

Lecture Notes in Computer Science 2022
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Alexander Romanovsky Christophe Dony
Jørgen Lindskov Knudsen AnandTripathi (Eds.)

Advances in
Exception Handling
Techniques

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Alexander Romanovsky
University of Newcastle upon Tyne, Department of Computing Science
Newcastle upon Tyne, NE1 7RU, UK
E-mail: alexander.romanovsky@ncl.ac.uk

Christophe Dony
University of Montpellier-II, LIRMM Laboratory
161 rue Ada, 34392 Montpellier Cedex 5, France
E-mail: dony@lirmm.fr

Jørgen Lindskov Knudsen
University of Aarhus, Department of Computing Science
Aabogade 34, 8200 Aarhus N, Denmark
E-mail: jlk@daimi.au.dk

Anand Tripathi
University of Minnesota, Department of Computer Science & Engineering
Minneapolis, MN 55455, USA
E-mail: tripathi@cs.umn.edu

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Advances in exception handling techniques / Alexander Romanovsky ...
(ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ;
London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 2001

(Lecture notes in computer science ; 2022)
ISBN 3-540-41952-7

CR Subject Classification (1998): C.2.4, D.1.3, D.1.5, D.2, D.3, D.4, F.3, I.2.11

ISSN 0302-9743
ISBN 3-540-41952-7 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Stefan Sossna
Printed on acid-free paper SPIN: 10782337 06/3142 5 4 3 2 1 0

Foreword

For years exception handling has been a side issue in language and system design. I
could not be more pleased to see the recent surge of interest in this topic, as reflected in
recent special issues of Transactions on Software Engineering, the workshop yielding
the papers in this volume, and future planned workshops. Moreover, in reading
through these papers, I was surprised at the breadth of topics covered. Programming
language issues are no longer the central focus; researchers are looking into broader
topics such as workflow processes, distributed systems, system design, etc.

This broad interest is understandable. Although exception handling originated with
sequential programming languages, today’s distributed, component-oriented computing
world raises new language design and implementation issues as well as new concerns
about how to deal with exceptions in system design. I am glad to see such vigorous
exploration of these issues.

Several of the papers deal with system design, but there are still issues that remain to be
explored. For example, I have long (but quietly) advocated dealing with exception
handling issues early in the design of a system. Unfortunately, there is a natural
tendency to focus on the main functional flow of a system, ignoring the impact of
exceptional situations until later. Design guidelines for using exceptions are lacking;
indeed, there is little appreciation of the need for such guidelines. For example, even
leaving aside distributed and concurrent programming issues, what design guidelines
exist to help decide which preconditions should be checked inside a module and which
should be the caller’s responsibility? For which exception situations should a module
provide a Boolean function such as At_End_of_File so a programmer can test for the
existence of the situation without calling the method that raises the exception? When
an exception occurs, what additional information should be provided to the handler
(even at the cost of a breach in information hiding), and what system-wide conventions
define what information will be provided and how it will be provided?

Another topic that concerns me is the interaction between exceptions and optimization.
Long ago, a PL/I implementer observed that the existence of exceptions raised by
language-defined operations could kill many optimizations. For example, if code is
reordered to optimize usage of a pipelined floating point processor, some textually-later
operations may be performed in parallel with the floating point computations. Suppose
a complex assignment that occurs textually later in the code is actually started while
waiting for the floating point processor to finish. If an overflow exception is raised
after the assignment is completed, the handler may not expect the variable to be
updated. If the assignment is interrupted, the variable may be left in a partially updated
state. When a language permits such reorderings, then the state seen at an exception
handler is less defined than a programmer might think. When a language does not
permit such reordering, then code may run slower. Deciding what computational states
are allowed after occurrence of an exception raised by a language-defined operation is
a tricky proposition; it occupied a lot of discussion during the Ada design.

VI Foreword

I raise these points only to suggest that despite the swell of papers and work on
exception handling, there are still technical nuggets to be mined by the adventurous
explorer. The nuggets that can be found in this book are still only the beginning.

January 2001 John B. Goodenough
 Carnegie Mellon University

Preface

Modern software systems are becoming more complex in many ways (including their
size, modules, components, distribution, concurrence, interoperability) and have to
cope with a growing number of abnormal situations which, in their turn, are
increasingly more complex to handle. The most general way of dealing with these
problems is by incorporating exception handling techniques in software design. In the
past, various exception handling models and techniques have been proposed, many of
which are part of practical languages (e.g. PL/I, Ada, CLU, LISP, Smalltalk, Eiffel,
BETA, C++, Java) and software composition technologies (e.g. CORBA, COM, or
Enterprise Java Beans).

In spite of these developments and a better understanding of exception handling
techniques by today’s software designers, many problems still persist because the
mechanisms embedded in exception handling systems and the methodologies of using
them are often error-prone due to the complexity of exception code. Moreover,
specification, analysis, verification, and testing of programs and systems intended for
coping with exceptional situations are far from being straightforward. Finally, very
often the exception handling features used are not compatible with the programming
language features or the methodology in which they are employed, thus creating a gap
that can cause mistakes or unnecessary complications. Developing new exception
handling techniques should go together with developing advanced models, languages,
and paradigms and take into account various specific application domains as well as
users’ experience of employing the existing ones.

In the early 1970s John Goodenough1 was the first to define the seminal concepts for
exception handling models, techniques, and applications. He defined exception
conditions and handling as follows: "Of the conditions detected while attempting to
perform some operation, exception conditions are those brought to the attention of the
operation invoker. ... Bringing an exception condition to invoker’s attention is called
raising an exception. The invoker’s response is called handling the exception."
Knudsen2 defined exception conditions in a more general sense: "an exception
occurrence is a computational state that requires an extraordinary computation". This
book brings together a collection of 17 papers addressing a wide range of issues in
exception handling techniques, reflecting this broad view and the importance of
exception handling in today’s software systems.

This collection aims at discussing important topics of developing advanced exception
handling techniques and of applying them in building robust and dependable systems.
The papers presented describe well-established results, recent developments on

1 Goodenough, J.B.: Exception Handling, Issues and a Proposed Notation. Communications of

ACM, 18, 12 (1975) 683-696
2 Knudsen. J.L.: Better Exception Handling in Block-structured Systems, IEEE Software, May

(1987) 40-49

VIII Preface

specific issues, and practical experience. The research problems addressed include
linguistic issues and programming constructs, integration of exception handling models
with object-oriented programming principles, and methodologies for employing
exception handling in software designs incorporating concurrent and distributed
components. The book offers an exposition of techniques and experiences concerning
exception handling in mission-critical systems, databases, and workflow process
management systems.

This book is composed of five parts, which deal with topics related to exception
handling in the context of programming language models, design methodologies,
concurrent and distributed systems, applications and experiences, and large-scale
systems such as databases and workflow process management systems.

The first part focuses on language support for exception handling. It comprises three
papers which describe how exception handling systems are integrated into statically
and dynamically typed programming languages. These systems differ in how
exceptions are represented; what kind of control structures are provided to signal and
handle exceptions; the semantics of these control structures and its effect on the
expressive power and the program quality and, finally, how the exception handling
primitives can be implemented. The paper by Jørgen Lindskov Knudsen presents a new
design for augmenting the static exception handling model in BETA by a dynamic
exception handling model, and discusses how these two models can coexist and
interact. Finally, the strengths of both models are discussed. Christophe Dony
describes the design and implementation of a fully object-oriented exception handling
system for Smalltalk which incorporates class handlers. And finally, Kent M. Pitman
presents the rationale and evolution of exception handling models in the LISP language
family.

The second part deals with the design and modeling of exception handling structures.
So far, there have not been enough studies which consider the most effective ways of
using the existing systems, their limitations, and how to overcome them. Bjarne
Stroustrup discusses the effective and practical use of exception handling libraries in
C++. The paper by Yolande Ahronovitz and Marianne Huchard is concerned with the
design of exception class hierarchies and their connection with predefined exception
hierarchies. Finally, the paper by Anna Mikhailova and Alexander Romanovsky
describes the evolution of application programs and, in particular, the issues raised by
the integration of new exceptions in module interfaces, and proposes some effective
solutions.

The papers in the third part focus on exception handling issues in concurrent and
distributed computing. With cooperative concurrency, an exception encountered by
one component may require actions by the components cooperating with it. Also,
exceptions concurrently raised by different components need to be resolved together to
determine the global handling action to be undertaken. The paper by Valérie Issarny
presents a programming language level support addressing these problems. Several
particular problems arise when the cooperating autonomous components of an
application are distributed. Thus, in agent-based systems components can migrate in
the network. Anand Tripathi and Robert Miller propose a framework for exception

Preface IX

handling in agent-based systems. Many concurrent and distributed systems are
structured using shared objects and atomic actions. Such systems support both
competitive and cooperative models of concurrency. The exception handling
approaches based on action-oriented structuring of such concurrent systems are
outlined in the survey paper by Alexander Romanovsky and Jörg Kienzle. Finally,
Marta Patiño-Martinez, Ricardo Jiménez-Periz, and Sergio Arévalo discuss exception
handling mechanisms developed for replicated object groups, employing the
transactional model of atomic actions.

The papers in the fourth part of the book focus on practical problems and experience of
integrating exception handling techniques in real-world systems. The topics addressed
include techniques for building dependable systems, integration of distributed
components using COM, and implementation mechanisms for checkpointing the state
of partially executed programs for reliability or mobile computing. Integration of
exception handling in software system design is essential for building mission-critical
and dependable systems. The paper by Charles Howell and Gary Vecellio presents
various patterns of exception handling derived from building mission-critical systems
using Ada. Alessandro F. Garcia and Cecília M.F. Rubira propose a reflective
architecture for systematically integrating exception handling mechanisms at various
stages of designing an object-oriented dependable system. The paper by Bjørn Eigil
Hansen and Henrik Fredholm presents techniques for adapting the C++ exception
handling model to the COM exception model. And, finally, Tatsurou Sekiguchi,
Takahiro Sakamoto, and Akinori Yonezawa show how an exception handling system
can be used to develop a portable implementation of control operators which allows the
manipulation of program continuations in imperative languages.

The last part is concerned with exception handling techniques for information systems,
with a special focus on database and workflow management systems. The paper by
Elisa Bertino, Giovanna Guerrini, and Isabella Merlo discusses the issues related to
exceptions in object-oriented databases. These exceptions can arise in two situations:
when the data not conforming to the prescribed schema are stored in the database, and
when the abnormal conditions occur during data processing. Workflow process
management systems support the modeling and enactment of enterprise-wide
processes. Such processes can sometimes encounter exceptional conditions during their
execution due to errors in the modeling of business activities, mistakes made by the
people involved in a process, or failures in the underlying computing infrastructure.
Fabio Casati and Gianpaolo Cugola discuss how such exceptions and failures
occurring in business process applications, which model and mimic human group
activities, can be classified and handled by higher-level dedicated exception handling
systems. The paper by Dickson K.W. Chiu, Qing Li, and Kamalakar Karlapalem
presents an overview of a workflow management system integrating several original
approaches to exception handling: the automated and cooperative resolution of
expected exceptions, handling via workflow evolution, and developing support for
user-driven handling of unexpected exceptions.

X Preface

The starting point of our work on this book was the workshop on Exception Handling
in Object-Oriented Systems that we organized at ECOOP 20003. Later on we decided
to widen the scope of the book and, after inviting several workshop participants to
prepare chapters for this book, extended this invitation to a number of other leading
researchers working on different aspects of exception handling. It is only natural that
the choice of contributors to this book reflects our personal views on this research area.
However, we are hopeful that reading this volume will prove rewarding to all computer
scientists and practitioners who realise the importance of dealing with abnormal events
in building robust and safe systems.

Our thanks go to all authors, whose work made this book possible. Many of them also
helped during the review process. We also would like to thank Prof. John Goodenough
for contributing the foreword to this book. Finally, we would like to thank Alfred
Hofmann of Springer-Verlag for recognising the importance of the project and
publishing this book.

January 2001 Alexander Romanovsky
Christophe Dony

Jørgen Lindskov Knudsen
Anand Tripathi

3 Romanovsky, A., Dony, C., Knudsen, J.L., and Tripathi, A.: Exception Handling in Object-

Oriented Systems. In Malenfant, J., Moisan, S., and Moreira, A., (eds.): Object-Oriented
Technology. ECOOP 2000 Workshop Reader. Lecture Notes in Computer Science Vol.
1964. Springer-Verlag, Berlin (2000) 16-31

Table of Contents

Part 1 Language Support for Exception Handling

Fault Tolerance and Exception Handling in BETA.........………………………
Jørgen Lindskov Knudsen

A Fully Object-Oriented Exception Handling System: Rationale and
Smalltalk Implementation……………………..…………………………….…
Christophe Dony

Condition Handling in the Lisp Language Family..………...………………….
Kent M. Pitman

Part 2 Design and Modeling of Exception Handling
Structures

Exception Safety: Concepts and Techniques...…………………………………
Bjarne Stroustrup

Exceptions in Object Modeling: Finding Exceptions from the Elements
of the Static Object Model…………………..…………………………...……
Yolande Ahronovitz, Marianne Huchard

Supporting Evolution of Interface Exceptions...……………………….……….
Anna Mikhailova, Alexander Romanovsky

Part 3 Exception Handling in Concurrent and Distributed
Systems

Concurrent Exception Handling...………………………………………………
Valérie Issarny

Exception Handling in Agent-Oriented Systems...……………..……..………..
Anand Tripathi, Robert Miller

1

 18

 39

60

77

94

111

128

Action-Oriented Exception Handling in Cooperative and Competitive
Concurrent Object-Oriented Systems …………………………………….....…
Alexander Romanovsky, Jörg Kienzle

 147

XII Table of Contents

Exception Handling and Resolution for Transactional Object Groups...……….
Marta Patiño-Martínez, Ricardo Jiménez-Peris, Sergio Arévalo

Part 4 Applications of Exception Handling Techniques

Experiences with Error Handling in Critical Systems.……………………..…..
Charles Howell, Gary Vecellio

An Architectural-Based Reflective Approach to Incorporating Exception
Handling into Dependable Software……………………………………………
Alessandro F. Garcia, Cecília M. F. Rubira

Adapting C++ Exception Handling to an Extended COM Exception Model......
Bjørn Egil Hansen, Henrik Fredholm

Portable Implementation of Continuation Operators
in Imperative Languages by Exception Handling…………………......………..
Tatsurou Sekiguchi, Takahiro Sakamoto, Akinori Yonezawa

Part 5 Exception Handling in Information Systems

Exception Handling in Object-Oriented Databases...……………………..……
Elisa Bertino, Giovanna Guerrini, Isabella Merlo

Error Handling in Process Support Systems...………………………………….
Fabio Casati, Gianpaolo Cugola

ADOME-WFMS: Towards Cooperative Handling of Workflow Exceptions.....
Dickson K.W. Chiu, Qing Li, Kamalakar Karlapalem

Author Index……..……………………………………………….………..

165

181

 189

207

 217

234

251

 271

289

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 1-17, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Fault Tolerance and Exception Handling in BETA

Jørgen Lindskov Knudsen

Computer Science Department, Aarhus University
Aabogade 34, DK-8200 Aarhus C, Denmark

Tel.: +45 89 42 31 88 – Fax.: +45 89 42 56 24
E-mail: jlknudsen@daimi.au.dk

Abstract. This paper describes the fault tolerance and exception handling
mechanisms in the object-oriented programming language BETA. Exception
handling in BETA is based on both a static and dynamic approach to exception
handling in contrast to most other languages only supporting a dynamic
approach.
The BETA approach to static exception handling is based on a static
termination model. Exceptions and their handlers may be defined both on the
program, class, method, and instruction level, and default handlers for
exceptions are defined as part of the definition of the ordinary handler.
Exception propagation is under the control of the programmer.
The BETA approach to dynamic exception handling is similar to other
traditional dynamic exception handling models. Exception handlers are
associated with blocks in the code, and in the case of an exception occurrence,
the dynamic call-chain is scanned to find the dynamically nearest block with a
handler matching the exception occurrence.

1 Exception Handling and Fault Tolerance

When studying error handling, there seem to be two different, but closely related
problems, namely that of exception handling and that of fault tolerant programming.
This applies both when studying the issues of error handling in programming and the
many different proposals for language constructs for error handling. To clarify, we
would like to characterize the concepts exception handling and fault tolerance in the
context of error handling:

Exception handling

Exception handling is the technique by which the designer of a piece of software – an
abstraction (library, module, class, etc.) can define possible exceptional occurrences
that are expected to occur in the abstraction. Moreover, these exceptional occurrences
are part of the definition of the abstraction in the sense that the users of the abstraction
knows about the possibilities of these exceptional occurrences, and thereby are able
(or forced) to deal with these occurrences when using the abstraction.

2 J. L. Knudsen

Fault tolerant programming

Fault tolerant programming, on the other hand, is the techniques to cope with
exceptional occurrences that are not defined as part of the abstraction definition.
Examples of such occurrences are programming errors in the code of the abstraction,
unhandled exceptions, and unexpected system states (e.g. the disk system suddenly
becomes inaccessible) as illustrated in Fig. 1.

Program

Abstraction

Fig. 1: Exception occurrences inside abstractions with interface

If the error occur within the abstraction, and is completely handled by the abstraction
itself, we will call this exception handling. Likewise if the error occur within the
abstraction and is propagated through the interfaces of the abstraction by means of
exceptions known in the interface definition of the abstraction (as indicated in the
picture above by the arrows). However, if errors occur within the abstraction, and the
error is not handled internally in the abstraction and propagated through the interface
by exceptions not known in the interface to the abstraction, we will call this a fault
(thus calling for mechanisms for fault tolerance). We call this a fault since the user of
the abstraction has no means to foresee the error in any reasonable way. An example
is a communication abstraction in which the programmer of the abstraction forgets to
make provisions for the situation where the communication line breaks down for
some reason (e.g. the cable is broken). In this case a communication error will occur
within the abstraction, and this error will somehow be propagated to the users of the
abstraction, but they have no direct way to handle this situation.

Language mechanisms for error handling have mostly used the dynamic model of
exception handling, as initiated by the work by Goodenough [1], and realized in
languages like C++ and Java.

Interestingly, the trend in dynamic exception handling (as exemplified by Java) is
to introduce more static analysis in order to make exception handling more safe
(exceptions are declared in the interfaces, and the language compiler enforces static
checks to ensure, that these exceptions are handled). This gives a static verifiability
of an otherwise dynamic mechanism. On the other hand, the static model of

Fault Tolerance and Exception Handling in BETA 3

exception handling (as exemplified by BETA [6]) have realized that there are cases,
where the static nature of the model makes it very difficult to ensure that a program
never terminates due to an unhandled exception.

Looking more closely at the Java exception handling mechanism [2], one will find
an interesting change in the rules of the game when we investigate the rules
concerning the very basic exceptions (such as numeric exceptions). While the
compiler enforces the handling of all exceptions in an interface, the compiler does not
enforce this rule on the basic exceptions.

Looking more closely into the arguments for this, it is interesting to see that
sentences like “it would become tedious to properly declare them all, since practically
any method can conceivably generate them” are given. And an example is “every
method running on a buggy Java interpreter can throw an InternalError exception”.

One interpretation of these differences in semantics is exactly that regular
exceptions (i.e. Throwables) are handled using exception handling, whereas non-
Throwables are handled using fault tolerance. In the Java case, this implies that the
exception type system is used to differentiate between exception handling and fault
tolerance.

In the BETA case, the type system of exceptions does not introduce any
differentiation between exceptions for exception handling and exceptions for fault
tolerance. This is actually a deliberate design decision. The reason is, that in some
parts of a system, a given exceptional case might be known as a part of the definition
of an abstraction, whereas the same exceptional case may occur in other places, where
it is unreasonable to define it as part of the abstraction. In the Java case, this situation
implies that the system must have two exception types defined – one for the exception
handling case, and another for the fault tolerance case. In BETA, this is handled by
the same exception definition. If the exception is raised using the static exception
handling system, then the exception is handled using exception handling, whereas if
the exception is raised using the dynamic exception handling mechanisms, then the
exception is handled using fault tolerance.

It should be noted, that the BETA mechanisms are actually connected, such that if
an exception is raised as a static exception, but unfortunately not handled by anyone,
then the exception handling system will automatically convert it into a dynamic
exception. This implies that the error is converted to a fault to be handled through
fault tolerance mechanisms.

In conclusion, the relationship between exception handling and fault tolerance
needs further investigation, and there is a need for further development in the area and
language constructs for supporting both exception handling and fault tolerance.
However, it seems important not to do this through separate language constructs, but
to develop interconnected language constructs, enabling these two approaches to error
handling to be integrated, improving the stability of future system designs.

2 The BETA Error Handling Mechanisms

Error handling in BETA is based on both a static and dynamic approach in contrast to
most other languages only supporting a dynamic approach.

The BETA approach to static exception handling is based on the static termination
model (i.e. the termination level of raising an exception is understood through the

4 J. L. Knudsen

static structure of the program). This implies that the extent of exceptions and
handlers are defined by the static structure. The static termination model is based on a
language construct called sequel, presented by R. D. Tennent in [8]. The static
approach to exception handling was first presented in [3] and further developed in [4].
Hereafter, the static approach was adapted by the BETA language [6] implementation
in the Mjølner System [7].

Exceptions and their handlers may be defined both at the level of the program,
class, method, and statement, and default handlers for exceptions are defined as part
of the definition of the exception itself. Exception propagation is under the control of
the programmer. Static exception handling is realized using virtual patterns in BETA.

The BETA approach to dynamic exception handling is similar to other traditional
dynamic exception handling models. Exception handlers are associated with blocks
in the code, and in the case of an exception occurrence, the dynamic call-chain is
scanned to find the dynamically nearest block with a handler matching the exception
occurrence.

The BETA exceptions allow for both termination, resumption and retry models of
exception handling, and the programmer has full control over the model chosen.

The BETA exception handling model is implemented within the BETA language
to the extent that a programmer may choose to implement an exception handling
model that is particular suited for the specific applications. BETA has no special
built-in language mechanisms for exception handling. Only a slight runtime system
support is needed in the BETA implementation.

The static exception handling model in BETA is "free-of-charge". That is, there is
no runtime overhead on programs that do not utilize static exception handling.
Programs using the static exception handling model will only experience little extra
runtime overhead when an exception actually occur (except that of course the actual
execution of the handler code). That is, the time used to locate handlers etc. is
essentially zero.

The dynamic exception handling model in BETA is not totally "free-of-charge". A
slight runtime overhead is imposed on the execution of those blocks that have
associated exception handlers. In the case of an exception occurrence, the dynamic
search for a matching handler is an extra execution overhead.

The introduction of exceptions into the BETA language is done in two steps.
Firstly, we introduce the static exception handling model in BETA, leading to a very
simple, and very efficient exception handling technique, where no runtime overhead
are induced on programs utilizing this approach.

Following the introduction to the static approach, we will introduce dynamic
exception handling into BETA. The dynamic exception handling model is inspired by
the dynamic exception handling model in C++.

3 Static Exception Handling in BETA

In the following sections, the technique for static exception handling in BETA will be
presented. It should be noted that the implementation of static exception handling in
BETA is not identical to the original static approach as described in [3] and [4]. The
most significant difference is that when implementing the static approach in BETA, it
was decided to do this without changing the core BETA language and thus implement

Fault Tolerance and Exception Handling in BETA 5

static exception using the existing language facilities of BETA. This implied that the
introduction of sequels as defined by R. D. Tennent in [8] and utilized for the original
proposal for static exception handling was abandoned. Instead the BETA version of
static exception handling is realized by using virtual patterns and by extensive usage
of the ability to bind virtual exception patterns to concrete exception handlers.

3.1 Exception Handling Terminology

A virtual pattern dealing with an exception is called an exception pattern, or just an
exception. The invocation of an exception pattern is called an exception occurrence.
An exception is raised when an exception pattern is invoked. The code associated
with an exception pattern is called a handler or an exception handler.

The code associated with a specialization of the exception pattern will be the
default handler for the exception in the case where no further binding of it is made. A
sub-pattern may extend the default handler by a further binding. A specific instance
handler may be associated with each instance by instantiating a singular object with a
further binding of the exception pattern.

3.2 The Exception Pattern

The exception pattern is defined in Fig. 2. The text object msg is intended to hold the
text to be displayed to the user in case the exception leads to termination of the
program. In sub-patterns of exception, it is possible to specify the termination
message.

The default action of an exception is to stop execution. The rationale behind this is
that an exception is an error that must explicitly be dealt with by the programmer. If
the exception should not result in the termination of the application (i.e. the execution
should be resumed after the exception have been handled), then the exception have to
specify an explicit true->continue.

The exception pattern defines two local patterns: error, and notify. Error is a
pattern to be used when defining the individual exceptions in a category, and notify is
for defining the individual notifications in the category.

The static exception handling mechanism for BETA as presented here is an
updated version of the static exception handling mechanism described in [6] – we
refer to [6] for details. The updated version presented here has been available in the
Mjølner System [7] from release r5.0.

The benefits of the static approach to exception handling is a very declarative
exception handling style, where the consequences of raising an exception can be
deduced from the static properties of the program. This also implies that the cost of
these mechanisms are extremely low, both in the case of the exceptions never being
raised, but also in the case of an exception being raised. The cost of static exception
handling is fully comparable with ordinary programming.

It is our experience, that static exception handling is the exception handling model
per se for well-designed object-oriented systems. The focus is on the use-relation
between objects: it is the responsibility of the user (or client) of an object (or a
service) to specify explicitly the consequences of exception occurrences in the object.

6 J. L. Knudsen

exception:
 (# msg:
 (* append text to this ’msg’ variable to specify
 * the exception error message for
 * this(exception)
 *)
 @text;
 continue: @boolean
 (* the value of this variable determines the
 * control-flow behaviour of this(exception):
 * true: continue execution after exception
 * false: terminate execution by calling
 * ’stop’; default
 *);
 error:
 (* used to define local exception conditions
 * which can be handled separately. All error’s
 * that are not handled separately will be
 * handled by this(exception)
 *)
 (#
 do false->continue;
 INNER;
 ’**** Error processing\n’->msg.prepend;
 (if not continue then this(exception) if)
 #);
 notify: error
 (* used to define local notification conditions
 * which can be handled separately. All
 * ’notify’s that are not handled separately
 * will be handled by this(exception)
 *)
 (# do true->continue; INNER #);
 do INNER exception;
 (if not continue then
 ’**** Exception processing\n’->msg.prepend;
 (* Terminate program execution:
 * Details not given here *)
 if)
 #);

Fig. 2: The exception pattern

The static exception handling model gives the ability for an object (through its
pattern declaration) to specify the exception occurrences that may occur within it (by
declaring virtual attributes, that are specialization’s of the exception pattern).

Fault Tolerance and Exception Handling in BETA 7

The static exception handling model offers the ability for the client of the object (or
service) to explicitly (and statically) specify the handling of such exception
occurrences through virtual bindings of these exception patterns. This is in contrast to
the usual dynamic approaches, where the handler is found through dynamic search in
the runtime stack. Dynamic exception handling thus ignores the static structure of the
program.

The effectiveness of static exception handling is demonstrated by the fact, that the
entire Mjølner System is programmed entirely using static exception handling as the
only exception handling model.

4 Dynamic Exception Handling in BETA

The static exception handling model is based on three assumptions, namely perfect
implementation, perfect design, and local object creation. We will elaborate a little
on these assumptions in the following:

Perfect Implementation

There is an underlying assumption that all implementers of a given pattern makes a
complete handling of all low-level errors that can originate from the implementation
code, and that the implementers do not make implementation errors (e.g. dereference
a null reference).

Nearly by definition, implementers will forget to handle some low-level errors and
they will make programming mistakes, giving rise to unanticipated errors.

Perfect Design

There is an underlying assumption that all users of a given pattern with exception
specifications makes a complete handling of the exceptional occurrences (i.e. further
binds the proper virtual).

Nearly by definition, designers will make mistakes, forgetting to take care of some
exceptional occurrences, giving rise to the program being terminated.

Local Object Creation

There is also an underlying assumption that the objects being used by the application
are also created by that application (making it possible to handle the exceptional
occurrences in these objects through static exception handling).

In a persistent or distributed environment, objects are not created only by the
running application, but also by other applications and made available to the running
application.

8 J. L. Knudsen

4.1 Introducing Fault Tolerant Mechanisms

These assumptions imply that there is a need for offering an additional model for
exception handling in order to be able to support truly fault-tolerant systems.

Exception handling deals with the handling of well-defined error conditions within
a well-defined system or framework. And fault tolerant programming deals with error
handling in all other cases: ill-designed systems, faults in the exception handling
code, errors originating from outside the system or framework.

Our experience with the static exception handling mechanisms of BETA have
proved static error handling as an effective exception handling mechanism, but also
that it is difficult (and in some cases impossible) to use for fault tolerant
programming.

We therefore propose the introduction of a dynamic error handling mechanism to
be used for effective fault tolerant programming.

We would like to stress that the static exception handling model should be used
almost exclusively, since it gives the most well-designed exception handling,
integrated with the object-oriented tradition, and reserve dynamic exception handling
only to those case where no other error handling solution can be found. One could
say, that the relation between static and dynamic exception handling is fairly similar
to the relation between structured programming and the GOTO controversy.

In the dynamic approach, there is no static connection between the definitions of an
exception, the raising of an exception, and the actual handling of an exception.
Exceptions are defined anywhere in the program, and may be raised anywhere where
these exceptions are visible in the program text. Handling of the exception is on the
other hand possible in all parts of the program (even places where the exact definition
of the exception is unknown).

4.2 Dynamic Exception Handling Model in BETA

The dynamic model for exception handling for BETA is heavily inspired by the C++
model for exception handling, which in turn is inspired by the ML model for
exception handling.

The dynamic exception handling model for BETA is concentrated around the
following four main concepts: exception objects, throwing exceptions, try blocks, and
exception handlers.

Exception Objects

An exception object is a regular BETA object. The purpose of an exception object is
to act as a messenger between the point where the exception occurrence have been
identified, and the place where the exception is handled. The exception object may
have attributes, carrying information from the exception occurrence to the exception
handler, but it may also act merely as a signal (without attributes).

Fault Tolerance and Exception Handling in BETA 9

Throwing Exceptions

When an exception occurrence have been identified, the dynamic exception model
offers the possibility of throwing an exception object. When an exception object is
thrown, the intuition is that the exception object ’travels’ back the dynamic call-chain
until an exception handler for this exception object type have been located. When
located, the particular exception handler is given access to the exception object, and
may then initiate proper exception handling processing, possibly based on the
information brought to it by the exception object. During the processing of the
exception object, the exception handler may decide on the proper continuation of
execution of the application.

If the entire dynamic call chain have been exhausted in the search for an exception
handler and no matching exception handler have been found, then the exception is
automatically converted into an instance of the predefined exception unknown. This
unknown exception object contains a reference to the original exception object and is
automatically thrown at the same spot as the original exception object. If no handlers
on the dynamic call chain handle this unknown exception object, the unknown
exception object is raised as a static exception occurrence, giving raise to termination
of the entire application.

Try Blocks

The BETA model for dynamic exception handling is based on try blocks as the means
for specifying the extent of exception handlers. A try block is a special kind of nested
blocks (similar to nested blocks in ALGOL, PASCAL and C/C++). The purpose of a
try block is to function as a definition place for exception handlers, and a try block is
capable of handling those exceptions for which there are defined a handler. In the
description of the semantics of throwing an exception object, it was mentioned that a
handler was sought. To be more specific: during a throw of an exception object, the
dynamic call-chain is scanned to find the first try block with an exception handler,
matching the exception object. If no matching exception handler is found in a try
block, the exception is automatically propagated to the next try block in the dynamic
call chain.

Exception Handlers

As described above, dynamic exception handlers are defined in try blocks. An
exception handler is capable of handling a series of exceptions through the
specification of a series of when-clauses. Each when-clause is capable of handling
one particular exception object type (or any subtype hereof).

The sequence of when-clauses in a handler is important, since more than one
when-clause in a handler may match a given exception object (the two subtypes
overlap). The handler handles this potential ambiguity by choosing the first when-
clause that matches the particular exception object.

During the handling of an exception in a when-clause, the when-clause has access
to the exception object being handled.

10 J. L. Knudsen

Execution Control

During the handling of an exception object, the chosen when-clause has four different
possibilities for controlling the execution of the program, namely continue, retry,
propagate, and abort.

- Continue: If continue is chosen, the exception occurrence have been fully
recovered, and the execution may continue from the spot, where the exception
object was originally thrown.

- Retry: If retry is chosen, the execution is resumed from the beginning of the try
block in which the chosen when-clause is specified. Retry implies that the best
way to continue the application is to re-execute the entire execution from which the
exception occurrence arose. Usually this implies that the exception handling has
brought the application back to a stable state.

- Propagate: If propagate is chosen, the exception object is propagated further
backwards along the dynamic call chain in order to be further handled by some
other try block. Propagation is the default for exception objects for which no
exception handlers are found in a try block. Propagation is also the default for
exception objects with a matching when-clause if no other execution control is
specified in the when-clause. Propagation implies that the exception handling have
only partially been concluded.

- Abort: If abort is chosen, the execution is resumed after the try block in which the
chosen when-clause is specified. Abort implies that the actions of the exception
handler have replaced the remained of the try block (i.e. the actions after the spot,
where the exception object was thrown).

4.3 The BETA Framework for Fault Tolerance

The following is a short introduction to the BETA framework of the above model for
dynamic exception handling. The description will not present all details, but sufficient
details to get solid understanding of the framework.

As mentioned previously, exception objects can be any BETA objects, implying
that the model for dynamic exception handling does not require any special exception
pattern. The only exception pattern used by the dynamic approach, is the predefined
unknown exception, which is used to handle dynamic exception objects otherwise not
handled. The unknown exception pattern is defined by:

unknown: exception
 (# original: ^object
 do INNER
 #)

In order to enable throwing exception objects, the following pattern is supplied:

throw:
 (# current: ^object;
 ...
 enter current[]
 ...
 #);

Fault Tolerance and Exception Handling in BETA 11

Throwing an exception object can then be done as follows:

(# fe: ^fileError;
do &fileError[]->fe[]; ’someFileName’->fe.n[];
 fe[]->throw;
#)

where fileError is, e.g., defined as:

fileError: exception
 (# n: ^text do ’fileError Exception’->msg.puttext;
INNER #);

Note that in this case, the dynamic exception object is an instance of a specialization
of the static exception pattern exception, but that is just a coincidence.

In order to enable the definition of try blocks, handlers, and when-clauses, the
following patterns are defined as part of the BETA framework for dynamic exception
handling:

try:
 (# handler:<
 (# when:
 (# type:< object; current: ^type;
 continue: (# ... #);
 retry: (# ... #);
 propagate: (# ... #);
 abort: (# ... #);
 ...
 #);
 ...
 ...
 #);
 ...
 #);

A try block is specified by:

do ...
 try
 (# ...
 do ...
 ...
 #);
 ...

In order to specify when-clauses, a handler needs to be defined in the try block:

do ...
 try
 (# handler::
 (#
 do ...

12 J. L. Knudsen

 #)
 do ...
 ...
 #);
 ...

When-clauses are specified in the do-part of the handler of a try block. An exception
object is matched against the when-clauses in the sequence they are specified in the
do-part:

handler::
 (#
 do when(# ... do ... #);
 when(# ... do ... #);
 when(# ... do ... #);
 #)

Each when-clause handles one exception type (and all subtypes hereof).
The type of exception objects handled by a when-clause are specified by a final

binding of the type virtual in the when-clause:

when
 (# type:: fileError;
 do ...
 #);

The execution control resulting from handling an exception object is specified in the
do-part of the when-clause by means of the imperatives continue, retry, propagate and
abort:

when
 (# type:: fileError;
 do ...; retry
 #);

These execution control actions should be placed as the last imperative in the do-part
of the when-clause.

4.4 Handler Matching on Object Identity and Object State

In the above framework, only when-clauses capable of handling exception object
types are presented. It is easy to extend the handler mechanisms with facilities for
allowing when-clauses to match particular exception objects, and not only exception
object types.

At least two possible special cases might be interesting. The first one is a when-
clause, that only tests for the object identity of the exception object thrown (making
the when-clause only match if the identity of the exception object thrown is exactly
the exception object, expected by the when-clause. The second interesting case is
where the actual state of the exception object is investigated in order to validate
whether the exception object thrown matches the when-clause.

Fault Tolerance and Exception Handling in BETA 13

Both cases can be handled by a simple extension to the when pattern, namely the
introduction of a predicate virtual:

when:
 (# predicate:< booleanValue;
 ...
 do ...
 #)

We can now make exception object identity testing by e.g.:

when:
 (# predicate::
 (# do (current[]=specificObject[])->value #)
 do ...
 #)

and exception object state testing by e.g.:

when:
 (# type:: fileError;
 predicate::
 (# do (’some text’->current.n.equal)->value #)
 do ...
 #)

4.5 Implementation Issues

Experimental implementations of this dynamic exception handling mechanisms have
been done. This implementation demands a few extra efforts from the programmer
using the facilities in order for it to be working reliable in all cases. A fully reliable
implementation can fairly easy be facilitated with a little help from the runtime
system. The prime problem is to be able to support non-local leave/restart, and to
locate the dynamically nearest try block. However, on some implementations of the
Mjølner System, these facilities are available.

4.6 Fault Tolerance Example

The following is a minor example illustrating the facilities of the dynamic exception
handling model in BETA.

(# fileError: exception
 (# n: ^text
 do ’fileError Exception’->msg.puttext;
 INNER
 #);
 fileOSerror: fileError
 (# do ’\nfileOSerror Exception’->msg.puttext #);

14 J. L. Knudsen

 P: (# fe: ^fileError;
 do &fileError[]->fe[]; ’someFileName’->fe.n[];
 fe[]->throw;
 #)
do ...
 try
 (# handler::
 (#
 do when(# type:: fileError;
 do retry
 #);
 when(# type:: exception
 do ’Exception’->putline
 #)
 #)
 do ...
 try
 (# handler::
 (#
 do when(# type:: fileOSError
 do propagate
 #);
 #)
 do P
 #);
 ...
 #);
 ...
#)

5 Integrating Static and Dynamic Exception Handling in BETA

As the static and dynamic exception handling models have been presented above, they
appear as totally separate mechanisms. In order to ensure fault tolerance with respect
to exception handling, it is important that static exceptions can be handled through the
dynamic exception handling mechanisms if they are not handled properly (i.e. if we
are dealing with a poorly designed system).

Fortunately, we can integrate these two models by a fairly minor change in the
definition of the static exception model, namely by making a slight change to the
exception pattern.

In the definition given in Section 3.2, the consequence of not handling an
exception is specified to be termination of the entire application. Instead, we could
convert the static exception into a dynamic exception, and then try to leave the fault
tolerance handling of these exceptions to the dynamic exception handling
mechanisms. This can be accomplished by the new definition of the exception pattern
given in Fig. 3.

Fault Tolerance and Exception Handling in BETA 15

exception:
 (# msg: @text;
 continue: @boolean;
 do INNER exception;
 (if not continue then
 (* throw the static exception as a dynamic
 * exception object
 *)
 this(exception)[]->throw;
 if)
 #);

Fig. 3: The exception pattern with dynamic throwing

With this new definition, we can now protect a given part of our code against poorly
designed exception handling by catching all such static exceptions by means of a try
block like:

try
 (# handler::
 (#
 do when:
 (# type:: exception
 do (* handle any static exception *)
 ...
 #)
 #)
 ...
 #)

And we can handle specific static exceptions by e.g.:

try
 (# handler::
 (#
 do when:
 (# type:: register.overflow;
 do (* handle register.overflow exception *)
 ...
 #)
 #)
 ...
 #)

Please note that the above do-part of the exception pattern is a little too simple since it
does not take care of the details of avoiding the unknown exception to become thrown
repeatedly. However, taking care of this is simple.

16 J. L. Knudsen

6 Handling Runtime Faults in BETA

The current version of the Mjølner System (release 5.2, Dec. 2000) does not offer any
support for handling runtime faults (such as numeric errors, etc.). This is primarily
due to the inability of the static approach to deal with faults (as explained in Section
4.1).

However, with the addition of the dynamic exception handling model, it is possible
to introduce abilities for fault tolerant programming in the presence of e.g. runtime
faults. The basic runtime system for BETA in the Mjølner System is being prepared
for the introduction of dynamic exception handling in the presence of runtime faults.
It is expected that the next major release of the Mjølner System will contain support
for both dynamic exception handling in general, and specifically the handling of
runtime faults.

In this work will also be the definition of a hierarchy of exceptions, modeling the
different categories of runtime faults, that can occur (related for numeric computation,
memory management, etc.). As part of this work will properly be a thorough
investigation into the matter of execution control after the handling of an runtime
fault. In some cases, it does not make sense e.g. to resume computation (e.g. if
memory is exhausted). This investigation might reveal the need for supporting
restrictions of the possible execution control, that is allowed for certain exceptions
(e.g. that resumption is not allowed for memory exhausted exceptions). This is
similar to the original Goodenough classification of exceptions into notifications,
signals, etc. However, it is expected that the solution in BETA will be of a more
dynamic nature, but time will tell.

Acknowledgements. The exception handling mechanism presented here has been
developed during the implementation of The Mjølner System [7]. We greatly
acknowledge the contributions made by all the members of the Mjølner System
development team over the years.

Part of this work was presented at the ECOOP’2000 workshop on Exception
Handling in Object-Oriented Systems [5], and the discussions at that workshop have
help in clarifying some of the issues.

References

1. Goodenough, J.B.: Exception Handling: Issues and a Proposed Notion, Comm. ACM,
18(12), December 1975.

2. Gosling, J., Joy, B., Steele, G.: The Java Language Specification, Addison-Wesley,
August 1996.

3. Knudsen, J.L.: Exception Handling – A Static Approach, Software – Practice & Ex-
perience, May 1984.

4. Knudsen, J.L.: Better Exception Handling in Block-structured Systems, IEEE Software,
May 1987.

Fault Tolerance and Exception Handling in BETA 17

5. Knudsen, J.L.: Exception Handling versus Fault Tolerance. Presented at workshop on
Exception Handling in Object-Oriented Systems (EHOOS’2000) at European Conference
on Object-Oriented Programming (ECOOP’2000), France, June 2000, and reported in
Romanovsky, A., Dony, C., Knudsen, J.L., Tripathi, A. (Eds.): Exception Handling in
Object Oriented Systems. In J. Malenfant, S. Moisan, A. Moreira. (Eds.): Object-Oriented
Technology. ECOOP 2000 Workshop Reader. LNCS-1964. pp. 16-31, 2000.

6. Madsen O.L., Møller-Pedersen, B., Nygaard, K.: Object-Oriented Programming in the
BETA Programming Language, Addison Wesley, June 1993.

7. The Mjølner System: http://www.mjolner.com/mjolner-system.
8. Tennent, R.D.: Language Design Methods based on Semantic Principles, Acta Infor

matica, 8(2), 1977.

http://www.mjolner.com/mjolner-system

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 18-38, 2001.
© Springer-Verlag Berlin Heidelberg 2001

A Fully Object-Oriented Exception Handling System:
Rationale and Smalltalk Implementation

Christophe Dony

Montpellier-II University - LIRMM Laboratory
161 rue ADA, 34392.Montpellier Cedex 05.

dony@lirmm.fr
http://www.lirmm.fr/~dony

Abstract. This paper motivates and presents the specification and the
implementation of an exception handling system for an dynamically typed
object-oriented language. A full object-oriented representation of exceptions and
handlers, a meta-object protocol to handle using either termination or
resumption makes the system powerful as well as extendible and solves various
exception handling issues. Three kind of dynamic scope handlers (expression
handlers, class handlers and default ones) make it possible to define reusable
and fault-tolerant software modules. The implementation of the system is
readable and simple to understand because achieved entirely in Objectworks
Smalltalk, thanks to the reflective facilities of this language.

1 Introduction

The program structures for handling exceptional events [7] [12] [13] [2] [24] [9] have
been designed to implement software entities able to return well defined and foreseen
answers, whatever may happen while they are active, even though an exceptional
situation occurs. The end of the 1970s saw the development of exception handling
systems dedicated to procedural programming. All specifications have all been
influenced by Goodenough’s seminal paper [7]. Well known implementations include
MESA [15], CLU [13] or ADA [8]. Exception handling systems have later been
integrated into object-oriented languages at the end of the 1980s (Zetalisp+Flavors
[17], CommonLisp(+CLOS) [19], Eiffel [14], Objectworks Smalltalk [21], C++ [11],
or more recently in Java.

This papers presents an overview of the specification and implementation of an
exception handling system initially conceived [3] for the Lore Object-Oriented
Language and adapted to Smalltalk [4]. The key-ideas of this system are (1) to apply
object-oriented design to the whole system, to define a reusable and open class library
for exception handling allowing systems designers to reuse it to produce dedicated
exception handling systems and (2) to take into account the specificity of object-
oriented programming by integrating expression and class handlers allowing users to
define functional, class-based or even component-based fault tolerant modules.

Implementations of exception handling systems are rarely presented because they
are generally done at a low level (compilers, virtual machines) and hard to describe in
the context of a paper. The implementation of this system is reasonably readable and

A Fully Object-Oriented Exception Handling System 19

simple to understand because achieved entirely in Objectworks Smalltalk, thanks to
the reflective facilities of this language. The main implementation issues detailed in
the paper are: the internal representation of handlers, the algorithm for searching them
- knowing that both resumption and termination are allowed, the achievement of
termination and resumption, which takes into account some possible user-defined
unwind protections. Our EHS has been specified and implemented as the same period
than Objectworks Smalltalk’s one and both share many similarities (except for class
and default handlers) but none of their implementations have been published yet.

Section 2 recalls some definitions and introduces our notations. Section 3 presents
our EHS specification and motivates the main choices. Section 4 presents the
implementation. Point to point comparison with related works is scattered in the
different sections. Sections 3 require that readers have a minimal knowledge of the
Smalltalk syntax. Section 4 supposes a higher knowledge of that system but should be
globally readable by anyone knowing object-oriented languages.

2 Definitions, Terminology, Notation

Software failures reveal either programming errors or the application of correct
programs to an ill-formed set of data. An exception can be defined as a situation
leading to an impossibility of finishing an operation. The problem of handling
exceptions is to provide materials allowing to establish communication between a
function or procedure which detects an exceptional condition, while performing an
operation, and those functions or objects or modules that are clients of this operation
(or have something to do with it) and wish to dynamically handle the situation. An
exception handling system (EHS) allow users to signal exceptions and to associate
handlers to entities (according to the language, an entity may be a program, a class, an
object, a procedure, a statement or an expression). To signal an exception amounts to
identify the exceptional situation, to interrupt the usual sequence of operations, to look
for a relevant handler, to invoke it and to pass it relevant information about the
exceptional situation, such as the context in which the situation arose. To handle
means to set the system back to a coherent state. Handlers can usually choose,
knowing about their definition context and using arguments provided by the signaler,
whether to (1) transfer control to the statement following the signaling one
(resumption), (2) discard the execution context between the signaling statement and
the one to which the handler is attached (termination) or (3) signal the same or a new
exception, which is generally called propagation and should be interpreted as a
delegation of responsibility to a more general handler.

For the examples in this paper, we use two different syntax (cf. Figure 1) for
handlers declaration and definitions: firstly a general one inspired of what can be
found in procedural languages, secondly the Smalltalk syntax used in our system.

3 Specifications

This section discusses the main issues related to the design of an EHS in a non
concurrent context, explains our choices and presents the specifications of our system.

20 C. Dony

“General Syntax”:
{protected-instruction1; ...; protected-instructionN;

{when exception (parameter) do
{handling-instruction1; ...; handling-instructionN;}}}

“Smalltalk Syntax”:
[protected-expression1 ... protected-expressionN]

when: exception:
do: [parameter | handling-instruction1 ... handling-instructionN]

Fig. 1. Syntax for associating handlers to instructions.

3.1 Resumption and Termination: a Dual Model

Choosing which control structures are available to write handlers bodies is one of the
first crucial decision to be taken when designing an EHS and impacts the whole
specification and implementation. Most exception handling systems only propose the
termination model, others propose both termination and resumption (let us call this the
dual model) and a few ones only propose resumption [12]. The respective merits of
termination and resumption have already been widely discussed in many papers, e.g.
[7, 13]. Let us just recall that to forbid termination is a very specific choice because
many exceptions are really fatal. To forbid resumption is a way to produce EHS
simple to use and to implement, although reducing the expressive power since some
exceptions are really proceedable in some contexts. The resumption model is indeed
more expensive in computation time and space, more complex to implement (see
section 4) and also makes program static analysis more complex. It is however useful
and time-saving in any application in which proceedable exceptions are raised,
especially in interactive application in which users or operators, can choose a solution
to recover from an exceptional situation. For example, interactive WEB applications
can take benefit of resumption to restart calculus after a network interruption.

3.2 Handlers Scope and Fault-Tolerant Encapsulations

The scope of handlers, and as a consequence the way they are searched when an
exception is signaled, determines what kinds of fault tolerant modules are offered by a
system. The issue is the same whatever kind of modules are considered, classes,
methods, etc.

Lexical Scope Handlers. Lexical scope handlers are by definition accessible when
located in the program textual part in which they are lexically visible. A handler for an
exception raised within an inner module, if not found locally, is searched in a lexically
englobing one. Lexical scope handlers allow users to define modules that handle all
exceptions raised within their scope, they allow to check statically which handler will
be invoked for each exception signaled within the module. Their main drawback is
that exceptions are never propagated to modules clients.

A Fully Object-Oriented Exception Handling System 21

Various systems (e.g. Beta [9] or Smalltalk-80 [6, p.102]) provide lexical scope
handlers. As an example, let us consider the standard Smalltalk-80 ones (cf. Figure 2).
The Smalltalk historical EHS specification only uses the language standard
constructions; this is the same for Beta and this is one of the great advantages of this
static approach. Exceptions are signaled within methods by sending to self, a message
(e.g. error:). Handlers are standard methods defined on classes (let us call them class
handlers) and are invoked by a standard message sending: they can only be found in
the class (or one of its super-classes, they are of course inherited) in which the
signaling method is defined. This means that, as far as exceptions are never
propagated to operations callers, a method has no way to regain control, either to hide
the occurrence of an exception (modularity) or to execute some recovery actions,
when one of the methods it has invoked failed. We come back in section 3.5 on the
potential interest of class handlers in term of expressive power and reusability.

object

method error
method doesNotUnderstand
....

application1

method error

application2
method doesNotUnderstand

"default handlers"

"user-defined handlers"

class

subclass

Fig. 2. Smalltalk-80 lexical scope class handlers

Dynamic Scope Handlers. On the other hand, dynamic scope handlers are searched
in the execution stack when an exception is raised. They allow standard and
exceptional responses to be specified in software modules interfaces. For a given
module, internal exceptions are those handled internally, and external exceptions
(sometimes called failures) those propagated to the module’s clients. Dynamic scope
handlers allow clients to retrieve control when the modules they use fail and to give
execution context dependent answers to these failures. The semantic of the signaling
process is then to transfer the problem from a place where it can only be noted to a
place where it could be interpreted. The following example illustrates the first idea:
the client module, a procedure process-yield correctly encapsulates its private's use of
its a list by trapping the exceptions possibly raised by the list manipulation and by
propagating an exception (InactiveProcess) of the same conceptual level than the
achieved service. The second idea (giving caller context dependent answers) is
illustrated the pgcd example. This is just a toy example, more expensive than the
standard version without exception handling, but short enough to be presented here.

All handlers in our system have a dynamic scope. Most of earlier EHS for
procedural languages such as PL/I, Clu, or Mesa, and recent ones, for object oriented
languages (Clos, C++, Java) are based on a stack-oriented research of dynamic scope

22 C. Dony

procedure process-yeld (a-process)
{remove(Active-process-list, a-process);

{when itemNotFound(e) do
{signal (InactiveProcess)}}}

function pgcd (int a, b)
{loop {aux := a; a := b ; b := modulo(aux, b)};

{when division-by-zero(e) do {exit(aux)}}}

handlers (limited to one stack level in CLU). New evolution of the Beta EHS
integrates such handlers [10].

3.3 Status of Exceptions

The next issue to be discussed is the status of exceptions and of exceptional events.
How are exceptions represented and referenced? How can they be manipulated or
inspected?

Exceptional Events as First-Class Objects. The idea that consists in representing
each conceptual exception by a class and each of its concrete occurrences (what we
call exceptional events) as an instance (an exception object) of that class can initially
be found in Taxis [18], Zetalisp [17] or [1] and is now almost a consensus; all todays
object oriented systems have integrated it. Let us shortly recall its main interests.
- Exceptions can be organized into a knowledge sharing inheritance hierarchy.
- It is possible trap different events with a single handler.
- Signalers can communicate with handlers [16] pass to handlers the instance of the

signaled exception which holds in its slots all the information about the exceptional
situation.

- New user-defined exceptions can be created as subclasses of existing ones. There is
no distinction between system and user-defined ones, all can be signaled and
handled in the same way.

Exceptions as First Class Entities. The systems that pioneered the above idea did not
brought it to its limits; for example in Zetalisp, signaling and handling primitive are
not standard methods invocable by sending messages to exceptions objects. We have
extended the above idea towards a complete object-oriented representation of all
entities composing the EHS and towards an EH meta-object protocol to handle
exceptions. Another language in which similar ideas can be found is Objectworks
Smalltalk. The first step in that direction has led us to make conceptual exception first
class entities by defining exception classes as instances of a metaclass. The Figure 3
shows the two kernel classes of our specification for what concerns exceptions
representation. Each occurrence of an exception is an instance of a subclass of the
class ExceptionalEvent that holds basic protocols for handling All exceptions classes
are instances of the meta-class ExceptionClass1 that holds basic protocols for signaling

1 When explicitly manipulated, meta-classes are Class subclasses. In our Smalltalk-80

implementation, ExceptionClass is implemented by the automatically created meta-class

A Fully Object-Oriented Exception Handling System 23

and are subclass of ExceptionalEvent. The next sections detail the advantages of that
organization.

ExceptionalEventExceptionClass

Class Object

class instance subclassclass

Fig. 3. Kernel exception classes.

method:
resume

Event WarningError

ProceedableEvent

exit, retry

FatalEvent

propositions: abort
propositions: proceed
method:

ExceptionalEvent

signal, handlesByDefault, lookForAndInvoke Handlers
…

methods:
signalingContextslots:

protocolsForResumptionslot:

Fig. 4. Basic exception classes, associated attributes and methods.

3.4 Basic Primitives

The dual model of exception handling imposes that primitives for termination and
resumption be available to write handler bodies. All our basic primitives to handle
exceptions (exit and retry for termination, resume for resumption and signal for
propagation) are implemented by standard methods defined on a set of kernel
exception classes (cf. Figure 4) and constitute a meta-object protocol (following the
CLos definition of term) for exception handling.

Kernel Exception Classes and Basic Handling Primitives. ExceptionalEvent is then
divided into FatalEvent, to which are attached termination primitives, and
ProceedableEvent to which are attached those for resumption. The slot

ExceptionalEvent class. Each exception class has its own (automatically created) meta-class
subclass of ExceptionalEvent class.

24 C. Dony

signalingContext is to be dynamically bound at each occurrence of an exception to the
signaling context. The slot propositions (instance variable of the meta-class) is used to
store for each exception some propositions for interactive handling as initially
proposed in Zetalisp. From the user’s viewpoint, the system is then based on three
predefined exception classes.
- Error is the class of exceptional events for which resumption is never possible

whatever the context in which the event is signaled.
- Warning is the class of exceptional events for which the termination is impossible.
- Finally, multiple inheritance is simulated to create the exception-class Event in

order to allow both capabilities.

Basic Signaling Primitive. Within EHSs supporting the dual model, a set of pri
mitives is generally provided to support the various signaling cases. E.g., in
Goodenough’s proposal, signaling with escape states that termination is mandatory,
notify forces resumption and signal lets the handler responsible for the decision. In our
system, signal is the single basic signaling primitive because knowing whether the
signaled exception is proceedable or not only depends of its type (its position in the
exception hierarchy). To signal an exception amounts to send the exception class the
message signal whose corresponding method is defined on ExceptionClass (i.e. on
ExceptionalEvent class in the Smalltalk implementation). Signal creates the
"exception object" and assigns its slots with, on the one hand values given by the
signaler and on the other hand, values owned by the system (e.g. signalingContext), cf.
Figure 5 for an example. Signal finally sends to the initialized instance the message
lookForAndInvokeHandler (cf. Figure 4), which will find and invoke a handler.

3.5 Additional Primitives and Control Structures

Unconditional Restorations. The dual model raises various issues that require
additional primitives. The first issue is the restoration of coherent program states. Any
method has to ensure that it will leave data, memory and resources in a coherent state
whatever happens during its execution. A first solution to that problem, found in many
systems is to give programmers the ability to define handlers that trap all exceptions to
re-signal (propagate) the trapped one. The following example illustrates that solution,
in a procedural-like syntax with the classical file example. It also highlights the fact
that this solutions forces programmers to write restoration actions twice, once for
normal and once for exceptional exit.

File f;.
{open(f); workOn(f);. close(f);

{when any-exception (e) do
{close(f); signal(e);}}}

However, that solution does not work properly in the dual model because a later
handler may entail resumption and put the system back into an incoherent state in
which f would be closed but should not be. To avoid writing more complex handlers
and the duplication of the close instruction, an ad-hoc. primitive (cf. cleanup handlers
in [7] or Lisp’s unwind-protect) is necessary to allow users to write unconditional
restoration statements executed whenever the procedure’s related stack frame is really

A Fully Object-Oriented Exception Handling System 25

discarded. The exception handling system has to take this primitive into account while
performing termination, by executing in the right order and in the right environment
the restorations (cf. Section 4.5). In our system, the file example can thus be written as
follows:

f := File new.
[f.open. f.workOn.]

unwindProtect: [f.close]]

Cooperation for Resumption. Resumption raises another important issue: it should
not be achieved without the agreement of both the signaler and the handler when,
although the handler is responsible for saying what to do, the effective computation
restart is performed by the signaler in its environment. In any cases, the signaler
should be able to predict which kind of restarts he is ready to achieve. A slot named
protocolForResumption, defined on ProceedableEvent provides a basic solution to this
problem2. The signaler can use it to indicate, at signaling time, the options among
which a handler can choose in order to achieve resumption. Assigning it to nil means
that resumption is impossible. In conjunction, a handler wanting to entail resumption
has to indicate which protocols it has chosen. In the figure 5 example, handlers can for
example use the message messageValue: which itself entails resumption by using the
correct protocol.

Event subclass: #DoesNotUnderstand
instanceVariableNames: ’messageReceiver messageSelector messageArgs ’
methodsFor: ‘handling’

messageValue: "resume with a message value ..."
newSelector: "resume with a new selector ..."
newReceiver: "resume with a new receiver ..."

....................
Signaling the exception with propositions for resumption
result :=

DoesNotUnderstand
signalWithProtocolsForResumption:

#(supplyValue newReceiver newSelector)
messageReceiver: anObject
messageSelector: aSymbol
messageArgs: anArray.

“if control returns here, result is tested and the corresponding actions performed”

Fig. 5. Example of definition of a new exception, to represent runtime message sending failure.
Its occurrences are either proceedable or fatal; thus it is a subclass of Event. While signaling it,
the signaler can pass arguments to handlers to indicate which kind of resumption it is ready to
achieve.

2[19] has proposed for this problem a more sophisticated solution: some new dedicated control

structures (e.g. restart-case) provide a user-friendly way (with a case-like syntax) of writing
code such as the one in the example and allow users to dynamically create new options for
proceeding.

26 C. Dony

3.6 Various Kind of Handlers

This section deals with issues related to handler definition and shows how to create
various kind of handlers in our system. It is first classical to associate handlers to
pieces of code (expressions, blocks, procedure or programs). Besides, different
researches have investigated the idea of associating handlers with data structures [12]
thus controlling exceptional situations arising when manipulating them. Within an
object-oriented language, it is also natural to wonder whether it is interesting to
associate handlers to objects or to classes and with which semantics Finally many
solutions have been proposed in existing systems to store the most general, execution
context independent, default handlers

Expression Handlers. For what concerns pieces of code, we offer the possibility to
associate handlers to any kind of Smalltalk expressions. This is done by grouping the
expressions into a lexical closure3 (a block in Smalltalk) and by sending this block the
message when:do. The first argument <exception-name> is the exception to be
trapped and the second one is the handler. Handlers have one parameter bound at
handling-time to the current exception object.

[<protected expression>]
when: <exception-name>
do: [<handler parameter> | <handler body>]

Class Handlers. To associate handlers with individual objects is not compatible with
the class-based model in which all instances of a class have to share the same
behavior. Besides, we have quoted in section 3.2 the existence of handlers associated
with classes in Smalltalk-80 and in Beta. We propose to define equivalent handlers but
to give them a dynamic scope. A class handler associated with a class C for an
exception E will thus be able to trap all occurrences of E raised anywhere during the
execution of any method of C or of C’s subclasses. Such class-handlers allow
programmers to control which exceptions can be propagated outside of any methods of
a class, to control for example, that overflow and EmptyStack are the only exceptions
that can be propagated outside of any method defined on the class Stack. These class
handlers also induce original reusability schemes based on inheritance. Consider again
the class Stack. Now suppose that a class of stacks that are able to grow is needed. A
simple solution to this consists is creating a Stack subclass named GrowingStack, on
which is defined a handler for overflow and a method grow, this handler can resume
the interrupted method, whatever its name and its location, after having grown the
stack buffer. Class-handlers have been widely used in this way in Smalltalk-80
extensions to modify message sending, e.g. to implement Encapsulator or to
implement asynchronous message sending in the Briot’s Actalk System.

A few systems provide dynamic scope class handlers (see. e.g. [22]). In our system,
class handlers can be attached to any class by using the method when:do:, defined on
ClassDescription, with the following syntax:

3This is the price to pay to implement handler definition by a message sending.

A Fully Object-Oriented Exception Handling System 27

<protected class>
when: <exception-name>
do: ’<handler parameter> | <handler body>’

The first argument is the exception to be trapped and the second one is a string.
This method when:do: first calls the Smalltalk compiler to compile the handler string
in the environment of the protected class so that instance and class variables defined
on the class can be accessed. Then it inserts the created handler in the handler
collection of the class and of its subclasses. For each class, class-handlers are ordered
compared to the exceptions they are defined for. Class-handlers cost nothing while
exceptions are not signaled; they only are taken into account at signaling time.

Default Handers. Interesting but somehow semantically complex propositions to
define default handlers at various program levels can be found e.g. in [20]. We have
chosen a simpler point of view in which default handlers are considered as the place
where the most general information regarding how to handle an occurrence of an
exception, independently of any execution context, should be stored. We propose to
associate them to exceptions by defining them as methods (named defaultHandle)
defined on exception classes. The system most general default handler is defined on
ExceptionalEvent and can be overridden in subclasses, each exception can thus own its
specific default handler. Default handlers are invoked by sending the message
defaultHandle to the exception object as shown in the top-level loop example (cf.
Section 3.7). We have integrated the idea of interactive propositions found in Zetalisp,
which exploits exception hierarchies. A proposition is a couple of two method names,
one to display a string and one to execute a corresponding action. Propositions are
stored for each exception in the slot named propositions defined on ExceptionClass
and displayed when the most general default handler is invoked.

3.7 Writing Handlers Bodies in a Generic Way

All kind of handlers can use the same primitives in the same generic way to put the
program execution back into a coherent state. Genericity first means that neither
programmers nor implementors have to perform tests to ensure that operations
incompatible with the signaled exception will not be invoked - Note that his rule is
violated for resumption where the slot protocolForResumption is tested by the system.
For example, any attempt to send the message exit: to an object which is not a
FatalEvent will fail. Genericity also means that the operations relevant to the current
exception object will automatically be selected even though an abstract (multiple)
exception has been caught.

Termination Examples. Sending to the exception object the message exitWith: entails
termination. The execution stack frames located between the signaler and the handler
are discarded while recovery blocks are executed. The argument’s value becomes the
value returned by the expressions to which the handler is attached. Here is our
system’s version of the above function pgcd, now defined on class Integer, that uses
termination.

28 C. Dony

“computes the pgcd of a and b”
[[true] whiletrue: [aux := a. a := b. b := aux modulo: b]]

when: division-by-zero
do: [:e | e exitWith: aux]

For what concerns a class-handler, which is invoked when an exception is about to
be propagated outside of a method C defined on a protected class, termination ends
C’s execution and the exit value becomes the value returned by C’s invocation. The
following example is an implementation of the growing stack example described in
Section 3.6, it highlights the interest of the retry primitive.

GrowingStack
when: Overflow
do: [:anOverflow | self grow.

anOverflow retry].

Finally, default-handlers are conceptually attached to the program main procedure
(or to the top-level loop in an interpreted environment), thus termination in a default-
handler ends the program execution (or returns to the top-level). Here is an example of
applying termination that uses both exit and retry , to implement a top-level loop. The
only way to exit the loop is to signal the exception LoopExit. If any other exception is
trapped, its default handler is invoked and finally, whatever it does, the loop is re-
entered.

[[true] whileTrue: [((aStream.read).eval).print]]
when: LoopExit
do: [aLoopExit: | aLoopExit exitWith: #bye]
when: ExceptionalEvent
do: [anExcEvent: | anExcEvent defaultHandle.

anExcEvent retry]

Resumption Example. Sending to the exception object the message "resumeWith:
<aResumptionOption> with: <aValue>" entails resumption. The couple <option,
value> becomes the value returned by the method signal provided that the option
belongs to the protocolsForResumption collection of the signaled exception.

[anObject aMessage]
when: DoesNotUnderstand
do: [e: | e resumeWith: #SupplyValue with: 33]

Propagation Example. Signaling a new exception or propagating the trapped one can
be done by sending the message signal either to a new exception (a class), or to the
exception object. Here is an illustration with the previously described stack examples
(cf. Section 3.5) which shows how to control, with class handlers, which exceptions
will be propagated outside of any methods defined on Stack or on its subclasses. The
second handler for ExceptionalEvent traps all exceptions, except Overflow and
EmptyStack, and propagates StackInternalException.

A Fully Object-Oriented Exception Handling System 29

Stack
when: #(Overflow EmptyStack)
do: ‘:exceptionObject | exceptionObject signal’ “propagation”
when: ExceptionalEvent
do: 'exceptObject: | StackInternalException signal’ “new exception signaled”

4 Implementation

This section describes some key-points of the above specification implementation
which is entirely achieved in Objectworks Smalltalk without any modification to the
virtual machine. This has been possible thanks to the reflective capabilities offered by
this programming environment, particularly because methods, lexical closures and the
execution stack are or can be made first class objects. The main focus is put on the
representation of exceptions, of handlers and on the signaling algorithm taking into
account expression, class and default handlers within a context in which both
resumption and termination are allowed. The interest of this section is to describe this
algorithm in its real implantation context.

Objectworks Smalltalk EHS specification has considerably evolved since the blue
book specification and share many common points with our specification, except for
what concerns class handlers and less importantly interactive propositions. The
implementation of Objectworks EHS, as far as I know never described in any paper,
also shares common point with ours but is more efficient because part of it have been
moved to the virtual machine. In particular, stack frames are no more reified but are
accessed at the virtual machine level.

4.1 Exception Classes

The class ExceptionalEvent (cf. Figure 6), the root of our exception classes hierarchy,
declares four instance variables, three of them are of interest here. SignalingContext is
used to store the stack frame (we will frequently call stack frame “contexts” because
Smalltalk objects that represent them are called “contexts objects”) in which the
exception has been signaled. HandlerContext is used to store the context in which a
handler is found. ErrorString allows users to pass a string argument to handlers.
ExceptionalEvent also declares different class variables, four of which
(BottomStackMethod, HandleMethod, InvokeHandlerMethod and UnwindMethod)
designed to store references to particular methods addresses that will be used during
handler research and invocation.

Note for example that the method when:do: allowing users to define expression
handlers is represented by a Smalltalk object that can be retrieved by sending to the
class BlockClosure, on which the method is defined, the message compiledMethodAt:.
SpecialMark contains a unique mark used to implement the retry method Finally, this
class also defines an interactive proposition named askForRetry.

30 C. Dony

Object subclass: #ExceptionalEvent
instanceVariableNames: ’errorString signalingContext handlerContext private ’
classVariableNames:’BottomStackMethod HandleMethod InvokeHandlerMethod

RetryMark UnwindMethod ’

initialize “defined on ExceptionalEvent class”
HandleMethod := BlockClosure compiledMethodAt: #when:do:.
UnwindMethod := BlockClosure compiledMethodAt: #unwindProtect:.
BottomStackMethod

:= SmalltalkCompiler compiledMethodAt: #evaluate:in:to:notifying:ifFail:.
InvokeHandlerMethod := ExceptionalEvent compiledMethodAt: #invokeHandler:with:.
RetryMark := #().

Fig. 6. ExceptionalEvent class (detail)

4.2 Status and Storage of Handlers

Default handlers are standard methods defined on exceptions classes under the selector
handlesDefault. They do not raise any structure or storage problems.

Handlers Associated to Expressions. Handlers associated to expressions have to be
executed in the environment in which they have been created. The resumption model
forbids destroying the stack frames located between the signaler frame and the handler
frame in order to allow the calculus to be eventually restarted. To invoke a handler
thus supposes to go back to a previously defined environment without destroying the
execution stack. A first solutions to this problem is to copy the stack at signaling time
(e.g. with an equivalent of the scheme call-cc primitive), to destructively search a
handler, to execute the handler in its context, now located on top of the stack, and
finally to replace the current stack by the copy made at signaling time. We have
neither implemented this solution nor seen it implemented. A second solution is to
execute the handler on top of the stack but in its definition context, i.e. in such a way
that free variables of the handler get their value and are assigned in the handler
definition context. This supposes that handlers be lexical closures.

The method when:do: to associate handlers to expressions is defined (cf. below) on
the class BlockClosure that represents lexical closures in Smalltalk. The receiver (self)
is a block containing the protected expressions. The method simply sends self the
message value, which entails the execution of the protected expressions. If an
exception is raised during this execution, the system will find the handler as the
second argument (handlerBlock) stored in the stack frame created by the method
when:do:.

when: exception do: handlerBlock “Defined on BlockClosure”
^self value

Handlers Associated to Classes. Handlers associated to classes are some kind of
compiled methods, of which they inherit the basic structure, the specific part of their
structure being described by the ClassHandler class (see below). The instance variable
domain stores the class on which the class handler has been defined, for example, the

A Fully Object-Oriented Exception Handling System 31

class GrowingStack for our Section 3.6 example. The event instance variable stores the
exception for which the class is protected (Overflow in our example). The instance
variable receiver is to be bound at handler invocation time to the object that is active
when the trapped exception is raised.

CompiledMethod subclass: #ClassHandler
instanceVariableNames: ’event domain receiver ’
classVariableNames: ’SortBlock ’

Class-handlers are stored for each class into a sorted collection from the most
specific to the most general. For that purpose, we have added an instance variable
named classHandlerSet to the kernel class ClassDescription with defines the basic
structure of all Smalltalk classes. Albeit they have a compiled method status, class-
handlers are not stored in the classes method dictionary for three reasons: they should
not to be directly invoked by users, they are not connected to external selectors and
they have to be stored in a specific order.

4.3 Signaling

In its simplest form, signaling simply consists in creating the exception object, an
instance of the class that receives the signal message, in initializing its fields and in
sending to the exception object a message to look for handlers. See next section for an
explanation about the thisContext variable.

signal “defined on ExceptionalEvent class”
^self new initialize signal

signal “defined on ExceptionalEvent ”
signalingContext := thisContext.
^self lookForAndInvokeHandler

4.4 Handler Search

This section describes the method that looks for a handler after an exception has been
raised. A simplified version is primarily presented. The complete version is described
afterwards.

Accessing the Stack. As far as handlers are searched into the stack, the first issue is to
access it. The Objectworks environment is able, when asked, to represent the
execution stack frames as first-class objects, instances of various subclasses of the
Context class. This is powerful example of reflection because that object can not only
be viewed but also modified. Modifying the slot sender of such an object effectively
produces a non local jump when returning from the method in which the modification
is done. At any time during a computation, creating the object representing the current
stack frame can be done by accessing the read-only variable called thisContext. Its
slots contain all the information needed to implement our system:
- the receiver of the message the execution of which has created the frame,
- the method that has been invoked as a consequence of this message,
- the sender of the current frame, i.e. the calling frame lower in the stack.

32 C. Dony

A Simplified Algorithm for Finding Handlers. Figure 7 describes a simplified
algorithm that search a handler without taking into account exceptions signaled within
handlers. When a handler is found, it is immediately invoked.

The Implementation of the Simplified Algorithm. Figure 8 shows the method
implementing this simplified algorithm. The lookForAndInvokeHandler method is
defined on ExceptionalEvent and invoked while signaling by sending this message to
the exception object. Within this method, self is the current exception object for which
a handler is searched.

- The search starts at the signaling context sender. The signaling context is retrieved
in the signalingContext instance variable of the exception object (Figure 8, line 1).
UnwindContexts is a local variable used to monitor the collection of recovery actions
found while going down the stack.

- A loop is entered (2) and will be exited, by returning ("^" is the smalltalk’s return
instruction.) the value of the method invokeHandler:with:; control never returns to the
instruction following the invokeHandler:with: message sending.

Let E be the signaled exception,
Let F initially be the sender of the stack frame in which the message signal has been sent,
Let UnwindContexts be an empty ordered collection.

L: If F is the bottom of the stack frame
then invoke default handler for E
else If the frame F has been established by an invocation of the method when:do:

and if the associated handler H traps the exception E,
then invoke H.
else let C be the class of the receiver of the current frame method.

If a handler H for the exception E is defined on C,
then invoke H.
else if F has been established by an invocation of unwindProtect:,

 then append the argument to UnwindContexts end-if
 let F be F ’s sender (stack previous frame) and goto L.

end-if
end-if

end-if

Fig. 7. A simplified version of the algorithm to search a handler.

- When a handler is found, this method (cf. section 4.5) is called (lines 5,8,12) with
the handler as first argument and the unwind blocks collection monitored during the
search as second argument. The handler is either a block or a kind of compiled
method. The stack frame in which it is located is stored in the handlerContext slot of
the exception object (4, 7, 10) and will be used to achieve handling.

- The test in (3) is true when the bottom of the stack is reached. This means that no
expression or class handler has been found. A default handler is invoked by sending
the message handlesDefault to the exception object (5).

A Fully Object-Oriented Exception Handling System 33

lookForAndInvokeHandler
“defined on ExceptionalEvent”

| currentContext classHandler method | "local variables"
currentContext := signalingContext sender. (1)
unwindContexts := OrderedCollection new.
[true] whileTrue: (2)

[method := currentContext method.
"if the bottom of the stack is reached, invoke default handlers"
(method == BottomStackMethod) (3)

ifTrue: [handlerContext := currentContext sender. (4)
 ^self invokeHandler: [:e | e handlesDefault] with: unwindContexts] (5)

ifFalse: [
"looking for an expression handler"

(method == HandleMethod and:
[self isKindOf: (currentContext localAt: 1)]) (6)

ifTrue:
[handlerContext := currentContext. (7)
 ^self invokeHandler: (currentContext localAt: 2)

with: unwindContexts] (8)
"looking for a class handler in the class of the current context receiver"

classHandler := currentContext receiver class isProtectedFor: self. (9)
classHandler isNil ifFalse: [

handlerContext := currentContext. (10)
classHandler receiver: currentContext receiver. (11)
^self invokeHandler: classHandler with: unwindContexts] (12)

"no handler here, but check if this context contains an unwind blocks"
(method == UnwindMethod) (13)

ifTrue: [unwindContexts addLast: (currentContext localAt: 1)]. (14)
"no handler here, going down one frame"

currentContext := currentContext sender (15)
] "end of ifFalse: method == BottomStackMethod"

] "end of the while loop

Fig. 8. An implementation of the simplified algorithm in Fifure 7.

- The test in (6) is true if the current frame method is when:do: and if the exception
object is an element of the class a reference to which is stored in the first argument of
the method (arguments of the current frame method can be accessed by sending the
message localAt: to the context object). This means that an expression handler has
been found. Its body is stored in the second argument of the when:do: method(8).

- The method isProtectedFor: sent to the class C of the receiver of the current
frame method, returns either a class-handler for the current exception if one is present
on C or nil. In the first case, the handler is invoked (12). Before that, the receiver in
the method that raised the exception is stored in the class handler’s receiver slot (11).

- Lines 13 and 14 deal with unconditional recovery actions defined in unwind
blocks. If only termination was supported, this would be the place to execute these
actions. Supporting the dual model (termination and resumption) imposes to monitor
all unwind blocks found between the signaling context and the handler context, to pass
that collection to the handler and to execute them if the handler entails termination.

- In (15), no handler has been found in the current frame, the loop’s body is entered
again with the variable currentContext pointing to the previous stack frame.

34 C. Dony

The Complete Version Taking into Account Exceptions Signaled Within
Handlers.

The real algorithm is more complex since it supports the dual model (termination and
resumption) which imposes that handlers be executed while the signaling context has
not been destroyed. The algorithm has thus to ensure that, when an exception is
signaled within a handler (either an expression, class or default one), the new search
starts just below the frame in which the current handler has been found, thus
preventing its recursive invocation. Signaling the exception InactiveProcess in the
handler for ItemNotFound is an example of such as situation as shown in Section 3.2.
Figure 9 presents the complete version of the method that looks for and invoke
handlers.

- The test in line 9 determines whether the current frame has been created by the
invocation of invokeHandler:with:. If true, this means that the current exception has
been raised within a handler and execution continues in line 9. Otherwise the standard
algorithm described in the previous section is executed (line 21).

- In line 9, let e2 be the current exception object and h1 be the handler that as been
invoked to trap the first exception e1. The current context objet represents the frame
created by the invocation of h1; its receiver slot contains the exception object e1.

- It is first necessary to update the unwindContexts collection by concatenating (","
is the concatenation operation) (lines 11 and 12) the current recovery action collection
to the collection collected during the search for h1 which is stored in the stack as the
second argument of the current context method. When found, the handler h2 for e2
will have in hand the whole set of recovery actions found between e1 signaling frame
and h2 definition frame, to be executed if h2 entails a termination.

- The handler for e2 now has to be searched below the frame in which h1 has been
defined and which is stored in e1’s handlerContext slot. As specified by the instruction
in line 13, the currentContext is assigned to h1 definition context.

- Before continuing the search in the previous frame (line 20) a special case has to
be handled. If h1 is a default handler, its definition context is the bottom of the stack
frame and in such a case, tested in line 14, the search is stopped and the most general
default handler has to be invoked (line 18).

4.5 Handler Invocation

The method to invoke handlers is shown in Figure 10. All handlers (either lexical
closure or class-handlers) are invoked by receiving the value: message with argument
the current exception objet (cf. Figure 10, line 5). Two marks are stored in the stack

A Fully Object-Oriented Exception Handling System 35

LookForAndInvokeHandler “defined on ExceptionalEvent”
| currentContext classHandler method unwindContexts dejaVus |
unwindContexts := OrderedCollection new. (2)
currentContext := signalingContext. (3)
[true] whileTrue: [(4)

method := currentContext method. (5)
(method == BottomStackMethod) (6)

ifTrue: [handlerContext := currentContext sender. (7)
 ^self invokeHandler: [:e | e handlesDefault] with: unwindContexts.]. (8)

"Detection of exceptions signaled within handlers"
[method == InvokeHandlerMethod (9)

ifTrue: ["The current exception has been raised within a handler" (10)
"a) dealing with unwind-protections"
dejaVus := (currentContext localAt: 2) copy. (11)
dejaVus isNil ifFalse: [unwindContexts := unwindContexts , dejaVus]. (12)
"b) jump to the handler context"
currentContext := currentContext receiver handlerContext. (13)
"c) Was the exception signaled within a default handler?"
currentContext method == BottomStackMethod (14)

 ifTrue: ["Direct invocation of the most general default handler" (15)
handlerContext := currentContext. (17)
^self invokeHandler:

[:e | e basicHandlesDefault] with: unwindContexts] (18)
ifFalse: ["search will continue at the handler context sender" (19)

currentContext := currentContext sender]] (20)
ifFalse: [(21)

"same code than lines 6 to 15 in Figure 8”

Fig. 9. The complete version of handler search.

