MICHAEL FARADAY.
MICHAEL FARADAY.

BY

Joh. H. Gladstone, Ph.D., F.R.S.

London:

Macmillan and Co.

1872.
LONDON:

R. CLAY, SONS, AND TAYLOR, PRINTERS,
BREAD STREET HILL.
PREFACE.

Shortly after the death of Michael Faraday, Professor Auguste de la Rive, and others of his friends, gave to the world their impressions of his life, his character, and his work; Professor Tyndall drew his portrait as a man of science; and after a while Dr. Bence Jones published his biography in two octavo volumes, with copious extracts from his journals and correspondence. In a review of this "Life and Letters" I happened to mention my thought of giving to the public some day my own reminiscences of the great philosopher; several friends urged me to do so, not in the pages of a magazine, but in the form of a little book designed for those of his fellow-countrymen who venerate his noble character without being able to follow his scientific researches. I accepted the task. Professor Tyndall and Dr. Bence Jones, with Messrs. Longman, the publishers, kindly permitted me to make free use of their materials; but I am indebted to the
Corporation of the Trinity House, and to many friends, for a good deal of additional information; and in compiling my book I have preferred, where practicable, to illustrate the character of Faraday by documents or incidents hitherto unpublished, or contained in those sketches of the philosopher which are less generally known.

It is due to myself to say that I had pretty well sketched out the second part of this book before I read M. Dumas' "Eloge Historique." The close similarity of my analysis of Professor Faraday's character with that of the illustrious French chemist may perhaps be accepted as an additional warrant for the correctness of our independent estimates.
CONTENTS.

I.—THE STORY OF HIS LIFE ... 1

II.—STUDY OF HIS CHARACTER 60

III.—FRUITS OF HIS EXPERIENCE 93

IV.—HIS METHOD OF WORKING 122

V.—THE VALUE OF HIS DISCOVERIES 143

SUPPLEMENTARY PORTRAITS ... 164

APPENDIX:—LIST OF HONORARY FELLOWSHIPS, ETC. 170

INDEX ... 173
MICHAEW FARADAY.

SECTION I.

THE STORY OF HIS LIFE.

At the beginning of this century, in the neighbourhood of Manchester Square, London, there was an inquisitive boy running about, playing at marbles, and minding his baby-sister. He lived in Jacob's Well Mews, close by, and was learning the three R's at a common day-school. Few passers-by would have noticed him, and none certainly would have imagined that this boy, as he grew up, was to achieve the truest success in life, and to die honoured by the great, the wise, and the good. Yet so it was; and to tell the story of his life, to trace the sources of this success, and to depict some of the noble results of his work, are the objects of this biographical sketch.

It was not at Jacob's Well Mews, but in Newington Butts, that the boy had been born, on September 22, 1791, and his parents, James and Margaret Faraday, had given this, their third child, the unusual name of Michael. The father was a journeyman blacksmith, and, in spite of poverty and feeble
MICHAEEL FARADAY.

health, he strove to bring up his children in habits of industry and the love of God.

Of course young Michael must soon do something for his living. There happened to be a bookseller's shop in Blandford Street, a few doors from the entrance to the Mews, kept by a Mr. Riebau, an intelligent man, who is said to have had a leaning to astrology; and there he went as errand boy when thirteen years old. Many a weary walk he had, carrying round newspapers to his master's customers; but he did his work faithfully; and so, after a twelvemonth, the bookseller was willing to take him as an apprentice, and that without a premium.

Now, a boy in a bookseller's shop can look at the inside as well as the outside of the books he handles, and young Faraday took advantage of his position, and fed on such intellectual food as Watts's "Improvement of the Mind," Mrs. Marcet's "Conversations on Chemistry," and the article on "Electricity" in the *Encyclopaedia Britannica*, besides such lighter dishes as Miss Burney's "Evelina;" nor can we doubt that when he was binding Lyons' "Experiments on Electricity," and Boyle's "Notes about the Productibleness of Chymicall Principles," he looked beyond the covers.¹ And

¹ These books, with others bound by Faraday, are preserved in a special cabinet at the Royal Institution, together with more valuable documents,—the laboratory notes of Davy and those of Faraday, his notes of Tatum's and Davy's lectures, copies of his published papers with annotations and indices, notes for lectures and Friday evening discourses, account books and various memoranda, together with letters from Wollaston, Young, Herschel, Whewell, Mitscherlich, and many others of his fellow-workers in science. These were the gift of his widow, in accordance with his own desire.
his thirst for knowledge did not stop with reading: he must see whether Mrs. Marcet’s statements were correct, and so, to quote his own words, “I made such simple experiments in chemistry as could be defrayed in their expense by a few pence per week, and also constructed an electrical machine, first with a glass phial, and afterwards with a real cylinder, as well as other electrical apparatus of a corresponding kind.”

One day, walking somewhere in the neighbourhood of Fleet Street, he saw in a shop-window a bill announcing that lectures on natural philosophy were delivered by Mr. Tatum, at 53, Dorset Street, at eight in the evening, price of admission one shilling. He wanted to hear these lectures. His master’s permission was obtained, but where was the money to come from? The needful shillings were given him by his elder brother, Robert, who earned them as a blacksmith; and so Michael Faraday made his first acquaintance with scientific lectures. And not with lectures only, for Tatum’s house was frequented by other earnest students, and lifelong friendships were formed. Among these students was Benjamin Abbott, a young Quaker, who had received a good education, and had then a situation in a City house as confidential clerk. With him Faraday chatted on philosophy or anything else, and happily for us he chatted on paper, in letters of that fulness and length which the penny post and the telegraph have well-nigh driven out of existence; and happily for us, too, Abbott kept those letters, and Dr. Bence Jones has published them. They are wonderful letters for a poor bookseller’s apprentice; they bear the stamp of an innate gentleman and philosopher.

Long afterwards, when Benjamin Abbott was an old man,
he used to tell how Faraday made his first experiments in
the kitchen of his house, and delivered his first lecture from
the end of that kitchen table. The electrical machine
made by him in those early days came into the possession
of Sir James South, and now forms one of the treasures of
the Royal Institution.

As the eager student drank in the lectures of Tatum, he
took notes, and he afterwards wrote them out carefully in a
clear hand, numbering and describing the different experi-
ments that he saw performed, and making wonderfully neat
drawings of the apparatus, in good perspective. These
notes he bound in four volumes, adding to each a copious
index, and prefixing to the first this dedication to his
master:

"TO MR. G. RIEBAU."

"SIR,

"When first I evinced a predilection for the sciences,
but more particularly for that one denominated electricity,
you kindly interested yourself in the progress I made in the
knowledge of facts relating to the different theories in exist-
ence, readily permitting me to examine those books in your
possession that were in any way related to the subjects then
occupying my attention. To you, therefore, is to be attri-
buted the rise and existence of that small portion of know-
ledge relating to the sciences which I possess, and accord-
ingly to you are due my acknowledgments.

"Unused to the arts of flattery, I can only express my
obligations in a plain but sincere way. Permit me, there-
fore, Sir, to return thanks in this manner for the many
favours I have received at your hands and by your means, and believe me,

"Your grateful and obedient Servant,

"M. FARADAY."

Now there happened to be lodging at Mr. Riebau's a notable foreigner of the name of Masquerier. He was a distinguished artist, who had painted Napoleon's portrait, and had passed through the stirring events of the first French Revolution, not without serious personal danger, and was now finding a refuge and a home in London. He was struck with the intelligence of the apprentice, whose duty it was to do various offices for him; and he lent the young man his books, and taught him how to make the drawings in perspective which have already been alluded to.

But the lectures in Dorset Street were not the only ones that Michael Faraday attended; and as the Royal Institution is the central scene of all his subsequent history, we must pay a mental visit to that building. Turning from the busy stream of Piccadilly into the quiet of Albemarle Street, we see, in a line with the other houses, a large Grecian façade with fourteen lofty pilasters. Between these are folding doors, which are pushed open from time to time by grave-looking gentlemen, many of them white-headed; but often of an afternoon, and always on Friday evening during the season, the quiet street is thronged with carriages and pedestrians; ladies and gentlemen, who flock through these folding doors. Entering with them, we find ourselves in a vestibule, with a large stone staircase in front, and rooms opening on the right and left. The walls of these rooms
are lined with myriads of books, and the tables are covered with scientific and other periodicals of the day, and there are cabinets of philosophical apparatus and a small museum. Going up the broad staircase and turning to the right, we pass through an ante-room to the lecture theatre. There stands the large table, horseshoe-shaped, with the necessary appliances for experiments, and behind it a furnace and arrangements for black-board and diagrams; while round the table as a centre range semicircular seats, rising tier above tier, and surmounted by a semicircular gallery, the whole capable of seating 700 persons. On the basement is a new chemical laboratory, fitted up with modern appliances, and beyond it the old laboratory, with its furnaces and sand-bath, its working tables and well-stored shelves, flanked by cellars that look like dark lumber-rooms. A narrow private staircase leads up to the suite of apartments in which resides the Director of the house. Such is the Royal Institution of Great Britain, incorporated by Royal Charter in the year 1800, "for the diffusing knowledge and facilitating the general introduction of useful mechanical inventions and improvements, and for teaching, by courses of philosophical lectures and experiments, the application of science to the common purposes of life;"—with the motto, "Illustrans commoda vitæ." Fifty or sixty years ago the building was essentially what it is now, except the façade and entrance, and that the laboratory, which was considered a model of perfection, was even darker than at present, and in the place of the modern chemical room there was a small theatre. The side room, too, was fitted up for actual work, though even at mid-day it had to be artificially
lighted; and beyond this there was, and still is, a place
called the Froggery, from a certain old tradition of frogs
having been kept there. The first intention of the founders
to exhibit useful inventions had not been found very prac-
ticable, but the place was already famous with the memories
of Rumford and Young; and at that time the genius of Sir
Humphry Davy was entrancing the intellectual world with
brilliant discoveries, and drawing fashionable audiences to
Albemarle Street to listen to his eloquent expositions.

Among the customers of the bookseller in Blandford
Street was a Mr. Dance, who, being a member of the Royal
Institution, took young Faraday to hear the last four public
lectures of Davy. The eager student sat in the gallery, just
over the clock, and took copious notes of the Professor's
explanations of radiant matter, chlorine, simple inflam-
mables, and metals, while he watched the experiments that
were performed. Afterwards he wrote the lectures fairly out
in a quarto volume, that is still preserved—first the theo-
retical portions, then the experiments with drawings, and
finally an index. "The desire to be engaged in scientific
occupation, even though of the lowest kind, induced me,"
he says, "whilst an apprentice, to write, in my ignorance of
the world and simplicity of my mind, to Sir Joseph Banks,
then President of the Royal Society. Naturally enough,
'No answer' was the reply left with the porter."

On the 7th of October his apprenticeship expired, and on
the next day he became a journeyman bookbinder under a
disagreeable master—who, like his friend the artist, was a
French émigré. No wonder he sighed still more for con-
genial occupation.
Towards the end of that same October Sir Humphry Davy was working on a new liquid which was violently explosive, now known as chloride of nitrogen,—and he met with an accident that seriously injured his eye, and produced an attack of inflammation. Of course, for a while he could not write, and, probably through the introduction of M. Masquerier,\(^1\) the young bookseller was employed as his amanuensis. This, however, Faraday himself tells us lasted only "some days;" and in writing years afterwards to Dr. Paris, he says, "My desire to escape from trade, which I thought vicious and selfish, and to enter into the service of Science, which I imagined made its pursuers amiable and liberal, induced me at last to take the bold and simple step of writing to Sir H. Davy, expressing my wishes, and a hope that, if an opportunity came in his way, he would favour my views; at the same time I sent the notes I had taken of his lectures." Davy, it seems, called with the letter on one of his friends—at that time honorary inspector of the models and apparatus—and said, "Pepys, what am I to do? Here is a letter from a young man named Faraday; he has been attending my lectures, and wants me to give him employment at the Royal Institution—what can I do?" "Do?" replied Pepys; "put him to wash bottles: if he is good for anything, he will do it directly; if he refuses, he is good for nothing." "No, no," replied Davy, "we must try him with something better than that."

So Davy wrote a kind reply, and had an interview with the young man upon the subject; in which, however, he advised

\(^1\) This seems probable from some remarks of Faraday to Lady Burdett Coutts.
him to stick to his business, telling him that “Science was a harsh mistress, and, in a pecuniary point of view, but poorly rewarding those who devoted themselves to her service.” He promised him the work of the Institution, and his own besides.

But shortly afterwards the laboratory assistant was discharged for misconduct, and so it happened that one night the inhabitants of quiet Weymouth Street were startled by the unusual apparition of a grand carriage with a footman, which drew up before the house where Faraday lived, when the servant left a note from Sir Humphry Davy. The next morning there was an interview, which resulted in the young aspirant for scientific work being engaged to help the famous philosopher. His engagement dates from March 1, 1813, and he was to get 25s. per week, and a room in the house. The duties had been previously laid down by the managers:—

“To attend and assist the lecturers and professors in preparing for, and during lectures. Where any instruments or apparatus may be required, to attend to their careful removal from the model room and laboratory to the lecture-room, and to clean and replace them after being used, reporting to the managers such accidents as shall require repair, a constant diary being kept by him for that purpose. That in one day in each week he be employed in keeping clean the models in the repository, and that all the instruments in the glass cases be cleaned and dusted at least once within a month.”

The young assistant did not confine himself to the mere discharge of these somewhat menial duties. He put in order the mineralogical collection; and from the first we find him occupying a higher position than the minute quoted above would indicate.
In the course of a few days he was extracting sugar from beet-root; but all his laboratory proceedings were not so pleasant or so innocent as that, for he had to make one of the worst smelling of all chemical compounds, bisulphide of carbon; and as Davy continued to work on the explosive chloride of nitrogen, his assistant's career stood some chance of being suddenly cut short at its commencement. Indeed, it seems that before the middle of April he had run the gauntlet of four separate explosions. Knowing that the liquid would go off on the slightest provocation, the experimenters wore masks of glass, but this did not save them from injury. In one case Faraday was holding a small tube containing a few grains of it between his finger and thumb, and brought a piece of warm cement near it, when he was suddenly stunned, and on returning to consciousness found himself standing with his hand in the same position, but torn by the shattered tube, and the glass of his mask even cut by the projected fragments. Nor was it easy to say when the compound could be relied on, for it seemed very capricious; for instance, one day it rose quietly in vapour in a tube exhausted by the air-pump, but the next day, when subjected to the same treatment, it exploded with a fearful noise, and Sir Humphry was cut about the chin, and was struck with violence on the forehead. This seems to have put an end to the experiments.

Nevertheless, in spite of disagreeables and dangers, the embryo philosopher worked on with a joyful heart, beguiling himself occasionally with a song, and in the evening playing tunes on his flute.

The change in Michael Faraday's employment naturally
made him more earnest still in the pursuit of knowledge. He was admitted as a member of the "City Philosophical Society," a fraternity of thirty or forty men in the middle or lower ranks of life, who met every Wednesday evening for mutual instruction; and here is a contemporary picture of him at one of its debates:—

"But hark! A voice arises near the chair!
Its liquid sounds glide smoothly through the air;
The listening muse with rapture bends to view
The place of speaking, and the speaker too.
Neat was the youth in dress, in person plain;
His eye read thus, *Philosopher in grain*;
Of understanding clear, reflection deep;
Expert to apprehend, and strong to keep.
His watchful mind no subject can elude,
Nor specious arts of sophists e'er delude;
His powers, unshackled, range from pole to pole;
His mind from error free, from guilt his soul.
Warmth in his heart, good humour in his face,
A friend to mirth, but foe to vile grimace;
A temper candid, manners unassuming,
Always correct, yet always unassuming.
Such was the youth, the chief of all the band;
His name well known, Sir Humphry's right hand.
With manly ease towards the chair he bends,
With Watts's Logic at his finger-ends."

Another way in which he strove to educate himself is thus described in his own words:—"During this spring Magrath and I established the mutual improvement plan, and met at my rooms up in the attics of the Royal Institution, or at Wood Street at his warehouse. It consisted, perhaps, of half-a-dozen persons, chiefly from the City Philosophical Society, who met of an evening to read
together, and to criticise, correct, and improve each other's pronunciation and construction of language. The discipline was very sturdy, the remarks very plain and open, and the results most valuable. This continued for several years."

