it is rather
easily done. The complexity of the creation of this model depends one the
size of the system. In SAP you can think about one diagram for each data
table and the associations between these tables. Rules are stored in XML.

Automated Checking of SAP Security Permisisons 17

There is a graphical user interface in development which will help with the
creation of rules.

2.3 The Business Application as a Model

Following conventions published by the Object Management Group (OMG)
as “the classical four layer meta-model framework”[Obj02], software sys-
tems can be modeled particularly flexibly in an approach based on several
layers of information (see Figure 2). Throughout the description of the ana-
lyzer there will be several types of information that fit into different layers
on OMG’s meta-model framework. In this framework there are UML models
on layer 1 (M1) and application data on layer 0 (MO) (see Meta-object facil-
ity, pp. 2-2 to 2-3.

According to this separation of “model” and “information” the analyzer
needs two distinct types of data. First it needs “metadata” which is the de-
scription of the data structure of the business application itself and is given
as an UML model of the application. This is what sometimes is called the
“structure of the business” application and it is on level M1. On the other
hand the analyzer needs to know about the data itself, this is what is called
“instance data” and it is information on level M1.

Figure 2. Meta-model Framework according to OMG

To illustrate the separation of data on layer M1 and data on layer MO we
consider an example. Assume there is “some” user-data in the business ap-
plication. Every user has a name and a password. To formally describe the
meaning of “some” in the expression “some user-data” there is a “model”
that tells the tool about the class user and it’s attributes name and password.
This is done with an UML model and is data on level M1. When the tool
checks the rules and needs to evaluate information of some special user e.g.
“John”, it needs what is called “information” in the “meta-model frame-
work”. This information is called “instance-data” and it is given as XML
documents (this is, as the analyzer uses it, placed on layer M0)[Obj02].

18 Integrity and Internal Control in Information Systems
24 Permissions

To associate permissions for transactions via roles to users in role based ac-
cess control (RBAC), the tool uses UML class diagrams. These diagrams can
be directly used to give this information, and we do not need to introduce
any additional features. The tool reads the class diagram and evaluates
classes and associations.

In general, the analyzer is not restricted to such an RBAC model or to any
specific model at all. It is capable of evaluating rules on any class diagram
that has the connection attributes assigned as names of the associations and
the direction of associations defined by the navigable flag. The analyzer
evaluates the model as a graph with classes as nodes and associations as
edges, where edges are directed. As we will see later, for the evaluation of
rules, we need to require that there must be a path between the two classes
involved in that rule, and there must be instance data so that the connecting
attributes of each class match.

To explain this in more detail, we consider the example in Figure 3: the class
diagram assigning permissions to users consists of the classes user, role,
transaction, and permission, with attributes as in Figure 3. There is an asso-
ciation role_id between user and role, an association role_id between role
and transaction, and an association fransaction_id between transaction and
permission. The analyzer uses this model to automatically find a user’s per-
missions.

Note that when assigning a permission p to a user u via a role r, and the user
u also happens to have another role r', then (of course) it is not admissible to
conclude that any user ' with the role r' should also be granted the permis-
sion p. In that sense, assigning permissions to users via roles is ‘“uni-
directional”. In the class diagrams defining permissions, this is specified by
using the “navigable” flag of UML class diagrams. This flag is an attribute
of an association’s endpoint. If this flag is set to “true” at the endpoint of a
class c¢ (signified by an arrow at that side of the association), our rule-
analyzer may associate information from the other end of the association
with c. Ifit is set to “false”, this information may not be evaluated. This way
our tool may gather the permissions with respect to transactions granted to a
given user by traversing the class diagram along the associations in the navi-
gable directions permitting a “flow of information”. This way the tool “col-
lects” all users that have a given role, but does not recursively collect all us-
ers that have any of the roles that a given user has (as explained above).