(lines 3 and 5) just below that invocation point using the method mark:catch: which is
an equivalent of the classical lisp catch function.

Termination will be implemented by a non local exit to the mark named #exit and
resumption by a non local exit to the mark named #resume (see next section). If
termination is ordered, control reaches line 7. There, all unconditional restorations
monitored during the handler search are executed by the method fastUnwind:. Then
the current execution frame is assigned to the handler context (line 8); this effectively
discards all stack frames between the signaling and the handling point. Finally, the
given exit value is tested (line 9). If this value equals the retry dedicated special mark,
a retry has been ordered and the expressions to which the handler were associated are
executed again (line 10), otherwise the exit value is simply returned as the value of
these expressions (line 11). If resumption is ordered, control reaches line (12) and the
resume value is simply returned as the value of the handler invocation. It is the
responsibility of the signaler to examine the returned value and to achieve the selected
solution to restart the standard execution.

Termination. Termination is simply implemented within the exit primitive (cf. Figure
11) by a destructive non local exit down to the #exit mark previously stored in the
stack. The method mark:exit: is an equivalent of the throw classical lisp function. If
the retry protocol is chosen, the value passed to throw is our registered special mark.

36 C. Dony

invokeHandler: aHandler with: unwindContexts
“defined on ExceptionalEvent”
| exitValue resumeValue |
"local variables" (1)
resumeValue := (2)

self mark: #resume catch: (3)
[exitValue := (4)

self mark: #exit catch: (5)
[aHandler value: self]. (6)

self fastUnwind: unwindContexts. (7)
thisContext sender: handlerContext (8)
exitValue == SpecialMark (9)

ifTrue: [handlerContext restart] (10)
ifFalse: [^exitValue]]. (11)

"control reaches that point if resumption has been ordered."
^resumeValue (12)

Fig. 10. Handler Invocation.

Resumption. Resumption (cf. Figure 12) is simply implemented by a destructive non
local exit towards the #resume mark previously stored in the stack at handler
invocation time. The resumeWith:with: primitive checks that the handler has chosen a
protocol for resumption effectively proposed by the signaler before entailing the non
local exit.

“Methods defined on FatalEvent class”
retry

"exit and execute protected operation again."
self mark: #exit throw: SpecialMark.

exit
self exitWith: nil.!

exitWith: aValue
self mark: #exit throw: aValue.

Fig. 11. Implementing Termination

There is no room to present other aspects of the system such as interactive
propositions; however, their implementation does not raise any problem. The complete
implementation can be downloaded from the author WEB page.

A Fully Object-Oriented Exception Handling System 37

“Methods defined on ProceedableEvent class”
resume

self resumeWith: #resume with: nil!
resumeWith: aSymbol with: aValue

(protocolForResumption indexOf: aSymbol) == 0
ifTrue: [Error signal:

The proposed option for proceeding is not valid ...']
ifFalse: [self mark: #resume

 throw: (Association key: aSymbol value: aValue)]

Fig. 12. Implementing resumption.

5 Conclusion

We have presented a specification and implementation of an open and expressive
exception handling system for a dynamically typed object-oriented language. It
provides a full object-oriented representation of exceptions and handlers. This now
classical organization allows users to organize exceptions in an inheritance hierarchy
reflecting the possible sharing of structures and behavior, and to trap any subset of
exceptions with a single handler. The ability to define handling primitive on classes
and to invoke them via message sending to the exception object makes it impossible to
perform an inappropriate action for a given exception. The distribution of handling
primitives on various abstract exception classes simplifies the signaling process by
restricting the number of signaling primitives. Handlers can be associated to
expressions and classes. We have shown the interest of associating dynamic scope
handlers with classes. Class handlers are more than a powerful shorthand, they induce
original ways to use inclusion polymorphism reusability.

This system architecture can also be considered as a framework for developing
dedicated exception handling systems. It is for example very easy to use it to generate,
by subclassing, other systems in which, for example, resumption or termination are
forbidden. Its meta-object protocol for handing, made of a set of methods defined on
exception classes, can be used as a basis to add new and dedicated EH control
structures. We can see today a renewest interest for open, reflective and dynamically
typed languages used for example to assemble components (cf. [5]) or to develop
WEB applications that require powerful and flexible exception handling systems
similar to the one presented here.

We finally have presented the key issues of the implementation of the dual model
of exception handling in the context of a reflective, dynamically.typed object-oriented
langage.

References
1. A.Borgida: Language Features for Flexible Handling of Exceptions in Information

Systems. ACM Transactions on Database Systems, Vol. 10, No. 4, pp. 565-603,
December 1985.

38 C. Dony

2. F.Christian: Exception Handling and Software Fault-Tolerance. IEEE Trans. on
Computers, Vol. C-31, No. 6, pp. 531-540, June 1982.

3. C.Dony: An Exception Handling System for an Object-Oriented Language. Procs
of.ECOOP’88, 1988; Lectures Notes in Comp. Sci. 322, pp. 146-161.

4. C.Dony: Exception handling & Object-Oriented Programming: Towards a Synthesis.
Proceedings of the Joint conference ECOOP-OOPSLA’90, Ottawa, Oct. 1990. Special
issue of Sigplan Notices, Vol. 25, No 10, pp. 322-330.

5. A.F. Garcia, C.M.F.Rubira; Architectural-based Reflective Approach to Incorporating
Exception Handling into Dependable Software. In [23].

6. A. Goldberg, D. Robson: SMALLTALK 80, the language and its implementation.
Addison Wesley 1983.

7. J.B.Goodenough: Exception Handling: Issues and a Proposed Notation. Communication
of the ACM, Vol. 18, No. 12, pp. 683-696, December 1975.

8. J.Ichbiah & al: Preliminary ADA Reference Manual. Rationale for the Design of the ADA
Programming Language. Sigplan Notices Vol. 14, No. 6, June 1979.

9. J.L.Knudsen: Better Exception Handling in Block Structured Systems. IEEE Software, pp
40-49, May 1987.

10. J.L.Knudsen: Exception Handling and Fault Tolerance in Beta. In [23].
11. A. Koenig, B. Stroustrup: Exception Handling for C++. Proceedings of Usenix’90, pp.

149--176, San Francisco, USA, April 1990.
12. R.Levin: Program structures for exceptional condition handling. Ph.D. dissertation, Dept.

Comp. Sci., Carnegie-Mellon University Pittsburg, June 1977.
13. B.Liskov, A.Snyder: Exception Handling in CLU. IEEE Trans. on Software Engineering,

Vol. SE-5, No. 6, pp. 546-558, Nov 1979.
14. B.Meyer: Disciplined exceptions. Interactive Software Engineering, TR-EI-22/EX, 1988.
15. J.G.Mitchell, W.Maybury, R.Sweet: MESA Language Manual. Xerox Research Center,

Palo Alto, California, Mars 1979.
16. R. Miller, A. Tripathi: Issues with Exception Handling in Object-Oriented Systems.

ECOOP ’97 proceedings, Lecture Notes in Computer Science", Vol. 1241, pp. 85--103,
Mehmet Aksit and Satoshi Matsuoka editors, Springer-Verlag 1997.

17. D. Moon, D. Weinreb: Signaling and Handling Conditions. LISP Machine Manual, MIT
AI-Lab., Cambridge, Massachussets, 1983.

18. B.A.Nixon: A Taxis Compiler. Tech. Report 33, Comp. Sci. Dept., Univ. of Toronto,
April 83.

19. K.Pitman: Error/Condition Handling. Contribution to WG16. Revision 18.Propositions
pour ISO-LISP. AFNOR, ISO/IEC JTC1/SC 22/WG 16N15, April 1988.

20. K.Pitman: Condition Handling in the Lisp Language Family. In [23].
21. Objectworks for Smalltalk-80, version 2.5. Advanced User’s Guide - Exception Handling.

ParcPlace systems, 1989.
22. Jan Purchase, Russel Winder: Message Pattern Specifications: A New Technique for

Handling Bugs in Parallel Object Oriented Systems. ACM SIGPLAN Notices, vol. 25,
no. 10, pp. 116--125, October 1990.

23. Advances in Exception Handling Techniques, Alexander Romanovsky, Christophe Dony,
Jorgen Knudsen, Anand Tripathy Editors, Springer-Verlag, 2001.

24. S.Yemini, D.M.Berry: A Modular Verifiable Exception-Handling Mechanism. ACM
Trans. on Progr. Languages and Systems, Vol. 7, No. 2, pp. 213-243, April 1985

Condition Handling in the Lisp Language Family

Kent M. Pitman

kmp@alum.mit.edu

1 Introduction

The Lisp family of languages has long been a rich source of ideas and inspiration
in the area of error handling. Here1 we will survey some of the abstract concepts
and terminology, as well as some specific language constructs that Lisp has
contributed.

Although there are numerous dialects of Lisp, several of which offer the mod-
ern concepts and capabilities described herein, we will focus specifically on Com-
mon Lisp as described in the ANSI standard, X3.226-1994 [5].

1.1 Condition Systems vs Error Systems

The Common Lisp community typically prefers to speak about its condition
system rather than its error system to emphasize that there are not just fatal
but also non-fatal situations in which the capabilities provided by this system
are useful.

Not all exceptional situations are represented, or sometimes even detected.
A situation that is represented within the language is referred to in Common
Lisp as a condition ; an object of class CONDITION is used to represent such a
situation.

A condition is said to be the generalization of an error . Correspondingly,
within the language the class CONDITION is a superclass of another class ERROR,
which represents situations that would be fatal if not appropriately managed.

So the set of all situations involving conditions includes not only descrip-
tions of outright erroneous situations but also descriptions of situations that are
merely unusual or questionable. Even in the case of non-error conditions, the
programmer may, as a matter of expressive freedom, choose to use the same
capabilities and protocols as would be used for “real” error handling.

1.2 Condition Handling is Primarily a Protocol Matter

To properly understand condition handling, it is critical to understand that it is
primarily about protocol , rather than mere computational ability. The estab-
lishment of protocols is a sort of before-the-fact hedge against the “prisoner’s
dilemma”; that is, it creates an obvious way for two people who are not directly
1 c© 2001 Kent M. Pitman. All Rights Reserved.

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 39–59, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

40 K.M. Pitman

communicating to structure independently developed code so that it works in a
manner that remains coherent when such code is later combined.

For example, if we want to write a program that searches a list for an object,
returning true if the object is present and false otherwise, we could write the
following, but would ordinarily not:

(defun search-list (goal-item list-to-search)
(handler-case

;; Main body
(progn (dolist (item list-to-search)

(when (eq item goal-item)
(return-from search-list t)))

;; Search has failed, signal an error.
(error ’search-failure

:item goal-item))
;; Upon error, just return false.
(error () nil)))

The reason not to write this is not that it will not work, but that it involves
undue amounts of unneeded mechanism. The language already contains simpler
ways of expressing transfer of control from point A to point B in a program
where the same programmer, acting in the same role, controls the code at both
points. For example, the following would suffice:

(defun search-list (goal-item list-to-search)
(dolist (item list-to-search)

(when (eq item goal-item)
(return-from search-list t)))

nil)

However, if the intended action in the case of a failing search were not spec-
ified, and was to be provided by the caller, the use of condition handling mech-
anisms might be appropriate. For example, in the following code, only the sig-
naling is occurring, and the handling is being left to the caller. Because of this,
the use of condition handling facilities is appropriate because those facilities will
provide matchmaking and data transport services between the signaler and the
handler.

(defun search-list (goal-item list-to-search)
(dolist (item list-to-search)

(when (eq item goal-item)
(return-from search-list t)))

(error ’search-failure :item goal-item))

Protocol is simply not needed when communicating lexically among parts
of a program that were written as a unit and that are not called by other pro-
grams that are either logically separated or, at minimum, logically separable.
The distinction is subjective, but it is nevertheless important.

Condition Handling in the Lisp Language Family 41

2 Historical Influences

Before beginning to look in detail at the features of Common Lisp’s condition
system, it’s useful to observe that computer languages, like human languages,
evolve over time both to accommodate current needs and to repair problems
observed in past experience. The interesting features of the Common Lisp con-
dition system were not suddenly designed one day as a spontaneous creative
act, but rather grew from many years of prior experience in other languages and
systems.

2.1 Influence of Multics PL/I on Symbolics Zetalisp

The PL/I language, designed at IBM in the early 1960’s, included an extensive
condition mechanism which had an extensible set of named signals and dynamic
handlers running in the dynamic context of the signal. Since PL/I included
“downward” lexical closures these handlers had access to the erring environment,
and sometimes to the details of the error.

Multics [1], whose official language was PL/I, adapted and extended this, in-
cluding the addition of any other, cleanup, and unclaimed signal, the passing
of machine conditions and other arbitrary data, cross-protection-domain signals,
and the use of this mechanism to manage multiple suspended environments on
one stack.

Multics divided its address space into concentric “rings” of increasing privi-
lege; this technique, now widely accepted, originated with Multics. The Multics
operating system relied on their expanded signaling system for several critical
system functions, mostly in the user ring, although cross-ring signals were pos-
sible, typically in cases of paging or memory errors.

Historically, Multics was an “early” environment, but it was not, by any
analysis, a toy. Its condition system was carefully designed, heavily tested, and
had many important characteristics that influenced the later design of Lisp:

– It separated the notion of condition signaling from condition handling.
– It offered the possibility of resuming an erring computation, presumably after

correcting the offending situation. A portion of this capability was also avail-
able to the interactive user if automatic handling did not succeed through
the use of of the pi command, which would signal a program interrupt
condition, allowing the errant application to regain control by handling that
condition; a typical handler for program interrupt might transfer control
back to some pending command level, effectively aborting the erring com-
putation.

– It began to deal with the mediation of signaling and handling through not
only a condition type but also a set of associated data appropriate to that
type: By using a system-defined operator called “signal ” instead of the
normal PL/I “signal”, a data block could be associated with the condition
being signaled, a crude precursor to the idea of object-oriented condition
descriptions that followed later in Lisp.

42 K.M. Pitman

– It began to deal with the notion of default handling, through the use of the
unclaimed signal pseudocondition.

Some of these capabilities, in turn, originated with PL/I itself; for example:
the notion of a named signal and the notion of running a handler in the dynamic
context of the signaler rather than later after a stack unwind. However, these
ideas of PL/I had been elaborated in the Multics environment, and it was from
that elaborated environment that the transition to Lisp arose.

In the early 1980’s, some former users of the Multics system, including Daniel
L. Weinreb, Bernard Greenberg and David Moon, harvested the good ideas of the
Multics PL/I condition system and recast them into Zetalisp, a dialect running
on the Symbolics Lisp Machines. This redesign was called simply the “New Error
System” (or sometimes just “NES”).

2.2 Influence of Symbolics Zetalisp on Common Lisp

Key elements of the New Error System (NES) in Symbolics Zetalisp were:

– NES had an object-oriented nature.
– NES clearly separated the treatment of exceptional situations into three

logically distinct programming activities:

– Establishing handlers.
– Managing “proceed types” (what Common Lisp later called “restarts”).
– Detecting exceptional situations and signaling appropriate conditions.

– NES provided for erring programs to be resumed either interactively or non-
interactively, separating information about prompting for replacement data
from the conduits that would carry such data so that programs wishing to
do mechanical recovery could bypass the prompting but use the rest of the
recovery pipeline.

NES directly and strongly influenced the design of the Common Lisp condi-
tion system. In fact, one initial concern voiced by a number of vendors was that
they were fearful that somehow the ideas of the condition system, being taken
from the Lisp Machine environment, would not perform well on standard hard-
ware. It took several months of discussion, and the availability of a free public
implementation of the ideas, before these fears were calmed and the Common
Lisp community was able to adopt them. Even so, numerous small changes and
a few major changes were made in the process.

In both Zetalisp and Common Lisp, handlers are functions that are called
in the dynamic context of the signaling operation. No stack unwinding has yet
occurred when the handlers are called. Potential handlers are tried in order
until one decides to handle the condition. Probably the most conspicuous change
between NES and the Common Lisp Condition System was the choice of how a
handler function communicated its decision to elect a specific mode of recovery
for the condition being signaled.

Condition Handling in the Lisp Language Family 43

NES used a passive recovery mechanism. That is, in all cases, the handler
would return one or more values. The nature of the return values would deter-
mine which recovery mode (called a “proceed type” in Zetalisp) was to be used.
If NIL was returned, the handler had elected no proceed type, and the next han-
dler was tried. Otherwise, the handler must return at least one value, a keyword
designating the proceed type, and, optionally, additional values which were data
appropriate to that manner of proceeding.

Common Lisp uses an active recovery mechanism. That is, any handler
that wishes to designate a recovery mechanism (called a “restart” in Common
Lisp) must imperatively transfer control to that restart. If the handler does not
transfer control, that is, if the handler returns normally, any returned values are
ignored and the handler is said to have “declined” (i.e., elected no restart), and
the next handler is tried. The Common Lisp recovery mechanism is called active
because a signaled condition is said to be handled only when an active choice
by the handler is made to perform a non-local transfer of control, whether by a
low-level means such as a direct use of GO, THROW or RETURN-FROM or by a more
abstract means such as a use of INVOKE-RESTART.

2.3 The Maclisp Experience

I am commonly credited with the “creation” of the Common Lisp Condition
System, although I hope to show through this paper that my role in the design
was largely to take the ideas of others and carefully transplant them to Common
Lisp. In doing this, I relied on my personal experiences to guide me, and many
of my formative experiences came from my work with Maclisp [2], which origi-
nated at MIT’s Project MAC (later renamed to be the Laboratory for Computer
Science), and which ran on the Digital Equipment Corporation (DEC) PDP10,
DEC TOPS20 and Honeywell Multics systems.

Maclisp, had a relatively primitive error system, which I had used extensively.
At the time I came to the Lisp Machine’s NES, I did not know what I was looking
for in an error system, but I knew, based on my experience with Maclisp, what I
was not looking for. So what impressed me initially about NES was that it had
fixed many of the design misfeatures that I had seen in Maclisp.

One important bit of background on Maclisp, at least on the PDP10 imple-
mentation that I used, was that it had no STRING datatype. In almost all cases
where one might expect strings to be used, interned symbols were used instead.
Symbols containing characters that might otherwise confuse the tokenizer were
bounded on either end by a vertical bar (|). Also, since symbols would normally
name variables, they generally had to be quoted with a leading single quote (’)
to protect them from the Lisp evaluation mechanism and allow them to be used
as pseudostrings.

’|This is a quoted Maclisp symbol.|

Poor Separation of Signaling and Handling in Maclisp Maclisp had two
forms of the function ERROR. In the simple and most widely used form, one

44 K.M. Pitman

merely called ERROR with one argument, a description of the error. Such errors
would stop program execution with no chance of recovery other than to transfer
to the innermost ERRSET, the approximate Maclisp equivalent of Common Lisp’s
IGNORE-ERRORS.

(error ’|YOU LOSE|)

It was possible, however, in a limited way, to specify the particular kind of
error. There were about a dozen predefined kinds of errors that one could identify
that did allow recovery. For example,

(error ’|VARIABLE HAS NO VALUE| ’A ’UNBND-VRBL)

The “keyword” UNBND-VRBL was a system-defined name that indicated to the
system that this was an error of kind “unbound variable”. A specific recovery
strategy was permitted in this case. One could, either interactively in a break-
point or through the dynamic establishment of a handler for such errors, provide
a value for the variable. If that happened, the call to ERROR would then return
a list of that value and the caller of ERROR was expected to pick up that value
and use it.

This worked fine for the case where the programmer knew the kind of error
and was prepared to recover from it. But a strange situation occurred when one
knew the kind of error but was not prepared to recover. Sometimes one knew
one had an unbound variable, and wanted to call ERROR, but was not prepared to
recover. In this case, the programmer was forced to lie and to say that it was an
error of arbitrary type, using just the short form, to avoid the misperception on
the part of potential handlers that returning a recovery value would be useful.

(error ’|VARIABLE HAS NO VALUE| ’A)

One feature of the NES, which I personally found very attractive, was the
notion that I could freely specify the class of error without regard to whether I
was prepared to handle it in some particular way. The issue of how to handle
the error was specified orthogonally.

Error Message Identity In Maclisp In PDP10 Maclisp, error messages were
historically all uppercase, since the system’s primitive error messages were that
way and many users found it aesthetically unpleasant to have some messages in
mixed case while others were entirely uppercase. At some point, however, there
was pressure to provide mixed case error messages. The decision made by the
Maclisp maintainers of the time was not to yield to such pressure.

The problem was that many programs faced with an error message were
testing it for object identity. For example:

(eq msg ’|UNBOUND VARIABLE|)

Condition Handling in the Lisp Language Family 45

Had we changed the case of all of the error messages in the Maclisp system
to any other case, lower or mixed, these tests would have immediately begun
to fail, breaking a lot of installed code and costing a lot of money to fix. The
change would have been seen to be gratuitous.

The lesson from this for all of us in the Maclisp community, which became
magnified later when we confronted the broader community of international
users, was that the identity of an error should not be its name. That is, had we
to do it over again, we would not have used |unbound variable| nor |Unbound
Variable| as the identity of the error, but rather would have created objects
whose slots or methods were responsible for yielding the presented string, but
whose identity and nature was controlled orthogonally. This was another thing
that NES offered that drew me immediately to it.

2.4 Terminological Influences

At the time of the Common Lisp design, Scheme did not have an error sys-
tem, and so its contribution to the dialog on condition systems was not that of
contributing an operator or behavior. However, it still did have something to
contribute: the useful term continuation . For our purposes here, it is sufficient
to see a continuation as an actual or conceptual function that represents, in
essence, one of possibly several “future worlds”, any of which can be entered by
electing to call its associated continuation.

This metaphor was of tremendous value to me socially in my efforts to gain
acceptance of the condition system, because it allowed a convenient, terse ex-
planation of what “restarts” were about in Common Lisp. Although Scheme
continuations are, by tradition, typically passed by explicit data flow, this is not
a requirement. And so I have often found myself thankful for the availability of
a concept so that I could talk about the establishment of named restart points
as “taking a continuation, labeling it with a tag, and storing it away on a shelf
somewhere for possible later use.”

Likewise, I found it useful in some circles to refer to some of the concepts of
reflective Lisps, such as Brian Smith’s 3Lisp [4], and later work inspired by it.
I feel that the condition system’s ability to introspect (through operators such
as FIND-RESTART) about what possible actions are pending, without actually
invoking those pending actions, is an important reflective capability. Even though
Common Lisp does not offer general-purpose reflection, the ability to use this
metaphor for speaking about those aspects of the language that are usefully
described by it simplifies conversations.

3 Abstract Concepts

Having now hopefully firmly established that the formative ideas in the Common
Lisp Condition System did not all spring into existence with the language itself,
and are really the legacy of the community using the continuum of languages
of which Common Lisp is a part, we can now turn our attention to a survey of
some of the important features that Common Lisp provides.

46 K.M. Pitman

3.1 Separating Signaling and Handling

Traditionally, “error handling” has been largely a process of programs stopping
and the only real question has been “how much of the program stops?” or “how
far out do I throw?” It is against that backdrop that modern condition handling
can be best understood.

The proper way to think about condition handling is this:
The process of programming is about saying what to do in every circum-

stance. In that regard, a computer has been sometimes characterized as a “re-
lentless judge of incompleteness”. When a program reaches a place where there
are several possible next steps and the program is unwilling or incapable of
choosing among them, the program has detected an exceptional situation .

The possible next steps are called restarts. Restarts are, effectively, named
continuations.

The process of asking for help in resolving the problem of selecting among
the possible next steps is called signaling .

The independently contributed pieces of code which are consulted during
the signaling process are called handlers. In Common Lisp, these are functions
contributed by the dynamic call chain that are tried in order from innermost
(i.e., most specific) to outermost (i.e., most general). Each handler is called
with an argument that is a description of the problem situation. The handler
will transfer control (by GO, RETURN or THROW) if it chooses to handle the problem
described by its argument.

In describing condition handling, I tell the following story to help people
visualize the need for its various parts:

Think of the process of signaling and handling as analogous to finding a
fork in a road that you do not commonly travel. You don’t know which way to
go, so you make known your dilemma, that is, you signal a condition. Various
sources of wisdom (handlers) present themselves, and you consult each, placing
your trust in them because you have no special knowledge yourself of what to do.
Not all sources of wisdom are experts on every topics, so some may decline to
help before you find one that is confident of its advice. When an appropriately
confident source of wisdom is found, it will act on your behalf. The situation has
been handled.

In the case that the situation is not handled, the next action depends on
which operator was used to signal. The function signal will just return normally
when a condition goes unhandled. The function error is like signal, but rather
than return, it enters the debugger . The Common Lisp debugger might allow
access to low-level debugging features such as examination of individual storage
locations, but it is not required to. Its primary role is to be an interactive
handler ; that is, to present the human user interactively with various options
about how computation might be resumed. Conceptually, this is the same as
if it were acting as the human user’s proxy in being the element on the list
of handlers, so that the human user is the source of wisdom whose choice will
determine how to proceed. Other capabilities that the debugger might offer in
support of that human’s decision are probably very important in practice, but

Condition Handling in the Lisp Language Family 47

are conceptually uninteresting to this understanding of the debugger’s role in
signaling and handling.

Note, too, that in some possible future world, knowledge representation may
have advanced enough that handlers could, rather than act unconditionally on
behalf of the signaler, merely return a representation of a set of potential ac-
tions accompanied by descriptive information respresenting motivations, con-
sequences, and even qualitative representations of the goodness of each. Such
information might be combined with, compared to, or confirmed by recommen-
dations from other sources of wisdom in order to produce a better result. This
is how consultation of sources of wisdom would probably work in the real world.
Consider that even a doctor who is sure of what a patient needs will ask the
patient’s permission before acting. However, this last step of confirmation, which
would allow more flexibility in the reasoning process, is not manifest in Common
Lisp as of the time of writing this paper. It is an open area for future research.

Some of these issues are discussed in much greater detail in my 1990 confer-
ence paper [3].

3.2 Generalized Conditions

It was mentioned earlier that the space of conditions that can be used in the
Common Lisp Condition System is more general than the space of mere errors.
Here are some examples.

Serious, non-error Conditions The superclass of error is
serious-condition. This kind of condition is a subclass of condition
but is serious enough that conditions of this kind should generally enter the
debugger if unhandled. Serious conditions, which the Zetalisp NES called “de-
bugger conditions”, exist as a separately named concept from “error conditions”
to accommodate things that are not semantic errors in a program, but are
instead resource limitations and other incidental accomodations to pragmatics.

Suppose one writes the following:

(ignore-errors (open "some.file"))

This will trap errors during the file open. However, what if a stack overflow
occurs, not for reasons of infinite recursion, but merely because the call is nested
very deeply in other code? The answer is that a stack overflow is considered a
serious condition, but not an error. The above code is equivalent to:

(handler-case (open "some.file")
(error (c)

(values nil c)))

And since any condition representing a stack overflow is going to be a kind
of SERIOUS-CONDITION, but not a kind of ERROR, the use of IGNORE-ERRORS will
succeed in trapping a file error but not a stack overflow. If one wanted to catch
serious conditions as well, one would write instead:

48 K.M. Pitman

(handler-case (open "some.file")
(serious-condition (c)

(values nil c)))

Non-serious conditions Some conditions are not at all serious. Such condi-
tions might be handled, but there is an obvious default action in the case of their
going unhandled.

Consider a program doing line-at-a-time output to a console. One might
assume the screen to have infinite height, and the output might look like:

(defvar *line-number* 0)
(defun show-lines (lines)

(dolist (line lines)
(show-line line)))

However, it might be useful to specify screen line height, and to have the
console pause every so many lines for a human reader to confirm that it’s ok
to proceed. There are, of course, a number of ways such a facility could be
programmed, but one possible such way is to use the condition system. For
example,

(defvar *line-number* 0)
(defvar *page-height* nil)
(define-condition end-of-page (condition))
(defun show-lines (lines)

(dolist (line lines)
(incf *line-number*)
(when (and *page-height*

(zerop (mod *line-number* *page-height*)))
(restart-case (signal ’end-of-page)

(continue () ;no data arguments needed
;; nothing to do in the continue body
)))))

In the above, there is only one way to proceed. A restart named CONTINUE
is offered as a way of imperatively selecting this option (imperatively bypassing
any other pending handlers), but if the handler declines and the condition goes
unhandled, the same result will be achieved.

A similar kind of facility could be used to manage end of line handling. There,
it’s common to allow various modes, and so a corresponding set of restarts has
to be established, which handlers would choose among. If no handler elected to
handle the condition, however, no great harm would come. Here’s an example of
how that might look:

(defvar *line-length* nil)
(define-condition end-of-line (condition))

Condition Handling in the Lisp Language Family 49

(defun show-line (line)
(let ((eol (or *line-length* -1)) (hpos 0))

(loop for pos below (length line)
for ch = (char line i)
do (write-char char)
when (= hpos eol)

do (restart-case (signal ’end-of-line)
(wrap ()

(terpri) ; output a newline char
(setq hpos 0))

(truncate ()
(return))

(continue ()
;; just allow to continue
))

else do (incf hpos))))

3.3 Independent, Reflective Specification of Restarts

It has long been the case that Lisp offered the ability to dynamically make
the decision to transfer to a computed return point using the special operator
THROW. However, without reflective capabilities, there has not been the ability
for a programmer to determine if there was a pending CATCH to which control
could be thrown other than relatively clumsy idioms such as the following:

(ignore-errors (throw ’some-tag ’some-value))

The problem with the above idiom is that while it “detects” the presence or
absence of a pending tag, it only retains local control and the ability to reason
about this knowledge in the case of the tag’s non-existence. The price of detecting
the tag’s existence is transfer to that tag.

The Common Lisp Condition System adds a limited kind of reflective capa-
bility in the form of a new kind of catch point, called a restart , the presence
or absence of which can be reasoned about without any attempt to actually
perform a transfer. A restart can also have associated with them a descriptive
textual string that a human user can be shown by the debugger to describe the
potential action offered by the restart.

Restart points that require transfer of control but no data can be established
straightforwardly with WITH-SIMPLE-RESTART. For example:

(defun lisp-top-level-loop ()
(with-simple-restart (exit "Exit from Lisp.")

(loop
(with-simple-restart (continue "Return to Lisp toplevel.")

(print (eval (read)))))))

50 K.M. Pitman

Restarts that require data can also be established using a slightly more
elaborate syntax. This syntax not only accommodates the programmatic data
flow to the restart, but also enough information for the Common Lisp function
INVOKE-RESTART-INTERACTIVELY to properly prompt for any appropriate values
to be supplied to that restart. For example:

(defun my-symbol-value (name)
(if (boundp name)

(symbol-value name)
(restart-case (error ’unbound-variable :name name)

(use-value (value)
:report "Specify a value to use."
:interactive (lambda ()

(format t "˜&Value to use: ")
(list (eval (read))))

value)
(store-value (value)

:report "Specify a value to use and store."
:interactive (lambda ()

(format t "˜&Value to use and store: ")
(list (eval (read))))

(setf (symbol-value name) value)
value))))

Code that inquires about such restarts typically makes use of FIND-RESTART
to test for the availability of a restart, and then INVOKE-RESTART to invoke a
restart. For example:

(handler-bind ((unbound-variable
(lambda (c) ;argument is condition description

;; Try to make unbound variables get value 17
(dolist (tag ’(store-value use-value))

(let ((restart (find-restart tag c)))
(when restart

(invoke-restart restart 17)))))))
(+ (my-symbol-value ’this-symbol-has-no-value)

(my-symbol-value ’pi))) ;pi DOES have a value!
=> 20.141592653589793

Absent such a handler, the restart would be offered interactively by the de-
bugger, as in:

(+ (my-symbol-value ’this-symbol-has-no-value)
(my-symbol-value ’pi))

Error: The variable THIS-SYMBOL-HAS-NO-VALUE is unbound.
Please select a restart option:

1 - Specify a value to use.

Condition Handling in the Lisp Language Family 51

2 - Specify a value to use and store.
3 - Return to Lisp toplevel.
4 - Exit from Lisp.

Option: 1
Value to use: 19
=> 22.141592653589793

3.4 Handling in the Context of the Signaler

A key capability provided by Common Lisp is the fact that, at the most primitive
level, handling can be done in the dynamic context of the signaler, while certain
very critical dynamic state information is still available that would be lost if a
stack unwind happened before running the handler.

This capability is reflected in the ability of the operator handler-bind to
take control of a computation before any transfer of control occurs. Note that
the Common Lisp operator handler-case, which is more analogous to facilities
offered in other languages, does not allow programmer-supplied code to run until
after the transfer of control; this is useful for some simple situations, but is less
powerful.

Consider a code fragment such as:

(handler-case (main-action)
(error (c) (other-action)))

In this example, the expression (other-action) will run after unwinding
from wherever in (main-action) signaled the error, regardless of how deep into
main-action that signaling occured.

By contrast, handler-bind takes control inside the dynamic context of the
call to SIGNAL, and so is capable of accessing restarts that are dynamically
between the call to SIGNAL and the use of HANDLER-BIND. Consider this example:

(with-simple-restart (foo "Outer foo.")
(handler-case (with-simple-restart (foo "Inner foo.")

(error "Lossage."))
(error (c) (invoke-restart ’foo))))

In the above, the outer FOO restart will be selected, as contrasted with the
following, where the inner FOO restart will be selected:

(with-simple-restart (foo "Outer foo.")
(handler-bind ((error ; any condition of class ERROR

(lambda (c) (invoke-restart ’foo))))
(with-simple-restart (foo "Inner foo.")

;; Now signal an error.
(error "Lossage."))))

52 K.M. Pitman

This is important because error handling tends to want to make use of
all available restarts, but especially those that are in that code region that
HANDLER-BIND can see but HANDLER-CASE cannot. Consider another example:

(handler-case (foo)
(unbound-variable (c)

(let ((r (find-restart ’use-value c)))
(if r (invoke-restart r nil)))))

The above example will not achieve its presumed intent, which is to supply
NIL as the default value for any unbound variable encountered during the call
to FOO. The problem is that any USE-VALUE restart that is likely to be found
will also be within the call to FOO, and will no longer be active by the time the
ERROR clause of the HANDLER-CASE expression is executed.

Use of HANDLER-BIND allows this example to work in a way that is not possible
with HANDLER-CASE and its analogs in other programming languages. Consider:

(handler-bind ((error ; any condition of class ERROR
(lambda (c)

(let ((r (find-restart ’use-value c)))
(if r (invoke-restart r nil))))))

(foo))

3.5 Default Handling

Zetalisp contained a facility not only for asserting handlers to be used for con-
ditions, but also an additional facility for asserting handlers that should be
provisionally used only if no normal handlers were found. In effect, this meant
there were two search lists, a handlers list and a default handlers list, which were
searched in order.

In my use of Zetalisp’s NES, I became convinced that it was conceptually
incorrect to search the default handlers list in order; I felt it should be searched in
reverse order. I had reported this as a bug, but it was never fixed. In all honesty,
I’m not sure there was enough data then or perhaps even now to say whether I
was right, although I continue to believe that default handling is something that
should proceed from the outside in, not the inside out. Nevertheless, whether I
was right or not is not so much relevant in this context as is the fact that it was
a point of controversy that ended up influencing the design of Common Lisp’s
condition system. I was distrustful of the operator condition-bind-default
that was offered by NES, and so I omitted it from the set of offerings that I
transplanted from Common Lisp.

The Common Lisp Condition System does provide a way to implement the
concept of a default handler, but it is idiomatic. And, perhaps not entirely co-
incidentally, it has the net effect of seeking default handlers from the outside in
rather than the inside out, as I had always felt was right.

The Zetalisp mechanism looked like this:

Condition Handling in the Lisp Language Family 53

(condition-bind-default ((error
(lambda (c)

...default handling...)))
...body in which handler is in effect...)

The corresponding Common Lisp idiom looks like this:

(handler-bind ((error ; any condition of class ERROR
(lambda (c)

(signal c) ;resignal
...default handling...)))

...body in which handler is in effect...)

In effect, the Common Lisp idiom continues the signaling process but without
explicitly relinquishing control. If the resignaled condition is unhandled, control
will return to this handler and the default handling will be done. If, on the other
hand, some outer handler does handle the condition, the default handling code
will never be reached and so will not be run.

3.6 Unifying “Signals” and “Exceptions”

In some systems, such as Unix, “signals” are an asynchronous mechanism pri-
marily used for implementing event-driven programming interfaces, but are not
generally used within ordinary, synchronous programming.

While it is beyond the scope of the ANSI Common Lisp standard to address
the issue of either interrupts or multitasking, most Common Lisp implementa-
tions have a convergent manner of coping with these issues that is sufficiently
stable as to be worth some mention. The approach has been to separate the
notion of “interrupting” from the notion of “signaling”.

That is, in Common Lisp, all signaling is synchronous. However, such syn-
chronous behavior can be usefully coupled with a process interruption to produce
interesting effects.

In this separation, process interruptions without signaling might be done for
any reason that involved the need to read or modify dynamic state of another
process. Here is an example that merely reads the dynamic state of another
process:

(defvar *my-dynamic-variable* 1)

(let ((temporary-process
(mp:process-run-function "temp" ’()

;; Launch a temporary process that
;; merely dynamically binds a
;; certain variable and then
;; sleeps for a minute.
(lambda ()

54 K.M. Pitman

(let ((*my-dynamic-variable* 2))
(sleep 60)))))

(result-value nil))
;; Now interrupt our temporary process
;; to see the value of the variable
(mp:process-interrupt temporary-process

(lambda ()
(setq result-value *my-dynamic-variable*)))

;; Now wait for the interrupt to occur
(mp:process-wait "not yet assigned"

(lambda () result-value)) ;tests for a non-null value
;; If we get this far, the result-value has been assigned
;; and can be returned.
result-value)

=> 2

Note that this merely examines the dynamic state of our temporary process,
but does not invoke any signaling mechanism at all. And while the process of
interruption is inherently asynchronous, the actions to be done in the interrupted
process are synchronous.

If we instead intertwine the notion of process interruption with signaling, we
get what some systems might call “asynchronous signaling”, but which Common
Lisp views as just the composition of two orthogonal facilities. So, for example,
a keyboard interrupt to a process might be accomplished by:

(define-condition keyboard-interrupt ()
((character :initarg :character :reader kbd-char))
(:report (lambda (condition stream)

(format t "The character ˜@:C was typed."
(kbd-char condition)))))

(defun keyboard-interrupt (character process)
(mp:process-interrupt process

(lambda ()
;; Offer the process a chance to handle the condition.
;; If the condition is not handled, the call to SIGNAL
;; returns and the interrupt is completed. Normal
;; process execution then continues.
(signal ’keyboard-interrupt :character character))))

Using such a facility, a keyboard process (itself a synchronous activity) can
asynchronously interrupt another process (presumably, the window selected at
the point an interrupt character is seen).

(defvar *selected-window* nil)

Condition Handling in the Lisp Language Family 55

(defun keyboard-process (raw-keyboard-stream)
(loop (let ((char (read-char raw-keyboard-stream)))

(when *selected-window*
(if (is-interrupt-character? char)

(keyboard-interrupt char
(window-process *selected-window*))

;; otherwise...
(add-to-input-buffer *selected-window* char))))))

Although the KEYBOARD-PROCESS shown here will interrupt the window pro-
cess, an understanding of what happens at that point does not require any special
knowledge of asynchrony. It merely requires observing that at the time of inter-
ruption, the other process was about to execute some expression (exp) and will
now execute instead

(progn (funcall the-interrupt-function) (exp))

This kind of structured approach removes much of the mystery and unpre-
dictability normally associated with asynchronous interrupts in other systems,
where the description of the effect is often not linguistic at all but deals in overly
concrete terms of bits and registers in a way that only career experts can hope to
navigate. The sense in the Common Lisp community is that a correct conceptual
treatment of these issues makes these sorts of capabilities something that “mere
mortals” can safely and conveniently employ in their programming.

4 Open Issues

The Dylan language patterned its efforts after the Common Lisp Condition Sys-
tem, but made some interesting changes. I probably lack the appropriate expe-
rience and surely the appropriate objectivity to conclude whether their changes
are clear improvements over the Common Lisp approaches. But it’s plain that by
making divergent decisions in some places, the Dylan community has identified
certain areas of the Common Lisp design as “controversial”.

4.1 Restarts vs Handlers

Common Lisp provides parallel but unrelated operators such as HANDLER-BIND
and HANDLER-CASE for dealing with handlers, and, similarly, RESTART-BIND and
RESTART-CASE for dealing with restarts. It was thought that these were orthogo-
nal operations, requiring unrelated dataflow, that really didn’t belong intermin-
gled. The Dylan community has sought to coalesce these by making restarts into
a kind of condition, and eliminating special binding forms for them.

56 K.M. Pitman

4.2 The “Condition Firewall”

Probably the most controversial semantic component of the Common Lisp con-
dition system is what has come to be called the “condition firewall”. The idea
behind the condition firewall is that a given handler should be executed in an
environment that does not “see” intervening handlers that might have been es-
tablished since its establishment.

So, for example, consider this code:

(handler-case
(handler-bind ((error ; any condition of class ERROR

(lambda (condition)
(declare (ignore condition))
(error ’unbound-variable :name ’fred))))

(handler-case ;; Signal an arbitrary error:
(error "Not an UNBOUND-VARIABLE error.")

(unbound-variable (c) (list ’inner c))))
(unbound-variable (c) (list ’outer c)))

This sets up two handlers for conditions of class UNBOUND-VARIABLE, one
outside of the scope of the general-purpose handler for conditions of class ERROR
and one inside of its scope. At the time the “arbitrary” error signaled, both
handlers are in effect. This means that if the error being signaled had been of
class UNBOUND-VARIABLE, it would have been caught by the inner HANDLER-CASE
for UNBOUND-VARIABLE. However, as the search for a handler proceeds outward,
the handlers that are tried are executed in a context where the inner handlers
are no longer visible. As such, the above example yields

(OUTER #<ERROR UNBOUND-VARIABLE 12A39B87>)

By contrast, the following code:

(handler-case
(handler-bind ((error ; any condition of class ERROR

(lambda (condition)
(declare (ignore condition))

;; Recursively invoke the signaling
;; system by signaling UNBOUND-VARIABLE
;; from within a handler...

(error ’unbound-variable :name ’fred))))

(handler-case ;; The main form of this HANDLER-CASE
;; expression just signals an error.
(error ’unbound-variable :name ’marvin)

;; Handler clauses for inner HANDLER-CASE
(unbound-variable (c) (list ’inner c)))

Condition Handling in the Lisp Language Family 57

)
;; Handler clauses for outer HANDLER-CASE
(unbound-variable (c) (list ’outer c)))

yields

(INNER #<ERROR UNBOUND-VARIABLE 12A39B87>)

It is interesting to note as an aside that the “resignaling trick” used earlier
in the discussion of default handling relies implicitly on the condition firewall
in order to avoid infinite recursion. Without the condition firewall, a different
mechanism for implementing default handling is needed.

The designers of the Dylan language chose to eliminate the condition fire-
wall, perhaps out of necessity since the most useful restarts almost always occur
in the dynamic space near the point of signal, and the handlers usually occur
farther out. If handlers could only see the restarts farther out than where they
were established, they would not see the most useful restarts. (I am personally
doubtful of this argument, and am more inclined to believe that this why restarts
should not have been turned into a kind of condition in Dylan, but I could be
wrong and time will tell.)

The Dylan notation is different in many ways from Common Lisp, but the
approximately equivalent code to the above two examples would both, I believe,
return

(INNER #<ERROR UNBOUND-VARIABLE 12A39B87>)

5 Summary

Language features don’t originate spontaneously out of nowhere. We have sur-
veyed some of the origins of the Common Lisp Condition System in an effort
to demonstrate how prior experiences, both good and bad, have influenced the
present design. Nor is this the end of the story. The ideas in Common Lisp have
had some influence on other languages and will, I hope, continue to do so, since
there are a number of things the Common Lisp makes easy through its condition
system that other languages do not.

We have also seen that good terminology is important both to the specifica-
tion of a programming language and to its community acceptance.

Programming is not only a technical endeavor, but a social one. So much of
so many lives is spent doing programming, that it is critical that we have good
terminology, beyond the terms of the language itself, for talking among each
other about what we are doing within the language.

And we have surveyed some of the key features that distinguish Common
Lisp’s condition system from those offered by other languages, and highlighted
some open issues, where Common Lisp’s answers to certain problems have al-
ready met with challenges.

58 K.M. Pitman

5.1 A Personal Footnote

During the design of Common Lisp, I headed the committee that produced the
design of the condition system. At that time, there were many questions and
doubts about the design: Were the decisions sound? Were all of the alternatives
explored, or were there better ways we might later wish we’d tried? Were there
problems lurking under the surface, waiting to bite someone when used under
heavier stress?

It wasn’t that people doubted our committee’s competence, but rather many
qould-be reviewers lacked the relevant experience to critically analyze our pro-
posals. Yet the design seemed mostly right to me, and my larger concern was
that if we didn’t at some point release it to a community of users to try, we’d be
back at the same design table a few years later with the same questions and the
same lack of community experience to answer them. A leap of faith seemed to be
required to move ahead. So I and my committee nodded our collective heads and
said we stood by the design. Personally, I had some doubts about some details,
but I found it counterproductive to raise them because I believed the risk of not
trying these things out was higher than the risk of trying them.

In my experience, much of language design is like this. We think we know how
it will all come out, but we don’t always. Usage patterns are often surprising,
as one learns if one is around long enough to design a language or two and
then watch how expectations play out in reality over a course of years. So it’s a
gamble. But the only way not to gamble is not to move ahead.

I once saw an interview on television with a font designer from Bitstream Inc.
about how he conceptualized the process of font design. It is not about designing
the shape of the letters, he explained, much to my initial surprise. Then he went
on to explain that it was really about the shape of words. The font shapes play
into that, but they are not, in themselves, the end goal. Programming language
design is like that, too. It’s not about the semantics of individual operators, but
about how those operators fit together to form sentences in programs.

Unlike the situation with fonts, where whole books can be viewed instantly
in a new font to see how the design works, we don’t know in advance what
sentences will be made in a programming language. We have to wait and see
what people choose to write. Common Lisp took a step forward, and while we
can quibble endlessly over whether any given design decision was right, the one
design decision I’m most certain was right was to offer the community a rich
set of capabilities that would empower them not only to write programs, but
also to have a stake in future designs. Never again will I fear sending out e-mail
to a design group asking for advice about what the semantics of HANDLER-BIND
should be and finding that no one has an opinion! To me, that kind of progress,
the evolution of a whole community’s understanding, is the best kind of progress
of all.

Acknowledgements. I would like to thank Keith Corbett, Christophe Dony,
Bernard Greenberg, and Erik Naggum for reviewing drafts of this text. Any
lingering errors after they got done looking at it are still my responsibility, but

Condition Handling in the Lisp Language Family 59

I’m quite sure the editorial, technical, and historical quality of this text was
improved measurably through their helpful scrutiny.

References

1. Multicians: The ‘Multicians’ web site. http://www.multicians.org/
2. Pitman, Kent M.: The Revised Maclisp Manual. Technical Report 295, MIT Lab-

oratory for Computer Science, Cambridge, MA (May 1983).
3. Pitman, Kent M.: Exceptional Situations in Lisp. Proceedings for the

First European Conference on the Practical Application of Lisp (EU-
ROPAL’90), Churchill College, Cambridge, UK, (March 27-29, 1990)
http://world.std.com/ pitman/Papers/Exceptional-Situations-1990.html

4. Smith, Brian C.: Reflection and Semantics in a Procedural Language. Technical
Report 272, MIT Laboratory for Computer Science, Cambridge, MA (January
1982).

5. ANSI working group X3J13: American National Standard for Information
Systems–Programming Language–Common Lisp. X3.226-1994
http://www.xanalys.com/software tools/reference/HyperSpec/FrontMatter/

6. Weinreb, D.L., Moon, D.A.: Lisp Machine Manual. MIT Artificial Intelligence Lab-
oratory, Cambridge, MA (July 1981).

Exception Safety: Concepts and Techniques

Bjarne Stroustrup

AT&T Labs – Research

Florham Park, NJ 07932, USA

http://www.research.att.com/˜bs

Abstract. This paper presents a set of concepts and design techniques that has
proven successful in implementing and using C++ libraries intended for applica-
tions that simultaneously require high reliability and high performance. The
notion of exception safety is based on the basic guarantee that maintains basic
invariants and avoids resource leaks and the strong guarantee that ensures that a
failed operation has no effect.

1 Introduction

This paper, based on Appendix E: Standard-Library Exception Safety of The C++ Pro-
gramming Language (Special Edition) [1], presents

(1) a few fundamental concepts useful for discussion of exception safety
(2) effective techniques for crafting exception-safe and efficient containers
(3) some general rules for exception-safe programming.

The discussion of exception safety focuses on the containers provided as part of the
ISO C++ standard library [2] [1]. Here, the standard library is used to provide exam-
ples of the kinds of concerns that must be addressed in demanding applications. The
techniques used to provide exception safety for the standard library can be applied to a
wide range of problems.

The discussion assumes an understanding of C++ and a basic understanding of
C++’s exception handling mechanisms. These mechanism, the fundamental ways of
using them, and the support they receive in the standard library are described in [1].
The reasoning behind the design of C++’s exception handling mechanisms and refer-
ences to previous work influencing that design can be found in [3].

2 Exception Safety

An operation on an object is said to be exception safe if that operation leaves the object
in a valid state when the operation is terminated by throwing an exception. This valid
state could be an error state requiring cleanup, but it must be well defined so that rea-
sonable error-handling code can be written for the object. For example, an exception
handler might destroy the object, repair the object, repeat a variant of the operation,
just carry on, etc.

In other words, the object will have an invariant, its constructors establish that
invariant, all further operations maintain that invariant, and its destructor does a final
cleanup. An operation should take care that the invariant is maintained before
throwing an exception, so that the object is in a valid state.

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 60−76, 2001.
Ó Springer-Verlag Berlin Heidelberg 2001

However, it is quite possible for that valid state to be one that doesn’t suit the applica-
tion. For example, a string may have been left as the empty string or a container may
have been left unsorted. Thus, ‘‘repair’’ means giving an object a value that is more
appropriate/desirable for the application than the one it was left with after an operation
failed. In the context of the standard library, the most interesting objects are contain-
ers.

Here, we consider under which conditions an operation on a standard-library con-
tainer can be considered exception safe. There can be only two conceptually really
simple strategies:

(1) ‘‘No guarantees:’’ If an exception is thrown, any container being manipulated
is possibly corrupted.

(2) ‘‘Strong guarantee:’’ If an exception is thrown, any container being manipu-
lated remains in the state in which it was before the standard-library operation
started.

Unfortunately, both answers are too simple for real use. Alternative (1) is unaccept-
able because it implies that after an exception is thrown from a container operation, the
container cannot be accessed; it can’t even be destroyed without fear of run-time
errors. Alternative (2) is unacceptable because it imposes the cost of roll-back seman-
tics on every individual standard-library operation.

To resolve this dilemma, the C++ standard library provides a set of exception-
safety guarantees that share the burden of producing correct programs between imple-
menters of the standard library and users of the standard library:

(3a) ‘‘Basic guarantee for all operations:’’ The basic invariants of the standard
library are maintained, and no resources, such as memory, are leaked.

(3b) ‘‘Strong guarantee for key operations:’’ In addition to providing the basic
guarantee, either the operation succeeds, or has no effects. This guarantee is
provided for key library operations, such as p pu us sh h_ _b ba ac ck k(), single-element
i in ns se er rt t() on a l li is st t, and u un ni in ni it ti ia al li iz ze ed d_ _c co op py y().

(3c) ‘‘Nothrow guarantee for some operations:’’ In addition to providing the basic
guarantee, some operations are guaranteed not to throw an exception This
guarantee is provided for a few simple operations, such as s sw wa ap p() and
p po op p_ _b ba ac ck k().

Both the basic guarantee and the strong guarantee are provided on the condition that
user-supplied operations (such as assignments and s sw wa ap p() functions) do not leave
container elements in invalid states, that user-supplied operations do not leak
resources, and that destructors do not throw exceptions.

Violating a standard library requirement, such as having a destructor exit by throw-
ing an exception, is logically equivalent to violating a fundamental language rule, such
a dereferencing a null pointer. The practical effects are also equivalent and often disas-
trous.

In addition to achieving pure exception safety, both the basic guarantee and the
strong guarantee ensure the absence of resource leaks. That is, a standard library oper-
ation that throws an exception not only leaves its operands in well-defined states but
also ensures that every resource that it acquired is (eventually) released. For example,
at the point where an exception is thrown, all memory allocated must be either

61Exception Safety: Concepts and Techniques

deallocated or owned by some object, which in turn must ensure that the memory is
properly deallocated. Remember that memory isn’t the only kind of resource that can
leak. Files, locks, network connections, and threads are examples of system resources
that a function may have to release or hand over to an object before throwing an excep-
tion.

Note that the C++ language rules for partial construction and destruction ensure that
exceptions thrown while constructing sub-objects and members will be handled cor-
rectly without special attention from standard-library code. This rule is an essential
underpinning for all techniques dealing with exceptions.

3 Exception-Safe Implementation Techniques

The C++ standard library provides examples of problems that occur in many other con-
texts and of solutions that apply widely. The basic tools available for writing
exception-safe code are

(1) the try-block, and
(2) the support for the ‘‘resource acquisition is initialization’’ technique.

The key idea behind the ‘‘resource acquisition is initialization’’ technique/pattern
(sometimes abbreviated to RAII) is that ownership of a resource is given to a scoped
object. Typically, that object acquires (opens, allocates, etc.) the resource in its con-
structor. That way, the objects destructor can release the resource at the end of its life
independently of whether that destruction is caused by normal exit from its scope or
from an exception. For details, see Sect. 14.4 of [1]. Also, the use of v ve ec ct to or r_ _b ba as se e
from Sect 3.2 of this paper is an example of ‘‘resource acquisition is initialization.’’

The general principles to follow are to
(1) don’t destroy a piece of information before we can store its replacement
(2) always leave objects in valid states when throwing or re-throwing an exception
(3) avoid resource leaks.

That way, we can always back out of an error situation. The practical difficulty in fol-
lowing these principles is that innocent-looking operations (such as <, =, and s so or rt t())
might throw exceptions. Knowing what to look for in an application takes experience.

When you are writing a library, the ideal is to aim at the strong exception-safety
guarantee and always to provide the basic guarantee. When writing a specific pro-
gram, there may be less concern for exception safety. For example, if I write a simple
data analysis program for my own use, I’m usually quite willing to have the program
terminate in the unlikely event of virtual memory exhaustion. However, correctness
and exception safety are closely related.

The techniques for providing basic exception safety, such as defining and checking
invariants, are similar to the techniques that are useful to get a program small and cor-
rect. It follows that the overhead of providing basic exception safety (the basic guaran-
tee) – or even the strong guarantee – can be minimal or even insignificant.

Here, I will consider an implementation of the standard container v ve ec ct to or r to see
what it takes to achieve that ideal and where we might prefer to settle for more condi-
tional safety.

62 B. Stroustrup

3.1 A Simple Vector

A typical implementation of v ve ec ct to or r will consist of a handle holding pointers to the first
element, one-past-the-last element, and one-past-the-last allocated space (or the equiv-
alent information represented as a pointer plus offsets):

f fi ir rs st t
s sp pa ac ce e
l la as st t . .

elements
.

..

.
extra space

v ve ec ct to or r:

Here is a declaration of v ve ec ct to or r simplified to present only what is needed to discuss
exception safety and avoidance of resource leaks:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > c cl la as ss s v ve ec ct to or r {
p pu ub bl li ic c:

T T* v v; / / start of allocation
T T* s sp pa ac ce e; / / end of elements, start of space allocated for possible expansion
T T* l la as st t; / / end of allocated space
A A a al ll lo oc c; / / allocator

e ex xp pl li ic ci it t v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l = T T() , c co on ns st t A A& = A A()) ;
v ve ec ct to or r(c co on ns st t v ve ec ct to or r& a a) ; / / copy constructor
v ve ec ct to or r& o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a) ; / / copy assignment
˜v ve ec ct to or r() ; / / destructor

s si iz ze e_ _t ty yp pe e s si iz ze e() c co on ns st t { r re et tu ur rn n s sp pa ac ce e-v v; }
s si iz ze e_ _t ty yp pe e c ca ap pa ac ci it ty y() c co on ns st t { r re et tu ur rn n l la as st t-v v; }

v vo oi id d p pu us sh h_ _b ba ac ck k(c co on ns st t T T&) ;

/ / ...
};

Consider first a naive implementation of a constructor:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A> / / warning: naive implementation
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l, c co on ns st t A A& a a)

:a al ll lo oc c(a a) / / copy the allocator
{

v v = a al ll lo oc c.a al ll lo oc ca at te e(n n) ; / / get memory for elements
s sp pa ac ce e = l la as st t = v v+n n;
f fo or r (T T* p p=v v; p p!=l la as st t; ++p p) a a.c co on ns st tr ru uc ct t(p p,v va al l) ; / / construct copy of val in *p

}

There are three sources of exceptions here:
(1) a al ll lo oc ca at te e() throws an exception indicating that no memory is available;
(2) the allocator’s copy constructor throws an exception;
(3) the copy constructor for the element type T T throws an exception because it can’t

copy v va al l.
In all cases, no object is created. However, unless we are careful, resources can leak.

When a al ll lo oc ca at te e() fails, the t th hr ro ow w will exit before any resources are acquired, so all
is well. When T T’s copy constructor fails, we have acquired some memory that must be

63Exception Safety: Concepts and Techniques

freed to avoid memory leaks. A more difficult problem is that the copy constructor for
T T might throw an exception after correctly constructing a few elements but before con-
structing them all. To handle this problem, we could keep track of which elements
have been constructed and destroy those (and only those) in case of an error:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A> / / elaborate implementation
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l, c co on ns st t A A& a a)

:a al ll lo oc c(a a) / / copy the allocator
{

v v = a al ll lo oc c.a al ll lo oc ca at te e(n n) ; / / get memory for elements

i it te er ra at to or r p p;

t tr ry y {
i it te er ra at to or r e en nd d = v v+n n;
f fo or r (p p=v v; p p!=e en nd d; ++p p) a al ll lo oc c.c co on ns st tr ru uc ct t(p p,v va al l) ; / / construct element
l la as st t = s sp pa ac ce e = p p;

}
c ca at tc ch h (...) { / / destroy constructed elements, free memory, and re-throw:

f fo or r (i it te er ra at to or r q q = v v; q q!=p p; ++q q) a al ll lo oc c.d de es st tr ro oy y(q q) ;
a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,n n) ;
t th hr ro ow w;

}
}

The overhead here is the overhead of the try-block. In a good C++ implementation,
this overhead is negligible compared to the cost of allocating memory and initializing
elements. For implementations where entering a try-block incurs a cost, it may be
worthwhile to test i if f(n n) before the t tr ry y and handle the empty vector case separately.

The main part of this constructor is an exception-safe implementation of the stan-
dard library’s u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l():

t te em mp pl la at te e<c cl la as ss s F Fo or r, c cl la as ss s T T>
v vo oi id d u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(F Fo or r b be eg g, F Fo or r e en nd d, c co on ns st t T T& x x)
{

F Fo or r p p;
t tr ry y {

f fo or r (p p=b be eg g; p p!=e en nd d; ++p p)
n ne ew w(s st ta at ti ic c_ _c ca as st t<v vo oi id d*>(&*p p)) T T(x x) ; / / construct copy of x in *p

}
c ca at tc ch h (...) { / / destroy constructed elements and rethrow:

f fo or r (F Fo or r q q = b be eg g; q q!=p p; ++q q) (&*q q)->˜T T() ;
t th hr ro ow w;

}
}

The curious construct &*p p takes care of iterators that are not pointers. In that case, we
need to take the address of the element obtained by dereference to get a pointer. The
explicit cast to v vo oi id d* ensures that the standard library placement function is used, and
not some user-defined o op pe er ra at to or r n ne ew w() for T T*s. This code is operating at a rather low
level where writing truly general code can be difficult.

Fortunately, we don’t have to reimplement u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(), because the

64 B. Stroustrup

standard library provides the desired strong guarantee for it. It is often essential for
initialization to either complete successfully, having initialized every element, or fail
leaving no constructed elements behind. Consequently, the standard-library algorithms
u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(), u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l_ _n n(), and u un ni in ni it ti ia al li iz ze ed d_ _c co op py y() are guaran-
teed to have this strong exception-safety property.

Note that u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l() does not protect against exceptions thrown by ele-
ment destructors or iterator operations. Doing so would be prohibitively expensive.

The u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l() algorithm can be applied to many kinds of sequences.
Consequently, it takes a forward iterator and cannot guarantee to destroy elements in
the reverse order of their construction.

Using u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(), we can write:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A> / / messy implementation
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l, c co on ns st t A A& a a)

:a al ll lo oc c(a a) / / copy the allocator
{

v v = a al ll lo oc c.a al ll lo oc ca at te e(n n) ; / / get memory for elements
t tr ry y {

u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(v v,v v+n n,v va al l) ; / / copy elements
s sp pa ac ce e = l la as st t = v v+n n;

}
c ca at tc ch h (...) {

a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,n n) ; / / free memory
t th hr ro ow w; / / re-throw

}
}

However, I wouldn’t call that pretty code. The next section will demonstrate how it
can be made much simpler.

Note that the constructor re-throws a caught exception. The intent is to make
v ve ec ct to or r transparent to exceptions so that the user can determine the exact cause of a
problem. All standard-library containers have this property. Exception transparency is
often the best policy for templates and other ‘‘thin’’ layers of software. This is in con-
trast to major parts of a system (‘‘modules’’) that generally need to take responsibility
for all exceptions thrown. That is, the implementer of such a module must be able to
list every exception that the module can throw. Achieving this may involve grouping
exceptions, mapping exceptions from lower-level routines into the module’s own
exceptions, or exception specification.

3.2 Representing Memory Explicitly

Experience revealed that writing correct exception-safe code using explicit try-blocks
is more difficult than most people expect. In fact, it is unnecessarily difficult because
there is an alternative: The ‘‘resource acquisition is initialization’’ technique can be
used to reduce the amount of code written and to make the code more stylized. In this
case, the key resource required by the v ve ec ct to or r is memory to hold its elements. By pro-
viding an auxiliary class to represent the notion of memory used by a v ve ec ct to or r, we can
simplify the code and decrease the chance of accidentally forgetting to release it:

65Exception Safety: Concepts and Techniques

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >
s st tr ru uc ct t v ve ec ct to or r_ _b ba as se e {

A A a al ll lo oc c; / / allocator
T T* v v; / / start of allocation
T T* s sp pa ac ce e; / / end of elements, start of space allocated for possible expansion
T T* l la as st t; / / end of allocated space

v ve ec ct to or r_ _b ba as se e(c co on ns st t A A& a a, t ty yp pe en na am me e A A: :s si iz ze e_ _t ty yp pe e n n)
: a al ll lo oc c(a a) , v v(a a.a al ll lo oc ca at te e(n n)) , s sp pa ac ce e(v v+n n) , l la as st t(v v+n n) { }

˜v ve ec ct to or r_ _b ba as se e() { a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,l la as st t-v v) ; }
};

As long as v v and l la as st t are correct, v ve ec ct to or r_ _b ba as se e can be destroyed. Class v ve ec ct to or r_ _b ba as se e
deals with memory for a type T T, not objects of type T T. Consequently, a user of
v ve ec ct to or r_ _b ba as se e must destroy all constructed objects in a v ve ec ct to or r_ _b ba as se e before the
v ve ec ct to or r_ _b ba as se e itself is destroyed.

Naturally, v ve ec ct to or r_ _b ba as se e itself is written so that if an exception is thrown (by the
allocator’s copy constructor or a al ll lo oc ca at te e() function) no v ve ec ct to or r_ _b ba as se e object is created
and no memory is leaked.

We want to be able to s sw wa ap p() v ve ec ct to or r_ _b ba as se es. However, the default s sw wa ap p()
doesn’t suit our needs because it copies and destroys a temporary. Because
v ve ec ct to or r_ _b ba as se e is a special-purpose class that wasn’t given fool-proof copy semantics,
that destruction would lead to undesirable side effects. Consequently we provide a
specialization:

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d s sw wa ap p(v ve ec ct to or r_ _b ba as se e<T T>& a a, v ve ec ct to or r_ _b ba as se e<T T>& b b)
{

s sw wa ap p(a a.a a,b b.a a) ;
s sw wa ap p(a a.v v,b b.v v) ;
s sw wa ap p(a a.s sp pa ac ce e,b b.s sp pa ac ce e) ;
s sw wa ap p(a a.l la as st t,b b.l la as st t) ;

}

Given v ve ec ct to or r_ _b ba as se e, v ve ec ct to or r can be defined like this:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> >
c cl la as ss s v ve ec ct to or r : p pr ri iv va at te e v ve ec ct to or r_ _b ba as se e<T T,A A> {

v vo oi id d d de es st tr ro oy y_ _e el le em me en nt ts s() { f fo or r (T T* p p = v v; p p!=s sp pa ac ce e; ++p p) p p->˜T T() ; }
p pu ub bl li ic c:

e ex xp pl li ic ci it t v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l = T T() , c co on ns st t A A& = A A()) ;
v ve ec ct to or r(c co on ns st t v ve ec ct to or r& a a) ; / / copy constructor
v ve ec ct to or r& o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a) ; / / copy assignment
˜v ve ec ct to or r() { d de es st tr ro oy y_ _e el le em me en nt ts s() ; }

s si iz ze e_ _t ty yp pe e s si iz ze e() c co on ns st t { r re et tu ur rn n s sp pa ac ce e-v v; }
s si iz ze e_ _t ty yp pe e c ca ap pa ac ci it ty y() c co on ns st t { r re et tu ur rn n l la as st t-v v; }

v vo oi id d p pu us sh h_ _b ba ac ck k(c co on ns st t T T&) ;
/ / ...

};

The v ve ec ct to or r destructor explicitly invokes the T T destructor for every element. This
implies that if an element destructor throws an exception, the v ve ec ct to or r destruction fails.

66 B. Stroustrup

This can be a disaster if it happens during stack unwinding caused by an exception and
t te er rm mi in na at te e() is called. In the case of normal destruction, throwing an exception from a
destructor typically leads to resource leaks and unpredictable behavior of code relying
on reasonable behavior of objects. There is no really good way to protect against
exceptions thrown from destructors, so the library makes no guarantees if an element
destructor throws.

Now the constructor can be simply defined:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(s si iz ze e_ _t ty yp pe e n n, c co on ns st t T T& v va al l, c co on ns st t A A& a a)

:v ve ec ct to or r_ _b ba as se e<T T,A A>(a a,n n) / / allocate space for n elements
{

u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(v v,v v+n n,v va al l) ; / / copy elements
}

The copy constructor differs by using u un ni in ni it ti ia al li iz ze ed d_ _c co op py y() instead of
u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l():

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v ve ec ct to or r<T T,A A>: :v ve ec ct to or r(c co on ns st t v ve ec ct to or r<T T,A A>& a a)

:v ve ec ct to or r_ _b ba as se e<T T,A A>(a a.a al ll lo oc c,a a.s si iz ze e())
{

u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(a a.b be eg gi in n() ,a a.e en nd d() ,v v) ;
}

Note that this style of constructor relies on the fundamental language rule that when an
exception is thrown from a constructor, sub-objects (such as bases) that have already
been completely constructed will be properly destroyed. The u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l()
algorithm and its cousins provide the equivalent guarantee for partially constructed
sequences.

3.3 Assignment

As usual, assignment differs from construction in that an old value must be taken care
of. Consider a straightforward implementation:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A> / / offers the strong guarantee
v ve ec ct to or r<T T,A A>& v ve ec ct to or r<T T,A A>: :o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a)
{

v ve ec ct to or r_ _b ba as se e<T T,A A> b b(a al ll lo oc c,a a.s si iz ze e()) ; / / get memory
u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(a a.b be eg gi in n() ,a a.e en nd d() ,b b.v v) ; / / copy elements
d de es st tr ro oy y_ _e el le em me en nt ts s() ; / / destroy old elements
a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,l la as st t-v v) ; / / free old memory
v ve ec ct to or r_ _b ba as se e: :o op pe er ra at to or r=(b b) ; / / install new representation
b b.v v = 0 0; / / prevent deallocation
r re et tu ur rn n *t th hi is s;

}

This assignment is nice and exception safe. However, it repeats a lot of code from
constructors and destructors. Also, the ‘‘installation’’ of the new v ve ec ct to or r_ _b ba as se e is a bit
obscure. To avoid this, we can write:

67Exception Safety: Concepts and Techniques

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A> / / offers the strong guarantee
v ve ec ct to or r<T T,A A>& v ve ec ct to or r<T T,A A>: :o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a)
{

v ve ec ct to or r t te em mp p(a a) ; / / copy a
s sw wa ap p< v ve ec ct to or r_ _b ba as se e<T T,A A> >(*t th hi is s,t te em mp p) ; / / swap representations
r re et tu ur rn n *t th hi is s;

}

The old elements are destroyed by t te em mp p’s destructor, and the memory used to hold
them is deallocated by t te em mp p’s v ve ec ct to or r_ _b ba as se e’s destructor.

The performance of the two versions ought to be equivalent. Essentially, they are
just two different ways of specifying the same set of operations. However, the second
implementation is shorter and doesn’t replicate code from related v ve ec ct to or r functions, so
writing the assignment that way ought to be less error prone and lead to simpler main-
tenance.

Note the absence of the traditional test for self-assignment:

i if f (t th hi is s == &a a) r re et tu ur rn n *t th hi is s;

These assignment implementations work by first constructing a copy and then swap-
ping representations. This obviously handles self-assignment correctly. I decided that
the efficiency gained from the test in the rare case of self-assignment was more than
offset by its cost in the common case where a different v ve ec ct to or r is assigned.

In either case, two potentially significant optimizations are missing:
(1) If the capacity of the vector assigned to is large enough to hold the assigned

vector, we don’t need to allocate new memory.
(2) An element assignment may be more efficient than an element destruction fol-

lowed by an element construction.
Implementing these optimizations, we get:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A> / / optimized, basic guarantee
v ve ec ct to or r<T T,A A>& v ve ec ct to or r<T T,A A>: :o op pe er ra at to or r=(c co on ns st t v ve ec ct to or r& a a)
{

i if f (c ca ap pa ac ci it ty y() < a a.s si iz ze e()) { / / allocate new vector representation:
v ve ec ct to or r t te em mp p(a a) ; / / copy a
s sw wa ap p< v ve ec ct to or r_ _b ba as se e<T T,A A> >(*t th hi is s,t te em mp p) ; / / swap representations
r re et tu ur rn n *t th hi is s;

}

i if f (t th hi is s == &a a) r re et tu ur rn n *t th hi is s; / / protect against self assignment

/ / assign to old elements:
s si iz ze e_ _t ty yp pe e s sz z = s si iz ze e() ;
s si iz ze e_ _t ty yp pe e a as sz z = a a.s si iz ze e() ;
a al ll lo oc c = a a.g ge et t_ _a al ll lo oc ca at to or r() ; / / copy the allocator

i if f (a as sz z<=s sz z) { / / copy over old elements and destroy surplus elements:
c co op py y(a a.b be eg gi in n() ,a a.b be eg gi in n()+a as sz z,v v) ;
f fo or r (T T* p p = v v+a as sz z; p p!=s sp pa ac ce e; ++p p) p p->˜T T() ;

}

68 B. Stroustrup

e el ls se e { / / copy over old elements and construct additional elements:
c co op py y(a a.b be eg gi in n() ,a a.b be eg gi in n()+s sz z,v v) ;
u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(a a.b be eg gi in n()+s sz z,a a.e en nd d() ,s sp pa ac ce e) ;

}
s sp pa ac ce e = v v+a as sz z;
r re et tu ur rn n *t th hi is s;

}

These optimizations are not free. The c co op py y() algorithm does not offer the strong
exception-safety guarantee. It does not guarantee that it will leave its target unchanged
if an exception is thrown during copying. Thus, if T T: :o op pe er ra at to or r=() throws an excep-
tion during c co op py y(), the v ve ec ct to or r being assigned to need not be a copy of the vector
being assigned, and it need not be unchanged. For example, the first five elements
might be copies of elements of the assigned vector and the rest unchanged. It is also
plausible that an element – the element that was being copied when T T: :o op pe er ra at to or r=()
threw an exception – ends up with a value that is neither the old value nor a copy of the
corresponding element in the vector being assigned. However, if T T: :o op pe er ra at to or r=()
leaves its operands in a valid state if it throws an exception, the v ve ec ct to or r is still in a valid
state – even if it wasn’t the state we would have preferred.

Here, I have copied the allocator using an assignment. It is actually not required
that every allocator support assignment.

The standard-library v ve ec ct to or r assignment offers the weaker exception-safety property
of this last implementation – and its potential performance advantages. That is, v ve ec ct to or r
assignment provides the basic guarantee, so it meets most people’s idea of exception
safety. However, it does not provide the strong guarantee. If you need an assignment
that leaves the v ve ec ct to or r unchanged if an exception is thrown, you must either use a
library implementation that provides the strong guarantee or provide your own assign-
ment operation. For example:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d s sa af fe e_ _a as ss si ig gn n(v ve ec ct to or r<T T,A A>& a a, c co on ns st t v ve ec ct to or r<T T,A A>& b b) / / "obvious" a = b
{

v ve ec ct to or r<T T,A A> t te em mp p(a a.g ge et t_ _a al ll lo oc ca at to or r()) ;
t te em mp p.r re es se er rv ve e(b b.s si iz ze e()) ;
f fo or r (t ty yp pe en na am me e v ve ec ct to or r<T T,A A>: :i it te er ra at to or r p p = b b.b be eg gi in n() ; p p!=b b.e en nd d() ; ++p p)

t te em mp p.p pu us sh h_ _b ba ac ck k(*p p) ;
s sw wa ap p(a a,t te em mp p) ;

}

If there is insufficient memory for t te em mp p to be created with room for b b.s si iz ze e() ele-
ments, s st td d: :b ba ad d_ _a al ll lo oc c is thrown before any changes are made to a a. Similarly, if
p pu us sh h_ _b ba ac ck k() fails for any reason, a a will remain untouched because we apply
p pu us sh h_ _b ba ac ck k() to t te em mp p rather than to a a. In that case, any elements of t te em mp p created by
p pu us sh h_ _b ba ac ck k() will be destroyed before the exception that caused the failure is re-
thrown.

Swap does not copy v ve ec ct to or r elements. It simply swaps the data members of a
v ve ec ct to or r; that is, it swaps v ve ec ct to or r_ _b ba as se es (Sect. 3.2). Consequently, it does not throw
exceptions even if operations on the elements might. Consequently, s sa af fe e_ _a as ss si ig gn n()
does not do spurious copies of elements and is reasonably efficient.

69Exception Safety: Concepts and Techniques

As is often the case, there are alternatives to the obvious implementation. We can
let the library perform the copy into the temporary for us:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d s sa af fe e_ _a as ss si ig gn n(v ve ec ct to or r<T T,A A>& a a, c co on ns st t v ve ec ct to or r<T T,A A>& b b) / / simple a = b
{

v ve ec ct to or r<T T,A A> t te em mp p(b b) ; / / copy the elements of b into a temporary
s sw wa ap p(a a,t te em mp p) ;

}

Indeed, we could simply use call-by-value:

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A> / / simple a = b (note: b is passed by value)
v vo oi id d s sa af fe e_ _a as ss si ig gn n(v ve ec ct to or r<T T,A A>& a a, v ve ec ct to or r<T T,A A> b b)
{

s sw wa ap p(a a,b b) ;
}

The last two variants of s sa af fe e_ _a as ss si ig gn n() don’t copy the v ve ec ct to or r’s allocator. This is a
permitted optimization.

3.4 p pu us sh h_ _b ba ac ck k(())

From an exception-safety point of view, p pu us sh h_ _b ba ac ck k() is similar to assignment in that
we must take care that the v ve ec ct to or r remains unchanged if we fail to add a new element:

t te em mp pl la at te e< c cl la as ss s T T, c cl la as ss s A A>
v vo oi id d v ve ec ct to or r<T T,A A>: :p pu us sh h_ _b ba ac ck k(c co on ns st t T T& x x)
{

i if f (s sp pa ac ce e == l la as st t) { / / no more free space; relocate:
v ve ec ct to or r_ _b ba as se e b b(a al ll lo oc c,s si iz ze e()?2 2*s si iz ze e():2 2) ; / / double the allocation
u un ni in ni it ti ia al li iz ze ed d_ _c co op py y(v v,s sp pa ac ce e,b b.v v) ;
n ne ew w(b b.s sp pa ac ce e) T T(x x) ; / / place a copy of x in *b.space
++b b.s sp pa ac ce e;
d de es st tr ro oy y_ _e el le em me en nt ts s() ;
s sw wa ap p<v ve ec ct to or r_ _b ba as se e<T T,A A> >(b b,*t th hi is s) ; / / swap representations
r re et tu ur rn n;

}
n ne ew w(s sp pa ac ce e) T T(x x) ; / / place a copy of x in *space
++s sp pa ac ce e;

}

Naturally, the copy constructor initializing *s sp pa ac ce e might throw an exception. If that
happens, the value of the v ve ec ct to or r remains unchanged, with s sp pa ac ce e left unincremented.
In that case, the v ve ec ct to or r elements are not reallocated so that iterators referring to them
are not invalidated. Thus, this implementation implements the strong guarantee that an
exception thrown by an allocator or even a user-supplied copy constructor leaves the
v ve ec ct to or r unchanged. The standard library offers the strong guarantee for p pu us sh h_ _b ba ac ck k().

Note the absence of a try-block (except for the one hidden in
u un ni in ni it ti ia al li iz ze ed d_ _c co op py y()). The update was done by carefully ordering the operations so
that if an exception is thrown, the v ve ec ct to or r remains unchanged.

The approach of gaining exception safety through ordering and the ‘‘resource

70 B. Stroustrup

acquisition is initialization’’ technique tends to be more elegant and more efficient than
explicitly handling errors using try-blocks. More problems with exception safety arise
from a programmer ordering code in unfortunate ways than from lack of specific
exception-handling code. The basic rule of ordering is not to destroy information
before its replacement has been constructed and can be assigned without the possibility
of an exception.

Exceptions introduce possibilities for surprises in the form of unexpected control
flows. For a piece of code with a simple local control flow, such as the o op pe er ra at to or r=(),
s sa af fe e_ _a as ss si ig gn n(), and p pu us sh h_ _b ba ac ck k() examples, the opportunities for surprises are lim-
ited. It is relatively simple to look at such code and ask oneself ‘‘can this line of code
throw an exception, and what happens if it does?’’ For large functions with compli-
cated control structures, such as complicated conditional statements and nested loops,
this can be hard. Adding try-blocks increases this local control structure complexity
and can therefore be a source of confusion and errors. I conjecture that the effective-
ness of the ordering approach and the ‘‘resource acquisition is initialization’’ approach
compared to more extensive use of try-blocks stems from the simplification of the local
control flow. Simple, stylized code is easier to understand and easier to get right.

Note that the v ve ec ct to or r implementation is presented as an example of the problems
that exceptions can pose and of techniques for addressing those problems. The stan-
dard does not require an implementation to be exactly like the one presented here.
What the standard does guarantee is described in Sect. E.4 of [1].

3.5 Constructors and Invariants

From the point of view of exception safety, other v ve ec ct to or r operations are either equiva-
lent to the ones already examined (because they acquire and release resources in simi-
lar ways) or trivial (because they don’t perform operations that require cleverness to
maintain valid states). However, for most classes, such ‘‘trivial’’ functions constitute
the majority of code. The difficulty of writing such functions depends critically on the
environment that a constructor established for them to operate in. Said differently, the
complexity of ‘‘ordinary member functions’’ depends critically on choosing a good
class invariant. By examining the ‘‘trivial’’ v ve ec ct to or r functions, it is possible to gain
insight into the interesting question of what makes a good invariant for a class and how
constructors should be written to establish such invariants.