Seven months after his appointment there began a new passage in Faraday's life, which gave a fresh impulse to his mental activity, and largely extended his knowledge of men and things. Sir Humphry Davy, wishing to travel on the Continent, and having received a special pass from the Emperor Napoleon, offered to take him as his amanuensis: he accepted the proposal, and for a year and a half they wandered about France, Italy, and Switzerland, and then they returned rapidly by the Tyrol, Germany, and Holland.

From letters written when abroad we can catch some of the impressions made on his mind by these novel scenes. "I have not forgot," he writes to Abbott, "and never shall forget, the ideas that were forced on my mind in the first days. To me, who had lived all my days of remembrance in London, a city surrounded by a flat green country, a hill was a mountain, and a stone a rock; for though I had abstract ideas of the things, and could say rock and mountain, and would talk of them, yet I had no perfect ideas. Conceive then the astonishment, the pleasure, and the information which entered my mind in the varied county of Devonshire, where the foundations of the earth were first exposed to my view, and where I first saw granite, limestone, &c., in those places and in those forms where the ever-working and all-wonderful hand of nature had placed them. Mr. Ben., it is impossible you can conceive my feelings, and it is as
impossible for me to describe them. The sea then presented a new source of information and interest; and on approaching the shore of France, with what eagerness, and how often, were my eyes directed to the South! When arrived there, I thought myself in an uncivilized country; for never before nor since have I seen such wretched beings as at Morlaix.” His impression of the people was not improved by the fact of their having arrested the travellers on landing, and having detained them for five days until they had sent to Paris for verification of their papers.

Again, to her towards whom his heart was wont to turn from distant lands with no small longing: “I have said nothing as yet to you, dear mother, about our past journey, which has been as pleasant and agreeable (a few things excepted, in reality nothing) as it was possible to be. Sir H. Davy’s high name at Paris gave us free admission into all parts of the French dominions, and our passports were granted with the utmost readiness. We first went to Paris, and stopped there two months; afterwards we passed, in a southerly direction, through France to Montpellier, on the borders of the Mediterranean. From thence we went to Nice, stopping a day or two at Aix on our way; and from Nice we crossed the Alps to Turin, in Piedmont. From Turin we proceeded to Genoa, which place we left afterwards in an open boat, and proceeded by sea towards Lerici. This place we reached after a very disagreeable passage, and not without apprehensions of being overset by the way. As there was nothing there very enticing, we continued our route to Florence; and, after a stay of three weeks or a month, left that fine city, and in four days arrived here at
Rome. Being now in the midst of things curious and interesting, something arises every day which calls for attention and observations. The relics of ancient Roman magnificence, the grandeur of the churches, and their richness also—the difference of habits and customs, each in turn engages the mind, and keeps it continually employed. Florence, too, was not destitute of its attractions for me, and in the Academy del Cimento and the museum attached to it is contained an inexhaustible fund of entertainment and improvement; indeed, during the whole journey, new and instructive things have been continually presented to me. Tell B. I have crossed the Alps and the Apennines; I have been at the Jardin des Plantes; at the museum arranged by Buffon; at the Louvre, among the chefs d'œuvre of sculpture and the masterpieces of painting; at the Luxembourg Palace, amongst Rubens' works; that I have seen a Glowworm!!! waterspouts, torpedo, the museum at the Academy del Cimento, as well as St. Peter's, and some of the antiquities here, and a vast variety of things far too numerous to enumerate."

But he kept a lengthy journal, and as we turn over the pages—for the best part of it is printed by Bence Jones—we meet vivid sketches of the provokingly slow custom-house officers, the postilion in jack-boots, and the thin pigs of Morlaix—pictures of Paris, too, when every Frenchman was to him an unintelligible enemy; when the Apollo Belvidere, the Venus de Medici, and the Dying Gladiator were at the Louvre, and when the First Napoleon visited the Senate in full state. "He was sitting in one corner of his carriage, covered and almost hidden from sight by an enormous robe
of ermine, and his face overshadowed by a tremendous plume of feathers that descended from a velvet hat." We watch Sir Humphry as Ampère and others bring to him the first specimens of iodine, and he makes experiments with his travelling apparatus on the dark lustrous crystals and their violet vapour; we seem, too, to be present with the great English chemist and his scholar as they burn diamonds at Florence by means of the Grand Duke's gigantic lens, and prove that the invisible result is carbonic acid; or as they study the springs of inflammable gas at Pietra Mala, and the molten minerals of Vesuvius. The whole, too, is interspersed with bits of fun, and this culminates at the Roman Carnival, where he evidently thoroughly enjoyed the follies of the Corso, the pelting with sugar-plums, and the masked balls, to the last of which he went in a nightgown and nightcap, with a lady who knew all his acquaintances; and between the two they puzzled their friends mightily.

This year and a half may be considered as the time of Faraday's education; it was the period of his life that best corresponds with the collegiate course of other men who have attained high distinction in the world of thought. But his University was Europe; his professors the master whom he served, and those illustrious men to whom the renown of Davy introduced the travellers. It made him personally known, also, to foreign savants, at a time when there was little intercourse between Great Britain and the Continent; and thus he was associated with the French Academy of Sciences while still young, his works found a welcome all over Europe, and some of the best representatives of foreign science became his most intimate friends.
In May 1815, his engagement at the Royal Institution was renewed, with a somewhat higher position and increased salary, which was again raised in the following year to 100£ per annum. The handwriting in the Laboratory Note-book changes in September 1815, from the large running letters of Brande to the small neat characters of Faraday, his first entry having reference to an analysis of "Dutch turf ash," and then soon occur investigations into the nature of substances bearing what must have been to him the mysterious names of Paligenetic tincture, and *Baphe eugenes chruson*. It is to be hoped that the constituents of this golden dye agreed together better than the Greek words of its name.

We can imagine the young philosopher taking a deeper interest in the researches on flame which his master was then carrying out, and in the gradual perfection of the safety-lamp that was to bid defiance to the explosive gases of the mine; this at least is certain, that Davy, in the preface to his celebrated paper on the subject, expresses himself "indebted to Mr. Michael Faraday for much able assistance," and that the youthful investigator carefully preserved the manuscript given him to copy.

Part of his duty, in fact, was to copy such papers; and as Sir Humphry had a habit of destroying them, he begged leave to keep the originals, and in that way collected two large volumes of precious manuscripts.

But there came a change. Hitherto he had been absorbing; now he was to emit. The knowledge which had been a source of delight to himself must now overflow as a blessing to others: and this in two ways. His first lecture was given at the City Philosophical Society on January 17, 1816,
and in the same year his first paper was published in the Quarterly Journal of Science. The lecture was on the general properties of matter; the paper was an analysis of some native caustic lime from Tuscany. Neither was important in itself, but each resembled those little streams which travellers are taken to look at because they are the sources of mighty rivers, for Faraday became the prince of experimental lecturers, and his long series of published researches have won for him the highest niche in the temple of science.

When he began to investigate for himself, it could not have been easy to separate his own work from that which he was expected to do for his master. Hence no small danger of misunderstandings and jealousies; and some of these ugly attendants on rising fame did actually throw their black shadows over the intercourse between the older and the younger man of genius. In these earlier years, however, all appears to have been bright; and the following letter, written from Rome in October 1818, will give a good idea of the assistant's miscellaneous duties, and of the pleasant feelings of Davy towards him. It may be added that in another letter he is requested to send some dozens of "flies with pale bodies" to Florence, for Sir Humphry loved fly-fishing as well as philosophy.

"To Mr. Faraday."

"I received the note you were so good as to address to me at Venice; and by a letter from Mr. Hatchett I find that you have found the parallax of Mr. West's Sirius, and that, as I expected, he is mistaken.

C"
"If when you write to me you will give the 3 per cents. and long annuities, it will be enough.

"I will thank you to put the enclosed letters into the post, except those for Messrs. Morland and Messrs. Drummond, which perhaps you will be good enough to deliver.

"Mr. Hatchett's letter contained praises of you which were very gratifying to me; and pray believe me there is no one more interested in your success and welfare than your sincere well-wisher and friend,

"H. Davy.

"Rome."

It must not be supposed, however, that he had any astronomical duties, for the parallax he had found was not that of the Dog-star, but of a reputed new metal, Sirium, which was resolved in Faraday's hands into iron, nickel, and sulphur. But the impostor was not to be put down so easily, for he turned up again under the alias of Vestium; but again he was unable to escape the vigilant eye of the young detective, for one known substance after another was removed from it; and then, says Faraday, "my Vestium entirely disappeared."

His occupations during this period were multifarious enough. We must picture him to ourselves as a young-looking man of about thirty years of age, well made, and neat in his dress, his cheerfulness of disposition often breaking out in a short crispy laugh, but thoughtful enough when something important is to be done. He has to prepare the apparatus for Brande's lectures, and when the hour has arrived he stands on the right of the Professor, and helps him
to produce the strange transformations of the chemical art. And conjurers, indeed, the two appear in the eyes of the youth on the left, who waits upon them, then the "laboratory assistant," now the well-known author, Mr. William Bollaert, from whom I have learnt many details of this period. When not engaged with the lectures, Faraday is manufacturing rare chemicals, or performing commercial analyses, or giving scientific evidence on trials. One of these was a famous one, arising from the Imperial Insurance Company resisting the claim of Severn and King, sugar-bakers; and in it appeared all the chemists of the day, like knights in the lists, on opposite sides, ready to break a lance with each other.

All his spare time Faraday was occupied with original work. Chlorine had a fascination for him, though the yellow choking gas would get out into the room, and he investigated its combinations with carbon, squeezed it into a liquid, and applied it successfully as a disinfectant when fatal fever broke out in the Millbank Penitentiary. Iodine too, another of Davy's elements, was made to join itself to carbon and hydrogen; and naphthaline was tormented with strong mineral acids. Long, too, he tried to harden steel and prevent its rusting, by alloying it with small quantities of platinum and the rarer metals; the boy blew the bellows till the crucibles melted, but a few ordinary razors seem to have been the best results. Far more successful was he in repeating and extending some experiments of Ampère on the mutual action of magnets and electric currents; and when, after months of work and many ingenious contrivances, the wire began to move round the magnet, and the
magnet round the wire, he himself danced about the revolving metals, his face beaming with joy—a joy not unmixed with thankful pride—as he exclaimed, "There they go! there they go! we have succeeded at last." After this discovery he thought himself entitled to a treat, and proposed to his attendant a visit to the theatre. "Which shall it be?" "Oh, let it be Astley's, to see the horses." So to Astley's they went; but at the pit entrance there was a crush; a big fellow pressed roughly upon the lad, and Faraday, who could stand no injustice, ordered him to behave himself, and showed fight in defence of his young companion.

The rising philosopher indulged, too, in other recreations. He had a wonderful velocipede, a progenitor of the modern bicycle, which often took him of an early morning to Hampstead Hill. There was also his flute; and a small party for the practice of vocal music once a week at a friend's house. He sang bass correctly, both as to time and tune.

And though the City Philosophical Society was no more, the ardent group of students of nature who used to meet there were not wholly dispersed. They seem to have carried on their system of mutual improvement, and to have read the current scientific journals at Mr. Nicol's house till he married, and then alternately at those of Mr. R. H. Solly, Mr. Ainger, and Mr. Hennel, of Apothecaries' Hall, who came to a tragical end through an explosion of fulminating silver. Several of them, including Mr. Cornelius Varley, joined the Society of Arts, which at that time had committees of various sciences, and was very democratic in its management; and, finding that by pulling together they
had great influence, they constituted themselves a "caucus," adopting the American word, and meeting in private. Magrath was looked upon as a "chair-maker," and Faraday in subsequent years held the office of Chairman of the Committee of Chemistry, and occasionally he presided at the large meetings of the Society.

During this time (1823) the Athenæum Club was started, not in the present Grecian palace in Pall Mall, but in a private house in Waterloo Place. Its members were the aristocracy of science, literature, and art, and they made Faraday their honorary secretary; but after a year he transferred the office to his friend Magrath, who held it for a long period.

Among the various sects into which Christendom is divided, few are less known than the Sandemanians. About a century and a half ago, when there was little light in the Presbyterian Church of Scotland, a pious minister of the name of John Glas began to preach that the Church should be governed only by the teaching of Christ and His apostles, that its connection with the State was an error, and that we ought to believe and to practise no more and no less than what we find from the New Testament that the primitive Church believed and practised. These principles, which sound very familiar in these days, procured for their assenter much obloquy and a deposition by the Church Courts, in consequence of which several separate congregations were formed in different parts of Great Britain, especially by Robert Sandeman, the son-in-law of Mr. Glas, and from him they received their common appellation. In early days they taught a simpler view of faith than was generally held at that time; it was with them a simple assent of
the understanding, but produced by the Spirit of God, and its virtue depended not on anything mystical in the operation itself, but on the grandeur and beauty of the things believed. Now, however, there is little to distinguish them in doctrine from other adherents of the Puritan theology, though they certainly concede a greater deference to their elders, and attach more importance to the Lord’s Supper than is usual among the Puritan Churches. Their form of worship, too, resembles that of the Presbyterians; but they hold that each congregation should have a plurality of elders, pastors, or bishops, who are unpaid men; that on every “first day of the week” they are bound to assemble, not only for prayers and preaching, but also for “breaking of bread,” and putting together their weekly offerings; that the love-feast and kiss of charity should continue to be practised; that “blood and things strangled” are still forbidden as food; and that a disciple of Christ should not charge interest on loans, or lay up wealth for the unknown future, but rather consider all he possesses as at the service of his poorer brethren, and be ready to perform to them such offices of kindness as in the early Church were expressed by washing one another’s feet.

But what gives the remarkable character to the adherents of this sect is their perfect isolation from all Christian fellowship outside their own community, and from all external religious influence. They have never made missionary efforts to win men from the world, and have long ceased to draw to themselves members from other Churches; so they have rarely the advantage of fresh blood, or fresh views of the meaning of Scripture. They constantly inter-
marry, and are expected to "bear one another's burthen's;" so the Church has assumed the additional character of a large intertwined family and of a mutual benefit society. This rigid separation from the world, extending now through three or four generations, has produced a remarkable elevation of moral tone and refinement of manner; and it is said that no one unacquainted with the inner circle can conceive of the brotherly affection that reigns there, or the extent to which hospitality and material help is given without any ostentation, and received without any loss of self-respect. The body is rendered still more seclusive by demanding, not merely unity of spirit among its members, but unanimity of opinion in every Church transaction. In order to secure this, any dissentient who persists in his opinion after repeated argument is rejected: the same is also the consequence of neglect of Church duties, as well as of any grave moral offence: and in such a community excommunication is a serious social ban, and though a penitent may be received back once, he can never return a second time.

It was in the midst of this little community that Faraday received his earliest religious impressions, and among them he found his ecclesiastical home till the day of his entrance into the Church above.

Among the elders of the Sandemanian Church in London was Mr. Barnard, a silversmith, of Paternoster Row. The young philosopher became a visitor at his house, and though he had previously written,

"What is't that comes in false deceitful guise,
Making dull fools of those that 'fore were wise?
'Tis Love,"
he altered his opinion in the presence of the citizen's third
daughter, Sarah, and wrote to her what was certainly not
the letter of a fool:

"You know me as well or better than I do myself. You
know my former prejudices and my present thoughts—you
know my weaknesses, my vanity, my whole mind; you have
converted me from one erroneous way, let me hope you will
attempt to correct what others are wrong. . . . Again
and again I attempt to say what I feel, but I cannot.
Let me, however, claim not to be the selfish being that
wishes to bend your affections for his own sake only. In
whatever way I can best minister to your happiness, either
by assiduity or by absence, it shall be done. Do not injure
me by withdrawing your friendship, or punish me for aiming
to be more than a friend by making me less; and if you
cannot grant me more, leave me what I possess,—but
hear me."