Automated Checking of SAP Security Permisisons

user role
-name : String role_ -name : String
-role_id : int Sl -role_id : int
role_id .
transaction permission
-name : String -name : String
-role_id : int -role_id : int
~trangaction_id { int -transaction_id i
4\ transaction_id

Figure 3. Simple Role Based Access Control

19

To know how the elements in the application are connected there must be
some kind of ID that can be evaluated at both sides of the connection. As in
the short example above the user would have some kind of “role-id” in his
user data, and a role would have the same id. The application retrieves the
user’s “role-id” and finds the role with the same id. To express that mecha-
nism in our static UML class diagram, there is an association between the
classes that exchange information. The user-class would be associated with
the role-class, so the tool knows there is some kind of interaction (i.e., the
application is able to find a user’s role). To enable the search of information
the analyzer implicitly adds an additional attribute to either class at the asso-
ciation’s endpoints. These new attributes are assigned the association’s name.

<rubacon>

<user>
<name>john</name>
<uid>500</uid>
<group>users</group>

</user>

<group>
<group>users</group>

</group>

</rubacon>

Figure 4. Snippet from an instance file

20 Integrity and Internal Control in Information Systems
2.5 Instance Data

Besides the structural data elements explained above, we need so-called “in-
stance data”. Here an instance may, for example, be a real user of the sys-
tem. This information is very important for most of the rules one would like
to evaluate. There are, of course, rules that do not need instance data (if one
is checking the UML data structure model itself for some constraints, for
example), but in general there will be instance data. It is read by the analyzer
from additional XML files (for an example see Figure 4), containing a tag
for every class, and within that tag another tag for each attribute. The ana-
lyzer is able to generate the XML-Schema file for an UML model specified
by the user, because the contents of the instance file depends on the model of
the business application.

2.6 Rules

As defined in the previous section, the business application data structure is
represented by a class diagram, that is, a directed graph together with the
data from the business application. These two pieces make up a rather com-
plex graph whose structure can be seen in Figure 5 as an example. One can
see that for every user in the business application data structure, a node is
added. The model gives the tool the information that there is a connection
between user and role, but in the graph in Figure 5 there are only edges be-
tween certain users and certain roles. It shows that there is an edge between
user john and role users, because there is the attribute role that instantiates it.

There is no edge between user john and role admins, because john does not

have admins in his roles. This is the graph that the analyzer uses to analyze

the rules.

Rules in this paper consist of the following elements:

— aname (used as a reference in the security report)

— the type of the rule, which can be either of PROHIBITION or
PRECONDITION (meaning that the condition given in the sub-rule de-
fined below should either not be fulfilled, or be fulfilled)

— amessage (printed in the report if the rule fails)

— a priority level (to build a hierarchy of importance, so that less important
rules can be turned off easily - typical values may include DEBUG,
INFO, WARNING, ERROR, FATAL, or a numerical value)

— asub-rule, which defines a path in the analyzer’s graph and a set of con-
straints, as defined below

A sub-rule has the following elements:

— the head, which is the starting point of the path in the analyzer’s graph
defined by the sub-rule

Automated Checking of SAP Security Permisisons 21

— the target, which is the target of that path

~ a list of constraints, which defines conditions that the path has to satisfy
Here a constraint consists of the following elements:

— element, the node that has to be checked

— condition, to be checked on that node

User User User
+name: john +name: peter +name: karen
+uid: 500 +uid: 501 +uid: 502
+role: users +role: users, admins +role: admins

Role Role
iname: uacrs +name: admins

Figure 5. The graph after model and information is inserted

We consider the following example: If it has to be ensured that a certain
user, say john, does not have the role admins assigned, the following pa-
rameters would be set for the rule:

name check user roles
type PROHIBITION
message check user for given roles
priority ERROR =4
In this example, we have a single sub-rule.
head user
target role
constraint head.user.name = param.user.name
constraint target.role.name = param.role.name

This rule has two parameters that the user has to provide when generating
the report, indicated by the keyword param: the user-name john and the role
admins. A suitable XML document that provides these parameters for every
rule is expected as input.

The evaluation of this example rule is as follows: The analyzer attempts to
find the head of the rule (i.e. “user: john”) in the analyzer’s graph. After-
wards, it tries to find a path to the target (i.e. “role: admins”). If that suc-
ceeds it prints the given message in the security report.

The separation between the rule itself and the two parameters
(param.user.name and param.role.name) is introduced to make editing more
comfortable: One does not need to edit a rule for every user and every role
that has to be checked.

With the help of these elements rather powerful rules can be defined. To the
analyzer the model is a graph representing the business application data