Operations such as v ve ec ct to or r subscripting are easy to write because they can rely on
the invariant established by the constructors and maintained by all functions that
acquire or release resources. In particular, a subscript operator can rely on v v referring
to an array of elements:

t te em mp pl la at te e< c cl la as ss s T T, c cl la as ss s A A> T T& v ve ec ct to or r<T T,A A>: :o op pe er ra at to or r[](s si iz ze e_ _t ty yp pe e i i)
{

r re et tu ur rn n v v[i i] ;
}

It is important and fundamental to have constructors acquire resources and establish a
simple invariant. To see why, consider an alternative definition of v ve ec ct to or r_ _b ba as se e:

71Exception Safety: Concepts and Techniques

t te em mp pl la at te e<c cl la as ss s T T, c cl la as ss s A A = a al ll lo oc ca at to or r<T T> > / / clumsy use of constructor
c cl la as ss s v ve ec ct to or r_ _b ba as se e {
p pu ub bl li ic c:

A A a al ll lo oc c; / / allocator
T T* v v; / / start of allocation
T T* s sp pa ac ce e; / / end of elements, start of space allocated for possible expansion
T T* l la as st t; / / end of allocated space

v ve ec ct to or r_ _b ba as se e(c co on ns st t A A& a a, t ty yp pe en na am me e A A: :s si iz ze e_ _t ty yp pe e n n)
: a al ll lo oc c(a a) , v v(0 0) , s sp pa ac ce e(0 0) , l la as st t(0 0)

{
v v = a al ll lo oc c.a al ll lo oc ca at te e(n n) ;
s sp pa ac ce e = l la as st t = v v+n n;

}

˜v ve ec ct to or r_ _b ba as se e() { i if f (v v) a al ll lo oc c.d de ea al ll lo oc ca at te e(v v,l la as st t-v v) ; }
};

Here, I construct a v ve ec ct to or r_ _b ba as se e in two stages: First, I establish a ‘‘safe state’’ where v v,
s sp pa ac ce e, and l la as st t are set to 0 0. Only after that has been done do I try to allocate memory.
This is done out of misplaced fear that if an exception happens during element alloca-
tion, a partially constructed object could be left behind. This fear is misplaced because
a partially constructed object cannot be ‘‘left behind’’ and later accessed. The rules for
static objects, automatic objects, member objects, and elements of the standard-library
containers prevent that. However, it could/can happen in pre-standard libraries that
used/use placement new to construct objects in containers designed without concern
for exception safety. Old habits can be hard to break.

Note that this attempt to write safer code complicates the invariant for the class: It
is no longer guaranteed that v v points to allocated memory. Now v v might be 0 0. This
has one immediate cost. The standard-library requirements for allocators do not guar-
antee that we can safely deallocate a pointer with the value 0 0. In this, allocators differ
from d de el le et te e. Consequently, I had to add a test in the destructor.

This two-stage construct is not an uncommon style. Sometimes, it is even made
explicit by having the constructor do only some ‘‘simple and safe’’ initialization to put
the object into a destructible state. The real construction is left to an i in ni it t() function
that the user must explicitly call. For example:

t te em mp pl la at te e<c cl la as ss s T T> / / archaic (pre-standard, pre-exception) style
c cl la as ss s V Ve ec ct to or r {

T T* v v; / / start of allocation
T T* s sp pa ac ce e; / / end of elements, start of space allocated for possible expansion
T T* l la as st t; / / end of allocated space

p pu ub bl li ic c:
V Ve ec ct to or r() : v v(0 0) , s sp pa ac ce e(0 0) , l la as st t(0 0) { }
˜V Ve ec ct to or r() { f fr re ee e(v v) ; }

b bo oo ol l i in ni it t(s si iz ze e_ _t t n n) ; / / return true if initialization succeeded

/ / ... Vector operations ...
};

72 B. Stroustrup

t te em mp pl la at te e<c cl la as ss s T T>
b bo oo ol l V Ve ec ct to or r<T T>: :i in ni it t(s si iz ze e_ _t t n n) / / return true if initialization succeeded
{

i if f (v v = (T T*)m ma al ll lo oc c(s si iz ze eo of f(T T)*n n)) {
u un ni in ni it ti ia al li iz ze ed d_ _f fi il ll l(v v,v v+n n,T T()) ;
s sp pa ac ce e = l la as st t = v v+n n;
r re et tu ur rn n t tr ru ue e;

}
r re et tu ur rn n f fa al ls se e;

}

The perceived value of this style is
(1) The constructor can’t throw an exception, and the success of an initialization

using i in ni it t() can be tested by ‘‘usual’’ (that is, non-exception) means.
(2) There exists a trivial valid state. In case of a serious problem, an operation can

give an object that state.
(3) The acquisition of resources is delayed until a fully initialized object is needed.

However, this two-stage construction technique doesn’t deliver its expected benefits
and can itself be a source of problems.

The first point (using an i in ni it t() function in preference to a constructor) is bogus.
Using constructors and exception handling is a more general and systematic way of
dealing with resource acquisition and initialization errors. This style is a relic of pre-
exception C++. Having a separate i in ni it t() function is an opportunity to

(1) forget to call i in ni it t(),
(2) call i in ni it t() more than once,
(3) forget to test on the success of i in ni it t(),
(4) forget that i in ni it t() might throw an exception, and
(5) use the object before calling i in ni it t().

Constructors and exceptions were introduced into C++ to prevent such problems [3].
The second point (having an easy-to-construct ‘‘safe’’ valid state) is in principle a

good one. If we can’t put an object into a valid state without fear of throwing an
exception before completing that operation, we do indeed have a problem. However,
this ‘‘safe state’’ should be one that is a natural part of the semantics of the class rather
than an implementation artifact that complicates the class invariant.

If the ‘‘safe’’ state is not a natural part of the semantics of the class, the invariant is
complicated and a burden is imposed on every member function. For example, the
simple subscript operation becomes something like:

t te em mp pl la at te e< c cl la as ss s T T> T T& V Ve ec ct to or r<T T>: :o op pe er ra at to or r[](s si iz ze e_ _t ty yp pe e i i)
{

i if f (v v) r re et tu ur rn n v v[i i] ;
/ / error handling

}

If part of the reason for using a two-stage initialization was to avoid exceptions, the
error handling part of that o op pe er ra at to or r[]() could easily become complicated.

Like the second point, the third (delaying acquisition of a resource until is needed)
misapplies a good idea in a way that imposes cost without yielding benefits. In many
cases, notably in containers such as v ve ec ct to or r, the best way of delaying resource

73Exception Safety: Concepts and Techniques

acquisition is for the programmer to delay the creation of objects until they are needed.
To sum up: the two-phase construction approach leads to more complicated invari-

ants and typically to less elegant, more error-prone, and harder-to-maintain code. Con-
sequently, the language-supported ‘‘constructor approach’’ should be preferred to the
‘‘i in ni it t()-function approach’’ whenever feasible. That is, resources should be acquired
in constructors whenever delayed resource acquisition isn’t mandated by the inherent
semantics of a class.

The negative effects of two-phase construction become more marked when we con-
sider application classes that acquire significant resources, such as network connec-
tions and files. Such classes are rarely part of a framework that guides their use and
their implementation in the way the standard-library requirements guide the definition
and use of v ve ec ct to or r. The problems also tend to increase as the mapping between the
application concepts and the resources required to implement them becomes more
complex. Few classes map as directly onto system resources as does v ve ec ct to or r.

4 Implications for Library Users

One way to look at exception safety in the context of the standard library is that we
have no problems unless we create them for ourselves: The library will function cor-
rectly as long as user-supplied operations meet the standard library’s basic require-
ments. In particular, no exception thrown by a standard container operation will cause
memory leaks from containers or leave a container in an invalid state. Thus, the prob-
lem for the library user becomes: How can I define my types so that they don’t cause
undefined behavior or leak resources?

The basic rules are:
(1) When updating an object, don’t destroy its old representation before a new rep-

resentation is completely constructed and can replace the old one without risk
of exceptions. For example, see the implementations of s sa af fe e_ _a as ss si ig gn n() and
v ve ec ct to or r: :p pu us sh h_ _b ba ac ck k() in Sect. 3.
(1a) If you must override an old representation in the process of creating the

new, be sure to leave a valid object behind if an exception is thrown. For
example, see the ‘‘optimized’’ implementation of v ve ec ct to or r: :o op pe er ra at to or r=().

(2) Before throwing an exception, release every resource acquired that is not owned
by some (other) object.
(2a) The ‘‘resource acquisition is initialization’’ technique and the language

rule that partially constructed objects are destroyed to the extent that they
were constructed can be most helpful here.

(2b) The u un ni in ni it ti ia al li iz ze ed d_ _c co op py y() algorithm and its cousins provide automatic
release of resources in case of failure to complete construction of a set of
objects.

(3) Before throwing an exception, make sure that every operand is in a valid state.
That is, leave each object in a state that allows it to be accessed and destroyed
without causing undefined behavior or an exception to be thrown from a
destructor. For example, see v ve ec ct to or r’s assignment in Sect. 3.2.
(3a) Note that constructors are special in that when an exception is thrown from

a constructor, no object is left behind to be destroyed later. This implies

74 B. Stroustrup

that we don’t have to establish an invariant and that we must be sure to
release all resources acquired during a failed construction before throwing
an exception.

(3b) Note that destructors are special in that an exception thrown from a
destructor almost certainly leads to violation of invariants and/or calls to
t te er rm mi in na at te e().

In practice, it can be surprisingly difficult to follow these rules. The primary reason is
that exceptions can be thrown from places where people don’t expect them. A good
example is s st td d: :b ba ad d_ _a al ll lo oc c. Every function that directly or indirectly uses n ne ew w or an
a al ll lo oc ca at to or r to acquire memory can throw b ba ad d_ _a al ll lo oc c. In some programs, we can solve
this particular problem by not running out of memory. However, for programs that are
meant to run for a long time or to accept arbitrary amounts of input, we must expect to
handle various failures to acquire resources. Thus, we must assume every function
capable of throwing an exception until we have proved otherwise.

One simple way to try to avoid surprises is to use containers of elements that do not
throw exceptions (such as containers of pointers and containers of simple concrete
types) or linked containers (such as l li is st t) that provide the strong guarantee. Another,
complementary, approach is to rely primarily on operations, such as p pu us sh h_ _b ba ac ck k(),
that offer the strong guarantee that an operation either succeeds or has no effect. How-
ever, these approaches are by themselves insufficient to avoid resource leaks and can
lead to an ad hoc, overly restrictive, and pessimistic approach to error handling and
recovery. For example, a v ve ec ct to or r<T T*> is trivially exception safe if operations on T T
don’t throw exceptions. However, unless the objects pointed to are deleted some-
where, an exception from the v ve ec ct to or r will lead to a resource leak. Thus, introducing a
H Ha an nd dl le e class to deal with deallocation and using v ve ec ct to or r<Handle<T> > rather than the
plain v ve ec ct to or r<T T*> will probably improve the resilience of the code.

When writing new code, it is possible to take a more systematic approach and make
sure that every resource is represented by a class with an invariant that provides the
basic guarantee. Given that, it becomes feasible to identify the critical objects in an
application and provide roll-back semantics (that is, the strong guarantee – possibly
under some specific conditions) for operations on such objects.

As mentioned in Sect. 3, the basic techniques for dealing with exceptions, focusing
on resources and invariants, also help getting code correct and efficient. In general,
keeping code stylish and simple by using classes to represent resources and concepts
makes the code easier to understand, easier to maintain, and easier to reason about.
Constructors, destructors, and the support for correct partial construction and
destruction are the language-level keys to this. ‘‘Resource acquisition is initialization’’
is the key programming technique to utilize these language features.

Most applications contain data structures and code that are not written with excep-
tion safety in mind. Where necessary, such code can be fitted into an exception-safe
framework by either verifying that it doesn’t throw exception (as was the case for the C
standard library) or through the use of interface classes for which the exception behav-
ior and resource management can be precisely specified.

When designing types intended for use in an exception-safe environment, we must
pay special attention to the operations used by the standard library: constructors,

75Exception Safety: Concepts and Techniques

destructors, assignments, comparisons, swap functions, functions used as predicates,
and operations on iterators. This is best done by defining a class invariant that can be
simply established by all constructors. Sometimes, we must design our class invariants
so that we can put an object into a state where it can be destroyed even when an opera-
tion suffers a failure at an ‘‘inconvenient’’ point. Ideally, that state isn’t an artifact
defined simply to aid exception handling, but a state that follows naturally from the
semantics of the type.

When considering exception safety, the emphasis should be on defining valid states
for objects (invariants) and on proper release of resources. It is therefore important to
represent resources directly as classes. The v ve ec ct to or r_ _b ba as se e (Sect. 3.2) is a simple exam-
ple of this. The constructors for such resource classes acquire lower-level resources
(such as the raw memory for v ve ec ct to or r_ _b ba as se e) and establish invariants (such as the proper
initialization of the pointers of a v ve ec ct to or r_ _b ba as se e). The destructors of such classes implic-
itly free lower-level resources. The rules for partial construction and the ‘‘resource
acquisition is initialization’’ technique support this way of handling resources.

A well-written constructor establishes the class invariant for an object. That is, the
constructor gives the object a value that allows subsequent operations to be written
simply and to complete successfully. This implies that a constructor often needs to
acquire resources. If that cannot be done, the constructor can throw an exception so
that we can deal with that problem before an object is created. This approach is
directly supported by the language and the standard library.

The requirement to release resources and to place operands in valid states before
throwing an exception means that the burden of exception handling is shared among
the function throwing, the functions on the call chain to the handler, and the handler.
Throwing an exception does not make handling an error ‘‘somebody else’s problem.’’
It is the obligation of functions throwing or passing along an exception to release
resources that they own and to put operands in consistent states. Unless they do that,
an exception handler can do little more than try to terminate gracefully.

5 Acknowledgements

The concepts and techniques described here are the work of many individuals. In par-
ticular, Dave Abrahams, Matt Austern, and Greg Colvin made major contributions to
the notions of exception safety embodied in the C++ standard library.

6 References

[1] Bjarne Stroustrup: The Design and Evolution of C++. Addison-Wesley. 1994.
ISBN 0-201-54330-3.

[2] Andrew Koenig (editor): Standard – The C++ Language. ISO/IEC
14882:1998(E). Information Technology Council (NCITS). Washington, DC,
USA. http://www.ncits.org/cplusplus.htm.

[3] Bjarne Stroustrup: The C++ Programming Language (Special Edition). Addison-
Wesley. 2000. ISBN 0-201-70073-5.

76 B. Stroustrup

Exceptions in Object Modeling:
Finding Exceptions from the Elements of the Static

Object Model

Yolande Ahronovitz and Marianne Huchard

lirmm umr 5506 and Montpellier II University
161 rue Ada, 34392 Montpellier Cedex 5, France

yolande@lirmm.fr, huchard@lirmm.fr

Abstract. The problem of modeling exceptions has not been studied
much: literature gives good advice, but lacks concepts about how to
think up and model exceptions. We propose guidelines, based on static
object model elements, on finding exceptions at modeling stage, and on
organizing them. Along with this guide, we also present a thought about
finding exceptions using constraints, and about composing exceptions. In
order to represent the concepts needed above, we propose some additions
to the UML metamodel. We conclude by showing how our proposals can
solve some subtyping problems, and how they allow to catch exceptions
at different levels of accuracy.

1 Introduction

Most of today’s object-oriented languages have an exception handling system.
Whereas the dynamic mechanisms (signaling, catching, handling) have been and
are widely studied, only a few studies about designing exceptions themselves ex-
ist. Indeed, modeling and design methods do not tell much about exceptions:
maybe because it was generally admitted that they fall into the programming
domain. As UML is the most detailed proposal about exceptions in object mod-
eling, it is interesting to study what is proposed in the metamodel, what is
proposed in the extensions, and what advice are given in the associated litera-
ture.

The point of view of UML The UML metamodel takes into account the only
dynamic aspects of exceptions. In the UML metamodel [1], partly shown in Fig.
1, an exception is a Signal, dedicated to errors. “A signal represents a named ob-
ject that is dispatched (thrown) asynchronously by one object and then received
(caught) by another” [2]. Different dynamic diagrams allow to represent how a
signal is thrown and caught. It is linked by associations to behavioral features1,
which catch it and throw it; it is generalizable and specializable; it may have
parameters. Yet, if we strictly follow the metamodel, we can’t describe it using
attributes, methods, and/or associations. The only provided “feature” is a body,
1 UML term, which may refer to an operation or to a method.

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 77–93, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

78 Y. Ahronovitz and M. Huchard

ModelElement

Association

AssociationEnd Classifier Feature

Class

Reception

GeneralizableElement

Parameter
Signal

Behavioral feature

Exception

body

StructuralFeature

Method

association

is composed of

is derived from

Request

context

* raisedException *

Attribute

0..*reception

1 signal

*
2..*

1

*

*1

*

1
*

*

0..1

Fig. 1. Extract from UML metamodel

the content of which must be “a description of the exception in a format not
defined in UML”.
However, UML has extension mechanisms, which add notions not belonging to
the metamodel [1]. Among these mechanisms, stereotypes allow to specialize
some elements of the metamodel, in order to customize them for a specific prob-
lem. UML proposes standard stereotypes, among them we find <<exception>>[2].
This stereotype, which specializes Class, allows to model exceptions which seem
“class-like”. We give in Fig. 2 a simple example of the notation. This notation

...
...

...

Stack << exception >>
EmptyStack

push
peek

Fig. 2. Stack class and EmptyStack exception

hides an ambiguity: EmptyStack is both an instance of the metamodel element
(metaclass) Exception, and an instance of the <<exception>> stereotype. We will
have further discussion about this point in Sect. 4.
Concerning the design, the authors of [2] suggest to search for exceptions fol-
lowing the place (the operations) where they can be signaled; they also advise
the users to organize their exceptions into a hierarchy. These hints are good,
but should be developed to be really useful; in particular, they do not propose
precise criteria for classifying into the hierarchy.

Exceptions in Object Modeling 79

If we want to find more about design of exceptions, then we have, rather
unexpectedly, to look at programming languages, which give us more elaborated
answers.

The point of view of programming languages Some of them give predefined hier-
archies of classes representing exceptions. Some other offer non reified exceptions,
but give advice on how to determine user exceptions.
The content and the organization of the predefined hierarchies show the model-
ing effort done by the language designers. C++, Java et Python [3] give typical
examples of this effort. We review below the proposals of C++ and Java.
As shown in Fig. 3, the C++ predefined hierarchy is very small [4]. It is devised
on one hand in order to organize language and standard library exceptions, and
on the other hand in order to define general exceptions that the programmer
can use or refine. Under the root, we mainly find the subclasses logic_error

logic_error

length_error bad_alloc

bad_exception

exception

bad_cast

bad_typeid

runtime_error

underflow_error

overflow_error

range_error

domain_error

out_of_range

invalid_argument ios_base::failure

Fig. 3. Complete hierarchy of C++ exceptions

and runtime_error. Their subclasses are themselves very general, and should
be refined before use. But this is not done for the predefined C++ classes: for
example, when the predefined C++ bitset class must signal a very specific er-
ror in a constructor (in this case that an init string contains other things than
zeroes and ones), it throws invalid_argument. Moreover, the programmer is
not obliged to define his exceptions, or to place them in this hierarchy.
In Java, the predefined hierarchy is more advanced [5,6]. The classes are nu-
merous, precise, and well-documented. They are organized by means of hier-
archies, and with packages. The root of the hierarchy is Throwable, which has
two subclasses Error and Exception. Error is the root of hardware errors and
fatal software errors (virtual machine errors, link errors). Exception is the root
of ordinary software errors. It must be the root of the hierarchies of user de-
fined exceptions. It has several subclasses: RuntimeException and IOException are
roots for important subtrees, while other subclasses are specific. Some exception
cases are very detailed: for example, IndexOutOfBoundsException has two sub-
classes ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException,

80 Y. Ahronovitz and M. Huchard

Throwable

Exception Error

<user hierarchy>

AWTException

RuntimeException

VirtualMachineError

IllegalStateException

IllegalArgumentException

IllegalThreadStateException

NegativeArraySizeException

IOException

java.io java.net

ArrayStoreException

java.awt

IndexOutOfBoundsException

ArrayIndexOutOfBoundsException

StringIndexOutOfBoundsException

java.lang

IllegalComponentStateException

Fig. 4. Extract from the hierarchy of Java exceptions

depending on the type of the object.
But some important questions arise. First, the lack of multiple inheri-
tance prevents the complete classification of some exceptions. For instance,
IllegalComponentStateException means that “the AWT component is not in
the appropriate state for some requested operation”[7]. It is both an AWT
component exception, and an exception meaning that a state is not appro-
priate. So it should have two “natural” superclasses: AWTException (subclass
of Exception), and IllegalStateException, subclass of RunTimeException; in
fact it has only one, the latter. However, it belongs to the java.awt pack-
age, as the former. Second, the exceptions on arrays could have been grouped
together; but then it would have been in conflict with other classifications
(see above the subclasses of IndexOutOfBoundsException). Third, some excep-
tions seem to be in a wrong place: IllegalThreadStateException, thrown when
a thread “is not in a state where it is possible to fulfill the request”[8],
is a subclass of IllegalArgumentException; it should rather be a subclass of
IllegalStateException. Finally, the exceptions are put in the packages, but there
is no systematically defined exception root for each package. For example, the
exceptions of java.io are subclasses of the root IOException, but there is no ex-
ception root in java.net, and the exceptions of this package are also subclasses
of IOException. Another example is the AWTException which, despite its name,
is not a root for the java.awt package exceptions. To sum up, the predefined
hierarchies encourage the programmer to define his own exceptions, and to clas-
sify them (at least integrating them in the existing hierarchy); but they do not

Exceptions in Object Modeling 81

organize the exceptions as systematically as they can do.
As predefined hierarchies are not usual (for example, reified exceptions do not
exist in Eiffel and Ada95), it is useful to consult general literature about pro-
gramming languages: we find there some advice on how to determine and use
exceptions. Most of the authors advise to avoid using exceptions in expected
situations [5], or in cases “where more local control structures will suffice” [4]. In
[9], we find suggestions to determine exceptions according to “what client classes
want to catch”. Another hint is to study methods’ preconditions and postcon-
ditions, to define for each object what a consistent state is. This fits with the
“contract” notion defined in Eiffel [10].

Towards an object-oriented modeling of exceptions When looking closer, we find
the previous proposals unsufficient. Apart from the fact that they are not always
precise and clear, the proposed approaches are often more functional than object-
oriented. We propose hereafter to follow an object-oriented point of view: we
think that it is important to design exceptions in relation to the other parts of an
object model (classes, attributes, methods, associations, specialization relations).

Outline of the paper In Sects. 2 and 3, we introduce different ways of finding
exceptions based on UML static object model. In Sect. 2, we study how to
design exceptions related to the basic elements of the structural model: classes,
features, associations, and specialization relations. In Sect. 3, we introduce more
advanced notions: using constraints which have been put on the UML diagrams,
and making composite exceptions. In Sect. 4, we propose some additions to the
UML metamodel, in order to have the means of representing our solutions with
this formalism. Finally, we conclude in Sect. 5 by discussing the contributions of
our modeling, and the perspectives of this work.

2 Exceptions Based on Static Object Model Elements

In this section, we describe how designing exceptions can be guided by the ele-
ments of the structural model: classes, features, associations, and specialization
relations.

2.1 Exceptions and Types

We make the assumption that exceptions must be devised in connection with
program types, i.e. we study all exceptions associated with every class when
building the class. For instance, when we construct the Stack class, we must
make an inventory of all the problems linked to the state of the stack, and of all
the problems which may arise when we use the stack.
We want the exceptions associated with a type to have the same abstraction level
as the type itself [11]. For a given type, this leads us to define exceptions which
will be used to “encapsulate” low-level exceptions. For example, we create an
“impossible push” exception associated with the Stack type; such an exception

82 Y. Ahronovitz and M. Huchard

occurs every time a push is impossible, e.g. when a “memory overflow” occurs.
That represents, at the conceptual level, what we do in practice when we catch
an instance of “memory overflow” and treat it by throwing an instance of “im-
possible push”.
To put to a single hierarchy all the exceptions associated with a given type helps
to factorize their features [12]. The previous remarks lead us to the following
principle: if X is a type, X ’s own exceptions are all rooted under a general
exception class ExcTypeX.

2.2 Exceptions and Features

According to UML, features of a class can be split up into primitive attributes
(this means that the attribute’s type is not a class) and methods. For each
method meth of X which gives rise to exceptions, we can put, under the main
root ExcTypeX, an exception class ExcMeth, which will be the mother of all the
exceptions thrown by meth. We can do the same for each primitive attribute attrP
of X, assuming that exceptions associated with an attribute mean exceptions its
accessor methods can signal.
It looks very heavy. If two methods meth1 and meth2 can signal the same kind
of exception E, there will be one class E1 under the root ExcMeth1, which
represents E in meth1 ’s context, and another class E2 under the root ExcMeth2,
which represents E in meth2 ’s context. Do we need that?
The answer is given when making progress in the design. Either the two contexts
are the same, and we can simplify : we remove E1, E2, even ExcMeth1 and
ExcMeth2, and define only one class E. Or the two contexts are different, and
we keep all the classes (and even add E as a superclass for E1 and E2).
For instance, we can associate an EmptyStack exception with the class Stack.
The two methods pop and peek (look at the top object without pop) can signal
this exception. Must we have an EmptyStackPop exception under ExcPop, and
an EmptyStackPeek under ExcPeek? It depends on the framework in which the
stack is used. We can wish to treat differently the EmptyStack problem when
trying to pop, or when only wanting to see; if it is the case, then it is better to
have the means to catch the two exceptions separately.

2.3 Exceptions and Associations

We now look at associations: can they give rise to exceptions into the classes they
link? If so, how and where can we represent them? We find in a class two kinds
of exceptions: ones which are generated by an exception defined on the other end
of the association (one may say that they “encapsulate” an exception defined on
the other end), others which are the result of the association’s semantics (of the
role the association plays in the class).

Encapsulating Exceptions When a class X is linked to another class Y,
an exception of one of them can generate an exception of the other through

Exceptions in Object Modeling 83

the association. Let us take for example a drinks dispenser, containing several
compartments. We model this using an “aggregation” between the class Drinks-
Dispenser and the class Compartment. The existence of this aggregation rela-
tion, and the existence of an Empty exception defined on the Compartment
class imply the existence of an AnEmptyCompartment exception defined on the
DrinksDispenser class. In the code, we express this by saying that the dispenser
catches the instance of the Empty exception thrown by a compartment, and
treats it by throwing an instance of the AnEmptyCompartment exception. On
the other hand, a compartment will not catch an exception thrown by the dis-
penser.
This is typical of a composition relation. To respect the encapsulation, the com-
posite takes responsibility for its components’ exceptions, and the opposite would
not happen.
For an arbitrary association, there is no such precise rules: some exceptions of X
can generate exceptions of Y, some exceptions of Y can generate exceptions of
X, and each of the two classes can have exceptions which have no influence at all
on the other class. Let us examine the two classes Person and Train, linked by
the driver association. This association makes sense as isDriverOf from Person
to Train, and hasForDriver in the other direction. An error on the person’s ad-
dress must not be transmitted to the train. A person’s problem, which implies
that the special button has not been pushed for a too long interval, must be
transmitted to the train2.

Exceptions Based on the Association’s Semantics Exceptions can arise
in a class as a result of the definition of the association itself. For instance,
suppose we have a birthDate association between classes Person and Date. A
well-formed date causes no error in the Date class. As a birthDate for a Person,
it can cause error, e.g. if it is later than the birthdate of one of the person’s
children, or if it is later than the current date (see Fig. 5).

In Practice Implementing an association, if it is not itself reified, means defin-
ing attributes and methods in its ends’ classes (as they are named in UML
terminology). We can thus enrich the hierarchy we talked about in the Sect. 2.1:
under the main root ExcTypeX, we add roots corresponding to each attribute
or method able to have exceptions. As for the primitive attributes, exceptions
associated with an attribute means exceptions its accessor methods can signal.
For each attribute attrY of Y type (or of collection of Y type, according to
the multiplicity of the association), we can add under its root ExcAttrY two
subclasses ExcCapTypeY, root of the exceptions which are intended to “encap-
sulate” Y ’s exceptions, and ExcRoleY, root of the exceptions which result from

2 This is known as a dead man system. In very fast trains, the driver must push a
special button at regular intervals. If he doesn’t, he is presumed dead, or at least
unable to drive, and the train’s braking system is automatically started.

84 Y. Ahronovitz and M. Huchard

... float age()
age()

Person

...

Date
birthdate* 1

ImplementationUML class diagram

setBd(d,m,y) create(d,m,y)

:Person

:Date

[da > today]
 invalid

UML sequence diagrams: abnormal cases

2) bad birthdate1) bad date

ill−formed
birthdate date

ill−formed

setBd(d,m,y) create(d,m,y)

:Person

:Date

birthdate

return da

setBd(d,m,y)

class Date
{

class Person

{ Date Bd;
...

...

void setBd(int d, int m, int y)

}

}
...

{ ... }
{...new Date(d,m,y);...}

Fig. 5. Birthdate example

the role of attrY in the X class (see Fig. 6 and Fig. 7).
In some cases, it can be useful to insert, between ExcTypeX and the roots

...

ExcDate

ExcIllformedDate

ExcPerson

ExcBirthDate

ExcBd

ExcCapBd

EXcIllformedBirthdate ExcInvalidBirthdate

ExcRoleBd

ExcAge

....

.......

......

Fig. 6. Birthdate example: associated hierarchy

corresponding to attributes and methods implementing the association, a root
ExcAssoc which represents the association itself (dotted in Fig. 7).
However, in practice, it is very likely for the Assoc association to be reified as
an association class (in the UML meaning); thus ExcAssoc comes from the rule
saying that an exception root is associated with each type.

Exceptions in Object Modeling 85

class X {
... int attrP
... Collection<Y> assoc

... setAttrP ...

... getAttrP ...

... getAssoc ...

... setAssoc ...

... meth() {...}

... methAssoc() {...}
}

Implementation

Y

...

UML diagram

assoc *

X

attrP : int

meth()
methAssoc()

Exception hierarchy

ExcRoleAttrY ExcCapTypeY

ExcAttrP

ExcMeth

ExcTypeX

ExcAssoc

ExcMethAssoc ExcAttrY

ExcTypeY

Fig. 7. General diagram of a hierarchy of exceptions associated with a class’ features

2.4 Exceptions and Specialization

It seems natural that the hierarchy of the exception classes reflects the hierarchy
of the classes of the application. For example, let us consider a PostObject class,
which has two subclasses Letter and Parcel ; every exception which can occur in
every PostObject, can a priori occur in a Letter, and additional or more specific
exceptions can occur in Letter.
Figure 8 shows the general diagram of such a hierarchy of exceptions.

In order to refine this first approach, we can split up the exceptions associated

Daughter1 own’s
exceptions

Daughter2 own’s
exceptions

GrandDaughter1 own’s
exceptions

Mother

Daughter1 Daughter2

GrandDaughter1

ExcDaughter1

ExcGrandDaughter1

ExcDaughter2

ExcMother

.......

.......

Mother own’s
exceptions

Fig. 8. General diagram of a hierarchy of exceptions associated with a hierarchy of
classes

to a Daughter3 class as follows:

1. exceptions associated with Daughter ’s own features;
2. exceptions associated with features Daughter inherits from Mother, them-

selves split up in:
3 The Mother, Daughter names refer to the place of the class in the hierarchy.

86 Y. Ahronovitz and M. Huchard

a) exceptions identical to the Mother ’s ones, thus not redefined; these ex-
ceptions do not necessarily generate classes under the ExcDaughter root;

b) exceptions which are specializations of the Mother ’s ones;
c) exceptions associated with new constraints on the inherited features.

ExcDaughterCapTypeY

ExcDaughterCapTypeYNew.....

.....

.....
.....

ExcDaughterCapTypeYSpec

ExcDaughterAttrY

ExcMother

ExcMethX ExcAttrY ExcDaughter

ExcDaughterRoleAttrY

ExcDaughterRoleAttrYNew

ExcDaughterRoleAttrYSpec

ExcDaughterMethXExcCapTypeYExcRoleAttrY

ExcASpec

......

.......

.....

.....
.....

.....

.....

ExcAExcB

Fig. 9. More detailed diagram for a hierarchy of exceptions associated with Mother
and Daughter

damaged book volume

.....
loan()
giveBack()
....

 late
possible exceptions:

mark
author
title

Book

BookVol

.......

possible exceptions:
late

ExcBookVol

ExcBook

ExcGiveBackBookVol ExcVolTitles

ExcMissingVol ExcSameTitle

Exception Hierarchy

ExcGiveBack.....

ExcDamagedVol

ExcDamagedExcLate
.......

giveBack()

same titlesetVolTit(...)
.......
loan()

possible exception:

volTitles
volNb

damaged book

missing volume

Fig. 10. Example of decomposition

The part of this decomposition showing inherited features is illustrated by the
Fig. 9, and Fig. 10 gives a concrete example.

Exceptions in Object Modeling 87

This example describes a Book class, which represents library books that we
can loan and give back, and the BookVol subclass of Book, which represents the
multivolume books, whose volumes can only be loaned together.
According to the previous decomposition in the case of the BookVol class, Exc-
SameTitle is of type 1, ExcLate of type 2(a), ExcDamagedVol of type 2(b), and
ExcMissingVol of type 2(c).

3 More Advanced Concepts

3.1 Exceptions Based on Constraints

An exception results of the collision between a system state and an operation:
either the operation is not possible in this state, or it leads to an invalid state.
If we think to the ways of finding exceptions:

1. to associate exceptions with methods emphasizes the operational aspect:
which service may be interrupted by which exception. This contains pre-
conditions4, post-conditions5, but also what can happen during the course
of the method, when it calls another one.

2. to associate exceptions with attributes and associations emphasizes the static
(declarative) aspect: which constraint is not satisfied on which object.

To associate exceptions with all the constraints of the system can unify these two
approaches. Here, “constraint” has its UML definition, i.e. “an extension of the
semantics of a UML element, allowing you to add new rules or modify existing
ones” [2]. This includes class invariants, constraints on and between associations,
and pre- and post-conditions [2].
In UML notation, constraints can be shown on the diagrams, near the concerned
elements, using strings in braces or notes. If the modeling has been precise and
exhaustive about constraints, then it is very interesting to use them in order to
classify exceptions. It is not easy, because the notation doesn’t impose a name
on a constraint, nor does it formalize very much the representative string. We
give Fig. 11 an example of a “general” constraint (general because it links sev-
eral attributes of an object) taken from [13]. The constraint specifies the needed
ratio between the attributes width and length of a Window, for this window to
be “aesthetic”.
All that is added to the previously proposed classification: next to the roots of
exceptions associated with attributes, methods, and associations constraints, we
propose to have exception classes associated with more general constraints. For
example, in the Window case, we add the exception class ExcBadRatioLength-
Width, under ExcWindow.
As these constraints may be specialized in the subclasses, we may have a hier-
archy of exceptions in order to represent these specializations.
More complicated cases can occur. For example, a constraint can be associated
4 “A constraint that must be true when the operation is invoked”[2].
5 “A constraint that must be true at the completion of an operation”[2].

88 Y. Ahronovitz and M. Huchard

{0.8 <= length/width <= 1.5}

length
width

Window

...

Fig. 11. A general constraint about windows.

with several classes; but in this case there is almost always an association A
between the classes, and the root exception class representing the constraint is
naturally a subclass of ExcA.

3.2 Composition of Exceptions

Another problem we met is the case of errors which can occur separately or si-
multaneously. For instance, in a Date class, only the day may be wrong, or only
the month, or both; in a DrinksDispenser, one can lack separately or simultane-
ously cups, sugar, spoons, drink doses.
When errors occur simultaneously, we can throw an exception corresponding to
the first one we detect. However it would be helpful, e.g. for the dispenser man-
ager, to know all the problems which have occurred.
This leads us to add, in some cases of modeling, the notions of single and com-
posite exceptions. These notions are an application of the Composite pattern
proposed in [14], as shown in Fig. 12. This allows us to represent every single
exception (Leaf in the Composite pattern), and also an exception composed of
several exceptions (Composite in the Composite pattern).

CompositeLeaf

Component

...

...

Fig. 12. The UML Composite pattern

Exceptions in Object Modeling 89

4 Proposals for UML

In order to represent the concepts needed above, we must have to enrich the
UML metamodel. As we have said at the beginning of this paper, exceptions in
UML are not recognized as Classifiers, so they can’t have attributes, methods
or associations, unless we use <<exception>> stereotype. However, the use of
this stereotype leads to a confusion between the static aspect, which uses an
object for describing an exceptional problem, and the dynamic one, for which a
signal linked to this object is thrown and caught. This confusion is troublesome,
because the object has a life independent of its associated signal [15].
A better solution would be to have two separate concepts: an Exception meta-
class, in order to represent the static aspect, and a ThrownException metaclass
in order to represent the dynamic aspect. Exception would be a Classifier spe-
cialization, and ThrownException a specialization of Signal. A carry association
between ThrownException and Exception allows to represent the link between a
signal and an object.
Still in the metamodel, we would like to add:

1. an isExceptionFor association between Exception and Classifier, meaning
that an exception belongs to the exception hierarchy associated with a given
type;

2. a generatesException ternary association between Exception and Associa-
tion; an instance of this association would be defined in a model between
two exceptions E1 and E2 and one association A in order to say that the
exception E1 and the association A generate the exception E2 ;

3. an isCompatibleWith association on Exception, meaning that two exceptions
can belong together to a composite exception;

4. a specialization of the Exception metaclass by SingleException and Compos-
iteException, in order to apply the Composite pattern cited above.

Figure 13 shows these proposals in the UML metamodel.
This modeling also allows to represent some reifiable aspects of exception han-
dlers, such as class handlers. Such handlers are defined at class level [12,16,
17], whereas most common exception handlers are defined at expression level
(try. . . catch structure). A class handler describes the default behaviour to han-
dle a given exception. Depending on the languages, it is defined, either in the
class which models the exception, or in the one with which the exception is
associated. The two alternatives are acceptable and not exclusive, because this
handler falls within their two domains. The UML modeling we proposed above
allows us to easily represent this kind of handler as a (possibly reifiable) at-
tribute of the isExceptionFor association, proposed above between Exception
and Classifier.

5 Conclusion and Perspectives

We proposed an object-oriented modeling of exceptions mainly based on the
elements of the static model. The seek for exceptions involves much modeling

90 Y. Ahronovitz and M. Huchard

ModelElement

Association

AssociationEnd Classifier Feature

Class

GeneralizableElement

Parameter

Behavioral feature

association

is composed of

is derived from

new proposals

Signal

.......

SingleException CompositeException

isCompatibleWith *
*

isExceptionFor

*

*
**origin

gene

assoc

*

generatesException

*

There are two classes C1,C2 s.t.
origin isExceptionFor C1
gene isExceptionFor C2
assoc is an association between C1 and C2
gene is generated by origin

raisedException

.......

Carry

*

*

1

ThrownException

Exception

*context

Fig. 13. Some proposals about the UML metamodel

work; the result can be complicated, and difficult to implement in some lan-
guages. However, when the final result is complicated, it often means that the
problem we wanted to model is complex. This happens particularly when we
want a software to be as reliable as possible. For everyday cases, the above
proposals make up a kind of guide for modeling: there’s no need to implement
everything. If the final result remains large, it is logically organized, because the
hierarchy of exceptions reflects the structure of the static model. Furthermore,
even if the implemented hierarchy of exceptions is complex, it is well separated
from the hierarchy of the classes of the application. Thus it does not obscure the
main development. Moreover, this makes future developments of the software
easier: for example, solving problems linked to subtyping, and helping to repre-
sent accurately, and also to catch accurately, all error cases, since the exceptions
are caught according to their types [5].

Solving a subtyping problem One can define subtyping using substituability: an
instance of a Daughter subclass must always be able to replace an instance of
the Mother class. In the case of exceptions, this implies that a method redefined
in Daughter does not signal exceptions which were not declared as throwable
by the original method. For example, Java [5] and C++ [4] respect substitua-

Exceptions in Object Modeling 91

bility: they allow the Daughter ’s method to signal at most the same exceptions
as the Mother ’s method, or exceptions which are subclasses of the exceptions
the Mother ’s method can signal. From the modeling point of view, this is not
satisfactory: when specializing a method, we see that constraints can be added,
and thus new causes of exceptions can arise. All the “root” exception classes
described above are abstract classes, and we used them in order to classify the
concrete exceptions found during the modeling phase. We will also use abstract
classes as an implementation artifice, in order to respect substituability. In the
example Fig. 10, this is done making ExcDamagedVol specialize both ExcDam-
aged and ExcGiveBackBookVol. As another example, let us look at Fig. 146.
Suppose that the Rectangle class has a setEdge method, which can signal an Ex-

ExcEdges

ExcNegativeValue

ExcNonEqualEdges

ExcRectangle

ExcSquare

ExcSquareEdges
......

.......
Square

Rectangle

edges

Fig. 14. A concrete case

cNegativeValue exception; suppose that the setEdge method redefined in Square
can signal, in addition to that, an ExcNonEqualEdges exception. The two ab-
stract classes ExcEdge and ExcSquareEdge found during the modeling phase
allow us to respect substituability: every setEdge method will announce in its
signature that it can signal ExcEdge.
When we want to implement this inheritance hierarchy in C++, there is no
problem, because C++ allows multiple inheritance. The situation in Java is not
as good; here we must use all the usual means in order to simulate multiple
inheritance [13]: duplicating features and classes, using interfaces.

Refining the Exception Catching Level When an exception belongs to a hierarchy,
a thrown instance of this exception can be caught either by a specific handler,
especially written for it, or by a handler devised for one of its ancestor classes,
whatever may its level be. The more detailed the hierarchy, the bigger the choice
6 This example does not intend to answer the old question “must or must not Square

be a subclass of Rectangle”; how could we give this answer context-free? It only
shows how one can organize exceptions if one wishes Square to be a subclass of
Rectangle.

92 Y. Ahronovitz and M. Huchard

of the exception catching level. In example Fig. 10, we can be interested either
in all book exceptions, in which case we catch ExcBook, or only in exceptions
associated with giving back a book, in which case we catch ExcGiveBack, etc.

Open Questions From the methodological point of view, we would like to have
rules which help us to determine what kinds of exceptions we must seek for
associating with a class: rules based on the nature of the class’ features and
associations (aggregation, symmetrical or dissymmetrical relation), rules based
on the significance of the attributes (essential versus accidental), etc.
Other classifications exist, built along other criteria (e.g. the classic “fatal and
recoverable exceptions”, or logic_error, runtime_error, . . . as in C++ [4]).
It would be interesting to combine the different points of view, in order to
integrate them in the modeling.

To conclude, we think that the approach we propose has not yet been ex-
plored, and would be very helpful on designing exceptions. But a lot of fun-
damental work remains to be done, in order to define a methodology for the
conception of exceptions, and an appropriate associated notation.

Acknowledgements. We would like to thank Christophe Dony, Roland
Ducournau, and Thérèse Libourel for their comments and suggestions on previ-
ous versions of this paper.

References

[1] Rational Software Corporation. UML v 1.1, Semantics, september 1997. version
1.1 ad/97-08-04.

[2] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, 1999.

[3] http://www.python.org/doc/essays/stdexceptions.html.
[4] B. Stroustrup. The C++ Programming Language. Third Edition. Addison-Wesley,

1998.
[5] K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language. Third

Edition. Addison-Wesley, 2000.
[6] D. Flanagan. Java in a nutshell. Third Edition. Java 1.2. O’Reilly, 1999.
[7] D. Flanagan. Java in a nutshell. Second Edition. Java 1.1. O’Reilly, 1997.
[8] S. Oaks and H. Wong. Java Threads. O’Reilly, 1997.
[9] Taligent’s Guide to Designing Programs. Copyright 1995. Taligent, Inc.

[10] D. Meyer. Eiffel: the language. Prentice-Hall, 1992.
[11] C. Dony, J. Purchase, and R. Winder. Exception Handling in Object-Oriented

systems: Report on ECOOP’91 Workshop W4, 1991.
[12] C. Dony. Exception Handling and Object-Oriented Programming: Towards a

Synthesis. ACM SIGPLAN Notices, 25(10):322–330, october 1990. Proceedings
of ECOOP-OOPSLA’90.

[13] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall Inc. Englewood Cliffs, 1991.

Exceptions in Object Modeling 93

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-
Wesley, 1994.

[15] T. Valkevych and S. Drossopoulou. Formalizing Java Exceptions, in ECOOP’2000
Workshop W2: Exception Handling in Object-Oriented systems. June 2000.

[16] J.L. Knudsen. Exception Handling versus Fault Tolerance, in ECOOP’2000 Work-
shop W2: Exception Handling in Object-Oriented systems. June 2000.

[17] A. Mikhailova and A. Romanovsky. Behaviour Preserving Evolution of Inter-
face Exceptions, in ECOOP’2000 Workshop W2: Exception Handling in Object-
Oriented systems. June 2000.

Supporting Evolution of Interface Exceptions

Anna Mikhailova1 and Alexander Romanovsky2

1 Department of Electronics & Computer Science, University of Southampton
Highfield, Southampton, SO17 1BJ, UK

aam@ecs.soton.ac.uk
2 Department of Computing Science,
University of Newcastle upon Tyne

Newcastle upon Tyne, NE1 7RU, UK
alexander.romanovsky@newcastle.ac.uk

Abstract. Interface exceptions (explicitly declared exceptions that a
method can propagate outside) are an inherent part of the interface de-
scribing the behaviour of a particular class of objects. Evolution of system
behaviour is thus necessarily accompanied by and reflected in the evo-
lution of interface exceptions. While the evolution of normal system be-
haviour is adequately supported by various language mechanisms, such as
subtyping and inheritance, few contemporary object-oriented program-
ming languages offer support for the evolution of interface exceptions.
Some languages allow interface exceptions to be specialised and deleted
while subtyping, but none of them provides adequate support for adding
exceptions. In this paper we propose two complementary solutions to
dealing with additional exceptions introduced during system evolution.
To solve the problem of non-conforming interfaces resulting from the ad-
dition of new exceptions in a development step, the first proposal uses
rescue handlers and the second one employs the forwarding technique.

1 Introduction

Organising interface exceptions into hierarchies and specialising them along with
the specialisation of classes is in the spirit of the object-oriented paradigm. Few
contemporary programming languages support a systematic hierarchical treat-
ment of exceptions in an object-oriented style. We analyse what a more permis-
sive object model supporting evolution of interface exceptions should be like, and
propose an improved model supporting exception addition that can be incorpo-
rated into existing languages. Since in our model all exceptions that a method
can signal (propagate) outside must be declared in its interface, addition of new
exceptions involves adding a new declaration in the method interface.

When specialising a class into a subclass, it is often necessary to

– specialise interface exceptions to subtypes of the exceptions signalled by the
superclass

– remove interface exceptions signalled by the superclass
– add new interface exceptions, in addition to those signalled by the superclass

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 94–110, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Supporting Evolution of Interface Exceptions 95

We study in detail these cases, focusing on the semantic implications that
they cause in resulting programs. Our analysis of the existing (statically-typed)
languages supporting an object-oriented style of exception handling, most no-
tably Java [6], Arche [7], and Modula-3 [2], indicates that, at best, these lan-
guages permit specialising and deleting interface exceptions while subtyping, but
none of them provides adequate support for adding exceptions.

We propose two type-safe solutions to the problem of non-conforming inter-
faces resulting from the addition of new exceptions in a development step. The
first proposal is best suited for the top-down system development approach. The
need for introducing a new interface exception may arise, for instance, because
a new data structure can deliver new exceptional behaviour. This proposal is
based on extending a language with a new construct, a rescue handler, which
steps in to rescue the situation when no ordinary handlers are available. Our sec-
ond proposal is best suited for the bottom-up approach to system development,
within which we might want to match an existing class (e.g. from a class library)
with an existing interface (e.g. provided by a framework). If the class has extra
interface exceptions not signalled by the interface which the class matches oth-
erwise, we propose to employ the forwarding technique, widely used in practical
system development to solve interface mismatch problems.

2 Object-Oriented Exception Handling: The Object
Model

Exceptions are abnormal events which can happen during the program execution.
Most programming languages and systems provide special facilities and language
mechanisms for handling exceptions in a disciplined way. More modern object-
oriented languages support an object-oriented style of exception handling: they
allow arranging exceptions into classes and structuring them into class hierar-
chies. Apart from delivering better structuring, clarity and conciseness of the
resulting code, this approach also promotes genericity and polymorphism, char-
acteristic of the object-oriented style of program development, in the treatment
of exceptions.

Recognising the significant advantages of this approach, we also consider the
object model where exceptions are class instances, and classes of exceptions are
structured into hierarchies. Exceptions can be explicitly created by instantiating
the corresponding exception classes and can be initialised using constructors
with input parameters. Exceptions can also be created implicitly, when they are
raised or signalled. In this case a default (parameterless) constructor is invoked
to create an instance of an exception class.

A class, a method, or a block of code can be viewed as an exception context
(also known as scope), so that developers can declare exceptions and associate
handlers with such a context: when an exception is raised in an exception context,
the control is transferred to the corresponding handler.

In our view, an important feature of an exception handling mechanism is
its ability to differentiate between internal exceptions to be handled inside the

96 A. Mikhailova and A. Romanovsky

context and external exceptions propagated from the context. These two kinds of
exceptions are not clearly separated in many languages, although they obviously
serve different purposes. The separation can be achieved under two conditions:
contexts are program units that have interfaces (e.g. classes or methods), and the
concept of exception context nesting is defined. Most of the existing exception
handling mechanisms use dynamic exception context, such that the context is
the method or the object being currently executed. Some mechanisms use static
exception contexts based on the corresponding declaration.

The execution of the context can be completed either successfully or by prop-
agating an (external) interface exception. The propagated interface exception is
treated as an internal exception raised in the containing context. The simplest
example of the dynamic nested context is nested procedure calls. In fact, this is
the dominating approach to exception handling which suits well the client/server
or remote procedure call paradigms.

In our model, methods are dynamic exception contexts. Each method can
be dealing with a set of internal exceptions, each of which must have a corre-
sponding handler associated with the method. Internal exceptions are raised in
the method code and have to be handled inside the method. Each object type
(interface) can have explicitly declared interface exceptions; all interface excep-
tions that a method can signal are to be declared in the method signature using
a special signal clause. Interface exceptions are signalled by the method code
or by handlers associated with it. Note that interface exceptions of the method
called in another method are internal exceptions of the latter and have to be
handled at its level. We follow the termination model of exception handling [5].
With the termination model, after an internal exception has been handled, the
execution of the corresponding method is terminated and the control returns
back to the caller.

An example presented in Fig. 1 illustrates the difference between internal ex-
ceptions handled by the object’s methods and external (interface) exceptions
signalled outside the object to be handled by object’s clients. The class Bank
represents banks working with accounts of type Account, and its subtypes Cur-
rentAccount, and SavingsAccount. The method transfer of class Bank can be used
to transfer a certain amount of money from one account to another. If the speci-
fied current account fromAccount doesn’t have enough money, as signalled by its
withdraw method, an attempt is made to withdraw this amount from a savings
account. The method transfer has two interface exceptions: NotEnoughMoneyEx-
ception and SavingsAccountUsedException. The former is signalled if there is not
enough money to be transferred even on the savings account, and the latter is
signalled to inform the caller about the fact that the savings account has been
used (although the money has been successfully transferred). Internal excep-
tions NotEnoughMoneyException signalled by withdraw methods of fromAccount
and sAccount are handled inside the method transfer.

Only interface exceptions can be propagated outside the class in our model.
All possible violations of this rule must be either detected at compile time or
must cause a predefined Failure exception to be propagated outside the class.

Supporting Evolution of Interface Exceptions 97

class Bank {
. . .
public void transfer (CurrentAccount fromAccount, SavingsAccount sAccount,

Account toAccount, int amount)
signals NotEnoughMoneyException, SavingsAccountUsedException

{
try {

fromAccount.withdraw(amount);
}
catch(NotEnoughMoneyException neme) {

try {
sAccount.withdraw(amount);
toAccount.deposit(amount);
signal new SavingsAccountUsedException();

}
catch (NotEnoughMoneyException neme) {

signal new NotEnoughMoneyException();
}

}
toAccount.deposit(amount);

}

Fig. 1. Example of the difference between internal and interface exceptions

This exception is signalled in some other situations, for example, when it is
impossible to leave the object in which an exception has occurred in a known
consistent state corresponding to one of the interface exceptions.

For simplicity, we do not consider multiple inheritance.

3 Behaviour Refinement Requires Exception Evolution

3.1 Behaviour Evolution

The evolution of system behaviour is always performed as the evolution of system
components. Changes of the component behaviour often cause changes of their
interface. Very often the behaviour evolution results in increasing complexity of
software, forcing system developers to modify the system structure, to handle
this complexity. The most typical way of achieving this is by decomposing some
components into several subcomponents. These subcomponents can either be
hidden in a higher-level wrapping component which conforms to the interface of
the original component, or they can themselves replace the initial component
and be used by the original component’s clients.

There are multiple ways in which the system behaviour can evolve. The most
obvious are improving functionality of the components by replacing old frag-
ments of the design, e.g. code, with new better ones (refinement), and adding

98 A. Mikhailova and A. Romanovsky

new functionality (extension). Apart from these, there are also other forms of
evolution that deserve attention as well: deleting functionality and merging func-
tionality. These four forms of behaviour evolution cover the main possible direc-
tions in which system design can proceed.

Contemporary programming languages provide several language mechanisms
supporting behaviour evolution. The principle mechanism supporting behaviour
evolution in the context of object-oriented programming is inheritance. The
classical view is to associate inheritance with conceptual specialisation in sys-
tem modelling and design [9]. This form of inheritance, sometimes referred to
as strict inheritance, unifies subclassing (implementation inheritance) with sub-
typing (interface inheritance), forcing code reuse and behaviour evolution to be
necessarily accompanied by conceptual specialisation. Since these two processes
are to a certain extent unrelated, this unification appears to be too restrictive
for dealing with evolutionary development of complex systems. In particular,
the addition of truly new properties requires re-constructing system parts from
scratch [9].

To overcome these limitations, the newer object-oriented languages, like Java
and Sather, separate interface inheritance responsible for conceptual specialisa-
tion, and implementation inheritance dealing with code reuse and behaviour
evolution. This results in separate subtyping and subclassing hierarchies. This
separation of concepts to a large extent facilitates system design and evolution,
because more creative ways of abstraction modification can be explored while
subclassing, without the need to maintain behavioural compatibility.

3.2 Conceptual Specialisation, Subtyping and Subclassing

Conceptual specialisation, sometime also referred to as subtyping, underlies the
evolution and behaviour refinement of object-oriented software. Subtyping poly-
morphism can be used to substitute subtype objects for supertype objects dy-
namically, at run-time. This permits clients of supertype objects to benefit from
conceptual specialisation by using more specialised subtype objects instead of
more general supertype objects. For example, method transfer of Bank can take
as argument toAccount an object of type CurrentAccount or SavingsAccount, both
of which are subtypes of type Account which is the declared type of toAccount.
Subtyping is usually denoted by <:, so that e.g. CurrentAccount <: Account, and
we will follow this convention here as well.

To ensure that all client’s requests for method calls on subtype objects can
be responded to by supertype objects instead, subtyping requires syntactic con-
formance of objects’ methods. The subtyping relation can be a simple extension,
or can allow modification in a subtype of inherited method signatures so that the
types of method input parameters become contravariant and the types of method
output parameters become covariant. Contravariance means that subtyping on
the types of method parameters is in the opposite direction from subtyping on
the interfaces having these methods. Respectively, covariance means that sub-
typing on the types of method parameters is in the same direction as subtyping
on the interfaces having these methods.

Supporting Evolution of Interface Exceptions 99

The intuitive meaning of contravariance and covariance of method param-
eters is that clients should be able to invoke methods on a subtype object,
supplying it with input arguments and obtaining the results, the same way as
they would invoke the corresponding methods on a supertype object. Then in-
put supplied by a client should always be accepted by a subtype method and
output produced by the latter should always be acceptable for the client. For
more detailed information on covariance and contravariance we refer to [1].

Subclassing or implementation inheritance allows the developer to build new
classes from existing ones incrementally, by inheriting some or all of their at-
tributes and methods, overriding some attributes and methods, and adding extra
methods.

In most object-oriented languages, such as Simula, Eiffel, and C++, subclass-
ing forms a basis for subtype polymorphism, i.e. signatures of subclass methods
automatically conform to those of superclass methods, and, syntactically, sub-
class instances can be substituted for superclass instances. As the mechanism
of polymorphic substitutability is, to a great extent, independent of the mech-
anism of implementation reuse [3], languages like Java and Sather separate the
subtyping and subclassing hierarchies.

For simplicity, we will consider here subclassing to be the basis for subtyp-
ing and will analyse how behaviour refinement of subclasses with respect to
their superclasses influences evolution of exceptions. The same principles also
apply to systems with separate subclassing and interface inheritance hierar-
chies, although in these systems subclassing is not necessarily accompanied by
behaviour-preserving refinement and can just reflect a behaviour evolution.

3.3 Specialising Exceptions

Analysing the nature of interface exceptions, it is easy to see that like method
output parameters, they are entities returned from a method. As such, like out-
put parameters they are likely to have covariant nature. Indeed, if instead of
signalling an exception of type ArrayException in a subtype SortedArray of Ar-
ray, we will signal an exception SortedArrayException, clients using SortedArray
object and expecting an exception of type ArrayException should be able to deal
with its special case, SortedArrayException. Such covariant exception specialisa-
tion ensures that clients using a subtype object instead of a supertype object are
never faced with unexpected method results, in this case exception occurrences.

As it is perfectly type-safe to covariantly redefine (specialise) interface ex-
ceptions, some languages actually permit this kind of redeclaration. The object-
oriented language Modula-3 was one of the first to introduce some form of in-
terface exception specialisation, although exceptions are not classes here. A pro-
cedure declaration includes a list of all exceptions that can be signalled. The
language allows procedure redeclaration while exporting interfaces: all excep-
tions that a redeclared procedure can signal must be declared in the exported
procedure declaration.

Method declaration in Java can contain the throws clause that has to include
all checked exceptions that the method can signal. Java imposes the following

100 A. Mikhailova and A. Romanovsky

rule on the checked exceptions that method n overriding method m of the super-
class can throw: for every exception class listed in the throws clause of n, either
the exception class or one of its superclasses must be listed in the throws clause
of m. For example, we can have

public interface Buffer {
void set (char) throws BufferError;

}

public interface InfiniteBuffer extends Buffer {
void set (char) throws InfiniteBufferError;

}

provided that InfiniteBufferError <: BufferError.
Naturally, this rule permits specialising one exception class in the throws

clause of the parent method to several of its subclasses in the overriding method.
A very similar approach is used for dealing with interface exceptions during

subtyping in the programming language Arche [7].

3.4 Removing Exceptions

Apart from specialising interface exceptions while subclassing, some existing
programming languages also permit removing them. For example, Java stipulates
the “Catch or Specify Requirement” which requires that a method either catches
an exception by providing an exception handler for that type of exception, or it
specifies that it can throw that exception. What this rule effectively permits is
removing in a subclass method an exception signalled by a parent method by
handling it internally. As example from [6] illustrates this situation:

public interface Buffer {
char get() throws BufferEmpty, BufferError;

}public interface InfiniteBuffer extends Buffer {
char get() throws BufferError;

}

It is interesting to note that removing interface exceptions, unlike removing
methods, does not restrict the functionality of a subtype. While method removal
can by no means be viewed as behaviour-preserving and type-safe, interface ex-
ception removing indicates that exceptional or erroneous behaviour is reduced in
a subtype, and as such can be viewed as behaviour refinement. Clearly, removing
interface exceptions in a subtype preserves type safety. Clients using a subtype
object instead of a supertype object will never be faced with an exception they
are not ready to handle, because fewer exceptions are signalled by the server
object. Being prepared to handle the same exceptions as before, the clients will
carry out the actual handling less often.

As demonstrated by these examples, the existing languages support covariant
redeclaration of interface exceptions and their removal. However, considering
general ways in which systems can evolve (Section 3.1), it is clear that these ways
of inheriting, redeclaring and removing interface exceptions are too restrictive
and should be relaxed to support other forms of behaviour evolution as well.

Supporting Evolution of Interface Exceptions 101

3.5 Exception Inheritance for Exception Evolution

Miller and Tripathi in [8] rightfully point out that the exception handling mecha-
nisms in existing object-oriented languages are oriented towards implementation
only and, as such, do not provide an adequate support for system development.
We are interested in a mechanism supporting implementation development as
well as system evolution. This kind of an exception handling mechanism will
help to bridge the gap between different models used at various stages of the
software life-cycle and to make the transition between different stages seamless.

First, we would like to identify the features that an exception handling mech-
anism supporting various forms of behaviour evolution should possess. For this,
let us consider all the possibilities one might potentially like to exercise in re-
declaring exceptions when developing a subclass. The existing languages allow
specialising exceptions, as discussed above, and removing them. Both forms of
exception evolution are useful but insufficient, because they cover only a part of
the complete picture.

Exception merging is another form of exception evolution. It seems to be
possible that at some step of class evolution it will be decided that several inde-
pendent interface exceptions of a method have to be merged into one exception.
This can happen if we find out that they are caused by similar reasons or that
we do not want them to be different. For example, heap and stack are usually
implemented in the same space but one grows from the bottom and the other
one from the top. We may decide to merge the corresponding two exceptions
into a single no memory exception if they have to be treated in the same way.
Although it may be possible to propose some specialised solutions supporting
such functionality, for simplicity we consider that this problem can be solved by
deleting exceptions and adding new ones.

3.6 New Functionality – New Exceptions

When specialising or extending classes, the existing approaches to dealing with
interface exceptions at best permit to specialise and remove superclass interface
exceptions in subclasses. However, when developing complex software, developers
might be faced with the need to address system evolution requirements for which
these interface exception changes are too restrictive.

Consider, for example, the setting illustrated in Fig. 2. Suppose that initially
our design consists of classes Application and Document. An application works
with a number of documents and can create new documents, open existing doc-
uments and close documents. The correspondingly named methods in class Ap-
plication implement this functionality. A document provides methods that its
clients, in particular the application using this document, can invoke to open,
save, and close the document. For example, when an application needs to close
a specified document, it checks whether the document has been saved since the
last modification, saves it if it hasn’t and closes the document.

Suppose now that we want one document to be viewed and edited in several
windows. To achieve this, we employ the usual Observer Pattern [4], creating

102 A. Mikhailova and A. Romanovsky

Application

CreateDocument

NewDocument

OpenDocument

CloseDocument

MyApplication

CreateDocument

NewDocument

OpenDocument

CloseDocument

Document

Open

Close

Save

MyDocument

Open

Close

Save

AttachView

DetachView

Notify

docs

views

doc

View

Update

Fig. 2. Example of new functionality requiring new exceptions

new classes MyDocument and View, such that each MyDocument instance can
be observed by a set of View instances. Views can be attached to and detached
from a document using the correspondingly named methods of MyDocument.
Whenever a document is changed in one of the views, it notifies each of its views
about the change by broadcasting the method Update.

The problem arises when we are trying to implement MyDocument’s Close
method. When an attempt is made to close a document which is simultaneously
modified is several windows, we would like to signal an exception MultipleView-
CloseException. But as method Close of Document does not signal any exceptions,
this redeclaration of its interface in MyDocument would be illegal in all the lan-
guages supporting only covariant interface exception redeclaration.

As demonstrated by this example, what we would like to have is more flex-
ibility, enabling the kind of interface exception redeclaration when a subtype
method can signal completely new exceptions. This observation is also made by
Miller and Tripathi, who note in [8]: “For exceptions, new functionality may need
new exceptions that are not subtypes of exceptions from the parent method”.
Further, the authors conclude that “[...] evolutionary program development sug-
gests exception non-conformance”.

Fortunately, this apparently desirable exception non-covariance (or “non-
conformance” in terms of [8]) can be successfully dealt with, to circumvent type-
theoretic problems. In the following section we present our proposal on how
to deal with non-covariant interface exception redeclaration, without sacrificing
the type safety provided by the existing exception handling mechanisms. In this
manner, a more flexible, yet safe, exception handling mechanism can be built.

4 Adding New Interface Exceptions

We envision two closely related ways of dealing with new interface exceptions
added in a subclass. The first approach is based on using rescue handlers –

Supporting Evolution of Interface Exceptions 103

default handlers attached to the class introducing new exceptions. The second
approach employs the forwarding technique.

4.1 Using Rescue Handlers

The General Idea Consider a class C and its subclass C’, which inherits meth-
ods of C, overriding some of them, and adds some new methods. Suppose that a
method m of C signals an exception E and its counterpart in C’ signals instead
an exception D which is not a subtype of E. In addition, suppose that a new
method n of C’ signals an exception F.

As we know, clients of C might not be aware of the existence of C’ and the
handlers that these clients provide are only prepared to handle the exceptions
explicitly declared in the interface of C. On the other hand, clients of C’ which
see the new exception signalled by m can provide a handler for this exception.

To deal with the new exceptions for which no handlers are available in the
client code that invoked the methods signalling these exceptions, we define a
default handler – the rescue handler. We chose to call this handler a rescue han-
dler because it is used for the specific situation when clients do not know how
to deal with new interface exceptions of their servers, being unaware of their
existence, and the rescue handler steps in to rescue the situation. Clearly, this
rescue handler should be attached to a server class in which the new exceptions
are declared. Of course, it is easy to envision a scenario with which more than
one method of a subclass signals the same non-covariant exception; if we have
introduced a new data structure or some new functionality in C’ then several of
its methods might need to signal the exception D. In this case, a rescue han-
dler for a new exception signalled by a particular method of a class should be
associated with this method. This association of a rescue handler to a partic-
ular method rather than to the whole class might be necessary because rescue
handling of an exception might require variations depending on the method sig-
nalling it. Syntactically, attaching a rescue handler to a particular method will
amount to marking the rescued exception with the name of this method. When
no ambiguity arises or when one kind of rescue behaviour is satisfactory for all
methods signalling this exception, we provide a single rescue clause for each new
exception at the class level. We illustrate rescue handlers at both the class level
and the method level in Fig. 3. The rest of the discussion applies to both cases.

We view the rescue handler as an auxiliary code executed in the server context
when the client does not have the handler for the interface exception signalled
by the server. Rescue handlers can manipulate the server state, trying to recover
it (possibly with some degradation) or can transfer it to a state corresponding to
another server interface exception which will be signalled by the rescue handler.

An important point to note here is that this scenario is type-safe. The client
calling a method will never be asked to handle an exception which it does not
expect and for which it does not have a handler. The client only gets to handle
those exceptions that are declared in the interface of its declared server. The
new exceptions signalled by the server’s subclass are handled by a rescue handler
associated with the server’s subclass itself. The task of the compiler is then to

104 A. Mikhailova and A. Romanovsky

C'

m() signals D

l() signals D

n() signals F

ClientOfC'
use

use

try {...c'.m();...; c'.l();...}

catch D {...}

catch F {...}

ClientOfC
try {... c.m(); ...; c.l();...}

catch E {...}

catch E' {...}

C

m() signals E

l() signals E'

rescue m::D {...}

rescue l::D {...}

C'

m() signals D

n() signals F

ClientOfC'
use

use

try {... c'.m(); ...}

catch D {...}

catch F {...}
rescue D {...}

C

m() signals E

ClientOfC

try {... c.m(); ...}

catch E {...}

a) b)

Fig. 3. Rescue handlers at class level (a) and at method level (b)

check that every new exception of the subclass has an associated rescue handler
attached to the subclass.

Naturally, the client that is aware of the existence of a particular interface
exception signalled by the server can deal with this exception in a more sensi-
ble and efficient manner, through defining a handler that supersedes the rescue
handler.

Using this approach, we can now solve the problem in our example of appli-
cations and documents. We can allow MyDocument’s Close method to signal the
new MultipleViewCloseException, and define a rescue handler for it, attached to
the class MyDocument. Such a rescue handler can, for example, close all views
open on the document and then close the document itself. Then any Application
instance invoking MyDocument’s Close method will never be faced with Multiple-
ViewCloseException unknown to it: the rescue handler will handle it and return
control to Application.

Moreover, the clients of MyDocument, aware of the fact that the method
Close of the latter can signal MultipleViewCloseException, can handle this ex-
ception in a more sensible manner, superseding the rescue handler provided by
MyDocument. For example, MyApplication which works with MyDocument di-
rectly, rather than via subsumption through Document, can define a handler for
MultipleViewCloseException that will pop-up a dialog inquiring the user whether
he really wants to close the document along with all its views, or only wants to
close specific views, leaving the document open in the other views.

Propagating an Exception Apart from providing some computations at-
tempting to fix the problem, or simply returning the object into a consistent
state, the rescue handler can also signal exceptions. Naturally, the exceptions
that it can signal must be either subtypes of the exceptions signalled in the cor-
responding parent method, or they also can be the predefined Failure exceptions.
More formally, for classes C and C’ such that

Supporting Evolution of Interface Exceptions 105

class C {
void m() signals E1, . . . , En {

. . .
}

}

class C′ extends C {
void m() signals E′

1, . . . , E
′
k, F1, . . . , Fm {

. . .
}
rescue F1{. . . signal new H1() . . .}
. . .
rescue Fm{. . . signal new Hm() . . .}

}

where E′
1, . . . ,E

′
k are subtypes of some exceptions among E1, . . . ,En and

F1, . . . ,Fm are new non-covariant exceptions, every Hj, for 1 ≤ j ≤ m, must be a
subtype of some Ei, for 1 ≤ i ≤ n, or Failure:

(∀j | 1 ≤ j ≤ m · (∃i | 1 ≤ i ≤ n · Hj <: Ei) ∨ Hj = Failure)

This rule extends to hierarchies of larger depth in an obvious manner, recur-
sively: if a method m defined in a subclass C′′ of C′ signals an exception G which
is non-covariant to either of E′

1, . . . ,E
′
k, F1, . . . ,Fm then a rescue handler for this

exception defined in C′′ can only throw exceptions that are either subtypes of
E′

1, . . . ,E
′
k, F1, . . . ,Fm or Failure.

Implementation Details Let us consider now how our proposal can be imple-
mented in practice; in particular, how the control is passed at runtime between
client objects and supplier objects signalling new exceptions. Two general sce-
narios are of interest here:

1. The client is unaware of a new exception and the rescue handler is to be
invoked

2. The client is aware of a new exception and provides its own handler, which
is invoked superseding the rescue handler.

Suppose that we have a certain class NewSupplier extending some parent
class Supplier and overriding a method m of the latter so that it signals a new
(non-covariant) exception E.

class NewSupplier extends Supplier {
void m() signals E {

try {
S1;
signal new E();
S2;

}
catch (−internal exceptions−) {−handle internal exceptions−}

}
. . .
rescue E {RE}

}

106 A. Mikhailova and A. Romanovsky

Client

n

m

T
1

signal E

T
2

NewSupplier

S
1

[no handler for E]

search for rescue for E

R
E

NewClient

p

m

U
1

signal E

NewSupplier

S
1

[handler for E found]

H
E

return

return return

Fig. 4. Control flow for clients invoking a method signalling a new exception

Suppose also that we have two clients for NewSupplier, the one using it
through subsumption and unaware of the new exception E (we will call it Client),
and NewClient which knows that it uses NewSupplier and is prepared to deal with
its new exception.

class Client {
void n() {

try {
T1;
s.m();
T2;

}
catch B {HB}
catch C {HC}
. . .

}
. . .

}

class NewClient {
void p() {

try {
U1;
s.m();
U2;

}
catch D {HD}
catch E {HE}
. . .

}
. . .

}

We illustrate the control flow for both scenarios in Fig. 4, using sequence
diagrams. As usual, the vertical dimension represents time and the horizon-
tal dimension represents the actors involved in a collaboration; time proceeds
down the page. Solid arrows denote method invocations and ordinary actions,
like assignments and iterative statements; dashed arrows denote control pass-
ing between the actors involved; finely dashed arrows denote exception handler
invocations.

Supporting Evolution of Interface Exceptions 107

As shown in this diagram, when the method n is invoked on Client, the first
action to be performed is T1. For simplicity, we have shown this action as the one
performed on Client itself, but in reality it can be something more involved, like
a sequence of method invocations. The invocation of m on NewSupplier results
in transferring control to the latter, which executes S1 and then can signal the
exception E, which is new and unknown to Client. The control is passed to
Client, which searches for a handler for E and, having not found one, returns
the control back to NewSupplier. The latter searches for a rescue handler for
E, and having found RE executes it. Provided that RE successfully fixes the
problem, the control is returned back to Client which executes T2 and returns
control to the client which invoked method n. In case the rescue handler RE itself
signalled an exception, this exception is propagated to Client which reacts to this
exception in the usual way, handling it or propagating it further. Recall that all
exceptions signalled by RE are required to be either covariant to one of the
interface exceptions of Supplier’s method m, or the predefined Failure exception.

Consider now the collaboration between NewClient and NewSupplier.
NewClient is aware of the possibility that method m of NewSupplier signals E
and is prepared to handle it. When E is indeed signalled, NewClient catches it
and invokes the handler HE. This handler supersedes the rescue handler pro-
vided by NewSupplier. It is interesting to note that, conceptually, the “ordinary”
handler defined in the client overrides the rescue handler in the server, although
they are located in different classes.

Strictly speaking, with (successful) rescue handling we deviate from the ter-
mination model of exception handling employed elsewhere in our model. The
reason for this is that exception handling takes place in the server context rather
than the client context. If the server itself has managed to correct the problem
in the associated rescue handler, it terminates normally and returns control to
the client. There is no need to terminate the client which can be left unaware
of the exceptional situation that has been successfully resolved and just proceed
normally.

As we already mentioned above, our solution to the problem of new exception
introduction is type-safe. The type safety is imposed through requiring that a
compiler verifies that every new exception of a subclass has an associated rescue
handler attached to the subclass. To enforce this safety rule, we can always
provide a default rescue handler signalling Failure.

Inheriting Rescue Handlers When subclassing a class providing rescue han-
dlers for new exceptions, the rescue handlers are inherited and can be overridden.
When no new rescue clause is provided in a subclass, the one from the parent
method is inherited. To override a rescue clause for a particular exception, the
subclass should simply provide a new rescue clause for this exception. There
is no need to delete rescue clauses in a subclass, because even if we drop the
interface exceptions for which rescue handlers were defined in a superclass, no
harm is done if these handlers are inherited.

108 A. Mikhailova and A. Romanovsky

OldClass

Wrapper NewClass

Fig. 5. Forwarding OldClass method calls to NewClass via Wrapper

An important special case of this rule is applied when a new exception is
covariantly redefined in a subclass of a subclass signalling and rescuing the new
exception. The designer of such a subsubclass may choose to either use the
existing rescue handler for the corresponding superclass exception or to develop
a new rescue handler. For example, if a subclass C’ of C signals a new exception
E and provides a rescue handler RE for it, then a subclass C” of C’ signalling
instead a subtype E’ of E can either inherit RE or redefine it with R′

E that can
be better suited to rescue E’. By default, when no new rescue clause is provided,
the one from the parent method is inherited.

4.2 Forwarding to the Rescue

Using rescue handling to solve the problem of new interface exceptions is per-
fectly suitable for the top-down system development approach, when we face
the need to introduce an interface exception in a development step. As discussed
above, the need for introducing a new non-covariant interface exception may
arise because a new data structure can deliver new exceptional behaviour.

However, rescue handling is of little help if we are to use a bottom-up ap-
proach to system development. With this approach, we might want to match an
existing class (e.g., from a class library) to an existing interface (e.g., provided
by a framework). It is quite likely to happen that the class has extra interface
exceptions not signalled by the interface which the class matches otherwise.

To reiterate our example of applications and documents, suppose that the
class MyDocument, described above, is supplied by a certain class library. Sup-
pose also that we have an object-oriented framework containing an interface
Document with methods Open, Close and Save. The class MyDocument almost
exactly matches the interface Document, except for the MultipleViewCloseExcep-
tion signalled by its method Close.

Fortunately, architectural solutions that have proven their usefulness in solv-
ing closely related interface mismatch problems, literally speaking, come to the
rescue in this situation as well. In particular, forwarding or the Wrapper Pattern
[4], is an architectural solution that allows clients using instances of NewClass,
which is an improved, more specialised version of some OldClass, but with a
slightly mismatching interface, instead of instances of OldClass.

The idea behind forwarding is to introduce a subclass of OldClass, Wrapper,
which aggregates an instance of NewClass and forwards OldClass method calls to
NewClass through this instance. We illustrate this forwarding scheme in Fig. 5.

Supporting Evolution of Interface Exceptions 109

We can apply the same approach to solving the problem of mismatching
interface exceptions, if we turn the new interface exceptions of NewClass into
internal exceptions of Wrapper. The latter, having the same (or conforming)
interface as OldClass, simply forwards all method calls to the corresponding
methods of NewClass, catching and handling all NewClass’s interface exceptions
that cause the interface mismatch with OldClass. With this approach, clients of
OldClass can effectively use NewClass, without being concerned that the latter
signals an exception of which they are unaware.

In our example of applications and documents, we can solve the problem
caused by mismatching interface exceptions in the class MyDocument as illus-
trated in Fig. 6. The class DocWrapper implements the interface Document by
aggregating an instance of class MyDocument and forwarding all method calls to
the corresponding methods of MyDocument. The method Close of DocWrapper
is defined to forward the method call to MyDocument and catch the Multiple-
ViewCloseException that the latter can signal.

As Wrapper classes are just ordinary classes, they can be extended and reused
in the usual way.

The two approaches to handling new interface exceptions, the one employ-
ing rescue handlers and the one using the forwarding technique, nicely coexist,
complementing each other. If a class provides rescue handlers for some of the
interface exceptions signalled by its methods, and in addition the application us-
ing this class provides a wrapper class catching and handling these exceptions,
then the wrapper’s handler supersedes the rescue handler provided by the class.

5 Conclusions and Future Work

There is a significant gap between methods used for system modelling and de-
sign at the earlier phases of the system development life cycle and the methods

Application

CreateDocument

NewDocument

OpenDocument

CloseDocument

docs

DocWrapper

Open

Close

Save

views

doc
View

Update

MyDocument

Open

Close signals Multiple-

ViewCloseException

Save

AttachView

DetachView

Notify

doc

Document

Open

Close

Save

public void Close()

{

try { doc.Close(); }

catch MultipleViewCloseException {...};

}

Fig. 6. Forwarding Document method calls to MyDocument via DocWrapper

110 A. Mikhailova and A. Romanovsky

and mechanisms supporting the implementation development. One of the rea-
sons for this is a different view these methods and languages have on the way
interface exceptions can evolve. In particular, none of the existing programming
languages allows adding interface exceptions, which is vital for adding new func-
tionality during system evolution. In this paper we have proposed two type-safe
approaches which can be introduced into object-oriented languages to make it
possible to add interface exceptions during subclassing. Our future research will
focus on further development of these ideas. The intention is to apply these fea-
tures in design and implementation of several case studies, to analyse possible
implementations of these language mechanisms and their overheads, and to pro-
pose a formalism for reasoning about systems containing subclasses which have
new exceptions and which employ our approaches for dealing with them.

Acknowledgements. We would like to thank Christophe Dony, Ricardo
Jiménez-Peris, Jørgen Lindskov Knudsen, and Anand Tripathi for valuable com-
ments and constructive criticism. Anna Mikhailova’s research is supported by
the European IST project MATISSE and Alexander Romanovsky’s research by
the European IST DSoS project.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2. L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, and G. Nelson.

Modula-3 language definition. Technical Report 52, Digital Equipment Corpora-
tion, Systems Research Center, 1989.

3. W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance is not subtyping. In
Seventeenth Annual ACM Symposium on Principles of Programming Languages,
pages 125–135, San Francisco, CA, Jan. 1990.

4. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable ObjectOriented Software. Addison-Wesley, 1995.

5. J. B. Goodenough. Exception handling: Issues and a proposed notation. Commu-
nications of the ACM, 18(12):683–696, Dec. 1975.

6. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Sun Microsys-
tems, Mountain View, 1996.