The lady hesitated, and went to Margate. There he
followed her, and they proceeded together to Dover and
Shakspeare's Cliff, and he returned to London full of hap-
piness and hope. He loved her with all the ardour of his
nature, and in due course, on June 12, 1821, they were
married. The bridegroom desired that there should be no
bustle or noise at the wedding, and that the day should not
be specially distinguished; but he calls it himself "an event
which more than any other contributed to his happiness and
healthful state of mind." As years rolled on the affection
between husband and wife became only deeper and deeper;
his bearing towards her proved it, and his letters frequently
testify to it. Doubtless at any time between their marriage
and his final illness he might have written to her as he did from Birmingham, at the time of the British Association:—
“After all, there is no pleasure like the tranquil pleasures of home, and here—even here—the moment I leave the table, I wish I were with you in quiet. Oh! what happiness is ours! My runs into the world in this way only serve to make me esteem that happiness the more.”

He took his bride home to Albemarle Street, and there they spent their wedded life; but until Mr. Barnard’s death it was their custom to go every Saturday to the house of the worthy silversmith, and spend Sunday with him, returning home usually in the evening of that day. His own father died while he was at Riebau’s, but his mother, a grand-looking woman, lived long afterwards, supported by her son, whom she occasionally visited at the Institution, and of whose growing reputation she was not a little proud.

With a mind calmed and strengthened by this beautiful domestic life, he continued with greater and greater enthusiasm to ask questions of Nature, and to interpret her replies to his fellow-men. Just before his marriage he had been appointed at the Royal Institution superintendent of the house and laboratory, and in February 1825, after a change in the management of the Institution, he was placed as director in a position of greater responsibility and influence. One of his first acts in this capacity was to invite the members to a scientific evening in the laboratory; this took place three or four times in 1825, and in the following years these gatherings were held every week from Feb. 3 to June 9; and though the labour devolved very much upon Faraday, other philosophers sometimes brought for-
ward discoveries or useful inventions. Thus commenced those Friday evening meetings which have done so much to popularize the high achievements of science. Faraday's note-books are still preserved, containing the minutes of the committee-meetings every Thursday afternoon, the Duke of Somerset chairman, and he secretary; also the record of the Friday evenings themselves, who lectured, and on what subject, and what was exhibited in the library, till June 1840, when other arrangements were probably made.

The year 1827 was otherwise fruitful in lectures: in the spring, a course of twelve on chemical manipulation at the London Institution; after Easter, his first course at Albermarle Street, six lectures on chemical philosophy (he had helped Professor Brande in 1824);¹ and at Christmas, his desire to convey knowledge, and his love to children, found expression in a course of six lectures to the boys and girls home for their holidays. These were a great success; indeed, he himself says they "were just what they ought to have been, both in matter and manner,—but it would not answer to give an extended course in the same spirit." He continued these juvenile lectures during nineteen years. The notes for courses of lectures were written in school copy-books, and sometimes he appends a general remark about the course, not always so favourable as the one given above. Thus he writes, "The eight lectures on the operations of the laboratory, April 1828, were not to my mind."

¹ Sir Roderick Murchison used to tell how he was attending Brande's lectures, when one day, the Professor being absent, his assistant took his place, and lectured with so much ease that he won the complete approval of the audience. This, he said, was Faraday's first lecture at the Royal Institution.
Of the course of twelve in the spring of 1827, he says he "found matter enough in the notes for at least seventeen."

Up to 1833 Faraday was bringing the forces of nature in subjection to man on a salary of only 100L per annum, with house, coals, and candles, as the funds of the Institution would not at that time afford more; but among the sedate habits of the place was a tall, jovial gentleman, who lounged to the lectures in his old-fashioned blue coat and brass buttons, grey smalls, and white stockings, who was a munificent friend in need. This was John Fuller, a member of Parliament. He founded a Professorship of Chemistry, with an endowment that brings in nearly 100L a year, and gave the first appointment to Faraday for life. When the Institution became richer, his income was increased; and when, on account of the infirmities of age, he could no longer investigate, lecture, or keep accounts, the managers insisted on his still retaining in name his official connection with the place, with his salary and his residence there. Nor indeed could they well have acted otherwise; for though the Royal Institution afforded in the first instance a congenial soil for the budding powers of Faraday, his growth soon became its strength; and eventually the blooming of his genius, and the fruit it bore, were the ornament and glory of the Institution.

It will be asked, Was this 100L or 200L per annum the sole income of Faraday? No; in early days he did commercial analyses, and other professional work, which paid far better than pure science. In 1830 his gains from this source amounted to 1,000L, and in 1831 to considerably more; they might easily have been increased, but at that
time he made one of his most remarkable discoveries—the evolution of electricity from magnetism,¹—and there seemed to lie open before him the solution of the problem how to make one force exhibit at will the phenomena of magnetism or of common or voltaic electricity. And then he had to face another problem—his own mental force might be turned either to the acquisition of a fortune, or to the following up of those great discoveries; it would not do both: which should he relinquish? The choice was deliberately made: Nature revealed to him more and more of her secrets, but his professional gains sank in 1832 to £55. 9s., and during no subsequent year did they amount even to that.

Still his work was not entirely confined to his favourite studies. In a letter to Lord Auckland, long afterwards, he says:—"I have given up, for the last ten years or more, all professional occupation, and voluntarily resigned a large income that I might pursue in some degree my own objects of research. But in doing this I have always, as a good subject, held myself ready to assist the Government if still in my power, not for pay; for, except in one instance (and then only for the sake of the person joined with me), I refused to take it. I have had the honour and pleasure of applications, and that very recently, from the Admiralty, the Ordnance, the Home Office, the Woods and Forests, and other departments, all of which I have replied to, and will reply to as long as strength is left me." He had declined the Professorship of Chemistry at the London University—now University College,—but in 1829 he ac-

¹ The laboratory note-book shows that at this very time he was making a long series of commercial analyses of saltpetre for Mr. Brande.
accepted a lectureship at the Royal Academy, Woolwich, and held it for about twenty years. In 1836 he became scientific adviser to the Trinity House, and his letter to the Deputy Master also shows his feelings in reference to such employment:—"You have left the title and the sum in pencil. These I look at mainly as regards the character of the appointment; you will believe me to be sincere in this, when you remember my indifference to your proposition as a matter of interest, though not as a matter of kindness. In consequence of the goodwill and confidence of all around me, I can at any moment convert my time into money, but I do not require more of the latter than is sufficient for necessary purposes. The sum, therefore, of 200l. is quite enough in itself, but not if it is to be the indicator of the character of the appointment; but I think you do not view it so, and that you and I understand each other in that respect; and your letter confirms me in that opinion. The position which I presume you would wish me to hold is analogous to that of a standing counsel." For nearly thirty years Faraday continued to report on all scientific suggestions and inventions connected with lighthouses or buoys, not for personal gain or renown, but for the public good. His position was never above that of a "standing counsel." In his own words: "I do not know the exact relation of the Board of Trade and the Trinity House to each other; I am simply an adviser upon philosophical questions, and am put into action only when called upon."

In regard to the lectureship at Woolwich, Mr. Abel, his successor, writes thus:—"Faraday appears to have enjoyed his weekly trips to Woolwich, which he continued for so
many years, as a source of relaxation. He was in the habit of going to Woolwich in the afternoon or evening preceding his lecture at the Military Academy, then preparing at once for his experiments, and afterwards generally taking a country ramble. The lecture was delivered early the following morning. No man was so respected, admired, and beloved as a teacher at the Military Academy in former days as Faraday. Many are the little incidents which have been communicated to me by his pupils illustrative of his charms as a lecturer, and of his kindly feelings for the youths to whom he endeavoured to impart a taste for, if not a knowledge of, science. But for some not ill-meant, though scarcely judicious, proposal to dictate modifications in his course of instruction, Faraday would probably have continued for some years longer to lecture at Woolwich. In May 1852, soon after I had been appointed his successor, Faraday wrote to me requesting the return of some tubes of condensed gases which he left at the Academy. This letter ends thus:—‘I hope you feel yourself happy and comfortable in your arrangements at the Academy, and have cause to be pleased with the change. I was ever very kindly received there, and that portion of regret which one must ever feel in concluding a long engagement would be in some degree lessened with me by hearing that you had reason to be satisfied with your duties and their acceptance.—Ever very truly yours, M. Faraday.’

For year after year the life of Faraday afforded no adventure and little variety, only an ever-growing skill in his favourite pursuits, higher and higher success, and ever-widening fame. But simple as were his mind and his
habits, no one picture can present him as the complete man; we must try to make sketches from various points of view, and leave it to the reader's imagination to combine them.

Let us watch him on an ordinary day. After eight hours' sleep, he rises in time to breakfast at eight o'clock, goes round the Institution to see that all is in order, and descends into the laboratory, puts on a large white apron full of holes, and is busy among his pieces of apparatus. The faithful Anderson, an old soldier, who always did exactly what he was told, and nothing more, is waiting upon him; and as thought flashes after thought through his eager—perhaps impatient—brain, he twists his wires into new shapes, and rearranges his magnets and batteries. Then some conclusion is arrived at which lights up his face with a gleam of satisfaction, but the next minute a doubt comes across that expressive brow—may the results not be due to something else yet imperfectly conceived? and a new experiment must be devised to answer that. In the meantime one of his little nieces has been left in his charge. She sits as quiet as a mouse with her needlework; but now and then he gives her a nod, or a kind word, and throwing a little piece of potas-

1 The following anecdote has been sent me on the authority of Mr. Benjamin Abbott:—"Sergeant Anderson was engaged to attend to the furnaces in Mr. Faraday's researches on optical glass in 1828, and was chosen simply because of the habits of strict obedience his military training had given him. His duty was to keep the furnaces always at the same heat, and the water in the ashpit always at the same level. In the evening he was released, but one night Faraday forgot to tell Anderson he could go home, and early next morning he found his faithful servant still stoking the glowing furnace, as he had been doing all night long."
sium on to a basin of water for her amusement, he shows her the metal bursting into purple flame, floating about in fiery eddies, and the crack of the fused globule of potash at the end. Presently there is handed to him the card of some foreign savant, who makes his pilgrimage to the famous Institution and its presiding genius; he puts down his last result on a slate, comes upstairs, and, disregarding the interruption, chats with his visitor with all cordiality and openness. Then to work again till dinner-time, at half-past two. In the afternoon he retires to his study with its plain furniture and the india-rubber tree in the window, and writes a letter full of affection to some friend, after which he goes off to the council meeting of one of the learned bodies. Then back again to the laboratory, but as evening approaches he goes upstairs to his wife and niece, and then there is a game at bagatelle or acting charades; and afterwards he will read aloud from Shakspeare or Macaulay till it is time for supper and the simple family worship which now is not liable to the interruptions that generally prevent it in the morning. And so the day closes.

Or if it be a fine summer evening, he takes a stroll with his wife and the little girl to the Zoological Gardens, and looks at all the new arrivals, but especially the monkeys, laughing at their tricks till the tears run down his cheeks.

But should it be a Friday evening, Faraday's place is in the library and theatre of the Institution, to see that all is right and ready, to say an encouraging word to the lecturer, and to welcome his friends as they arrive; then taking his seat on the front bench near the right hand of the speaker,
he listens with an animated countenance to his story, sometimes bending forwards, and scarcely capable of keeping his fingers off the apparatus—not at all able if anything seems to be going wrong; when the discourse is over, a warm shake of the hand, with "Thank you for a pleasant hour," and "Good night" to those around him, and upstairs with his wife and some particularly congenial friends to supper. On the dining-table is abundance of good fare and good wine, and around it flows a pleasant stream of lively and intellectual conversation.

But suppose it is his own night to lecture. The subject has been carefully considered, an outline of his discourse has been written on a sheet of foolscap, with all the experiments marked and numbered, and during the morning everything has been arranged on the table in such order that his memory is assisted by it; the audience now pours in, and soon occupies all the seats, so that late comers must be content with sitting on the stairs or standing in the gangways, or at the back of the gallery. Faraday enters, and placing himself in the centre of the horse-shoe table, perfect master of himself, his apparatus, and his audience, commences a discourse which few that are present will ever forget. Here is a picture by Lady Pollock:—"It was an irresistible eloquence, which compelled attention and insisted upon sympathy. It waked the young from their visions, and the old from their dreams. There was a gleaming

1 One evening, when the Rev. A. J. D'Orsey was lecturing "On the Study of the English Language," he mentioned as a common vulgarism that of using "don't" in the third person singular, as "He don't pay his debts." Faraday exclaimed aloud, "That's very wrong."
in his eyes which no painter could copy, and which no poet could describe. Their radiance seemed to send a strange light into the very heart of his congregation; and when he spoke, it was felt that the stir of his voice and the fervour of his words could belong only to the owner of those kindling eyes. His thought was rapid, and made itself a way in new phrases—if it found none ready made—as the mountaineer cuts steps in the most hazardous ascent with his own axe. His enthusiasm sometimes carried him to the point of ecstasy when he expatiated on the beauties of Nature, and when he lifted the veil from her deep mysteries. His body then took motion from his mind; his hair streamed out from his head; his hands were full of nervous action; his light, lithe body seemed to quiver with its eager life. His audience took fire with him, and every face was flushed. Whatever might be the after-thought or the after-pursuit, each hearer for the time shared his zeal and his delight.”

Is it possible that he can be happier when lecturing to the juveniles? The front rows are filled with the young people; behind them are ranged older friends and many of his brother philosophers, and there is old Sir James South, who is quite deaf, poor man, but has come, as he says, because he likes to see the happy faces of the children. How perfect is the attention! Faraday, with a beaming countenance, begins with something about a candle or a kettle that most boys and girls know, then rises to what they had never thought of before, but which now is as clear as possible to their understandings. And with what delight

1 The *St. Paul’s Magazine*, June 1870.
does he watch the performances of Nature in his experiments! One could fancy that he had never seen the experiments before, and that he was about to clap his hands with boyish glee at the unexpected result! Then with serious face the lecturer makes some incidental remark that goes far beyond natural philosophy, and is a lesson for life.

Some will remember one of these occasions which forms the subject of a painting by Mr. Blaikley. Within the circle of the table stands the lecturer, and waiting behind is the trusty Anderson, while the chair is occupied by the Prince Consort, and beside him are the young Prince of Wales and his brother, the present Duke of Edinburgh; while the Rev. John Barlow and Dr. Bence Jones sit on the left of the Princes, Sir James South stands against the door, and Murchison, De la Rue, Mrs. Faraday, and others may be recognized amongst the eager audience.

Let us now suppose that it is a Sunday on which we are watching this prince among the aristocracy of intellect, and we will assume it to be during one of the periods of his eldership, namely between 1840 and 1844, or after 1860. The first period came to a close through his separation both from his office and from the Church itself. The reason of this is said to have been that one Sunday he was absent from the love feast, and, on inquiry being made, it appeared not only that he had been the guest of the Queen, but that he was ready to justify his own conduct in obeying her commands. He, however, continued to worship among his friends, and was after a while restored to the rights of membership, and eventually to the office of elder. In

\[D 2 \]
the morning he and his family group find their way down to the plain little meeting-house in Paul's Alley, Red-cross Street, since pulled down to make way for the Metropolitan Railway. The day's proceedings commence with a prayer meeting, during which the worshippers gradually drop in and go to their accustomed seats, Faraday taking his place on the platform devoted to the elders; then the more public service begins; one of a metrical but not rhyming version of the Psalms is sung to a quaint old tune, the Lord's Prayer and another psalm follow; he rises and reads in a slow, reverent manner the words of one of the Evangelists, with a most profound and intelligent appreciation of their meaning; or he offers an extempore prayer, expressing perfect trust and submission to God's will, with deep humility and confession of sin. It may be his turn to preach. On two sides of a card he has previously sketched out his sermon with the illustrative texts, but the congregation does not see the card, only a little Bible in his hand, the pages of which he turns quickly over, as, fresh from an earnest heart, there flows a discourse full of devout thought, clothed largely in the language of Scripture. After a loud simultaneous "Amen" has closed the service, the Church members withdraw to their common meal, the feast of charity; and in the afternoon there is another service, ending by invariable custom with the Lord's Supper. The family group do not reach home till half-past 5; then there is a quiet evening, part of which is spent by Faraday at his desk, and they retire to rest at an early hour. Again on Wednesday evening he is among the little flock. The service is somewhat freer, for not the officers of the
Church only, but the ordinary members are encouraged to express whatever thoughts occur to them, so as to edify one another. At these times, Faraday, especially when he was not an elder, very often had some word of exhortation, and the warmth of his temperament would make itself felt, for he was known in the small community as an experimental rather than a doctrinal preacher.