7. V. Issarny. An exception handling mechanism for parallel object-oriented program-
ming: towards the design of reusable, and robust distributed software. Journal of
Object-Oriented Programming, 6(6):29–40, 1993.

8. R. Miller and A. Tripathi. Issues with exception handling in object-oriented sys-
tems. In M. Aksit and S. Matsuoka, editors, ECOOP ’97 — Object-Oriented Pro-
gramming 11th European Conference, Jyväskylä, Finland, volume 1241 of Lecture
Notes in Computer Science, pages 85–103. Springer-Verlag, New York, NY, June
1997.

9. A. Taivalsaari. On the notion of inheritance. Comp. Surveys, 28(3):438–479,
September 1996.

Concurrent Exception Handling

Valérie Issarny

INRIA, UR Rocquencourt
Domaine de Voluceau, BP 105, 78 153 Le Chesnay Cédex, France

{Valerie.Issarny}@inria.fr

Abstract. This paper discusses the cooperation exception handling
model that comes along with a mechanism for multi-party interaction,
in order to support the development of robust distributed applications
running over a local area network. Lessons learnt from this work and its
relation with today’s common practice in the area of distributed com-
puting are further considered.

1 Introduction

Since the appearance of distributed systems, fault tolerance and the possibility
to use parallelism have been considered as two fundamental properties to be
supported [17]. In that context, there has been a number of research work at the
level of both programming languages and underlying operating systems to en-
force those two properties. From the 80s to the early 90s, one popular approach
was to offer a distributed programming language and associated distributed run-
time system to be deployed over a local area network, with the language and
possibly underlying system based on the object paradigm. The concern for en-
abling fault tolerance and exploiting parallelism has been addressed at both
the language and system levels. At the system level, mechanisms for efficiently
distributing units of work over the network as well as for enabling application-
transparent fault tolerance have been proposed. At the language level, this has
led researchers to introduce various concurrent languages where parallelism was
either implicit or explicit, and mechanisms for specifying fault tolerance mea-
sures within applications (e.g., exception handling, transactions). This paper
discusses one such work, focusing on the definition of programming language
support enabling application-specific fault tolerance within distributed software
systems [12].

Various design considerations come up when devising some new program-
ming language support. Relevant criteria may be subjective and conflicting, and
relate to issues as diverse as expressive power, performance at runtime of the
resulting applications, ease of use, how application correctness gets promoted.
All these factors were taken into account for the design of the fault tolerance
mechanism that is discussed in this paper. However, the factor that has been the
most influencing is the one that relates to promoting the semantics correctness of
the developed applications. It follows that a rigorous definition of the proposed
mechanism was to be provided. Accounting for the other factors led us to design

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 111–127, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

112 V. Issarny

an exception handling facility since it serves developing at low performance cost a
number of application-specific fault tolerance techniques. Then, the mechanism
may be complemented with more powerful but more costly means, supported
by the underlying runtime system, if stronger dependability properties need be
achieved (e.g., atomicity). When addressing fault tolerance capabilities, it is fur-
ther essential to help the programmer to deal with redundancy [8] from the
standpoint of both design diversity, and replication of computations and data.
In the context of distributed systems where the effective use of the underlying ar-
chitecture parallelism is beneficial, the above concern may be addressed through
a mechanism for multi-party interaction [21], which enables specifying concur-
rent activities and cooperation among them. Specifically, we exploited here the
notion of multiprocedure [1] that is the outcome of a generalizing approach to
the integration of parallelism and procedures. Here too, our primary objective
of offering language support promoting the development of correct programs
has led to propose a rigorous definition of the mechanism selected for managing
multi-party interactions.

This paper is organized as follows. Section 2 discusses the cooperation ex-
ception handling model that is the result of the aforementioned design consid-
erations for enabling disciplined exception handling within distributed software
systems. After providing an overview of the model, its integration within a sim-
ple language offering two mechanisms supporting respectively the model and the
multiprocedure notion is sketched, and is followed by the axiomatic definition of
the language. Section 3 briefly addresses practical usage of the proposed model
associated with the multiprocedure notion, in an object-oriented language aimed
at distributed computing over a local area network, giving an example of appli-
cation embedding fault tolerance support. The work that is discussed in this
paper is the outcome of a study undertaken in the late 80s where distributed
computing was not as common as it is nowadays. Section 4 concludes the pa-
per with the lessons learnt from this experience some ten years after. It further
relates the proposal with today’s common practice in the area of distributed
computing, considering in particular the predominance of Java and C++ as pro-
gramming languages and the ever growing acceptance of middleware platforms
and component-based software development.

2 The Cooperation Exception Handling Model

This section gives an overview of the cooperation model of exception handling
[11], which is aimed at an imperative concurrent programming style where con-
currency is explicit. The model allows static as well as dynamic creation of pro-
cesses. Assuming that processes are combined in blocks, the model allows these
blocks being statically as well as dynamically nested. Finally, processes commu-
nicate by message passing. Clearly, many existing programming languages would
satisfy some parts of the properties. However, the model is better exploited when
integrated within a language offering a mechanism for multi-party interactions.

Concurrent Exception Handling 113

Addressing exception handling in the above framework is one of the distinc-
tive features of the cooperation model. Most of the proposals introducing an
exception handling mechanism targets a particular concurrent language. Fur-
thermore, these mechanisms are often based on a model of exception handling
designed for sequential languages, thus evicting concurrency aspects from the
model. The following subsection gives the basic principles of the cooperation
model. It is then followed by a presentation of a mechanism implementing the
model within a simple block structured concurrent programming language en-
abling multi-party interactions; the resulting language is further formally defined
in Subsection 2.3.

2.1 Base Definitions

The cooperation model of exception handling privileges simplicity over power.
Therefore, it is firstly based on an extension of the termination model of sequen-
tial programming languages. Then, in a concurrent framework, the occurrence of
an exception within a process may interfere with the behavior of other processes.
For instance, consider two processes that synchronize at some point of their ex-
ecution. If one of them terminates exceptionally before synchronizing, the other
gets blocked, waiting for a communication with the terminated process. In order
to avoid such a deadlock, the definition of the termination model is extended
with the notion of global exception handling.

Global exception handling. Under the cooperation model, an exception
whose occurrence prevents achievement of an expected synchronous communica-
tion leads to the exceptional termination of the process signaling the exception.
Such an exceptional termination is expressed by signaling a global exception,
which is by definition known from the other program processes. In general, a
process P catches a global exception when it communicates synchronously with
a process Q that terminates exceptionally by signaling the global exception. Fi-
nally, when a process catches a global exception, the handler of the exception is
looked for within the process from the synchronization point, as in the sequen-
tial case. The introduction of global exceptions places requirements on process
declaration: a process should declare the global exceptions it signals.

Concerted exception handling. When processes are components of a nested
parallel operation, the exceptional termination of one of them leads to the ex-
ceptional termination of the parallel operation. The exception signaled by the
operation should nonetheless be stated since embedded processes may concur-
rently signal distinct exceptions. As it has been advocated in [4], the occurrence
of many exceptions may be indicative of an exceptional state dependent upon
the composition of all the signaled exceptions. An exception resulting from such
a composition is qualified as concerted. The computation of a concerted excep-
tion cannot be generally implicitly defined since it requires semantics knowledge
about exceptions. Such a computation thus relies on a resolution function, which

114 V. Issarny

takes as input concurrent exceptions and returns the resulting concerted excep-
tion. In sequential programs, an exception handler is associated with a sequential
command and has the same scope. This definition is extended to a parallel op-
eration. Handlers associated with a parallel operation have the same degree of
parallelism as the operation and handle the concerted exceptions that the oper-
ation signals. Declaration of such handlers can be easily achieved: it suffices to
associate each handler component to the corresponding operation component.

Additional considerations. Static verification of syntactic as well as seman-
tics correctness of programs places requirements on exception handling. Propaga-
tion of exceptions along the invoking chain should be explicit. The handler of any
exception can then be statically determined. Any exception signaled by a block
that can be dynamically nested should be declared in the block’s header. Thus,
for any exception, it can be checked that a corresponding handler is declared
and that handler parameters are in accordance with exception ones. Practically,
since there is possibly a large number of exceptions to be accounted for (e.g.,
given those that may be raised by the underlying system), default exception han-
dling may be supported through the propagation of the default exception failure
when an exception has no handler associated with it in the given context of
occurrence.

2.2 A Language Supporting the Cooperation Model

This subsection illustrates the integration of the cooperation model within a
simple block structured language, which further integrates the notion of multi-
procedure for enabling multi-party interactions [1]. The body of a multiprocedure
consists of a collection of blocks (or components) that are executed concurrently.
Each component takes as input a subset of the multiprocedure formal parameters
and returns a subset of the result. A component is bracketed by a (begin, end)
pair and contains a set of local declarations as well as a sequence of commands.
A multiprocedure is called in the same way as a procedure. Nonetheless, the
execution is carried out differently: (i) a multi-context is created, (ii) param-
eters are made available to the multi-context, (iii) commands of the different
components are executed in parallel, (iv) results are built out of each component
contribution and made available to the caller, (v) the multi-context is destroyed.
A multiprocedure may issue a coordinated call. This is a natural extension of
the procedure call mechanism. The subset of the multiprocedure components
joining together to call a multiprocedure are all synchronized. When the call is
terminated, results -if any- are made available to all the components of the caller
before their parallel activities are resumed. Naturally, the coordinated call for a
single-blocked multiprocedure is the traditional procedure call. The relationship
between calling multiprocedure blocks and called multiprocedure ones is a many
in many nesting.

The syntax of the language is given in Figure 1; except the syntax related
to multiprocedures, it is very close to the one introduced in [5]. The declaration

Concurrent Exception Handling 115

prog ::= prog N = rf mpdecl vdecl c
rf ::= | resol r (handles el, signals el) = vdecl rc ; rf
mpdecl ::= | mproc Mp(v f; vr f; r f) [el]

using r = mpbody ; mpdecl
f ::= | v : int , f
el ::= e(f) | e(f), el
vdecl ::= | var v : int; vdecl
mpbody ::= comp | comp || comp
comp ::= (v f ; vr f ; r f) [el] = vdecl; c
c ::= | � e(r) | s | pc | c; c
r ::= | v, r
s ::= v := e | if b then c else c fi | while b do c od | begin c end |

Mp(va, vra, ra) with cl | Mp(va, vra, ra)
cl ::= i | i, cl
pc ::= [b : c] | { c } [hd]
hd ::= el : c | el : c ; hd

Fig. 1. A language supporting the cooperation model

of a program (prog) states the resolution functions, multiprocedures and vari-
ables, which are known in the program N. A resolution function (rf) implicitly
takes as input an array, exc, of exceptions, with each exception belonging to
the list after handles, and it returns one of the exceptions from the list after
signals. A multiprocedure header lists value, value-result, result parameters; the
list of exceptions (el) it may signal; and the resolution function r to be called
when at least one component signals a (global) exception. When a resolution
function is invoked, the array exc gives the exceptions signaled by the signaling
components of the calling multiprocedure, and the multiprocedure signals the
exception returned by the resolution function. For instance, consider a multipro-
cedure m having 5 components, which uses a resolution function r to compute
concerted exceptions. Assuming an execution of m such that components 2 and
4 signal global exceptions e and f respectively, the function r is invoked with
exc[2] = e, exc[4] = f and exc[i] = null for remaining array elements, and
the multiprocedure m signals the exception returned by r. If the using clause is
not stated, then a default function1 is invoked. For simplification reasons, only
program variables of type integer are considered. A multiprocedure body (mp-
body) embeds the parallel composition of a set of components. A component is
made of a set of declarations and a command C. A component header lists the
global exceptions (el) signaled by the component. Component parameters state
the multiprocedure parameters the component deals with. Two components of
a multiprocedure cannot share value-result nor result parameters. It is further
assumed that each variable that occurs in a component body is either locally

1 The default concerted exception is failure if at least two exceptions are concurrently
signaled and either the exceptions are distinct or one of them is parameterized.
Otherwise, the default exception is the one being signaled.

116 V. Issarny

declared or is a parameter (no global variables are allowed) and that multipro-
cedures are not recursive. Commands rc used in resolution function body are
those given in C plus a command enabling to test the value of exceptions. This
last command, not detailed here, is similar in essence to the type case command.
A command may be the empty command, the signal command (� e), a simple
command (S), a protected construct (pc) or may be composed sequentially from
other commands. The arguments of the signal command must be distinct and
declared variables. A simple command S is either an assignment, a conditional, a
loop, a block, a multiprocedure cocall (read coordinated call), or a multiprocedure
(single) call. The syntax for boolean expressions B is not detailed here, and it is
assumed that their evaluation does not lead to exceptions. Integer expressions
E are not detailed either; their evaluation may lead to exceptions overflow (ovf)
and underflow (udf). A multiprocedure coordinated call states the components
(cl) with which the caller wants to cooperate. Those components should belong
to the same multiprocedure instance. Component names are given by the place
of the component in the parallel composition declaration. It is assumed that the
actual arguments of multiprocedure calls are declared variables, all distinct and
that formal parameters of a multiprocedure are always rightly covered by the
arguments. When the call is coordinated, the formal parameters to be assigned
are explicitly stated by all the members of that call. Finally, coordinated calls of
the form “m(actuals1) with l1, ..., m(actualsn) with ln” are said to be matching
if for any i, 1 ≤ i ≤ n, li ∪ {i} is equal to lj ∪ {j} for all j, 1 ≤ j ≤ n, and
if ∪n

i=1actualsi matches formal parameters of m. With respect to the definition
of the cooperation model, a component that participates in a coordinated call
catches global exceptions if the components with which it wants to cooperate
terminate by signaling a global exception. In this case, a concerted exception is
evaluated and its handler is looked for within the catching component. There are
two kinds of protected constructs pc. One makes the invocation of a handler C
dependent upon the truth of a boolean expression B; the other associates one or
several handlers with a set of exceptional exit points of a command C. When the
body of a multiprocedure component is a command of the second kind, handlers
of hd are components of the handlers associated to the multiprocedure.

For illustration, an example of a syntactically well-formed program piece is
provided in Figure 2. This gives the sum fac multiprocedure computing the sum
of two factorials, where it is assumed that the multiprocedure is always invoked
with arguments whose value is positive. The fact and sum multiprocedures may
both signal the ov exception, which propagates the ovf exception that is signaled
by an expression evaluation. The resolution function r sum fac resolves excep-
tions concurrently signaled within sum fac components. It returns ov whatever
the values of the input exceptions are2. Notice that the exception ov returned
by the resolution function r sum fac is not handled by the multiprocedure com-
ponents but is directly propagated to the caller.

2 This function actually corresponds to the default resolution function.

Concurrent Exception Handling 117

resol r sum fac(handles ov() ; signals ov()) = begin � ov end
mproc fact(v x : int; r fx : int) [ov()] = not detailed : fx = x!
mproc sum(v x : int, y : int ; r s : int) [ov()] = not detailed : s = x + y
mproc sum fac(v a : int, b : int ; r sf : int) [ov()] using r sum fac =

(v a : int ; r sf : int) [ov()] =
var f1 : int;
begin

{fact(a,f1)}[ov() : � ov()]; {sum(x = f1, sf = s) with 2}[ov() : � ov()]
end ||

(v b : int) [ov()] =
var f2 : int;
begin {fact(b,f2)}[ov() : � ov()]; {sum(y = f2) with 1}[ov() : � ov()] end

Fig. 2. A multiprocedure example

2.3 Axiomatic Semantics

This subsection addresses the rigorous definition of the programming language
discussed in the previous subsection. It presents the axioms and rules of inference
enabling to deduce properties of the programs written in the language. The
axiomatic definition of multiprocedures, in the absence of exceptions, directly
follows from [7]. A proof of pre- and post-assertions about a multiprocedure
is done in two stages: (1) separate proofs are constructed in isolation for each
multiprocedure component; and (2) the separate proofs are combined and shown
to cooperate.

The axiomatic definition of individual multiprocedure components in the
presence of exception handling is based on the work of [5]. The advantage of this
approach is a clear separation between the validation of program properties in
the presence and in the absence of exceptions. A statement of the system is of the
form p {C} x:q whose interpretation is if C is invoked in a state in which p is true
and if C terminates at x, then q is true after C’s execution; x can be either end or
an exception label. When x is equal to end, the abbreviation p {C} q is meant for
p {C} end:q. A program P with k exit points is then termed robust if it terminates
at a declared exit point for any possible input state. The notion of correctness
for a one entry/multi-exit programs is a straightforward extension of that for one
entry/one exit programs. To specify the expected behavior of a program P, which
signals k exceptions, (k + 1) pairs (ri, si), 0 ≤ i ≤ k which give pre- and post-
assertions are needed. The pair (r0, s0) denotes the expected standard behavior
of P while pairs (rj , sj), 1 ≤ j ≤ k specify its expected exceptional behavior.
A program P is partially correct if the statement ri {P} xi:si is verified for all
pairs.

Figure 3 gives the most relevant proof rules that enable to prove partial
correctness of programs written in the target language; these subdivide into
the rules used at stage (1) for constructing separate proofs for multiprocedure
components, and the rules used at stage (2) for proving the properties of the

118 V. Issarny

overall multiprocedure. For simplification reasons, it is assumed that exceptions
are not parameterized.

A1 – Signal axiom p { � e } e : p

R1 – Sequential composition rule 1
p {C1} q, q ⇒ r, r {C2} x : s

p {C1 ; C2} x : s

R2 – Sequential composition rule 2
p {C1} e : q

p {C1 ; C2} e : q

R3 – Protected construct rule 1
p ⇒ ¬B

p {[B : C]} p

R4 – Protected construct rule 2
p ⇒ B, p {C} x : q

p {[B : C]} x : q

R5 – Protected construct rule 3
p {C} q

p {{ C } [e1 : C1 ; ... ; en : Cn]} q

R6 – Protected construct rule 4
p {C} ei : q, q { Ci } x : r

p {{ C } [H]} x : r

A2 – Coordinated call axiom p { C } x : q

R7 – Coordinated call rule
p ⇒ pre(m), pre(m) { Bm } x : post(m)

p[a; b / x; y] { Cm } x : post′(m)

R8 – Parallel composition rule 1

proofs of pi { Ci } xi:qi, i = 1, ..., n, cooperate
(exc1 = x1 ∧ ... ∧ excn = xn) { R } ei : r
q1 ∧ ... ∧ qn ∧ MI { Ci1 || ... || Cin } y : q

p1 ∧ ... ∧ pn ∧ MI { [P1 || ... || Pn] } y : q

R9 – Parallel composition rule 2
proofs of pi { Ci } xi : qi, i = 1, ..., n, cooperate

exc1 = x1 ∧ ... ∧ excn = xn { R } e : r

p′ { [P1 || ... || Pn] } e : q′

Fig. 3. Proof rules and axioms

Proving properties of a multiprocedure component. Proof rules for se-
quential commands that are not related to exception handling are quite trivial
and hence not provided here (e.g., see [5] for detail). Axiom A1 states that when
an exception is signaled, the exception becomes the exit point of the enclosing
block. Regarding sequential composition, when the first command of a sequential
composition terminates normally, the sequential composition command inherits

Concurrent Exception Handling 119

the exit point of the second (R1); when the first command of a sequential com-
position terminates exceptionally, the following commands are not executed and
the whole sequential composition terminates exceptionally (R2). A command
[B:C] terminates normally if the boolean expression B is evaluated to false or if
B is evaluated to true and C terminates normally (R3 and R4). The command
can signal an exception if B is evaluated to true and C signals an exception
(R4). Considering the command { C }[e1 : C1 ; ... ; en : Cn], either C terminates
normally (R5 with H being of the form: e1 : C1 ; ... ; ei : Ci; ... ; en : Cn) or
C signals an exception handled by the protected construct (explicit propagation
of exceptions) (R6). Let now C denote any cocall command, axiom A2 where
p and q refer only to variables local to the component from which C is taken,
implies that any post-assertion q and any exit point x can be deduced after a
coordinated call. However, q and x cannot be arbitrary since they must pass the
cooperation test at stage (2) of the proof. Using the axioms and rules introduced
so far, rules given for other sequential commands in [5], and consequence rules
also defined in [5], separate proofs for each components can then be established.
This is presented, as usual, by proof outlines in which each sub-statement of a
component is preceded and followed by corresponding assertions.

Proving properties of a multiprocedure. Once separated proofs have been
constructed for the individual components of a multiprocedure, they get com-
bined. With each proof of: p {P1||...||Pn} x:q, a multiprocedure invariant MI and
an appropriate bracketing are associated. The MI invariant expresses global infor-
mation about a multiprocedure; it may refer to the formal parameters and local
variables of all the components in the multiprocedure. The purpose of bracket-
ing is to delimit the multiprocedure sections within which the multiprocedure
invariant need not necessarily hold. Precisely, every component Pi is bracketed if
the brackets ‘≺’ and ‘�’ are interspersed in its text so that (i) for each program
section ≺B�, B is of the form B1 ; C ; B’1 where B1 and B’1 do not contain any
cocall commands, and (ii) all the cocall commands that are not discarded due
to an exception signal, appear only within brackets as above.

Let m(x, y, z) :: Bm denote a multiprocedure m where: x, y, z denote
the formal parameters x1, ..., xnc ; y1, ..., ync; z1, ..., znc of the multipro-
cedure components with nc being the number of components in the multi-
procedure m; and Bm denotes the multiprocedure body (||nc

j=1Bj). Assertions
prei(m) {Bm} xi:posti(m) can be associated with any given multiprocedure m
where both prei(m) and posti(m) are constructed by conjoining, respectively,
the pre- and post-assertions of the various components with the invariant MI
associated to the multiprocedure. The formal data parameters referred to by the
predicates pre(m) and post(m) may only be x, y and y, z respectively. The
predicates may also refer to constants and free variables to describe initial and
final values.

Consider now a multiprocedure m and matching cocalls Cm
1 , ..., Cm

npc. The
cocall post-assertion is given by the multiprocedure assertion as specified by
rule R7 where:

120 V. Issarny

– Cm denotes ||npc
j=1 Cm

j (akj
, bkj

, ckj
),

– a, b, c denote (ak1 , ..., aknpc), (bk1 , ..., bknpc), (ck1 , ..., cknpc), respectively,
– post′(m) denotes post(m)[b; c / y; z], and
– p[u/v] denotes the assertion obtained from p by substituting (simultane-

ously) u for all free occurrences of v.

Three other rules are used to prove the properties of a multiprocedure. One
is applied when all the multiprocedure components terminate normally, the two
others are when at least one of the components terminates exceptionally. The
first rule is similar to the one of [7] and is not repeated. When one component ter-
minates exceptionally, the resolution function, noted R, is invoked. If a handler is
associated to the multiprocedure for the returned concerted exception, the multi-
procedure post-assertion is given by the handler assertion as specified by R8, pro-
vided that no variable free in MI is subject to change outside a bracketed section
and that Pj ’s, j = 1, ..., n are of the form: “{Cj}[e1:C1j

;....;ei:Cij
;....;en:Cnj

]”. If
the concerted exception is not handled by the multiprocedure, the exception is
propagated to the caller as specified by R9 where p′ and q′ denote p1 ∧ ... ∧ pn

∧ MI and q1 ∧ ... ∧ qn ∧ MI respectively, and provided that no variable free
in MI is subject to change outside a bracketed section and that components do
not declare a handler for e. Intuitively, proofs cooperate if each execution of a
multiprocedure validates all the post-assertions of the cocall commands calling
it. Let Em denote the set of exceptions signaled by the multiprocedure m, Gi

denote the set of global exceptions signaled by the ith component of m, and
with denotes the set of components explicitly named as participants in matching
coordinated calls. Further assume a given bracketing of a multiprocedure [P1
|| ... || Pn] and a multiprocedure invariant MI. Bracketed sections ≺B1� , ...,
≺Bnpc� are matching if they contain matching coordinated calls Cm

1 , ..., Cm
npc to

some multiprocedure m. The proofs pi {Pi} xi:qi, i = 1, ..., n are then said to
cooperate if:

(i) the assertions used in the proofs pi {Pi} xi:qi have no free variables subject
to change in Pj , for i 6= j;

(ii) the statement: “(∧npc
i=1 pre(Bi) ∧ MI) { ||npc

i=1 Bi } (∧npc
i=1 post(Bi) ∧ MI)”

holds for all matching bracketed sections ≺B1� , ..., ≺Bnpc� when:
– npc = |with|,
– the statement enclosing each Bi is of the form: “pre(Bi) { Bi } b :

post(Bi)”, for all i, i = 1, ..., npc, where b ∈ { end, Em } (assuming the
bracketed sections jointly call the multiprocedure m), and

– the statement preceding each “pre(Bi) { Bi } b : post(Bi)” is of the
form: “pre(Ci) { Ci } end : post(Ci)”, for all i, i = 1, ..., npc;

(iii) given matching bracketed sections ≺B1� , ..., ≺Bnpc�, the three following
conditions hold when |with| > npc:
– ∀j : j ∈ with − {1, ..., npc}, aj ∈ Gj ,
– ∧∀j:j∈with−{1,...,npc}excj = aj { R } e : r,
– the statement enclosing each Bi is of the form: “pre(Bi) { Bi } e :

post(Bi)” and “(pre(Bi) ∧ MI) ⇒ post(Bi)”, for all i, i = 1, ..., npc,

Concurrent Exception Handling 121

– the statement preceding each “pre(Bi) { Bi } b : post(Bi)” is of the
form: “pre(Ci) { Ci } end : post(Ci)”, for all i, i = 1, ..., npc;

In the definition of cooperation, points (i) and (ii) come from the corresponding
definition given in [7] while point (iii) copes with global exception handling.
Point (ii) is related to coordinated calls that actually lead to a multiprocedure
execution. Point (iii) considers coordinated calls where at least one expected
participant terminates by signaling a global exception. The following axiom and
proof rules are needed to establish cooperation: coordinated call axiom, coordi-
nated call rules, parameter substitution rule and variable substitution rule. The
two last proof rules are given in [7]. Finally, to complete the proof system, the
following rules from [7] are also needed: preservation rule, substitution rule, and
the auxiliary variable rule. Due to the lack of space, we do not provide here an
example of proof using the presented system; the interested reader is referred to
[11].

3 Cooperation Exception Handling in an Object-Oriented
Setting

From a practical point of view, the cooperation model of exception handling has
been integrated within a concurrent object-oriented language, called Arche [3].
The language is aimed at distributed computing over a local area network and
comes along with a dedicated distributed object-oriented runtime system [2].
One of the design considerations in the elaboration of Arche was to promote the
development of robust distributed software, from the standpoint of both easing
reasoning about the program behavior and providing support for fault tolerance.
The former concern has led to the design of a strongly typed object-oriented
language based on a simple concurrency model where objects are independent
processes and synchronization within each object relies on the following: (1) any
method call is synchronous and its acceptance by the invoked object is implicit;
(2) mutual exclusion is enforced within the object by enabling the execution of a
single method at a time; (3) conditional synchronization relies on a mechanism
that is compatible with inheritance; and (4) objects may cooperate through a
mechanism for multi-party interaction that is a special form of multiprocedure.
This last mechanism is called multimethod, and consists in the invocation of
a method on a group of objects. Arche further embeds an exception handling
mechanism that implements the cooperation model presented in the previous
section. The definition of the mechanim is not detailed since it is quite direct from
the previous section. There are however two additional features in the exception
handling mechanism of Arche. They lie in: (i) offering support for asynchronous
exception handling due to the asynchronous creation of objects, and (ii) the
definition of a subtyping relation over exceptions, which are defined as object
types. The interested reader is referred to [13] for a detailed presentation of the
mechanism. We give here an example taken from [13] that illustrates the use of
Arche mechanisms (i.e., exception handling and multimethod) for developping

122 V. Issarny

robust distributed applications. The chosen application is the two phase commit
protocol with which the reader is assumed to be familiar and whose detailed
description may notably be found in [10].

Example: two phase commit protocol. Assume a distributed action, quali-
fied as recoverable, that has established recovery points and that wants to commit
its computation after having modified data located on different nodes. Nodes par-
ticipating to the action are called participants. Each of these nodes is supposed
to be able to commit and abort the part of the action it performed. Finally, a
particular node, called coordinator, is assumed to be associated to the recover-
able action. This last node can access all the action participants. The two phase
commit protocol ensures that all the participants either commit or abort their
participation to the recoverable action. Implementation of the coordinator and
participants is given below where we do not adhere to the Arche syntax but
rather uses one that is closer to common object-oriented languages, and hence
easier to interpret. Regarding the creation of an object, it leads to the creation
of a process, which initializes by running the constructor method and then waits
for incoming calls that get selected for execution according to the embedded
conditional and mutual exclusion synchronization. For the sake of brevity, we
omit the specification of conditional synchronization in the following.

The definition of the coordinator class is given in Figure 4. Participants of
the recoverable action are registered in the sequence variable p, which defines a
group of objects on which multimethods can be invoked. The (virtual) write log
method aims at recording performed actions within a log and is thus specific to
any recoverable action; the implementation of write log is to be provided by sub-
classes of coordinator. The add part method is straightforward; it appends the
newly involved participant to the sequence p. Validation of the recoverable ac-
tion is carried out through the commit method, which first logs the fact that the
recoverable action is in the first phase of validation. The method then invokes the
multimethod vote of p, i.e., vote is concurrently executed by each of the action
participants. Due to some failure, none of the participants may be reachable. In
this case, the timeout exception is signaled to the coordinator by the run-time
system. A component of the vote multimethod may either terminate normally or
signal nok. Signaling nok means that the participant wants to abort its partici-
pation to the action. Consider first that all the participants terminate normally,
i.e., the action may commit. In this case, the second phase consists in logging
validation and in calling the commit multimethod on p. This call is enclosed in an
exception handling command because the timeout exception may still occur, e.g.,
due to failure of the underlying communication medium. Notice that if a subset
of the multimethod’s components is reachable, this causes concurrent signals of
the timeout exception by the remaining components. According to the semantics
of the underlying exception handling mechanism, a concerted exception is com-
puted. However, there is no need for a resolution function here. Since the timeout
exception is not parameterized, the default concerted exception will always be
an instance of timeout. Consider now that at least one of the components of the
vote multimethod signals nok. The resulting concerted exception is computed by

Concurrent Exception Handling 123

means of the res vote resolution function, which always signals exc vote and dis-
cards participants that signal nok. It follows that the handler of exc vote sends
only the recovery message to the nodes that either did not reply to the coordina-
tor or acknowledged for validation. Note that the implicit formal parameter of
any resolution function is the sequence of exceptions exc seq. Furthermore, the
actual parameter of any resolution function contains as many elements as the
signaling multimethod embeds components; the exception associated to a node
that terminates normally (i.e., that expects to validate its participation) being
of type terminated. Finally, for the sake of brevity, re-emission of messages has
been omitted in the proposed algorithm even though the timeout exception may
be signaled by multimethods called within handlers.

class coordinator {
seq of participant p = <>;
resolution res vote handles nok signals exc vote {

int i = 0; seq of participant part = <>;
while (i < exc seq.length()) {

exception case (exc seq[i]) {
nok: {skip}
else {part.append(p[i])};};

i := i + 1;
};

signal exc vote(part);
};

void write log(action a) {};
void add part(participant part) {p.append(part)};
void commit() signals nok {

boolean ok = false;
// Phase 1
try using res vote { write log(a begin); p.vote (); write log(a valid);}
catch(exc vote e) {write log(a rec); e.part().recovery(); signal nok;}
else {write log(a rec); p.recovery(); signal nok;};
// Phase 2
try {p.commit()}
catch(timeout t) {p.commit()};
};

}

Fig. 4. The coordinator class

The definition of the participant class is given in Figure 5. The alarm clock ob-
ject, instance of the predefined class timer, enables instances of class participant
to be aware of delay expiration during the protocol first phase. The creation
of alarm clock within the initialization method (i.e., new c timer(self, delay))

124 V. Issarny

specifies the calling object, i.e., the enclosing participant, and the delay whose
value is passed as argument when the instance of participant is created.

class participant {
action my action = a begin;
timer alarm clock;
void participant(int delay) {alarm clock = new timer(self, delay)};
void write log(action a) {};
void my vote() signals nok { if my action == a rec {signal nok }};
void alarm() { if my action == a begin {write log(a rec); my action = a rec};};
void vote() signals nok {

try {my vote(); write log(a ok); my action = a ok;}
catch(nok e) {write log(a rec); my action = a rec; signal e;}
else {write log(a rec); my action = a rec; signal nok;}
};

void commit() {write log(a valid); my action = a valid;};
void recovery(){ if my action == a ok {write log(a rec); my action = a rec};};
}

Fig. 5. The participant class

The provided example highlights most of the benefits of using the cooperation
exception handling model in a distributed object-oriented setting. In addition
to the ease of reasoning about program behavior brought by the rigorous defini-
tion of the cooperation model and related mechanisms, the distributed object-
oriented setting enables the development of reusable robust distributed software.
Considering the given example, provided classes may be reused to implement
customized two phase commit protocols. They have to be at least specialized to
define the implementation of write log and my vote, which are specific to the tar-
get distributed action. It is interesting to note that the exception nok, originally
signaled by my vote may be specialized to provide more information about the
cause of action failure. In such a case, the vote method has not to be modified:
the variable e declared in nok’s handler may be any exception whose type is a
subtype of nok. On the other hand, the commit method of coordinator would
have to be redefined; specific handling of the exception is strongly dependant
upon the considered application.

In general, various experiments were undertaken to investigate whether the
Arche language was appropriate to program robust and reusable distributed ap-
plications. This led to encouraging results. In addition to the example discussed
above, an application based on the technique of N-version programming was de-
veloped. This last example also uses the exception handling and multimethod
facilities. Summarizing the combined advantages of these facilities, the notion
of multimethod provides a useful tool to simply express management of dis-
tributed data structures while the exception handling mechanism allows keeping
these data consistent in the presence of failure.

Concurrent Exception Handling 125

4 Conclusions

The cooperation exception handling model that has been discussed in this paper
built upon a number of earlier sound results. It extends the termination model
for sequential programming since the model simplicity eases quite significantly
reasoning about the behaviour of programs in the presence of exceptions. The
work further built upon results in the area of proofs of both concurrent programs
and programs with exception handling. In addition to being useful for providing
the formal definition of the cooperation model, they proved to be quite influen-
tial for guiding the model definition. The contribution of the work presented in
this paper, at the time it was introduced, lay in two aspects: (i) the proposal
of a general concurrent exception handling model that could be integrated in
different concurrent languages, and (ii) the introduction of a formal definition of
an exception handling facility aimed at concurrent programming. Although the
author has not been studying extensively recent bibliography in the area of con-
current exception handling, there seems to have been few related recent results.
The author’s view about this issue is that despite the advent of distributed com-
puting, the development of concurrent programs remains a complex task. This
then leads in practice to (i) promoting quite primitive languages from the per-
spective of the underlying concurrency model, and (ii) treating fault-tolerance
support as secondary, where the latter mostly relies on the base termination ex-
ception handling model for sequential programming. However, it should also be
recognized that demonstrating the actual benefit of advanced concurrent soft-
ware fault tolerance means in general, and of the cooperation model in particular,
would require experiments with a number of large real applications. This is rarely
undertaken and at least this step was not extensively undertaken by the author.

Since the work discussed in this paper was introduced, distributed computing
has evolved in a drastic way. From the standpoint of supporting programming
languages, almost none of the concurrent languages that originated from re-
sults in the distributed system research field are used in practice although they
certainly influenced how distributed systems are now developed. In addition to
C++ that was already popular in the early 90s, the Java language appears as
another major player. Regarding exception handling in a sequential setting, the
mechanism that is offered in both C++ [9] and Java [16] adheres to the same
model for sequential exception handling upon which our proposal was built, i.e.,
the termination model. From a concurrency point of view, concurrency is in
general addressed through a simple model of threads, and exception handling is
there dealt with by propagating of the exception along the thread, which may
ultimately lead to the termination of the embedding concurrent application. On
the other hand, no support for multi-party interactions is offered although it is
our belief that such a facility is crucial for developing dependable systems as
it serves as a sound base ground for dealing with redundancy. To the best of
our knowledge, such a concern has led to few research efforts in the recent past.
We identify mainly the proposal of the Coordinated Atomic action (CA action)
notion [20,18], which addresses in an homogeneous way fault tolerance means

126 V. Issarny

for concurrent activities that either cooperate or compete, while our proposal
focused solely on cooperating activities.

From the perspective of distributed (operating) system support, here too,
almost none of the distributed systems that were proposed at the end of the 80s
are in use today. The common practice is to rely on a middleware that offers
a base distributed inter-process communication system (e.g., remote procedure
call), which may be customized using a number of advanced services for distri-
bution management (e.g., transaction, fault-tolerance) [6]. It is however fair to
state that all the middleware platforms that are proposed build upon results
from the distributed system research community. Considering fault tolerance in
this context, it mostly relies on application-transparent means, which are imple-
mented at the middleware level. However, middleware platforms deal in general
with the occurrence of exceptions by enabling the propagation of exceptions
among interacting processes, which may then handle the exceptions internally.
Support for multi-party interactions is not addressed except through base multi-
cast protocols but without accounting for exception handling. Relevant work in
the area is the aforementioned CA action proposal whose usage for applications
developed over a middleware platform is being investigated.

A quite recent approach to the development of distributed software systems
relates to the component-based technology, which may be considered as a gen-
eralization of the middleware notion. A significant advantage of this approach
is that it promotes software reuse, enabling the design and implementation of
software systems out of Cots (Commercial Off The Shelf) components. This
may be further assisted through the principled design of the system software
architecture [19] as for instance illustrated in [14]. This is the author’s belief
that architecture-based development of complex software systems constitutes
an effective solution towards enabling the development of robust distributed
systems, while accounting for their various instances as allowed by the ongoing
technological evolution (e.g., pervasive computing is foreseen as a significant
future trend). The concern for dependability is further becoming more crucial
than ever since it is no longer confined to the area of safety critical systems
but applies to nearly all systems given the underlying business issues. In
that context, we have started a study about providing application-specific
fault tolerance means within systems developed using an architecture-based
approach. This proposal focuses on the issue of exception handling [15] and the
one relating to dealing with redundancy is still to be investigated.

Acknowledgments. The author would like to acknowledge Jean-Pierre Banâtre
with whom the work on cooperation exception handling was elaborated.

References

1. J-P. Banâtre, M. Banâtre, and F. Ployette. The concept of multi-functions, a
general structuring tool for distributed operating system. In Proceedings of the
Sixth Distributed Computing Systems Conference, 1986.

Concurrent Exception Handling 127

2. M. Banâtre, Y. Belhamissi, V. Issarny, I. Puaut, and J-P. Routeau. Arche: A frame-
work for parallel object-oriented programming above a distributed architecture. In
Proceedings of the Fourteenth IEEE International Conference on Distributed Com-
puting Systems, pages 510–517, 1994.

3. M. Benveniste and V. Issarny. Concurrent programming notations in the object-
oriented language arche. Research Report 1822, INRIA, Rennes, France, 1992.

4. R. H. Campbell and B. Randell. Error recovery in asynchronous systems. Trans-
actions on Software Engineering, SE-12(8):811–826, 1986.

5. F. Cristian. Correct and robust programs. IEEE Transactions on Software Engi-
neering, SE-10(2):163–174, 1984.

6. W. Emmerich. Engineering Distributed Objects. J. Wiley & Sons, 2000.
7. N. Francez, B. Hailpern, and G. Taubenfeld. Script: A communication abstraction

mechanism and its verification. Science of Computer Programming, 6:35–88, 1986.
8. F. Gartner. Fundamentals of fault tolerant distributed computing in asynchronous

environments. ACM Computing Surveys, 31(1):1–26, 1999.
9. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-

Wesley, 1996.
10. J. Gray. Notes on DataBase Operating Systems, volume 60 of Lecture Notes in

Computer Science. Springer Verlag, 1978.
11. V. Issarny. An exception handling model for parallel programming and its verifica-

tion. In Proceedings of the ACM SIGSOFT’91 Conference on Software for Critical
Systems, pages 92–100, 1991.

12. V. Issarny. Un modèle pour le traitement des exceptions dans les programmes
parallèles. Thèse de doctorat, Université de Rennes I, Rennes, France, 1991.

13. V. Issarny. An exception handling mechanism for parallel object-oriented program-
ming: Towards reusable, robust distributed software. Journal of Object-Oriented
Programming, 6(6):29–39, 1993.

14. V. Issarny, C. Bidan, and T. Saridakis. .Achieving Middleware Customization
in a Configuration-based Development Environment: Experience with the Aster
Prototype. In Proceedings of the Fourth International Conference on Configurable
Distributed Systems, pages 275-283, 1998.

15. V. Issarny and J-P. Banâtre. Architecture-based exception handling. In Proceedings
of the Thirty Fourth Hawaii International Conference on System Sciences, 2001.

16. A. Koening and B. Stroustrup. Exception handling for C++. In Proceedings of
Usenix C++ Conference, pages 149–176, 1990.

17. S. Mullender, editor. Distributed Systems. ACM Press, 1989.
18. B. Randell, A. Romanovsky, R. J. Stroud, J. Xu, and A. F. Zorzo. Coordinated

Atomic Actions: from Concept to Implementation. Research Report TR 595, Uni-
versity of Newcastle upon Tyne, Newcastle upon Tyne, UK, 1997.

19. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Disciplines. Prentice Hall, 1996

20. J. Xu, B. Randell, A. Romanovsky, C. M. F. Rubira, R. J. Stroud, and Z. Wu.
Fault tolerance in concurrent object-oriented software through coordinated error
recovery. In Proceedings of the Twenty-Fifth IEEE International Symposium on
Fault-Tolerant Computing, pages 499–508, 1995.

21. Y-J. Young and S. Smolka. A comprehensive study of the complexity of multiparty
interaction. Journal of the ACM, 43(1):75–115, 1996.

Exception Handling in Agent-Oriented Systems

Anand Tripathi and Robert Miller

Department of Computer Science
University of Minnesota, Minneapolis MN 55455

Abstract. Agent-oriented programming may be the next generation
paradigm to try and tame the software complexity beast. Agents are
active objects capable of autonomous behavior. Mobility can be one of
the attributes of agents in open systems. A software system could be
structured as a dynamic, and possibly evolving, ensemble of cooper-
ating agents. However, there is very little in the literature on how to
effectively handle exceptions in agent-oriented software systems. Agent-
oriented systems have all the exception handling concerns of sequential
and concurrent systems, as well as some new issues that arise due to
mobility and security in open systems. This paper develops an exception
handling model whose salient feature is the separation and encapsula-
tion of exception handling for an agent environment in a special agent
called a guardian. The model presented here builds upon the notions of
events, exceptions, notifications, and commands in an agent ensemble,
and presents a number of exception handling patterns that can be used
by a guardian. The model presented here is being investigated in the
context of the Ajanta mobile agent programming system.

1 Introduction

Agent-oriented software engineering represents the next step in the evolution of
composition based development methods. Agents are a way to manage software
complexity [9]. An agent is an encapsulated computing component that is situ-
ated in some environment, and that is capable of flexible, autonomous action in
that environment in order to meet its design objectives [18]. An agent represents
an active entity with an execution context together with a thread of execution
and control. An agent-oriented system is intrinsically a concurrent system where
the agents and their execution environments represent active entities. Such sys-
tems may be distributed when agents and environments are located at different
nodes in a network.

The typical characteristics of an agent are that it is autonomous, mobile,
cooperates with other agents, can learn, and can be reactive or proactive (delib-
erative) [13]. The most important characteristic of an agent is autonomy, which
means that the agent is capable of determining its actions based on its current
environment and execution context. A reactive agent executes actions only in
response to requests from other agents or its environment, whereas a proactive
(deliberative) agent can initiate actions spontaneously based on its own state

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 128–146, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Exception Handling in Agent-Oriented Systems 129

and the state of its environment. Agents may be capable of learning based on
their past execution to guide their future behavior. The ability of a group of
agents to communicate with each other is important to realize systems that in-
herently rely on composition of active components. An agent that possesses the
mobility attribute is able to migrate in a network, from one host environment to
another. The main advantages of the mobile agent paradigm lie in its ability to
move client code and computation to remote server resources, and in permitting
increased asynchrony in client-server interactions [7].

Complex systems are generally managed with respect to three criteria [1]: de-
composition, abstraction, and hierarchy or organization. Agents meet these three
criteria by allowing a problem to be decomposed into a number of smaller, related
sub-problems. Abstraction is supported by considering each of the sub-problems
to be a sub-system (i.e., a subsystem becomes an agent). Agents, since they
are autonomous, can reorganize themselves dynamically to better coordinate to-
gether to solve a problem. Agent-oriented software design appears promising for
a large class of applications, particularly those in open distributed systems, such
as distributed collaboration frameworks, enterprise workflow management sys-
tems, manufacturing systems, distributed simulations, and network monitoring
and management systems.

In recent years there has been a surge of activities in the area of agent based
software systems. The research activities in this area have focused on various dif-
ferent aspects of agent programming, such as agent communication languages,
multi-agent planning and coordination protocols, and support for agent mobility
using mobile code technology as well as the development of mobile agent pro-
gramming platforms. Recently, a number of systems have emerged from research
labs and commercial organizations to support mobile agent programming [17,
10]. A vast majority of these are based on the Java programming language; these
systems are thus able to leverage the object-orientation features for abstraction,
encapsulation, dynamic binding, inheritance, and reflection. Moreover, Java’s
support for code mobility and its security model facilitate designs of suitable
mechanisms for mobile agent execution in open distributed systems. However,
most of the current mobile agent programming systems do not address the prob-
lems related to exception handling in mobile agent applications.

There is very little in the literature concerning exception handling in agent-
oriented systems. Without effective exception handling, it is doubtful that agent-
oriented systems will be able to realize their full potential. Exception handling
is even more challenging when agents are mobile in an open system, and where
the interactions between agents and their environments may be ad hoc without
any a priori plan. Moreover, mobility raises possibilities of exception conditions
arising due to node/link failures. Security and protection mechanisms complicate
this picture even further by introducing various unexpected failure conditions.

Often, exception handling in a program is the most complex, misunderstood,
poorly documented, and least tested part of a software system [14]. This leads
to the conclusion that exception handling has to be either simplified or taken

130 A. Tripathi and R. Miller

out of the hands of the average programmer (i.e., something else does the more
complex exception handling).

The agent programming system and its exception handling model presented
here uses the latter approach by separating global level exception handling con-
cerns from the application agents, and encapsulating them in special agents
whose primary purpose is to monitor and control application agents with re-
spect to exception conditions. Such specialized agents may use generic patterns
for global exception handling. The exception handling model adopted in this
work has four key components:

1. A special agent called a guardian, which acts as an exception handler for a
set of agents in an application.

2. Exceptions are viewed as internal and external with respect to an agent.
External exceptions propagate outside of an agent to its guardian.

3. Events, exceptions, notifications, and commands are used to communicate
between a guardian and its monitored agents.

4. Exception handling patterns can be used by a guardian to handle commonly
occurring situations in an agent ensemble.

The main feature of this system is support for encapsulation of global ex-
ception handling concerns in guardian agents of an application, thus separating
them from the design of the application agents. This approach is similar to the
one proposed in [11]. Moreover, a guardian can use exception handling patterns
for commonly occurring conditions. This allows different patterns to be imple-
mented by changing the guardian, without requiring changes to the application
agents.

The next section elaborates the specific issues for exception handling in
agent systems. Section 3 presents the proposed model based on the notion of
guardians. Section 4 shows how this model relates to the well-known and widely
used concepts and models for exception handling in sequential, concurrent, and
distributed systems. In Section 5 we outline some simple patterns that can be
used in designing a guardian to handle commonly occurring failure conditions in
agent systems. The focus of Section 6 is on the integration of this model in the
Ajanta agent programming system. We present here the specific programming
primitives and protocols that are provided by the Ajanta system to support
the guardian mechanism in mobile agent applications. Section 7 presents the
conclusions and the future direction of this work.

2 Design Issues

Security and robustness are among the most important requirements of an agent
programming environment. The main focus of this paper is on robustness and
exception handling problems, therefore, we do not address here security related
problems. However, one must note that a security violation would generally
result in the signaling of an exception during an agent’s execution.

Exception Handling in Agent-Oriented Systems 131

An agent based application needs mechanisms to recover from errors that are
encountered by its roaming agents at remote nodes. For recovery and debugging
purposes, the error handling mechanisms should be able to examine the state of
the agent to perform any recovery. Also, for debugging purposes an application
developer also needs access to the state of a remote agent when its execution
fails due to an error. In general, due to its autonomous nature and security
concerns, a remote server may not be willing to continue hosting an agent that
has encountered an exception. Moreover, it may not support access to the agent’s
state to a remote process trying to perform debugging or error recovery actions.

A recovery action by an application may require interrupting other agents
that belong to the application and possibly altering the course of their execution.
This requires mechanisms for remote control and interruption of mobile agents.
Moreover, such control needs to be performed in a secure manner. Also, a user
may sometimes require a high degree of confidence in executing an agent based
application and may need mechanisms to remotely control its agents. There-
fore, an ideal agent programming system should provide suitable mechanisms in
which a user can monitor her roaming agents’ status and control them remotely,
irrespective of their current locations.

Typically an agent environment should be designed to cope with exceptions
that generally arise in traditional software systems due to illegal operations,
resources restrictions, or design faults. In the following discussion we focus on
a broad characterization of only those additional classes of exceptions that are
related to some of the unique characteristics of such environments.

Mobility exceptions: An agent, being autonomous, can make a migration re-
quest to roam in the network. There are a number of cases when a migration
request could result in an exception. For example, an agent makes a request
to migrate to a non-existing host, or the destination host refuses to accept
the agent, or the communication link to a host has failed. A migration re-
quest may also fail due to security reasons if the verification of an agent’s
credentials fails at the destination host.

Security exceptions: An agent may not be granted permission to execute in some
environment, or may not be given adequate resources to do its task. Typically
a host would enforce restrictions on an agent’s access to its resources such
as files, network ports, and application objects. Moreover, it may impose a
limit on usage of resources such as CPU and memory, or on the duration for
which an agent can live in its environment. A security exception could also
arise when an agent’s state is found to be illegally modified or the verification
of its credentials fails.

Communication exceptions: These arise when an agent tries to communicate
with another agent. There could be various reasons for these exceptions. For
example, the system fails to locate the receiver agent, or the receiver migrates
just before the communication request arrives. Communication may also fail
if the host environment raises a security exception because the agent is not
allowed access to network resources.

132 A. Tripathi and R. Miller

Coordination exceptions: A typical situation of a coordination exception is the
case when one agent fails to communicate with another agent by some spec-
ified time. This is the typical timeout exception. An example of a more
complex exception is a deadlock condition in a group of cooperating agents.
One needs mechanisms to detect this type of conditions and then signal an
exception to the members in the group. Another example of a coordination
exception is in the case of a barrier-join protocol when an agent fails to arrive
at the barrier due to some fatal failure.

Configuration exceptions: These arise due to a misconfigured system. For ex-
ample, appropriate privileges are not set for an agent to execute in an en-
vironment. Another example of misconfiguration is when an agent fails to
load the code for the classes that it needs for its designated task. Most often,
a configuration exception arises due to incorrect and inadequate privileges
granted to an agent.

3 A Model for Exception Handling in Agent Systems

An event is the condition that causes a program’s execution to be directed to a
handler. An exception is an event that is caused by a program using a language
construct (e.g., throw), or raised by the underlying virtual machine. Exceptions
are synchronous in the sense that an explicit program statement must signal the
exception. An exception only has meaning in the same thread that signaled the
exception.

An interrupt is an event originating externally to an agent; i.e., it is not
caused by the agent program executing an explicit statement. It is asynchronous
in that the program has no knowledge when it will occur. An incoming message
to a thread may cause an interrupt, with the interrupt handler being the mes-
sage handler. An interrupt handler may signal an exception to the interrupted
program, thus ‘converting’ an asynchronous event into a synchronous one.

A notification is a message sent from one agent to another. The notification
itself is not an exception, but the message handler may signal an exception based
on the information contained in the notification. A notification message can con-
tain two types of information: exception or command. An exception notification
is one that the sender does not know what the receiver will do with it. A com-
mand notification means the sender expects the receiver to execute the specified
action (i.e., the sender is commanding the receiver to do some action).

Exceptions that are signaled in an agent are broadly classified into two cat-
egories: internal or external. An internal exception is one that is completely
handled by the agent. The agent does not go outside itself to handle the excep-
tion. An external exception is one that is not fully handled by the agent. An
external exception does not necessarily mean that the exception has no handler
in the agent; it only means that the agent did not handle the exception com-
pletely within itself. In general, an internal exception is one that an agent expects
and knows how to handle. External exceptions are ones that are unexpected or
involve cooperation with other agents.

Exception Handling in Agent-Oriented Systems 133

A guardian is an agent with a special relationship to other agents in an
agent based application. It acts as a global exception handler and monitor for
its application agents. As a global exception handler, it can ‘handle’ an agent’s
unhandled exceptions, as well as any external exceptions arising in an agent. As
a monitor, it can deal with situations that involve coordination or cooperation
between all the monitored agents. For example, if several monitored agents need
to synchronize at a barrier, then without a guardian each agent would have to
know all the other agents that are involved in the barrier. With a guardian, it
is much simpler since the guardian is a centralized agent.

An agent is situated in an environment, and a distributed agent-based system
may consist of multiple environments. An environment represents a host or a
server process in the network. An agent may be mobile, i.e. capable of migrating
from one environment to another. We view the execution environments also as
agents that are generally stationary, i.e. they lack mobility. Thus, the interactions
between an agent and its environment can be viewed in the same way as those
between two agents.

Figure 1 illustrates a typical multi-agent application environment. This ap-
plication consists of four agents and one guardian. An agent can notify and send
an exception to its guardian. The guardian can issue various kinds of commands
to its agents or it may query status of an agent by either directly communicating
with it or its environment.

Agent 1 Agent 2 Agent 3 Agent 4

notify(e)

Multi-Agent Application Environment

Agent-environment Agent-environment

Agent-environment

Report command query-status

Agent-environment

Agent

Guardian
Guardian

Fig. 1. A Multi-Agent Application Environment

Figure 2 shows the typical structure of exception code within an agent. On an
exception, the agent first checks whether the exception could be handled locally.
In case of an external exception, the agent communicates with the guardian. The
guardian then returns an appropriate command, based on the condition. It may
instruct the agent to either retry the operation, or terminate itself, or co-locate
with the guardian and report to it for further recovery.

134 A. Tripathi and R. Miller

retryLabel: try {
...

}
catch (InternalException e) {

...
}
catch (ExternalException e) {

command = notifyGuardian(e);
if (command == RETRY) {

goto retryLabel;
} else

if (command == TERMINATE) {
throw terminateException;

} else
if (command == REPORT) {

throw colocateException (report(e));
}

}

Fig. 2. Example of internal and external exception handling by an agent

Mobility exceptions generally require selection of an alternate plan. It is
possible to provide an agent with an itinerary, which includes internal exception
handling actions to select an alternate plan for the agent [15]. If no such alternate
plan is available, then the guardian should be asked to take a global action based
on the state of the other agents in the application.

One of the goals of robust programming is for an agent to be able to recover
from an error. Security exceptions are ones that an agent cannot handle itself,
because there is nothing an agent can do to increase its authority to access
the resource it was denied. A guardian can simplify this. It can possibly have
higher security privileges, and so it could grant a failed agent some additional
privileges and then restart it. This can all be done using external exceptions and
commands.

Coordination exceptions typically require a global view of the situation to
take any remedial actions. For this a guardian is well suited as it can communi-
cate with other agents, and possibly alter their plans.

Another kind of exception is a configuration exception. It is signaled when the
environment does not give to an agent access to all of the resources needed by it.
It is a combination of security, resource allocation, and network exceptions. Here
also a guardian could take necessary steps to correct the system configuration.
Configuration exceptions cannot be handled by the agent that causes them.
However, a guardian could be trusted and have special privileges. It could correct
the configuration error, and restart the failed agent. Alternatively, a guardian
could restart the failed agent on another node which the guardian feels has a
higher probability of agent success.

Exception Handling in Agent-Oriented Systems 135

When an agent communicates an exception to its guardian, the guardian may
need to examine the state of the agent signaling the exception or the states of
some other agents in the ensemble, including the environment agents. In some
cases only the state of the signaling agent needs to be examined. For example,
if an agent encounters a mobility exception, indicating a host being inaccessible
due to communication failures, the guardian can possibly change its itinerary to
pursue an alternate plan. In this case only the state of the agent is examined
and changed by the guardian. If an agent encounters a security exception due
to misconfiguration, the guardian may need to communicate with the agent’s
environment to set up the configuration correctly, for example to grant the agent
some additional privileges. Consider the example of a pipelined execution of a
set of agents. An agent may encounter a timeout exception if its upstream agent
fails to deliver some data in time, or it encounters a communication exception if
the downstream agent is inaccessible. In this case the guardian has to examine
the status of the upstream or downstream agents by communicating with their
environments.

From the above discussion we conclude that a guardian needs mechanisms
to examine the state of the agent signaling an exception, and it may also need
to determine the state of other agents in an ensemble by communicating with
them or their environments. In some cases it may need to control the behavior
of its monitored agents by terminating them or changing their execution plans.

4 Patterns of Exception Handling by a Guardian

Patterns are exception handling strategies or actions to be executed when certain
abnormal events occur. An exception handling pattern is a policy that a guardian
invokes. The agents monitored by a guardian may become involved in the pattern
with the commands/notifications sent to them by the guardian. Some examples
of patterns are restarting an agent that fails on a node, aborting concurrent
search agents as soon as one agent satisfies the search, and terminating child
agents if the parent agent terminates. A guardian can be designed using some
commonly occurring patterns of exception handling. There are many possible
patterns, and here are a few examples:

Barrier synchronization: This involves a group of agents cooperating in a bar-
rier synchronization. Suppose that an agent in the group fails due to an
unhandled exception. This agent will report to the guardian using the ex-
ception notification mechanism. The guardian can examine the failed agent’s
status, and after determining that it failed before joining a barrier, it can
examine the status of the group’s progress towards the barrier synchroniza-
tion. The guardian can send a notification to the other participating agents
to not wait for the failed agent, and send a command notification to them
to either continue or abort.

Pipeline failures: A set of agents execute in a pipelined configuration. An agent
receives some data from its upstream agent, and then passes it to its down-
stream agent after performing some processing. An agent may encounter an

136 A. Tripathi and R. Miller

exception when the communication with its upstream neighbor times out
or it is unable to reach the downstream agent. In this case, it sends a no-
tification to the guardian, which could then check the status of the other
agent and initiate a recovery action. For this it needs to query that agent’s
environment. The recovery action by the guardian may involve reconfiguring
the pipeline or restarting a failed agent.

Primary-backup server recovery: A reliable service is implemented using a pair
of agents, acting as a primary server and its backup. If the primary server
fails, the guardian for this system can either try to repair and restart it, or
it can send a command notification to the backup agent to take over as the
primary and create a new backup.

Deadlock detection and recovery in an agent group: Assume that a set of agents
are acquiring various global resources, and that all these agents have the same
guardian. Whenever an agent tries to acquire such a resource, it notifies its
guardian with an exception notification. The guardian’s exception handler
stores the information, and determines, based on information obtained from
other agents, if the acquisition will result in deadlock. If so, the guardian
can send a command notification to an agent to tell it to relinquish some of
the resources. Similarly, if an agent times out in receiving some data from
another agent, it can notify the guardian, which can then construct the
global state to determine if deadlock has occurred. If so, it can then recall,
terminate or restart some agents.

Recovery and restart of a failed agent: Before an agent completely terminates
due to an error, it sends an exception notification to its guardian, and waits
for a command from it. The command can be to either terminate, restart
itself, or send back to the guardian all error information. The guardian may
be able, with information from other agents, to restart the failed agent with
proper parameters.

Configuration update: The environment an agent uses needs to be modified
(e.g., user needs to be authorized to a resource). Generally, an agent would
not have sufficient privileges to do that, but a trusted guardian could. If
a guardian receives a security exception notification from an agent, the
guardian may be able to correct the authorization problem by communi-
cating with the agent’s environment, and then restart or resume the agent.

Patterns further separate internal exception handling from external excep-
tion handling. A guardian takes much of the burden away from an application
agent exception handler when dealing with external exceptions. The guardian
determines the pattern. The guardian is doing the exception analysis and has a
global view to try and determine the best course of action via the pattern. The
agent just needs to respond to command notifications from its guardian.

Updating or adding new patterns is equivalent to updating a guardian. Re-
gardless of the guardian’s patterns, an agent does not handle any more excep-
tions. An internal exception is still an internal one, and an external exception
is still an external one. Thus, updating a pattern does not require updating an
agent.

Exception Handling in Agent-Oriented Systems 137

However, what is critical relative to an agent is the set of command noti-
fications that an agent is expected to respond to. The separation of guardian
from agent exception handling works because the guardian does not necessarily
need to know an agent’s complete state. It just needs to know enough to deter-
mine a pattern, and assume that the command notification it sends to agents is
faithfully followed.

The end effect is that changing a pattern is changing a guardian, while chang-
ing a command notification also changes an agent. If command notifications are
carefully selected, a given agent may be able to adapt to a wide range of circum-
stances, dependent on the particular guardian chosen.

5 Relationship to Fundamental Models

It is important to examine here the relationship of exception handling in agent
systems with the models for exception handling in sequential, concurrent, and
parallel/distributed programs [5,3,8]. There are two reasons for this:

1. By showing the relationship of an agent to a thread, it implies that an agent
will have similar exception handling problems as threads.

2. This also implies that any programming system that supports the various
thread environments (sequential, concurrent, and distributed) with exception
handling can also support the agent exception handling model presented
here. In particular, we chose to implement an agent system (Ajanta) using
Java, and so we should be able to illustrate agent system exception handling
using Java constructs.

Agents have a direct analogy to sequential, concurrent, and distributed pro-
grams. A sequential program corresponds to a single-agent system situated in
an environment represented by the host operating system. Concurrent threads
are multiple agents that happen to share a common environment. Distributed
programs are agents that have a fixed relationship (e.g., a client and server
agents, or peers in an agent group) and are situated in different environments in
a network.

Thus, agents have all the exception handling problems of sequential, concur-
rent, and distributed systems, as well as a few more. It will be useful to briefly
summarize the significant exception handling problems in these three kinds of
programming models. Though there are many problems in exception handling,
we believe that they can be summarized as follows. Also note that there is a hier-
archy: sequential exception handling problems are also in concurrent programs,
and concurrent exception handling problems are also in distributed exception
handling. Finally, the exceptions we are interested in are external exceptions.
Internal exceptions are completely handled by an agent.

We first turn to the basic issues related to exception handling in sequential
programs.

138 A. Tripathi and R. Miller

Exception propagation: This determines how to search for a valid handler. Dy-
namic propagation follows the call chain or registration of a handler, while
static propagation follows the program structure (e.g., a class handler).

Unhandled exceptions: These arise when an exception is signaled in the pro-
gram, but a valid handler for the exception is not found. How to deal with
unhandled exceptions in a program is an important issue.

Program flow control model: An unhandled exception in a program block can
cause the block to be either terminated, retried, or resumed into.

Conceptually, a guardian is similar to a static class handler, but it is dynam-
ically associated with the agent object. An agent can pass an exception to its
guardian when it encounters an external exception. It is possible to statically
determine the exceptions that an agent would pass to its guardian because only
external exceptions involve a guardian, and it is known statically which excep-
tions those are. In an agent’s code, the handler search is first dynamic (handler
associated with the stack invocation), followed by a static handler search (the
guardian). The invoking of the guardian as an exception handler is similar to
the notion in [4] of invoking a class handler if the current stack invocation does
not have a handler. By binding a different guardian to an agent at runtime, one
can change the recovery policies on external exceptions generated by the agent.

The advantages of a static handler [12] include a clearer separation of ex-
ception handling from the normal path, distinction between internal (local) and
external (non-local) exceptions (relative to a guardian), no new additional lan-
guage constructs are required, and there is always at least one handler for any
exception (the guardian is also invoked for any exception not handled by an
agent).

A guardian differs from other static handler approaches, such as those in [12,
2]. A guardian is dynamically bound to the agent, which is critical because it
separates external exception handling from internal exception handling, and it
allows a guardian to be outside the agent class (thus allowing a guardian to have
a global view).

In an agent system, exception propagation includes an agent’s guardian as
a dynamic handler registration. The guardian is not in the call stack, nor is it
necessarily part of the program. Due to the dynamic registration, the guardian
can be invoked at any point along the propagation path, not necessarily after
all the agent’s handlers have been searched. This allows for the guardian to
simulate any one of the exception models dynamically. For example, an agent’s
local handler sends an exception notification to the guardian. The guardian can
send a command notification back indicating to terminate (the local handler
re-throws the exception), resume (the local handler handles the exception), or
retry (the local handler returns from the procedure it is in with a fail return
code, allowing the invoker to call the procedure again).

In systems that support class handlers, using a guardian is straightforward.
The class handler invokes a guardian’s remote method on an external exception.
In systems with dynamic propagation, a handler is first searched for in the
current execution context (stack frame). The exception is propagated along the

Exception Handling in Agent-Oriented Systems 139

call chain until a handler is found. If the handler is part of an agent class method,
and it is an external exception, then the handler can access the guardian, giving
the appearance of a class handler.

Exception handling models in concurrent systems are required to address two
important issues:

Asynchronous exceptions: When one thread signals an exception to another
thread, the issue is when and how to deliver this exception to the target
thread.

Exception resolution: determining which exception(s) a target thread receives
if multiple exceptions are simultaneously sent to it from multiple threads. A
special case of exception resolution is during synchronizing (or coordinating)
concurrent threads, such as barrier synchronization or conversations [3].

It should be noted here that the model in [3] requires that all processes in
a conversation participate in cooperative exception handling. In contrast, the
model presented here does not necessarily require all agents in an application to
participate in cooperative recovery through its guardian. However, it is possible
for a guardian to require all its agents to be involved in a recovery action. Our
model provides a framework to incorporate different policies for cooperative
exception handling among agents.

Recall that in an agent system, concurrent threads are represented by agents,
and that we are only dealing with external exceptions. An asynchronous excep-
tion has different meaning depending if the agent is a guardian or not. By def-
inition, an agent cannot send an external asynchronous exception to any agent
other than its guardian. A guardian can only receive external asynchronous ex-
ceptions (as notifications) from other agents. That is, a guardian does not have
a guardian, so it cannot signal an asynchronous exception to itself (it would be
a synchronous exception, and the guardian’s handler would consider it to be an
internal exception).

So, external asynchronous events received by an agent can only be com-
mands. External asynchronous events received by a guardian can only be excep-
tions. This considerably simplifies the agent’s asynchronous exception handling,
because it does not have to determine what to do, just execute a command.

Exception resolution is similar. If multiple agents simultaneously and asyn-
chronously raise external exceptions, they all must go to the guardian. The
guardian, possibly using some pattern, determines the action to take and sends
a command to the affected agents. Note that all these events use the exception
mechanism, as explained earlier.

In an asynchronous system, in case of concurrently raised multiple exceptions,
the primary concern is to resolve them, possibly by combining some exceptions,
and to find a suitable handler for the resolved exception [3,19]. In a distributed
environment, causal relationship among concurrent exceptions may be important
in the resolution process. For that, one may need to consider global ordering and
causality relationships between exception events signaled by distributed agents.
For an agent ensemble in a distributed environment, a purely distributed solution

140 A. Tripathi and R. Miller

for coordination and exception resolution may not be most efficient. For that
reason the guardian can serve as a central coordinator for event ordering and
exception resolution.

Recall that the guardian is on the agent’s handler propagation path, and is
invoked as the external handler for the agent’s unhandled exceptions. The agent
has not terminated yet. The guardian can have a debug interface that allows
the programmer to query the agent through commands, or the guardian can
automatically collect a set amount of data. Once again, the guardian can use a
pattern to determine what to do.

Host crashes or communication link loss means an agent lost its guardian, or a
guardian lost an agent. If an agent loses its guardian, then it should be delivered
a notification that directs it to either bind to a new guardian, or terminate
itself. Agents must be safe, meaning they cannot exist if there is no one (i.e.,
its guardian) controlling them. If a guardian loses an agent, then it receives an
internal asynchronous exception. Depending on the pattern, the guardian may
create a new agent to replace the lost one, or do nothing. With a guardian, it is
not mandatory that other agents receive a notification that an agent was lost.
If the guardian knows whether the agents were cooperating (e.g., performing a
barrier synchronization) then agents receive notifications of a lost agent only as
needed.

6 Exception Handling in the Ajanta System

We now describe the exception handling model that we have developed and
integrated in the Ajanta mobile agent programming system. The mechanism
designed for Ajanta implement the basic model that we have presented in Section
3. It is based on the notion of associating one or more guardian agents with an
agent application. It also supports secure delivery of commands and notification
events to agents. We refer to this framework as agent system exception handling
because it deals only with external exceptions, which require global level decision-
making for recovery.

Ajanta1 [15] is a Java-based framework for programming mobile agent based
applications on the Internet. Ajanta is implemented using the Java [6] language
and its security mechanisms. It also makes use of several other facilities provided
by Java, such as object serialization, reflection, and remote method invocation.

In Ajanta, the mobile agent implementation is based on the generic concept
of a mobile object. Agents encapsulate code and execution context along with
data; they execute in the environments provided by Agent Servers at different
nodes in a network. An agent can be mobile, i.e., it can migrate from one agent
server to another. Programming abstractions are provided to specify an agent’s
tasks and its migration path. The Ajanta system provides facilities to build
customizable agent servers to host mobile agents, and a set of primitives for the
creation and management of agents. Ajanta also provides a secure name service
1 See http://www.cs.umn.edu/Ajanta for more documentation and information re-

lated to the availability of a public domain version of this system.

Exception Handling in Agent-Oriented Systems 141

for location-independent naming of all global entities, such as the agents and the
agent servers.

6.1 Agent Servers – Defining an Execution Environment for Agents

Security is an important requirement of an agent infrastructure. The base class
called AgentServer provides the generic functionality to host agents, create a
protected environment for their execution, transfer agents from one server to
another using its Agent Transfer Protocol (ATP), and respond to various agent
control functions. An application specific agent server is implemented by inher-
iting from the base AgentServer class. It can be easily customized for specific
services by creating appropriate resources (objects) and making them available
to the visiting agents through its resourceRegistry. A visiting agent can re-
quest access to a resource through this registry. The resource then constructs a
suitably restricted proxy [16], based on its security policy, and gives the agent a
reference to this proxy. The agent cannot access the resources directly, and the
proxy object ensures that sensitive operations are disallowed and throws a secu-
rity exception if the agent tries to execute any such operation. Ajanta ensures
that the proxy class is loaded from a trusted codebase. Details of this proxy
mechanism can be found in [15].

6.2 Structure of an Agent

The Agent class implements the generic functionality of a mobile agent. It defines
the protocol for handling the arrival and departure events of an agent at a server.
Each agent is bound to its host environment using which the agent can request
various services from its current server. These services include obtaining access
to local resources, registering itself as a resource, or requesting migration.

An agent can request migration to another server using the go primitive of
its host environment to migrate to another server. The agent specifies the name
of the server to which it wants to move to, and it also specifies the method to
be executed at the destination server after migration. Ajanta system uses Java’s
reflection facility for specifying this. A method specification consists of a method
name, the list of its formal parameter types, and the list of actual parameters
to be passed to this method on execution at the destination server. Another
primitive facilitates an agent to co-locate itself with some specified object. To
co-locate with its guardian, the agent throws the colocateException, which
is not handled by the agent. Because it becomes and ‘unhandled’ exception, it
causes the agent to be automatically relocated in the guardian’s environment.

We use Java’s object serialization facility to implement agent mobility in
Ajanta. Agents are simply serializable Java objects. Note however that object
serialization only captures the data values in an object’s state; it cannot capture
the execution state of the thread (or threads) currently executing that object’s
methods. Thus, when the agent object is deserialized at the remote server, a new
thread is assigned to execute a method specified in the migration request.

142 A. Tripathi and R. Miller

The concept of itineraries is built above the go primitive and is not an essen-
tial part of the basic agent structure. An agent can be created with an itinerary
to visit different servers and perform some designated tasks at those servers [15].
In [15] we have discussed how an itinerary can be created from generic migration
patterns, and how a pattern can perform some internal exception handling to
select an alternate plan of execution.

The agent is usually created by an application program – we call this the
creator of the agent. An agent’s owner is the human user whom the agent rep-
resents. An agent carries with it a credentials object, which is signed by its
owner. Its tampering can be detected. It contains the names of the agent, its
owner and the creator. For exception handling and error recovery in a mobile
agent application, the Ajanta programming model associates with an application
a stationary guardian agent. An application creates and assigns to each of its
agents a guardian agent. The name of its guardian is contained in an agent’s
credentials.

6.3 Guardians

When an agent arrives at a sever, the server creates a thread to execute the
agent’s public method specified in the transfer request. The creation of the
server thread and its invocation of the agent’s method is transparent to the
programmer. The base AgentServer implements this facility; using Java reflec-
tion, this is designed to be a generic facility to allow execution of any types
of agents. The agent method executed by the server thread can throw any of
the exceptions, as indicated in the invoked method’s signature. However, the
server thread is generic in its structure. It can catch such exceptions, but cannot
perform any meaningful recovery actions. To handle such situations, guardian
model is adopted.

During its execution, an agent may encounter some exception conditions.
Some of these may be handled within the agent’s code. These are the internal
exceptions. When an agent encounters an exception that is not handled by its
code, there are two options available to the agent. One option is to continue to
be situated in its current environment and remotely interact with the guardian.
The second option is to co-locate with the guardian.

In the first option, while handling an exception, an agent can request the help
of its guardian. It can do so by invoking the notify method of the guardian.
Through the invocation of this method, the agent passes to the guardian the
exception object. This invocation is authenticated for security, so the guardian
knows the verified identity of the calling agent. After examining the exception
condition, the guardian can return a directive to assist the agent in its further
actions. It is the application programmer’s task to define such directives.

In the second option, the agent is co-located with its guardian. If an excep-
tion is not handled by the agent, then such an exception is signaled to the server
thread executing the agent’s code. The server thread then transports the agent
to its guardian with the appropriate status information, including the excep-

Exception Handling in Agent-Oriented Systems 143

tion that caused the agent to fail. This migration is done using the co-location
mechanism described above.

The guardian’s location can be determined using the Ajanta name service.
On co-location, the agent invokes the report method of the guardian object and
passes to the guardian a reference to itself. The guardian can then examine the
agent’s state as described below.

Every agent contains an AgentStatus object, which is a vector containing
the status of its execution at the hosts visited so far. The status of an agent’s
execution at the various servers visited by it is described by the AgentStatus
object. This vector contains NotificationRecords. These records show whether
the status of the agent is okay. If not, it contains the exception encountered by
the agent, together with the stack trace for the exception to help in debugging. A
notification record with the appropriate exception object is added to the status
vector by the current server when an agent is to be sent to its guardian for error
recovery.

When the agent invokes the report method of its guardian, the guardian can
inspect the agent’s state, and if appropriate, modify it and re-launch the agent.
The agent may be asked to restart its itinerary, or sent back to the host, where
it encountered the exception, to resume its activities.

Structure of a guardian is an application developer’s responsibility. This can
be based on some of the patterns presented in the previous sections of this paper.
Ajanta provides some additional mechanisms using which the guardian can per-
form application-wide recovery actions. For example, in an agent-based program
consisting of a group of agents, the recovery action may require termination of
some or all of the agents in a group. Should one of the members encounters a
non-recoverable exception that affects the execution of the entire program, that
member needs to be terminated. These mechanisms are described below.

6.4 Agent Monitoring and Control

For a guardian to perform global recovery and error handling in an ensemble
of cooperating agents, Ajanta provides three commands – recall, retract,
and abort – which the guardian can invoke on its agents to control their ex-
ecution. It might be sometimes necessary to recall an agent back, because its
owner/creator/guardian needs to modify its further course of execution to per-
form some error recovery actions. There are other situations where these prim-
itives can be useful; for example, the creator of an application may decide to
terminate or recall an agent because it has received results from another agent
sent out to perform the same task. At times the owner might have lost control
over the agent, and may even need help from the hosting server to ship the agent
back. All these primitives are invoked on the server hosting the agent, which can
be determined by querying the name service. For security reasons, all of these
control primitives are executed only when invoked by the agent’s owner, creator,
or guardian.

The recall method of an agent server can be invoked through its RMI
interface to recall an agent hosted at that server. The server sends the agent to

144 A. Tripathi and R. Miller

its guardian after the agent has completed its execution at that server. There are
two forms of this primitive. In the first form, the agent is directed to co-locate
with its guardian and then execute the guardian’s report method. Using the
other form, the agent can be directed to co-locate with a specified target object,
and then execute its report method.

The server hosting the agent first authenticates the invoker of the recall
method. If the invoker is either the owner, creator, or guardian, then it sets
some information in the agent’s status object for it to migrate and report to the
designated target object after it has completed its computation at the current
server. This is done by the host server by calling the agent’s recallCommand
method. As a part of the system-defined exit protocol, every agent checks its
status object for any pending recall. If a recall command is pending, the agent
invokes the co-locate primitive to migrate to the target object’s server. Once
relocated there, the agent invokes the report method of the target object.

The retract primitive allows the caller to retract an agent back or send it
to its guardian or another target object ‘immediately’. The agent is interrupted
in whatever action it may be performing at the current host and is directed
to report to the target immediately. The abort primitive allows the caller to
kill the agent immediately. This primitive is useful if, for example, an agent’s
creator feels that the agent needs to be terminated because of some fatal error.
This primitive is also useful to terminate all agents of an aborted application.

7 Conclusions and Directions for Future Research

Agents represent another opportunity to create flexible programs. However, with-
out robust exception handling, it is likely agent-oriented programming will be
just as successful as past paradigms. The complexity of correct exception han-
dling leads us to conclude that global exception handling with a global handler
should be separated from application agents, and that generic patterns for com-
mon exception situations can be provided by a global handler.

This paper has proposed an agent-oriented exception handling model that
has four components: a global exception handler through a special agent called
a guardian; exceptions are either internal or external; the relationships between
events, exceptions, notifications, and commands; and exception handling pat-
terns.

The similarity between the basic exception handling problems in sequen-
tial, concurrent, and distributed programs and with agents has been discussed.
Those problems are exception propagation, unhandled exceptions, and program
flow control in sequential programs; asynchronous exceptions and exception res-
olution in concurrent and distributed programs. Agents also add new exception
handling problems, due to mobility, security, and communication failures.

It has been shown how the use of a guardian as a global exception handler can
simplify exception handling of these problems within the context of an external
exception. Some example exception handling patterns which a guardian would
invoke include barrier synchronization, primary-backup server recovery, deadlock

Exception Handling in Agent-Oriented Systems 145

detection and recovery in an agent group, recovery and restart of a failed agent,
and configuration updates.

This paper’s proposal is currently being designed into the Ajanta mobile
agent system. Ajanta incorporates the guardian concept, but does not provide
any patterns. Future work includes incorporating patterns in the Ajanta system,
fault-tolerant guardians (e.g., a guardian has a guardian), mobile guardians, and
support for agent groups to organize agent ensembles (the ensemble including a
guardian).

Acknowledgments: This work was supported by National Science Foundation
grants ANIR 9813703, EIA 9818338, and ITR 0082215.

References

1. Booch, G. Object-Oriented Design with Applications. Benjamin/Cummings Pub-
lishing Company, 1994.

2. Borgida, A. Exceptions in object-oriented languages. SIGPLAN Notices 21, 10
(October 1986).

3. Campbell, R. H., and Randell, B. Error Recovery in Asynchronous Systems.
IEEE Transactions on Software Engineering (1986), 811–826.

4. Dony, C. Exception handling and object-oriented programming: towards a new
synthesis. In Proceedings of European Conference on Object Oriented Programming
(ECOOP’90) (October 1990), pp. 322–330.

5. Goodenough, J. B. Exception Handling: Issues and Proposed Notations. Com-
munications of the ACM (December 1975), 683–696.

6. Gosling, J., Joy, B., and Steele, G. The Java Language Specification. Addison-
Wesley, August 1996.

7. Harrison, C. G., Chess, D. M., and Kershenbaum, A. Mobile Agents: Are
they a good idea? Tech. rep., IBM Research Division, T.J.Watson Research Center,
March 1995. Available at URL http://www.research.ibm.com/massdist/mobag.ps.