The notes of his more formal discourses which I have had the opportunity of seeing, indicate, as might be expected from the tenets of his Church, a large acquaintance with the words of Scripture, but no knowledge of modern exegesis. They appear to have impressed different hearers in different ways. One who heard him frequently and was strongly attached to him, says that his sermons were too parenthetical and rapid in their delivery, with little variety or attractiveness; but another scientific friend, who heard him occasionally, writes: “They struck me as resembling a mosaic work of texts. At first you could hardly understand their juxtaposition and relationship, but as the well-chosen pieces were filled in, by degrees their congruity and fitness became developed, and at last an amazing sense of the power and beauty of the whole filled one’s thoughts at the close of the discourse.”

Among the latest of his sermons was one that he preached at Dundee about four years before his death. He began by telling his audience that his memory was failing, and he feared he could not quote Scripture with perfect accuracy; and then, as said one of the elders present, “his face shone like the face of an angel,” as he poured forth the words of loving exhortation.
When a mind is stretched in the same direction week-day and Sunday, the tension is apt to become too great. With Faraday the first symptom was loss of memory. Then his devoted wife had to hurry him off to the country for rest of brain. Once he had to give up work almost entirely for a twelvemonth. During this time he travelled in Switzerland, and extracts from his diary are given by Bence Jones. His niece, Miss Reid, gives us her recollections of a month spent at Walmer:—“How I rejoiced to be allowed to go there with him! We went on the outside of the coach, in his favourite seat behind the driver. When we reached Shooter's Hill, he was full of fun about Falstaff and the men in buckram, and not a sight nor a sound of interest escaped his quick eye and ear. At Walmer we had a cottage in a field, and my uncle was delighted because a window looked directly into a blackbird's nest built in a cherry-tree. He would go many times in a day to watch the parent birds feeding their young. I remember, too, how much he was interested in the young lambs, after they were sheared at our door, vainly trying to find their own mothers. The ewes, not knowing their shorn lambs, did not make the customary signal. In those days I was eager to see the sun rise, and my uncle desired me always to call him when I was awake. So, as soon as the glow brightened over Pegwell Bay, I stole downstairs and tapped at his door, and he would rise, and a great treat it was to watch the glorious sight with him. How delightful, too, to be his companion at sunset! Once I remember well how we watched the fading light from a hill clothed with wild flowers, and how, as twilight stole on, the sounds of bells
from Upper Deal broke upon our ears, and how he watched
till all was grey. At such times he would be well pleased
if we could repeat a few lines descriptive of his feelings.”
And then she tells us about their examining the flowers
in the fields by the aid of “Galpin’s Botany,” and how with
a candle he showed her a spectre on the white mist outside
the window; of reading lessons that ended in laughter, and
of sea-anemones and hermit crabs, with the merriment
caused by their odd movements as they dragged about the
unwieldy shells they tenanted. “But of all things I used
to like to hear him read ‘Childe Harold;' and never shall
I forget the way in which he read the description of the
storm on Lake Leman. He took great pleasure in Byron,
and Coleridge’s ‘Hymn to Mont Blanc’ delighted him.
When anything touched his feelings as he read—and it
happened not unfrequently—he would show it not only
in his voice, but by tears in his eyes also.”

A few days at Brighton refreshed him for his work. He
was in the habit of running down there before his juvenile
lectures at Christmas, and at Easter he frequently sought
the same sea-breezes.

But it was not always that Faraday could run away from
London when the mental tension became excessive. A
shorter relaxation was procured by his taking up a novel
such as “Ivanhoe,” or “Jane Eyre,” or “Monte Christo.”
He liked the stirring ones best, “a story with a thread to
it.” Or he would go with his wife to see Kean act, or hear
Jenny Lind sing, or perhaps to witness the performance of
some “Wizard of the North.”

Now and then he would pay a visit to some scene of
early days. One of his near relatives tells me: "It is said that Mr. Faraday once went to the shop where his father had formerly been employed as a blacksmith, and asked to be allowed to look over the place. When he got to a part of the premises at which there was an opening into the lower workshop, he stopped and said: 'I very nearly lost my life there once. I was playing in the upper room at pitching halfpence into a pint pot close by this hole, and having succeeded at a certain distance, I stepped back to try my fortune further off, forgetting the aperture, and down I fell; and if it had not been that my father was working over an anvil fixed just below, I should have fallen on it, broken my back, and probably killed myself. As it was, my father's back just saved mine.'"

Business, as well as pleasure, sometimes took him away from home. He often joined the British Association, returning usually on Saturday, that he might be among his own people on the Lord's Day. During the meeting he would generally accept the hospitality of some friend; and it was one of these occasions that gave rise to the following *jeu d'esprit*:

"'That P will change to F in the British tongue is true
(Quoth Professor Phillips), though the instances are few:'

An entry in my journal then I ventured thus to parody,
'I this day dined with Fillips, where I hobbed and nobbed with Pharaday.'

"Oxford, June 27, 1860."

"T. T.

At the Liverpool meeting, in 1837, he was president of the Chemical Section, and on two other occasions he was
selected to deliver the evening lecture, but though repeatedly pressed to undertake the presidency of the whole body, he could not be prevailed upon to accept the office.

My first personal intercourse with him, of any extent, was at the Ipswich meeting, in 1851. I watched him with all the interest of an admiring disciple, and there is deeply engraven on my memory the vivacity of his conversation, the eagerness with which he entered into some mathematico-chemical speculations of Dumas, and the playfulness with which, when we were dining together, he cut boomerangs out of card, and shot them across the table at his friends.

Professional engagements also took him not unfrequently into the country. Some of these will be described in the later sections, that treat of his mode of working and its valuable results.

To comprehend a man's life it is necessary to know not merely what he does, but also what he purposely leaves undone. There is a limit to the work that can be got out of a human body or a human brain, and he is a wise man who wastes no energy on pursuits for which he is not fitted; and he is still wiser who, from among the things that he can do well, chooses and resolutely follows the best.

Faraday took no part in any of the political or social movements of his time. To politics indeed he seems to have been really indifferent. It was during the intensely interesting period of 1814-15 that he was on the Continent with Davy, but he alludes to the taking of Paris by the allied troops simply because of its bearing on the movements of the travellers, and on March 7, 1815, he made this remarkable entry in his journal: "I heard for news that
Bonaparte was again at liberty. Being no politician, I did not trouble myself much about it, though I suppose it will have a strong influence on the affairs of Europe." In later days he seems to have awakened to sufficient interest to read the debates, and to show a Conservative tendency; he became a special constable in 1848, and was disposed generally to support "the powers that be,"—though that involved some perplexity at a change of Government.

It is more singular that a man of his benevolent spirit should never have taken a prominent part in any philanthropic movement. During the latter half of his life, he, as a rule, avoided serving on committees even for scientific objects, and was reluctant to hold office in the learned societies with which he was connected. I believe, however, that this arose not from want of interest, but from a conviction that he was ill-suited by natural temperament for joining in discussions on subjects that roused the passions of men, or for calmly weighing the different causes of action, and deciding which was the most judicious. It is remarkable how little even of his scientific work was done in conjunction with others. Neither did he spend time in rural occupations, or in literary or artistic pursuits. Beasts and birds and flowers he looked at, but it was for recreation, not for study. Music he was fond of, and occasionally he visited the Opera, but he did not allow sweet sounds to charm him away from his work. He stuck closely to his fireside, his laboratory, his lecture table, and his Church. He lived where he worked, so that he had only to go downstairs to put to the test of experiment any fresh thought that flitted across his brain. He almost invariably declined dinner-parties,
except at Lady Davy's, and at Mr. and Mrs. Masquerier's at Brighton, towards whom he felt under an obligation on account of former kindnesses. If he went to a soiree, he usually stayed but a short time; and even when away from home he generally refused private hospitality. Thus he was able to give almost undivided attention to the chief pursuit of his life.

His residence in so accessible a part of London did, however, expose him to the constant invasion of callers, and his own good nature often rendered fruitless the efforts that were considerately made to restrict these within reasonable limits. Of course he suffered from the curious and the inconsiderate of the human species; and then there were those pertinacious bores, the dabblers in science. "One morning a young man called on him, and with an air of great importance confided to him the result of some original researches (so he deemed them) in electrical philosophy. 'And pray,' asked the Professor, taking down a volume of Rees' Cyclopædia, 'did you consult this or any elementary work to learn whether your discovery had been anticipated?' The young man replied in the negative. 'Then why do you come to waste my time about well-known facts, that were published forty years ago?' 'Sir,' said the visitor, 'I thought I had better bring the matter to head-quarters immediately.' 'All very well for you, but not so well for head-quarters,' replied the Professor, sharply, and set him down to read the article."

"A grave, elderly gentleman once waited upon him to submit to his notice 'a new law of physics.' The visitor requested that a jug of water and a tumbler might be brought,
and then producing a cork, 'You will be pleased to observe,' said he, 'how persistently this cork clings to the side of the glass when the vessel is half filled.' 'Just so,' replied the Professor. 'But now,' resumed this great discoverer, 'mark what happens when I fill the tumbler to the brim. There! you see the cork flies to the centre—positively repelled by the sides!' 'Precisely so,' replied the amused electrician, with the air of a man who felt perfectly at home with the phenomenon, and indeed regarded it quite as an old friend. The visitor was evidently disconcerted. 'Pray how long have you known this?' he ventured to ask Faraday. 'Oh, ever since I was a boy,' was the rejoinder. Crestfallen—his discovery demolished in a moment—the poor gentleman was retiring with many apologies, when the Professor, sincerely concerned at his disappointment, comforted him by suggesting that possibly he might some day alight upon something really new.'

But there were other visitors who were right welcome to a portion of his time. One day it might be a young man, whom a few kind words and a little attention on the part of the great philosopher would send forward on the journey of life with new energy and hopes. Another day it might be some intellectual chieftain, who could meet the prince of experimenters on equal terms. But these are hardly to be regarded as interruptions;—rather as part of his chosen work.

Here is one instance in the words of Mr. Robert Mallet. "... I was, in the years that followed, never in London without paying him a visit, and on one of those times I

1 *British Quarterly Review*, April 1868.
ventured to ask him (if not too much engaged) to let me see where he and Davy had worked together. With the most simple graciousness he brought me through the whole of the Royal Institution, Albemarle Street. Brande's furnaces, Davy's battery, the place in the laboratory where he told me he had first observed the liquefaction of chlorine, are all vividly before me—but nothing so clear or vivid as our conversation over a specimen of green (crown) glass, partially devitrified in floating opaque white spheres of radiating crystals: he touched luminously on the obscure relation of the vitreous and crystalloid states, and on the probable nature of the nuclei of the white spheres. My next visit to Faraday that I recollect was not long after my paper 'On the Dynamics of Earthquakes' had appeared in the Transactions of the Royal Irish Academy. He almost at once referred to it in terms of praise that seemed to me so far beyond my due, that even now I recall the very humble way I felt, as the thought of Faraday's own transcendent merits rushed across my mind. I ventured to ask him, had the paper engaged his attention sufficiently that I might ask him—did he consider my explanation of the before supposed vorticose shock sufficient? To my amazement he at once recited nearly word for word the paragraph in which I took some pains to put my views into a demonstrative shape, and ended with, 'It is as plain and certain as a proposition of Euclid!' And yet the subject was one pretty wide away from his own objects of study.'

Often, too, if some interesting fact was exhibited to him, he would send to his brother savants some such note as this:—
"Royal Institution, 4th May, 1852.

'My dear Wheatstone,

"Dr. Dubois-Raymond will be making his experiments here next Thursday, the 6th, from and after 11 o'clock. I wish to let you know, that you may if you like join the select few.

"Ever truly yours,

"M Faraday."

It was indeed his wont to share with others the delight to a new discovery. Thus Sir Henry Holland tells me that he used frequently to run to his house in Brook Street with some piece of scientific news. One of these visits was after reading Bunsen and Kirchhoff's paper on Spectrum Analysis; and he did not stop short with merely telling the tale of the special rays of light shot forth by each metallic vapour, as the following letter will show. It is addressed to the present Baroness Burdett Coutts.

"Royal Institution, Friday, 17th May.

'Dear Miss Coutts,

"To-morrow, at 4 o'clock, immediately after Max Müller's lecture, I shall show Sir Henry Holland an apparatus which has arrived from Munich to manifest the phenomena of light which have recently been made known to us by Bunsen and Kirchhoff. Mr. Barlow will be here, and he suggests that you would like to know of the occasion. If you are inclined to see how philosophers work and live, and so are inclined to climb our narrow stairs (for I must show
the experiments in my room), we shall be most happy to see you. The experiments will not be beautiful except to the intelligent.

"Ever your faithful Servant,

"M. Faraday."

Sometimes, too, the exhibition of a scientific fact would take him away from home. Thus, when her Majesty and the Prince Consort once paid a private visit to the Polytechnic, Mr. Pepper arranged a surprise for the Royal party, by getting Faraday in a quiet room to explain the Ruhmkorff's coil—the latest development of his own inductive currents. This he did with his usual vivacity and enthusiasm, and the interview is said to have gratified the philosopher as well as the Queen.

He could not, however, escape the inroads made upon his time by correspondence. People would write and ask him questions. Once a solitary prisoner wrote to tell him, "It is indeed in studying the great discoveries which science is indebted to you for, that I render my captivity less sad, and make time flow with rapidity,"—and then he proceeds to ask, "What is the most simple combination to give to a voltaic battery, in order to produce a spark capable of setting fire to powder under water, or under ground? Up to the present I have only seen employed to that purpose piles of thirty to forty pairs constructed on Dr. Wollaston's principles. They are very large and inconvenient for field service. Could not the same effect be produced by two spiral pairs only? and if so, what can be their smallest dimension?" And who was the prisoner who thus speculated on the
applications of science to war? It was no other than Prince Louis Napoleon, then immured in the fortress of Ham, and now the ex-Emperor of the French. At another time he wrote asking for his advice in the manufacture of an alloy which should be about as soft as lead, but not so fusible,—a question which also had evident bearing upon the art of war; and offering at the same time to pay the cost of any experiments that might be necessary.

Often, too, the correspondents of Faraday thought that they were doing him a kindness. He says somewhere: "The number of suggestions, hints for discovery, and propositions of various kinds, offered to me very freely and with perfect goodwill and simplicity on the part of the proposers, for my exclusive investigation and final honour, is remarkably great, and it is no less remarkable that but for one exception—that of Mr. Jenkin—they have all been worthless I have, I think, universally found that the man whose mind was by nature or self-education fitted to make good and worthy suggestions, was also the man both able and willing to work them out."

Both the askers of questions and the givers of advice expected answers—and the answers came. Most of Faraday's letters, indeed, are of a purely business character: sometimes they are very laconic, as the note in which he announced to Dr. Paris one of his principal discoveries:—

"DEAR SIR,

"The oil you noticed yesterday turns out to be liquid chlorine. "Yours faithfully,

"M. FARADAY."
But in other letters, as may be expected, there is found the enthusiasm of his ardent nature, or the glow of his genial spirit. An instance or two may suffice.

"ROYAL INSTITUTION, 24th March, 1843.

"DEAR SIR,

"I have received and at once looked at your paper. Many thanks for so good a contribution to the beloved science. What glorious steps electricity has taken in the days within our remembrance, and what hopes are held out for the future! The great difficulty is to remove the mists which dim the dawn of a subject, and I cannot but consider your paper as doing very much that way for a most important part of natural knowledge.

"I am, my dear Sir,

"Most truly yours,

"M. FARADAY.

"J. P. JOULE, ESQ."

"ROYAL INSTITUTION, 15th Oct. 1853.

"MY DEAR MISS MOORE,

"The summer is going away, and I never (but for one day) had any hopes of profiting by your kind offer of the roof of your house in Clarges Street. What a feeble summer it has been as regards sunlight! I have made a good many preliminary experiments at home, but they do not encourage me in the direction towards which I was looking. All is misty and dull, both the physical and the mental prospect. But I have ever found that the experimental philosopher has great need of patience, that he may not be downcast by interposing obstacles, and perseverance, that
he may either overcome them, or open out a new path to the bourn he desires to reach. So perhaps next summer I may think of your housetop again. Many thanks for your kind letter and all your kindnesses uswards. My wife had your note yesterday, and I enjoyed the violets, which for a time I appropriated.

"With kindest remembrances and thoughts to all with you and her at Hastings,

"I am, my dear Friend,

"Very faithfully yours,

"M. Faraday."

The following is written to Mr. Frank Barnard, then an Art student in Paris:—

"ROYAL INSTITUTION, 9th Nov., 1852.

"My dear Nephew,

"Though I am not a letter-writer and shall not profess to send you any news, yet I intend to waste your time with one sheet of paper: first to thank you for your letter to me, and then to thank you for what I hear of your letters to others. You were very kind to take the trouble of executing my commissions, when I know your heart was bent upon the entrance to your studies. Your account of M. Arago was most interesting to me, though I should have been glad if in the matter of health you could have made it better. He has a wonderful mind and spirit. And so you are hard at work, and somewhat embarrassed by your position: but no man can do just as he likes, and in many things he has to give way, and may do so honourably, provided he preserve his self-respect. Never, my dear
Frank, lose that, whatever may be the alternative. Let no one tempt you to it; for nothing can be expedient that is not right; and though some of your companions may tease you at first, they will respect you for your consistency in the end; and if they pretend not to do so, it is of no consequence. However, I trust the hardest part of your probation is over, for the earliest is usually the hardest; and that you know how to take all things quietly. Happily for you, there is nothing in your pursuit which need embarrass you in Paris. I think you never cared for home politics, so that those of another country are not likely to occupy your attention, and a stranger can be but a very poor judge of a new people and their requisites.

"I think all your family are pretty well, but I know you will hear all the news from your appointed correspondent Jane, and, as I said, I am unable to chronicle anything. Still, I am always very glad to hear how you are going on, and have a sight of all that I may see of the correspondence.

"Ever, my dear Frank,

"Your affectionate Uncle,

"M. Faraday."

His scientific researches were very numerous. The Royal Society Catalogue gives under the name of Faraday a list of 158 papers, published in various scientific magazines or learned Transactions. Many of these communications are doubtless short, but a short philosophical paper often represents a large amount of brain work; a score of them are the substance of his Friday evening discourses; while others are lengthy treatises, the records of long and careful investi-
gations; and the list includes the thirty series of his "Experimental Researches in Electricity." These extended over a period of twenty-seven years, and were afterwards reprinted from the "Philosophical Transactions," and form three goodly volumes, with 3,430 numbered paragraphs—one of the most marvellous monuments of intellectual work, one of the rarest treasure-houses of newly-discovered knowledge, with which the world has ever been enriched. Faraday never published but one book in the common acceptation of the term—it was on "Chemical Manipulation,"—but there appeared another large volume of reprinted papers; and three of his courses of lectures were also published as separate small books, though not by himself. It is very tempting to linger among these 158 papers; but this is not intended as a scientific biography, and those readers who wish to make themselves better acquainted with his work will find an admirable summary of it in Professor Tyndall's "Faraday as a Man of Science." In Sections IV. and V., however, I have endeavoured to give an idea of his manner of working and of the practical benefits that have flowed to mankind from some of his discoveries.

As these papers appeared his fame grew wider and wider. When a comparatively young man he was naturally desirous of appending the mystic letters "F.R.S." to his name, and he was balloted into the Royal Society in January 1824, not without strong opposition from his master, Sir Humphry Davy, then president. He paid the fees, and never sought another distinction of the kind. But they were showered down upon him. The Philosophical Society of Cambridge had already acknowledged his merits, and the learned Academies
of Paris and Florence had enrolled him amongst their corresponding members. Heidelberg and St. Petersburg, Philadelphia and Boston, Copenhagen, Berlin, and Palermo, quickly followed; and as the fame of his researches spread, very many other learned societies in Europe and America, as well as at home, brought to him the tribute of their honorary membership.¹ He thrice received the degree of Doctor, Oxford making him a D.C.L., Prague a Ph.D., and Cambridge an L.L.D., besides which he was instituted a Chevalier of the Prussian Order of Merit, a Commander of the Legion of Honour, and a Knight Commander of the Order of St. Maurice and St. Lazarus. Among the medals which he received were each of those at the disposal of the Royal Society—indeed the Copley medal was given him twice—and the Grande Médaille d'Honneur at the time of the French Exhibition. Altogether it appears he was decorated with ninety-five titles and marks of merit,² including the blue ribbon of science, for in 1844 he was chosen one of the eight foreign associates of the French Academy.

Though he had never passed through a university career, he was made a member of the Senate of the University of London, which he regarded as one of his chief honours; and he showed his appreciation of the importance of the office by a diligent attendance to its duties.

As the recognized prince of investigators, it is no wonder

¹ See Appendix.
² No wonder the celebrated electrician P. Riess, of Berlin, once addressed a long letter to him as "Professor Michael Faraday, Member of all Academies of Science, London."
that, on the resignation of Lord Wrottesley, an attempt was made to induce him to become President of the Royal Society. A deputation waited on him and urged the unanimous wish of the Council and of scientific men. Faraday begged for time to consider. Tyndall gives us an insight into the reasons that led him to decline. He tells us: "On the following morning I went up to his room, and said, on entering, that I had come to him with some anxiety of mind. He demanded its cause, and I responded, 'Lest you should have decided against the wishes of the deputation that waited on you yesterday.' 'You would not urge me to undertake this responsibility,' he said. 'I not only urge you,' was my reply, 'but I consider it your bounden duty to accept it.' He spoke of the labour that it would involve; urged that it was not in his nature to take things easy; and that if he became president, he would surely have to stir many new questions, and agitate for some changes. I said that in such cases he would find himself supported by the youth and strength of the Royal Society. This, however, did not seem to satisfy him. Mrs. Faraday came into the room, and he appealed to her. Her decision was adverse, and I deprecated her decision. 'Tyndall,' he said at length, 'I must remain plain Michael Faraday to the last; and let me now tell you, that if I accepted the honour which the Royal Society desires to confer upon me, I would not answer for the integrity of my intellect for a single year.'"

In 1835 Sir Robert Peel desired to confer pensions as honourable distinctions on Faraday and some other eminent men. Lord Melbourne, who succeeded him as Prime
Minister, in making the offer at a private interview, gave utterance to some hasty expressions that appeared to the man of science to reflect on the honour of his profession, and led to his declining the money. The King, William IV., was struck with the unusual nature of the proceeding, and kept repeating the story of Faraday's refusal; and about a month afterwards the Premier, dining with Dr. (now Sir Henry) Holland, begged him to convey a letter to the Professor and to press on him the acceptance of the pension. The letter was couched in such honourable and conciliatory terms, that Faraday's personal objection could no longer apply, and he expressed his willingness to receive this mark of national approval. A version of the matter that found its way into the public prints caused fresh annoyance, and nearly produced a final refusal, but through the kind offices of friends who had interested themselves throughout in the matter, a friendly feeling was again arrived at, and the pension of £300 a year was granted and accepted.

In 1858 the Queen offered him a house at Hampton Court. It was a pretty little place, situated in the well-known Green in front of the Palace; and in that quiet retreat Faraday spent a large portion of his remaining years.

In October 1861 he wrote a letter to the managers of the Royal Institution, resigning part of his duties, in which he reviewed his connection with them. "I entered the Royal Institution in March 1813, nearly forty-nine years ago, and, with exception of a comparatively short period, during which I was abroad on the Continent with Sir H. Davy, have been with you ever since. During that time I
have been most happy in your kindness, and in the fostering care which the Royal Institution has bestowed upon me. Thank God, first, for all His gifts. I have next to thank you and your predecessors for the unswerving encouragement and support which you have given me during that period. My life has been a happy one, and all I desired. During its progress I have tried to make a fitting return for it to the Royal Institution, and through it to science. But the progress of years (now amounting in number to three-score and ten) having brought forth first the period of development, and then that of maturity, have ultimately produced for me that of gentle decay. This has taken place in such a manner as to make the evening of life a blessing; for whilst increasing physical weakness occurs, a full share of health free from pain is granted with it; and whilst memory and certain other faculties of the mind diminish, my good spirits and cheerfulness do not diminish with them."

When he could no longer discharge effectually his duties at the Trinity House, the Corporation quietly made their arrangements for transferring them, and, with the concurrence of the Board of Trade, determined that his salary of £100 per annum should continue as long as he lived. Sir Frederick Arrow called upon him at Albemarle Street, and explained how the matter stood, but he found it hard to persuade the Professor that there was no injustice in his continuing to receive the money; then, taking hold of Sir Frederick by one hand and Dr. Tyndall by the other, Faraday, with swimming eyes, passed over his office to his successor.
Gradually but surely the end approached. The loss of memory was followed by other symptoms of declining power. The fastenings of his earthy tabernacle were removed one by one, and he looked forward to “the house not made with hands, eternal in the heavens.” This was no new anticipation. Calling on the friend who had long directed with him the affairs of the Institution, but who was then half paralysed, he had said, “Barlow, you and I are waiting; that is what we have to do now; and we must try to do it patiently.” He had written to his niece, Mrs. Deacon: “I cannot think that death has to the Christian anything in it that should make it a rare, or other than a constant, thought; out of the view of death comes the view of the life beyond the grave, as out of the view of sin (that true and real view which the Holy Spirit alone can give to a man) comes the glorious hope. . . . My worldly faculties are slipping away day by day. Happy is it for all of us that the true good lies not in them. As they ebb, may they leave us as little children trusting in the Father of Mercies, and accepting His unspeakable gift.” And when the dark shadow was creeping over him, he wrote to the Comte de Paris: “I bow before Him who is Lord of all, and hope to be kept waiting patiently for His time and mode of releasing me according to His Divine Word, and the great and precious promises whereby His people are made partakers of the Divine nature.”

His niece, Miss Jane Barnard, who tended him with most devoted care, thus wrote from Hampton Court on the 27th June:—“The kind feelings shown on every side towards my dear uncle, and the ready offers of help, are most soothing. I am thankful to say that we are going on very quietly; he
keeps his bed and sleeps much, and we think that the paralysis gains on him, but between whiles he speaks most pleasant words, showing his comfort and trust in the finished work of our Lord. The other day he repeated some verses of the 46th Psalm, and yesterday a great part of the 23rd. We can only trust that it may be given us to say truly, 'Thy will be done;' indeed, the belief that all things work together for good to them that believe, is an anchor of hope, sure and steadfast, to the soul. We are surrounded by most kind and affectionate friends, and it is indeed touching to see what warm feelings my dear uncle has raised on all sides."

When his faculties were fading fast, he would sit long at the western window, watching the glories of the sunset; and one day when his wife drew his attention to a beautiful rainbow that then spanned the sky, he looked beyond the falling shower and the many-coloured arch, and observed, "He hath set his testimony in the heavens." On August 25, 1867, quietly, almost imperceptibly, came the release. There was a philosopher less on earth, and a saint more in heaven.

The funeral, at his own request, was of the simplest character. His remains were conveyed to Highgate Cemetery by his relations, and deposited in the grave, according to the practice of his Church, in perfect silence. Few of his scientific friends were in London that bright summer-time, but Professor Graham and one or two others came out from the shrubbery, and joining the group of family mourners, took their last look at the coffin.

But when this sun had set below our earthly horizon,
there seemed to spring up in the minds of men a great desire to catch some of the rays of the fading brightness and reflect them to posterity. A "Faraday Memorial" was soon talked of, and the work is now in the sculptor's hands; the Chemical Society has founded a "Faraday Lectureship," one of the new streets in Paris has been called "Rue Faraday," biographical sketches have appeared in many of the British and Continental journals; successive books have told the story of his life and work; and in a thousand hearts there is embalmed the memory of this Christian gentleman and philosopher.
SECTION II.

STUDY OF HIS CHARACTER.

In the previous section we have traced the leading events of a life which was quietly and uniformly successful. We have watched the passage of the errand-boy into the philosopher, and we have seen how at first he begged for the meanest place in a scientific workshop, and at last declined the highest honour which British Science was capable of granting. His success did not lie in the amassing of money—he deliberately turned aside from the path of proffered wealth; nor did it lie in the attainment of social position and titles;—he did not care for the weight of these. But if success consists in a life full of agreeable occupation, with the knowledge that its labours are adding to the happiness and wealth of the world, leading on to an old age full of honour, and the prospect of a blissful immortality,—then the highest success crowned the life of Faraday.

How did he obtain it? Not by inheritance, and not by the force of circumstances. The wealth or the reputation of fathers is often an invaluable starting-point for sons: a liberal education and the contact of superior minds in
early youth is often a mighty help to the young aspirant: the favour of powerful friends will often place on a vantage ground the struggler in the battle of life. But Faraday had none of these. Accidental circumstances sometimes push a man forward, or give him a special advantage over his fellows; but Faraday had to make his circumstances, and to seize the small favours that fortune sometimes threw in his way. The secret of his success lay in the qualities of his mind.

It is only fair, however, to remark that he started with no disadvantages. There was no stain in the family history: he had no dead weight to carry, of a disgraced name, or of bad health, or deficient faculties, or hereditary tendencies to vice. It must be acknowledged, too, that he was endowed with a naturally clear understanding and an unusual power of looking below the surface of things.

The first element of success that we meet with in his biography is the faithfulness with which he did his work. This led the bookseller to take his poor errand-boy as an apprentice; and this enabled his father to write, when he was 18: "Michael is bookbinder and stationer, and is very active at learning his business. He has been most part of four years of his time out of seven. He has a very good master and mistress, and likes his place well. He had a hard time for some while at first going; but, as the old saying goes, he has rather got the head above water, as there is two other boys under him." This faithful industry marked also his relations with Davy and Brande, and the whole of his subsequent life, and at last, when he found that he could no longer discharge his duties, it made him repeatedly press his
resignation on the managers of the Royal Institution, and beg to be relieved of his eldership in the Church.

His love of study, and hunger after knowledge, led him to the particular career which he pursued, and that power of imagination, which reveals itself in his early letters, grew and grew, till it gave him such a familiarity with the unseen forces of nature as has never been vouchsafed to any other mortal.

As a source of success there stands out also his enthusiasm. A new fact seemed to charge him with an energy that gleamed from his eyes and quivered through his limbs, and, as by induction, charged for the time those in his presence with the same vigour of interest. Plücker, of Bonn, was showing him one day in the laboratory at Albemarle Street his experiments on the action of a magnet on the electric discharge in vacuum tubes. Faraday danced round them; and as he saw the moving arches of light, he cried, "Oh! to live always in it!" Mr. James Heywood once met him in the thick of a tremendous storm at Eastbourne, rubbing his hands with delight because he had been fortunate enough to see the lightning strike the church tower.

This enthusiasm led him to throw all his heart into his work. Nor was the energy spasmodic, or wasted on unworthy objects, for, in the words of Bence Jones, his was "a lifelong lasting strife to seek and say that which he thought was true, and to do that which he thought was kind."

Indeed, his perseverance in a noble strife was another of the grand elements in his success. His tenacity of purpose
showed itself equally in little and in great things. Arranging some apparatus one day with a philosophical instrument maker, he let fall on the floor a small piece of glass: he made several ineffectual attempts to pick it up. "Never mind," said his companion, "it is not worth the trouble.

"Well, but, Murray, I don't like to be beaten by something that I have once tried to do."

The same principle is apparent in that long series of electrical researches, where for a quarter of a century he marched steadily along that path of discovery into which he had been lured by the genius of Davy. And so, whatever course was set before him, he ran with patience towards the goal, not diverted by the thousand objects of interest which he passed by, nor stopping to pick up the golden apples that were flung before his feet.

This tremendous faculty of work was relieved by a wonderful playfulness. This rarely appears in his writings, but was very frequent in his social intercourse. It was a simple-hearted joyousness, the effervescence of a spirit at peace with God and man. It not seldom, however, assumed the form of good-natured banter or a practical joke. Indications of this playfulness have already been given, and I have tried to put upon paper some instances that occur to my own recollection, but the fun depended so much upon his manner, that it loses its aroma when separated from himself.

However, I will try one story. I was spending a night at an hotel at Ramsgate when on lighthouse business. Early in the morning there came a knock at the bed-room door, but, as I happened to be performing my ablutions, I cried,
"Who's there?" "Guess." I went over the names of my brother commissioners, but heard only "No, no," till, not thinking of any other friend likely to hunt me up in that place, I left off guessing; and on opening the door I saw Faraday enjoying with a laugh my inability to recognize his voice through a deal board.