8. Issarny, V. An Exception-Handling Mechanism for Parallel Object-Oriented
Programming: Toward Reusable, Robust Distributed Software. Journal of Object
Oriented Programming (October 1993), 29–40.

9. Jennings, N. R. On agent-based software engineering. Artificial Intelligence
(2000), 277–296.

10. Karnik, N. M., and Tripathi, A. R. Design Issues in Mobile Agent Programming
Systems. IEEE Concurrency (July–September 1998), 52–61.

11. Klein, M., and Dellarocas, C. Exception Handling in Agent Systems. In
Proc. of the ACM Conference on Autonomous Agents’99 (1999), pp. 62–68.

12. Knudsen, J. Better exception-handling in block-structured systems. IEEE Soft-
ware (May 1987).

13. Morreale, P. Mobile Software Agents. IEEE Spectrum (April 1998), 34–41.
14. Parnas, D. L., van Schouwen, J. A., and Po, K. S. Evaluation of Safety-

Critical Software. Communcations of the ACM (June 1990), 636–648.
15. Tripathi, A., Karnik, N., Vora, M., Ahmed, T., and Singh, R. Mobile Agent

Programming in Ajanta. In Proceedings of the 19th International Conference on
Distributed Computing Systems (May 1999).

146 A. Tripathi and R. Miller

16. Tripathi, A. R., and Karnik, N. M. Protected Resource Access for Mobile
Agent-based Distributed Computing. In Proceedings of the 1998 ICPP Workshop
on Wireless Networks and Mobile Computing (August 1998), IEEE Computer So-
ciety, pp. 144–153.

17. Wong, D., Paciorek, N., and Moore, D. Java-based Mobile Agents. Commu-
nications of the ACM 42, 3 (March 1999), 92–102.

18. Woolridge, M. Agent-based Software Engineering. IEE Proc Software Engineer-
ing (1997), 26–37.

19. Xu, J., Romanovsky, A., and Randell, B. Concurrent Exception Handling
and Resolution in Distributed Object Systems. IEEE Transactions on Parallel
and Distributed Systems 11, TPDS (November 2000), 1019–1032.

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 147–164, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Action-Oriented Exception Handling in Cooperative and
Competitive Concurrent Object-Oriented Systems

Alexander Romanovsky1 and Jörg Kienzle2

1Department of Computing Science, University of Newcastle upon Tyne
Newcastle upon Tyne, NE1 7RU, UK

alexander.romanovsky@ncl.ac.uk

2
Software Engineering Laboratory, Swiss Federal Institute of Technology

CH - 1015 Lausanne Ecublens, Switzerland
joerg.kienzle@epfl.ch

Abstract. The chief aim of this survey is to discuss exception handling models
which have been developed for concurrent object systems. In conducting this
discussion we rely on the following fundamental principles: exception handling
should be associated with structuring techniques; concurrent systems require
exception handling which is different from that used in sequential systems;
concurrent systems are best structured out of (nested) actions; atomicity of
actions is crucial for developing complex systems. In this survey we adhere to
the well-known classification of concurrent systems, developed in the 70s by
C.A.R. Hoare, J.J. Horning and B. Randell, into cooperative, competitive and
disjoint ones. Competitive systems are structured using atomic transactions.
Atomic actions are used for structuring cooperative systems. Complex systems in
which components can compete and cooperate are structured using Coordinated
Atomic actions. The focus of the survey is on outlining models and schemes
which combine these action-based structuring approaches with exception
handling. In conclusion we emphasise that exception handling models should be
adequate to the system development paradigm and structuring approaches used.

1 Introduction
System structuring is employed to successfully deal with the growing complexity of
modern computer systems. The need to cope with abnormal system behavior makes
system design more complicated and, as experience shows, more error-prone.
Exception handling was therefore introduced as a disciplined and structured way of
handling abnormal system events [7]. It is usually a very important part of any general
structuring technique used in system design as it adds new ways of concern separation
which are vital for dealing with abnormal situations: it allows us to separate normal
code from exception handlers during system design and structuring, introduces a
dynamic separation of the execution of normal code and handlers, and provides two
ways of returning the control flow after the execution of a system component. This
clearly shows that exception handling mechanisms should rely on the way the system
is structured and be an integral part of system design. Many researchers regard
exception handling as a means for achieving system fault tolerance [5, 18], and we
share this view. In this context exception raising follows error detection, exception
handling equals to error recovery and units of system structuring are units of

148 A. Romanovsky and J. Kienzle

exception handling and of recovery. Exception handling is used for incorporating
application-specific fault tolerance.

Considerable effort has been devoted to developing exception handling models for
sequential object-oriented systems, so a common understanding exists on many topics
in the field. Many practical systems have been designed using these features. The
situation is different in concurrent object-oriented systems. Although several schemes
combining concurrency and exception handling have been proposed, research in this
area is still scattered and most concurrent systems use sequential exception handling.
It is our belief that this is not the way it should be as exception handling features
should correspond to the programming feature used in system design. The choice of a
way to introduce exception handling into such systems depends on the way concurrent
systems are to be developed and structured because exception handling is a system
design issue, and language features should assist in and impose proper design.
Exception handling is tightly coupled with program structure and therefore the way in
which the dynamic execution of concurrent systems is structured influences possible
ways of introducing exception handling into such systems.

Several schemes have been proposed for introducing different units of system
structuring into concurrent object-oriented systems, but only rarely do they
incorporate exception handling features. And even when they do, they neither provide
a general exception handling model nor fit in with the main principles of object-
oriented programming properly. Although this is an area of very active research, there
are still many unclear points and unsolved problems here. A general common
understanding does not seem to exist. The purpose of this survey is to outline the
existing approaches and to compare them, to discuss problems to which satisfactory
solutions have yet to be found and to show likely directions of future research.

2 Concurrency and System Structuring
Many researchers view all object-oriented systems as inherently concurrent but this is
justified only if object consistency is somehow guaranteed. In reality, concurrency
adds a new dimension to system structure and design. Concurrent systems are
extremely difficult to understand, design, analyse or modify. To do this successfully,
we need concurrency features which would relate to the specific characteristics of
both object-oriented systems and the applications to be designed.

2.1 Single Method Concurrency

Concurrency in object-oriented systems is usually provided at the level of separate
method calls and objects (e.g. in integrated languages [30], which unify processes and
objects by defining objects as active entities). This allows object consistency to be
guaranteed and concurrency aspects of object behaviour to be addressed (see Fig. 1).
In this case the units of system structure and behaviour are separate method calls and
objects.

2.2 Competitive and Cooperative Systems

Complex object-oriented systems often need sophisticated and elaborate concurrency
features which may go beyond the traditional concurrency control associated with
separate method calls. The existing single method approaches do not scale because we
deal with each single operation separately. There is a need for using units of system
structuring which encapsulate complex behaviour and embrace groups of objects and

Action-Oriented Exception Handling 149

of method calls. These units should represent dynamic system execution as opposed to
the static declaration of objects inside objects. For example, it clearly makes no sense
to declare all potential clients of a server in a bigger object. System understanding,
verification and modification is facilitated if system execution is recursively
structured of units encapsulating several method calls or/and objects.

Fig. 1. Two threads T1 and T2 access objects O1 and O2 concurrently

Another concern which makes it necessary to extend the single-object view of
system structuring is provision of fault-tolerance: in many situations one cannot
guarantee that erroneous information is always contained inside an object. Without
this strong assumption, we have to deal with very complex error containment domains
consisting of several interconnected objects. For example, an error in a server can
affect several client objects, so it will not be sufficient to recover only one of them (a
client or the server). There are many applications which require such structuring units:
banking systems, CSCW systems, complex workflows, control of modern production
lines and cells, etc.

Various classifications of concurrent systems play an important role in identifying
general approaches/techniques as they make it possible to concentrate on
characteristics which are specific to different categories of systems and to develop
methodologies and supports which make it easier to develop systems of different
categories. To better understand additional considerations that we believe should be
taken into account in addressing issues of system structuring, let us consider the
classification of concurrent systems in [18] (which, in its turn, follows classifications
in [10, 11]). Three categories are outlined here; they are independent (disjoint),
competing and cooperating systems.

Competitive concurrency exists when two or more active components are
designed separately, are not aware of each other, but use the same passive
components. Programmers (would like to) live in an artificial world in which they do
not have to care about other concurrent activities. They access objects as if they had
them at their disposal. This concurrency is used, for example, when clients access a
server; some of the mechanisms supporting it are the RPC and synchronisation
constraints.

Cooperative concurrency exists when several components cooperate, i.e. do some
job together and are aware of this. They can communicate by resource sharing or
explicitly, but the important thing is that they are designed together so that they can
cooperate to achieve their joint goal and use each other’s help and results. Existing
systems sometimes provide support for single one-to-one communications, a direct
cooperation of equal partners: rendezvous, signals, message send/receive.

O2

T1

T2

O1

150 A. Romanovsky and J. Kienzle

Many researchers rely on the concept of atomicity in developing structuring
approaches to system design. Concurrent object-oriented systems (and systems in
general) are easier to understand and to analyse (see, for example [2, 17]) if their
execution is built out of atomic units encapsulating several objects and method calls,
provided no information crosses the borders of such units. The ability to nest such
units is vital for dealing with system complexity in a scalable way (we say that a unit
is nested if it contains a subset of objects or/and method calls from the containing
one). Providing fault tolerance is essentially facilitated in systems whose execution is
structured out of such atomic units as these units confine erroneous information (see
[28] for a detailed discussion).

2.3 Structuring Competitive Systems

Atomic transactions incorporating several object calls are the main approach to
structuring competitive systems (Fig. 2). Atomicity, consistency, isolation and
durability (ACID) are the fundamental properties of such units [8]. A transaction can
end either by committing all updates made on the objects or by aborting them. The
ACID transactions form the dynamic units of system execution and as such can be
nested in many models and implementations. These transactions are oriented mainly
towards tolerating hardware faults of different types: transient faults, node crashes,
etc.

Fig. 2. Transaction incorporating several calls of several objects (O1 and O2)

This approach works well for database, client-server or simple bank systems but
many applications nowadays require more sophisticated features. The original
transaction concept has been further developed; in particular, additional concurrency
at the caller side is often allowed.

The concept of a multithreaded transaction (MTT) has been used in different
transactional models for quite a long time. Very typical examples are the CORBA
transaction service [20] and Arjuna [21]. Several threads can perform operations on a
set of transactional objects within an MTT (Fig. 3). One of them starts a transaction,
then others learn its identity, using which they can access transactional objects within
the MTT. If a thread commits or aborts, the transaction does the same. This model is
quite general and flexible, it has been used in many industrial applications. However,
it leaves the burden of a highly labour-consuming and error-prone coordination of
threads inside an MTT to application programmers as it does not impose any
discipline on what these threads can do (guaranteeing the ACID properties of server
objects is of paramount concern here). For example, any thread can decide to leave
the MTT without knowing whether it is committed or aborted. In this model threads

T1

O1

O2

transaction
begins

transaction
ends

Action-Oriented Exception Handling 151

do not actually join the transaction because the transaction support is not aware of the
concurrency, and transactional objects do not guarantee mutual exclusion for threads
of the same transaction. The thread exit from an MTT is not coordinated. Another
problem with the MTT model is that programmers have to start and commit/abort
transactions explicitly because transactional structure is separate from method/object
structure.

Generally speaking, a very similar transactional model is provided by Enterprise
JavaBeans architecture (EJB) [6]. EJB allows system developers to associate several
client threads with the same transactional context. Unfortunately, this architecture
supports only flat transactions (nesting is not allowed).

Fig. 3. CORBA multithreaded transactions

Applications built using the object-based language Argus [19] are composed of
guardians, each of which provides an interface consisting of callable procedures called
handlers. Handlers can fork concurrent threads which are joined when a handler is
completed (see Fig. 4). Handler execution forms an atomic transaction; the execution
of nested handler calls are performed as nested transactions.

The Argus approach has been very influential: Vinari/ML [9] and Transactional
Drago [14] have similar computational models. Vinari/ML offers a transactional
extension of SML which allows creating transactional versions of high-order
functions; in this model new participants are explicitly forked by existing participants.
Transactional Drago is an extension of Ada (it requires a pre-compiler and a special
run-time support) which allows any program block to be declared and executed as an
ACID transaction. Tasks declared inside this block are executed together with the
block as additional transaction participants and they are to be completed before the
transaction can end.

Fig. 4. Argus multithreaded transactions

A new model, called open multithreaded transactions (OMTT), has been recently
proposed to allow developing systems with a richer concurrency than that of Argus
yet keeping the transaction boundary on the caller (thread) side under control [15]. In
the OMTT model multiple threads, called joined participants, can join a transaction,

O1

T1.1

T1.2

T1

T2

O1

O2

T1

152 A. Romanovsky and J. Kienzle

and any transaction participant can fork a thread which becomes a new transaction
participant called a spawned participant (Fig. 5). The restriction is that if a participant
has been created inside a transaction it has to be completed inside it. Note that such
participants take part in the execution of the final commit/abort protocol. The OMTT
can be nested: only participants of the containing transaction can join the nested one.
Transactional support effectively consists of two parts: one guarantees the ACID
properties of the objects called by transaction participants, the other coordinates
transaction participants (transaction entry, exit, nesting). Transaction participants can
see each other’s updates of transactional objects but the entire transaction is isolated
from the rest of the system. In some ways this scheme allows participants to (loosely)
cooperate but the idea is that they do not depend on each other and have their own
goals inside such a transaction.

Fig. 5. Open multithreaded transactions

The concurrent object-oriented language Arche [13] allows dynamic grouping of
objects. A group of N caller objects can synchronously call methods with the same
names and signatures in a group of M server objects (e.g. objects of the same type);
all these methods form a multioperation. Multioperation results are returned to all
callers (Fig. 6). Some servers can synchronously call another multioperation. Arche
relies on a competitive concurrency model (other multioperations compete for server
objects) wi simple concurrency control based on mutual exclusion. Cooperation of
servers ex
multioperat
jointly by a
does not us
only if the
useful for
objects.

Fig. 6. M

T1.1

O1

T1

T2
th a

ecuting a multioperation is not supported in the model, although a
ion can issue a call to another multioperation which can only be performed
ll group components; this forms a basis for multioperation nesting. Arche
e the full-fledged model of atomic transactions: multioperations are atomic
callees do not call external objects. This computation model has proved
implementing object replication and for employing diversely designed

ultioperation in Arche: callers C1 and C2 call a group objects S1, S2, and S3

S2

S3

S1

C1

C2

C1

C2

Action-Oriented Exception Handling 153

2.4 Structuring Cooperative Systems

Many object-oriented systems provide features only for performing single acts of one-
to-one cooperation. For a number of reasons, this is not sufficient when complex
cooperative applications, such as complex CSCW systems or workflows, are to be
developed. First of all, the approach should scale well to be useful for designing such
systems in which more than two objects have to cooperate to achieve joint goals.
Secondly, it should rely on structuring units which can be made atomic and nested (to
cope with system complexity). Another concern is providing fault tolerance: we need
such atomic units to keep under control erroneous information which can be smuggled
between several objects (e.g. several clients of the same server). If we do not structure
systems out of such units we encounter serious problems in defining the recovery
region. This complex multi-participant cooperation should be a system design concern
as we do not want to reason about it using single two-participant interactions (which
can be done but can dramatically increase the responsibility of programmers and as
such be error-prone).

The general concept of atomic actions, proposed in [4], answers all these concerns.
Several participants (threads, processes, objects, etc.) enter an action and cooperate
inside it to achieve joint goals (Fig. 7). They are designed to cooperate inside the
action and are aware of this cooperation. These participants share work and explicitly
exchange information in order to complete the action successfully. Atomic actions
structure dynamic system behaviour. To guarantee action atomicity, no information is
allowed to cross the action border. Actions can be nested (a subset of the participants
of the containing action can join a nested action). Participants leave the action to-
gether when all of them have completed their job. If an error is detected inside an
action all participants take part in a cooperative recovery. Atomic actions provide a
sound framework for developing schemes intended for tolerating faults of different
types: hardware faults, software design faults, transient faults, environmental faults,
etc. The conversation scheme [23] was the first atomic action scheme proposed: it
uses software diversity and participant rollback to tolerate design faults. A number of
atomic action schemes incorporating different fault tolerance techniques have been
developed since then for different languages: CSP, Concurrent Pascal, Ada, OCCAM,
Java (with and without extensions); for distributed, multiprocessor and single
computer settings; for different application requirements [24].

Fig. 7. Atomic actions: participants P1-P4 take part in the containing action, participants P3 and
P4 in the nested action

action
ends

action
begins

P1

P2

P3

P4

154 A. Romanovsky and J. Kienzle

There could be several structuring ways of incorporating atomic actions into
object-oriented and object-based systems. The first approach is to introduce actions as
classes or objects with methods representing participants, one each (as, for example,
in the schemes [16, 32]). The computation model allows all participants to be active at
the same time. The downside is that in this case we are losing the ability to treat
participants as classes. Another approach is to view actions as sets of participant
objects. For example, in scheme [26] a set of objects takes part in an atomic action by
executing one method each; the action here is formed as a set of separate methods.
Interfaces of participant objects have to be extended to allow their synchronisation on
the action entry, exit and nesting. In both scenarios we need a special support to coor-
dinate participant execution. These ideas allow us to make use of the many advantages
of object-oriented programming while designing new object-oriented atomic action
schemes (including their supports) and applying them.

2.5 Structuring Systems with Cooperative and Competitive Concurrency

Developers of the Coordinated Atomic action (CA actio [25, 33] realised
that many realistic systems to be modelled/controlled by have elements of
both cooperation and competition and that it is impo
combined within one system. CA actions provide a fr
different kinds of concurrency and achieving fault to
extending two complementary concepts - atomic actions
[8]. Atomic actions are used to control cooperative con
coordinated error recovery whilst transactions are used to
shared resources in the presence of failures and competitiv

Fig. 8. CA atomic actions: action participants access

Each CA action is designed as a stylised multi-entry
are activated by action participants cooperating within th
action starts when all roles have been activated and finis
the action end. CA actions can be nested. The state of the
a set of local and transactional objects. Transactional obje
by several CA actions in such a way that information
them and that any sequence of operations on these object

CA action
begins

P1

P2

P3

P4

O1
n) concept
 software

rtant to allow them to be
amework for dealing with
lerance by integrating and
[4] and atomic transactions
currency and to implement
 maintain the consistency of
e concurrency (Fig. 8).

transactional objects

procedure with roles which
e CA action. Logically, the
hes when all of them reach
 CA action is represented by
cts can be used concurrently
cannot be smuggled among
s bracketed by the start and

CA action
ends

Action-Oriented Exception Handling 155

completion of the CA action has the ACID properties with respect to other sequences.
The execution of a CA action looks like an atomic transaction for the outside world.
Action participants explicitly cooperate (interact and coordinate their executions)
through local objects (for example, those of message, mailbox or buffer classes). All
participants are involved in recovery if an error is detected inside an action since
conceptually it makes no difference which of them detects an error and the whole
action represents the recovery region. Object-orientation plays an important role in the
CA action concept and in developing different Java and Ada implementation schemes:
concrete actions, action roles, local object and transactional objects are viewed as
instances of classes.

3 Exception Handling

Exceptions are abnormal events which can happen during program execution. Many
languages and systems provide special features for handling them in a disciplined
way. These features allow programmers to declare exceptions and enable
programmers to treat a program unit as the exception context and to associate
exceptions and exception handlers with such context, so that when an exception is
raised in this context, execution stops and a corresponding handler is searched for
among the handlers (there are some models in which one can propagate an exception
straight outside the context). In our opinion, the vital feature of any exception
handling mechanism is its ability to differentiate between internal exceptions to be
handled inside the context and the external exceptions which are propagated outside
the context: these exceptions are not clearly separated in many languages although it
is obvious that they are intended for different purposes.

This separation can be done provided the following conditions are met: contexts
are associated with program units which have interfaces and the concept of context
nesting is defined. Most existing exception handling mechanisms use dynamic
exception context nesting in which case the execution of the context can be completed
either successfully or by interface exception propagation - this exception is treated as
an internal exception raised in the containing context. The simplest example of the
dynamic nested context is nested procedure calls. Actually this is the dominating
approach which suits the client/server or remote procedure call paradigms well and
which is used in most systems and languages (e.g. in C++, Ada, Java, CLU).

External exceptions allow programmers to pass (in a disciplined, unified and
structured fashion) different outcomes to the containing context. This can be used to
inform it of the reasons for abnormal behaviour and of the state in which the context
has been left, to pass partial results, etc. Another important issue which exception
handling models have to address is defining the state in which the context is left when
an external exception is propagated. Some systems provide an automatic support
which guarantees the "all-or-nothing" semantics: if an exception is propagated
outside, all modifications made inside the context are cancelled. Another possibility
(which originates in the Inscape software development environment [22]) is to allow
the context to be left in several states: an initial state (an abort exception is
propagated); successfully committed state (if no exception is propagated outside); and
several "partial" committed states, when the requested result cannot be achieved but
partial (or degraded, alternative) results are still acceptable (external exceptions are
propagated). It is clear that developing supports to provide such functionalities is a

156 A. Romanovsky and J. Kienzle

difficult task, this is why in many systems all responsibility of leaving the context in a
known and consistent state rests entirely with application programmers.

The model of exception handing in object-oriented programming follows all
fundamental principles of building such mechanisms. Exception handling is usually
associated with either dynamic (method calls) or static (object/class declaration)
system structuring: exception contexts are methods or classes, interface exceptions are
declared in the type (often in method signatures). Unfortunately, in many concurrent
object-oriented systems exception handling is, in essence, sequential as it is related to
single classes or separate methods.

4 Single Method Exception Handling in Concurrent Systems

In many concurrent object-oriented systems (e.g., Java, Guide, Arche and Ada)
exceptions are propagated through nested (and, sometimes, remote) method calls and
exception contexts are either separate methods or objects. These systems provide
features for guaranteeing object consistency when several clients issue concurrent
calls. This is a very important issue but in our opinion this type of exception handling
is not sufficient for many reasons. If only mechanisms of this type are employed
exception handling is effectively separated from concurrent programming. Moreover,
such mechanisms rely on a very simplistic view of concurrent system structuring and
of handling abnormal events in such systems. Some researchers (e.g. [3]) argue that
special features for involving several concurrent objects in exception handling are so
difficult to develop and use that object-oriented system developers should use only
sequential exception handling. Thus, an essential but a most difficult feature to
provide is random interruption of a thread when an exception is raised in another
thread. We believe that this misunderstanding is due to the fact that exception
handling issues are being considered separately from those of system structuring,
which is clearly wrong for many reasons: first, exception contexts are (should be
viewed as) units of system structuring; secondly, dynamic system structure is defined
by exception context nesting and, thirdly, interface exceptions have to be part of
structuring units.

In our opinion, there are no reasons why exception handling should have to be
sequential in concurrent systems. Concurrency clearly adds a new dimension to
system design and execution. And exception handling should keep up with this new
feature. Moreover, concurrent exception handling should be associated with the way a
concurrent system is structured in the same manner in which this works for sequential
systems. We consider such support for exception handling in concurrent programming
vital for dealing with the complexity of concurrent systems. Ideally, exception
contexts (i.e. structuring units) should encapsulate complex behaviour consisting of
several operations on several objects.

There have been some attempts to address this problem. For example, the Oz
language [31] allows associating a handler with a thread. This handler is initiated
before the thread is terminated, which can be used for handling any exceptions raised
in any threads as well as for those propagated out of the outmost context in the thread.
Language Facile (an extension of SML) [29] allows us to declare the same exception
in several processes; when this exception is raised in any of them, the execution of all
processes which declared this exception is interrupted and handlers are called (the
process terminates if it has not a handler for this exception). Another example is Ada,

Action-Oriented Exception Handling 157

in which an exception propagated out of the accept body during rendezvous is
signalled in the context of the caller and of the callee containing the accept body.

A more sophisticated example is an extension of the concurrent object-oriented
language ABCL/1 by a concurrent exception handling mechanism [12]. This
extension relies on the ABCL/1 computational model, within which method calls are
viewed as message transmissions between concurrent objects, and methods as
operations initialised by accepting the corresponding messages. Exceptions are treated
here as signals that can be transmitted between objects. Any method call can be
accompanied by a special tag indicating the reply destination: the tag is the name of
the object which will receive the method results (the reply). The exception context is a
block of statements or a method body. In the extended ABCL/1 a new notion of
complaint is introduced. It is similar to the notion of reply but intended for informing
another object (complaint destination) of any unexpected things occurring during
object (method) execution. Complaints (a type of failure exceptions) can be of four
kinds: unaccepted messages, time-outs, system-defined (predefined) and user-defined
complaints. Complaint destination can be declared in each object, which changes the
direction of exception propagation from methods (objects).

Language eCSP is another interesting attempt to introduce exception handling into
concurrent systems [1]. In this language, if a process cannot continue its normal
execution because of an exception, it signals a global exception so that any process
which will be communicating with this process in the course of its normal execution
will get an exception raised in its context.

Unfortunately, the schemes above neither relate exception handling to structuring
concurrent systems, nor scale well. They do not provide any support for leaving the
exception context in a known consistent state. Usually all responsibility for
transferring information about exceptions among several processes and their
coordinated handling is left with programmers.

5 Action-Oriented Exception Handling

Structuring complex concurrent systems using atomic actions offers us a
straightforward choice of exception contexts. (By atomic actions we mean all types of
atomic units of structuring system behaviours discussed above in Section 2: atomic
transactions, atomic actions, CA actions.) Treating such units as contexts seems the
most beneficial way because these atomic units have clearly defined borders, can be
nested and no information can cross the unit border. It is important that this approach
is compatible with the way we structure sequential systems for exception handling,
which is based on nested method calls. The general exception handling model can
easily be applied here to allow internal exceptions and corresponding handlers to be
associated with such structuring unit. Actions can have interfaces enriched by external
exceptions which the unit can propagate into the containing exception context (i.e.
into the containing structuring unit). Atomicity of actions (i.e. of exception contexts)
is vital for dealing with abnormal events (i.e. exceptions) as it guarantees the
containment of all (potentially erroneous) information which should be involved in
exception handling and recovery. Clearly, the atomicity of action execution has a
general importance for all phases of system development: it facilitates reasoning about
the system, system understanding, verification and development, tolerating faults of

158 A. Romanovsky and J. Kienzle

different types, etc. In addition, it guarantees the most beneficial way of information
and behaviour encapsulation, when no intermediate results can be seen from the
outside and the execution of units is indivisible. This is why we believe that exception
handling in concurrent systems should be action-oriented.

There is an important question which should be addressed while developing
support for such atomic units. There is a lot of evidence indicating that it is very likely
that multiple exceptions are raised at the same time in a concurrent (and, in particular,
distributed) system [27, 35]. These complex situations have to be correctly resolved,
and atomic actions give a simple and well-structured way of dealing with them. First
of all, concurrent exceptions raised in concurrent (sibling) actions are handled
separately. To deal with exceptions raised inside an atomic action, paper [4] proposes
the concept of exception tree which includes all exceptions associated with this action
and imposes a partial order on them in such a way that a higher exception in the tree
has a handler which is capable of handling any lower-level exception or any
combination of them. The idea is to handle the resolved exception which corresponds
to the tree node that is higher than nodes of all concurrent exceptions raised in the
action. Recently this approach has been further developed to allow action exceptions
to be ordered by a resolution graph and to provide an improved decentralised
resolution algorithm [35].

Generally speaking, atomicity of actions means that the intermediate results of
action execution are not seen from the outside; we will adhere to this understanding in
the following discussion of different action schemes. Some of these schemes allow
partial (but consistent) action results to be achieved and the system to be moved in a
new consistent state when an exception is propagated outside this action; others
subscribe to the idea that if any exception is signalled outside an action, the "nothing"
semantics should be provided.

5.1 Exception Handling in Competitive Systems

The designers of transactional systems often do not incorporate exception handling
but use return error codes instead. There are many problems with this approach.
Firstly, the use of return codes has always been described as a canonical example of
bad practice caused by the absence of the exception handling mechanism [7].
Secondly, even if the core language has exception handling, it is completely separated
from transactions and, as a result, application exception handling (including the
exception context, exception propagation, etc.) is separated from the transactional
structure. The CORBA transaction service [20] (Fig. 3) is a typical example of this: it
offers a very sophisticated MTT model but programmers can use only sequential
exceptions (e.g. those of C++ or Java): any exception raised in an MTT transaction
can cross its border unnoticed, each MTT participant deals with its exceptions
separately, the MTT transaction is not the exception context, one cannot define or
handle exceptions at the transaction level. Actually, the transaction border is not
clearly defined in this model as participant threads are not coordinated in any way.

It is symptomatic that the designers of EJB [6] have made a serious efforts to
combine exception handling with transactions. This model allows us to develop a
system in which any exception signalled by a transactional object can affect the
execution of the whole transaction. For example, one can mark the transaction for
abort, re-raise the same or another exception, try to recover the situation and continue

Action-Oriented Exception Handling 159

the transaction, abort the transaction and re-raise the same exception, etc. However, it
is clear that MTTs are not full-fledged exception contexts because multiple
participants are not coordinated (e.g. they are not informed when the transaction is
aborted) and because such transactions cannot be nested.

The most general approach to incorporating exception handling into competitive
systems is to allow each transaction to have internal exceptions with handlers inside
and external exceptions described in the transaction interface. Generally speaking,
interface exceptions are to be propagated to the containing transaction. It is important
to be able to associate some external exceptions with the abort outcome; when other
exceptions are signalled, the state of all objects involved should be known and
committed. The problem here is to introduce transactional exception handling into the
object-oriented context and to avoid having different exception mechanisms for
sequential and concurrent programming (i.e. for individual threads and for
transactions) within the same system.

Argus [19] (Fig. 4) provides a very powerful extension of sequential object-
oriented exception handling. Methods (called handlers in this model) are atomic
transactions which have external exceptions declared in their interfaces. Threads can
be forked inside, allowing very rich computations to be performed concurrently.
Unlike the CORBA MTT, all Argus threads have to be synchronised and joined when
the transaction commits or aborts. An interface exception is propagated to a single-
threaded caller when any thread inside the transaction signals it. Any thread may
decide to signal an exception with or without transaction abort, which makes it
possible to commit partial results and to associate different results with different
exceptional outcomes. Internal thread exceptions have to be dealt with separately by
individual threads as the system does not provide any coordination for dealing with
such exceptions (which suits the competitive nature of this model well). Argus offers
a special construct for handling interface exceptions rather than making it possible for
the containing transaction to deal with them explicitly at its level.

The exception handling model of Vinari/ML [9] is in many ways similar to that of
Argus but it does not differentiate between external and internal exceptions: it is not
possible to declare external exceptions in transactional functions; a transaction is
always aborted if any exception is propagated outside the transactional function; if
there is no local thread-level handler for an exception, it gets propagated outside the
transaction.

Transactional Drago [14], unlike Argus and Vinari/ML, resolves concurrent
exceptions raised by several participating threads before signalling a resolved
exception outside the transaction. In this model, external exceptions cannot be
declared in the transaction interface, and any exception which is not handled by a
thread locally aborts the transaction and gets propagated outside it.

The OMTT model clearly separates internal and external exceptions. Each
participant has to have handlers for all of its local exceptions. If it cannot handle it, it
has to explicitly signal an external exception which always causes the transaction
abort. External exceptions propagated by a joined participant are raised in the
containing context of the caller thread. There is a predefined exception
Abort_Transaction which can be signalled by spawned participants if they decide to
abort the transaction. This exception is propagated to the callers of all joined
participants if they do not signal their external exceptions concurrently.

160 A. Romanovsky and J. Kienzle

In Arche (Fig. 6) each multifunction member represents an isolated exception
context and as such can signal an external exception. When all members have
completed their execution, a resolution function is applied, and the resolved exception
is propagated to all caller contexts (unless an appropriate action is taken by
programmers). This approach can clearly leave member objects in inconsistent states.

5.2 Exception Handling in Cooperative Systems

Exception handling in cooperative systems can be quite naturally incorporated into the
atomic action framework [4, 35]. A set of internal and external exceptions is
associated here with each action, and these exceptions are clearly separated. The
model is recursive, and all external exceptions of an action are viewed as internal ones
of the containing action (Fig. 7). Each object participating in the action has a set of
handlers for all internal exceptions. In this approach, action participants cooperate not
only when they execute program functions (i.e. during normal activity) but also when
they handle abnormal events. This is mainly due to the fact that when an atomic action
is executed, an error can spread to all participants, and the system can be returned into
a consistent state only if all participants are involved in handling. This is why, when
an exception is raised in any participant, appropriate handlers are initiated in all of
them. An action can be completed either by signalling an interface exception into the
context of the containing action or normally (without internal exceptions being raised
or after a successful cooperative handling of such exceptions). Concurrent internal
exceptions are resolved using a resolution graph, so that handlers for the resolved
exception are called in all participants (see Fig. 9).

Even though several object-oriented schemes incorporating this kind of
exception handling have already been proposed (several of them will be mentioned in
Section 5.3 as this research has been mainly conducted in the context of developing
the CA action concept), there are still some theoretical and practical problems to be
addressed. It is not clear, for example, how to make an ordinary object also capable of
performing, when required, the functions of an action participant: the computational
models and object interfaces are very different for these two entities. There are still
unclear points as to how properly combine sequential exception handling and atomic
action exception handling in order to allow compatibility. The problems of inheriting
and refining action and role classes or types have not yet been addressed (let alone the
refinement of action exceptions, exception handlers, etc.).

Fig. 9. Exception handling in cooperative systems: internal exception e2 is in the nested action
(in participant P3); after an attempt to handle it cooperatively (by P3 and P4) interface

e1

P4

P3

P2

P1

e3e2 cooperative

handling

Action-Oriented Exception Handling 161

exception e3 is propagated to the containing context. Another exception, e1, is raised
concurrently in this context, and these two exceptions have to be resolved before cooperative
handling starts at the level of this action

5.3 Exception Handling in Systems with Cooperative and Competitive
Concurrency

Conceptually, exception handling in CA actions [25] (Fig. 8) is very similar to that in
atomic actions [4]: all action participants are involved in cooperative handling of any
internal exception, internal exceptions raised concurrently are resolved, external
exceptions are explicitly propagated by action participants, etc. (Fig. 9). The main
extension is an explicit dealing with local and transactional objects [35].

The CA action interface can contain one or more abort exceptions, a predefined
failure exception and a number of exceptions corresponding to partial (committed and
consistent) results which the action can provide. In the latter case it uses external
exceptions to inform the containing action of the fact that it has not been able to
produce a complete required result and, indirectly, of the state in which objects have
been left and of the partial results produced. When an abort interface exception is
signalled, the CA action is aborted: all local objects are destroyed (although, to
improve performance, they can be simply re-initialised if software diversity or retry
are used for recovery) and all modifications of transactional objects are cancelled. A
failure interface exception is signalled by the support when some serious problems are
encountered; for example, the support cannot abort or commit the states of
transactional objects. When an interface exception corresponding to a partial result is
signalled outside an action, the state of all transactional objects is committed before
raising this exception in the containing context. In all these cases signalling an
interface exception means that the responsibility for dealing with such abnormal event
is passed to a higher level in the system structure. The identity of the exception (with,
possibly, some output parameters) and the associated post-conditions provide this
level with all information it might need about the reasons for the exception and the
current system state.

There has been considerable experimental research on developing object-oriented
CA action schemes in Java and Ada and on applying CA actions to developing
realistic case studies: a series of Production Cell case studies, including a fault tolerant
one [34] and a real time one; a distributed internet Gamma computation; an auction
system and a subsystem of a railway control system which deals with train control and
coordination in the vicinity of a station. This research has produced first ever field
results on applying exception resolution: elaborate resolution graphs have been built
for a system controlling a complex industrial application with high reliability and
safety requirements [34].

6 Conclusions

The purpose of this survey is to analyse the exception handling models used in
concurrent (mainly object-oriented) languages and systems. Development of
exception handling features is tremendously complicated by the fact that exception
handling is a crosscutting issue which affects all other techniques and mechanisms
used in system development as any of them can encounter abnormalities of different

162 A. Romanovsky and J. Kienzle

types and has to deal with them properly. Poorly developed models can undermine the
basic purpose of exception handling, which is concerned with dealing with
abnormalities in a disciplined and uniform way throughout the whole system (design
and execution). In this survey we wanted to demonstrate the main trends in
developing exception handling models for complex concurrent systems and to
compare the existing models using some fundamental ideas we believe in as the
criteria:

� exception handling should reflect the way systems and their execution are
structured

� exception handling is the most general mechanism for achieving system fault
tolerance

� concurrent systems should be structured in a way which is different from that
of structuring sequential systems

� (nested) actions containing the execution of several objects should serve as
(nested) exception contexts

� atomicity of structuring unit execution is crucial for both fighting system
complexity and providing system fault tolerance

In conclusion, we would like to emphasise that advanced exception handling
models to be employed in concurrent object-oriented systems should relate to

� the development paradigm adhered to (e.g. object-orientation)
� the main implementation features (e.g. information and behaviour

encapsulation, typing, inheritance, concurrency, distribution)
� the type of concurrency (competitive, cooperative, disjoint)
� the system development (design) techniques used
� the way systems are structured (objects, classes, actions, modules)
� the application-specific characteristics of the system to be designed

Acknowledgments: Alexander Romanovsky has been supported by the EC IST RTD Project
on Dependable Systems of Systems (DSoS). Jörg Kienzle has been partially supported by the
Swiss National Science Foundation project FN 2000- 057187.99/1.

References

[1] Banatre, J.P., Issarny, V.: Exception Handling in Communication Sequential Processes.
Technical Report 660, INRIA-Rennes, IRISA (1992)

[2] Best, E.: Semantics of Sequential and Parallel Programs. Prentice Hall. London New
York (1996)

[3] Buhr, P.A., Mok, W.Y.R.: Advanced Exception Handling Mechanisms. IEEE
Transactions on Software Engineering, SE-26, 9 (2000)

[4] Campbell, R.H., Randell, B.: Error Recovery in Asynchronous Systems. IEEE
Transactions on Software Engineering, SE-12, 8 (1986) 811-826

[5] Cristian, F.: Exception Handling and Tolerance of Software Faults. In Lyu, M.R. (ed.):
Software Fault Tolerance. Wiley (1994) 81-108

[6] Enterprise JavaBeans. Specification, v.1.1, Sun Microsystems, Inc. (1999)
[7] Goodenough, J.B.: Exception Handling, Issues and a Proposed Notation.

Communications of ACM, 18, 12 (1975) 683-696
[8] Gray, J.N., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, San Mateo, California (1993)

Action-Oriented Exception Handling 163

[9] Haines, N., Kindred, D., Morrisett, J.G., Nettles, A.M., Wing, J.M.: Composing First-
Class Transactions. ACM Transactions on Programming Languages and Systems, 16, 6
(1994) 1719-1736

[10] Hoare, C.A.R.: Parallel Programming: an Axiomatic Approach. In Goos, G., Harmanis,
J. (eds.): Language Hierarchies and Interfaces. Lecture Notes in Computer Science, Vol.
46. Springer-Verlag, Berlin Heidelberg New York (1976) 11-42

[11] Horning, J.J., Randell, B.: Process Structuring. Computing Surveys, 5 (1974) 69-74
[12] Ichisugi, Y., Yonezawa. A.: Exception Handling and Real Time Features in Object-

Oriented Concurrent Language. In Yonezawa, A., Ito, T. (eds.): Concurrency: Theory,
Language, and Architecture. Lecture Notes in Computer Science, Vol. 491. Springer-
Verlag, Berlin Heidelberg New York (1991) 92-109

[13] Issarny, V.: An Exception Handling Mechanism for Parallel Object-Oriented
Programming: Towards Reusable, Robust Distributed Software. Journal of Object-
Oriented Programming, 6, 6 (1993) 29-40

[14] Jimenez-Peris, R., Patino-Martinez, M., Arevalo, S.: TransLib: An Ada 95 Object
Oriented Framework for Building Transactional Applications. Computer Systems:
Science & Engineering Journal, 15, 1 (2000) 113-125

[15] Kienzle, J., Romanovsky, A.: Combining Tasking and Transactions: Open Multithreaded
Transactions. Presented at the 10th Int. Real-Time Ada Workshop, Avila, Spain (2000) (to
be published in AdaLetters, 2000)

[16] Kim, K.H.: Approaches to Mehcanization of the Conversation Sccheme Based on
Monitors. IEEE Transactions on Software Engineering, SE-8, 3 (1982) 189-197

[17] Kurki-Suonio, R., Mikkonen, T.: Liberating object-oriented modeling from
programming-level abstractions. In Bosch, J., Mitchell, S. (eds): Object-Oriented
Technology: ECOOP’97 Workshop Reader, Lecture Notes in Computer Science, Vol.
1357. Springer-Verlag, Berlin Heidelberg New York (1998) 195-199

[18] Lee, P.A., Anderson, T.: Fault Tolerance: Principles and Practice (1990)
[19] Liskov, B.: Distributed Programming in Argus. Communications of the ACM, 31, 3

(1988) 300-312
[20] Object Management Group Object Transaction Service. Draft 4. OMG. OMG Document

(1996)
[21] Parrington, G.D., Shrivastava, S.K., Wheater, S.M., Little, M.C.: The Design and

Implementation of Arjuna. USENIX Computing Systems Journal, 8, 3 (1995) 255-308
[22] Perry, D.E.: The Inscape Environment. In Proc. of the 11th International Conf. On

Software Engineering. Pennsylvania (1989) 2-11
[23] Randell, B.: System Structure for Software Fault Tolerance. IEEE Transactions on

Software Engineering, SE-1, 6 (1975) 220-232
[24] Randell, B., Romanovsky, A., Rubira, C., Stroud, R., Wu, Z., Xu, J.: From Recovery

Blocks to Coordinated Atomic Actions. In Randell, B., Laprie, J.-C., Kopetz H.,
Littlewood, B. (eds.): Predictably Dependable Computer Systems. Springer-Verlag,
Berlin Heidelberg New York (1995) 87-101

[25] Randell, B., Romanovsky, A., Stroud, R.J., Xu, J., Zorzo, A.F.: Coordinated Atomic
Actions: from Concept to Implementation. Computing Dept., University of Newcastle
upon Tyne. Technical Report 595 (1997)

[26] Romanovsky, A.: Conversations of Objects. Computer Languages, 21, 3/4 (1995) 147-
163

[27] Romanovsky, A., Xu, J., Randell, B.: Exception Handling and Resolution in Distributed
Object-Oriented Systems, in Proc. of the 16th International Conference on Distributed
Computing Systems, Hong Kong (1996) 545-552

[28] Romanovsky, A.: On Structuring Cooperative and Competitive Concurrent Systems.
Computer Journal, 42, 8 (1999) 627-637

164 A. Romanovsky and J. Kienzle

[29] Thomsen, B., Leth, L., Prasad, S., Kuo, T.-S., Kramer, A., Knabe, F., Giacalone, A.:
Facile Antigua Release - Programming Guide. TR ECRC-93-20, ECRC GmbH,
Germany (1993) http://www.ecrc.de/research/projects/facile/report/report.html

[30] Tripathi, A., Van Oosten, J., Miller, R.: Object-Oriented Concurrent Programming
Languages and Systems. Journal of Object-Oriented Programming, 12, 7 (1999) 22-29

[31] Van Roy, P., Haridi, S., Brand, P., Smolka, G., Mehl, M., Scheidhauer, R.: Mobile
Objects in Distributed Oz. ACM Transactions on Programming Languages and Systems,
19, 5 (1997) 804-851

[32] Wellings, A.J., Burns, A.: Implementing Atomic Actions in Ada 95. IEEE Transactions
on Software Engineering, SE-23, 2 (1997) 107-123

[33] Xu, J., Randell, B., Romanovsky, A., Rubira, C., Stroud, R., Wu, Z.: Fault tolerance in
concurrent object-oriented software through coordinated error recovery, in Proc. of the
25th International Symp. on Fault-Tolerant Computing. Pasadena, California (1995) 499-
509

[34] Xu, J., Randell, B., Romanovsky, A., Stroud, R. J., Zorzo, A. F., Canver, E., von Henke,
F.: Rigorous Development of a Safety-Critical System Based on Coordinated Atomic
Actions, in Proc. of the 29th International Symp. on Fault-Tolerant Computing, Madison,
(1999) 68-75

[35] Xu, J., Romanovsky, A., Randell, B.: Concurrent Exception Handling and Resolution in
Distributed Object Systems. IEEE Transactions on Parallel and Distributed Systems.
TPDS-11, 11 (2000) 1019-1032

http://www.ecrc.de/research/projects/facile/report/report.html

Exception Handling and Resolution for
Transactional Object Groups?

Marta Patiño-Mart́ınez1, Ricardo Jiménez-Peris1, and Sergio Arévalo2

1 School of Computer Science
Technical University of Madrid (UPM)

28660 Boadilla del Monte, Madrid, Spain
{mpatino,rjimenez}@fi.upm.es

2 Escuela de Ciencias Experimentales
Rey Juan Carlos University

28933 Móstoles, Madrid, Spain
s.arevalo@escet.urjc.es

Abstract. With the advent of new distributed applications like on-
line auctions and e-commerce, the reliability requirements are becoming
tighter and tighter. These applications require a combination of data con-
sistency, robustness, high availability and performance. However, there
is no single mechanism providing these features. Data consistency is pre-
served using transactions. Robustness can be obtained by foreseeing and
handling exceptions. Objects groups can help in increasing the availabil-
ity and performance of an application. In order to attain the growing
demand of higher levels of reliability it is necessary to integrate these
mechanisms with a consistent semantics. This article addresses this topic
and studies the role of exceptions in this context.

1 Introduction

With the increasing importance of new distributed applications such as on-line
auctions and e-commerce, stronger reliability guarantees are required. These
applications need availability, data consistency and high throughput. Traditional
reliability techniques by themselves, like transactions or group communication,
only provide a subset of these properties. With the integration of these techniques
is possible to satisfy the surging need for higher levels of reliability.

Group communication [2,10] is one of the basic building blocks to build reli-
able distributed systems. Although, group communication primitives were pro-
posed in the context of groups of processes, they have been integrated with the
object oriented paradigm [15,17,8,16] resulting in what has been named object
groups.

A group of objects is a set of distributed objects that share the same interface
and behave as a single logical object. Clients interact with object groups as with
? This work was partially supported by the Spanish Research Council, CICYT, under

grant TIC94-C02-01 and the Madrid Regional Research Council (CAM), contract
number CAM-07T/0012/1998.

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 165–180, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

166 M. Patiño-Mart́ınez, R. Jiménez-Peris, and S. Arévalo

regular objects. Transparently to the client, invocations are multicast to all group
members. Object groups have traditionally been used to increase either system
availability or performance. If all the group objects are exact replicas, object
failures can be masked. On the other hand, distributing a method execution
among the group objects can increase performance.

Transactions [6] provide data consistency in the presence of failures and con-
current accesses. Transaction properties have become crucial for building reliable
applications. Their use has spreaded from databases to a more general setting,
namely distributed systems. The importance of transactions has been recognized
in the CORBA object transactional service (OTS) [19], Java transaction service
(JTS) [26], and Enterprise Java Beans [25] standards. But, also several general
purpose programming languages and libraries have incorporated them, such as
Avalon [4] and Arjuna [24].

Our research has been motivated by the need to provide a consistent inte-
gration of these mechanisms. In our proposal, clients can enclose a set of group
invocations within a transaction to preserve their atomicity. Object group meth-
ods can be executed as transactions. In this way, object consistency is guaranteed
in the presence of failures and concurrent accesses.

In this context the semantics of exceptions need to be precisely defined.
Exception handling plays a key role in our approach. First, the abort of a trans-
action is notified by means of an exception. Second, exceptions have been in-
tegrated in the context of transactions acting on groups of objects, providing
forward (exception handling) and backward (transactions) recovery to guarantee
data consistency. As the nature of object groups is concurrent several exceptions
can be raised concurrently. Concurrent exception resolution is provided to no-
tify the abortion of the corresponding transaction with a single and meaningful
exception.

This article concentrates on two main issues. First, it is discussed how forward
and backward recovery provided by exceptions and transactions, respectively,
have been integrated. And second, it is shown how to deal with concurrent
exceptions within the context of transactional groups.

The rest of the article is organized as follows. Next section describes the
features of transactional object groups. Section 3 discusses exception handling
in this framework. Section 4 proposes linguistic support for our exception model.
Implementation issues of this exception model are presented in Section 5. Finally,
we compare our proposal with related work and present our conclusions.

2 Transactional Object Groups

2.1 Object Groups

An object group can be considered a distributed implementation of a class.
Members (objects) of an object group share the same interface (the one of the
class) and can be located at different sites of a network. Method invocations
are reliably multicast to all the group members. Reliable multicast messages

Exception Handling and Resolution for Transactional Object Groups 167

are delivered to all the group members or none of them. This property helps
to keep the consistency among group members, as all of them will process the
same method invocations. Multicast is also virtually synchronous [1], that is,
membership (view) changes are delivered at the same logical instant at all the
members. This means that the members that transit from one view to the next
one have processed the same set of method invocations before the view change.
Therefore, the programming of reliable object groups is simplified.

We distinguish two kinds of object groups based on their functionality: repli-
cated and cooperative object groups.

Replicated object groups (replicated groups to abbreviate) provide hardware
fault-tolerance. They implement active replication. That is, all the objects pro-
cess each method invocation. In a replicated group all the objects are exact
replicas. They have the same state and deterministic code.

Objects of a replicated group behave as a state machine [23]. Method in-
vocations are reliable multicast and also total ordered [10] to guarantee that
behavior. Total order means that all the members of a group receive method
invocations in the same order. All group members start from the same state
and process the same method invocations in the same order. This feature to-
gether with the restriction of not allowing concurrency within methods ensures
the determinism of replicated groups [12]. If each object of a group is placed
at a different site, the group can tolerate up to k − 1 site failures, being k the
number of objects in the group. Therefore, the distribution and replication of
objects is used to increase the availability of a logical object. For instance, let?s
consider a name service that maps services to servers in a distributed system
(e.g., CORBA). This service is critical in the sense that when it is not available,
clients cannot contact the servers as they cannot find out their location, and
the system blocks. Replicating the name server object prevents this situation,
providing the required availability.

Replication is transparent both in front of clients and servers. Clients of
a replicated group invoke group methods as if the object were non-replicated.
Since all the group members have the same state and code, they will produce the
same answers, therefore a single answer is returned to group clients (Fig. 1.b).
Replicated groups can invoke other objects. That is, they can act as clients.
When a replicated group invokes another object (replicated or not), duplicated
requests must be avoided. In our approach only one method invocation takes
place (Fig. 1.c) to preserve the single object behavior of the group. Answers are
returned to all group members. To our knowledge only GroupIO [7], a group
communication library, implements such a behavior.

On the other hand, in a cooperative object group (or cooperative group) dis-
tribution is used to increase the throughput of the system. The state of an
object is distributed among the group members and thus, method invocations
are executed in parallel, decreasing latency. Hence, the state of the objects of a
cooperative group can be different. Even method implementation can be differ-
ent. For instance, a cooperative group can represent a bank and each member
can represent a branch of a bank. In this case, the state of the objects is different.

168 M. Patiño-Mart́ınez, R. Jiménez-Peris, and S. Arévalo

Fig. 1. Interaction with object groups

The group can provide an operation to pay the interest to each bank account
at the end of the month. That operation will be performed in parallel by all the
group objects.

During the execution of a method in a cooperative group, each object of the
group can create new threads to execute concurrently that method. This feature
allows taking advantage of the multiprocessing capabilities of the underlying sys-
tem. Thus, two levels of concurrency can be used to execute a method invocation
in a cooperative group, the inherent parallelism provided by object distribution
and local multithreading at each object.

Cooperative groups also behave as a single logical object in front of clients
and servers. Since the state and the code can be different, each object can return
a different result. The final result is composed at the client site before delivering
it to the client application (Fig. 1.a). For instance, a method computing the
total balance of a set of accounts will compose the results adding all the object
results.

Unlike replicated objects, objects of a cooperative group are aware of each
other and they can communicate among them. For instance, a cooperative group
can store the agendas of the staff of a company, where each group member holds
a department agenda. An agenda contains information about the schedule of an
employee. The group can provide a service to set meetings among members of
several departments in a given period of time. When this service is invoked, group
objects communicate among them to notify the availability of the members of
their departments to find a common free slot to set the meeting.

Exception Handling and Resolution for Transactional Object Groups 169

2.2 Transactions

Transactions [6] are used to preserve data consistency in the presence of failures
and concurrent accesses. A transaction either finishes successfully (commits) or
fails (aborts). A transaction provides the so-called ACID properties. Atomicity
ensures that a transaction is completely executed (it commits) or the result is as
it were not executed (it aborts). If a transaction aborts, the atomicity property
ensures that the state is restored to a previous (consistent) one. Hence, transac-
tion atomicity provides backward recovery. Isolation or serializability guarantees
that the result of concurrent transactions is equivalent to a serial execution of
them. Durability ensures that the effect of committed transactions is not lost
even in the advent of failures.

Transactions can be nested [18]. Nested transactions or subtransactions can
be executed concurrently, but isolated from each other. They cannot communi-
cate among them due to the isolation property. No concurrency is allowed in the
traditional nested transaction model apart from concurrent subtransactions. If a
subtransaction aborts only that subtransaction is undone, the parent transaction
does not abort. Therefore, subtransactions also allow confining failures within a
transaction. However, if a transaction aborts, all its subtransactions will abort
to preserve the atomicity of the parent transaction. We propose a more general
model, group transactions [20], where a transaction can have several concurrent
threads, either local or distributed. Those threads can communicate among them
and share data as they belong to the same transaction.

2.3 Transactional Object Group Services

If a client interacts with several groups and the atomicity of the whole interac-
tion must be preserved, multicast by itself does not help. The reliability property
of multicast is concerned with a single message (method invocation). To keep
the atomicity of several group invocations, a super-group [22] can be created.
This super-group contains all the groups the client will contact. However, this
solution is very expensive. Creating groups dynamically takes some time and the
groups’ programming gets more complicated. Messages must be decomposed to
know which part belongs to which group of the super-group. Additionally, this
approach does not deal with recovery (needed in case of aborts or failures) nor
with concurrency control (needed for concurrent clients). A simpler approach is
to enclose the whole interaction within a transaction. The transaction automat-
ically guarantees the atomicity property.

Transactional object groups provide atomic services. Clients must interact
with transactional object groups within a transaction. Methods of a transactional
group are executed as subtransactions, which are run by all the group objects.
A subtransaction corresponding to a method invocation on an object group is a
distributed transaction that has as many distributed threads as there are objects
in the group.

Subtransactions on replicated groups are highly available. They survive site
failures without aborting. A subtransaction (method invocation) in a replicated

170 M. Patiño-Mart́ınez, R. Jiménez-Peris, and S. Arévalo

group will commit as far as there is an available member. This contrasts with
the traditional approach where the failure of a single replica aborts all ongoing
transactions [9].

When a transaction (method invocation) is executed in a replicated group, it
just has a thread per object to enforce the determinism of the group. However,
this restriction does not apply to cooperative groups. Each object of a coopera-
tive group can create new threads on behalf of the (sub)transaction the object
is running. The lifetime of those threads does not expand beyond the method
execution. As the objects of a cooperative group work to achieve a common
goal, it is required that all the group members finish successfully to commit a
transaction. That is, a subtransaction in a cooperative group will commit, if all
its threads finish successfully, otherwise it will abort.

3 Exceptions in Transactional Object Groups

3.1 Exceptions and Transaction Aborts

The operation domain is decomposed into standard and exceptional domains
[3]. An operation invoked within its standard domain terminates successfully.
On the other hand, an operation invoked within its exceptional domain leads to
an exception raising, if the situation is detected. If the exception was foreseen, an
exception handler can fix the situation and bring the system to a new consistent
state (forward recovery), that is, the exception is handled. Exception handlers
are attached to exception contexts, i.e., regions where exceptions are treated
uniformly. Nested operation invocations yield to (dynamic) exception context
nesting. An unhandled exception in an exception context causes its termination
and it is propagated to the outer exception context.

We propose to use exceptions within transactions to attain forward recovery.
In this way we integrate backward and forward recovery provided by transactions
and exceptions, respectively. In the advent of foreseen errors a new consistent
state within a transaction (Fig. 2) can be obtained (those that the transaction
programmer has considered), preventing the transaction abort.

Fig. 2. Exception handling within a transaction

Exception Handling and Resolution for Transactional Object Groups 171

Unfortunately, every exception (error) cannot be foreseen nor every exception
can be handled. In our proposal, transactions act as firewalls for unhandled
exceptions applying automatically backward recovery (transaction abort) when
an unhandled exception is propagated outside the transaction boundary (Fig.
3).

Fig. 3. Exception propagation outside a transaction

As exceptions are used to notify abnormal situations, any exception that is
propagated outside the scope of a transaction causes its abort. If the transaction
had been able to handle the exception internally, it would mean that forward
recovery was successfully applied within the transaction. However, if the error
could not be handled, backward recovery (undoing the transaction) is automat-
ically performed. If the transaction commits, no exception is raised.

Fig. 4 shows how forward and backward recovery are combined. Subtrans-
action T1.1 raises an exception (Y). The exception is not handled in T1.1 and
therefore, it is propagated to the enclosing scope (T1). As a consequence, T1.1
aborts (backward recovery). Thread th0 handles the exception (forward recov-
ery) and transaction T1 continues.

We propose the use of exceptions to notify transaction aborts. Since trans-
action programmers can define their own exceptions, using exceptions to notify
aborts provides more information about the cause of an abort than the tra-
ditional abort statement. This integration can be seen as the identification of
transaction commit with the standard domain and transaction abort with the
exceptional domain of a transaction.

3.2 Concurrent Exceptions

In our model, client transactions can be multithreaded to increase performance.
Due to multithreading, two or more exceptions can be raised concurrently. In

172 M. Patiño-Mart́ınez, R. Jiménez-Peris, and S. Arévalo

Fig. 4. Combined forward and backward recovery

this case, the transaction is aborted, as it happens with a single-threaded trans-
action, and an exception is propagated to notify the abort. However, when there
are concurrent exceptions, it is necessary to perform exception resolution (local
resolution) to choose a single exception to notify the transaction abort. This
situation is depicted in Fig. 5.

Fig. 5. Concurrent exceptions and exception resolution

A similar scenario can happen during the execution of a group method. An
object group method is executed concurrently by all the group members. If mul-
tiple exceptions are raised, a single exception should be propagated to the outer
scope, in this case, the scope where the method was invoked. Hence, a mech-
anism for distributed exception resolution is also needed. We call it distributed

Exception Handling and Resolution for Transactional Object Groups 173

exception resolution, since it is performed among the distributed objects of a
group. Two cases must be considered: resolution in replicated groups and in
cooperative ones.

Replicated object groups behave deterministically. If a group object raises an
exception, all of them should raise the same exception. However, there are some
situations where the determinism of a replicated group is no longer respected.
For instance, when group members are writing to a file and one of the members
cannot write because of a local disk failure. If a member of a replicated group
raises an exception that the rest of the members do not raise, it is considered
faulty and removed from the group. Generalizing, a voting process is used for
distributed exception resolution in replicated groups, and those members that
are not in the majority are considered faulty and are removed from the group.
If no majority it is obtained, the abort error exception is raised provoking
the transaction abort. Handling concurrent exceptions in this way avoids state
divergence among the replicas.

In a cooperative group, each object can raise a different exception during
the execution of a method. What it is more, as each object can create local
threads during the execution of a method, concurrent exceptions can be raised
even within a single object. Concurrent exceptions raised within an object (local
exceptions) are more related among them that those exceptions raised at different
objects (distributed exceptions). It is our opinion that it is more adequate to
apply exception resolution in two stages instead of a single global one, as it is
usual.

The first level is a local exception resolution performed among the threads of
a method at a given object. This resolution can be different for each object of a
group. As a result of this resolution, each object will yield at most one excep-
tion. If two or more objects of a group raise exceptions, distributed resolution is
applied. This resolution constitutes the second level. Distributed exception res-
olution takes the exception raised by each group member (if any) and returns a
single exception. Observe that each object will propagate at most one exception.
If more than one exception is raised in an object, local exception resolution will
return a single exception. Therefore, only an exception is propagated at each ob-
ject. These two levels of exception resolution in cooperative object groups yield
to a hierarchical exception resolution.

The situation is depicted in Fig. 6. A method has been invoked in the group.
The group is executing the method. The three objects of the group (obj.1, obj.2
and obj.3) have two threads. At object obj.1, thread th1 raises the exception Y
and thread th11 raises Z. None of the exceptions is handled in its corresponding
thread. Object obj.1 applies local exception resolution. As a result, transaction
T finishes at obj.1 raising exception W. At obj.2 a single exception is unhandled
(X). Therefore, no local resolution is applied. Transaction T finishes at obj.2
raising exception X. obj.3 finishes transaction T succesfully. As two objects have
finished the transaction raising an exception, distributed exception resolution is
applied among the exceptions (W and X) raised by the group objects. The

174 M. Patiño-Mart́ınez, R. Jiménez-Peris, and S. Arévalo

exception resulting from this resolution (A) is propagated to the client to notify
the abort of transaction T .

Fig. 6. Local and distributed exception resolution

4 Linguistic Support

The mechanisms previously described have been included in an Ada 95 exten-
sion, Transactional Drago [21]. Ada 95 is a programming language that provides
objects, concurrency and exception handling, therefore, the extension of the
language is quite natural. Although, in this section we refer to Ada, the same
linguistic mechanisms can be easily applied to any programming language that

Exception Handling and Resolution for Transactional Object Groups 175

provides objects, concurrency/distribution and exceptions, for instance, Java.
The runtime of Transactional Drago is provided by TransLib [13] an object ori-
ented library that can be used in combination with Ada.

Our proposal consists of introducing two new constructs: the transactional
block, and transactional object groups. A transactional block allows to initiate a
transaction (or transactional scope). Transactional blocks have a similar syntax
to the Ada block statement. A keyword is used to distinguish a regular block
statement from a transactional one. As block statements can have attached ex-
ception handlers, no new instruction is needed to handle aborts (since they are
propagated as exceptions). Nesting of transactional blocks is used to implement
nested transactions. Data items declared within a transactional block are subject
to concurrency control (they are atomic) and can also be persistent. In order to
ease the programmer task, concurrency control is implicitly set in Transactional
Drago. In particular, read/write locking is used.

Ada tasks are used to create local threads where they are allowed (transac-
tional blocks and methods of cooperative groups). If tasks are declared within
a method of a cooperative object, they will be local threads of the associated
transaction. A method (and a transactional block) cannot terminate until all its
threads terminate, as happens with the regular block statement in Ada.

The Ada exception model is based on the termination model [5]. In this model
when an exception is raised, the scope where the exception is raised terminates.
Scopes in Ada are subprograms, task bodies, block statements, ... Unhandled
exceptions are propagated from one scope to the enclosing one until they are
successfully handled or they reach the outermost scope, which can be either the
main program or a task. An unhandled exception in the main program causes its
termination with a run-time error, whilst in a task, it causes the task termination.
We have modified the behavior of unhandled exceptions in tasks when they
belong to a transaction. Instead of losing the exception, the Transactional Drago
runtime handles it to prevent its loss and enforce the semantics presented above.

Transactional object groups are provided, extending the Ada distributed sys-
tems annex by introducing a new kind of partition (Ada unit of distribution)
corresponding to an object group. There is a peculiarity about cooperative ob-
ject groups. In these groups there is a single class specification, but there might
be multiple implementations (up to one per object of the group). Replicated ob-
ject groups have a single implementation and only the number of replicas needs
to be defined in this case.

In Ada there is no resolution of concurrent exceptions. In Transactional Drago
exception resolution clauses are provided to associate resolution functions for
concurrent exceptions either to a transactional block or to a cooperative object
group method. These functions take two exceptions as arguments and return the
resulting exception1. If n exceptions are concurrently raised within a transaction,
the resolution function will be called n−1 times by the runtime system to obtain
the final exception.

1 In fact, as exceptions cannot be passed as arguments in Ada 95, exception identities
are used for this purpose.

176 M. Patiño-Mart́ınez, R. Jiménez-Peris, and S. Arévalo

5 Implementation

The main implementation issue in the integration of transactional object groups
and exceptions is how to combine exception handling and resolution with trans-
action termination protocols (commit and abort). Termination of traditional
single-threaded transactions is trivially determined. A transaction finishes when
its code executes the last statement of a transaction, which determines the out-
come of the transaction. It finishes successfully, if a commit was executed. Oth-
erwise, it aborts. However, the termination of a multithreaded transaction is not
that easy. First, it is necessary to find out when it terminates. And second, it
must be determined how it terminates, that is, whether it commits or aborts. If
the transaction aborts, an exception must be choosen. In order to achieve this
task, we have combined three different algorithms: commit protocol, abort pro-
tocol, and exception resolution algorithm into one. We have called it hierarchical
termination algorithm.

First, let’s discuss the behavior of the protocol in the case of a non-distributed
(client) multithreaded transaction. Initially, a thread (the main thread) starts a
transaction. Once the transaction has started, this thread may spawn additional
threads (secondary threads) that will also work on behalf of the transaction.
Unlike in the traditional single-threaded model, it is necessary to perform a ter-
mination protocol where the main thread waits for the outcomes of all the trans-
action threads. If the transaction aborts (due to the exceptional termination of
one or more threads), the termination protocol will apply the resolution function
to obtain a unique exception. Then, it will abort the transaction and propagate
the resulting exception to the enclosing exception context. If the transaction
commits, the appropriate actions will be taken to make the results permanent.

Method invocations of object groups are performed as subtransactions. If
the group is cooperative, these subtransactions might have two levels of concur-
rency. At the first level there is a thread at each group object that executes a
method invocation. Those threads are distributed. The second level (is optional,
and only available in cooperative groups) corresponds to local threads created in
an object method. The termination algorithm is performed in two stages corre-
sponding to the two concurrency levels. First, each object waits for the outcome
of its local threads. It produces a successful outcome or an exception. In case of
concurrent exceptions, the local resolution function is applied. Then, the caller
acts as coordinator of the distributed termination. It waits for the outcome of
each of the objects. Again, the final outcome is commit if all the objects finished
successfully. In case of an abort, the exception propagated is chosen applying the
distributed resolution function to the exceptions propagated by the distributed
objects (that can be the result of a local resolution).

Transactions in replicated object groups also need a termination protocol.
The caller plays the role of coordinator and waits for the results of all the group
members. The majority decides the outcome of the transaction. If the outcome
is abort, the exception raised by the majority is propagated to the caller. The
objects not included in the majority are removed from the group. If the outcome

Exception Handling and Resolution for Transactional Object Groups 177

is commit, no exception is propagated. If no majority is reached, the transaction
aborts propagating the abort error exception to the caller.

6 Related Work

There have been few attempts to integrate transactions and exceptions in the
literature. One of the first ones was Argus [14], a distributed transactional pro-
gramming language. Its approach is an orthogonal integration where transactions
can commit or abort, independently of how they terminate (normally or excep-
tionally). In our opinion this implies some dangers. In particular, committing a
transaction that terminates exceptionally is quite dangerous. An exception in-
dicates that an operation has been called in its exceptional domain and hence,
that the postcondition is not guaranteed. Therefore, if the transaction commits,
a state that might be inconsistent is being made permanent.

[27] presents an approach for integrating coordinated atomic actions and ex-
ceptions. This work deals with a different context where processes join explicitly
on-going atomic actions at different moments to cooperate within them. These
processes are autonomous entities (for instance, different devices of a manufac-
turing system) that at some points cooperate to perform a particular action. For
this reason, when an exception is raised within a coordinated atomic action, the
exception is propagated to all the participants in the action.

Although, this approach is quite indicated for autonomous (active) entities,
it is not applicable to a transactional system, where servers are passive entities
that only perform work on behalf of clients. In particular, existing threads cannot
join on-going transactions. In our approach, threads are created when an object
group method is called. Those threads terminate with the method. Exceptions
raised by any of these threads are not propagated to other group members.
Resolution is applied and the result is propagated to the enclosing scope.

Arche [11] is a parallel object-oriented programming language. In this lan-
guage a notion of object groups is provided. An object group is defined as a
sequence of objects. The signature of a group operation (or multi-operation) re-
sults from converting each parameter from the original class (the base class of
the group) into a sequence of parameters of the original type. This object group
definition is targeted to the explicit parallelization of algorithms, and strongly
contrasts with the one provided in our approach, where distribution is hidden
behind the object group, and thus, it is transparent to the client of the group.
This definition also differs in that it does not provide any fault-tolerance. Ob-
ject group invocations are unreliably multicast to the group members. In our
approach reliable multicast and transactions provide fault-tolerant atomic ser-
vices.

Arche also provides exception handling. Exceptions are defined as objects
to allow their extension/redefinition in subclasses. Two kinds of exceptions are
defined: global and concerted. When a member of a group raises a global ex-
ception, the exception is propagated to all the group members if they try to
synchronize with the signaler of the global exception. Concerted exceptions are

178 M. Patiño-Mart́ınez, R. Jiménez-Peris, and S. Arévalo

used in synchronous multi-party communication. Exception resolution (possibly,
user-defined) takes place for this kind of exceptions. If during cooperation, one
or more members of a group raise an exception, a concerted exception is then
locally computed and raised within each of the members.

Concerted exceptions have some similarities with concurrent exceptions in
our approach. In both cases, exception resolution takes place and can be user-
defined. However, resolution functions take different forms. In Arche, resolution
functions take as parameter a sequence of raised exceptions, whilst in our ap-
proach, a binary resolution function is used. Arche’s approach is more flexible,
but it is also more complex for the programmer as it is necessary to iterate
through the sequence of exceptions. Our approach is less flexible in this aspect,
but it is much simpler from the programmer viewpoint, as the code of the resolu-
tion function only deals with two exceptions. Additionally, the iteration through
the sequence of exceptions is performed by the underlying system for the sake of
reliability. Additionally, in Arche there is a single level of resolution, while in our
approach, there are two levels due to the nature of cooperative groups. Another
difference between Arche and the approach we have presented comes from dif-
ferences in the host languages. Arche uses an object oriented exception model,
while our proposal uses the Ada exception model, that is not object-oriented,
and extends it to deal with object groups.

There are several proposals for implementing distributed object groups [15,
17,8,16], but none of them deals with the semantics of exceptions.

7 Conclusions

All the concepts we have used in the article, namely transactions, exceptions,
multithreading, and object groups, are implemented in modern object-oriented
languages and systems. The importance of transactions as a mechanism to pro-
gram reliable distributed systems has been recognized in current standards. Ex-
amples of this are CORBA object transaction service (OTS) [19], Java transac-
tion service (JTS) [26], or the transactional support of Enterprise Java Beans
[25]. Exceptions are already part of current object-oriented languages, like C++
and Java, and systems, e.g., CORBA. Multithreading has been around for more
than a decade and it is supported by Java and CORBA, and by all modern op-
erating systems. Object groups are becoming increasingly important and there
several research efforts in this direction. However, a consistent integration of
all of them has not been addressed to our knowledge in any language or sys-
tem. The work presented in this article addresses how to integrate these existing
mechanisms in a consistent way.

In this article we have presented a new use of exceptions in the context of
transactional object groups. This approach is novel in that integrates backward
and forward recovery provided by transactions and exceptions. This allows the
use of forward recovery within a transaction.

The second contribution is a proposal of semantics for exceptions raised by
object groups. Two cases have been considered depending on the group func-

Exception Handling and Resolution for Transactional Object Groups 179

tionality. In replicated groups, the implicit exception resolution is used to avoid
divergence of replicas’ state. In cooperative groups exception resolution is user
defined. Additionally, this semantics have also been integrated in the context
of transactions. It has been proposed how to integrate the commit and abort
protocols of transactions with exception resolution in a single algorithm. Thus,
no additional cost is paid for exception resolution.

We believe that transactional object groups will play an important role in
simplifying the programming of future reliable distributed systems, and there-
fore, a clear semantics for exceptions should be provided for these kinds of sys-
tems.

References

1. K. P. Birman and R. Van Renesse. Reliable Distributed Computing with Isis Toolkit.
IEEE Computer Society Press, Los Alamitos, CA, 1993.

2. K.P. Birman. Building Secure and Reliable Network Applications. Prentice Hall,
NJ, 1996.

3. F. Cristian. Exception Handling and Software Fault Tolerance. ACM Transactions
on Computer Systems, C-31(6):531–540, June 1982.

4. J. L. Eppinger, L. B. Mummert, and A. Z. Spector, editors. Camelot and Avalon: A
Distributed Transaction Facility. Morgan Kaufmann Publishers, San Mateo, CA,
1991.

5. J. B. Goodenough. Exception Handling: Issues and a Proposed Notation. Com-
munications of the ACM, pages 683–696, 1975.

6. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, San Mateo, CA, 1993.

7. F. Guerra, J. Miranda, Á. Álvarez, and S. Arévalo. An Ada Library to Program
Fault-Tolerant Distributed Applications. In K. Hardy and J. Briggs, editors, Proc.
of Int. Conf. on Reliable Software Technologies, volume LNCS 1251, pages 230–243,
London, United Kingdom, June 1997. Springer.

8. R. Guerraoui, P. Felber, B. Garbinato, and K. R. Mazouni. System support for
object groups. In ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’98), October 1998.

9. R. Guerraoui, R. Oliveira, and A. Schiper. Atomic Updates of Replicated Objects.
In Proc. of the Second European Dependable Computing Conf. (EDCC’96), volume
LNCS 1150, Taormina (Italy), October 1996. Springer Verlag.

10. V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems. In
S. Mullender, editor, Distributed Systems, pages 97–145. Addison Wesley, Reading,
MA, 1993.

11. V. Issarny. An exception-handling mechanism for parallel object-oriented pro-
gramming: Toward reusable, robust distributed software. Journal Object-Oriented
Programming, 6(6):29–40, October 1993.

12. R. Jiménez Peris, M. Patiño Mart́ınez, and S. Arévalo. Deterministic Scheduling
for Transactional Multithreaded Replicas. In Proc. of the Int. Symp. on Reliable
Distributed Systems (SRDS), pages 164–173, Nürnberg, Germany, October 2000.
IEEE Computer Society Press.

13. R. Jiménez Peris, M. Patiño Mart́ınez, S. Arévalo, and F.J. Ballesteros. TransLib:
An Ada 95 Object Oriented Framework for Building Dependable Applications.

180 M. Patiño-Mart́ınez, R. Jiménez-Peris, and S. Arévalo

Int. Journal of Computer Systems: Science & Engineering, 15(1):113–125, January
2000.

14. B. Liskov. Distributed Programming in Argus. Communications of the ACM,
31(3):300–312, March 1988.

15. S. Maffeis. Adding Group Communication and Fault-Tolerance to CORBA. In
Proc. of 1995 USENIX Conf. on Object-Oriented Technologies, June 1995.

16. G. Morgan, S.K. Shrivastava, P.D. Ezhilchelvan, and M.C. Little. Design and Im-
plementation of a CORBA Fault-tolerant Object Group Service. In Proc. of the
Second IFIP WG 6.1 International Working Conference on Distributed Applica-
tions and Interoperable Systems, DAIS’99, June 1999.

17. L. E. Moser, P. M. Melliar-Smith, P. Narasimhan, L. Tewksbury, and V. Kalogeraki.
The Eternal System: An Architecture for Enterprise Applications. In International
Enterprise Distributed Object Computing Conference, pages 214–222, September
1999.

18. J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed Comput-
ing. MIT Press, Cambridge, MA, 1985.

19. OMG. CORBA services: Common Object Services Specification. OMG.
20. M. Patiño Mart́ınez, R. Jiménez Peris, and S. Arévalo. Integrating Groups and

Transactions: A Fault-Tolerant Extension of Ada. In L. Asplund, editor, Proc.
of Int. Conf. on Reliable Software Technologies, volume LNCS 1411, pages 78–89,
Uppsala, Sweden, June 1998. Springer.

21. M. Patiño Mart́ınez, R. Jiménez Peris, and S. Arévalo. Synchronizing Group Trans-
actions with Rendezvous in a Distributed Ada Environment. In Proc. of ACM
Symp. on Applied Computing, pages 2–9, Atlanta, Georgia, February 1998. ACM
Press.

22. A. Schiper and M. Raynal. From Group Communication to Transactions in Dis-
tributed Systems. Communications of the ACM, 39(4):84–87, April 1996.

23. F. B. Schneider. Implementing Fault-Tolerant Services Using the State Machine
Approach: A Tutorial. ACM Computing Surveys, 22(4):299–319, 1990.

24. S. K. Shrivastava. Lessons Learned from Building and Using the Arjuna Dis-
tributed Programming System. In K.P. Birman, F. Mattern, and A. Schiper, edi-
tors, Theory and Practice in Distributed Systems, volume LNCS 938, pages 17–32.
Springer, 1995.

25. Sun. Enterprise JavaBeans. http://java.sun.com/products/ejb/index.html.
26. Sun. Java Transaction Service. http://java.sun.com/products/jts/.
27. J. Xu, A. Romanovsky, and B. Randell. Coordinated Exception Handling in Dis-

tributed Object Systems: from Model to System Implementation. In Proc. of Int.
Conference on Distributed Computing Systems, ICDCS-18, May 1998.

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 181–188, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Experiences with Error Handling in Critical Systems

Charles Howell1 and Gary Vecellio1

1 The MITRE Corporation, 1820 Dolley Madison Boulevard, McLean, Virginia, 22102,
USA

{Howell, Vecellio}@mitre.org

Abstract. Over the past several years, we have analyzed the error-handling
designs of a variety of critical applications and have discovered serious defects
even in well-tested and mature systems. In this paper, we will describe specific
recurring patterns of error handling defects we have observed in critical
systems. It seems clear that the design, implementation, and testing of error
handling are often not given adequate attention and resources.

1 Introduction

Software is often used in critical applications where the consequences of failure are
potentially enormous. At the same time, the complexity of individual applications and
the interactions among “systems of systems” is growing, making it essential that
critical software is robust.

Over the past several years, we have analyzed the error-handling designs of a
variety of critical applications and have discovered serious defects even in well-tested
and mature systems. The systems we have analyzed cover a broad range of domains,
languages, sizes, and criticality. They include two air traffic control systems, a flight
control system, torpedo safety interlocks, a metropolitan electrical power distribution
control system, a combat control system, a command and control display framework,
and a submarine ship control system. Sizes range from a few thousand source lines of
code to well over 350,000 SLOC. Languages include MC6800 assembler, Java, Ada
83, and C++.

 In the following sections, we will describe specific recurring patterns of error
handling defects we have observed in real systems. The fact that we have found these
defects – sometimes potentially critical – in the error handling portions of a broad
range of critical systems is a strong demonstration of the continuing issues that need
to be addressed. It seems clear that the design, implementation, and testing of error
handling are often not given adequate attention and resources.

2 Patterns

This section addresses specific error-prone exception handling patterns. It presents a
collection of patterns that we have observed in various real-world applications. The
patterns range from simple syntactic constructs to complicated dynamic calling

182 C. Howell and G. Vecellio

structures. Identifying instances of some of these patterns requires propagation
analysis and language specific analysis.

2.1 Unanticipated Propagation

This pattern relates to the propagation of an exception to section of client code that is
not prepared to handle the exception. An example of this pattern is when an exception
propagates up the call stack until it causes a program (or thread) to abort execution.
Typically, the only handling of the exception occurs by the runtime system that
usually prints a diagnostic message to the stand output when the program terminates.
Conversely, in the languages and runtime systems we have examined, thread
termination is silent. Either case is rarely the desired behavior in safety, mission, or
business critical applications.

The technical cause of this pattern is related to the use of programming languages
that do not require or enforce the specification of exception propagation information
in module interfaces (e.g., Ada 83). That is, propagation can not be unanticipated if
the exceptions propagating to a client are specified in the server interface. The Java
programming language is an example of one approach to this issue. Java enforces
propagation information for certain, but not all, types of exceptions. The Java
language designers understood the importance of unanticipated propagation, but they
also understood the design and development costs associated with interfaces and logic
to deal with exceptions that represent potentially unrecoverable errors (the Java
language calls this type of exception RuntimeException).