A student of the late Professor Daniell tells me that he remembers Faraday often coming into the lecture-room at King's College just when the Professor had finished and was explaining matters more fully to any of his pupils who chose to come down to the table. One day the subject discoursed on and illustrated had been sulphuretted hydrogen, and a little of the gas had escaped into the room, as it perversely will do. When Faraday entered he put on a look of astonishment, as though he had never smelt such a thing before, and in a comical manner said, "Ah! a savoury lecture, Daniell!" On another occasion there was a little ammonia left in a jar over mercury. He pressed Daniell to tell him what it was, and when the Professor had put his head down to see more clearly, he whiffed some of the pungent gas into his face.

Occasionally this humour was turned to good account, as when, one Friday evening before the lecture, he told the audience that he had been requested by the managers to mention two cases of infringement of rule. The first related to the red cord which marks off the members' seats. "The second case I take to be a hypothetical one, namely, that of a gentleman wearing his hat in the drawing-room." This produced a laugh, which the Professor joined in, bowed, and retired.
This faithful discharge of duty, this almost intuitive insight into natural phenomena, and this persevering enthusiasm in the pursuit of truth, might alone have secured a great position in the scientific world, but they alone could never have won for him that large inheritance of respect and love. His contemporaries might have gazed upon him with an interest and admiration akin to that with which he watched a thunderstorm; but who feels his affections drawn out towards a mere intellectual Jupiter? We must look deeper into his character to understand this. There is a law well recognized in the science of light and heat, that a body can absorb only the same sort of rays which it is capable of emitting. Just so is it in the moral world. The respect and love of his generation were given to Faraday because his own nature was full of love and respect for others.

Each of these qualities—his respect for and love to others, or, more generally, his reverence and kindliness—deserves careful examination.

Throughout his life, Michael Faraday appeared as though standing in a reverential attitude towards Nature, Man, and God.

Towards Nature, for he regarded the universe as a vast congeries of facts which would not bend to human theories. Speaking of his own early life, he says: "I was a very lively imaginative person, and could believe in the 'Arabian Nights' as easily as in the 'Encyclopædia;' but facts were important to me, and saved me. I could trust a fact, and always cross-examined an assertion." He was indeed a true disciple of that philosophy which says, "Man, who is the
servant and interpreter of Nature, can act and understand no farther than he has, either in operation or in contemplation, observed of the method and order of Nature." ¹ And verily Nature admitted her servant into her secret chambers, and showed him marvels to interpret to his fellow-men more wonderful and beautiful than the phantasmagoria of Eastern romance.

His reverence towards Man showed itself in the respect he uniformly paid to others and to himself. Thoroughly genuine and simple-hearted himself, he was wont to credit his fellow-men with high motives and good reasons. This was rather uncomfortable when one was conscious of no such merit, and I at least have felt ashamed in his presence of the poor commonplace grounds of my words and actions. To be in his company was in fact a moral tonic. As he had learned the difficult art of honouring all men, he was not likely to run after those whom the world counted great. "We must get Garibaldi to come some Friday evening," said a member of the Institution during the visit of the Italian hero to London. "Well, if Garibaldi thinks he can learn anything from us, we shall be happy to see him," was Faraday's reply. This nobility of regard not only preserved him from envying the success of other explorers in the same field, but led him heartily to rejoice with them in their discoveries.

Dumas gives us a picture of Foucault showing Faraday some of his admirable experiments, and of the two men looking at one another with eyes moistened, but full of bright expression, as they stood hand in hand, silently

¹ Bacon's "Novum Organum," i. 1.
thankful—the one for the pleasure he had experienced, the other for the honour that had been done him. He also tells how, on another occasion, he breakfasted at Albemarle Street, and during the meal Mr. Faraday made some eulogistic remarks upon Davy, which were coldly received by his guest. After breakfast, he was taken downstairs to the ante-room of the lecture theatre, when Faraday, walking up to the portrait of his old master, exclaimed, "Wasn't he a great man!" then turning round to the window next the entrance door, he added, "It was there that he spoke to me for the first time." The Frenchman bowed. They descended the stairs again to the laboratory. Faraday pulled out an old note-book, and turning over its pages showed where Davy had entered the means by which the first globule of potassium was produced, and had drawn a line round the description, with the words, "Capital experiment." The French chemist owned himself vanquished, and tells the tale in honour of him who remembered the greatness and forgot the littlenesses of his teacher.

And the respect he showed to others he required to be shown to himself. It is difficult to imagine anyone taking liberties with him, and it was only in early life that there were small-minded creatures who would treat him not according to what he was, but according to the position from which he had risen. His servants and workpeople were always attentive to the smallest expression of his wish. Still, he did not "go through life with his elbows out." He once wrote to Matteucci: "I see that that moves you which would move me most, viz. the imputation of a want of good faith; and I cordially sympathize with any-
one who is so charged unjustly. Such cases have seemed to me almost the only ones for which it is worth while entering into controversy. I have felt myself not unfrequently misunderstood, often misrepresented, sometimes passed by, as in the cases of specific inductive capacity, magneto-electric currents, definite electrolytic action, &c. &c.; but it is only in the cases where moral turpitude has been implied, that I have felt called upon to enter on the subject in reply.” Yet, where he felt that his honour was impugned, none could be more sensitive or more resolute.

This desire to clear himself, combined with his delicate regard for the feelings of others, struck me forcibly in the following incident. At Mr. Barlow’s one Friday evening after the discourse, two or three other chemists and myself were commenting unfavourably on a public act of Faraday, when suddenly he appeared beside us. I did not hesitate to tell him my opinion. He gave me a short answer, and joined others of the company. A few days afterwards he found me in the laboratory preparing for a lecture, and, without referring directly to what I had said, he gave me a full history of the transaction in such a way as to show that he could not have acted otherwise, and at the same time to render any apology on my part unnecessary.

Intimately connected with his respect for Man as well as reverence for truth, was the flash of his indignation against any injustice, and his hot anger against any whom he discovered to be pretenders. When, for instance, he had convinced himself that the reputed facts of table-turning and spiritualism were false, his severe denunciation of the whole thing followed as a matter of course.
Thus, too, a story is told of his once taking the side of the injured in a street quarrel by the pump in Savile Row. One evening also at my house, a young man who has since acquired a scientific renown was showing specimens of some new compounds he had made. A well-known chemist objected that, after all, they were mere products of the laboratory: but Faraday came to the help of the young experimenter, and contended that they were chemical substances worthy of attention, just as much as though they occurred in nature.

His reverence for God was shown not merely by that homage which every religious man must pay to his Creator and Redeemer, but by the enfolding of the words of Scripture and similar expressions in such a robe of sacredness, that he rarely allowed them to pass his lips or flow from his pen, unless he was convinced of the full sympathy of the person with whom he was holding intercourse.

This characteristic reverence was united to an equally characteristic kindliness. This word does not exactly express the quality intended; but unselfishness is negative, goodness is too general, love is commonly used with special applications; kindness, friendship, geniality, and benevolence are only single aspects of the quality. Let the reader add these terms all together, and the resultant will be about what is meant.¹

Faraday's love to children was one way in which this kindliness was shown. Having no children of his own, he surrounded himself usually with his nieces: we have already had a glimpse of him heartily entering into their play, and

¹ Bence Jones has used the Greek ἀγάπη.
we are told how a word or two from Uncle would clear away all the trouble from a difficult lesson, that a long sum in arithmetic became a delight when he undertook to explain it, and that when the little girl was naughty and rebellious, he could gently win her round, telling her how he used to feel himself when he was young, and advising her to submit to the reproof she was fighting against. Nor were his own relatives the only sharers of this kindness. One friend cherishes among his earliest recollections, that of Faraday making for him a fly-cage and a paper purse, which had a real bright half-crown in it. When the present Mr. Baden Powell was a little fellow of thirteen, he used to give short lectures on chemistry in his father's house, and the philosopher of Albemarle Street liked to join the family audience, and would listen and applaud the experiments heartily. When one day my wife and I called on him with our children, he set them playing at hide-and-seek in the lecture theatre, and afterwards amused them upstairs with tuning-forks and resounding glasses. At a soirée at Mr. Justice Grove's, he wanted to see the younger children of the family; so the eldest daughter brought down the little ones in their nightgowns to the foot of the stairs, and Faraday expressed his gratification with "Ah! that's the best thing you have done to-night." And when his faculties had nearly faded, it is remembered how the stroking of his hand by Mr. Vincent's little daughter quickened him again to bright and loving interest.

It would be easy to multiply illustrations of this kindliness in various relations of life.

Here is one of his own telling, where certainly the effect
produced was not owing to any knowledge of how princely an intellect underlay the loving spirit. It is from a journal of his tour in Wales:

"Tuesday, July 20th.—After dinner I set off on a ramble to Melincourt, a waterfall on the north side of the valley, and about six miles from our inn. Here I got a little damsel for my guide who could not speak a word of English. We, however, talked together all the way to the fall, though neither knew what the other said. I was delighted with her burst of pleasure as, on turning a corner, she first showed me the waterfall. Whilst I was admiring the scene, my little Welsh damsel was busy running about, even under the stream, gathering strawberries. On returning from the fall I gave her a shilling that I might enjoy her pleasure; she curtsied, and I perceived her delight. She again ran before me back to the village, but wished to step aside every now and then to pull strawberries. Every bramble she carefully moved out of the way, and ventured her bare feet to try stony paths, that she might find the safest for mine. I observed her as she ran before me, when she met a village companion, open her hand to show her prize, but without any stoppage, word, or other motion. When we returned to the village I bade her good-night, and she bade me farewell, both by her actions and, I have no doubt, her language too."

In a letter which Mr. Abel, the Director of the Chemical Department of the War Establishment, has sent me, occur the following remarks:

"Early in 1849 I was appointed, partly through the kind recommendation of Faraday, to instruct the senior cadets
and a class of artillery officers in the Arsenal, in practical chemistry. On the occasion of my first attendance at Woolwich, when, having just reached manhood, I was about to deliver my first lecture as a recognized teacher, I was naturally nervous, and was therefore dismayed when on entering the class-room I perceived Faraday, who, having come to Woolwich, as usual, to prepare for his next morning’s lecture at the Military Academy, had been prompted by his kindly feelings to lend me the support of his presence upon my first appearance among his old pupils. In a moment Faraday put me completely at my ease; he greeted me heartily, saying, ‘Well, Abel, I have come to see whether I can assist you;’ and suit ing action to word, he bustled about, persisting in helping me in the arrangement of my lecture-table,—and at the close of my demonstration he followed me from pupil to pupil, aiding each in his first attempt at manipulation, and evidently enjoying most heartily the self-imposed duty of assistant to his young protégé.”

Another scientific friend, Mr. W. F. Barrett, writes:—“My first interview with Mr. Faraday ten years ago left an impression upon me I can never forget. Young student as I then was, thinking chiefly of present work and little of future prospects, and till then unknown to Mr. Faraday, judge of my feelings when, taking my hand in both of his, he said, ‘I congratulate you upon choosing to be a philosopher: it is an arduous life, but a noble and a glorious one. Work hard, and work carefully, and you will have success.’ The sweet yet serious way he said this made the earnestness of work become a very vivid reality, and led me to
doubt whether I had not dared to undertake too lofty a
pursuit. After this Mr. Faraday never forgot to remember
me in a number of thoughtful and delicate ways. He would
ask me upstairs to his room to describe or show him the
results of any little investigation I might have made: taking
the greatest interest in it all, his pleasure would seem to
equal and thus heighten mine, and then he would add words
of kind suggestion and encouragement. In the same kindly
spirit he has invited me to his house at Hampton Court,
or would ask me to join him at supper after the Friday
evening's lecture. His kindness is further shown by his
giving me a volume of his researches on Chemistry and
Physics, writing therein, 'From his friend Michael Faraday.'
Those who live alone in London, unknown and uncared-for
by any around them, can best appreciate these marks of
attention which Mr. Faraday invariably showed, and not
only to myself, but equally to my fellow-assistant in the
chemical laboratory."

The following instance among many that might be quoted
will illustrate his readiness to take trouble on behalf of
others. When Dr. Noad was writing his "Manual of Elec-
tricity," a doubt crossed his mind as to whether Sir Snow
Harris's unit jar gave a true measure of the quantity of
electricity thrown into a Leyden jar: he asked Faraday, and
his doubt was confirmed. Shortly afterwards he received
a letter beginning thus:—

"My dear Sir,

"Whilst looking over my papers on induction, I
was reminded of our talk about Harris's unit jar, and
recollected that I had given you a result just the reverse of my old conclusions, and, as I believe, of the truth. I think the jar is a true measure, so long as the circumstances of position, &c., are not altered; for its discharge and the quantity of electricity thus passed on depends on the constant relation of the balls connected with the inner and outer surface coating to each other, and is independent of their joint relation to the machine, battery, &c. . . . Perhaps I have not made my view clear, but next time we meet, remind me of the matter.

"Ever truly yours,

"M. Faraday."

And just a week afterwards Dr. Noad received a second letter, surmounted by a neat drawing, and describing at great length experiments that the Professor had since made in order to place the matter beyond doubt.

And it was not merely for friends and brother savants that he would take trouble. Old volumes of the Mechanics' Magazine bear testimony to the way in which he was asked questions by people in all parts of the kingdom, and that he was accustomed to give painstaking answers to such letters.

"Do to others as you would wish them to do to you," was a precept often on his lips. But I have heard that he was sometimes charged with transgressing it himself, inasmuch as he took an amount of trouble for other people which he would have been very distressed if they had taken for him.

His charities were very numerous,—not to beggars; for
them he had the Mendicity Society's tickets,—but to those whose need he knew. The porter of the Royal Institution has shown me, among his treasured memorials, a large number of forms for post-office orders, for sums varying from 5s. to 5l., which Faraday was in the habit of sending in that way to different recipients of his thoughtful bounty. Two or three instances have come to my knowledge of his having given more considerable sums of money—say 20l.—to persons who he thought would be benefited by them. In some instances the gift was called a loan, but he lent "not expecting again," and entered into the spirit of the injunction, "When thou doest alms, let not thy left hand know what thy right hand doeth."

This principle was in fact stated in one of his letters to a friend: "As a case of distress I shall be very happy to help you as far as my means allow me in such cases; but then I never let my name go to such acts, and very rarely even the initials of my name." His contributions to the general funds of his Church were kept equally secret.

From all these circumstances, therefore, it is impossible to gauge the amount of his charitable gifts; but when it is remembered that for many years his income from different sources must have been 1,000l. or 1,200l., that he and Mrs. Faraday lived in a simple manner—comfortably, it is true, but not luxuriously—and that his whole income was disposed of in some way, there can be little doubt that his gifts amounted to several hundred pounds per annum.
But it was not in monetary gifts alone that his kindness to the distressed was shown. Time was spent as freely as money; and an engrossing scientific research would not be allowed to stand in the way of his succouring the sorrowful. Many persons have told me of his self-denying deeds on behalf of those who were ill, and of his encouraging words. He had indeed a heart ever ready to sympathize. Thus, meeting once in the neighbourhood of Hampton Court an old friend who had retired there invalided and was being drawn about in a Bath chair, he is said to have burst into tears.

When eight years ago my wife and my only son were taken away together, and I lay ill of the same fatal disease, he called at my house, and in spite of remonstrances found his way into the infected chamber. He would have taken me by the hand if I had allowed him; and then he sat a while by my bedside, consoling me with his sympathy and cheering me with the Christian hope.

It is no wonder that this kindliness took the hearts of men captive; and this quality was, like mercy, "twice blessed; it blesseth him that gives, and him that takes." The feeling awakened in the minds of others by this kindliness was indeed a source of the purest pleasure to himself; trifling proofs of interest or love could easily move his thankfulness; and he richly enjoyed the appreciation of his scientific labours. This would often break forth in words. Thus in the middle of a letter to A. De la Rive, principally on scientific matters, he writes:—

"Do you remember one hot day, I cannot tell how many years ago, when I was hot and thirsty in Geneva, and you took me to your house in the town and gave me
a glass of water and raspberry vinegar? That glass of
drink is refreshing to me still."

Again: "Tyndall, the sweetest reward of my work is
the sympathy and good-will which it has caused to flow
in upon me from all quarters of the world."

But to estimate rightly this amiability of character, it
must be distinctly remembered that it was not that super-
abundance of good-nature which renders some men in-
capable of holding their own, or rebuking what they know
to be wrong. In proof of this his letters to the spiritualists
might be quoted; but the following have not hitherto seen
the light. They are addressed to two different parties
whose inventions came officially before him.

"You write 'private' on the outside of your official com-
munication, and 'confidential' within. I will take care to
respect these instructions as far as falls within my duty; but
I can have nothing private or confidential as regards the
Trinity House, which is my chief. Whatever opinion I send
to them I must accompany with the papers you send me.
If therefore you wish anything held back from them, send
me another official answer, and I will return you the one
I have, marked 'confidential.' Our correspondence is
indeed likely to become a little irregular, because your
papers have not come to me through the Trinity House.
You will feel that I cannot communicate any opinion I
may form to you: I am bound to the Trinity House, to
whom I must communicate in confidence. I have no
objection to your knowing my conclusions; but the Trinity
House is the fit judge of the use it may make of them, or
the degree of confidence they may think they deserve, or
the parties to whom they may choose to communicate them."

By a foot-note it appears that the *private and confidential* communication was returned to the writer, by desire, four days afterwards.

"Sir,

"I have received your note and read your pamphlet. There is nothing in either which makes it at all desirable to me to see your apparatus, for I have not time to spare to look at a matter two or three times over. In referring to ——, I suppose you refer also to his application to the Trinity House. In that case I shall hear from him *through the Trinity House*. He has, however, certain inquiries (which I have no doubt have gone to him long ago through the Trinity House) to answer before I shall think it necessary to take any further steps in the matter. With these, however, I suppose you have nothing to do.

"Are you aware that many years ago our Institution was lighted up for months, if not for years together, by oil-gas (or, as you call it, olefiant gas), compressed into cylinders to the extent of thirty atmospheres, and brought to us from a distance? I have no idea that the patent referred to at the bottom of page 9 could stand for an hour in a court of law. I think, too, you are wrong in misapplying the word *olefiant*. It already belongs to a particular gas, and cannot, without confusion, be used as you use it.

"I am, Sir,

"Your obedient Servant,

"M. Faraday."
"Sir,

"Thanks for your letter. At the close of it you ask me privately and confidingly for the encouragement my opinion might give you if this power gas-light is fit for lighthouses. I am unable to assent to your request, as my position at the Trinity House requires that I should be able to take up any subject, applications, or documents they may bring before me in a perfectly unbiassed condition of mind.

"I am, Sir,

"Yours very truly,

"M. Faraday."

The kindliness which shed its genial radiance on every worthy object around, glowed most warmly on the domestic hearth. Little expressions in his writings often reveal it, as when we read in his Swiss journal about Interlaken: "Clout-nail making goes on here rather considerably, and is a very neat and pretty operation to observe. I love a smith's shop, and anything relating to smithery. My father was a smith."

When he was sitting to Noble for his bust, it happened one day that the sculptor, in giving the finishing touches to the marble, made a clattering with his chisels: noticing that his sitter appeared distraight, he said that he feared the jingling of the tools had annoyed him, and that he was weary. "No, my dear Mr. Noble," said Faraday, putting his hand on his shoulder, "but the noise reminded me of my father's anvil, and took me back to my boyhood."

This deep affection peeps out constantly in his letters to different members of his family, "bound up together," as
he wrote to his sister-in-law, "in the one hope, and in faith and love which is in Jesus Christ." But it was towards his wife that his love glowed most intensely. Yet how can we properly speak of this sacred relationship, especially as the mourning widow is still amongst us? It may suffice to catch the glimpse that is reflected in the following extract from a letter he wrote to Mrs. Andrew Crosse on the death of her husband:

"July 12, 1855.

". . . . Believe that I sympathize with you most deeply, for I enjoy in my life-partner those things which you speak of as making you feel your loss so heavily.

"It is the kindly domestic affections, the worthiness, the mutual aid in sorrow, the mutual joy in happiness that has existed, which makes the rupture of such a tie as yours so heavy to bear; and yet you would not wish it otherwise, for the remembrance of those things brings solace with the grief. I speak, thinking what my own trouble would be if I lost my partner; and I try to comfort you in the only way in which I think I could be comforted.

"M. Faraday."

There was, as Tyndall has observed, a mixture of chivalry with this affection. In his book of diplomas he made the following remarkable entry:

"25th January, 1847.

"Amongst these records and events, I here insert the date of one which, as a source of honour and happiness, far exceeds all the rest. We were married on June 12, 1821."

"M. Faraday."
On the character of Faraday, these two qualities of reverence and kindliness have appeared to me singularly influential. Among the ways in which they manifested themselves was that beautiful combination of firmness and gentleness which has been frequently remarked: intimately associated with them also were his simplicity and truthfulness. These points must have made themselves evident already, but they deserve further illustration.

In his early days, "one Sabbath morning his swift and sober steps were carrying him along the Holborn pavement towards his meeting-house, when some small missile struck him smartly on the hat. He would have thought it an accident and passed on, when a second and a third rap caused him to turn and look just in time to perceive a face hastily withdrawn from a window in the upper story of a closed linendraper's establishment. Roused by the affront, he marched up to the door and rapped. The servant opening it said there was no one at home, but Faraday declared he knew better, and desired to be shown upstairs. Opposition still being made, he pushed on, made his way up through the house, opened the door of an upper room, discovering a party of young drapers' assistants, who at once professed they knew nothing of the motive of this sudden visit. But the hunter had now run his game to earth: he taxed them sharply with their annoyance of wayfarers on the Sabbath, and said that unless an apology were made at once, they should hear from their employer of something much to their disadvantage. An apology was made forthwith." ¹

¹ For this anecdote, and some others in inverted commas, I am indebted to Mr. Frank Barnard.
Long, long after this event, Dr. and Mrs. Faraday, with Dr. Tyndall, were returning one evening from Mr. Gassiot's, on Clapham Common: a dense fog came on, and they did not know where they were. The two gentlemen got out of their vehicle, and walked to a house and knocked. A man appeared, first at a window and afterwards at the door, very angry indeed at the disturbance, and demanding to know their business. Faraday, in his calm, irresistible manner, explained the situation and their object in knocking. The man instantly changed his tone, looked foolish, and muttered something about being in a fright lest his house of business was on fire.

As to simplicity of character: when, in the course of writing this book, I have spoken to his acquaintances about Faraday, the most frequent comment has been in such words as, ‘Oh! he was a beautiful character, and so simple-minded.’ I have tried to ascertain the cause of this simple-mindedness, and I believe it was the consciousness that he was meaning to do right himself, and the belief that others whom he addressed meant to do right too, and so he could just let them see everything that was passing through his mind. And while he knew no reason for concealment, there was no trace of self-conceit about him, nor any pretence at being what he was not. To illustrate this quality is not so easy; the indications of it, like his humour, were generally too delicate to be transferred to paper; but perhaps the following letter will do as well as anything else, for there are few philosophers who could have written so naturally about the pleasures of a pantomime and then about his highest hopes:—
"ROYAL INSTITUTION, LONDON, W.
1st January, 1857.

"MY DEAR MISS COUTTS,

"You are very kind to think of our pleasure and
send us entrance to your box for to-morrow night. We
thank you very sincerely, and I mean to enjoy it, for I still
have a sympathy with children and all their thoughts and
pleasure. Permit me to wish you very sincerely a happy
year; and also to Mrs. Brown. With some of us our
greatest happiness will be content mingled with patience;
but there is much happiness in that and the expected end.

"Ever your obliged Servant,

"M. FARADAY." 1

As to truthfulness: he was not only truthful in the com-
mon acceptation of the word, but he did not allow, either in
himself or others, hasty conclusions, random assertions, or
slippery logic. "At such times he had a way of repeating
the suspicious statement very slowly and distinctly, with an
air of wondering scrutiny as if it had astonished him. His
irony was then irresistible, and always produced a modifica-
tion of the objectionable phrase."

"An acquaintance rather given to inflict tedious narratives
on his friends was descanting to Faraday on the iniquity of
some coachman who had set him down the previous night

1 In another letter that Lady Burdett Coutts has kindly sent me,
Faraday says: "We had your box once before, I remember, for a panto-
mime, which is always interesting to me because of the immense con-
centration of means which it requires." In a third he makes admiring
comments on Fechter.
in the middle of a dark and miry road,—'in fact,' said the
irksome drawler, 'in a perfect morass; and there I was, as
you may imagine, half the night, plunging and struggling to
get out of this dreadful morass.' 'More ass you!' rapped
out the philosopher at the top of his scale of laughter.'
This was a rare instance, for it was only when much
provoked that he would perpetrate a pun, or depart from
the kind courtesy of his habitual talk.

That he was quite ready to give up a statement or view
when it was proved by others to be incorrect, is shown by
the Preface to the volumes in which are reprinted his
"Experimental Researches." "In giving advice," says
Miss Reid, "he always went back to first principles, to the
true right and wrong of questions, never allowing deviations
from the simple straightforward path of duty to be justified
by custom or precedent; and he judged himself strictly by
the same rule which he laid down for others."

These beauties of character were not marred by serious
defects or opposing faults. "He could not be too closely
approached. There were no shabby places or ugly corners
in his mind." Yet he was very far from being one of those
passionless men who resemble a cold statue rather than
throbbing flesh and blood. He was no "model of all the
virtues," dreadfully uninteresting, and discouraging to those
who feel such calm perfection out of their reach. His
inner life was a battle, with its wounds as well as its
victory. Proud by nature, and quick-tempered, he must
have found the curb often necessary; but notwithstanding
the rapidity of his actions and thoughts, he knew how to
keep a tight rein on that fiery spirit.
I have listened attentively to every remark in disparagement of Faraday's character, but the only serious ones have appeared to me to arise from a misunderstanding of the man, a misunderstanding the more easy because his standard of right and wrong often differed from the notions current around him. Still, it may be true that his extreme sensitiveness led him sometimes to do scant justice to those who he imagined were treading too closely in his own footsteps; as, for instance, when Nobili brought out some beautiful experiments on magnetism, just after the short notice of his own discoveries in 1831 which Faraday had sent to M. Hachette, and which was communicated to the Académie des Sciences. It is true also that, with his great caution and his repugnance to moral evil, he was more disposed to turn away in disgust from an erring companion than to endeavour to reclaim him. It has also been imputed to him as a fault that he founded no school, and took no young man by the hand as Davy had taken him. That this was rather his misfortune than his fault, would appear from words he once wrote to Miss Moore: "I have often endeavoured to discover a genius, but have not been very successful, though many cases seemed promising at first." The world would doubtless have been the gainer if he had stamped his own image on the minds of a group of disciples: but a man cannot do everything; and had Faraday been more of a teacher, he would perhaps have been less of an investigator.

It has been previously remarked that Faraday took little part in social movements, and went little into society, but it must not be supposed that he was by any means unsocial.
It seems probable that his freedom in this matter was somewhat hampered by the principles in which he had been brought up: it is certain that he was restrained by the desire to give all the time and energy he could to scientific research. Yet pleasant stories are told of his occasional appearances at social gatherings. Thus he liked to attend the Royal Academy dinners, and in earlier days he enjoyed the artistic and musical conversazioni at Hullmandel’s, where Stanfield Turner and Landseer met Garcia and Malibran; and sometimes he joined this pleasant company at supper and charades, at others in their excursions up the river in an eight-oared cutter. Captain Close has described to me how, when the French Lighthouse authorities put up the screw-pile light on the sands near Calais, they invited the Trinity House officers and Faraday to inspect it. A dinner was arranged for them after the inspection, and M. Reynaud proposed the health of the étranger célèbre. A young engineer took exception to Faraday being called a stranger—since he had been at St. Cyr he had known the great Englishman well by his works. The Professor replied to the compliment in the language of his hosts, with a few of his happy and kindly remarks. A gentleman high in the diplomatic service, who was present, remarked that Faraday had said many things which were not French, but not a word which ought not to be so.

More unrestricted was Faraday’s sympathy with Nature. He felt the poetry of the changing seasons, but there were two aspects of Nature that especially seemed to claim communion with his spirit: he delighted in a thunderstorm, and he experienced a pleasurable sadness as the orange
sunset faded into the evening twilight. There are other minds to which both these sensations are familiar, but they seem to have been felt with great intensity by him. No doubt his electrical knowledge added much to his interest in the grand discharges from the thunder-clouds, but it will hardly account for his standing long at a window watching the vivid flashes, a stranger to fear, with his mind full of lofty thoughts, or perhaps of high communings. Sometimes, too, if the storm was at a little distance, he would summon a cab, and, in spite of the pelting rain, drive to the scene of awful beauty.

One clear starry night Captain Close quoted to him the words of Lorenzo in the "Merchant of Venice":

. "Look, how the floor of heaven
Is thick inlaid with patines of bright gold;
There's not the smallest orb, which thou behold'st,
But in his motion like an angel sings,
Still quiring to the young-eyed cherubins:
Such harmony is in immortal souls;
But, whilst this muddy vesture of decay
Doth grossly close us in, we cannot hear it."

Faraday, who happened not to be familiar with the passage, made his friend repeat it over and over again as he drank in the whole meaning of the poetry, for there is a true sense in which no other mortal had ever opened his ears so fully to the harmony of the universe.

From the plains of mental mediocrity there occasionally rise the mountains of genius, and from the dead level of selfish respectability there stand out now and then the peaks of moral greatness. Neither kind of excellence is so common
as we could wish it, and it is a rare coincidence when, as in Socrates, the two meet in the same individual. In Faraday we have a modern instance. There are persons now living who watched this man of strong will and intense feelings raising himself from the lower ranks of society, yet without losing his balance; rather growing in simplicity, disinterestedness, and humility as princes became his correspondents and all the learned bodies of the world vied with each other to do him homage; still finding his greatest happiness at home, though reigning in the affections of all his fellows,—loving every honest man, however divergent in opinion, and loved most by those who knew him best.

This is the phenomenon. By what theory is it to be accounted for?

The secret did not lie in the nature of his pursuits. This cannot be better shown than in the following incident furnished me by Mrs. Crosse:—"One morning, a few months after we were married, my husband took me to the Royal Institution to call on Mr. and Mrs. Faraday. I had not seen the laboratory there, and the philosopher very kindly took us over the Institution, explaining for my information many objects of interest. His great vivacity and cheeriness of manner surprised me in a man who devoted his life to such abstruse studies, but I have since learnt to know that the highest philosophical nature is often, indeed generally, united with an almost childlike simplicity.

"After viewing the ample appliances for experimental research, and feeling impressed by the scientific atmosphere of the place, I turned and said, 'Mr. Faraday, you must be very happy in your position and with your pursuits, which
elevate you entirely out of the meaner aspects and lower aims of common life.'

"He shook his head, and with that wonderful mobility of countenance which was characteristic, his expression of joyousness changed to one of profound sadness, and he replied: 'When I quitted business, and took to science as a career, I thought I had left behind me all the petty mean-nesses and small jealousies which hinder man in his moral progress; but I found myself raised into another sphere, only to find poor human nature just the same everywhere—subject to the same weaknesses and the same self-seeking, however exalted the intellect.'

"These were his words as well as I can recollect; and, looking at that good and great man, I thought I had never seen a countenance which so impressed me with the characteristic of perfect unworldliness. We know how his life proved that this rare qualification was indeed his."

"Childlike simplicity:" "unworldliness." Where was the tree rooted that bore such beautiful blossoms? Faraday had learnt in the school of Christ to become "a little child," and he loved not the world because the love of the Father was in him.

We have a charming glimpse of this in an extract which Professor Tyndall has given from an old paper in which he wrote his impressions after one of his earliest dinners with the philosopher:—"At two o'clock he came down for me. He, his niece, and myself formed the party. 'I never give dinners,' he said; 'I don't know how to give dinners; and I never dine out. But I should not like my friends to attribute this to a wrong cause. I act thus for the sake
of securing time for work, and not through religious motives as some imagine.' He said grace. I am almost ashamed to call his prayer a 'saying' of grace. In the language of Scripture, it might be described as the petition of a son into whose heart God had sent the Spirit of His Son, and who with absolute trust asked a blessing from his father. We dined on roast beef, Yorkshire pudding, and potatoes, drank sherry, talked of research and its requirements, and of his habit of keeping himself free from the distractions of society. He was bright and joyful—boylike, in fact, though he is now sixty-two. His work excites admiration, but contact with him warms and elevates the heart. Here, surely, is a strong man. I love strength, but let me not forget the example of its union with modesty, tenderness, and sweetness, in the character of Faraday."