That said, our experience has been that it is usually the case that designers favor
some form of graceful shutdown, or at least the generation of better diagnostic
messages. For example, it may be desirable to have a few firewalls where propagating
exceptions are caught and appropriate a restart or graceful shutdown is performed. It
is rarely the case that unconstrained propagation of an exception to an outer scope is
the desired design strategy.

2.2 Invalid Termination of Propagation

This pattern relates to the termination of propagation (catching the exception)
without returning the system to an appropriate state or otherwise taking some other
appropriate action. This pattern is a frequent cause of subtle bugs in systems we have
examined. One of the patterns we have repeatedly seen is a handler with just some
sort of print statement to let the programmer know that an exception has occurred.
After the stack trace is printed program execution will continue assuming that the
events were handled correctly. We euphemistically coined the phrase “novocaine
effect” to describe this pattern because the system may be in a corrupted state, but
externally appears to be functionally correctly. We have seen this pattern all too often
in critical systems. Not explicitly taking corrective action to deal with the exception
may be the right choice, but more often the appropriate action is to propagate it up the
call chain, restore state to some default setting, or attempt an alternate computation.
The following code fragment (slightly sanitized) is from a mission critical system.

Experiences with Error Handling in Critical Systems 183

for (int i = 0; i < listenerList.size(); i++) {
try {
ChartObjectListener listener =
(ChartObjectListener) listenerList.elementAt(i);

switch(event.getType()) {
case EventManager.OBJECT_DOWN_EVENT:
listener.objectDown(event);
break;

case EventManager.OBJECT_UP_EVENT:
listener.objectUp(event);
break;

case EventManager.OBJECT_BOX_EVENT:
listener.objectBox(event);
break;

case EventManager.OBJECT_DESELECT_EVENT:
listener.objectDeselect(event);
break;

}
} catch (Exception e) {
e.printStackTrace();

}
}

After the stack trace is printed (no doubt puzzling the system operator if they see it
at all), the loop is exited normally. Program execution will continue on with the
assumption that the events were handled correctly. Obviously, printing a message
does nothing to alter the program’s erroneous state. The consequences of this
erroneous assumption are not clear, but are almost certainly not what the implementor
intended.

The treatment of method or function parameters is a particularly subtle cause of
problems in error handling we have observed in code when exception propagation is
terminated, and deserves special attention. These patterns relate to exception handlers
that catch exceptions, but do not properly set the associated method or module’s
parameters. In some programming languages such as Ada 83, modules may have
multiple parameters potentially modified by a called procedure. In Ada 83 these are
referred to as “out” or “in out” parameters. When an exception handler does not
propagate an exception, care should be take to set (or reset) the values of all "out" or
"in out" parameters either to a meaningful intended value or to some distinguished
value that denotes an error condition. If the handler does not set the values for these
parameters, the calling subprogram may attempt to use these values erroneously,
lacking any indication of the occurrence of an exception.

The following sample is typical of a pattern we have often seen in Ada 83
programs we have analyzed.

with Text_IO;
procedure Blah (Param1 : out Type1;
 Param2 : in out Type2) is
begin
<sequence of statements>

exception
when Exception1 => raise;

184 C. Howell and G. Vecellio

when others => Text_IO.Put_Line ("Problem in Blah");
end Blah;

If the others handler in the example above is executed, callers of procedure Blah
will have no indication that a problem occurred, yet the values could be in an
indeterminate state.

2.3 Anonymous Exceptions

This pattern relates to the exceptions that propagate out of their name scope. Unless
the strategy to handle exceptions is to gracefully shutdown the system, it is usually
necessary to name an exception to perform specific processing. Anonymous
exceptions can not be named, and therefore, can not be processed in an exception
specific manner. Exceptions are generally statically declared in a declarative region,
and their scope (visibility) is the same as that region, while exceptions dynamically
propagate arbitrarily up a call sequence, including out of the exception’s name scope.
When an exception is anonymous it can only be caught with an exception independent
handler (e.g., a handler like catch (Throwable e) {}). Languages that model
exceptions as objects (e.g., Java) somewhat mitigate this problem. While the
exception still can’t be named, an object can carry enough information to allow it to
be processed.

Consider the following Java fragments:

package mypackage;
class MyPackagedException extends Exception { }

public class UnnamedExceptionProp {
public void method1 () throws Exception {
throw new MyPackagedException();// Line #6

}
}

package mypackage2;
import mypackage.*;
public class UnnamedExceptionMain {
public static void main (String args[]) {
UnnamedExceptionProp u = new UnnamedExceptionProp();
try {
u.method1(); // Line #7

} catch (Exception e) {
e.printStackTrace();

}
}

}

If the class Exception in the catch clause is replaced with the class
MyPackagedException the compiler will complain about no visibility of the
declaration. The routines above produce the following output when executed (the line
numbers .java:6 and .java:7 are indicated in the source code above):

Experiences with Error Handling in Critical Systems 185

java UnnamedExceptionMain
mypackage.MyPackagedException
 at mypackage.UnnamedExceptionProp.method1

(UnnamedExceptionProp.java:6)
 at UnnamedExceptionMain.main(UnnamedExceptionMain.java:7)

Our experience indicates that anonymous executions are a particular problem with
software reuse or common code. This occurs because it is necessary to have a scope
that includes the newly developed and the reused or common code. This is difficult to
accomplish without up front planning and design.

2.4 Mapping Exceptions

This pattern relates to the mapping the information conveyed by exceptions into other
mechanisms like error codes. This typically occurs when applications are developed
using multiple programming languages with different exception handling capabilities
(e.g., C and Java). At different locations in a program (e.g., where different languages
interface, at message passing interfaces, at the operating system interface) there is
often a mapping between the use of return codes and the throwing of exceptions. This
is typically a mapping of specific return code values to specific exceptions. A
common mistake we have observed in implementing this is strategy is to fail to
completely cover the range of return code values. The fact that this is such a frequent
problem in systems we have reviewed is an illustration of the inadequate testing of
error handling paths and conditions. An example only slightly sanitized from a safety
critical system illustrates this issue.

We have an Ada 83 function that interfaces with assembler routines. These
assembler routines will pass back a return code indicating success or failure:

function Start_Radar return INTEGER;
pragma interface (ASSEMBLY, Start_Radar);

Return_Code : INTEGER;
. . .
Return_Code := Start_Radar;
if Return_Code /= 0 then
Raise_On_Class (Return_Code);

end if;

The procedure Raise_On_Class is a simple utility to map return codes to Ada 83
exceptions:

procedure Raise_On_Class
(Class : INTEGER) is

begin
case Class is
when 1 => raise Status_Error;
when 2 => raise Mode_Error;
when 3 => raise Name_Error;
when 4 => raise Use_Error;

186 C. Howell and G. Vecellio

when 5 => raise Device_Error;
when 6 => raise End_Error;
when 7 => raise Data_Error;
when 8 => raise Layout_Error;
when -1 => raise System_Error;
when others => null;

end case;

The implementation of Raise_on_Class is crucial. In this implementation, any
unexpected return codes will be ignored by the procedure, and the rest of the system
will proceed as if no error occurred. In this case we proposed a slight change to the
utility which addressed this problem:

procedure Raise_On_Class
(Class : INTEGER) is

begin
case Class is

 when 0 => null;
when 1 => raise Status_Error;
when 2 => raise Mode_Error;
when 3 => raise Name_Error;
when 4 => raise Use_Error;
when 5 => raise Device_Error;
when 6 => raise End_Error;
when 7 => raise Data_Error;
when 8 => raise Layout_Error;
when -1 => raise System_Error;
when others => raise Unknown_Error;

end case;
end Raise_On_Class;

This also prevents success from being incorrectly reported if additional error codes
are added during maintenance.

2.5 Propagation from Within Handlers

It is ironic, but a common oversight in exception handling code is to overlook the
possibility of an exception being thrown while performing exception handling. Code
in the exception-handling portion of a routine can throw exceptions just as readily as
any other code, yet the need to plan for this is often ignored. For example, in a Java
program, code in the catch clause of a try block can throw exceptions just as readily
as any other code, yet the use of nested try blocks (to handle these subsequent
exceptions) is often ignored. This is a simple design oversight that we have seen in
multiple systems and in multiple programming languages. A simple Ada 83 example,
sanitized from an Air Traffic Control system, illustrates the pattern. Consider a
procedure that performs some processing and may detect an error. This is reported by
raising an exception. The exception handler for the procedure will handle the
exception, log the occurrence to a journal file, and reraise the exception to notify the
calling procedure of the error.

Experiences with Error Handling in Critical Systems 187

procedure Some_Procedure is
begin
...
-- An Error_in_Logic is detected
raise Error_in_Logic;
...
exception
when Error_in_Logic =>
Logging_Procedure;
raise;

end Some_Procedure;

Logging_Procedure may raise its own exceptions, however, and this eventuality is
not considered in the exception handler for Some_Procedure.

procedure Logging_Procedure is
begin
Text_IO.Open (...);
...

 -- Text_IO calls may raise Mode_Error, Status_Error, etc.
 -- mapping the original exception into an IO_Exception
Text_IO.Close (...);

end Logging_Procedure;

In this case the result could be that the intended propagation of Error_In_Logic to
the callers of Some_Procedure is replaced with the propagation of a Text_IO
exception, leading to unknown results. Not considering exception handling in
exception handling code appears to be a common design oversight.

3 Summary and Conclusion

Our experiences suggest that error handling requirements, design, and testing really
are not given adequate attention during the development of even critical systems. The
results of this inadequate attention include subtle problems that can be difficult to
resolve during system integration, additional rework, and even latent defects that can
be catastrophic.

In looking back on a wide range of problems with error handling in multiple
programs implemented using multiple languages, two recurring themes struck us. The
first is that very little of the testing we have seen explicitly exercises the error
handling portions of the systems. More attention to error handling in general seems
needed, particularly for critical systems, but the resources allocated to testing error
handling seem to be particularly inadequate. This is compounded by the technical
challenges in exercising error handling, which will often require fault injection and
contriving unusual system states. The second recurring broad problem is the
confusion between debugging and error handling. We have seen a great deal of error
handling code that in fact is simply debugging support (e.g., printing stack traces or
announcing the failure of a specific assertion is a specific portion of source code).
These actions may be helpful to the developer or maintenance programmer in
debugging, but are not at all useful in recovering from a detected error or shutting
down gracefully.

188 C. Howell and G. Vecellio

The failure to pay adequate attention to error handling in critical systems seems
very likely to be one contributor to the widespread fragility of software as noted the
President’s Information Technology Advisory Committee:

Software is the new physical infrastructure of the information age. It is
fundamental to economic success, scientific and technical research, and national
security. The Nation needs robust systems, but the software our systems depend
on is fragile. Software fragility is its tendency not to work properly - or at all - for
long enough periods of time or in the presence of uncontrollable environmental
variation. Fragility is manifested as unreliability, lack of security, performance
lapses, errors, and difficulty in upgrading.

[President’s Information Technology Advisory Committee, February 24, 1999,
http://www.ccic.gov/ac/report]

Implementing robust error handling in complex software systems will always
present substantial challenges; no one remedy or “silver bullet” can address all of
them. However, by placing a priority on the software’s error-handling behavior, and
enforcing this priority through all phases of software development, the level of
robustness can be increased considerably. Significant cost drivers (e.g., software
rework and extended software integration times) can be reduced. To ensure that
sufficient attention is being paid to software error handling, developers should focus
on the establishment of well-defined processes in three areas: (1) analyzing error-
handling requirements during the development of the software requirements
definition; (2) adopting a software error-handling policy and enforcing its use by all
software developers during design and implementation; and (3) testing the error-
handling aspects of the software and demonstrating that the software is robust.

Perhaps the clearest summary of our observations after analyzing a wide variety of
error handling implementations in a range of critical systems is from Douglas Adams
in Mostly Harmless, Book 5 of the Hitch Hiker’s Guide to the Galaxy trilogy,
Heinemann, London , 1992:

“The major difference between a thing that might go wrong and a thing that cannot
possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it
usually turns out to be impossible to get at or repair.”

References
1. Baldonado, M., Chang, C.-C.K., Gravano, L., Paepcke, A.: The Stanford Digital Library

Metadata Architecture. Int. J. Digit. Libr. 1 (1997) 108–121
2. Bruce, K.B., Cardelli, L., Pierce, B.C.: Comparing Object Encodings. In: Abadi, M., Ito, T.

(eds.): Theoretical Aspects of Computer Software. Lecture Notes in Computer Science, Vol.
1281. Springer-Verlag, Berlin Heidelberg New York (1997) 415–438

3. van Leeuwen, J. (ed.): Computer Science Today. Recent Trends and Developments. Lecture
Notes in Computer Science, Vol. 1000. Springer-Verlag, Berlin Heidelberg New York
(1995)

4. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn.
Springer-Verlag, Berlin Heidelberg New York (1996)

An Architectural-Based Reflective Approach to
Incorporating Exception Handling into

Dependable Software

Alessandro F. Garcia1 and Cećılia M. F. Rubira2

1 Computer Science Department, PUC-Rio, Brazil,
afgarcia@inf.puc-rio.br,

WWW home page: http://www.inf.puc-rio.br/˜afgarcia
2 Institute of Computing, University of Campinas (UNICAMP), Brazil,

cmrubira@ic.unicamp.br,
WWW home page: http://www.ic.unicamp.br/˜cmrubira

Abstract. Modern object-oriented software is inherently complex and
has to cope with an increasing number of exceptional conditions to meet
the system’s dependability requirements. In this context, the goal of our
work is twofold: (i) to present an exception handling model which is
suitable for developing dependable object-oriented software, and (ii) to
provide a systematic approach to incorporating exception handling dur-
ing the design stage, that is, from the architectural design stage to the
detailed design stage. The proposed approach employs the computational
reflection concept to achieve a clear and transparent separation of con-
cerns between the application’s functionality and the exception handling
facilities. This separation minimizes the complexity caused by the han-
dling of abnormal behavior and facilitates the task of building dependable
software with better readability, maintainability and reusability.

1 Introduction

Modern object-oriented software is inherently complex and has to cope with an
increasing number of exceptional conditions to meet the system’s dependability
requirements [12,23]. Dependable object-oriented software detects errors caused
by residual faults and employs exception handling measures to restore normal
computation. The incorporation of exceptional behavior into software systems
usually increases, rather than decreases, their complexity and, consequently, it
makes more difficult the task of building high-quality applications. The per-
ceived unreliability of existing object-oriented systems is often attributed to a
poor software design related to exception handling [23]. Moreover, software de-
velopers usually postpone the exception handling aspects to the implementation
stage [10]. In addition, exception handling is in general introduced into the ap-
plication in an ‘ad hoc’ way [10,14], leading to software systems that are difficult
to understand, maintain and reuse. As a consequence, exception handling ac-
tivities should be incorporated into object-oriented systems in a disciplined and
structured manner during the different development phases (analysis, design and

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 189–206, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

190 A.F. Garcia and C.M.F. Rubira

implementation) in order to maintain under control the complexity caused by
the handling of exceptional situations. In this work, we focus on the provision
of exception handling during the design stage.

In this context, the goal of our work is twofold: (i) to present an exception
handling model which is suitable for developing dependable object-oriented soft-
ware, and (ii) to provide a systematic approach to incorporating exception han-
dling during the design stage, more especifically, from the architectural design
stage to the detailed design stage (Figure 1). The proposed exception handling
model identifies suitable design choices for building dependable object-oriented
applications, and presents guidelines for exception handling issues that should
be followed throughout the application’s design. This approach consists of three
stages: the architectural design stage, the architecture refinement stage, and the
detailed design stage. The architectural design stage presents a software architec-
ture for building dependable applications. The proposed architecture defines the
fundamental components to deal with the different exception handling aspects,
namely, exceptions, handlers and the exception handling strategy. Moreover, it
provides earlier the context in which more detailed design decisions related to ex-
ception handling can be made afterwards during detailed design and implemen-
tation stages. Since complex software systems are often concurrent, the proposed
architecture also provides a generic infrastructure which supports uniformly both
concurrent and sequential exception handling. The architecture refinement stage
applies the computational reflection concept [18] to the fundamental components
defined previously in order to achieve a transparent separation of concerns be-
tween the application’s functionality and the exception handling facilities. The
detailed design stage presents a set of design patterns which are used to refine
the fundamental components; the detailed design of each component is described
by means of a specific design pattern. These patterns follow the computational
reflection notion and describe solutions which are independent of programming
language or exception handling mechanism.

Architecture
Refinement

Detailed
Design

Architectural
Design

Exception Handling Model

components reflection
application of application of the

design patterns

G U I D E L I N E S

definition of the

Fig. 1. Exception Handling During the Design Stage

The remainder of this text is organized as follows. Section 2 introduces the
terminology and problems related to sequential and concurrent exception han-
dling. Section 3 presents object-oriented techniques for design reuse and software

An Architectural-Based Reflective Approach 191

structuring used in this work and Section 4 describes our exception handling
model. Section 5 shows the proposed software architecture for exceptional han-
dling and Section 6 details this architecture. Section 7 presents a set of design
patterns for exception handling applied to the architecture. Section 8 discusses
some implementation issues. Section 9 gives a brief comparison with related
work. Finally, Section 10 summarizes our conclusions and suggests directions for
future work.

2 Exception Handling

Exception Handling in Sequential Systems. Dependable software devel-
opers usually refer to errors as exceptions because they are expected to occur
rarely during a system’s normal activity [7]. These exceptions should be specified
internally to the system and an instance of an exception raised at run-time is
termed an exception occurrence. Extra-information about an exception occur-
rence, such as its name, description, location, and severity, is usually necessary
for handling it [15]. This extra-information is passed either explicitly by the ap-
plication component that has raised the exception, or implicitly by an exception
handling service.

Dependable applications need to incorporate exception handling activities in
order to behave suitably in a great number of exceptional situations. Exception
handling activities are structured by a set of exception handlers (or simply han-
dlers) [16]. A handler may be valid for one or more exceptions. Handlers are
attached to a particular region of normal code called a protected region. Each
protected region can have a set of attached handlers, and one of them is invoked
when a corresponding exception is raised. Handlers can be attached to blocks
of statements, methods, objects, classes, or exception classes [3,4,8,9,15,21]. Han-
dlers attached to exception classes are usually called default handlers. They are
often the most general handlers, and must be valid in any part of the program.

An exception handling strategy should be followed after an exception oc-
currence is detected. In general, the normal control flow of the computation is
deviated to the exceptional control flow. The deviation of the control flow is fol-
lowed by the search for a suitable handler to deal with the exception occurrence.
The handler search is performed according to a search algorithm. When a han-
dler is found, it is invoked and the computation is returned to its normal control
flow. The returning point where the normal flow continues also depends on the
chosen model for the continuation: the termination model, or the resumption
model. In the termination model, execution continues from the point at which
the exception was handled. In the resumption model, the execution has the capa-
bility to resume the internal activity of the component after the point at which
the exception was raised.

Exception Handling in Concurrent Systems. In this work, cooperative
activities of a dependable concurrent object-oriented system are structured as
a set of atomic actions. We refer to these activities as concurrent cooperative
actions (or simply actions). An action provides a mechanism for performing a

192 A.F. Garcia and C.M.F. Rubira

group of methods on a collection of objects concurrently. The interface of an
action includes its participants and methods (and their respective objects) that
are manipulated by the participants. In order to perform an action, a group of
threads should execute each participant in the action concurrently (one thread
per participant). Threads participating in an action cooperate within the scope
of the action by executing methods on objects, and exchange information only
among those which are participants of that action. Threads cooperate and com-
municate with each other by means of shared objects. Participants may enter
the action asynchronously but they have to exit the action synchronously to
guarantee that no information is smuggled to or from the action.

Exceptions can be raised by participants during an action. Some of them can
be handled internally by a local handler attached to the participant that raised
that exception. We refer to these exceptions as local exceptions. Traditional ex-
ception handling strategies usually address this kind of exception. If an exception
occurrence is not handled internally by a participant, then it should be handled
cooperatively by all action participants. We refer to this kind of exception as
cooperating exception, for which, a new concurrent exception handling strategy
is required. A set of cooperating exceptions is associated with each action. Each
participant has a set of handlers for (all or part of) these exceptions. Partici-
pants are synchronized and probably different handlers for the same exception
have to be invoked in the different participants [6]. These handlers are executed
concurrently, and cooperate in handling the exception in a coordinated way.

Moreover, various cooperating exceptions may be raised concurrently while
action participants are cooperating. So, an algorithm for exception resolution
is necessary in order to decide which cooperating exception will be notified to
all participants of the action. The work in [6] describes a model for exception
resolution called exception tree, which includes an exception hierarchy. When
several cooperating exceptions are raised concurrently, the resolved exception is
the root of the smallest subtree containing all raised exceptions. Cooperating ex-
ceptions can be of two different kinds in the exception tree: simple exceptions, or
structured exceptions. Simple exceptions are leafs of the tree and correspond to
cooperating exceptions which are raised one at a time. Structured exceptions are
non-leaf nodes and correspond to two or more exceptions being raised concur-
rently. An exception tree should be specified for each action of the application.

3 Software Reuse and Structuring Techniques

Software Architecture and Patterns. A system’s software architecture is a
high-level description of the system’s organization in terms of components and
their interrelationships [22]. To each component is assigned a set of responsibil-
ities. The components must interact with each other using pre-described rules,
and must fulfill their responsibilities to other components as imposed by the ar-
chitecture. Each component conforms to and provides the realization of a set of
interfaces, which make available services implemented by the component. Soft-
ware patterns are important vehicles for constructing high-quality architectures.

An Architectural-Based Reflective Approach 193

Patterns are abstracted from recurring experiences rather than invented, and ex-
ist at different levels of abstraction. Architectural patterns define the basic struc-
ture of an architecture and of systems which implement that architecture [5];
design patterns are more problem-oriented than architectural patterns, and are
applied in later design stages. Usually the selection of a design pattern is influ-
enced by the architectural patterns that were previously chosen. Design patterns
can refine general components of an architecture, providing detailed design solu-
tions. In this work, components of the proposed architecture are refined by a set
of design patterns which follows the overall structure of the Reflection architec-
tural pattern [5]. The reflection pattern is based on the concept of computational
reflection and meta-level architectures.

Meta-Level Architectures. Computational reflection [18] is defined as the
ability of observing and manipulating the computational behavior of a system
through a process called reification. This technique allows a system to maintain
information about itself (meta-information) and use this information to change
its behavior. It defines a meta-level architecture that is composed of at least two
dimensions: (i) a base level, and (ii) a meta-level. A meta-object protocol (MOP)
establishes an interface among the base-level and the meta-level components. A
MOP provides a high-level interface to the programming language implementa-
tion in order to reveal the program information normally hidden by the compiler
and/or run-time environment. As a consequence, programmers can develop lan-
guage extensions, and adapt component behavior or even make changes to the
systems more transparently.

x

Base Level

mo

o

Meta-Level

result

service

<<reflect>>

<<reify>>
MOP

Fig. 2. A Meta-Level Architecture

The extensions of the behavior of base-level objects can be implemented at
the meta-level. Reflection can be used to intercept and modify the implementa-
tion of operations in the object model. For the purpose of illustration, suppose
that for each base-level object o there exists a corresponding meta-object mo
that represents the behavioral and structural aspects of o (Figure 2). If an ob-
ject x sends a message service to an object o, the meta-object mo intercepts
the message service, reifies the base-level computation and takes over the exe-
cution; later mo returns (or reflects) the response to x. From the view point of
x, computational reflection is transparent: x sends a service request to o, and
receives a response with no knowledge that the message has been intercepted
and redirected to the meta-level.

194 A.F. Garcia and C.M.F. Rubira

4 An OO Exception Handling Model

The exception handling model that we have applied in this work was primarily
designed to facilitate the development of reliable and reusable software com-
ponents [13]. In this section, we present the main features of our model which
establishes the guidelines that should be followed during the architecutre refine-
ment and detailed design stages (Figure 1). In the literature, one can find several
exception handling models (such as [3,4,8,9,21]) that follow many of the guide-
lines presented here. However, none of them encompass all the good points at the
same time. A recent study [15] has shown that existing models are still far from
the ideal exception handling model for developing dependable object-oriented
systems. So our exception handling model synthesizes the good qualities of ex-
isting systems in order to provide a simple and effective model which is more
appropriate for developing dependable object-oriented software.

Fig. 3. Normal and Exceptional Class Hierarchies [13]

Guideline 1. Separation between Normal and Exceptional Activities.
The explicit separation between normal and exceptional behaviors is a main con-
cern when using exception handling techniques. This design choice improves sev-
eral system’s quality aspects, such as readability, maintainability, and reusability.
We propose that developers should structure their applications by creating a set
of normal classes which implement the normal activities of software components,
and a set of exceptional classes which implement the abnormal ones (Figure 3).
In Figure 3, methods of the exceptional class ExceptionalSupClient are handlers
for the exceptions that should be treated within methods of the class SupClient.
The exceptional classes ExceptionalSupClient and ExceptionalClient are organized
hierarchically so that the resulting hierarchy is orthogonal to the normal class
hierarchy (SupClient and Client). Exceptional class hierarchies allow exceptional
subclasses to inherit handlers from their superclasses.

Guideline 2. Representation of Exceptions as Objects. Different types
of exceptions are organized hierarchically as classes. The class Exception is the
root of this hierarchy. Various exception handling mechanisms also adopt this
approach, such as [3,4,8,9]. The class CooperatingException extends the class

Client

m2()
m1()

m1()

SupClient Server Server
Exceptional

E3Handler()m3() throws E1,
E2,E4,E5,E6

E1Handler()
E6Handler()

Exceptional

E5Handler()

SupClient
Exceptional

Client

An Architectural-Based Reflective Approach 195

Exception and allows the definition of exceptions that may be raised by coop-
erative actions needing coordinated recovery (Section 2). Exceptional responses
that may be signaled by a method must be described in its signature (Figure 3).

Guideline 3. Multi-Level Attachment of Handlers. Designers should or-
ganize their systems by attaching handlers to different levels of protected regions
such as classes, objects, methods and so on. Firstly, handlers may be associated
to exceptions themselves. Secondly, they may be also associated to a class. In
this case, an exceptional class should be created. In addition, object handlers
may also be defined. To implement handlers associated to individual objects, a
new exceptional class must be created. This new class contains methods that
implement the object handlers for the exceptions that should be treated in any
method of the object.

Guideline 4. Explicit Propagation of Exceptions. Despite gains in pro-
gramming simplicity, the use of automatic propagation of exceptions remains
fault-prone because they are the least well documented and tested parts of an
interface [8]. The adoption of explicit propagation of exceptions has a number
of benefits [17,25]: (i) the handling of signaled exceptions is limited to the im-
mediate caller; (ii) if a signaled exception is not handled in the caller, then the
predefined exception failure is further propagated; (iii) the exception still may
be resignaled explicitly within a handler to a higher-level component.

Guideline 5. Termination Model. The rationale of the termination model is
simpler and more suitable for the construction of dependable systems [7]. The
resumption model is more flexible, but more difficult to be used correctly.

5 The Architectural Design Stage

If an architecture that includes design policies for error/exception handling is
chosen from the outset, a proper use of exception handling throughout the devel-
opment of the system can be obtained. We propose a generic software architec-
ture that integrates sequential and concurrent exception handling [14] (Figure 4).
Applications that adopt this architecture to handle their exceptions can reuse
the exception handling facilities provided by the architecture’s components.

The Architectural Components and their Responsibilities. The archi-
tecture has four components: (i) the Exception component, (ii) the Handler com-
ponent, (iii) the Exception Handling Strategy component, and (iv) the Concur-
rent Exception Handling Action component. Table 1 summarizes the components
and their responsibilities. The responsibilities are classified in two groups: (i)
application-dependent responsibilities (ADR), and (ii) application-independent
responsibilities (AIR). Application-dependent responsibilities are directly related
to the application’s functionality and include, for instance, facilities for specifica-
tion of exceptions and handlers, raising of application exceptions, and specifica-
tion of concurrent cooperative actions. Application-independent responsibilities
include, for instance, facilities for extra-information management, handler invo-
cation, deviation of control flow, handler search, participant synchronization and

196 A.F. Garcia and C.M.F. Rubira

exception resolution. These responsibilities are related to management activities
of exception handling. The architecture’s components interact with each other
as prescribed by the architecture in order to fulfill their application-independent
responsibilities

Table 1. Components’ Responsibilities [14].

1

Component Responsibilities
1 Exception Specification and raising of local and cooperating

exceptions (ADR)
Management of extra-information (AIR)

2 Handler Specification of handlers (ADR)
Invocation of handlers (AIR)

3 Exception Handling Search of handlers (AIR)
Strategy Deviation of the control flow (AIR)

4 Concurrent Exception Specification of concurrent cooperative actions (ADR)
Handling Action Synchronization and exception resolution (AIR)

Fig. 4. A Software Architecture for Exception Handling [14]

Relationships between Components. Figure 4 depicts the components and
their interrelationships. The Exception component works as an extra-information
holder, keeping information about application exceptions which are used by the
other components. They interact with the Exception component in order to get
and update information about exception occurrences. The Exception Handling
Strategy component implements services related to the general strategy for ex-
ception handling. Its responsibilities are the deviation of control flow and the

IRaising

IUpdate

IGet

ISearch

Exception

Handler Handling

IInvocation

ICooperation

Concurrent

Action

Exception

handler
invoke

extra-information
get and update

search
handler

Strategy

Information

Information

Handling
Exception

extra-information
get

extra-information
get and update

An Architectural-Based Reflective Approach 197

search for handlers. This component plays a central role in the architecture and
interacts with all other components. It interacts with the Exception component
to get extra-information about an exception occurrence while searching for its
corresponding handler. After a handler is found, it asks the Handler component
to invoke the exception handler. The Exception Handling Strategy component
also interacts with the Concurrent Exception Handling Action component. The
latter uses the services provided by the former in order to carry out the strategy
for concurrent exception handling. For example, when cooperating exceptions are
raised during an action, the exception resolution is accomplished by the Concur-
rent Exception Handling Action component, and then the Exception Handling
Strategy component is responsible for locating the different handlers for the re-
solved exception. In this work, the strategy for concurrent exception handling
extends the atomic action paradigm described previously in Section 2.

Interfaces of the Components. The interfaces are used either by the ar-
chitecture’s components themselves, or else by the application while using the
exception handling services. Figure 4 illustrates the architecture’s components
and their interfaces. The interfaces are categorized in two groups: (i) private
interfaces, or (ii) public interfaces. Private interfaces define the services that
are only visible by the components of the architecture. Public interfaces de-
fine the services that are visible by both the application and architecture. The
Exception component implements three public interfaces: (i) the interface IRais-
ing, (ii) the interface IGetInformation, and (iii) the interface IUpdateInformation.
The interface IRaising allows the application to raise exceptions by invoking
the method raise. The interface IGetInformation allows the application and other
architecture’s components to obtain extra-information about the exception oc-
currences. Finally, the interface IUpdateInformation allows its clients to update
extra-information about exceptions. The Handler component implements the
private interface IInvocation. This interface allows the Exception Handling Strat-
egy component to invoke a handler when the appropriate handler has been found.
The Exception Handling Strategy component conforms to the private interface
ISearch that provides the Concurrent Exception Handling Action component with
the service for handler search. The Concurrent Exception Handling Action com-
ponent implements the public interface ICooperation which is acessible by the
application to create concurrent cooperative actions.

6 The Architecture Refinement Stage

Separation of Concerns. As stated previously, software designers should tai-
lor the components of the architecture in order to add the functionality related
to specific applications. Note that each architectural component includes appli-
cation’s functionality and also management activities for exception handling. In
order to obtain a clear separation of concerns between the application’s func-
tionality and the exception handling services, the architecture and their compo-
nents incorporate a meta-level architecture, following the overall structure of the

198 A.F. Garcia and C.M.F. Rubira

Reflection pattern (Section 3). Figure 5 presents the proposed meta-level archi-
tecture which is composed of two dimensions: the base level, and the meta-level.
The architecture’s base level encompasses the application-dependent elements,
such as exceptions, handlers, normal activities, and concurrent cooperative ac-
tions. The architecture’s meta-level consists of meta-objects which perform the
management activities for exception handling.

Concurrent

Handlers

Pattern
Handler

Exception HandlingException Handling

Normal
Activities

Strategy
Pattern Pattern

Application
Cooperative

Activities

MOP

Exceptions

Exception
Pattern

Activities
Management

Base Level

Meta-Level

Action

Concurrent

Control Flow
Exceptional

Control Flow
Normal

Fig. 5. The Architecture Refinement [14]

Transparency. The Reflection pattern also captures the benefit of transparency
provided by computational reflection. For the purposes of this work, object
states, results and invocations of methods of the application (base-level) are
intercepted and reified by the MOP, and potentially checked and altered by the
meta-objects (meta-level) in order to carry out the management activities for
exception handling. For instance, results of methods are checked transparently
by the meta-objects to verify if such methods have raised any exception. MOP
intercepts at run-time the exceptional results and deviates the normal control
flow of the base-level application to the exceptional one at the meta-level. When
the management activities are concluded, MOP returns the computation to the
application’s normal flow. Therefore, the meta-objects execute their management
activities transparently from the viewpoint of the base-level.

7 The Detailed Design Stage

After application designers reuse the architecture (Section 5) and refine its com-
ponents (Section 6), some questions arise in this context, such as: (i) how to
specify simple and cooperating exceptions and to handle them uniformly, (ii)
how to specify handlers, (iii) how to perform the synchronization of action par-
ticipants and other management activities in a way that is transparent to the
application, and (iv) how to apply the guidelines suggested in Section 4. In this
work, design patterns are proposed in order to refine the general components
of our architecture. However, we would like to emphasize that it is possible to

An Architectural-Based Reflective Approach 199

apply the design patterns for exception handling in the absence of reflection.
In such a case, the benefits of transparency are lost. Due to space limitations,
in this work, we discuss only the reflective version of the design patterns. The
work [14] describes our patterns in more detail.

7.1 The Exception Pattern

Context. Fault-tolerant software designers should be able to specify local and
cooperating exceptions in their applications. These exceptions may be raised at
run-time during the application’s normal activity. Extra-information is required
by the application in order to handle an exception occurrence.

Problem. The software architecture should support the definition and raising
of local and cooperating exceptions. Moreover, a flexible and reusable software
architecture is required to make the exception specification easier and to separate
concerns between application exceptions and extra-information management.
Several forces are associated with this design problem: (i) local and cooperating
exceptions should be defined uniformly, (ii) software developers should be able to
construct exception trees easily, and (iii) the exception occurrence itself should
carry the extra-information necessary for its handling.

Solution. Use the Reflection architectural pattern in order to separate classes
responsible for managing extra-information (meta-level) from the ones used to
specify application exceptions (base level). Different types of exceptions are or-
ganized hierarchically as classes which are termed exception classes (Guideline
2). Exception trees are defined by using the Composite design pattern [11]. Ex-
ception occurrences are base-level objects created at run-time when an excep-
tion is raised, and are termed exception objects. Meta-objects are associated
transparently with exception objects for keeping extra-information about the
exception occurrences. Extra-information is reified as meta-objects which keep
meta-information collected at run-time about the corresponding exception oc-
currence. Meta-objects alter transparently the state of the exception objects in
order to make this information available for the application. As a result, the
exception object keeps extra-information necessary for its handling.

Consequences. The Exception Pattern offers the following benefits:

– Uniformity. Both local and cooperating exceptions are uniformly defined as
exception classes.

– Simplicity. Exception trees are easily defined. Application developers define
exception trees without writing an exception resolution procedure for each
concurrent cooperative action of the application.

– Reusability and Extensibility. The representation of local and cooperating
exceptions as classes promotes the reusability and extensibility of the excep-
tion classes.

– Readability and Maintainability. Applications whose exceptions are repre-
sented as objects are easier to understand and maintain than applications
where exceptions are mere symbols (numbers or strings) [12].

200 A.F. Garcia and C.M.F. Rubira

– Easy incorporation of default handlers. Since exceptions are represented as
classes, default handlers can be defined as methods on exception classes.

7.2 The Handler Pattern

Context. Fault-tolerant software designers need to specify handlers for local and
cooperating exceptions that are expected to occur during the normal activity of
their applications. A handler is invoked when a corresponding exception is raised.

Problem. The infra-structure of the software architecture should be organized
in order to allow application developers to define the exception handlers in a
way that separates them from the application’s normal activity. In addition,
this infra-structure should promote the separation between the application com-
ponents containing the exception handlers and the architectural components
responsible for invoking the eligible handler. The following forces shape this so-
lution: (i) exception handlers for local and cooperating exceptions should be
defined in an uniform manner, and (ii) the software architecture should include
multi-level attachment of handlers (Guideline 3).

Solution. Use the Reflection architectural pattern in order to separate the class
responsible for invoking handlers (meta-level) from the classes used to specify the
application handlers (base level). The base-level defines the exceptional classes,
i.e., the application classes that implement the handlers for local and cooperating
exceptions (Guideline 1). Exceptional classes can contain method, object and
class handlers. The normal classes are located at the base-level and implement
the application’s normal activities (see Section 7.3). The meta-level consist of
meta-objects which are associated with exceptional classes, and are responsible
for invoking the exception handlers transparently.

Consequences. Handler Pattern has the following consequences:

– Uniformity. Handlers for both local and cooperating exceptions are defined
uniformly as methods on exceptional classes.

– Readability and Maintainability. This pattern provides explicit separation
between normal and error-handling activities, which in turn promotes read-
ability and maintainability.

– Flexibility. The multi-level attachment of handlers allows developers to at-
tach handlers to the respective levels of classes, objects and methods.

– Reusability. Exceptional class hierarchies allow exceptional subclasses to in-
herit handlers from their superclasses and, consequently, they allow excep-
tional code reuse.

– Lack of Static Checking. A possible disadvantage of this pattern is that it
may not be easy to check statically if handlers have been defined for all
specified exceptions.

An Architectural-Based Reflective Approach 201

7.3 The Exception Handling Strategy Pattern

Context. Exception occurrences can be detected during execution of a protected
region of the application’s normal activity. The normal control flow is deviated
to the exceptional one and an appropriate handler is searched.

Problem. The software architecture should be organized in a disciplined man-
ner: the components responsible for the deviation of the normal control flow
and for the handler search should perform their management activities in a non-
intrusive way to the application. The following forces arise when dealing with
such a problem: (i) exceptions should be propagated explicitly (Guideline 4),
(ii) the chosen model for continuation of the control flow should be termination
since it is more suitable for developing fault-tolerant systems.

Solution. Use the Reflection architectural pattern in order to separate classes
responsible for the management activities (meta-level) from the ones that imple-
ment the normal activities of the application (base level). The base-level defines
the application’s logic where normal classes implement the normal activities. The
meta-level consists of meta-objects which search transparently for the exception
handlers. Meta-objects are associated with instances of the normal classes, and
maintain meta-information concerning the protected regions defined at the base-
level. A protected region can be a method, an object, and a class. The MOP
is responsible for intercepting method results and switching normal control flow
to exceptional one when exceptions are detected, by transferring control to the
meta-level. With the available meta-information, meta-objects find the handler
that should be executed when an exception occurrence is detected in a given
protected region. When the execution of the handlers is concluded successfully,
the MOP returns control flow to the application’s normal computation accord-
ing to the termination model. Meta-objects are responsible for controlling the
explicit propagation of exceptions (Guideline 4).

Consequences. Exception Handling Strategy Pattern has the following conse-
quences:

– Transparency. The meta-level objects bind transparently the normal activ-
ity and corresponding handlers without requiring programmers to use new
features to specify protected regions.

– Readability and Maintainability. The normal code is not amalgamated with
the exceptional code. As a consequence, both normal and exceptional code
are easier to read and maintain.

– Compatibility. The Exception Handling Strategy pattern can be used together
with an exception handling strategy implemented in the underlying program-
ming language, and they can complement each other.

7.4 The Concurrent Exception Handling Action Pattern

Context. Fault-tolerant software designers should be able to specify concur-
rent cooperative actions. These actions must be controlled at run-time and their

202 A.F. Garcia and C.M.F. Rubira

participants have to exit the action synchronously. During the execution of an
action, a number of cooperating exceptions can be raised. As a consequence, a
service of exception resolution is necessary to determine the cooperating excep-
tion which is to be handled by all participants of the action.

method1()
method2()

NormalClass

action(s)

Thread

<<reify>>

<<reflect>>

internalExceptions

Participant

<<reflect>>

parent

Action

<<reify>>

failureExceptions

sharedObjectsnested

Base Level

object
method

join()
getSharedObject()
getNestedObject()
configSharedActions()
configNestedActions()

resolveException()

handleOperation()
synchronize()

MetaAction MetaParticipant

execute()
handleResult()

Meta-Level

MOP

Fig. 6. Concurrent Exception Handling Action pattern class diagram [14]

Problem. The software architecture should support the definition of actions.
Moreover, a disciplined approach is required in order to separate concerns and
minimize dependencies between the application actions and the strategy for con-
current exception handling (i.e. the management mechanisms for synchronization
and exception resolution). Some forces are associated with this design problem:
(i) the definition of actions should be done in a structured manner to avoid an
increase in the software’s complexity, and (ii) the strategy for concurrent ex-
ception handling should be a consistent extension of the general strategy for
exception handling.

Solution. Use the Reflection architectural pattern for segregating classes re-
sponsible for the management mechanisms (meta-level) from the classes which
must be derived for defining the concurrent cooperative actions of the applica-
tion (base-level)(Figure 6). The base-level provides developers with classes for
creating the concurrent cooperative actions of their applications; the definition
of nested actions is also supported in order to control the system’s complexity
and allow better organization of both normal and error handling activities of
the enclosing action. The MOP itself intercepts and reifies invocations of meth-
ods and their results. The meta-level implements the management mechanisms
based on reified invocations and results, and on the available meta-information.
So, meta-objects are responsible for synchronizing the action participants and
perform the exception resolution process.

Consequences. Using this pattern has the following consequences:

An Architectural-Based Reflective Approach 203

– Uniformity. The strategy for concurrent exception handling is a consistent
extension of the general strategy for exception handling.

– Transparency and Simplicity. Management mechanisms for exception han-
dling are performed transparently to the application. Application program-
mers focus their attention on the identification of concurrent actions.

– Complexity Control. This pattern allows programmers to define nested ac-
tions.

– Readability, Reusability and Maintainability. The application code is not
intermingled with invocations of methods responsible for synchronization
and exception resolution. As a consequence, it improves readability, which
in turn improves reusability and maintainability.

8 Architecture Usage and Implementation

The exception handling model and patterns proposed in this paper have been
developed based on our study of a number of exception handling proposals [12,
15], and on our extensive work implementing fault-tolerant object-oriented sys-
tems [13,14]. Since our exception handling approach is independent of program-
ming language or exception handling mechanism, a wide range of robust appli-
cations developers can employ it. A prototype of our exception handling system
was built using the Java programming language, without any changes to the lan-
guage itself by means of a meta-object protocol called Guaraná [20], a flexible
MOP developed at the Institute of Computing, UNICAMP, Brazil.

We have been used our exception handling software architecture to imple-
ment some experiments such as the Station Case Study [2]. This case study is a
subsystem of the railway control system that deals with train control and coor-
dination in the vicinity of a station. Trains transport passengers from a source
to a destination station. Stations usually have several platforms on which trains
can stop (no more than one train on each platform at a time). Trains can execute
some join cooperative concurrent action when they stop at the same station to-
gether; for example, passengers can change trains during this stop to make their
journey faster. We assume that errors caused by faults (for example, a train do
not stop) are detected and fault tolerance measures employed to restore normal
computation. Sensors check whether trains stopped at this station, and whether
they leave the station after the cooperative action has finished. We have used the
Concurrent Exception Handling Action pattern to design the Station action (and
its nested actions) that coordinates the execution of an activity concerned with
cooperation between two trains calling at a particular station. In addition, we
use the Handler pattern to structure the ExceptionalTrain class which implements
handlers for the exceptions that can be raised by Station action participants, and
the Exception pattern to define simple and concurrent (structured) exceptions.

9 Related Work

Dealing with several exceptional conditions at different phases of system devel-
opment has been recognized as a serious problem which has not received enough

204 A.F. Garcia and C.M.F. Rubira

attention [1,10]. In fact, related work in this area has been scarce, and most of it
associates exception handling only with objects, making no attempt in consid-
ering exception handling within software development lifecycle [10]. More recent
work which deals with obstacles in a goal-driven approach for requirements en-
gineering has provided systematic techniques for identifying failure behaviors in
requirements specifications [24]. The work in [10] presents an approach which
emphasizes the separation of treatments of requirements-related, design-related,
and implementation-related exceptions during the software lifecycle, by specify-
ing the exceptions and their handlers in the context where faults are identified.

10 Conclusions and Ongoing Work

This paper presented a software architecture meant to be simple enough to
enable the use of exception handling techniques in the development of depend-
able software. A software system’s quality requirements are largely permitted
or restrained by its architecture; so if an appropriate architecture that supports
exception handling is chosen since the outset of the design phase, a proper use
of exception handling techniques throughout the software development can be
obtained. This software architecture: (i) defines the fundamental components
related to exception handling, (ii) integrates uniformly both sequential and con-
current exception handling, (iii) is independent of programming language or
exception handling mechanism, and (iv) its use can minimize the complexity
caused by handling abnormal behavior. We proposed the use of computational
reflection to refine the architecture’s components, and provide a clear separa-
tion of concerns between the exception handling services and the application’s
functionality. Specific applications can then reuse the exception handling facil-
ities provided by the architectural components, allowing developers focus their
attention on the application-dependent functionality. We also introduced a set
of exception handling patterns which can be used to simplify the task of creating
exception handling mechanisms in order to provide forward error recovery.

The proposed software architecture has the potential to bring exception han-
dling to complex software systems of several sectors, such as manufacturing,
communications, defense, transportation, and aerospace, due to its simplicity
and ease of implementation. Moreover, our approach allows that a new different
exception mechanism be incorporated into a system when the exception mecha-
nism provided by the target language is not suitable for the developer’s purposes
(we applied this idea with the Java language as described in Section 8). We are
also actively investigating the employment of our approach to provide exception
handling service for component-based software systems.

Acknowledgments. This work has been supported by CNPq/Brazil under
grant No. 141457/2000-7 for Alessandro, and grant No. 351592/97-0 for Cećılia.
She is also supported by the FINEP “Advanced Information Systems” Project
(PRONEX-SAI-7697102200).

An Architectural-Based Reflective Approach 205

References

1. Avizienis, A.: Toward Systematic Design of Fault-Tolerant Systems. Computer
30(4):51–58 (1997)

2. Beder, D., Romanovsky, A., Randel, A., Snow, C., Stroud, R.: An Application of
Fault Tolerance Patterns and Coordinated Atomic Actions to a Problem in Railway
Scheduling. ACM Operating System Review, 34(4):21–31 (2000)

3. Borgida, A.: Language Features for Flexible Handling of Exceptions in Information
Systems. ACM Transactions on Database Systems, 10(4):565–603 (1985)

4. Borgida, A.: Exceptions in Object-Oriented Languages. ACM Sigplan Notices,
21(10):107–119 (1986)

5. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: A System of
Patterns: Patterns-Oriented Software. John Wiley & Sons, (1996)

6. Campbell, R., Randell, B.: Error Recovery in Asynchronous Systems. IEEE Trans-
actions on Software Engineering, 12(8):811-826 (1986)

7. Cristian, F.: Exception Handling and Software Fault Tolerance. IEEE Transactions
on Computers, C-31(6):531–540, (1982)

8. Cui, Q., Gannon, J.: Data-Oriented Exception Handling. IEEE Transactions on
Software Engineering, 18(5):393–401, (1992)

9. Dony, C.: Exception Handling and Object-Oriented Programming: Towards a Syn-
thesis. ACM Sigplan Notices, 25(10): 322-330, (1990)

10. de Lemos, R., Romanovsky, A.: Exception Handling in the Software Lifecycle. Int.
Journal of Computer Systems Science and Engineering, (Accepted in 2000)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of
Reusable Object-Oriented Software. Addison Wesley Publishing Company, (1995)

12. Garcia, A.: Exception Handling in Concurrent Object-Oriented Software. Master’s
thesis, Institute of Computing, University of Campinas, Brazil, March (2000)

13. Garcia, A., Beder, D., Rubira, C.: An Exception Handling Mechanism for Devel-
oping Dependable Object-Oriented Software Based on a Meta-Level Approach.
Proceedings of the 10th IEEE ISSRE, USA, November (1999), 52–61

14. Garcia, A., Beder, D., Rubira, C.: An Exception Handling Software Architecture
for Developing Fault-Tolerant Software. Proceedings of the 5th IEEE HASE, USA,
November (2000), 311–320

15. Garcia, A., Rubira, C., Romanovsky, A., Xu, J.: A Comparative Study of Exception
Handling Mechanisms for Building Dependable Object-Oriented Software. Techni-
cal Report CS-TR-714, Comput. Dept., Univ. of Newcastle upon Tyne, (2000)

16. Goodenough, J.: Exception Handling: Issues and a Proposed Notation. Communi-
cations of the ACM, 18(12): 683–696, (1975)

17. Liskov, B., Snyder, A.: Exception Handling in CLU. IEEE Transactions on Software
Engineering, 5(6):546–558, (1979)

18. Maes, P.: Concepts and Experiments in Computacional Reflection. ACM SIG-
PLAN Notices, 22(12):147–155, (1987)

19. Moon, D., Weinreb, D.: Signalling and Handling Conditions. LISP Machine Man-
ual, 4th Edition, MIT Artif. Intelligence Lab, Cambridge, Massachussets, (1983)

20. Oliva, A., Buzato, L.: Composition of Meta-Objects in Guaraná. Proceedings of the
Workshop on Reflective Programming in C++ and Java, OOPSLA’98, Vancouver,
Canada, (1998), 86–90

21. Pitman, K.: Error/Condition Handling. Contribution to WG16, revision 18, Pro-
posals for ISO-LISP. AFNOR, ISO/IEC JTC1/SC 22/WG 16N15, (1988)

206 A.F. Garcia and C.M.F. Rubira

22. Shaw, M. and Garlan, D.: Software Architecture - Perspectives on an Emerging
Discipline. Prentice Hall, (1996)

23. Sommervile, I.: Software Engineering. Fifth Edition, Addison-Wesley, (1995)
24. van Lamsweerde, A., Letier, E.: Handling Obstacles in Goal-Oriented Requirements

Engineering. IEEE Trans. on Software Engineering, 26(10):978–1005, (2000)
25. Yemini, S., Berry, D.: A Modular Verifiable Exception Handling Mechanism. ACM

Transactions on Programming Languages and Systems, 7(2):214–243, (1985)

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 207–216, 2001
© Springer-Verlag Berlin Heidelberg 2001

Adapting C++ Exception Handling to an
Extended COM Exception Model

Bjørn Egil Hansen1 and Henrik Fredholm 2

1 DNV AS, DNV Software Factory, Veritasveien 1,
1322 Høvik, Norway

Bjorn.Egil.Hansen@dnv.com
2 Computas AS, Vollsveien 9, P.O.Box 482,

1327 Lysaker, Norway
hf@computas.no

Abstract: This paper describes how correctness and robustness of component-
based systems can be improved by categorising exceptions by component state
and cause, and handling them accordingly. Further, it is shown how this model
is supported in C++ in a COM-based environment, also simplifying the code for
exception detection, signalling, and handling.

1 Introduction

The reliability of a software system is to a high degree determined by the reliability of
the software components comprising the system [4]. For a software component to be
reliable it must be robust and able recover various exceptions or failures that may
arise at run-time. Code for exception detection, handling, and signalling often
amounts to a substantial portion of the code. This is especially the case in a multi-
language environment, mixing different exception models, and requiring transforma-
tion between different exception representations.

To allow flexible system configuration and system evolution, e.g. making changes
to a component, replacing a component with another, or adding new components,
each of the components should have minimum dependency on the other components.
Loose coupling between components is also important with respect to exception
handling and the mechanisms used. As argued in [2], a termination mechanism mixes
well with the information hiding principles underlying data abstraction, and
consequently also component based systems. The focus should be on the local
transition, on the exceptions that may arise during a state transition and on
maintaining a consistent local state of the component. It is the responsibility of the
developer of the component to detect, handle, and signal exceptions based on the state
of the component, the arguments of the call, and the results from lower-level
components.

In software development projects there are always conflicts between different
requirements, and the development team has to make trade-offs between time-to-
market, functional requirements, and non-functional requirements, like reliability. The
resources used on reliability are often scarce, hence it is important to concentrate the

208 B. E. Hansen and H. Fredholm

effort on those exception situations that contribute to the overall reliability of the
system. Whenever reliability is sacrificed for other requirements, the failure situations
should be clearly distinguishable from correct behaviour and easily traceable in the
code. If the system reliability turns out to be unacceptable it should be possible to
increase the overall reliability by improving individual components of the system, i.e.
taking control over more of the failure situations.

This paper is based on work done in the BRIX team in DNV IT Solutions. The
main purpose of this group is to provide the various application development teams
with common solutions to software technical needs. Most BRIX solutions are based
on Microsoft’s COM technology and C++ as implementation language.

In section 2 the differences between C++ exception handling and COM exception
handling are briefly outlined. Section 3 describes the BRIX language independent
exception model, which is based on the COM exception model. In section 4 we
present how the BRIX exception model is supported at C++ level. Finally, in section
5 we draw some conclusions.

2 COM Exception Handling in C++

COM supports signalling of exceptions [1], but the mechanisms used are different
from the throw and catch in C++ [3]. To signal an exception in COM, three different
mechanisms are used in combination:

� By convention all interface methods on a COM objects should return a status (an
HRESULT), indicating success or exception/failure of the method invocation.

� To pass extra information to the client, COM provides two API functions:
SetErrorInfo: Used by the COM object (signaller) to pass an exception object
containing the extra information to the client.
GetErrorInfo: Used by the client to obtain the exception object.

� In addition, the COM object must implement the ISupportErrorInfo interface to
indicate which interfaces support exceptions. This interface should be used by the
client to determine whether or not the result of the GetErrorInfo is reliable.

This obviously increases the burden on a C++ programmer. When implementing a
COM object in C++, the programmer must be careful to catch all C++ exceptions and
convert them into HRESULTs, possibly augmented with extra information in an
exception object.

To detect and handle exceptions from a COM object in a C++ client, the result of
each COM-call must be checked specifically by looking at the returned HRESULT. In
a naïve implementation of a C++ client this will typically result in an unreadable mix
of HRESULT checking of the COM calls and catching of C++ exceptions of internal
C++ calls.

There is also a mismatch in the exception models of COM and C++. While we in
C++ may specialise exceptions in hierarchies, COM overloads the HRESULT. Thus,
the meaning of an HRESULT code very likely will be different for different methods,
and the code should not propagate unmodified up through the call stack.

Adapting C++ Exception Handling 209

When programming in Visual Basic or Java (on Microsoft’s Java VM), the
conversion between native exceptions and the HRESULT and the COM exception
information object is done automatically by the respective run-time systems. Thus, in
these environments the COM exception representation and signalling mechanism are
integrated with native exception mechanisms, giving a more transparent programming
model. In section 4 we will see how the BRIX Exception System contributes to
integration with the C++ exception mechanisms.

3 BRIX Exception Model

A component-based system is comprised of components accessing each other through
interfaces. An interface may be defined specifically for a concrete implementation,
complete both with respect to standard and exceptional behaviour. However, in COM
it is common to have general interfaces allowing a variety of implementations. For a
specific implementation there may be resource constraints not anticipated on the
specification level, resulting in exceptions outside the specified exceptions.

To achieve flexible configuration and system evolution the BRIX Exception
System provides the component developer with mechanisms for detection, handling,
and signalling of specified exceptions, as well as mechanisms for detection and
signalling of unspecified exceptions. To facilitate this, when focusing on the state
transition within one component, we categorise exceptions/failures according to two
orthogonal criteria:

� State of the lower-level component after the exception/failure has occurred:
� Controlled exception: The component is in the same consistent state as before

the method call.
� Uncontrolled exception: The component is in an undefined and possibly

inconsistent state. This corresponds to the notion of failure exceptions in [2].
� Cause of the exception:

� Operational exception: The cause of the exception is outside the control of the
component, typically when allocating resources (e.g., memory, files, or network
connections) or validating input.

� Implementation exception: The cause of the exception is due to faults in pro-
gram code.

In table 1 we discuss the four categories of possible exceptional situations, and
propose a recommended action and an alternative action as a guide to where to
concentrate the exception handling effort.

In the table we see that controlled operational exceptions are the only cases where
explicit exception handling is recommended to increase the overall robustness of the
system. Using the default BRIX exception mechanisms in this case will lower the
robustness of the system, as the exception is transformed to an uncontrolled exception
when propagated and most likely will cause the system to abort.

210 B. E. Hansen and H. Fredholm

For the other cases it is generally difficult and time-consuming to handle them in
way that increases the robustness of the system. Instead it is recommended to use the
default mechanisms to signal an uncontrolled exception to the higher-level
component. The cause of the failure should be fixed off-line if required to achieve
long term robustness.

Table 1. Exception categories in the BRIX Exception model. We assume having a higher-level
component A calling a method on component B, being our focus, and B calls a method on
lower-level component C

Operational Implementation

C
on

tr
ol

le
d

Controlled Operational Exception: The
cause is an operational exception in the
lower-level component C. C has recovered
to the same state as before the call.

Controlled Implementation Exception: The
lower-level component C has rejected the
call because of a precondition violation, i.e.
the exception is caused either by improper
use by component B, too strict
implementation of the precondition
validation, or incomplete interface
specification. C has recovered to the same
state as before the call.

Recommended action: If it is a specified
exception, mask the exception if possible.
Otherwise, recover state and signal a
Controlled Operational Exception to higher
level component A.

Recommended action: Use default
mechanism that signals an Uncontrolled
Implementation Exception to the higher-
level component A. Fix bug at appropriate
level.

Alternative action: Use default mechanism
that signals an Uncontrolled Operational
Exception to the higher-level component
A.

Alternative action: If the cause is an
incomplete specification or a too strict
precondition implementation in C, and
neither of these can be changed,
component B should be rewritten to avoid
the problem.

U
nc

on
tr

ol
le

d Uncontrolled Operational Failure: The
failure is due to an operational exception in
the lower-level component C which C was
not prepared to handle, and C has not been
able to recover to a consistent state.

Uncontrolled Implementation Failure: The
failure is due to an unanticipated exception
occurrence in the lower-level component
C, resulting in a possibly inconsistent state,
invalidating the invariant or post-condition.

Recommended action: Use default
mechanism that signals an Uncontrolled
Operational Exception to the higher-level
component A. Make C more robust by
taking control of the exception.

Recommended action: Use default
mechanism that signals an Uncontrolled
Implementation Exception to the higher-
level component A. Fix fault in C.

Alternative action: If component C cannot
be changed, component B or high-level
component A should be rewritten to avoid
the problem, or more run-time resources
should be made available to avoid the
problem

Alternative action: If component C cannot
be changed, component B or high-level
component A should be rewritten to avoid
the problem.

Adapting C++ Exception Handling 211

Our goal is not to write totally correct programs, but to write partially correct
programs [2], that is, programs that either produce the specified result (normal or
exceptional) or a confined failure (unspecified exceptions) with respect to a complete
specification. Partially correct programs are safe, in the sense that there are no
unanticipated inputs (incomplete specification) and no unconfined failures (apparently
correct results but actually erroneous with respect to specification). Thus, they will
either produce the specified results or obvious failures.

A component may contain implementation faults. The BRIX Exception System
contributes to the fault tolerance of the system by distinguishing between uncontrolled
and controlled failures. Uncontrolled failures should result in abortion, while
controlled failures may be tolerated, because the system is still in a well-defined state.

4 BRIX Support for C++ Exception Handling in COM

The exception handling code itself may be a significant source of errors. It is difficult
to test and should be kept as simple as possible. In the following we will show how
the BRIX exception mechanisms support detection, handling, and signalling of
exceptions according to the categorisation of exceptions in the previous section, in a
programming environment as described in section 2.

4.1 Handling C++ Exceptions

Given the specification of a factorial function in example 1, we will start with a naïve
implementation and gradually make it more robust and correct. The examples below
are based on [2].

Example 1: Specification of factorial. If a pre-condition is not met, the generic
E_BX_PRECONDITION should be returned

// Calculates factorial of n and assigns the result to
// *pf
// Pre-conditions:
// n >= 0
// pf != NULL
// Exceptions:
// E_OVERFLOW - if n! > max int
HRESULT Fact(int n, int* pf);

Firstly, to prevent C++ exceptions from propagating out of the component, two
macros are used to enclose the code establishing default try and catch blocks. The
macros take care of converting from C++ exceptions to HRESULT. Any exceptions
not detected in the program code will be caught and signalled as an uncontrolled
implementation exception. Example 2 shows an initial implementation for computing
factorials. With respect to the specification in example 1 this implementation may

212 B. E. Hansen and H. Fredholm

result in either a) an unconfined failure for values of n<0 by returning 1 (erroneous
result), b) a confined failure if n! is larger than the maximum int value, or c) a
confined failure if pf = NULL. Both the confined failures will be returned as
uncontrolled implementation exceptions.

Example 2: Initial implementation encapsulating potential C++ exceptions by use of
the BX_ENTER_COM and BX_RETURN_COM macros

HRESULT Calc::Fact(int n, int* pf)
{
 BX_ENTER_COM(Calc,Fact)

 int k=0,m=1;
 while (k<n) { k++; m*=k; }
 *pf = m;

 BX_RETURN_COM
}

We can increase the correctness and robustness of the implementation from example
2 by detecting and signalling a) and c) properly. There is no support for automatic
checking of pre-conditions like in Eiffel [5]. However, this can be coded explicitly, as
shown in example 3. A pre-condition failure results in a controlled implementation
exception; hence, we have eliminated a) and c) and made the program partially correct
and more robust.

Example 3: Eliminating failures a) and c) by using the BX_PRECOND macro to
check that the input is valid. If the check fails an E_BX_PRECONDITION exception
will be signalled, i.e. returned in the HRESULT

HRESULT Calc::Fact(int n, int* pf)
{
 BX_ENTER_COM(Calc,Fact)
 BX_PRECOND(n>=0)
 BX_PRECOND(pf!=NULL)
 ...

According to the specification E_OVERFLOW should be returned if n! is too large.
To take control over this situation we must add explicit detection and handling of the
overflow. Example 4 illustrates this, where we have a try-catch block to detect the
overflow. In the catch block we use bxhr which is defined by BX_ENTER_COM.
This is an instance of BxHResult, which offers a range of functionality for detecting,
signalling and handling exceptions. In this example RaiseError throws an exception
containing the specified HRESULT value. This exception is caught by
BX_RETURN_COM and the E_OVERFLOW is returned to the client. Thus, we have
made the code more correct by handling this exception as specified. Also, we have
contributed to the overall robustness of the system by eliminating an uncontrolled
exception.

Adapting C++ Exception Handling 213

Example 4: Controlled overflow as specified

 ...
 try
 {
 int k=0,m=1;
 while (k<n) { k++; m*=k; }
 *pf = m;
 }
 catch(...)
 {
 bxhr.RaiseError(E_OVERFLOW,...);
 }
 ...

In the examples above we have seen how exceptions are detected and signalled using
different mechanisms, e.g. precondition checking, explicit raising of exception, and
by use of default detection and signalling. All is resulting in a corresponding
HRESULT being returned to the client.

4.2 Handling COM Exceptions

In the examples below we will show how to detect, handle and propagate exceptions
from lower-level COM components.

To detect, handle, and signal exceptions from a COM component, various mecha-
nisms can be used resulting in different degrees of robustness. BxHResult redefines
some of the assignment operators to provide short hand notation for detection and
signalling of exceptions. In example 5 we have a class to represent a vector of 10 ints
and defining a method to compute the factorial of each of the values and store them in
the same vector. Using the |= operator we say that any exceptions returned from the
method on the lower-level component will result in propagation of an uncontrolled
exception from this component, whether or not the exception was controlled at the
lower level. The |= operator propagates the exception by throwing a corresponding
C++ exception which is caught by BX_RETURN_COM. If the Fact method in
example 5 returns an exception, we may have an intermediate state where some
values have been changed to their factorials where as others are unchanged, i.e. the
component will be left in an undefined and erroneous state.

Example 5: Propagating an uncontrolled exception by use of the |= operator when not
being able to recover to initial well-defined state

class Vector
{
 int v[10];
 HRESULT Factorials();
 ...
}

214 B. E. Hansen and H. Fredholm

HRESULT Vector:: Factorials ()
{
 BX_ENTER_COM(Vector, Factorials)

 for (int i=0; i<10; i++)
 bxhr|=pCalc->Fact(v[i],&v[i]);

 BX_RETURN_COM
}

To avoid the uncontrolled exception in example 5 we must be able to recover the
initial state in case of exceptions. Example 6 shows how this can be done in this
simple case by keeping the new values in a temporary array until all the calculations
have been done successfully. Thus, if the Fact method signals an exception, our state
is still consistent and we should just signal a controlled exception to our caller. This is
done by using the &= operator instead of the |= operator, which will transform any
controlled exceptions to controlled implementation exceptions. However, if the Fact
method signals an uncontrolled exception, as in example 2 and 3, an uncontrolled
implementation exception will be signalled from this component. By focusing on the
local transition and on keeping a local consistent state, we reduce the number of
uncontrolled exception propagating through the system and the likelihood of
abortions.

Example 6: Propagating a controlled exception by use of the &= operator

HRESULT Vector:: Factorials ()
{
 BX_ENTER_COM(Vector, Factorials)

 int u[10];
 for (int i=0; i<10; i++)
 bxhr&=pCalc->Fact(v[i],&u[i]);

 for (i=0; i<10; i++)
 v[i] = u[i];

 BX_RETURN_COM
}

Further, assume that the Factorials specification also states that an E_OVERFLOW
exception should be signalled in case of overflows. With respect to this specification,
the implementation in example 6 is partially correct and will result in a confined
failure in case of overflow. In cases where the state is still consistent and the specified
exceptions from the method on lower-level component is the same as for this method,
we can use another operator %= to signal the same exception to the higher-level

Adapting C++ Exception Handling 215

component, as illustrated in example 7. Hence, the implementation will be correct
with respect to the overflow exception. However, the %= operator compromises
correctness by introducing possible unconfined failures due to overloading of the
HRESULT, and its use is not encouraged.

Example 7: Direct propagation of exception from lower-level component using the
%= operator

 ...
 int u[10];
 for (int i=0; i<10; i++)
 {
 bxhr%=pCalc->Fact(v[i],&u[i]);
 }
 ...

Examples 5 to 7 show compact detection and signalling of uncontrolled, controlled,
and specified exceptions using the redefined operators |=, &=, and %=, respectively,
and how we gradually can increase the robustness and correctness of the system by
making the local transitions more robust and correct.

In other situations it might be required that the exceptions are masked or at least
handled more specifically. Example 8 shows one way this can be done using the
redefined ^= operator. Instead of throwing an exception, the results from the call will
be kept in bxhr for subsequent handling of the exception. In the case of a time-out, the
exception is recovered and the call is retried once. If this fails the exception is
propagated using the &= operator. If the first exception was not a time-out exception,
the same exception is signalled to the caller. Exceptions can also be handled in the
normal C++ way by enclosing a sequence of statements with a try and catch block.

Example 8: Masking/handling exceptions by using the ^= operator

 ...
 bxhr ^= pSrv->Submit(data);
 if (bxhr==E_TIMEOUT)
 { // Retry once
 bxhr.ErrorRecovered();
 bxhr &= pSrv->Submit(data);
 }
 else if (bxhr!=S_OK)
 bxhr.RaiseError(...);
 ...

Other features of the BRIX exception system which have not been emphasised here
include checking of intermediate and final states by use of assertions and post-
conditions, possibly resulting in uncontrolled implementation failures. Also there is
rich support for logging of exceptional events, which may serve various purposes:

216 B. E. Hansen and H. Fredholm

simplifies debugging of the system both during development and operation, supports
operator/end-user in identifying possible lack of resources (causing operational
exceptions).

5 Conclusion

The BRIX Exception System contributes to correctness and robustness in several
ways:

� By distinguishing controlled and uncontrolled exceptions, we believe to achieve
fault-tolerance both with respect to specification and implementation faults. Also
we reduce the number of unconfined failures by having an explicit notion of and
support for uncontrolled exceptions. Hence, it will be easier to achieve partial
correctness [2].

� By taking control over more failure situations at the component level, we may
increase the overall robustness of a system by upgrading or replacing individual
components.

� By focusing on the local state and transition, providing a programmed exception
handling style using pre/post-conditions and assertions for state validation and
mechanisms for tight control of the results from lower-level components. Contrary
to [5] all pre/post condition validation has to be done explicitly. However, when
handling complex states and transitions, expressing pre/post-condition may be
difficult resulting in possible unconfined failures [2], and intermediate checks may
be preferable.

� By virtually forcing the developer to decide on the local implications of exceptions
occurring for each line of code. Also the BRIX exceptions mechanisms make it
simple to implement those decisions by providing default propagation mechanisms
and overloaded operators for exception checking.

Acknowledgement.Many thanks to Are F. Tjønn and Johannes Hermanrud who
supported both the development and the writing of this paper. Thanks also to Daniel
Vatier and Egil P. Andersen for reviewing the paper and to rest of the BRIX team for
providing an inspiring working environment.

References

1. Box, D.: Essential COM. Addison Wesley (1998)
2. Cristian, F.: Exception Handling and Tolerance of Software Faults. Chapter 4 in: Lyu, M.

(ed.): Software Fault Tolerance. Wiley (1995) 81-107
3. Ellis, M. A., Stroustrup, B.: The Annotated C++ Reference Manual. Addison Wesley (1990)
4. Krishnamurthy, S., Mathur, A.P.: On the Estimation of Reliability of a Software System

Using Reliabilities of its Components. 8th Int. Sym. on Software Reliability Engineering
(ISSRE ’97), November 2-5, 1997 Albuquerque, US

5. Meyer, B.: Object-Oriented Software Construction. Prentice Hall (1988)

Portable Implementation of Continuation
Operators in Imperative Languages by

Exception Handling

Tatsurou Sekiguchi1,2, Takahiro Sakamoto1, and Akinori Yonezawa1

1 Department of Information Science, Faculty of Science, University of Tokyo
2 PRESTO, Japan Science and Technology Corporation

{cocoa, takas, yonezawa}@is.s.u-tokyo.ac.jp

Abstract. This paper describes a scheme of manipulating (partial) con-
tinuations in imperative languages such as Java and C++ in a portable
manner, where the portability means that this scheme does not depend
on structure of the native stack frame nor implementation of virtual ma-
chines and runtime systems. Exception handling plays a significant role
in this scheme to reduce overheads. The scheme is based on program
transformation, but in contrast to CPS transformation, our scheme pre-
serves the call graph of the original program. This scheme has two im-
portant applications: transparent migration in mobile computation and
checkpointing in a highly reliable system. The former technology enables
running computations to move to a remote computer, while the latter
one enables running computations to be saved into storages.

1 Introduction

A situation often occurs that execution states of a running program have to be
encoded into a data structure. Checkpointing [6] is a technique that improves
reliability of a system by saving execution states of a running program periodi-
cally. In the context of mobile computation [2], there is a form of computation
migration called transparent migration [13] or strong mobility [4], which means
that the entire execution state of a running program including the call stack
and (part of) the heap image are preserved on migration. During a transpar-
ent migration process, the execution states of a program are saved into a data
structure, the data structure is transmitted to a destination host over the net-
work, and finally execution states are reconstructed at that host from the data
structure.

It is not difficult to capture and recover the call stack when a program lan-
guage has call/cc (call with current continuation) primitive. Even in imperative
languages, the capability of storing execution states including the call stack has
often been implemented by compiler support and/or by runtime support. Emac-
sLisp, SmallTalk and some implementation of Standard ML (SML/NJ) have a
primitive that dumps the execution image into a local disk.

This paper reports a completely different approach based on program trans-
formation. This scheme is portable in the sense that it does not depend on

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 217–233, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

218 T. Sekiguchi, T. Sakamoto, and A. Yonezawa

structure of native stack frames nor implementation of virtual machines and
runtime systems. An existing system therefore does not need to be extended to
capture and restore execution states. This scheme has been developed mainly
through the study on implementation of transparent migration on Java because
Java allows Java programs to manipulate stack frames only in a restricted form.
Exception handling plays a significant role in this scheme to reduce overheads.

The rest of this paper is organized as follows. Sect. 2 introduces operators
manipulating continuations to clarify what is implemented by the scheme de-
scribed in this paper. Sect. 3 describes how continuation operators are imple-
mented by using an exception handling mechanism. Sect. 4 shows several appli-
cations. Sect. 5 discusses difficulties and limitations in the technique. In Sect. 6,
we compare our technique with related work. Sect. 7 summarizes this work.

2 Partial Continuations

This section introduces a simple calculus of control [14] that was devised through
development of SML/NJ. This calculus provides two tagged operators for ma-
nipulating partial continuations, which are almost analogous to Danvy’s shift
and reset [5], and Felleisen’s F and prompt [9]. Our program transformation
scheme essentially implements those operators for partial continuations in im-
perative languages.

This calculus is an extension of a call-by-value lambda calculus, and its se-
mantics is defined in the style of structured operational semantics. A polymor-
phic type system is provided for the calculus. In this paper, however, we focus
only on its operators for partial continuations. The syntax of these operators are
defined as follows:

cupto p as x in e capturing the functional continuation
set p in e delimiting the effect of cupto

where p, e and x are metavariables that denote a prompt, an expression and a
variable, respectively. 1 A prompt is a special constant, which is actually a tag
that determines which set and cupto expressions are matched. The cupto op-
erator captures the functional continuation up to the innermost set expression
with the same prompt. The captured continuation is bound to variable x, and
expression e is evaluated with this extended environment. The set expression
delimits the effect of capturing a continuation. The outer context of the set op-
erator is thus not captured. In contrast, call/cc (call with current continuation)
operator in Scheme always captures the full continuation.

The evaluation rule is defined formally as follows:

set p in E[cupto p as x in e] −→ (λx.e)(λy.E[y])

where E is an evaluation context in which the hole is not in the scope of a set
expression with prompt p, and y is a fresh variable. An evaluation context [10] is
1 Strictly speaking, there is a slight difference from the original operators. The set of

valid expressions are restricted for our convenience.

Portable Implementation of Continuation Operators 219

an expression with a single special constant called hole. The position of the hole in
an evaluation context is syntactically defined so that it designates the expression
to be evaluated next, i.e. the redex of the evaluation context. We denote by E[e]
the result of replacing the hole in E with e, which implies that e is the redex of
expression E[e]. In this evaluation rule, E represents the continuation of cupto
expression up to the set expression. The continuation becomes λy.E[y] by the
eta conversion. In the righthand side, e will be evaluated with an environment
where the continuation is bound to x.

Various control operators can be implemented by composing these primitive
control operators. Ref. [14] provides examples of implementation of call/cc,
exception handling, and coroutines.

The notion of partial continuations was partly implemented in early pro-
gramming languages such as PL/I and Mesa [17], where execution can restart
at the instruction following the one that raised an exception when the exception
is captured by an exception handler. In addition, a model of exception han-
dling is proposed [8] in which resumption contexts are first class objects and are
modifiable. Our scheme can be used to implement such an exception handling
mechanism on imperative languages in a portable manner.

3 Emulating Continuations

This section describes how the control operators in Sect. 2 are implemented in
imperative languages such as C++ and Java. Our scheme of implementation
does not need to manipulate stack frames, but the overheads are quite low due
to exception handling mechanism. Our scheme is based on program transforma-
tion. In contrast to the CPS transformation, however, a code transformed by
our scheme preserves the original call graph (although additional method in-
vocations are inserted to maintain continuation operation). A CPS transformed
program easily overflows the call stack if the base language is a typical imperative
language. In this section, we suppose the target language to be Java bytecode
because it is suitable for explaining the idea of our program transformation. Java
virtual machine forbids a stack manipulation by Java bytecode itself because of
concern for security. A program in Java bytecode cannot inspect nor modify
stack frames. These facts obviously show that the scheme is portable and widely
applicable to various imperative languages.

The transformer takes a program in an imperative language with the contin-
uation operators as input, and produces an equivalent program in the base lan-
guage. Moreover, the transformation is on per-method basis, i.e. from a method
in the source program, a method and a class are created. This created class rep-
resents the execution states of the method. A program is transformed so that it
explicitly manages its execution states. A captured continuation is a standard
data structure in the base language, which implies that one can save and modify
it, moreover, it is transmittable to a remote host. Though the transformation
is implemented by using an exception handling mechanism, it does not prevent
use of exception handling in a source program.

220 T. Sekiguchi, T. Sakamoto, and A. Yonezawa

The transformation consists of two different sub-transformations: one for
saving execution states and a resumption point, and one for restoring execution
states. The transformation for saving execution states is described in Sect. 3.3,
while the one for restoring is described in Sect. 3.4. Actually, the effects of two
transformations are mingled in a transformed code.

Since a program is transformed and additional fragments are inserted to the
original program, it incurs slowdown of ordinary execution (note that the part
not relating to continuation operation also slows down). In addition, our scheme
changes method signatures. An extra parameter is inserted to each method to
pass a state object (this will be explained in Sect. 3.4).

public class Fib {
public static void fib(int v1) {

if (v1 <= 1)
return 1;

else {
int v2 = fib (v1 - 2);
return v2 + fib (v1 - 1);

}
}

}

Fig. 1. A pseudo code of Fibonacci function.

We use Fibonacci function in Fig. 1 to illustrate the transformation through-
out this section. For readability, we use a Java-like pseudo code to denote a
program, but in reality it consists of Java bytecodes.

3.1 Bytecode Analysis

To transform a bytecode program, we need information on a set of all valid frame
variables (a kind of registers) and entries in the operand stack for each program
point. A variable or an entry is valid if a value on it is available for every possible
control flow. Types of frame variables and entries in the operand stack are also
necessary. In addition, a transformed code must pass a Java bytecode verifier if
the original code passes it. To obtain such necessary information on bytecode,
bytecode analysis must be performed before transformation.

Our bytecode transformer requires exactly the same information as that for
bytecode verification [15]. We had adopted type systems for Java bytecode veri-
fication to keep information on bytecode. Our transformer transforms bytecode
programs based on this information. We use the type system of Stata and Abadi
[22,23], and that of Freund and Mitchell [11]. Stata’s type system provides infor-
mation on types of frame variables and the operand stack. In addition, bytecode
subroutines can be described. On the other hand, Freund’s type system focuses

Portable Implementation of Continuation Operators 221

on uninitialized values, that are fresh objects whose constructors are not invoked
yet. An uninitialized value exists only for a brief period in ordinary execution
since a constructor of an object is always invoked as soon as it is created, but it
can be a source of type system violation [11].

If a bytecode is well-typed in their type systems, it tells that the bytecode
program is verifiable. The type reconstruction problem is to find an appropri-
ate type judgment for a given program (method). It is actually a verification
algorithm itself. We have implemented a type reconstruction algorithm for the
type systems although we had to extend them to the full set of Java bytecode
except bytecode subroutine facility. As will be mentioned in Sect. 5, it is difficult
to transform a bytecode subroutine into an efficient code. Bytecode subroutines
are not supported in our current implementation.

public class ST_Fib_fib extends StateObject {
public int EntryPoint;
public int[] ArrayI;
public long[] ArrayL;
public float[] ArrayF;
public double[] ArrayD;
public Object[] ArrayA;

public void Resume() {
Fib.fib(this, 0);

}
}

Fig. 2. A state class.

3.2 State Class

Our transformation algorithm defines a state class for each method. An execution
state of a method is stored into an instance of the state class. Fig. 2 shows an
example of a state class, where EntryPoint designates a resumption point, and
variables of array types keep frame variable values and operand stack values.
In addition, special values that manage state capture and restoration are also
stored into those arrays. These special values include the state object for the
current method, the state object for the caller of the current method, and a
special exception that notifies migration. The size of each array is determined
statically when a method is analyzed. Every state class is a subclass of a common
super class (StateObject). Every state class has method Resume, which resumes
the execution stored in a state object. This will be explained in Sect. 3.4.

3.3 Capturing a Continuation

Capturing a continuation consists of the following operations:

222 T. Sekiguchi, T. Sakamoto, and A. Yonezawa

1. Saving all frame variable values and operand stack values in a method,
2. Saving a resumption point information in a method, and
3. Repeating the above for each method.

These operations essentially yield a logical copy of the stack. In case of the
Java bytecode language, frame variables include all parameters of a method,
and a resumption point is actually a program counter. In case of C++ and Java
source-to-source transformation, operand stack values are not saved. Instead,
temporary variables are introduced. When we have to save an execution state
of a partially evaluated expression, that expression is split so that intermediate
values can be saved. Consider the following piece of code:

x = foo() + bar();

To save the result of foo, the above expression is split in advance as follows:

tmp = foo();
x = tmp + bar();

The transformation algorithm inserts the following code fragments to a
method:

– An exception handler for each method invocation. An occurrence of state
capturing is notified by a special exception. The exception handler is re-
sponsible for saving an execution state. The program counter to be saved
is known since an exception handler is unique for each resumption point.
The set of valid frame variables and their types are found by the bytecode
analysis described in Sect. 3.1.

– Instructions for saving valid entries on the operand stack into frame variables.
Entries on the operand stack are defined to be discarded when an exception
is thrown, which means that their values cannot be fetched from an exception
handler. The basic idea for saving values on the operand stack is to make
their copies in frame variables before the contents of entries on the operand
stack are set. The valid entries on the operand stack are also found by the
bytecode analysis. This care is needed only in case of Java bytecode.

When a continuation is captured by invoking a cupto operator, a special
exception is thrown. If a method captures the exception, the method stores its
execution state in a newly created state object defined for each method, and
then it propagates the exception to the caller of the method. This process is
repeated until the exception reaches a set operator with the same prompt.

Fig. 3 shows a result of transforming the method in Fig. 1 for state capturing.
An exception handler that captures exception Notify is inserted for each method
invocation. In the exception handlers, a resumption point and local variables are
saved into a created state object. Since variable v2 is undefined at the first
recursive invocation of method fib, The value of v2 is not saved in the first
exception handler. The state object is stored in the exception object by e.append
(s). Finally, the exception is re-thrown.

Portable Implementation of Continuation Operators 223

public static void fib(int v1) throws Notify {
if (v1 <= 1)

return 1;
else {

int v2;
try {

v2 = fib (v1 - 2);
} catch (Notify e) {

ST_Fib_fib s = new ST_Fib_fib();
s.EntryPoint = 1;
s.v1 = v1;
e.append (s);
throw e;

}
try {

return v2 + fib (v1 - 1);
} catch (Notify e) {

ST_Fib_fib s = new ST_Fib_fib();
s.EntryPoint = 2;
s.v1 = v1;
s.v2 = v2;
e.append (s);
throw e;

}
}

}

Fig. 3. A pseudo code transformed for state capturing.

3.4 Invoking a Continuation

Invoking a continuation consists of the following operations:

1. Restoring all frame variable values and operand stack values in a method,
2. Transferring the control to the resumption point in a method,
3. Reconstructing dynamic extents of active exception handlers, and
4. Reconstructing the call stack.

The execution states of a method are reconstructed from a state object. The
call stack is reconstructed by calling the methods in the order in which they
were invoked. Each method is transformed in advance so that it can restore
its execution state from a state object. When a method is called with a state
object as an extra parameter, it restores all the values of frame variables and
the operand stack, and then it continues execution from the resumption point.
When the extra parameter for a method is null, it indicates ordinary execution.

The transformation algorithm inserts the following code fragments to a
method:

224 T. Sekiguchi, T. Sakamoto, and A. Yonezawa

– Instructions that put a state object as an extra parameter for a method
invocation instruction.

– Instructions, at the head of the method, that restore all valid frame variables
and all valid entries on the operand stack. When the execution state of
a method is restored, a state object is passed to the method as an extra
parameter. The inserted code restores all valid frame variables and all entries
on the operand stack at the resumption point. After restoring the frame
variables and entries on the operand stack, the control is transferred to the
resumption point.

public static void fib(StateObject s, int v1) {
int v2;
ST_Fib_fib c = null;
if (s != null) {

c = (ST_Fib_fib)s.callee;
switch (s.EntryPoint) {

case 1: v1 = c.v1;
goto l1;

default: v1 = c.v1;
v2 = c.v2;
goto l2;

}
}
if (v1 <= 1)

return 1;
else {
l1:

v2 = fib(c, v1 - 2);
c = null;

l2:
return v2 + fib(c, v1 - 1);

}
}

Fig. 4. A pseudo code transformed for state restoration.

Fig. 4 shows a result of transforming the method in Fig. 1 for state restora-
tion. A parameter is added to pass a state object. When the extra parameter is
null, the original body of the method is executed. Otherwise, the execution state
is reconstructed from the state object. Variable c holds the state object of this
method. It has a valid value only during state restoration. All the local variable
values are restored from the state object, and then the control is transferred
to the resumption point. Remember that this is actually a Java bytecode. We
can therefore use goto instructions. A transformer for C++ can also use goto
instructions. A source code transformer for Java uses another technique for con-

Portable Implementation of Continuation Operators 225

trol transfer [19]. Note that the scope of an exception handler is automatically
recovered because restoring the execution state of a callee method is done by
invoking the callee. This implies that the instruction that resumes the callee is
the same instruction that invokes the callee in ordinary execution, which takes
place in the scope of an exception handler.

Now we can see how Resume method in Fig. 2 resumes the execution. The first
parameter (this) is a state object itself, and the second parameter is dummy
since it is not used.

public interface Receiver {
public void Receive(StateObject s) throws Exception;

}

Fig. 5. An interface that receives a captured continuation.

3.5 The cupto and set Operators

Now we can explain how the operators manipulating partial continuations in
Sect. 2 are implemented by using the techniques just shown. As mentioned in
Sect. 3.3, we use a special exception (Notify) to notify the occurrence of state
capturing. We define a subclass of class Notify for each occurrence of a prompt
in the operators for continuations. A prompt corresponds to a subclass of class
Notify.

Since Java does not have a way to extend an environment, we modify the
semantics of the cupto operator so that it fits in Java. The abstract syntax of
the cupto operator is as follows:

cupto p as x in e

When the above expression is evaluated, the functional continuation up to the
innermost set expression with the same prompt is captured and bound to vari-
able x. Then expression e is evaluated in the extended environment. Instead, we
restrict the form of e to an object that implements interface Receiver in Fig. 5.
The interface has method Receive, which takes an instance of a state class.
When a continuation is captured, it is passed to e by invoking method Receive
with the continuation. Variable x is thus not used. In sum, the new operator
looks like:

cupto p in o

where o denotes an object that implements interface Receiver.
This operator is implemented just as follows:

throw new p(o);

226 T. Sekiguchi, T. Sakamoto, and A. Yonezawa

where p is a class name that corresponds to prompt p, and o is a variable that
refers to object o. Object o is stored in the exception object in a constructor of
p. This statement initiates the state capture process by throwing exception p.

On the other hand, the set operator, set p in e, is translated as follows:

try {
e

} catch (p x) {
Receiver r = x.getReceiver();
StateObject s = x.getStateObject();
r.Receive (s);

}

The receiver object and all the state objects are stored in the exception
object. Method getStateObject returns the bottom of all state objects.

Finally, invoking a continuation is achieved by calling method Resume (shown
in Fig. 2) in a state object.

3.6 Experimental Results

This section reports performance results on our implementation of program
transformers. We measured execution efficiency, code size growth, and elapsed
time of program transformation.

Table 1. Comparison in execution efficiency.

elapsed time (ms)
with JIT without JIT

program original JavaGo JavaGoX original JavaGo JavaGoX
fib(30) 111 263 (+137%) 173 (+56%) 870 2553 (+193%) 1516 (+74%)
qsort(400000) 214 279 (+30%) 248 (+16%) 2072 2856 (+38%) 2597 (+25%)
nqueen(12) 1523 2348 (+54%) 1731 (+14%) 30473 36470 (+20%) 30843 (+1.2%)
201 compress 33685 61629 (+83%) 40610 (+21%) 365661 713936 (+95%) 433439 (+19%)

(JDK 1.2.2, Intel Celeron(TM) Processor 500MHz)

elapsed time (sec)
program original transformed
fib(40) 40.0 36.1 (−10%)
qsort(4000) 36.4 37.0 (+2%)
multimat 14.0 15.2 (+9%)
bintree 3.4 3.9 (+15%)

(egcs-2.91.66, UltraSPARC Processor 168MHz)

Execution Efficiency of Transformed Programs Three kinds of code are
evaluated: the original program, that transformed at source code level, and that
transformed at bytecode level. The elapsed times of transformed programs were
measured and compared. We use three transformers: JavaGo [19] as a Java source

Portable Implementation of Continuation Operators 227

code transformer, JavaGoX [18] as a Java bytecode transformer, and a source
code transformer for C++. The purpose of this experiment is to identify the
overheads induced by inserted code fragments to the original programs. Captured
continuations are thus not invoked during the execution of benchmark programs.
The results are shown in Table 1 where 201 compress is a benchmark program
included in SpecJVM98, multimat is an integer matrix multiply whose size is
200 × 200, and bintree is an application that inserts a random integer into a
binary tree 100000 times.

Most part of the overheads in Java applications is due to the code frag-
ments for saving the operand stack at resumption points. The overheads of the
Fibonacci method is rather high because the method does almost nothing but
invokes the method itself recursively. When the body of a method are so small,
the relative overheads of inserted code fragments tend to be high. In this ex-
periment, the overheads induced by our bytecode transformation are always less
than those induced by JavaGo. For quick sort and N-queen programs, the over-
heads were approximately 15% of the original programs when the applications
were executed with just-in-time compilation.

Our scheme works with C++ better than Java. The overheads due to source
code transformation are less than those of Java bytecode transformation.

Table 2. Comparison in bytecode size.

bytecode size (in bytes)
program original JavaGo JavaGoX
fib 276 884 (3.2 times) 891 (3.2 times)
qsort 383 1177 (3.1 times) 1253 (3.3 times)
nqueen 393 1146 (2.9 times) 976 (2.5 times)
201 compress 13895 22029 (1.6 times) 18171 (1.3 times)

Growth in Bytecode Size of Transformed Programs The growth in byte-
code size due to program transformations is shown in Table 2. The growth rates
for these programs are approximately three times. We think that these results
would be the worst case because the relative overheads of inserted code frag-
ments tend to be high when an original method is small. Actually, growth rate
falls down in a large application (201 compress).

The size of bytecode produced by the bytecode transformer is very simi-
lar to the size of bytecode produced in the source code transformation. But
their characteristics are quite different each other. In case of JavaGo, the size of
transformed bytecode is proportional to square of the deepest depth of loops. In
contrast, the size of bytecode transformed at bytecode level is proportional to
the number of resumption points and valid values.

228 T. Sekiguchi, T. Sakamoto, and A. Yonezawa

Table 3. Elapsed time for analysis and transformation.

elapsed time per method (ms)
program analysis transformation
fib 235 79
qsort 285 81
nqueen 267 80
201 compress 150 59

Elapsed Time of Program Transformation The elapsed time for analysis
and transformation of the bytecode transformer is shown in Table 3. In every
case, analysis takes more time than transformation. However, the total elapsed
time is short. We believe that these figures show our bytecode transformer is
practical enough. The elapsed time for 201 compress is obviously shorter than
those of the other applications. The reason is that 201 compress has many
methods. The other applications are quite small one. They have only one or a
few methods. In case of 201 compress, the memory cache can work effectively.

4 Application

We point out that our scheme for continuation manipulation based on program
transformation finds at least two applications.

4.1 Mobile Computation

Mobile computation is a promising programming paradigm for network-oriented
applications where running computations roam over the network. Various kinds
of applications are proposed such as electric commerce, auction, automatic in-
formation retrieval, workflow management and automatic installation.

To move a program execution to a remote host, the execution states of a
thread must be saved and be restored. It is, however, difficult for a Java pro-
gram to manipulate the stack because the Java security policy forbids it. Two
different approaches have been proposed for realizing transparent thread migra-
tion in Java: virtual machine extension [21] and program transformation schemes
[1,12,18,19,26]. Migration is called transparent [13] or strong [4] if a program ex-
ecution is resumed at a destination site with exactly the same execution state as
that of the migration time. The relationship between partial continuation and
transparent thread migration was first pointed out by Watanabe [28]. In the
program transformation schemes, a thread migration is accomplished by three
steps:

– The execution states of a target thread are saved into a machine-independent
data structure at the departure site. The thread terminates itself when the
migration succeeds.

Portable Implementation of Continuation Operators 229

– The data structure representing the execution states of a target thread is
transmitted through the network to the destination site.

– A new thread is created at the destination. Equivalent execution states of
the target thread are reconstructed for the new thread.

The above entire process can be implemented by using only standard mechanisms
of Java.

4.2 Checkpointing

Checkpointing [6] is a technique that makes a system more reliable by saving
its execution states into a local disk periodically. When a system fails for some
reason, the system states can be recovered from the last saved system image.
A source code transformer for portable checkpointing is developed [24,25]. The
idea is analogous to the case of mobile computation. Instead of sending encoded
execution states to a remote computer, they are saved into a local disk.

5 Limitations

This section discusses the limitations of our scheme due to program transforma-
tion and Java proper problems.

5.1 Limitations due to Program Transformation

To save a continuation, all methods associated to the continuation must be
transformed in advance. This implies that if the call stack includes stack frames
of non-transformed methods, that part of the execution states cannot be saved.
This situation often occurs in a program using graphical user interface since
it often needs callback methods. Callback methods are invoked by a runtime
system.

In our program transformation scheme, a continuation can be captured by
the thread that will execute the continuation. A thread cannot make another
thread capture a continuation in an efficient manner. This strongly restricts a
way programs migrate in mobile computation. When a program execution that
involves multiple threads is migrated to a remote host, we want a thread to
move the other threads. But an efficient way of moving a set of threads by a
particular thread has not been clear. In other words, subjective move [3] can be
implemented in the way described in this paper, but objective move cannot be.

When a continuation is invoked, stack frames are reconstructed from state
objects. This implies that values on the stack can be on different addresses from
the original addresses when they were captured. When an object is allocated
on the stack in C++, special care must be taken. For instance, the programmer
should not derefer the address of that object since it changes when a continuation
is invoked. Ramkumar gives a partial solution for this problem [25].

230 T. Sekiguchi, T. Sakamoto, and A. Yonezawa

5.2 Java Proper Problems

It is difficult to save the state of bytecode subroutines in an efficient way since
a return address of a bytecode subroutine cannot be saved into an object under
the restriction of a Java bytecode verifier.

It is difficult to save the execution states in a class initializer because the
programmer cannot call a class initializer. It is invoked by a runtime system
when a class is loaded.

Locking is lost when a continuation is captured though locking is correctly
recovered after state restoration. When a lock is acquired by a synchronized
statement or a synchronized method, it will be released by an exception notifying
state capturing.

6 Related Work

Implementation technique of partial continuations based on program transfor-
mation was studied to implement a Prolog system on the C language [16]. The
notion of partial continuations is useful to implement the cut and delay primi-
tives in Prolog: the former causes backtracking and the latter freezes computation
of the proof of a goal until a particular variable is instantiated. Recently, the im-
plementation technique has received much attention again and been developed
through the study on implementation of transparent migration on Java. Java
allows Java programs to manipulate stack frames only in a restricted form. Pro-
gram transformation is known as the only way by which transparent migration is
accomplished without extending virtual machines. The relationship between par-
tial continuation and transparent thread migration was pointed out by Watanabe
[28] and Sekiguchi [20]. Fünfrocken [12] pointed out that an exception handling
mechanism could be used for notifying occurrence of state capturing with low
costs. He developed a scheme of transparent migration for standard Java, but
his scheme had difficulties in resumption of control in a compound statement.
These difficulties were eliminated based on the idea of unfolding [1,19]. All these
schemes were based on source code level transformation. Then a scheme based
on bytecode transformation was devised [18,27].

The technique has been also developed for C and C++. Arachne threads
system [7] is a distributed system in which a thread can be migrated to a remote
host. It is also based on source-to-source transformation, but the overheads on
normal execution in the system are more than 100% since every access to a local
variable always incurs memory access. Porch [24] is a source code transformer for
checkpointing. It shares a large part of our scheme, but it does not use exception
handling to roll back the call stack since it is for the C language. Taga [26]
developed a thread migration scheme based on source code transformation. It
also exploits the exception handling mechanism to roll back the call stack.

The overheads due to the program transformation described in this paper
can be reduced by the technique by Abe [1] and Taga [26]. The code fragments
inserted for state restoration are needed only when execution states are recon-
structed. When a method is transformed, their scheme generates two versions:

Portable Implementation of Continuation Operators 231

one is fully transformed and the other is transformed only for state capturing.
In ordinary execution, only the latter methods are used.

7 Summary

We have shown a scheme by which operators for partial continuations can be
implemented on imperative languages such as C++ and Java. It implies that
continuation operators such as call/cc can be implemented on C++ and Java.
This scheme is so portable that it does not need the knowledge of native stack
frames nor runtime systems. It is based on program transformation, yet over-
heads on execution performance are quite low due to an exception handling
mechanism. We have actually implemented transformers for Java [18,19] and
C++ [26], and several benchmark measurements are reported in Sect. 3.6.

The study on this technique is not completed yet as we show several limita-
tions in Sect. 5. Further work is needed to eliminate those limitations.

References

1. Hirotake Abe, Yuuji Ichisugi, and Kazuhiko Kato. An Implementation Scheme of
Mobile Threads with a Source Code Translation Technique in Java. In Proceedings
of Summer United Workshops on Parallel, Distributed and Cooperative Processing,
July 1999. (in Japanese).

2. Luca Cardelli. Mobile Computation. In Mobile Object System: Towards the Pro-
grammable Internet, volume 1222 of Lecture Notes in Computer Science, pages 3–6.
Springer-Verlag, April 1997.

3. Luca Cardelli and Andrew D. Gordon. Mobile Ambients. In Maurice Nivat, edi-
tor, First International Conference on Foundations of Software Science and Com-
putational Structures, volume 1378 of Lecture Notes in Computer Science, pages
140–155. Springer-Verlag, 1998.

4. Gianpaolo Cugola, Carlo Ghezzi, Gian Pietro Picco, and Giovanni Vigna. Analyz-
ing Mobile Code Languages. In Mobile Object System: Towards the Programmable
Internet, volume 1222 of Lecture Notes in Computer Science, pages 93–109, April
1996.

5. Olivier Danvy and Andrzej Filinski. Abstracting Control. In Proceedings of the
1990 ACM Conference on Lisp and Functional Programming, pages 151–160, 1990.

6. Geert Deconinck, Johan Vounckx, Rudi Cuyvers, and Rudy Lauwereins. Survey of
Checkpointing and Rollback Techniques. Technical report, ESAT-ACCA Labora-
tory, Katholieke Universiteit Leuven, Belgium, June 1993. O3.1.8 and O3.1.12.

7. Bozhidar Dimitrov and Vernon Rego. Arachne: A Portable Threads System Sup-
porting Migrant Threads on Heterogeneous Network Farms. In Proceedings of
IEEE Parallel and Distributed Systems, volume 9(5), pages 459–469, 1998.

8. Christophe Dony. Improving Exception Handling with Object-Oriented Program-
ming. In Proceedings of the 14th IEEE computer software and application confer-
ence COMPSAC’90, pages 36–42, November 1990.

9. Matthias Felleisen. The Theory and Practice of First-Class Prompts. In Conference
Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, pages 180–190, 1988.

232 T. Sekiguchi, T. Sakamoto, and A. Yonezawa

10. Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. A
Syntactic Theory of Sequential Control. In Theoretical Computer Science, vol-
ume 52, pages 205–237, 1987.

11. S.N. Freund and J.C. Mitchell. A Type System for Object Initialization in the Java
Bytecode Language. ACM Transaction on Programming Languages and Systems,
21(6):1196–1250, November 1999.

12. Stefan Fünfrocken. Transparent Migration of Java-Based Mobile Agents. In MA’98
Mobile Agents, volume 1477 of Lecture Notes in Computer Science, pages 26–37.
Springer-Verlag, 1998.

13. Robert S. Gray. Agent Tcl: A Transportable Agent System. In Proceedings of the
CIKM Workshop on Intelligent Information Agents, Fourth International Confer-
ence on Information and Knowledge Management, 1995.

14. Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A Generalization of Exceptions
and Control in ML-like Languages. In Conference Record of FPCA’95 SIGPLAN-
SIGARCH-WG2.8 Conference on Functional Programming Languages and Com-
puter Architecture, pages 12–23, June 1995.

15. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification Second
Edition. Addison-Wesley, 1999.

16. Vincenzo Loia and Michel Quaggetto. High-level Management of Computation
History for the Design and Implementation of a Prolog System. Software – Practice
and Experience, 23(2):119–150, February 1993.

17. J. G. Mitchell and W. Maybury. Mesa language manual. Xerox PARC, April 1979.
CSL-79-3.

18. Takahiro Sakamoto, Tatsurou Sekiguchi, and Akinori Yonezawa. Bytecode Trans-
formation for Portable Thread Migration in Java. In Proceedings of the Joint Sym-
posium on Agent Systems and Applications / Mobile Agents (ASA/MA), pages
16–28, September 2000.

19. Tatsurou Sekiguchi, Hidehiko Masuhara, and Akinori Yonezawa. A Simple Ex-
tension of Java Language for Controllable Transparent Migration and its Portable
Implementation. In Coordination Languages and Models, volume 1594 of Lecture
Notes in Computer Science, pages 211–226. Springer-Verlag, April 1999.

20. Tatsurou Sekiguchi and Akinori Yonezawa. A Calculus with Code Mobility. In
H. Bowman and J. Derrick, editors, Proceedings of Second IFIP International
Conference on Formal Methods for Open Object-based Distributed Systems, pages
21–36. Chapman & Hall, 1997.

21. Kazuyuki Shudo. Thread Migration on Java Environment. Master’s thesis, Uni-
versity of Waseda, 1997.

22. Raymie Stata and Mart́ın Abadi. A Type System for Java Bytecode Subroutines.
SRC Research Report 158, Digital Systems Research Center, June 1998.

23. Raymie Stata and Mart́ın Abadi. A Type System for Java Bytecode Subroutines.
In Conference Record of POPL’98: 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 149–160, 1998.

24. Volker Strumpen and Balkrishna Ramkumar. Portable Checkpointing and Recov-
ery in Heterogeneous Environments. Technical report, University of Iowa, 1996.
TR-96.6.1.

25. Volker Strumpen and Balkrishna Ramkumar. Portable Checkpointing for Hetero-
geneous Architectures. In Fault-Tolerant Parallel and Distributed Systems, chap-
ter 4, pages 73–92. Kluwer Academic Press, 1998.

26. Nayuta Taga, Tatsurou Sekiguchi, and Akinori Yonezawa. An Extension of C++
that Supports Thread Migration with Little Loss of Normal Execution Efficiency.

Portable Implementation of Continuation Operators 233

In Proceedings of Summer United Workshops on Parallel, Distributed and Cooper-
ative Processing, July 1999. (in Japanese).

27. Eddy Truyen, Bert Robben, Bart Vanhaute, Tim Coninx, Wouter Joosen, and
Pieere Verbaeten. Portable Support for Transparent Thread Migration in Java. In
Proceedings of the Joint Symposium on Agent Systems and Applications / Mobile
Agents (ASA/MA), pages 29–43, September 2000.

28. Takuo Watanabe. Mobile Code Description using Partial Continuations: Definition
and Operational Semantics. In Proceedings of WOOC’97, 1997.

Exception Handling in Object-Oriented
Databases

Elisa Bertino1, Giovanna Guerrini2, and Isabella Merlo1

1 Dipartimento di Scienze dell’Informazione
Università degli Studi di Milano

Via Comelico 39/41 - I20135 Milano, Italy
{bertino,merloisa}@dsi.unimi.it

2 Dipartimento di Informatica e Scienze dell’Informazione
Università di Genova

Via Dodecaneso 35 - I16146 Genova, Italy
guerrini@disi.unige.it

Abstract. Exceptions in database systems can be used for two differ-
ent purposes: to store data not conforming to the description provided
by the database schema, that is, exceptional data; and to handle excep-
tional situations during processing, that is, the usual execution excep-
tions of programming languages. In this paper we survey approaches to
both kinds of exceptions in OODBMSs, we discuss some uses of excep-
tions peculiar to databases, and relate exceptions with triggers, a typical
database functionality.

1 Introduction

The object-oriented paradigm played and is still playing a crucial role in over-
coming the well known problem of impedance mismatch between databases and
programming languages [5]. A relevant feature of (object-oriented) programming
languages is represented by exception mechanisms, which represent a powerful
mechanism for handling error or anomalous situations.

Exceptions can be used in databases according to two different perspectives:
execution exceptions and data exceptions. Execution exceptions are the classical
exceptions of programming languages. Their support in a database context re-
quires a proper integration with the transaction mechanism typical of DBMSs.
Operations on the database are executed in atomic units that are either suc-
cessfully terminated (committed) or, in case any problems occur, not executed
at all (aborted). Data exceptions, by contrast, refer to the possibility of storing
exceptional data, that is, data that do not fully conform to the general structure
of data described by the database schema. Support for exceptional data clearly
enhances the flexibility of the database system, but it also introduces some ad-
ditional problems, some of which can be managed through the use of execution
exceptions.

A typical database notion that is obviously related to exceptions is moreover
the notion of integrity constraint. An integrity constraint is a property that

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 234–250, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Exception Handling in Object-Oriented Databases 235

data must satisfy in order to be a faithful representation of the application
domain, thus to ensure data quality. Integrity constraints are usually expressed in
a declarative way, e.g. through logical formulas. An integrity constraint violation
is a particular kind of error condition, and thus one of the most obvious cases of
execution exception. Apart from integrity constraint handling, some additional
applications of execution exceptions have been proposed in the literature, mainly
to facilitate data and schema evolution, thus, again, to enhance the flexibility
of the system. Since moreover one of the most relevant functionalities achieved
through triggers in the database context is integrity constraint enforcement, the
notions of triggers and exceptions seem to be potentially related. They have
however not been compared yet, nor the relationships between them clarified.
All these issues will be considered in the paper.

The remainder of the paper is organized as follows. In the remainder of this
section we recall some basic notions on exception handling and the Java/C++
exception handling mechanisms we refer to in what follows. Section 2 discusses
data exceptions, whereas Section 3 deals with the support for execution excep-
tions offered by the object database standard ODMG. Sections 4 and 5 illustrates
the use of execution exceptions to handle integrity constraints and to ease and
control database evolution. Finally, Section 6 compares the notion of trigger with
that of exception and Section 7 concludes the paper.

1.1 Exception Handling

Exception handling [16] is an approach to programming to deal with anomalous
and error situations. The goal is to make systems more reliable by providing
a framework for implementing software fault tolerance. An exception is thus a
condition that prevents the continuation of the current method or scope. When
an exceptional condition arises, processing cannot continue because the infor-
mation necessary to deal with it is not available in the current context. Thus,
the approach is to jump out of the current context and to relegate the problem
to a higher context. This is what happens when an exception is thrown.

According to the exception handling terminology, a context is a section of
code associated with a particular exception handler. This handler is activated
if an exception is raised in the context. Java and C++ allow exception context
specification in a try block: try { ... }. Arbitrary exception handlers can be at-
tached to a try block and are identified by the catch keyword. A raised exception
is an exception object, which is caught by a handler declared to handle exception
objects of that object type. Since an exception is raised by an exception object,
that object can carry specific information about the raised exception. This guar-
antees type-safe transmission of arbitrary amounts of information from a raised
exception to a handler. If an exception has been raised, it is possible that no
local handler is declared for this particular code segment. In this case one should
look for handlers up the chain of invokers at run-time (exception propagation). If
an unhandled exception reaches the outmost scope in a program, it is caught by
a special system-declared handler, which usually aborts the program and issues
an error message. Exceptions are raised and reraised with the throw keyword.

236 E. Bertino, G. Guerrini, and I. Merlo

A try block may have several catch clauses. When an exception is thrown, each
catch clause is examined in turn, to see whether the type of the exception object
is assignable to the type declared in the catch. When an assignable catch clause
is found, its block is executed and the following catch clauses are disregarded.

There are two main methods to handle the control flow after an exception
occurs. Termination semantics continues execution after the context handling
the exception, whereas resumption semantics continues the execution at the
very point the exception occurred. Thus, in termination (which is what Java
and C++ support) you assume that the error is so critical that there is no way
to get back where the exception occurred, whereas in resumption the exception
handler is expected to do something to rectify the situation.

2 Data Exceptions

Database systems rely on the uniformity that is imposed by a typed universe in
order to achieve high performance. The notion of schema, providing a description
of the structure of data to be stored in the database, is crucial for effective storage
and retrieval. This requirement, however, contrasts with the need of flexibility
arising in most application domains. This need can be seen as the need of storing
exceptional data, that is, data not conforming to the general rules expressed by
the schema. Because the requirement for exceptional data is quite strong in many
database applications, several proposals to handle exceptional data have been
formulated.

The first proposal is by Borgida [9]. In [9] he takes the view that the various
constraints imposed in a database schema (both type constraints and integrity
constraints) are normal conditions, and provides a resume statement to allow
violations to such constraints to persist. Data considered to be the cause of a
violation are marked in order to allow users of the database to “navigate” around
it. Execution exceptions are then used to react when constraints are violated,
and to detect and react when exceptional facts are accessed. To achieve this,
the exceptional nature of certain data is marked by the presence of objects in
a particular class, and these same objects are raised as exceptions when the
exceptional data are retrieved. Moreover, by adopting a resumption model of
exceptions, the actual exceptional value is returned. This approach allows one
to handle objects with multi-valued attributes and new attributes, as well as
exceptional instances, that is, objects declared as instances of a class though
their structures do no to conform to that of the class. The notion of exceptional
data (one which raises an exception when accessed) can also be used to deal
with null values, estimates, and measurements.

Two features of the exception handling mechanism are crucial for this ap-
proach: the ability to define new exception types, and to organize them in a
taxonomy; the ability to provide alternative actions depending on the context.
To solve the problem of being unable to anticipate all exceptional situations at
the time programs are written, the technique of allowing “on-line” handling of
exceptions is proposed. This allows users to provide minor variations of existing

Exception Handling in Object-Oriented Databases 237

transactions. Finally, the proposed mechanism still imposes some restrictions on
constraint violations, allowing constraints to be suspended only in a controlled
way. Moreover, the notion of excuse, that records who, why, and when violates
the constraint, is introduced.

The idea, elaborated further in [11], that it is not possible to anticipate all
possible states of the world during schema design has thus lead to the idea that
classes should be able to have as instances exceptional individuals that do not
satisfy all the constraints stated in the class definition. The proposed solution es-
sentially provides for the special treatment of these individuals through run-time
exception handling and, for efficiency, relies on the rarity of exceptional occur-
rences. In [10] situations are considered where entire collections of objects can be
anticipated to be “exceptional”, thus belonging to subclasses that partially con-
tradict the superclass they inherit from. This notion is referred to as non-strict
inheritance, and such class hierarchies are referred to as class hierarchies with
contradictions. The idea of allowing integrity constraints not to hold for partic-
ular (exceptional) instances and subclasses is also investigated by Vlahavas and
Bassiliades [21], where they talk of constraints with exceptions, distinguishing
among constraint contradiction, constraint subsumption, constraint cancelation,
constraint overriding, and instance exception.

The notion of exceptional instance has also been introduced in the O2 object
database system [15]. In O2, due to the semantics of types, a tuple value can
have extra attributes. For instance, given a class Monument the “Eiffel tower”
object can have a state which also contains an attribute height, that is not an
attribute of general monuments, since it does not appear in the type associated
with the class Monument. Methods associated with the class Monument will not
deal with this extra attribute; however, the standard operators available on tuple
values will handle it. Exceptional attributes are allowed for any tuple object or
value, named or not. One can also associate specific methods with named objects.
These methods are used to characterize the exceptional behavior of an object.
One can also override an existing method in the class of the object with an
exceptional method.

Finally, the problem of dealing with exceptional data, that is, with data not
conforming to a fixed schema, has also been dealt with in the context of semi-
structured data [1,8]. In that context, where more flexibility is crucial, either
the notion of a schema is completely eliminated, or the notion of conformance
to a schema is weakened. In [8], for instance, the notion of class membership
is weakened in the one of weak membership, which leads to an approximate
typing or classification, since heuristic techniques are exploited to assign these
exceptional data to the most similar class in the schema.

3 Execution Exceptions in ODMG

Execution exceptions have been incorporated in object-oriented DBMS by fol-
lowing the general principle of a seamless integration between the programming
language and the database system. This means that the exception handling

238 E. Bertino, G. Guerrini, and I. Merlo

model of the language is extended to the DBMS. This has some obvious mo-
tivations: the programmer is not forced to know two different exception han-
dling models, whose interactions in the same application would be difficult to
understand and to manage. The interactions between exception handling and
the transactional mechanism need, however, to be considered. Typically, more-
over, a DBMS distinguishes between exceptions raised by a programmer of a
database application (developer exceptions) and exceptions raised by the DBMS
itself (database exceptions).

In this section we first briefly discuss the interactions between exception
and transaction handling. We then present the general notions of the ODMG
standard exception model.

3.1 Exceptions and Transactions

One of the differences between an exception handling facility for a programming
language and a database system is that the database exception handler must
support a mechanism to deal with active transactions when an exception occurs.
This mechanism requires a tight coupling between transactions and the excep-
tion handler. Exception handling mechanisms for OODBMSs must in particular
provide mechanisms to abort the active transaction if an exception has been
raised.

The relationship between the exception model and transactions has been
considered in the context of OpenOODB [18]. They point out that if dynamic
transactions are supported, it is not possible to attach an exception handler to a
transaction. There are two independent scopes: the static domain of the excep-
tion handler and the dynamic scope of the transaction. Consider the following
situation:

try{
db.beginT()
...
}

catch (...){
handle exception and abort the active transaction
}

db.commitT();

If an exception occurs in the try block, the exception handler aborts the
transaction and resumes normal execution after exception handler context. This
causes an error, since the first statement after the try block tries to commit
the transaction which the handler has just aborted. The programmer is thus
responsible to ensure that the scope of a transaction does not intersect with the
scope of the exception handler context.

Exception Handling in Object-Oriented Databases 239

3.2 Exceptions in ODMG

The ODMG [12] exception model is a superset of the Java/C++ exception
model. Both support the termination model, exception propagation, and pa-
rameter passing in an exception object. The ODMG model additionally requires
a mechanism to abort the active transaction if an exception has been raised.

In the ODMG data model a type specification includes the exceptions that
can be raised by its operations. Each operation signature lists the names of any
exceptions (error conditions) the operation can raise. In particular, each opera-
tion signature definition can include a raise clause, followed by a parenthesized
list of exception names. Exception names appearing in operation signatures are
defined through the exception clause in interface and class declarations, that al-
low one to specify an exception name optionally followed by a list of type, name
pairs.

Example 1. [12] The interface Student, belonging to a university database, illu-
strates how exceptions are declared in ODMG ODL.

interface Student{
exception UnsatisfiedPrerequisites;
exception SectionFull;
exception CourseFull;
exception NotRegisteredForThatCourse;
exception NotRegisteredInSection;
boolean register_for_course (in Course course,in Section section)

raises (UnsatisfiedPrerequisites, SectionFull, CourseFull);
void drop_course(in Course c)

raises (NotRegisteredForThatCourse);
short transfer (in Section oldsection, in Section newsection)

raises (SectionFull, NotRegisteredInSection);

interface Scope{
exception DuplicateName{}
exception NameNotFound{string reason;}
exception InvalidType{string reason;}
Structure add_structure(in string name, in list<Member> fields)
raises (DuplicateName, InvalidType)

}

The ODMG exception model is the following. ODMG supports dynamically
nested exception handlers, using a termination model of exception handling.
Operations can raise exceptions, and exceptions can communicate exception re-
sults. Mappings for exceptions are defined by each language binding. When an
exception is raised, information on the cause of the exception is passed back to
the exception handler as properties of the exception. Control is as follows:

– The programmer declares an exception handler within a context C to handle
exceptions of type T .

240 E. Bertino, G. Guerrini, and I. Merlo

– An operation within a contained context C ′ may “raise” an exception of
type T .

– The exception is “caught” by the most immediately containing context that
has an exception handler. The call stack is automatically unwound by the
runtime system out to the level of the handler. Memory is freed for all objects
allocated in intervening stack frames. All the transactions that begun within
a nested context, that is, unwound by the runtime system in the process of
searching up the stack for an exception handler, are aborted.

– When control reaches the handler, the handler may either decide that it can
handle the exception or pass it on (reraise it) to a containing handler.

An exception handler that declares itself capable of handling exceptions of type
T will also handle exceptions of any subtype of T . A programmer who requires
more specific control over exceptions of a specific subtype of T may declare a
handler for this more specific subtype within a contained context.

4 Exceptions to Handle Integrity Constraints

Integrity constraints are declarative specifications of properties that must be
satisfied by any database instance. In OODBMSs, constraints are typically used
to restrict the admissible extent of a class, to impose restrictions on the state
of individual objects, or to specify general laws that must be obeyed by sets of
objects possibly belonging to different classes.

Integrity maintenance in object-oriented database systems has so far recei-
ved limited attention. Most mechanisms for constraint enforcement support very
limited forms of constraints. Among the most common types of constraints let
us mention referential integrity, ensuring the existence of each referenced object,
and the exclusiveness and dependency constraints associated with composite
objects [6]. Support provided by OODBMSs for handling integrity constraints
usually consists of either forbidding or rolling back the operations that violate
constraints. However, this “everything or nothing” approach is not very flexible
and causes high run-time overhead for consistency checking and rollback. Moreo-
ver, it leaves the burden of writing consistent transactions to the user. A more
flexible approach to enforcement is to extend the system with capabilities for
checking whether constraints have been invalidated by a transaction and repai-
ring integrity violations, for instance by performing compensating actions.

Two main approaches have been proposed to ensure that the database satis-
fies its constraints after certain actions. The first one relies on the use of triggers
(cf. Section 6) for integrity enforcement. Indeed, integrity constraints can be ex-
pressed by triggers, activated by any event likely to violate the constraint. The
condition of the trigger tests for the actual occurrence of violations; if a violation
is detected, then the action of the trigger either issues a rollback command or
performs database manipulations for repairing constraint violations. The second
approach is based on modifying methods in accordance to the specified integrity
constraints. Under this approach, integrity maintenance is obtained by appro-
priate method modifications. Different proposals, however, modify methods in

Exception Handling in Object-Oriented Databases 241

different ways. In the proposal of Schewe et al. [23], given some arbitrary me-
thods and some constraints, a new set of methods is built, performing the “same”
actions, but without violating the constraints. This approach handles a limited
set of constraints. By contrast, in the proposal [17], for each update method an
adorned version is created that checks the constraints of the class to which the
method refers. Each method call is replaced with a call to the adorned version.
Constraint checks are translated into preconditions on the actual data manipula-
tion. Designers are allowed to define corrective actions upon expected constraint
invalidation. This may result in several adorned method versions.

Recently, some proposals [2,14] have emerged to model integrity constraints
as persistent assertions. Assertions [20] are conditional annotations that describe
objects and method properties. Assertions annotate a class definition with pre-
conditions, postconditions, and invariants. Any assertion violation is reported
through an exception. Persistent assertions allow one to capture both code and
data consistency, thus achieving an even stronger integration between the pro-
gramming language and the database view. Persistent assertions are used to
ensure the integrity of persistent data. In particular, in the NightCap system
[14], assertions, derived from constraints expressed in UML’s Object Constraint
Language, are integrated in the PJama platform [4].

Example 2. The following are examples of persistent assertions, expressed in
OCLJ [14], referring to the database schema of Example 1.

context Student inv UniqueCardNb:
Student.allInstances().forAll(Student s1, s2 \ s1 != s2 ==>

s1.cardNb != s2.cardNb)
context void Student.register(Section s, Course c)

pre: c.hasSection().includes(s)
pre: ! takes.includes(s)
pre: c.openForRegistration()
post: takes.includes(s)
post: takes.size == takes.size@pre+1
post: classes.includes(c)

In order to use assertions as integrity constraints, thus enforcing the con-
sistency of persistent data, the assertion mechanism must be enhanced in the
following way:

– the assertion runtime must be modified so that assertions might be checked
on persistent instances;

– the assertion mechanism must handle object inconsistencies, by providing a
way to declare and trigger repair actions.

Assertions are integrated inside classes, so that assertions will persist with clas-
ses. From a software engineering viewpoint, the violation of an assertion is a
correctness error and the exception raised by the violation should not be caught.
Taking the point of view of persistent data, stored data must be preserved, and if

242 E. Bertino, G. Guerrini, and I. Merlo

possible eventually corrected whenever an error is detected. A repair mechanism
should be provided for inconsistent objects. In the NightCap approach asserti-
ons do not include repair actions, but inconsistency handlers are provided. These
handlers are associated with a specific scope (assertion, method, class, etc.) so
that repair methods can be called after an assertion failure.

Different inconsistency handlers are provided according to their scope (whole
store, class, method, ...). An inconsistency handler mainly consists of a method
repair(Object o, Exception e), whose body contains the actions to repair
the object o, and e is the exception that has been raised. When an assertion
evaluation fails, the assertion runtime calls the most specialized inconsistency
handler (if any), which calls the repair method. After this call, the assertion
clause that was violated is checked again. If it fails again, the assertion runtime
might either call a more general inconsistency handler or raise an appropriate
exception to abort the transaction. To avoid composition problems, only the
most specialized inconsistency handler is activated in any scope.

When a method is called on an object, first the preconditions are checked.
Postconditions and invariants are checked at the end of the method body; po-
stconditions are evaluated before invariants. As an assertion violation without
repair leads to a raised exception, this exception leads to the abort of the implicit
transaction that occurs between stabilization of the store. Using this exception-
based approach, the evaluation scheme of assertions will be able to be adapted
to systems providing more sophisticated transaction facilities than PJama.

The POET OODBMS [25] also provides a notion of constraint, and a cor-
responding constraintViolation exception, that, if thrown, causes the active
transaction to abort. However, POET does not provide any declarative lan-
guage for expressing constraints. Rather, it supports a Constraints interface;
classes that implement Constraints must define and implement the three me-
thods postRead(), preWrite(), and preDelete(). As their names imply, they
are automatically called after an object of the class is read into memory and
before the object is written to or deleted from the database. preRead() is an in-
itialization method, whereas preWrite() and preDelete are clean-up methods.
Method preWrite() is very useful for data integrity checks. One may throw a
constraintViolation exception from the preWrite() and preDelete() con-
straint method implementations. As said, this exception causes the abort of the
active transaction.

5 Exceptions as a Support for Evolution

Another important use of execution exceptions in OODBMSs is related to the
potential they offer to support evolution. In the database context, since data
must survive for a long time, the ability to handle evolution is crucial. We recall,
moreover, that the notion of schema is central in the database context, thus
the support for evolution must not prevent one from taking advantage of the
schema. Two different forms of evolution can be considered, and for both of

Exception Handling in Object-Oriented Databases 243

them the use of execution exceptions has been proposed: object migration and
schema evolution. In what follows we consider each of them in turn.

5.1 Object Migration

For long-lived systems such as databases, a given object will evolve over time.
While state evolution (i.e., changes in the object property values) does not pose
problems, type evolution, that is, the ability for an object to migrate to a class
different from the one where it has been created, is more problematic.

This kind of evolution is frequent in application domains. Consider indeed an
object that is currently a Person. As time passes, it can naturally become an in-
stance of class Student and later an instance of class Professor. An important
aspect of object migration is that it allows an object to modify its features, attri-
butes and methods, while retaining its identity. This kind of evolution, however,
is not supported by many systems, because of implementation and consistency
problems. Consistency problems, in particular, arise when an object O, which is
a member of a class C, is referred by an object O′ as the value of an attribute
A, whose domain is C; in such case, the migration of O to a superclass of C
violates the integrity constraint established by specifying the domain for A. In
other words, object O′, after the migration of O, will have as value for attribute
A an object which is not a member (neither direct nor indirect) of the class
domain of A. The situation is similar to the one where the explicit deletion of
a referred object is requested. Migration upward in the class hierarchy, indeed,
can be seen as a “partial deletion” of the object.

Before discussing possible solutions to the consistency problems caused by
migrations, let us recall that in object-oriented database systems there are two
basic deletion policies. Under the first one, referred to as explicit deletion view,
an object deletion statement is made available at user level.1 By using such a
command, object deletions are explicitly requested by users. Under the second
policy, referred to as garbage collection view, users can only delete references
from an object to another one. An object is then deleted (by the system) when
it is no longer referred by any other object. In object systems with explicit
deletion, there is the problem of dangling pointers, due to objects containing
references to deleted objects. To avoid dangling references, Zdonik [26] proposes
to keep a tombstone object in place of the deleted object. This solution overcomes
the problem of dangling references, since each reference is either to the original
object, or to its tombstone object. Each method following references from an
object to other ones must handle the exceptions generated by the fact that the
object no longer exists (and its tombstone is found, instead).

The problem of upward migrations is similar. If an object O migrates from a
class C to a class C ′, with C subclass of C ′, an object can exist with a reference
to O as an object of class C. The class modification is performed directly on the
object and causes a change in the object state, namely, the deletion of specific
1 Here and in what follows, the term user should be intended in the broader meaning

of an actual user or an application.

244 E. Bertino, G. Guerrini, and I. Merlo

attributes defined in the classes from which the object has migrated. If there are
other objects referring to object O as a member of C, they must be notified that
O is no longer a member of C. The problem is similar to that of deletion discussed
above and a similar approach can be used. A tombstone can for example be
placed in the object to denote that this object used to be a member of class C,
but that now the attributes related to C have been deleted. Whenever a method
tries to access the object’s attributes specific to C, it must handle the exception
denoting that those attributes are no longer available.

5.2 Schema Evolution

A typical situation in object-oriented databases is that also the schema must
evolve in order to accommodate evolutions of the application needs. In many
application domains is indeed impossible or unwanted to anticipate all possible
states of the world when the schema is designed. When the schema evolves, a
possible approach is to convert all instances of an evolved class so that they
become consistent with the new version of the class. Of course this poses effi-
ciency problems, and it requires converting all existing application programs to
be consistent with the new interface. In [24] Skarra and Zdonik face the problem
of preserving type change transparency, that is, not to convert the instances, and
to keep old programs working on instances of new versions of a class, allowing
new programs to work on old versions of a class. The solution involves the use
of a version control mechanism and a set of exception handlers associated with
the versions of a class. In this scheme, as a class evolves, new versions of that
class are created. The old versions are not removed. Each object is connected to
the class object under which it has been created. When a new version of a class
is added, the designer must also add code fragments to other class versions to
handle the cases for which there is a conflict between the old version and the
new version.

The handlers effectively expand the behavior defined by each version so that
instances of different versions may be used interchangeably by programs. The
handlers added to each version correspond to behavior not defined by that ver-
sion but defined by other versions of the class. Thus, when a class C is changed a
new version Ci is created. The new version Ci carries handlers for any behavior
that is not defined locally, but is defined by some other version of the type Cj .
Moreover, handlers may be required by former versions of the type for behavior
uniquely defined by the new version.

The behavior defined by a class consists of properties, operations, and con-
straints, where a single constraint may be on the domains of one or more pro-
perties or operation parameters. Exceptions occur when a property or operation
referenced by a program is undefined for an object by its class version or when a
constraint is violated with an unknown value supplied by a program or returned
by an object. Handlers are added to a version for each undefined property or
operation and for each unknown domain value that is defined in another ver-
sion of the class. Handlers are classified as either prehandlers or posthandlers. A
prehandler is executed when the definition of a property or operation referenced

Exception Handling in Object-Oriented Databases 245

by the program cannot be found for the object or when the program has sent
an unknown value to the object for a property or as an operation parameter. A
posthandler is executed when the action within within the object has completed
and the object is about to return a value unknown to the program. Handlers can
perform arbitrary functions, but frequently they provide a mapping from one
domain value to another.

An alternative use of execution exceptions related to schema evolution is
proposed by Amiel et al. [3], where the focus is on schema consistency in schema
evolution. An object-oriented database schema, indeed, must satisfy a number of
rules to be consistent. These rules are sufficient conditions that guarantee that
no type error can occur during the execution of a method code. The problem
is that some schema updates may violate the consistency rules. The starting
assumption of that work is that exceptions to schema consistency rules should
be supported to facilitate schema evolution. However, they should be controlled
in order to avoid type safety problems. They propose a tool that processes every
method source code and determines whether a statement is unsafe, that is, may
result in a run-time type error. If a statement has been detected unsafe, the
tool automatically inserts a “check” clause around every unsafe statement in the
source code; and let the user provide exception handling code. The tool can also
automatically generate some default exception handling code. The user-defined
exception handling code, if provided, is however type-checked by the tool. In
particular, they introduce different kinds of exception (return exceptions, argu-
ment exceptions, disallowed signatures, and illegal substitutions) corresponding
to the possible violations of the schema behavioral consistency rules.

6 Exceptions and Triggers

An important functionality provided by current relational and object-relational
DBMSs is represented by triggers. This typical database functionality has no di-
rect counterpart in object-oriented programming languages, and though trigger
usefulness has been recognized also in the object-oriented context and a consider-
able amount of research has been carried out in the area of active object-oriented
databases (see Section 6.1), triggers are not supported in current commercial
OODBMSs. Aim of this section is thus to investigate whether and how the two
notions can be related, and if the support of exceptions can offer any help or
insight towards the introduction of triggers in OODBMSs. In the following, we
provide an overview of triggers, then we compare the two mechanisms, and finally
we conclude by discussing some open issues.

6.1 Triggers: Basic Notions

A trigger is a syntactical construct to define the reaction of the system. Triggers
are usually specified by means of the event-condition-action (ECA) paradigm.
Systems supporting triggers are called active databases. Active databases enable
important applications, such as alerting users that a given event has occurred,

246 E. Bertino, G. Guerrini, and I. Merlo

reacting to events by means of suitable actions, and controlling the invocation of
operations and procedures. Examples of functions that can be effectively perfor-
med by active database systems are integrity constraint enforcement, monitoring,
authorization, statistics gathering and view handling. In the last ten years, there
has been a growing interest in extending object-oriented database systems with
triggers. Both Widom and Ceri [13] and Paton [22], besides describing the main
concepts and features of active databases, provide a comprehensive overview of
existing proposals and systems.

In an active rule, the event specifies what causes the rule to be triggered.
Relevant triggering events can be internal events related to database operations
(for example object creations and deletions), temporal events, external (that is,
raised by the application), and user-defined events. In addition, in some systems
it is possible to specify whether a rule must be triggered before or after its
triggering event. Triggering events may also be composite, that is, combinations
of other events. Useful operators for combining events are logical operators, such
as conjunction, disjunction, negation, and sequences. Finally, we recall that in
some approaches events are managed as objects.

In an active rule, the condition specifies an additional condition to be checked
once the rule is triggered and before the action is executed. Conditions are
predicates over the database state. In the most common approach, the condition
is expressed as a query returning data, that are then passed to the rule action.
Moreover, some systems allow triggers to refer to past database states. In an
active rule, the action is executed when the rule is triggered and its condition
is true. Possible actions include database operations and calls to application
procedures. Several active database rule languages allow sequences of actions to
be specified in rules.

Various systems differ not only with respect to the supported rule language,
but also in terms of rule execution semantics. First of all, active database rule
executions can be either instance-oriented or set-oriented. With an instance-
oriented execution, a rule is executed once for each database “instance” trig-
gering the rule and satisfying the rule condition. By contrast, rule execution is
set-oriented if a rule is executed once for all database instances triggering the
rule and satisfying the rule condition. Most of the systems support an instance-
oriented rule execution.

The most straightforward approach to rule processing granularity is to eva-
luate a triggered rule condition and to execute its action within the same tran-
saction in which the triggering event occurs, at the soonest rule processing point.
However, for some applications it may be useful to delay the evaluation of a trig-
gered rule condition or the execution of its action until the end of the transaction;
or it may be useful to evaluate a triggered rule condition or execute its action in
a separate transaction. These possibilities result in the notion of coupling modes
[19]. One coupling mode can specify the transactional relationship between a
rule triggering event and the evaluation of its condition, while another coupling
mode can specify the transactional relationship between a rule condition eva-
luation and the execution of its action. Possible coupling modes are: immediate

Exception Handling in Object-Oriented Databases 247

(takes place immediately following, within the same transaction), deferred (takes
place at the commit point of the current transaction), decoupled (takes place in
a separate transaction).

Another difference among existing systems is whether rule definitions are
attached to classes (targeted rules). Attaching rule definitions to classes enhances
modularization and allows an efficient detection of relevant events while there
are sometimes useful rules triggered by events spanning sets of objects possibly
from different classes (untargeted rules).

Another notion that is also extremely relevant for active rule semantics is
that of priority. The execution semantics for active rules sometimes requires
that one rule is selected from a set of eligible rules. For this reason, an active
database rule language may include a mechanism for specifying rule priorities.

Finally, an important aspect when introducing triggers in object-oriented da-
tabases concerns trigger inheritance and overriding. Since inheritance is one of
the most significant features of the object-oriented paradigm this is a fundamen-
tal problem to deal with. In spite of that, the influence of inheritance on triggers
has not been deeply investigated in existing object-oriented database systems.
Under some proposals triggers are always inherited and can never be overridden
nor refined. Problems concerning trigger inheritance and overriding have been
investigated in [7].

6.2 Comparison

In this section we identify some differences between the behavior that can be
achieved through the specification of a trigger and the specification of a try block
handling an exception. Of course, the trigger would react to a simple implicit
event (explicit events2 or composite events do not seem to have a counterpart
in the exception mechanism). The first obvious difference that emerges is that
triggers are not explicitly activated. Rather, the occurrence of the monitored
event autonomously causes the triggering of the rule (this is the reason to call
it active rule), whereas exceptions must be explicitly thrown and caught. In
addition to that we can identify several other differences:

– A given event (independently of where it occurs) always triggers the same
rules; by contrast, an exception can be handled in different ways depending
on where it is caught. Exceptions have been indeed originally conceived as a
mean to notify the caller of the fact that an exceptional situation has occur-
red (typically error situations), the reaction to the receipt of this information
is thus highly dependent on the context.

– The action of the trigger is executed in addition to what the triggering
transaction is doing, except than in two cases: instead-of triggers (whose
action is executed instead of the triggering operation) and triggers whose
action is a rollback (by effect of which the whole triggering transaction is
undone). By contrast, under the termination approach, the body of a try

2 Examples of explicit events are the temporal ones.

248 E. Bertino, G. Guerrini, and I. Merlo

statement is executed only until an exception is thrown; when an exception
is thrown, the remainder of the block is not executed and we pass to execute
the catch clauses of the block.

– The occurrence of an event triggers all the rules monitoring that event. This
means that an active system must handle problems related to rule priorities,
how to choose a rule from the set of triggered rules, recursive and non-
terminating behavior, etc. By contrast, exceptions are always caught by a
single catch clause; if several catch clauses of a try block match with a thrown
exception, only the block corresponding to the first catch clause is executed.

– Exceptions are characterized by a very fine “processing granularity”, that is,
the reaction to the throwing of an exception is super-immediate. By contrast,
as we have discussed in Section 6.1, the processing granularity of triggers can
be rather coarse (due to a lot of reasons).

– For what concerns inheritance, triggers and exceptions present deep differen-
ces. Usually triggers are not overridden in subclasses and full trigger inhe-
ritance is supported. In addition, new triggers can be defined in subclasses.
By contrast, when a method is overridden in a subclass, only the exceptions
that have been specified in the method in the superclass or a specialization
of them can be thrown.

Thus, in some sense, triggers seem more high-level and more declarative
constructs. Moreover, with the use of exceptions the risk of “spreading” the
semantics of data, which can be expressed through a single trigger, seems more
inherent. By contrast, the exception mechanism is more powerful in that it allows
to express different reactions to the same situation.

Finally, another important difference we would like to point out is related
to static analysis. While each method declares the exceptions it can throw, and
correctness of these declarations is checked statically, the relationships among
triggers are not explicitly declared and it is not trivial to deduce them. A lot
of research effort has indeed been devoted to the development of static analysis
techniques for sets of triggers.

7 Conclusions

In the paper we have briefly surveyed the notion of exception from a (object) da-
tabase perspective. Both data and execution exceptions have been discussed, and
the notion of execution exception has been related to classical “error-handling
” mechanisms typical of the database context. Though we have not discussed
at all implementation issues, some information on how an exception handling
mechanism for OpenOODB has been realized can be found in [18].

References

1. S. Abiteboul. Querying Semi-Structured Data. In F. Afrati and P. Kolaitis, editors,
Proc. of the Sixth Int’l Conf. on Database Theory, volume 1186 of Lecture Notes
in Computer Science, pages 1–18. Springer, 1997.

Exception Handling in Object-Oriented Databases 249

2. S. Alagić, J. Solorzano, and D. Gitchell. Orthogonal to the Java Imperative. In
E. Jul, editor, Proc. Thelfth European Conference on Object-Oriented Program-
ming, Lecture Notes in Computer Science, pages 212–233, 1998.

3. E. Amiel, M. Bellosta, E. Dujardin, and E. Simon. Type-safe Relaxing of Schema
Consistency Rules for Flexible Modeling in OODBMS. VLDB Journal, 5(2):133–
155, 1996.

4. M. Atkinson and M. Jordan. Providing Orthogonal Persistence for Java. In E. Jul,
editor, Proc. Thelfth European Conference on Object-Oriented Programming, num-
ber 1445 in Lecture Notes in Computer Science, pages 383–395, 1998.

5. F. Bancilhon. Object-Oriented Database Systems. In Proc. of the Seventh ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 1988.

6. E. Bertino and G. Guerrini. Extending the ODMG Object Model with Compo-
site Objects. In Proc. Thirteenth Int’l Conf. on Object-Oriented Programming:
Systems, Languages, and Applications, pages 259–270, 1998.

7. E. Bertino, G. Guerrini, and I. Merlo. Trigger Inheritance and Overriding in Active
Object Database Systems. IEEE Transactions on Knowledge and Data Enginee-
ring, 12(4):588–608, 2000.

8. E. Bertino, G. Guerrini, I. Merlo, and M. Mesiti. An Approach to Classify Semi-
structured Objects. In Proc. Thirteenth European Conference on Object-Oriented
Programming, number 1628 in Lecture Notes in Computer Science, pages 416–440,
1999.

9. A. Borgida. Language Features for Flexible Handling of Exceptions in Information
Systems. ACM Transactions on Database Systems, 10(4):565–603, 1985.

10. A. Borgida. Modeling Class Hierarchies with Contradictions. In Proc. of the ACM
SIGMOD Int’l Conf. on Management of Data, pages 434–443, 1988.

11. A. Borgida and K. Williamson. Accommodating Exceptions in Databases, and
Refining the Schema by Learning from Them. In Proc. Eleventh Int’l Conf. on
Very Large Data Bases, pages 72–81, 1985.

12. R. Cattel, D. Barry, M. Berler, J. Eastman, D. Jordan, C. Russel, O. Schadow,
T. Stanienda, and F. Velez. The Object Database Standard: ODMG 3.0. Morgan-
Kaufmann, 1999.

13. S. Ceri and J. Widom. Active Database Systems - Triggers and Rules for Advanced
Database Processing. Morgan-Kaufmann, 1996.

14. P. Collet and G. Vignola. Towards a consistent viewpoint on consistency for per-
sistent applications. In Proc. ECOOP’2000 Workshop on Objects and Databases,
To appear as Lecture Notes in Computer Science, 2000.

15. O. Deux et al. The Story of O2. IEEE Transactions on Knowledge and Data
Engineering, 2(1):91–108, 1990.

16. J. Goodenough. Exception Handling: Issues and a Proposed Notation. Communi-
cations of the ACM, 18(12):683–696, 1975.

17. P. Grefen, R. de By, and P. Apers. Integrity Control in Advanced Database Sy-
stems. IEEE Data Engineering Bulletin, Special Issue on Database Constraint
Management, 17(2):9–13, June 1994.

18. H. Kienle and P. Fortier. Exception-Handling Extension for an Object-oriented
DBMS. In Proc. of the International Database Engineering and Application Sym-
posium, pages 138–143, 1997.

19. D. McCarthy and U. Dayal. The Architecture of an Active Data Base Management
System. In Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pages
215–223, 1989.

20. B. Meier. Object Oriented Software Construction. Prenctice Hall, 1988.

250 E. Bertino, G. Guerrini, and I. Merlo

21. I. Vlahavas and N. Bassiliades. Modelling Constraints with Exceptions in Object-
Oriented Databases. In P. Loucopoulos, editor, Proc. Thirteenth Int’l Conf. on the
Entity-Relationship Approach, number 881 in Lecture Notes in Computer Science,
pages 189–204, 1994.

22. N. Paton. Active Rules in Database Systems. Springer-Verlag, 1999.
23. K.-D. Schewe, B. Thalheim, J. Schmidt, and I. Wetzel. Integrity Enforcement in

Object-Oriented Databases. In U. Lipeck and B. Thalheim, editors, Proc. Fourth
International Workshop on Foundations of Models and Languages for Data and
Objects - Modelling Database Dynamics, Workshops in Computer Science, pages
174–195, 1992.

24. A. Skarra and S. Zdonik. Type Evolution in an Object-Oriented Database. In
B. Shriver and P. Wegner, editors, Research Directions in Object-Oriented Pro-
gramming, pages 393–415. MIT, 1987.

25. POET SOftware. POET JavaTM Programmer’s Guide (POET 6.0), 1999.
26. S. Zdonik. Object-Oriented Type Evolution. In F. Bancilhon and P. Buneman,

editors, Advances in Database Programming Languages, pages 277–288. Addison-
Wesley, 1990.

Error Handling in Process Support Systems

Fabio Casati1 and Gianpaolo Cugola2

1 Hewlett-Packard Laboratories,
1501 Page Mill Road, 1U-4, Palo Alto, CA, 94304, USA.

casati@hpl.hp.com
2 Politecnico di Milano

Dipartimento di Elettronica e Informazione,
Via Ponzio 34/5, I-20133 Milan, Italy.

cugola@elet.polimi.it

Abstract. Process Support Systems (PSSs) are software systems sup-
porting the modeling, enactment, monitoring, and analysis of business
processes. Process automation technology can be fully exploited when
predictable and repetitive processes are executed. Unfortunately, many
processes are faced with the need of managing exceptional situations
that may occur during their execution, and possibly even more excep-
tions and failures can occur when the process execution is supported by
a PSS. Exceptional situations may be caused by system (hardware or
software) failures, or may by related to the semantics of the business
process.
In this paper we introduce a taxonomy of failures and exceptions and
discuss the effect that they can have on a PSS and on its ability to
support business processes. Then, we present the main approaches that
commercial PSSs and research prototypes offer in order to capture and
react to exceptional situations, and we show which classes of failure or
exception can be managed by each approach.

1 Introduction

Mature business organizations are characterized by a high level of standard-
ization in the set of activities carried out by their employees to pursue the
organization’s business mission (i.e., their business processes). This is true in
particular for companies engaged in e-business activities, where business pro-
cesses are executed in very high volumes and are automated for the most part.
More human-oriented, flexible and dynamic organizations follow looser, adaptive
process, but some notion of company-wide process still exists.

The quality of the business process affects the quality of the products and
services delivered by the organization. As a consequence, in the last decades a
lot of effort has been put in identifying techniques and methodologies to increase
business process quality (and hence to provide better services at lower operating
costs). In the area of information technology this efforts lead to the development
of two different classes of tools: Workflow Management Systems (WfMSs) [1,
2] and Process-centered Software Engineering Environments (PSEEs) [3,4,5].

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 251–270, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

252 F. Casati and G. Cugola

WfMSs are oriented to supporting generic business processes, while PSEEs have
been specially conceived to support software development processes.

It is interesting to observe that, even if they were developed by different
communities (WfMSs by people originally working in the area of Information
Systems and Databases, while PSEEs by people working in the area of Software
Engineering) modern WfMSs and PSEEs share more commonalities than differ-
ences. In particular, they are affected by similar problems that initially limited
their adoption. As a consequence, in this paper we will not distinguish among the
two classes of tools (this is becoming a common approach in the last few years)
and we will refer to both of them with the common term of Process Support
Systems (PSSs).

PSSs support business organizations in modeling, automating, monitoring,
and measuring their business process. Usually, a PSS provides a Process Descrip-
tion Language (PDL), used to develop a model of the business process. This
model may be used to consolidate the process knowledge, to support process
assessment, measurement, and refinement, to communicate the business rules
within the organization, and, most importantly, to automate (i.e., enact) and
monitor business process executions. During process model enactment, the PSS
uses the rules and constraints expressed in the model to automate the activities
that can be carried out without the intervention of human agents, and to guide
and support people in carrying out the activities that require their interven-
tion. Furthermore, PSSs offer tools to monitor and analyze process executions,
in order to detect inefficiencies and hence improve the process.

Process coordination and automation technologies are becoming widespread
in both e-businesses as well as in traditional enterprises, due to the need of
reducing operating costs and performing high-quality services. While current
PSS technology does contribute to achieving these objectives, it still lacks the
flexibility and robustness needed to adapt to the rapidly evolving business and
IT environment and to handle exceptional events that may occur during process
enactment [6,7,8]. Exceptional events may range from failures in the underlying
infrastructure to unforeseen changes in the external environment that require a
deviation from the planned course of actions.

In this paper we classify exceptional events that may occur during process
model enactment, we analyze the problems that these events may generate, and
we describe the possible approaches to efficiently handle them, possibly with
minimal or no human intervention.

2 Some Preliminary Definitions

As noted in Section 1, in the last decades two different communities have worked
to similar problem developing different tools (i.e., WFMSs and PSEEs), but also
a different terminology1. In this section we give some preliminary definitions
1 This is demonstrated by the considerable time that the two authors, coming from

these different communities, have spent in order to synchronize concepts and termi-
nology

Error Handling in Process Support Systems 253

of the terms we will use in the remainder of the paper. We also give a quick
overview of the basic architecture of a PSS.

Process Description Language (PDL). Each PSS provides a Process De-
scription Language (PDL), used to develop a model of the business process.

Process model. It is a static description of the expected business process ex-
pressed in a PDL2. A process model is typically composed of activities (or
tasks), that represent work items to be executed by a human or automated
resource. In addition, the process model include the description of the exe-
cution dependencies among activities.
Observe that some PDLs allow process engineers to describe the expected
process together with the activities to be pursued to cope with undesired
(but foreseen) events. As an example some PDLs provide explicit linguistic
constructs for exception handling (see Section 4 for further details on this
topic). Here we use the name “process model” to indicate the model of the
expected business process, without considering any undesired event.

Process Support System (PSS). It is a software application that supports
the specification, automation, and monitoring of business processes. Typical
examples of PSSs are Workflow Management Systems and Process-centered
Software Engineering Environments.

Applications

Hardware

Operating System and
Middleware Services

Infrastructure

PSS

EngineData
Store

API

API

Model

Fig. 1. The run-time architecture of a typical PSS.

A typical PSS (see Figure 1) is composed of an engine, which enacts a process
model by scheduling activities and assigning them to the appropriate human
or automated resource. A Data Store holds process definition and execution
data as well as a description of the process resources. Usually, the data store
is implemented by taking advantage of a DBMS, but PSSs exist that use
the standard file system as their data store. Through an Application Pro-
gramming Interface (API) the engine is able of controlling the execution of

2 People working in the area of WFMSs often use the term workflow schema.

254 F. Casati and G. Cugola

external applications, including the graphical user interface of the PSS itself.
All these components run on top of a certain operating system and middle-
ware, which provides advanced communication services to let the different
components communicate and synchronize.
Observe that real PSSs have a much more complex architecture, including
other components like process definition and monitoring tools, worklist man-
agers, and so on. Sometimes they provide a distributed engine, or they use
several DBMS distributed over a LAN to implement the data store. Since
similar details are not relevant for the remainder of the paper they have not
been included in Figure 1.

Actual process. It is the actual business process as it is performed in the
real world. At each time instant, it may be described by the history of the
activities that were performed to carry out the business process from the
time it was started. It is a dynamic entity (i.e., it changes each time a new
action is performed).

Observed process. During process model enactment, a PSS has a partial view
of the actual process. The PSS, in fact, is only aware of the actions that
the users perform under its control. All other actions are invisible to the
PSS. This partial view of the actual process owned by the PSS is called the
“observed process”. At each time instant, it may be described by a history
of the activities that the users performed under the PSS control to carry
out the business process from the time it was started. It is the result of the
enactment. Like the actual process, it is a dynamic entity.

Observed process
Process model

Acual process

Actual process
consistency

Environment
consistency

Observed process
consistency

Fig. 2. The consistency relations among process model, actual process, and observed
process.

Figure 2 shows the consistency relations that joins process model, actual
process, and observed process when the process proceeds as expected. The actual
process is consistent with the process model, i.e., it proceeds as described in the
process model, without violating any of the constraints described there. Similarly,
the observed process is consistent with the actual process. This means that the
PSS has a correct view of the actual process. Finally, the observed process is

Error Handling in Process Support Systems 255

consistent with the process model, which means that the PSS is enacting the
process model and it is not violating any of the constraints stated in the model.
As discussed in the following section, this ideal situation is not easy to achieve
and maintain.

3 Undesired Events and Their Possible Effects

Business processes can be composed of many complex activities that need to
be managed and synchronized, thus composing a very complex workflow that
involves human and automated resources for a long time.

It is very common that during process execution something undesired hap-
pens. It may be something related to the underlying system, like a crash of a
server, or a network fault; it may be something related to the PSS, like a crash
in one of the applications invoked by the PSS to execute some process step; or it
may be something related to the process itself, like a unforeseen situation that
need to be managed before process could proceed. In all these cases the PSS
must offer the right mechanisms to face the undesired event and to overcome it.
Here we first classify the possible undesired events. Next, we show the techniques
that can be leveraged to handle the different kinds of undesired events.

3.1 A Classification of Undesired Events

As a first initial classification it is useful to distinguish between failures and
exceptions.

– Failures are system or network errors that originate from the PSS, from the
applications invoked by the PSS, or from the underlying infrastructure on
top of which the PSS is built and executed. As an example, they can be
failures of the hardware that runs the PSS, crashes in the data store, or
crashes of one of the applications controlled by the PSS engine. Failures
affect the information system that supports the process.

– Exceptions are unexpected situations that are not part of the normal behav-
ior of the process, and that require a deviation from the process model to be
managed3.
Every time an event not captured by the process model occurs, we say that
an exception has occurred. As an example, in some circumstances it may be
necessary to change the order of execution of some activities, or to violate
some timing constraints, or to let a unauthorized user perform a critical task
because the person that was assigned to that task is not available.

3 Observe that, as mentioned in Section 2, in this paper we do not consider the part of
the process definition that copes with undesired (but foreseen) events as being part
of the process model

256 F. Casati and G. Cugola

Undesired Event

System-level
Failure

PSS-level
Failure

Application-level
Failure

Failure Exception

Asynchronous
exception

Synchronous
exception

Global
exception

Process-specific
exception

Cross-process
exception

Data
exception

Process
exception

External
exception

Temporal
exception

Fig. 3. A classification of undesired events.

A Taxonomy of Failures Depending on the layer of the PSS that originate
the problem (see Figure 1), we distinguish among infrastructure-level, PSS-level,
and application-level failures.

– Infrastructure-level failures originate from the hardware or from the oper-
ating system and middleware on top of which the PSS runs. Examples of
this kind of failures are disk crashes, network faults, and operating system
errors.

– PSS-level failures originate from the PSS. In particular, they may affect the
PSS engine, the PSS data store, or the process model enacted by the PSS.
Typical examples of this kind of failures are data store failures, or deadlocks,
crashes of the PSS engine, or errors in the process model (e.g., a bug in the
way an application is invoked or controlled through the engine API).

– Application-level failures affect the applications that run under control of
the PSS to execute process steps. As an example, it may happen that an
application invoked by the PSS engine crashes or it is not able, due to a bug,
to save the results of the work the user has accomplished.

A Taxonomy of Exceptions Our analysis identified three main characteristics
of exceptions, that have to be considered in understanding how they can be
modeled: the synchronicity, the scope, and the origin.

Synchronicity. Exceptions may be synchronous or asynchronous with respect
to the progression of the process. Synchronous exceptions occur at the start
or completion of tasks and processes, while asynchronous ones may occur at
any time during process execution. For instance, the output data of a task
may return an unexpected null value. An example of asynchronous exception
is instead the cancellation of an interview in a candidate interview process,
which may happen at any time during the execution, and not only at the

Error Handling in Process Support Systems 257

start or completion of a task. Synchronous exceptions can further be charac-
terized by their localization: localized exceptions may be only caused by the
execution of one (or few) tasks, while sparse exceptions may be caused by
the execution of several tasks in a process, and therefore may occur at several
stages during the execution of the process. For instance, a data constraint
violation exception is localized if only one task may modify those data, and
sparse otherwise.

Scope. Exceptions may be process-specific, i.e. they may be related to one spe-
cific process instance, or they may be cross-process, i.e. they may be related
to and affect several process instances. Interview cancellations and dead-
line expirations are examples of process-specific exceptions. Instead, a hiring
freeze would be cross-process, since it would affect every running instances
of the candidate interview process. Exceptions can span over process bound-
aries both in their detection and in their recovery:
– detection: the occurrence of the exceptional situation may depend on the

state of several instances, such as when a customer rents two or more
cars in overlapping periods.

– recovery : managing the exceptional situation may require actions in sev-
eral process instances, such as in the car rental example discussed above.

A distinguished kind of cross-process exception is represented by global ex-
ceptions, i.e. anomalous, generic situations that may possibly affect every
process, and for which the reactions may be defined at the PSS level. The
unavailability of a resource is an example of a global exception. The appro-
priate reaction may be defined at the global (PSS) level and possibly refined
for specific processes if different policies need to be adopted.

Origin. Exceptions may be classified according to what generates them:
Data exceptions are raised by modifications to process relevant data. For

instance, a modification to the trip’s cost may cause an overdraft on the
customer’s account.

Temporal exceptions are raised at the occurrence of a given timestamp
(e.g. a deadline for a task), periodically (e.g. every night at 7pm), or as
a defined interval has elapsed since a reference event (e.g., 20 minutes
after a fire alarm).

External exceptions are explicitly notified to the process engine by hu-
mans or external applications. An email by the candidate requesting the
cancellation of the interview is an example of external exception.

Process exceptions are raised by state changes in a process instance or
task execution. For instance, the firing of an already active task may be
perceived as an exceptional situation.

Figure 3 summarizes through a UML model [9] the resulting classification of
undesired events.

3.2 Possible Effects of Undesired Events

Typically, the effect of an unmanaged failure or exception is an action that
breaks the consistency relationships shown in Figure 2. This often leads to the

258 F. Casati and G. Cugola

impossibility of continuing executing the business process under the control of
the PSS.

To better clarify the possible effects of undesired events not adequately man-
aged by the PSS, we introduce two new terms: we call deviation an action in
the actual process that breaks one of the consistency relationships of Figure 2
and inconsistency the resulting state. Depending on the relationship broken we
distinguish among (see Figure 4):

Actual process deviation. It is an action performed in the actual process that
is not described in the process model or that violates some of the constraints
expressed in the process model. Actual process deviations break the consis-
tency relation between the actual process and the process model leading to
an actual process inconsistency.

Observed process deviation. It is an action performed by the PSS that is
not reflected in the process model. Observed process deviations break the
consistency relation between the observed process and the process model,
leading to an observed process inconsistency.

Environment deviation. 4 It is an action performed in the actual process or
in the PSS that breaks the consistency relation between the actual process
and the observed process. It typically occurs when someone performs an
action that is relevant for the business process out of the PSS control. It
leads to an environment inconsistency.
Observe that an environment inconsistency is definitely something to avoid.
When an environment inconsistency occurs, the PSS has an incorrect or
incomplete view of the actual process and, consequently, it cannot correctly
support the actual process anymore.

Usually, actual process deviations are the result of an exception. To cope
with an exception, in fact, the actual process must deviate from the process
model, thus leading to an actual process deviation5. Moreover, since in general
PSSs cannot deviate from the process model (i.e., observed process deviations
are not possible), the effect of an actual process deviation is often an environ-
ment deviation. To avoid similar situations, it may be necessary for the PSS to
deviate from the process model (i.e., to perform an observed process deviation),
to continue mirroring the actual process even in presence of an actual process
deviation. Model-relaxing approaches (see Section 4.2) can be adopted to pursue
this goal.

4 Recovery Approaches

The ability to adequately manage undesired events without disruptions to the
running business processes is crucial for modern PSSs that support mission-
4 The name “environment deviation” follows from the common habit of calling “envi-

ronment” the sum of the actual process plus the PSS supporting it [10].
5 We observe again that we assume that the process model only includes the descrip-

tion of the normal behavior of a process. Mechanisms to specify exception handling
behaviors as part of the process model will be introduced later in the paper.

Error Handling in Process Support Systems 259

Observed process
Process model

Acual process

Observed process
Process model

Acual process

Observed process
Process model

Acual process

Observed process
Process model

Acual process

Environment deviation

Actual process
deviation

Observed process
deviation

Fig. 4. Deviations and inconsistencies.

critical operations. Consequently, to be successful in the market, a PSS has to
offer a set of mechanisms to react to the different classes of undesired events
identified in Section 3.

In principle, different recovery approaches may be followed to react to failures
and exceptions. We identify three possible classes of approaches, depending on
the layer that implements them (see Figure 1): infrastructure-level, PSS-level,
and application-level approaches. For its relevance, we also consider a fourth
class of approaches that we call process-model-level. The next sections analyzes
the different approaches.

4.1 Infrastructure and Application-Level Approaches

While exceptions are directly related to the existence of a PSS and can be ade-
quately managed only by the PSS, failures (and particularly infrastructure and
application-level failures) can be managed through general approaches involving
the infrastructure and the application levels only.

Infrastructure and application-level approaches to failure handling have in
fact been developed in several different contexts and most of them become ma-
ture years before the first PSS was developed. They include mechanisms like
hardware redundancy to reduce the impact of hardware crashes, advanced net-
work protocols and middleware mechanisms to cope with network faults, or
software redundancy (e.g., using replicated servers) to cope with application
failures.

While these mechanisms are designed to react either to infrastructure-level or
to application-level failures, they provide little help to handle PSS-level failures
and exceptions. In fact, these require a knowledge of the process model in order
to be properly captured and managed.

260 F. Casati and G. Cugola

Since this paper focuses on PSSs, analyzing these generic failure handling
techniques in details is out of the scope of this work. Instead, in the following
we focus on PSS and process-model-level approaches, described next.

4.2 PSS-Level Approaches

The PSS has a direct visibility of the process model and is responsible for schedul-
ing tasks and for launching and managing applications, so it can provide powerful
approaches to handle both failures and exceptions.

PSS-Level Failure-Handling Approaches. PSSs may implement mecha-
nisms to cope with both infrastructure-level and application-level failures. As an
example, the PSS may offer mechanisms to handle failures of the data store or
of the middleware layer. Even PSS failures can be managed at the PSS level, by
offering mechanisms to restore the last consistent state reached before the failure
when the PSS is restarted (typically, this is obtained by taking advantage of a
DBMS used to permanently store the PSS state).

In general, failure management at the PSS level implies the use of a combi-
nation of “undoing” and “redoing”. As an example, network failures are often
managed by retrying the communication until a success is reached, while to
manage an application failure it is often necessary to undo the operations made
by the activity that called the failed application, before trying to redo the en-
tire activity. Similar approaches are adopted by a few research prototypes like
SPADE [11,12,13], whose elementary tasks are implemented as transactions in
the object-oriented DBMS that stores process instance data, thus allowing the
engine to roll-back any task affected by a failure. A similar approach is adopted
by Apel [14,15].

The main problem with undoing and redoing in PSSs is that often the tasks
that have to be undone and redone are very complex. They could have side
effects that cannot be undone and they could involve activities that cannot be
controlled by the PSS (e.g., manual tasks). In other word, undoing and redoing
require a knowledge of the application domain that the PSS alone cannot have.
This motivations induced researchers and practitioners to introduce process-
model-level approaches, which involve process modelers in modeling the recovery
process together with the standard process.

PSS-Level Exception-Handling Approaches. In Section 3 exceptions have
been defined as unexpected events that were not planned in the process model.
Exceptions usually result in actual process deviations that, if not adequately
managed, may result in environment deviations.

Current PSSs adopt two different approaches to cope with the need of devi-
ating from the process model to react to exceptions: either they provide mech-
anisms to change the process model on-the-fly (model-changing approaches), or
they provide mechanisms to explicitly deviate from the model without the need
of modifying it (model-relaxing approaches).

Error Handling in Process Support Systems 261

With the first approach the model is changed before the deviation occurs
so neither an actual process deviation, nor a PSS deviation is required to face
the exceptional event. With the second approach the PSS adopts some kind of
“relaxed” interpretation of the model to continue mirroring the actual process
even in presence of an actual process deviation. In practice, the PSS reacts to
an actual process deviation by performing a PSS deviation, thus avoiding an
environment deviation. Figure 5 compares the two approaches.

Observed process
Process model

Acual process

Exception

Observed process

Acual process

Process model

Observed process
Process model

Acual process

Model-changing

Model-relaxing

Fig. 5. PSS-level exception-handling approaches.

Model-Changing Approaches. In general, we may distinguish between:

– Ad-hoc changes, which are modifications applied to a single running process
instance, which do not involve a change in the process model itself.

– Bulk changes, which refer instead to modifications of the process model col-
lectively applied to a subset (or to all) the running instances of a process.

For instance, assume that a new agreement between Italy and the US requires
Italian tourists traveling to the US to previously request and obtain a visa from
the US consulate. If the travel reservation process (Figure 6-a) has not yet been
modified according to the new law, then its execution does not lead to the
successful completion of the business process.

Indeed, since the new law will affect several running instances (in principle
all the running instances plus all the instances that will start in the future),
a bulk approach is required. The travel reservation process model should be
modified as described in Figure 6-b, where all travel reservations for Italian
citizens traveling to the US will include a task for requesting the visa to the US
consulate. Moreover, the process modeler has to choose how to manage currently
running process model instances. In fact, although the modified process model
of Figure 6-b can correctly support all new reservations, it may not be suited
for completing the processing of reservations which are in progress. Intuitively,

262 F. Casati and G. Cugola

Book Trip

Record
Customer data

Book Trip

Record
Customer data

Request visa

Italian citizens
traveling to the U.S.

Otherwise

Bill customer

Bill customer

Book Trip

Record
Customer data

Bill customer

Request visa

Italian citizens
traveling to the U.S.

Otherwise

(a) (b) (c)

Fig. 6. The Travel Reservation Process. (a): initial version; (b): modified version; (c):
ad-hoc version for managing instances that cannot be migrated to the correct version

all instances that are not concerned with Italian citizens going to the US or that
are in their early stages (i.e., where task “record customer data” has not been
completed yet) can migrate to follow the modified process definition shown in
Figure 6-b. The other instances will have to be handled in an ad-hoc way, for
instance by migrating to the process model shown in Figure 6-c, that still allows
to achieve the goals of the process, although it is not the most appropriate and
efficient way to execute it. In the context of PSS exceptions, migrating a process
instance from a process definition (schema) S1 to a schema S2 means that the
process engine will now schedule and assign tasks based on S2 [16].

This and similar issues affecting bulk changes have been addressed by sev-
eral research papers, such as [16,17,18,19,20,21,11,22]. Many of these approaches
are based on the use of migration rules, to specify the future behavior of run-
ning instances once an exception has been detected. A migration rule iden-
tifies a subset of the running instances of a given process and specifies the
schema to which instances in this subset should be migrated. For instance, in
eFlow [23], rules have the form IF <condition> THEN MIGRATE TO <model>.
The condition is boolean expression that identifies a subset of the running
instances, while <model> denotes the destination schema. An example of mi-
gration rule is: IF (task state(Book Trip)=not started) THEN MIGRATE TO
"New travel req". The set of rules must define a partition over the set of run-
ning instances, so that each instance is migrated to at most one schema. Instances
that do not satisfy any rule condition are not migrated.

Error Handling in Process Support Systems 263

This idea of explicitly stating the rules to migrate process model instances
with an ad-hoc language has been further extended with process-model ap-
proaches (see Section 4.3), which leverages reflective PDLs to allow process
modelers to define, as part of the process model itself, when and how the model
should be changed during its execution.

Ad-hoc changes could be seen as a particular kind of bulk changes, where
only one instance is migrated. For instance, InConcert [24] allows the process
responsible to manually reassign a task to a different resource or to start the
execution of an arbitrary task in the flow.

A different approach is taken by Endeavors [25], a distributed, extensible PSS
infrastructure, which allows the object-oriented definition and specialization of
activities, artifacts, and resources associated with a software development pro-
cess. In Endeavors, process models can be changed very easily even by standard
users. These model changes affect the currently running instance and they may
affect all the new instances, also. The easiness through which process models can
be changed is presented as the main mechanism both to cope with unforeseen
situations and to solve the problem of which running instance should be affected
by a new process model. Since ad-hoc changes can be easily performed they can
be used to migrate any running instance as required, while new instances will
automatically use one of the modified process models as decided by the process
modelers at launch time.

Model-Relaxing Approaches. The key idea behind model relaxing approaches is
to allow the PSS to explicitly deviate from the process model to cope with
unforeseen situations. PSSs adopting this approach provide flexible mechanisms
for process model enactment that allows users to perform process tasks even
if they violate some of the constraints stated in the model. As an example, in
Sentinel [26] tasks are characterized by a set of preconditions that implicitly
determine their ordering. Users are allowed to invoke a task even if one of its
preconditions is not satisfied and the PSS is able to track this event and to mark
the data items that could be possibly affected by this deviation, thus supporting
users to analyze the effects of PSS deviations, if necessary.

A similar approach is adopted by Prosyt [6], while [27] and [28] present a
goal-oriented language: PEACE, which formalizes parts of a process model using
an autoepistemic logic, thus allowing users’ beliefs to be modeled, and allowing
the PSS to reason about the differences between the user beliefs and the actual
process. A PEACE process model may describe a wide range of process states
and transitions and the right transition may be chosen based on the actual beliefs
of the PSS with respect to the actual process.

Model relaxing approaches are best suited to cope with unforeseen events
that require an immediate answer by the system and that is most likely that
will not occur again in the future. In similar situations, ad-hoc process model
changing approaches could be adopted also, but they require much more effort
in order to change the model as required. In fact, model changing is a time
consuming activity that requires the intervention of the process modeler. It is

264 F. Casati and G. Cugola

not reasonable to change the model each time some minor, unexpected event
happens. In this situations, model relaxing approaches show all their power.

4.3 Process-Model-Level Approaches

The key idea behind process-model-level approaches is to involve process mod-
elers, who have a precise knowledge of the application domain, in failure and
exception handling. PSSs adopting these approaches give process modelers the
chance to specify, as part of the process model, either the actions for undoing
process tasks, or the actions to perform in case of failures and exceptions, or
even the actions for modifying the process model itself when necessary.

In the first case, the weakness of standard PSS-level approaches to failure
handling described in Section 4.2 are addressed by giving process programmers
the ability of explicitly modeling application specific techniques for undoing or
redoing critical tasks. In the second case, process modelers specify directly what
to do when a undesired event occurs. In this case we talk of expected exceptions
to refer to the set of predictable deviations from the normal behavior of the
process whose handling has been explicitly coded has part of the model itself.
This kind of undesired events are typically detected by the system and possibly
managed with no human intervention. The need for the third approach comes
from the consideration that traditional model-changing approaches do not offer
a way to choose in an process-specific way the kind of allowed changes and the
way these changes have to be applied.

Transactional Approaches As mentioned in Section 4.2, the main weakness
of standard PSS-level approaches to failure handling is the difficulty of undoing
complex business tasks without a precise knowledge of the process semantics. For
instance, actions such as “send a letter” cannot be undone by restoring a previous
database state. This problem can be managed by transactional approaches.

Transactional process models allow the definition of regions in the process
model that should be executed atomically. At the request of the process re-
sponsible (or depending on the failure codes returned by task executions) the
execution of the region can be aborted and rolled back to its entry point. Pro-
cess execution can then be resumed by retrying the same path or by following
an alternative route. Rollback of process regions is typically performed by exe-
cuting a compensating task for each completed task, in the reverse order of their
forward execution. A compensating task is an activity that semantically undoes
the effect of another task. For instance, a task that reserves a car is compensated
by a task that involves calling the car rental company to cancel the reservation.
A similar model is for instance supported by ConTracts [29]. Several other PSSs
implements similar approaches to failure handling. This section reviews the most
relevant ones.

WAMO [30,7], WIDE [8], TREX [31], and Crew [32] extend the above ap-
proaches by providing more flexibility in the backward compensation/forward
execution process: they allow the definition, for each task, of the point to which

Error Handling in Process Support Systems 265

execution should be rolled back in case of failure and the specification of whether
execution should be re-started or aborted from there; furthermore, based on the
task properties or on predicates defined over process data, a task involved in
a partial rollback and forward recovery may or may not be compensated or
re-executed.

Commercial systems do not typically provide this kind of functionality. How-
ever, the Exotica project [33,34] has developed a tool that provides process
designers of IBM FlowMark (an earlier version of MQ Workflow [35]) with an
extended process definition language, allowing the implementation of advanced
transaction models such as sagas and flexible transactions. Specifications in the
extended model are then translated into FDL (FlowMark Definition Language)
by properly inserting additional “compensating” paths after each task, to be con-
ditionally executed upon a task failure (captured by means of the task return
code).

Transactional approaches are effective in handling synchronous exceptions.
However, they lack the required flexibility for handling generic exceptional sit-
uations. In addition, they are restricted in the class of allowed reactions, since
they basically only allow a partial or total process rollback: in many exceptional
situations, rolling back a process instance is not the appropriate reaction, and
it is an extreme and expensive solutions in terms of lost work. Finally, current
approaches can only capture process and data events.

Approaches Based on Explicitly Modeling Exceptions. These approaches
allow process designers to explicitly model how to capture and react to pre-
dictable deviations from the normal behavior of the process. By explicitly mod-
eling them, these exceptional behaviors can be managed by the PSS without the
need for human intervention. There are two main sub-categories in this approach:
one is based on event nodes, while the other is based on Event-Condition-Action
rules.

Event Node Approaches. In the event node approach, the process meta-model
includes a particular kind of node, often called event node (or event step), which
is able to capture asynchronous events and to activate the successor node when
the event is detected. There are many variations of this approach, depending on
the types of events that can be captured and on how they can affect the process
in which the task is defined. Staffware [36] and eFlow [23] are examples of PSSs
that use this approach.

Event nodes can typically capture several types of events (for instance, in
the case of eFlow they can capture all four kinds of originating events defined in
Section 3.1), they can specify filter over (exceptional) events of interest, and they
can capture event parameters into process variables. Hence, they are capable of
capturing the exception. In the event node approach, the reaction is performed
by activating a path in the process flow (the path connected in output from the
event node). For instance, a node capturing candidate withdrawals in a candidate
hiring process is an example of exception handling achieved through event nodes.
However, as mentioned in the taxonomy of exception, this is not the only way

266 F. Casati and G. Cugola

an exception can be handled: in fact, an exception often requires a partial or
global rollback of the process instance, or the notification of the problem to a
selected user. In addition, process instances may have to be suspended in order
to properly handle the exception. Hence, in order to be fully effective, the event
node approach requires the PSS to provide specialized tasks that enable the
specification of these kinds of behaviors.

A limitation of the event node approach is that every exception requires the
definition of an event node (that captures the exceptional situation) and of the
tasks that perform the corrective actions. Hence, when many exceptions need to
be managed, the process model may become very complex. Consider for instance
exceptions related to deadline expirations. If deadlines need to be specified for
each node (as it often happens), then the process model becomes unmanageable.
In general, event nodes are effective in managing all types of exceptions except
cross-process and global ones. In fact, they can capture synchronous and asyn-
chronous events; however, they must be specified within a process model (it is
not possible in current PSSs to define “global” event nodes).

Rule-Based approaches. A few commercial systems and research prototypes (e.g.,
COSA [37], InConcert [24], WIDE [8] and ADOME-WfMS [38]) provide a rule-
based language for the specification of exceptional behaviors. Rules typically take
the form of event-action or event-condition-action statements, where the event
defines when the rule should be activated, the condition (if present) verifies that
the occurred event actually corresponds to an exception that must be managed,
while the action handles the exception, by invoking the primitives provided by
the rule language.

In order to exemplify these concepts, we now show how exceptional behaviors
are specified by means of rules in the WIDE PSS (the other systems follow a sim-
ilar or simplified model). The WIDE process definition language includes a rule
language for defining expected exceptions, called Chimera-Exc [8]. In Chimera-
Exc rules, triggering events belong to one of the four classes mentioned above
(data, temporal, external, or process); the condition is a predicate over process
data whose evaluation determines whether the action part should be executed
or not, and may in addition return some bindings, passed to the action part in
order to target the reaction over specific objects; finally, the actions can send
notifications to selected resources, start, suspend or terminate the execution of
tasks and process instances, reassign tasks to different resources, or rollback pro-
cess instances. For example, the rule negativeBalance shown below is activated
as the value of variable balance is modified in an accountMgmt process, and
notifies a process responsible if the resulting balance is negative.

define trigger negativeBalance for accountMgmt
events modify(accountMgmt.balance)
condition accountMgmt(A), A.balance<0,

occurred (modify(accountMgmt.balance), A),
actions notify (A.responsible, "Overdraft for customer" +

A.customerName)
end

Error Handling in Process Support Systems 267

With the rule-based approach, exception handling strategies can be defined
at different levels of abstraction. For instance, a process definition language could
allow rules to be defined at the task, process, or PSS level. Rules associated to
a given task are triggerable only when the task is active; rules associated with a
given process are triggerable when the instance is active, while global rules are
always active. This kind of structuring allows the definition of exception han-
dling strategies at the global level, valid for all processes and tasks. Exceptional
behaviors can then be overridden (or integrated) at the local level. In general,
many variations of the rule-based approach are possible, depending on the ex-
pressive power of the event, condition, and action language, and on the rule
invocation and execution semantics.

In general, the rule-based approach is very powerful. It can handle both
synchronous and asynchronous events, it can manage global and local exceptions,
it can capture different kinds of originating events, and can handle localized as
well as sparse exceptions. Its drawback lies in the intrinsic complexity of the rule
language: in fact, it is yet another formalism that is needed to fully specify the
process behavior, and its semantic is very subtle, so that it is easy to generate
unforeseen and undesired behaviors.

Approaches Based on Explicit Modeling of the Meta Process The main
weakness of generic model-changing approaches is their lack of flexibility and the
impossibility of accurately controlling the expressive power of model changing.
In general, the kind of changes allowed to a process model and the way these
changes have to be applied and deployed are process-specific and cannot be
specified one for all. Reflective PDLs solve this problem.

Generally speaking, reflective languages give programmers the ability of spec-
ifying how programs have to be changed at run-time. In process programming
this means adding to the PDL some special constructs that allow process model-
ers to specify when and how the model have to be changed. We say that process
programmers are able of specifying the meta-process as part of the process it-
self [21].

Several PSS adopt a reflective language. SPADE adopts a PDL called SLANG
[39], which is based on Petri-Nets. SLANG allows both running process model
instances and the process model itself to be treated as process data items that
may be modified by the PSS in the way specified by the running process model.
Similarly, OASIS [22] provides an object-oriented, reflective framework for the
definition, customization, and evolution of software process meta-models and of
the software process models that are their instances. In developing this frame-
work, the authors started from the consideration that every process modeling
approach relies on some specific set of abstractions that define a process meta-
model. They observed that the ability to provide a uniform model of both the
process model and the process meta-model is essential to capture complex pro-
cesses and to manage the customization and evolution of process models and
their meta-models.

268 F. Casati and G. Cugola

5 Conclusions

In this paper we have discussed the problem of managing failures and exceptions
in business processes. We have presented a taxonomy that classifies the different
kinds of exceptional situations that may occur during PSS-supported process
executions, and we have shown approaches that enable their handling, possibly
with minimal or no human intervention. Exception handling techniques have
been mostly developed in the academia, and are recently starting to be included
in commercial PSSs that support mission-critical applications. In particular, they
are increasingly needed and leveraged in e-business applications.

We expect that many of the techniques presented in this paper will be applied
to the area of e-services, and specifically to e-service composition. Frameworks
and platforms for developing and managing (composite) e-services will be the
next battleground for large software vendors such as Sun, Microsoft, IBM, BEA,
and HP. Indeed, the adaptation of PSS technology to support the robust and
reliable composition of e-services is often named as one of the main opportunity
for such vendors in order to achieve competitive advantage. The ability of auto-
matically handling failures and exceptions will be paramount in this area, due
to need of supporting high volume, low cost, and zero latency service delivery.

References

1. D. Georgakopoulos, H. Hornick, and A. Sheth, “An overview of workflow manage-
ment: from process modeling to workflow automation infrastructure,” Distributed
and Parallel Databases, vol. 3, 1995.

2. H. Stark and L. Lachal, Ovum Evaluates: Workflow. Ovum ltd., September 1995.
3. A. Finkelstein, J. Kramer, and B. Nuseibeh, eds., Software Process Modelling and

Technology. Research Studies Press Limited (J. Wiley), 1994.
4. A. Fuggetta and C. Ghezzi, “State of the art and open issues in process-centered

software engineering environments,” Journal of Systems & Software, vol. 26, July
1994.

5. V. Ambriola, R. Conradi, and A. Fuggetta, “Assessing process-centered environ-
ments,” ACM Transactions on Software Engineering and Methodology, vol. 6, July
1997.

6. G. Cugola, “Tolerating deviations in process support systems via flexible enactment
of process models,” IEEE Transactions on Software Engineering, vol. 24, November
1998.

7. J. Eder and W. Liebhart, “Contributions to exception handling in workflow man-
agement,” in Proceedings of the EDBT Workshop on Workflow Management Sys-
tems, (Valencia, Spain), Mar. 1998.

8. P. Grefen, B. Pernici, and G. Sanchez, Database Support for Workflow Manage-
ment: the WIDE Project. Kluwer Academic Publishers, 1999.

9. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Refer-
ence Manual. Addison Wesley, 1999.

10. G. Cugola, E. Di Nitto, A. Fuggetta, and C. Ghezzi, “A framework for formaliz-
ing inconsistencies in human-centered systems,” ACM Transactions On Software
Engineering and Methodology (TOSEM), vol. 5, July 1996.

Error Handling in Process Support Systems 269

11. S. Bandinelli, A. Fuggetta, C. Ghezzi, and L. Lavazza, “SPADE: an environment
for Software Process Analysis, Design, and Enactment,” in Software Process Mod-
elling and Technology (A. Finkelstein, J. Kramer, and B. Nuseibeh, eds.), Research
Studies Press Limited (J. Wiley), 1994.

12. S. Bandinelli, A. Fuggetta, C. Ghezzi, and S. Grigolli, “Process Enactment in
SPADE,” in Proceedings of the Second European Workshop on Software Process
Technology, (Trondheim (Norway)), Springer-Verlag, September 1992.

13. S. Bandinelli, M. Braga, A. Fuggetta, and L. Lavazza, “The architecture of the
SPADE-1 process-centered SEE,” in Proceedings of the 3rd European Workshop
on Software Process Technology, LNCS 772, (Villard de Lans (Grenoble), France),
February 1994.

14. S. Dami, J. Estublier, and M. Amiour, “Apel: a graphical yet executable formalism
for process modeling,” in Process Technology (E. Di Nitto and A. Fuggetta, eds.),
Kluwer Academic Publishers, January 1998.

15. J. Estublier, P. Y. Cunin, and N. Belkhatir, “Architectures for process support
system interoperability,” in 5th International COnference on Software Process,
(Chicago, Illinois, USA), pp. 137–147, June 1998.

16. F. Casati, S. Ceri, B. Pernici, and G. Pozzi, “Workflow Evolution,” Data and
Knowledge Engineering, vol. 24, pp. 211–238, Jan. 1998.

17. F. Casati, Models, Semantics, and Formal Methods for the Design of Workflows and
Their Exceptions. PhD thesis, Politecnico di Milano - Dipartimento di Elettronica
e Informazione, Milano, Italy, Dec. 1998.

18. S. Ellis, K. Keddara, and G. Rozenberg, “Dynamic change within workflow sys-
tems,” in Proceedings of the ACM Conference on Organizational Computing Sys-
tems (COOCS ’95), (Milpitas, California), 1995.

19. C. Liu, M. Orlowska, and H. Li, “Automating handover in dynamic workflow en-
vironments,” in Proceedings of the 10th International Conference on Advanced In-
formation Systems Engineering CAiSE’98, (Pisa, Italy), June 1998.

20. M. Reichert and P. Dadam, “ADEPTflex - supporting dynamic changes of work-
flows without losing control,” Journal of Intelligent Information Systems, vol. 10,
pp. 93–129, Mar. 1998.

21. S. Bandinelli, A. Fuggetta, and C. Ghezzi, “Process model evolution in the SPADE
environment,” IEEE Transactions on Software Engineering, vol. 19, December
1993.

22. P. Jamart and A. van Lamsweerde, “A reflective approach to process model cus-
tomization, enactment, and evolution,” in Proceedings of the Third International
Conference on the Software Process (ICSP3), (Reston, Virginia), pp. 21–32, IEEE
Computer Society Press, October, 10-11 1994.

23. F. Casati, L. Jin, S. Ilnicki, and M. Shan, “eflow: an open, flexible, and configurable
system for service composition,” in Proceedings of the Workshop on E-Commerce
and Web Information Systems, (Milpitas, CA, USA), June 2000.

24. R. Marshak, “InConcert workflow,” Tech. Rep. 20,3, Workflow Computing Report,
Patricia Seybold Group, 1997.

25. G. A. Bolcer and R. N. Taylor, “Endeavors: A process system integration infras-
tructure,” in Proceedings of the Fourth International Conference on Software Pro-
cess (ICSP4), (Brighton, UK), December 2-6 1996.

26. G. Cugola, E. Di Nitto, C. Ghezzi, and M. Mantione, “How to deal with devia-
tions during process model enactment,” in Proceedings of the 17th International
Conference on Software Engineering, (Seattle (Washington - USA)), April 1995.

270 F. Casati and G. Cugola

27. S. Arbaoui and F. Oquendo, “Peace: Goal-oriented logic-based formalism for pro-
cess modelling,” in Software Process Modelling and Technology (A. Finkelstein,
J. Kramer, and B. Nuseibeh, eds.), Research Studies Press, J. Wiley, 1994.

28. S. Arbaoui and F. Oquendo, “Managing inconsistencies between process enactment
and process performance states,” in Proceedings of the 8th International Software
Process Workshop, (Wadern (Germany)), March 1993.

29. A. Reuter, K. Schneider, and F. Schwenkreis, “Contracts revisited,” in Advanced
Transaction Models and Architectures (S. Jajodia and L. Kerschberg, eds.), New
York: Kluwer Academic Publishers, 1997.

30. J. Eder and W. Liebhart, “The Workflow Activity Model WAMO,” in Proceed-
ings of the 3rd International Conference on Cooperative Information Systems
(CoopIs’95), (Wien, Austria), May 1995.

31. R. van Stiphout, T. D. Meijler, A. Aerts, D. Hammer, and R. le Comte, “TREX:
Workflow transaction by means of exceptions,” in Proceedings of the EDBT Work-
shop on Workflow Management Systems, (Valencia, Spain), Mar. 1998.

32. M. Kamath and K. Ramamritham, “Failure handling and coordinated execution
of concurrent workflows,” in Proceedings of the 14th International Conference on
Data Engineering(ICDE’98), (Orlando, FL, USA), Feb. 1998.

33. G. Alonso, M. Kamath, D. Agrawal, A. E. Abbadi, R. Gunthor, and C. Mo-
han, “Failure handling in large scale workflow management systems,” Tech. Rep.
RJ9913, IBM Almaden Research Center, Nov. 1994.

34. G. Alonso, D. Agrawal, A. E. Abbadi, M. Kamath, R. Gunthor, and C. Mohan,
“Advanced transaction model in workflow context,” in Proceedings of the 12th In-
ternational Conference on Data Engineering(ICDE’96), (New Orleans, LA, USA),
Feb. 1996.

35. IBM, MQ Series Workflow - Concepts and Architectures, 1998.
36. Staffware Corporation, Staffware Global - Staffware for In-

tranet based Workflow Automation, 1997. Available at
http://www.staffware.com/home/whitepapers/data/globalwp.htm.

37. Baan Company N.V. - COSA Soultions, COSA Reference Manual, 1998.
38. D. Chiu, K. Karlapalem, and Q. Li, “Exception handling with workflow evolution

in ”adome-wfms”: a taxonomy and resolution techniques,” in Proceedings of the
First Workshop on Adaptive Workflow Systems, (Seattle, Washington, USA), Nov.
1998. Available at http://ccs.mit.edu/klein/cscw98/paper06.

39. S. Bandinelli, E. Di Nitto, and A. Fuggetta, “Supporting cooperation in the spade-
1 environment,” IEEE Transactions on Software Engineering, vol. 22, December
1996.

A. Romanovsky et al. (Eds.): Exception Handling, LNCS 2022, pp. 271-288, 2001.
© Springer-Verlag Berlin Heidelberg 2001

ADOME-WFMS: Towards Cooperative Handling of
Workflow Exceptions

Dickson K.W. Chiu1, Qing Li2 and Kamalakar Karlapalem3

1Dickson Computer Systems, 7A Victory Avenue, 4th floor, Homantin,

Kowloon, Hong Kong
kwchiu@dickson-computer.com

2Department of Computer Science, City University of Hong Kong,

Tat Chee Avenue, Kowloon, Hong Kong
csqli@cityu.edu.hk

3Department of Computer Science, University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong
kamal@cs.ust.hk

Abstract. Exception handling in workflow management systems (WFMSs) is a
very important problem since it is not possible to specify all possible outcomes
and alternatives. Effective reuse of existing exception handlers can greatly help
in dealing with workflow exceptions. On the other hand, cooperative support for
user-driven resolution of unexpected exceptions and workflow evolution at run-
time is vital for an adaptive WFMS. We have developed ADOME-WFMS via a
meta-modeling approach as a comprehensive framework in which the problem
of workflow exception handling can be adequately addressed. In this chapter,
we present an overview of exception handling in ADOME-WFMS with proce-
dures for supporting the following: reuse of exception handlers, thorough and
automated resolution of expected exceptions, effective management of Problem
Solving Agents, cooperative exception handling, user-driven computer sup-
ported resolution of unexpected exceptions, and workflow evolution.

1 Introduction

 Workflow management system technology, though recent, has been regarded as one of
the main types of advanced information systems. It is perceived that workflow tech-
nology not only requires the support for complex data model functionality, but also
flexibility for dynamically modifying the workflow specifications, especially in cases
of exception handling. Because of unanticipated possibilities, special cases, changes in
requirement and operation environment, exceptions may occur frequently during the
execution of a business process. An exception is an event (i.e., something that hap-
pens), which deviates from normal behavior or may prevent forward progress of a
workflow. Upon unexpected exceptions, a comprehensive WFMS should support

272 D. K.W. Chiu, Q. Li, and K. Karlapalem

 cooperative exception handling, i.e., provide assistance for the users to reallocate
resources (data / object update) or to amend the workflow, such as adding alternatives
(workflow evolution). Further, frequent occurrences of similar exceptions have to be
incorporated into workflow specifications as expected exceptions. Such workflow
evolution can help avoid unnecessary exceptions by eliminating error-prone activities,
adding alternatives, or by enhancing the operation environment. This can lead to a
WFMS that supports workflow adaptation through exceptions.

 In contrast with traditional software systems, workflows usually evolve more fre-
quently, making reuse a vital issue. Reuse of workflow definitions and exception han-
dlers are very important for the smooth operation of a flexible WFMS. Support for
workflow evolution at run-time is vital for an adaptive WFMS. There have been a
few WFMSs designed to address these two problems (viz. reuse issues and workflow
evolution) effectively and adequately. However, none of them promotes a meta-
modeling supported, exception-centric WFMS. As such, we can have a simple but
expressive core data dictionary (meta-schema), with extensive reuse opportunities.

 An effective user interface is vital to the execution of the above features. We
choose to use a web-based user interface because workflows and agents tend to be
widely distributed, even involving other organizations across the Internet. The Inter-
net supports mobile clients with electronic mail and notifying services such as „I Seek
You“ (ICQ), and they can access the WFMS with a web-browser. Direct message
passing between clients and remote data sharing can be facilitated. On the other hand,
web-based tools are a prevailing technology that has a wide range of utilities and off-
the-shelf applications, supporting wide ranges of hardware and software platforms at a
relatively low-cost.

 We use an integrated, event-driven approach for execution, coordination, and ex-
ception handling in our WFMS. Events (such as database events / exceptions, or
external inputs) trigger the WFMS Execution Manager to start an activity. The
WFMS Execution Manager uses events to trigger execution of tasks, while finished
tasks will inform the Execution Manager with events to proceed executing subsequent
tasks. Upon an exception, exception events will trigger the WFMS Exception Man-
ager to take control of resolutions.

 In this regard, we have developed ADOME-WFMS, based on an Advanced Object
Modeling Environment (ADOME [31]), with a novel exception centric approach. The
key features are as follows: (i) effective coordination of Problem Solving Agents
(PSAs) and an object-oriented capability-based approach to match tasks and agents;
(ii) automatic resolution of expected exceptions and exception driven workflow recov-
ery; (iii) dynamic binding of exception handlers to activities with scoping, and to
classes, objects and roles; (iv) addition, deletion and modification of exception han-
dlers at run-time through workflow evolution support; (v) specifying and reusing
exception handlers upon unexpected exceptions and cooperative exception handling;
and (vi) application of workflow evolution and workflow recovery in exception han-
dling. Thus, adding a web-based user interface allows ADOME-WFMS to effectively
support distribution of PSA and workflow execution even with a centralized control
design.

ADOME-WFMS: Towards Cooperative Handling of Workflow Exceptions 273

 In this chapter, we present an overview of flexible workflow enactment and online
workflow evolution in an advanced object environment (an active OODBMS with role
and dynamic schema support), with reference to ADOME-WFMS. More details re-
garding classification of exceptions and handlers, and modeling aspects for ADOME-
WFMS are given in [11]. In addition, ADOME-WFMS exception driven workflow
recovery has been presented in [17].

 The rest of our chapter is organized as follows. Section 2 presents a meta-modeling
approach to activity modeling, which facilitates reuse and workflow evolution. Section
3 presents the architecture of ADOME-WFMS with web-based PSA coordination and
general mechanisms. Section 4 discusses how ADOME-WFMS handles expected
exceptions and provide facilities towards cooperative exception handling with support
for workflow evolution. Section 5 compares related work. Finally, we conclude the
article with our plans for further research in Section 6.

2 Flexible Activity Meta-modeling in ADOME-WFMS

 The activity model of ADOME-WFMS is in accordance with the WfMC standard
[36]. Fig. 1 illustrates a requisition workflow, which is used as an example in the rest
of the article. The requisition workflow is composed of the sub-activities „purchase
request“, „procurement“, „payment arrangement“ and task „receive and check goods“.
If the purchase order is on cash-on-delivery (COD) terms, the order of execution is
„payment arrangement“ and then „received and check goods“. Otherwise, if the pur-
chase order is on credit terms, the order is „receive and check goods“ first and then
„payment arrangement“ upon payment due. This decision is represented with an OR-
split and OR-join. The „purchase request“ and „payment arrangement“ sub-activities
are further composed of other tasks, like „get product information“, „fill in PR form“,
etc., as illustrated.

Begin
Procure-

ment

Payment
Arrange-

ment

Receive
and check

goods

End

Receive
and check

goods

Purchase
Request

COD

Credit

Begin

Get
product
informa-

tion

Fill in PR
form

Budget
Check

PR
approval

End

Begin

Match
PR, PO

and
invoice

Check
available
funding

Payment
Authoriza-

tion

Prepare
Cheque

End

(a) Requisitition (repeatable)

(b) Purchase Request

(c) Payment Arrangement (Critical, Manual)

Payment
Arrange-

ment

Supplier not
found

(Replacable)

(Optional) (Critical) (Critical)(Repeatable)

Task

Activity

transi-
tion

(Replacable)

 Fig. 1. Example Workflow of Requisition Procedure

274 D. K.W. Chiu, Q. Li, and K. Karlapalem

2.1 Exception Centric View of a WFMS

 After discussing why exception handling is important, we present an exception centric
view of ADOME-WFMS. Fig. 2 shows main entities of a WFMS with their inter-
relationships. Under an object-oriented approach, all these entities (including events
and exceptions) are modeled as first-class objects.

Exceptions

ECA-Rules

Workflow
Instances

Workflow
Definitions

PSA Objects

WFMS (with
External
Interface)

Activity
States

Constraints

C
a

u
s
e N

o
 P

S
A

 /
 R

e
p
o
rt
 E

x
ce

p
tio

n

Defin
e

M
atch

 M
aking

Is
-a

Detects

Instances

 B
in

d

Compose

CAE

TriggersH
a
nd

le
d
 B

y

Is
-a

PSA Roles/
Tokens

Require
ment

Plays

 B
in

d

P
os

se
ss

Events Handlers
Exception Handlers Change /

Evolve All Other Entities

H
u

m
a
n

 I
n
t e

rv
e

n
ti
o

n

C
au

se O
th

er

Determine

B
in

d

B
in

d

Entities

Relations

C
h
a
n
g
e

s

Rule Binding

D
e
te

c
ts

 Fig. 2. Exception Centric View of a WFMS

 The WFMS defines, manages and executes workflow definitions. It contains inter-
faces to the external world and manages all entities in the system. It can detect vari-
ous workflow exceptions. It can interface with PSAs and capture external exceptions.
Workflow (Activity) Definitions specify workflow types and the requirements for their
execution, together with any relevant expected exceptions. Workflow definitions can
contain sub-workflow definitions in a composition hierarchy. An atomic sub-
workflow (i.e. a leaf node of a composition hierarchy) is called a task. Users specify
transitions among sub-activities (siblings in the activity composition hierarchy) to
represent the possible execution paths. Workflow (Activity) Instances are run-time
instantiations of workflow definition classes to be enacted. They possess activity
states and can cause various exceptions. Workflow instances can contain sub-
workflow and task instances according to their definition in the composition hierarchy.
Activity states capture the status and progress of execution of activities. The state of
an activity includes the data objects related to the activity, execution state and other
house-keeping information for the activity.

 PSA Objects are agents that can enact a task. Each PSA object can play various
roles and possess tokens. The Match Maker of the WFMS assigns PSA Objects to
workflow instances for execution based on role/token matching. (Lack of a suitable
PSA is a typical workflow exception.) While carrying out the task, the PSA may
report exceptions, and handle exceptions through human intervention. Human PSA
objects can also participate in cooperative exception handling with the help of the

ADOME-WFMS: Towards Cooperative Handling of Workflow Exceptions 275

Human Intervention Manager (cf. Sect. 4.3). PSA roles / tokens are possessed by PSA
objects. On the other hand, PSA roles /tokens specify the agent requirement of enact-
ing a task. A token embodies certain capabilities of a PSA to execute certain functions
/ procedures /tasks, e.g., programming, database-administration, Japanese-speaking,
while a role represents a set of responsibilities, which usually correspond to a job-
function in an organization, e.g., project-leader, project-member, programmer, analyst,
etc. A token can be a composite token, which is equivalent to a set of simple tokens,
i.e., the composite token inherits all the capabilities of the simple tokens. The higher
levels of the inheritance hierarchy have highly complex tokens that correspond to the
capabilities of PSA-roles. Thus, capability-tokens and roles form a unified multiple-
inheritance hierarchy (as explained in [14]).

 Events are something that happens and are interesting to the system itself or to user
applications. There is an Event Detector component in the active OODBMS for de-
tecting data-driven events. Moreover, the WFMS core logic is able to detect
workflow events related to workflow semantics. The external interface of the
WFMS can detect external events. An event occurrence triggers appropriate han-
dler(s) according to the relevant ECA-rule specifications. Exceptions are events that
deviate from normal execution behavior. Different exceptions of the same type (e.g.,
deadline expiration) can occur anywhere in an activity and at any time. Thus, the
active capability of the underlining OODBMS provides a good support for the specifi-
cation of exceptions and the handlers in the form of ECA-rules.

 ECA-rules (Event-Condition-Action rules, as explained in Sect. 4.2) specify the ac-
tion to be taken upon the event if the condition part is true. They are bound to most
other objects and classes of the WFMS, such as, workflow definitions, workflow in-
stances, PSA objects, and roles/tokens. In order to share the ECA-rules in a controlled
manner, we propose that a rule is applicable to a target object only after binding them.
Note that constraints are expressed in ECA-rules. Constraints are used to maintain
integrity and consistency. Activities violating constraints will cause exceptions.

 Handlers are allowed to be sub-activities/tasks that can resolve exceptions. Thus,
they need PSAs (human and/or software) for processing. Exception types and activity
states are the most important factors for exception resolution. An exception handler is
specified for resolving different types of exceptions. The exception handler can then
change various entities at the instance or schema level in order to resolve the excep-
tion. However, the exception handler may possibly cause further exceptions, and the
problem of cascaded exception must be addressed (cf. [17]).

2.2 ADOME-WFMS Meta-modeling: Some Prominent Aspects

 Many of the earlier WFMSs [19] were built on top of traditional database technologies
(e.g., relational databases). They fall short in facilitating / offering flexibility of mod-
eling, ease of implementation, and/or in handling dynamic run-time requirements.
Advanced features — objects, rules, roles, active capability and the flexibility — of
object-oriented database systems are needed to facilitate the development of a versa-
tile WFMS [13], especially with meta-modeling approach. In ADOME-WFMS, we

276 D. K.W. Chiu, Q. Li, and K. Karlapalem

advocate a three-level meta-modeling approach wherein workflows, capabilities, ex-
ceptions, and handlers are defined at a meta-level as depicted in Fig. 3.

Meta-
Workflows

Capability
Tokens

Exceptions Handlers

Meta-ECA-
Rules

MetaClass
Level

Class
Level

Instance
Level ECA-Rules

Workflow
Classes

Workflow
Instances

PSA Roles

PSA Objects

Require-
ment

Capability
Matching

Bind

Bind

One-to-Many

Many-to-Many

 Fig. 3. Three Level Meta-Modeling for ADOME-WFMS

 Workflow templates are defined at the meta-level so that workflow definitions can
be instantiated for specific applications. For example, a generic requisition workflow
template can be declared at the meta-level, so that specific requisition workflow defi-
nitions have customized rules and sub-activities can be instantiated for purchasing
different category of items. Capability tokens are defined at the meta-level so that
they can be combined to form PSA-roles, which capture requirements of task classes
(cf. [14]). Exceptions (which are events) and handlers (which correspond to conditions
and actions) are defined at the meta-level. Exceptions are associated to handlers in the
form of meta-Event-Condition-Action-rules (meta-ECA-rules). Specific ECA-rules
can then be bound to workflow for versatile exception handling (cf. [15]).

 To illustrate further, the meta-level design for activity schemas is shown in Fig. 4
with the following features. All activity schemas are treated as sub-classes of the
meta-class Activity. WFMS_class serves as the root class of all class definitions
in the WFMS for easy maintenance of the classes and objects. The meta-activity
schema contains all features for defining activity schemas, such as input/output pa-
rameters, and the activity graph, which describes the sub-activities and their incoming/
outgoing transitions, join/split types, mandatory/regular handlers. Class-attributes
(which is a feature supported in many advanced object-oriented systems [26]) are used
for storing either attributes of the class object (such as class description) or attributes
of the same value among all objects of the class (such as the input / output specifica-
tions). All sub-class objects inherit the definition attributes of the super-class object
but each of the classes can have their own value of class attributes. WFMS related
events for activities (such as execute, finish, abort), standard workflow ex-
ceptions (such as no_PSA, PSA_reject, cannot_proceed) are declared with
the meta-class so that these features are applicable to all activities schemas.

 When an activity instance is started, it has its own copy of the activity graph and re-
execution pattern. This allows both instance and schema level workflow evolution.
On the other hand, rule objects can be declared outside of the scope of activities first,
and then bound to individual activity schemas (or specific instances) to facilitate reuse.
The hierarchical composition is important for encapsulating details of activities and

ADOME-WFMS: Towards Cooperative Handling of Workflow Exceptions 277

sub-activities to facilitate reuse and to allow the design of workflows in both top-down
and bottom-up manners, as detailed in [14]. It further introduced scoping for excep-
tion handlers, nested transaction models and localizing failures.

 class WFMS_class
 class_attributes:
 Class_Description: string;
 Class_Date_Created: date;
 Attributes:
 Instance_Date_Created:
 date;
 Name: string;
 Instance_Description:
 string;
 end

 class Task isa Activity
 attribute_initilization:

 Activity_Graph = NIL;
 attributes:

 Task_Need: set of Token;
 Allow_Partial_Match: bool;

 ...

 methods
 Match_Cost, Partial_Match,
 Match_Cost_Ext...

 end

 class Arc isa WFMS_class
 Source, Destination:
 Activities;
 Transisition_Condition:
 Boolean;

 end;

 class Graph_Node isa WFMS_class
 attributes:
 Subactivity: Activity;
 Predecessor_Join: (AND_join, OR_join, NIL);
 Successor_Split: (AND_split, OR_split, NIL);
 end;

 class Activity isa WFMS_class
 /* all activities are sub-classes of this
 meta-activity class because each different
 activity class can have multiple instance */
 class_attributes:
 Input_Parameters, Output_Parameters,
 IO_Parameters: set of Parameter;
 events:
 execute, finish, abort ...
 exceptions:
 no_PSA, PSA_reject, cannot_proceed ...
 rules:
 Manditory_handlers: set of rules;
 Handlers: set of rules;
 attributes:
 Activity_Graph:
 (Activity_Node set of Graph_Node;
 Transisition set of Arc;)
 Reexecution_Pattern:
 (optional, repeatable, replacable…);
 /* parameters for execution of instance */
 Priority: integer;
 PSA_chosen: set of PSA;
 methods
 Decomposition, PSA_for_Activity, Execution,
....
 end

 Fig. 4. Meta-level Specification of Activities and Tasks

 In summary, this full object-oriented approach enables full inheritance of various
activity properties (such as rules and re-execution mode) down the composition hier-
archy and applies to each of the activity / task instances. From this meta-level
schema, users can define all other classes for the WFMS, including activity schemas,
PSAs, roles, exceptions and handlers. Further, from these schemas WFMS objects (in
particular, activity instances) can be instantiated. This contributes a substantial im-
provement to WFMS modeling based on relational models (such as [28]) because the
entity modeling and implementation is tied together in a straightforward manner.
Extensive reuse is also facilitated as discussed in [15].

3 ADOME-WFMS Architecture and Activity Enactment
Mechanism

 The ADOME system was developed to enhance the knowledge-level modeling capa-
bilities of OODBMS models [31] to allow them to more adequately deal with data and

278 D. K.W. Chiu, Q. Li, and K. Karlapalem

knowledge management requirements of advanced information management applica-
tions, especially WFMSs. The ADOME prototype has been built by integrating an
OODBMS (ITASCA [26]) and production inference engine (CLIPS [23]). Therefore,
a WFMS can be implemented on top of it with relative ease. In the case of ADOME-
WFMS, the architecture and functional aspects (as depicted in Fig. 5) are as follows.

ADOME-WFMS

OODBMS

Web Interface

Users

Activity
Executor

Exception
Manager

Recovery
Manager

Human
Intervention

Manager

Organization
Database

Activity
Decomposer

Match Maker

ADOME facilities:
roles, events, rules etc.

 Fig. 5. ADOME-WFMS Architecture

 ADOME active expert OODBMS provides a unified enabling technology for the
WFMS, viz., object/role database, event specification and execution, rule / constraint
specification and processing [31], etc. Organization Database manages data objects
for the organization, as well as PSA classes, instances and their capability token (role)
specifications. Besides maintaining user-specified extensional tokens / roles system-
atically, intensional token/role derivation for a PSA is also supported (cf. [14]).

 Activity Decomposer facilitates the decomposition of activities into tasks. The user
provides the knowledge and related data to decompose activities into tasks by a user
interface (cf. [14,16]). Activity Executor coordinates execution by user-raised and
database generated events as explained in the next section. Match Maker selects PSAs
for executing tasks of an activity according to some selection criteria as explained in
[14,11]. Exception Manager handles various exceptions by re-executing failed tasks or
their alternatives (either resolved by the WFMS or determined by the user) while
maintaining forward progress as explained later in this chapter. Recovery Manager
performs various housekeeping functions, including logging and rollback, to maintain
the WFMS in consistent states as explained in [17].

 Web Interface allows users and PSAs to access ADOME-WFMS and the database
through a web-browser, so that users can be mobile. This supports effective manage-
ment of Problem Solving Agents, cooperative exception handling, user-driven com-
puter supported resolution of unexpected exceptions, and workflow evolution.

ADOME-WFMS: Towards Cooperative Handling of Workflow Exceptions 279

3.1 Workflow Enactment Mechanisms of ADOME-WFMS

 In this section, we shall concentrate on using a centralized control and coordination
execution model centered on the Activity Executor of the WFMS. The Activity Execu-
tor monitors the task execution status and enforces deadlines. For the normal task life
cycle, it initiates the PSAs to be selected by the Match Maker to carry out their as-
signed task and get the response (if any) from the PSA upon task completion. On the
other hand, if a task raises exception events or does not respond within the deadline
(i.e., time out), the Exception Manager will respond and handle it.

 An event driven activity execution model with meta-ECA-rules has been described
in the previous chapter. Moreover, this model provides a unified approach for normal
activity execution and exception handling. Now, ADOME-WFMS can support activ-
ity execution through the Web Interface (cf. [16]). Users can define an activity class
with the ADOME-WFMS Activity Editor.

 With a web-browser, a user can log on to ADOME-WFMS to search / browse for
an activity class (by name, department, etc.). The system provides a preliminary
checking function, which determines if the required PSA and resources are possibly
available. (Their actual availability depends on the execution of other concurrent ac-
tivities.) Pressing the Start button on the web page will trigger the corresponding
start-event for the activity through the Web Interface. External application software
can also trigger the corresponding start-event to start the workflow.

 For human PSAs, the selected PSA will be informed via ICQ with the URL of an
Interface Page generated from a template in the database by the Web Interface (cf.
[16]). If the PSA is offline or does not reply within a deadline, an electronic mail will
be sent instead. The selected PSA can then use a web browser to open the interface
page (logging on is necessary) to: (i) accept the assignment by pressing the Accept
button and then start work later with the Start Work button, (ii) accept and start work
immediately with the Start Work button, or (iii) reject the assignment with the Reject
button. The Interface Page contains also a list of required data objects for the task
(such as other forms, voice or typed messages of colleagues, relevant database infor-
mation). The PSA can then view or update the objects during his work. It should be
noted that the PSA may browse the objects passed before deciding to accept the task.

 After finishing the assigned task successfully, the PSA replies to the Activity Ex-
ecutor by pressing the Normal Finish button of the interface page. ADOME-WFMS
will assume the PSA rejects if no reply can be received within a user-defined deadline.
Data objects are passed via the mechanism of web-page forms (e.g., by filling in a
web-based requisition form). The Activity Executor then carries on with the next step
according to the result passed back. The PSA can report failure by choosing an ex-
ception type with the help of another pop-up page. Upon failure or time out, the Ex-
ception Manager will be invoked to handle the exception.

3.2 Detection of Events and Exceptions

 Primitive events and composite events are all detected by the underlining ADOME
event facilities as described in [10]. Since exceptions are ADOME events, detection

280 D. K.W. Chiu, Q. Li, and K. Karlapalem

of exceptions for ADOME-WFMS is well supported at run-time. External exceptions
raised by external entities can be intercepted by the WFMS. Changes in workflow
definitions, rules, schema and any WFMS data objects are also detected as update
events, supported by the underlying ADOME active OODBMS mechanisms.

 Workflow exceptions are raised by WFMS components, for example, PSA not
available in Match Maker, not enough resources or PSA reject assignment in the Ac-
tivity Executor, data constraint violations upon updating the Organization Database,
(ignored) failure of task / sub-activity causing exception to its parent in the Exception
Manager. Moreover, workflow exceptions are detected by automatic ADOME ECA-
rules and/or constraints, e.g., activities cannot meet deadline, activities constraint
violation (e.g. budget exceeded).

4 Handling Exceptions in ADOME-WFMS

 As supported by the underlying ADOME facilities, the following information items
are passed to the Exception Manager upon the exception detection: source and type of
exception, state information of the task / activity [10], and any extra parameters de-
fined by the exception type (e.g., budget value). The Exception Manager [15,16] then
takes control and carries out the following: (1) Perform notification if necessary. (2)
Identify the appropriate exception handler(s) and execute them. Handlers are modeled
as sub-activities in ADOME-WFMS. (3) One or more handlers will be executed until
the problem is solved. (4) If no appropriate exception handlers are found (i.e., an
unexpected exception), or human intervention is specified, the Human Intervention
Manager will be invoked. The human can then select the appropriate handler and/or
perform workflow evolution. (5) If rollback is required, the Recovery Manager will be
invoked for compensating activities (cf. [17]). (6) Resume / redo execution, jump to
the appropriate step as decided by step 2 or 3, or abort the current task / sub-activity so
that the exception propagates to its parent for further handling. Though a failure may
propagate up the activity composition hierarchy, this approach localizes exceptions
and thus reduces loss of work done.

4.1 Identifying and Executing Exception Handlers

 One or more exception handlers may be qualified to handle an exception that occurs.
The ADOME-WFMS Exception Manager employs the following priority order for
selecting the appropriate exception handler(s) (cf. [11] for the detailed algorithm):
 1. Mandatory ECA handlers - Since the users specify these as mandatory, all relevant
handlers (with event matched and condition fulfilled) bound to the current scope (cf.
Sect. 4.2) are executed in the order of the task / sub-activity, its parent and all the way
up to the global activity. These mandatory actions, such as logging and notification,
may or may not solve the problem causing the exception. If they cannot solve the
problem, other categories of exception handlers will be executed.
 2. Procedural handlers - These are extra branches for exception handling. Each
procedural handler is specific to a certain task or sub-activity under a particular con-

ADOME-WFMS: Towards Cooperative Handling of Workflow Exceptions 281

text for handling specific outcomes. Since they are explicit and context sensitive, they
are chosen before (3) ECA handlers. For example, the ‘supplier not found’ arc (cf.
Fig. 1(a)) represents a procedural handler.
 3. ECA handlers - These are searched from the current activity up the composition
hierarchy to allow special exception handlers to override default exception handlers if
necessary. If more than one relevant handler was declared for the same activity, the
one(s) for the more specific exception type would be chosen over the more general
exception type (as explained in Sect. 4.2).
 4. Built-in handlers - For generic exceptions, ADOME-WFMS has built-in exception
handlers. For example, if a PSA rejects a task assignment or the best candidate PSA is
not available, the WFMS will find the next available PSA. If all PSAs capable of
executing the task are busy or the required resources are occupied, the WFMS will
either wait or choose alternate execution paths.
 5. Re-execution criteria - If none of the above handlers is specified, ADOME-WFMS
will attempt re-execution criteria. (Please note that re-execution and re-throwing the
exception at the current or parent scope can be specified explicitly in handlers too.)
Some measures to prevent cascaded exceptions and loops, mainly related to deadline
and budget constraint, can be found in [17]. ADOME-WFMS automatically re-
executes the repeatable failed activities; choose another execution path for replace-
able failed activities; skip optional failed tasks. This feature can save many tedious
explicit jumps and aborts, especially with scoping in ADOME-WFMS (cf. Sect. 4.2).
Moreover, this way can resolve many unexpected exceptions if re-execution helps.
However, critical failed tasks without explicit handlers are unexpected exceptions.
Therefore, it will result in human intervention. Upon re-execution, in order to maintain
work continuity and save start up overhead, the same agent is preferred unless other-
wise specified. The next candidate would be the nearest capable sibling or ancestor
according to the organization structure (such as a teammate or supervisor).

4.2 Exception Modeling for Reuse in ADOME-WFMS

 The main entities and relationships in ADOME-WFMS with respect to exception
handling are all modeled as first-class objects. In particular, the class exceptions is a
subclass of class events. A taxonomy of exceptions and handlers is found in [14].
Handlers are allowed to be sub-activities so that they can carry out any complicated
actions; and nested exceptions are supported by recursive invocation of the Exception
Manager. In ADOME-WFMS, declarative exception handlers in the form of ECA
rules can be bound to selected classes, objects and roles, both dynamically at run-time
(with bind statements) and at definition time. This is because the underlying
ADOME supports ECA rules and the above-mentioned dynamic features [10]. Fur-
thermore, handlers can be specified within the scope of different activity and sub-
activity levels, i.e., the handler applies not only to the body of the target activity but
also to all its sub-activities and tasks. This is the case since handlers can be inherited
down the activity composition hierarchy.

 The ADOME-WFMS Human Intervention Manager supports users to modify all
the above declarations and associations at run-time as described in Sect. 4.3. The

282 D. K.W. Chiu, Q. Li, and K. Karlapalem

power of ADOME-WFMS in reuse over other systems (such as [7, 20, 28, 27, 25]) is
mainly due to the ability of ADOME in dynamic binding of rules to different dimen-
sions (objects, roles, sub-activities, etc.) at run-time. Since exceptions can be common
in a WFMS, reusing exception handlers is vital to the effectiveness, user-friendliness
and efficiency of the WFMS. However, a methodology in workflow design to facili-
tate reuse of exception handlers is beyond the scope of this chapter.

 In ADOME-WFMS, some mechanisms for reuse of exception handlers follow from
its hierarchy activity structure. For procedural exception handlers, arcs from several
peer tasks / sub-activities at the same level (siblings inside the same parent activity)
can lead to the same exception handler for some degree of sharing. Because of scop-
ing, only one declarative exception handler is required for each exception type for
each activity composition hierarchy (as explained in the previous section). For exam-
ple, declaring r2 at the requisition activity level will enable r2 for all the sub-activities
and tasks for the whole diagram. Similarly, human intervention requirements of ex-
ception handling (automatic, warning, system-assisted and manual) and re-execution
patterns (optional, critical, repeatable and replaceable) for sub-activities and tasks are
specified within the scope of this composition hierarchy, with the lowest level taking
priority in specification and thus overriding those of higher levels.

 Declarative exception handlers are first-class ECA rule objects. A rule object r is
declared and defined once and then can be associated with more than one scope by
repeated binding. For example, we can declare r9=(E:All_exception,
amount>1000000, CEO.inform) and then bind r9 to payment, requisition, so that all
exceptions in the payment and requisition sub-activities will inform the chief execu-
tive officer for transactions greater than one million dollars. Since exceptions are
events (which are first-class objects in ADOME), exception classes are also arranged
into an ’isa’ hierarchy. Thus, an exception handler for a super-class will also handle an
exception of a sub-class. (E.g., an exception handler for program_error will handle
subscript_out_of_range also.) Extending the event-part with ‘or’ event composition
can generalize exception handlers (e.g., E: program_error ¿ PC_failure, A:
EDP.manager.inform), and increase the applicability of the exception handlers.
Moreover, meta-level rules can be instantiated through parameters and supplied meth-
ods to specify rules, such as budget rules instantiated with actual budget figures.

4.3 Web-Based Human Intervention Manager

 Upon unexpected exceptions or manual exception handling is specified, the Human
Intervention Manager sub-module of the Exception Manager alerts the specified user
by ICQ (or if not successful, then by electronic mail), with the URL of an Exception
Page (cf. [16]) that assists the user to handle the exception. This web page, again
generated from a template, offers reuse of existing exception handlers by providing a
list of possible resolutions, and relevant data objects to assist the human decision.
Moreover, all recent case-by-case resolutions are kept in the database for user refer-
ence. Since every scenario may be different, only the user can probably determine
what are the most appropriate actions. Some suggested resolution for some exception
cases under different situations are presented in [16].

ADOME-WFMS: Towards Cooperative Handling of Workflow Exceptions 283

 On the other hand, especially when manual exception handling is specified, there
may exist a list of more concrete exception resolutions, which probably needs the
human user to choose since there may not be enough knowledge/experience for the
system to totally automate such a decision. For example, when the task „check avail-
able funding“ in Fig 1(c) fails, the exception would trigger manual handling. Here,
the user can choose from a list of suggested resolutions (with parameters) or
browse/edit for other resolutions (such as returning the goods). Before making a deci-
sion, the user may browse the objects passed for further information or consult the
Decision History.

 Prior to executing the action specified through human intervention, the Exception
Manager performs checking to avoid further cascaded exceptions. In addition to gen-
erally specified constraints in the ADOME-WFMS, some of its specific ones are il-
lustrated in [16]. Should some constraints be violated, the Exception Manager will
further inform the user of the potential problem and ask for confirmation. There are
often scenarios where one may handle exceptions for a more important task at the
expense of sacrificing other less important ones.

4.4 Web-Based Workflow Evolution

 ADOME-WFMS has the required facilities for supporting various types of workflow
evolution (cf. [14]). In particular, besides conventional exception handling resolu-
tions, the Human Intervention Manager sub-module also accepts update of workflow
on-line. In contrast, there are currently few WFMSs having such facilities for sup-
porting the whole spectrum of exception-handling resolutions, especially those relating
to workflow evolution. In ADOME-WFMS, the user can choose any of the suggested
resolutions to be persistent, or enter schema evolution operations, update of workflow
and/or enter new ECA rules (but subject to the enforcement strategies as described in
the next section). As workflow evolution requires the modification of workflow defi-
nitions or adding ECA rules to the system during work in progress, an advanced
schema evolution capability is required at run-time. Due to ADOME's support of
dynamic schema evolution [31], ADOME-WFMS readily provides exception resolu-
tions based on schema evolution. It should be noted that the resolutions based on
schema evolution are general-purpose ones, which can help reduce the occurrence of
additional exceptions.

 In [7], a complete, minimal, and consistent set of workflow evolution primitives is
proposed. These workflow evolution primitives can be used for static and dynamic
workflow evolution, including for migration of individual workflow instances. They
are divided into two parts: (i) declaration primitives modify the declaration of
workflow variables (including their default values), (ii) flow primitives modify the
flow structure of the workflow schema. In [11], we have shown how these primitives
are adapted and supported in the ADOME-WFMS framework.

 Workflow evolution policies refer to how workflow instances adopt newly evolved
workflow schema, while they are executing. Because ADOME-WFMS uses activity
decomposition, upon workflow evolution (i.e., modification of a certain sub-activity
class definition), the side effects of affecting other activities containing this sub-

284 D. K.W. Chiu, Q. Li, and K. Karlapalem

activity are very much confined. At the time of the workflow evolution, only those
activities having the same sub-activity currently executing are affected. Other activi-
ties having the same sub-activity but not currently executing are unaffected since the
sub-activity is encapsulated, and behaves as a black box to activities at a higher level.
In order to allow further control over the semantics and implications of workflow
evolution, users can choose the various evolution policies as described in [11]. Fur-
thermore, we support a mechanism called hand-over policy (as motivated by [32]), in
which hand-over rules (in the form of ECA rules) are used to specify how individual
affected workflow instances adopt the new schema for execution.

 We have also designed a web-based interface for workflow evolution. Upon
pressing the workflow evolution button, the user can access a workflow evolution
menu page (cf. [16]), where he/she is presented with a set of possible workflow evo-
lution options.

5 Related Work

 Sophisticated programming language features for exception handling date back to the
Ada programming language [1]. The feature of exception propagation for resolving
exception handlers, generic procedures and generic exception handlers, motivate the
employment of meta-modeling of exceptions and handlers for ADOME-WFMS. [3]
is a classical article on exception handling but for general database-intensive informa-
tion system. [34] built a taxonomy and suggested a meta-model on exception handling
for office information systems, with handling methods for different kinds of excep-
tions. HiPAC [9] represents a classic active OODBMS. Many of its features and
concepts, such as treating rules and events as objects, ECA rules, composite events,
exceptions as events, etc., influence the design of many later systems. A detailed sur-
vey on active OODBMS can be found in [13].

 Many early contributors in workflow exceptions, such as [2, 20], use transaction
workflow models. Earlier OO WFMSs, such as [27] (TriGSflow) and [30] had little
support for exception handling. [29] adopts a knowledge-base approach to handle
expected exceptions in WFMS in the form of a process handbook with strong empha-
sis on agent management. OPERA [25] incorporates primitives based on exception
handling concepts developed for programming languages coupled with ideas from
advanced transaction models. Crossflow [24] models virtual enterprises based on a
service provider-consumer paradigm, with contract-based matchmaking between
them.

 WIDE [5, 7] uses object and rule modeling techniques and suggests some measures
in handling exceptions. Exceptions are classified but not handling approaches. Reuse
and management of exception handlers are presented with only some implementation
details. Workflow evolution primitives are again not at a semantic level. The main
drawback of WIDE is missing facilities for coordination of agents and also a lack of a
coherent model of various entities and their inter-relationship in a WFMS.

 Very few commercial WFMSs provide support for handling exceptions. Even if
they do, they only address very basic problems to a slight extent. InConcert, by In-

ADOME-WFMS: Towards Cooperative Handling of Workflow Exceptions 285

Concert Inc. [33], supports event-action triggers. Staffware, by Staffware Corporation
[35], and Changengine, by Hewlett-Packard [6] support special tasks called event
nodes, which can suspend the execution of a workflow instance on a give path until a
pre-defined (exception) event occurs, and then can execute an event handling sub-
activity in the workflow. [6] discusses how various kinds of expected exceptions can
be mapped on top of Changengine. Eflow [8], by Hewlett-Packard, is one of the clos-
est commercial systems with features like E-ADOME in handling e-Services.

 One of the earliest work in workflow evolution is [21], but this article describes a
limited set of change primitives. Process-centered Software Engineering Environ-
ments [22] also adopted several mechanisms to process model evolutions before simi-
lar approaches were introduced in WFMS. As mentioned in Sect. 4.4, we apply the
techniques [8] and [32] in designing ADOME-WFMS workflow evolution primitives
and operations. PROSYT [18] addressed inconsistencies and deviations of task in-
stances in general process support systems, but the contribution was more on the for-
mal modeling than semantic modeling. [4] presented a unified framework for tolerat-
ing exceptions for data and processes in WFMS, but without details at the logical and
implementation levels. Most related work in workflow evolution addresses exceptions
caused by inappropriate workflow evolution rather than how workflow evolution can
contribute to exception handling and avoidance.

 A more complete survey on „Error Handling in Process Support Systems“ is in an-
other chapter of this book. In summary, other workflow systems either do not address
exception-handling problems comprehensively or concentrate only on extended trans-
action models. Furthermore, few systems have advocated (let alone supported) an
extensive meta-modeling approach (based on agents, match-making, exception han-
dling, etc.). Compared with the systems close to us, ADOME-WFMS has the most
features and can be readily extended to support mobile agents in the Internet.

6 Conclusion

This chapter has presented an overview of adaptive exception handling in a flexible
WFMS based on ADOME - an active OODBMS extended with role and rule facilities.
Compared with other research on this topic, ADOME provides an improved environ-
ment for developing a WFMS, which can adapt to changing requirements, with exten-
sive support for reuse. In particular, the resultant system (i.e., ADOME-WFMS) sup-
ports a rich taxonomy of exception types and their handling approaches, and a novel
augmented solution for exception handling based on workflow evolution. Effective
reuse of workflow definitions, exceptions, handlers and constraints in ADOME-
WFMS are also possible. This chapter has also described in detail, how expected ex-
ceptions are actually resolved with the ADOME-WFMS Exception Manager, and
highlighted how unexpected exceptions are actually handled with the ADOME-
WFMS Exception Manager through its Web Interface. It should be noted that, though
exception handling is highly automated in ADOME-WFMS by scoping, binding and
reuse, human intervention management must be provided to support for (totally) unex-

286 D. K.W. Chiu, Q. Li, and K. Karlapalem

pected exceptions and drastic workflow evolutions. Moreover, the Web Interface also
demonstrates effective management of human PSAs, especially during cooperative
exception handling.

ADOME-WFMS is currently being built on top of the ADOME prototype system,
with a web-based user interface to accommodate the whole range of activities [16].
Furthermore, we are developing E-ADOME via a cross-organizational workflow ap-
proach [12], which supports an extended set of web-interface facilities for enactment
of e-services and e-commerce activities.

References

1. Ada 95: Language Reference Manual (LRM) - the revised international standard. (ISO/IEC
8652:1995): Information Technology – Programming Languages – Ada (1995)

2. Alonso, G., et al.: Exotica/FMDC: a workflow management system for mobile and discon-
nected clients. Distributed & Parallel Databases, 4(3) (1996) 229-247

3. Boridga, A.: Language Features for Flexible Handling of Exceptions, ACM Trans. on
Database Systems (1985)

4. Borgida A., Murata, T.: A Unified Framework for Tolerating Exceptions in
Workflow/Process Models - A Persistent Object Approach, International Joint Conference
on Work Activities Coordination and Collaboration (WACC ’99), San Francisco (1999)

5. Casati, F., Fugini, M.G., Mirbel, I.: An Environment for Designing Exceptions in
Workflows. In Proceedings of CAiSE 98, LNCS Springer Verlag, Pisa (1998)

6. Casati, F., Pozzi, G.: Modeling Exceptional Behaviours in Commercial Workflow Man-
agement Systems. In Proceedings of the 4th International Conference on Cooperative In-
formation Systems (IECIS 98), IEEE Press (1998)

7. Casati, F.: Models, Semantics, and Formal Methods for the Design of Workflows and their
Exceptions. PhD thesis, Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Milano, Italy (1998)

8. Casati, F., et al.: Adaptive and Dynamic Service Composition in eFlow. HP Laboratories
Technical Report HPL-2000-39 (2000)

9. Chakravarthy, S.: Rule Management and Evaluation: An Active DBMS Perspective.
SIGMOD Record, 18(3) (1989) 20-28

10. Chan, L.C., Li, Q.: An Extensible Approach to Reactive Processing in an Advanced Object
Modeling Environment. In Proceedings of 8th Intl. Conf. on Database and Expert Systems
Applications (DEXA '97). LNCS(1308), Toulouse, France (1997) 38-47

11. Chiu, D.K.W.: Exception Handling in an Object-Oriented Workflow Management System.
Ph.D. Thesis, Computer Science Dept., Hong Kong University of Science and Technology
(2000)

12. Chiu, D.K.W., Karlapalem, K., Li, Q.: E-ADOME: A Framework For Enacting E-services.
VLDB Workshop on Technologies for E-Services, Cairo, Eygpt (2000)

13. Chiu, D.K.W., Li, Q.: A Three-Dimensional Perspective on Integrated Management of
Rules and Objects. International Journal of Information Technology, 3(2) (1997) 98-118

14. Chiu, D.K.W., Li, Q., Karlapalem, K.: A Meta Modeling Approach for Workflow Man-
agement Systems Supporting Exception Handling, Special Issue on Method Engineering
and Metamodeling, Information Systems, Elsevier Science, 24(2) (1999)159-184

ADOME-WFMS: Towards Cooperative Handling of Workflow Exceptions 287

15. Chiu, D.K.W., Li, Q., Karlapalem, K.: A Logical Framework for Exception Handling in
ADOME Workflow Management System. International Conference on Advanced Infor-
mation System Engineering (CAiSE’00), Stockholm, Sweden, (2000)

16. Chiu, D.K.W., Li, Q., Karlapalem, K.: Web Interface-Driven Cooperative Exception Han-
dling in ADOME Workflow Management System. In Proc. 1st International Conference on
Web Information System Engineering (WISE’00), IEEE Computer Society Press, Hong
Kong (2000) 174-182

17. Chiu, D.K.W., Li, Q., Karlapalem, K.: Facilitating Exception Handling with Recovery
Techniques in ADOME Workflow Management System, Journal of Applied Systems
Studies, Cambridge International Science Publishing, Cambridge, England, 1(3) (2000)

18. Cugola, G.: Inconsistencies and Deviations in Process Support Systems, PhD Thesis,
Politecnico di Milano (1998)

19. Dogac, A., Ozsu, T., Sheth, A. (eds): Proceedings of the NATO Advanced Study Institute
(ASI) Workshop on Workflow Management Systems and Interoperability, Istam-
bul,Turkey (1997)

20. Eder, J., Liebhart, W.: The Workflow Activity Model WAMO. In Proceeding of CoopIS-
95 (1995) 97-98

21. Ellis, S., et al: Dynamic Change within Workflow Systems, Proceedings of the Conference
on Organizational Computing Systems (1995).

22. Fuggetta, A., Ghezzi G.: State of the Art and Open Issues in Process-centered Software
Engineering Environment, Journal of Systems & Software, 26 (July 1994).

23. GHG Corp: Clips Architecture Manual, Version 5.1 (1992) available at
http://www.ghg.net/clips/CLIPS.html

24. Grefen, P., Hoffner, Y.: Crossflow – Cross-Organizational Workflow Support for Virtual
Organization. In Proceedings of the Ninth International Workshop on Research Issues on
Data Engineering: Information Technology for Virtual Enterprises (RIDE’98) (1998)

25. Hagen, C., Alonso, G.: Flexible Exception Handling in the OPERA Process Support Sys-
tem, 18th International Conference on Distributed Computing Systems (ICDCS 98), Am-
sterdam, The Netherlands (1998)

26. Ibex Corporation. http://www.ibex.ch/
27. Kappel, G., et.al.: Workflow Management Based on Objects, Rules, and Roles. IEEE

Bulletin of the Technical Committee on Data Engineering 18(1) (1995) 11-18
28. Karlapalem, K., Yeung, H. P., Hung, P. C. K.: CapBaseED-AMS - A Framework for

Capability-Based and Event-Driven Activity Management System. In Proceeding of
COOPIS ’95 (1995) 205-219

29. Klein, M., Dellarocas, C.: A Knowledge-Based Approach to Handling Exceptions in
Workflow Systems, Proceedings of the Third International Conference on Autonomous
Agents, Seattle, Washington (1999)

30. Kumar, A., et.al.: A framework for dynamic routing and operational integrity controls in a
workflow management system. In Proceedings of the Twenty-Ninth Hawaii International
Conference on System Sciences 3 (1996) 492-501

31. Li, Q., Lochovsky, F. H.: ADOME: an Advanced Object Modeling Environment. IEEE
Transactions on Knowledge and Data Engineering, 10(2) (1998) 255-276

32. Liu, C., Orlowska, M., Li. H.: Automating handover in dynamic workflow environments.
In Proceedings of the 10th International Conference on Advanced Information Systems
Engineering CAiSE’98, Pisa, Italy (1998)159-172

33. McCarthy, D., Sarin, S.: Workflow and Transactions in InConcert. IEEE Data Engineer-
ing,16(2) (1993) 53-56

288 D. K.W. Chiu, Q. Li, and K. Karlapalem

34. Saastamoinen, H.T.: On the Handling of Exceptions in Information Systems, Ph.D. Thesis,
University of Jyväskylä (1995)

35. Staffware Corporation: Staffware Global - Staffware's Opportunity to Dominate Intranet
based Workflow Automation (2000) http://www.staffware.com

36. Workflow Management Coalition: The Workflow Reference Model.
(WFMC-TC-1003, 19-Jan-95, 1.1) (1995)

Author Index

Ahronovitz, Yolande 77
Arévalo, Sergio 165

Bertino, Elisa 234

Casati, Fabio 251
Chiu, Dickson K.W. 271
Cugola, Gianpaolo 251

Dony, Christophe 18

Fredholm, Henrik 207

Garcia, Alessandro F. 189
Guerrini, Giovanna 234

Hansen, Bjørn Egil 207
Howell, Charles 181
Huchard, Marianne 77

Issarny, Valérie 111

Jiménez-Peris, Ricardo 165

Karlapalem, Kamalakar 271
Kienzle, Jörg 147
Knudsen, Jørgen Lindskov 1

Li, Qing 271

Merlo, Isabella 234
Mikhailova, Anna 94
Miller, Robert 128

Patiño-Martínez, Marta 165
Pitman, Kent M. 39

Romanovsky, Alexander 94, 147
Rubira, Cecília M.F. 189

Sakamoto, Takahiro 217
Sekiguchi, Tatsurou 217
Stroustrup, Bjarne 60

Tripathi, Anand 128

Vecellio, Gary 181

Yonezawa, Akinori 217

	Advances in Exception Handling Techniques
	Foreword
	Preface
	Table of Contents
	Fault Tolerance and Exception Handling in BETA
	Exception Handling and Fault Tolerance
	The BETA Error Handling Mechanisms
	Static Exception Handling in BETA
	Exception Handling Terminology
	The Exception Pattern

	Dynamic Exception Handling in BETA
	Introducing Fault Tolerant Mechanisms
	Dynamic Exception Handling Model in BETA
	The BETA Framework for Fault Tolerance
	Handler Matching on Object Identity and Object State
	Implementation Issues
	Fault Tolerance Example

	Integrating Static and Dynamic Exception Handling in BETA
	Handling Runtime Faults in BETA
	References

	A Fully Object-Oriented Exception Handling System: Rationale and Smalltalk Implementation
	Introduction
	Definitions, Terminology, Notation
	Specifications
	Resumption and Termination
	Handlers Scope and Fault-Tolerance Encapsulations
	Status of Exceptions
	Basic Primitives
	Additional Primitives and Control Structures
	Various Kind of Handlers
	Writing Handlers Bodies in a Generic Way

	Implementation
	Exception Class
	Status and Storage of Handlers
	Signaling
	Handler Search
	Handler Invocation

	Conclusion
	References

	Condition Handling in the Lisp Language Family
	Introduction
	Condition Systems vs Error Systems
	Condition Handling is Primarily a Protocol Matter

	Historical Influences
	Influence of Multics PL/I on Symbolics Zetalisp
	Influence of Symbolics Zetalisp on Common Lisp
	The Maclisp Experience
	Terminological Influences

	Abstract Concepts
	Separating Signaling and Handling
	Generalized Conditions
	Independent, Reflective Specification of Restarts
	Handling in the Context of the Signaler
	Default Handling
	Unifying ``Signals'' and ``Exceptions''

	Open Issues
	Restarts vs Handlers
	The ``Condition Firewall''

	Summary
	A Personal Footnote

	References

	Exception Safety: Concepts and Techniques
	Introduction
	Exception Safety
	Exception-Safe Implementation Techniques
	A Simple Vector
	Representing Memory Explicitly
	Assignment
	push_back()
	Constructors and Invariants

	Implications for Library Users
	Acknowledgements
	References

	Exceptions in Object Modeling: Finding Exceptions from the Elements of the Static Object Model
	Introduction
	Exceptions Based on Static Object Model Elements
	Exceptions and Types
	Exceptions and Features
	Exceptions and Associations
	Exceptions and Specialization

	More Advanced Concepts
	Exceptions Based on Constraints
	Composition of Exceptions

	Proposals for UML
	Conclusion and Perspectives
	References

	Supporting Evolution of Interface Exceptions
	Introduction
	Object-Oriented Exception Handling: The Object Model
	Behaviour Re nement Requires Exception Evolution
	Behaviour Evolution
	Conceptual Specialisation, Subtyping and Subclassing
	Specialising Exceptions
	Removing Exceptions
	Exception Inheritance for Exception Evolution
	New Functionality - New Exceptions

	Adding New Interface Exceptions
	Using Rescue Handlers
	Forwarding to the Rescue

	Conclusions and Future Work
	References

	Concurrent Exception Handling
	Introduction
	The Cooperation Exception Handling Model
	Base Definitions
	A Language Supporting the Cooperation Model
	Axiomatic Semantics

	Cooperation Exception Handling in an Object-Oriented Setting
	Conclusions
	References

	Exception Handling in Agent-Oriented Systems
	Introduction
	Design Issues
	A Model for Exception Handling in Agent Systems
	Patterns of Exception Handling by a Guardian
	Relationship to Fundamental Models
	Exception Handling in the Ajanta System
	Agent Servers -- Defining an Execution Environment for Agents
	Structure of an Agent
	Guardians
	Agent Monitoring and Control

	Conclusions and Directions for Future Research
	References

	Action-Oriented Exception Handling in Cooperative and Competitive Concurrent Object-Oriented Systems
	Introduction
	Concurrency and System Structuring
	Single Method Concurrency
	Competitive and Cooperative Systems
	Structuring Competitive Systems
	Structuring Cooperative Systems
	Structuring Systems with Cooperative and Competitive Concurrency

	Exception Handling
	Single Method Exception Handling in Concurrent Systems
	Action-Oriented Exception Handling
	Exception Handling in Competitive Systems
	Exception Handling in Cooperative Systems
	Exception Handling in Systems with Cooperative and Competitive Concurrency

	Conclusions
	References

	Exception Handling and Resolution for Transactional Object Groups
	Introduction
	Transactional Object Groups
	Object Groups
	Transactions
	Transactional Object Group Services

	Exceptions in Transactional Object Groups
	Exceptions and Transaction Aborts
	Concurrent Exceptions

	Linguistic Support
	Implementation
	Related Work
	Conclusions
	References

	An Architectural-Based Reflective Approach to Incorporating Exception Handling into Dependable Software
	Introduction
	Exception Handling
	Software Reuse and Structuring Techniques
	An OO Exception Handling Model
	The Architectural Design Stage
	The Architecture Re
	The Detailed Design Stage
	The Exception Pattern
	The Handler Pattern
	The Exception Handling Strategy Pattern
	The Concurrent Exception Handling Action Pattern

	Architecture Usage and Implementation
	Related Work
	Conclusions and Ongoing Work
	References

	Experiences with Error Handling in Critical Systems
	Introduction
	Patterns
	Unanticipated Propagation
	Invalid Termination of Propagation
	Anonymous Exceptions
	Mapping Exceptions
	Propagation from Within Handlers

	Summary and Conclusion
	References

	Adapting C++ Exception Handling to an Extended COM Exception Model
	Introduction
	COM Exception Handling in C++
	BRIX Exception Model
	BRIX Support for C++ Exception Handling in COM
	Handling COM Exceptions

	Conclusion
	References

	Portable Implementation of Continuation Operators in Imperative Languages by Exception Handling
	Introduction
	Partial Continuations
	Emulating Continuations
	Bytecode Analysis
	State Class
	Capturing a Continuation
	Invoking a Continuation
	The texttt {cupto} and texttt {set} Operators
	Experimental Results

	Application
	Mobile Computation
	Checkpointing

	Limitations
	Limitations due to Program Transformation
	Java Proper Problems

	Related Work
	Summary
	References

	Exception Handling in Object-Oriented Databases
	Introduction
	Exception Handling

	Data Exceptions
	Execution Exceptions in ODMG
	Exceptions and Transactions
	Exceptions in ODMG

	Exceptions to Handle Integrity Constraints
	Exceptions as a Support for Evolution
	Object Migration
	Schema Evolution

	Exceptions and Triggers
	Triggers: Basic Notions
	Comparison

	Conclusions
	References

	Error Handling in Process Support Systems
	Introduction
	Some Preliminary Definitions
	Undesired Events and Their Possible Effects
	A Classification of Undesired Events
	Possible Effects of Undesired Events

	Recovery Approaches
	Infrastructure and Application-Level Approaches
	PSS-Level Approaches
	Process-Model-Level Approaches

	Conclusions
	References

	ADOME-WFMS: Towards Cooperative Handling of Workflow Exceptions
	Introduction
	Flexible Activity Meta-modeling in ADOME-WFMS
	Exception Centric View of a WFMS
	ADOME-WFMS Meta-modeling: Some Prominent Aspects

	ADOME-WFMS Architecture and Activity Enactment Mechanism
	Workflow Enactment Mechanisms of ADOME-WFMS
	Detection of Events and Exceptions

	Handling Exceptions in ADOME-WFMS
	Identifying and Executing Exception Handlers
	Exception Modeling for Reuse in ADOME-WFMS
	Web-Based Human Intervention Manager
	Web-Based Workflow Evolution

	Related Work
	Conclusion
	References

	Author Index