But his religion deserves a closer attention. When an errand-boy, we find him hurrying the delivery of his newspapers on a Sunday morning so as to get home in time to make himself neat to go with his parents to chapel: his letters when abroad indicate the same disposition; yet he did not make any formal profession of his faith till a month after his marriage, when nearly thirty years of age. Of his spiritual history up to that period little is known, but there seem to be good grounds for believing that he did not accept the religion of his fathers without a conscientious inquiry into its truth. It would be difficult to conceive of his acting otherwise. But after he joined the Sandemanian Church, his questionings were probably confined to matters of practical duty; and to those who knew him best nothing could appear stronger than his conviction of the reality of
the things he believed. In order to understand the life and character of Faraday, it is necessary to bear in mind not merely that he was a Christian, but that he was a Sandemanian. From his earliest years that religious system stamped its impress deeply on his mind, it surrounded the blacksmith's son with an atmosphere of unusual purity and refinement, it developed the unselfishness of his nature, and in his after career it fenced his life from the worldliness around, as well as from much that is esteemed as good by other Christian bodies. To this small self-contained sect he clung with warm attachment; he was precluded from Christian communion or work outside their circle, but his sympathies at least burst all narrow bounds. Thus the Abbé Moigno tells us that at Faraday's request he one day introduced him to Cardinal Wiseman. The interview was very cordial, and his Eminence did not hesitate frankly and good-naturedly to ask Faraday if, in his deepest conviction, he believed all the Church of Christ, holy, catholic, and apostolical, was shut up in the little sect in which he bore rule. "Oh no!" was the reply; "but I do believe from the bottom of my soul that Christ is with us." There were other points, too, in his character which reflected the colouring of the religious school to which he belonged. Thus, while humility is inseparable from a Christian life, there is a special phase of that virtue bred of those doctrines which teach that all our righteousness must be the unmerited gift of another: these doctrines are strongly insisted upon in the Sandemanian Church, and this humility was acquired in an intense degree by its minister. Again, while all Christians deplore the terrible amount of folly and sin in the world,
most recognize also a large amount of good, and believe in progressive improvement; but small communities are apt to take gloomy views, and so did Faraday, notwithstanding his personal happiness, and his firm conviction that "there is One above who worketh in all things, and who governs even in the midst of that misrule to which the tendencies and powers of men are so easily perverted."

In writing to Professor Schönbein and a few other kindred spirits, he would turn naturally enough from scientific to religious thoughts, and back again to natural philosophy, but he generally kept these two departments of his mental activity strangely distinct, though of course it was well known that the Professor at Albemarle Street was one of that long line of scientific men, beginning with the savants of the East, who have brought to the Redeemer the gold, frankincense, and myrrh of their adoration.

But the peculiar features of Faraday's spiritual life are matters of minor importance: the genuineness of his religious character is acknowledged by all. We have admired his faithfulness, his amiability of disposition, and his love of justice and truth: how far these qualities were natural gifts, like his clearness of intellect, we cannot precisely tell; but that he exercised constant self-control without becoming hard, ascended the pathway of fame without ever losing his balance, and shed around himself a peculiar halo of love and joyousness, must be attributed in no small degree to a heart at peace with God, and to the consciousness of a higher life.
SECTION III.

FRUITS OF HIS EXPERIENCE.

Those who loved Faraday would treasure every word that he wrote, and to them the life and letters which Bence Jones has given to the world will be inestimable; but from the multitude who knew him only at a distance, we can expect no enthusiasm of admiration. Yet all will readily believe that through the writings of such a genius there must be scattered nuggets of intellectual gold, even when he is not treating directly of scientific subjects. Some of these relate to questions of permanent interest, and such nuggets it is my aim to separate and lay before the reader.

When quite a young man he drew the following ideal portrait:—"The philosopher should be a man willing to listen to every suggestion, but determined to judge for himself. He should not be biassed by appearances, have no favourite hypothesis, be of no school, and in doctrine have no master. He should not be a respecter of persons, but of things. Truth should be his primary object. If to these qualities be added industry, he may indeed hope to walk within the veil of the temple of Nature." This ideal
he must steadily have kept before him, and not unfrequently in after days he gave utterance to similar thoughts. Here are two instances, the first from a lecture thirty years afterwards, the second from a private letter:—

"We may be sure of facts, but our interpretation of facts we should doubt. He is the wisest philosopher who holds his theory with some doubt; who is able to proportion his judgment and confidence to the value of the evidence set before him, taking a fact for a fact, and a supposition for a supposition; as much as possible keeping his mind free from all source of prejudice, or, where he cannot do this (as in the case of a theory), remembering that such a source is there." The letter is to Mr. Frederick Field, and relates to a paper on the existence of silver in the water of the ocean.

"ROYAL INSTITUTION, 21st October, 1856.

"My dear Sir,

"Your paper looks so well, that though I am of course unable to become security for the facts, I have still thought it my duty to send it to the Royal Society. Whether it will appear there or not I cannot say,—no one can say even for his own papers; but for my part, I think that as facts are the foundation of science, however they may be interpreted, so they are most valuable, and often more so than the interpretations founded upon them. I hope your further researches will confirm those you have obtained: but I would not be too hasty with them,—rather wait a while, and make them quite secure.

"I am, Sir, your obliged Servant,

"M. Faraday."
How pleasant it would have been to peep into his mind, and watch the process by which he was transferred into the very image of his ideal philosopher! He has partially told us the secret in two remarkable lectures, one of which was delivered before the City Philosophical Society when he was only twenty-seven years of age, while the other formed part of a series on Education at Albemarle Street. Copious extracts from the first are given by Dr. Bence Jones; the second was published at the time. In the early lecture, which is "On the Forms of Matter," he points out the advantages and dangers of systematizing, and winds up his remarks with—

"Nothing is more difficult and requires more care than philosophical deduction, nor is there anything more adverse to its accuracy than fixidity of opinion. The man who is certain he is right is almost sure to be wrong, and he has the additional misfortune of inevitably remaining so. All our theories are fixed upon uncertain data, and all of them want alteration and support. Ever since the world began opinion has changed with the progress of things; and it is something more than absurd to suppose that we have a sure claim to perfection, or that we are in possession of the highest stretch of intellect which has or can result from human thought. Why our successors should not displace us in our opinions, as well as in our persons, it is difficult to say; it ever has been so, and from analogy would be supposed to continue so; and yet, with all this practical evidence of the fallibility of our opinions, all, and none more than philosophers, are ready to assert the real truth of their opinions."
In his discourse entitled "Observations on Mental Education," like a skilful physician he first determines what is the great intellectual disease from which the community suffers—"deficiency of judgment,"—and then he lays down rules by which each man may attempt his own cure. For this self-education, "it is necessary that a man examine himself, and that not carelessly. . . . A first result of this habit of mind will be an internal conviction of ignorance in many things respecting which his neighbours are taught, and that his opinions and conclusions on such matters ought to be advanced with reservation. A mind so disciplined will be open to correction upon good grounds in all things, even in those it is best acquainted with; and should familiarize itself with the idea of such being the case. . . . It is right that we should stand by and act on our principles, but not right to hold them in obstinate blindness, or retain them when proved to be erroneous." And then he gives cases from his own mental history:—"I remember the time when I believed a spark was produced between voltaic metals as they approached to contact (and the reasons why it might be possible yet remain); but others doubted the fact and denied the proofs, and on re-examination I found reason to admit their corrections were well founded. Years ago I believed that electrolites could conduct electricity by a conduction proper; that has also been denied by many through long time: though I believed myself right, yet circumstances have induced me to pay that respect to criticism as to re-investigate the subject, and I have the pleasure of thinking that nature confirms my original conclusions. So, though evidence may appear to pre-
ponderate extremely in favour of a certain decision, it is wise and proper to hear a counter-statement. You can have no idea how often, and how much, under such an impression, I have desired that the marvellous descriptions which have reached me might prove, in some points, correct; and how frequently I have submitted myself to hot fires, to friction with magnets, to the passes of hands, &c., lest I should be shutting out discovery;—encouraging the strong desire that something might be true, and that I might aid in the development of a new force of nature.” He turns then to another evil, and its cure: “The tendency to deceive ourselves regarding all we wish for, and the necessity of resistance to these desires. The force of the temptation which urges us to seek for such evidence and appearances as are in favour of our desires, and to disregard those which oppose them, is wonderfully great. In this respect we are all, more or less, active promoters of error.” He winds up his remarks upon this subject with the italicized sentence: “I will simply express my strong belief that that point of self-education which consists in teaching the mind to resist its desires and inclinations until they are proved to be right, is the most important of all, not only in things of natural philosophy, but in every department of daily life.” He turns then to the necessity of a “habit of forming clear and precise ideas,” and of expressing them in “clear and definite language”:—“When the different data required are in our possession, and we have succeeded in forming a clear idea of each, the mind should be instructed to balance them one against another, and not suffered carelessly to hasten to a conclusion.” “As
a result of this wholesome mental condition, we should be able to form a proportionate judgment;” that is, one proportionate to the evidence, ranging through all degrees of probability—while he adds: “Frequently the exercise of the judgment ought to end in absolute reservation.”

“The education which I advocate,” says Faraday, “will require patience and labour of thought in every exercise tending to improve the judgment. It matters not on what subject a person’s mind is occupied, he should engage in it with the conviction that it will require mental labour.” “Because the education is internal, it is not the less needful; nor is it more the duty of a man that he should cause his child to be taught, than that he should teach himself. Indolence may tempt him to neglect the self-examination and experience which form his school, and weariness may induce the evasion of the necessary practices; but surely a thought of the prize should suffice to stimulate him to the requisite exertion; and to those who reflect upon the many hours and days devoted by a lover of sweet sounds to gain a moderate facility upon a mere mechanical instrument, it ought to bring a correcting blush of shame if they feel convicted of neglecting the beautiful living instrument wherein play all the powers of the mind.”

At the commencement of this discourse the lecturer felt called upon to limit the range of his remarks:—“High as man is placed above the creatures around him, there is a higher and far more exalted position within his view; and the ways are infinite in which he occupies his thoughts about the fears, or hopes, or expectations of a future life. I believe that the truth of that future cannot be brought to
his knowledge by any exertion of his mental powers, however exalted they may be; that it is made known to him by other teaching than his own, and is received through simple belief of the testimony given. Let no one suppose for a moment that the self-education I am about to commend in respect of the things of this life extends to any considerations of the hope set before us, as if man by reasoning could find out God. It would be improper here to enter upon this subject further than to claim an absolute distinction between religious and ordinary belief. I shall be reproached with the weakness of refusing to apply those mental operations which I think good in respect of high things to the very highest. I am content to bear the reproach. Yet, even in earthly matters, I believe that 'the invisible things of Him from the creation of the world are clearly seen, being understood by the things that are made, even His eternal power and Godhead;' and I have never seen anything incompatible between those things of man which can be known by the spirit of man which is within him, and those higher things concerning his future which he cannot know by that spirit." There is of course a certain truth in this passage; spiritual discernment is a real thing possessed by some, and not by others; yet is there this absolute distinction between religious and ordinary belief? Surely there is the same opportunity and the same necessity for careful judgment, and for resistance to prejudice or preference, when we are weighing the credentials of anything that may come before us purporting to be a revelation from above; surely too, if we have satisfied ourselves that we possess such a revelation, we must seek for the same
clearness of ideas, and must exercise the same patience and labour of thought, if we would understand it aright. That mental discipline which fits us to interpret the works of God cannot but be akin to the intellectual training required for interpreting His word.

Since Faraday thought and wrote, the question of public education has taken a far deeper hold on the feelings and the hopes of the nation, and it is not merely the extent of the instruction, but its nature also, that is discussed. It is held to be no longer right that the minds of our youth should be fed almost exclusively on the dry husks of classic or mediæval knowledge, while the rich banquet of modern discovery remains untasted. Yet it is hard for natural science to gain an honoured place in our venerable scholastic institutions. Faraday, however, had long formed his conclusions on this subject. In one of his Friday evening discourses he says: "The development of the applications of physical science in modern times has become so large and so essential to the well-being of man, that it may justly be used as illustrating the true character of pure science as a department of knowledge, and the claims it may have for consideration by Governments, Universities, and all bodies to whom is confided the fostering care and direction of learning. As a branch of learning, men are beginning to recognize the right of science to its own particular place; for, though flowing in channels utterly different in their course and end from those of literature, it conduces not less, as a means of instruction, to the discipline of the mind, whilst it ministers, more or less, to the wants, comforts, and proper pleasure, both mental and bodily, of
every individual of every class in life. Until of late years, the education for, and recognition of it by the bodies which may be considered as governing the general course of all education, have been chiefly directed to it only as it could serve professional services, viz. those which are remunerated by society; but now the fitness of university degrees in science is under consideration, and many are taking a high view of it, as distinguished from literature, and think that it may well be studied for its own sake, i.e. as a proper exercise of the human intelligence, able to bring into action and development all the powers of the mind. As a branch of learning, it has (without reference to its applications) become as extensive and varied as literature; and it has this privilege, that it must ever go on increasing."

On the subject of scientific education Faraday was examined by the Public Schools Commission, November 18th, 1862, and his sentiments of course appear in their report. He said to them: "That the natural knowledge which has been given to the world in such abundance during the last fifty years should remain untouched, and that no sufficient attempt should be made to convey it to the young mind growing up and obtaining its first views of those things, is to me a matter so strange that I find it difficult to understand. Though I think I see the opposition breaking away, it is yet a very hard one to overcome. That it ought to be overcome I have not the least doubt in the world." Lord Clarendon asked him: "You think it is now knocking at the door, and there is a prospect of the door being opened?" "Yes," answered Faraday, "and it
will make its way, or we shall stay behind other nations in our mode of education." He had been led to the conviction that the exclusive attention to literary studies created a tendency to regard other things as nonsense, or belonging only to the artisan, and so the mind is positively injured for the reception of real knowledge. He says: "It is the highly educated man that we find coming to us again and again, and asking the most simple question in chemistry or mechanics; and when we speak of such things as the conservation of force, the permanency of matter, and the unchangeability of the laws of nature, they are far from comprehending them; though they have relation to us in every action of our lives. Many of these instructed persons are as far from having the power of judging of these things as if their minds had never been trained."

He gives his own opinion as to the precise course to be pursued with great diffidence; but it is evident that he would begin the education in natural science at a pretty early age, and in all cases carry it up to a certain point. One-fifth of a boy's time might be devoted to this purpose at present, though in less than half a century he thinks science will deserve and obtain a far larger share. Supposing a boy of eleven years of age and of ordinary intelligence at one of our public schools: "I would teach him," he says, "all those things that come before classics in the programme of the London University,—Mechanics, hydrostatics, hydraulics, pneumatics, acoustics, and optics. They are very simple and easily understood when they are looked at with attention by both man and boy. With a candle, a lamp, and a lens or two, an intelligent instructor might teach
optics in a very short time; and so with chemistry. I should desire all these." Much would depend on the competency and earnestness of the teacher. "Good lectures might do a great deal. They would at all events remove the absolute ignorance which sometimes now appears, but would give a very poor knowledge of natural things."

Perhaps these opinions of one whose lips are now silent will yet have their weight in the discussion of this question both in our highest seats of learning and in those educational parliaments which have been just called into existence in almost every town and district of our country.

From the somewhat disparaging remarks about lectures quoted above, it must not be supposed that this prince of lecturers depreciated his office. "Lectures," he said, "depend entirely for their value upon the manner in which they are given. It is not the matter, it is not the subject, so much as the man; but if he is not competent, and does not feel that there is a need of competency, to convey his ideas gently and quietly and simply to the young mind, he simply throws up obstacles, and will be found using words which they will not comprehend." These were the words of his later days, but fortunately he felt "the need of competency" before his own habits were formed, and in four letters to Abbott we find wonderfully sagacious observations on the matter, which it would be well for any young lecturer to study. He describes the proper arrangement of a lecture-room, dwelling on the necessity of good ventilation; and then, having considered the fittest subjects for popular lectures, he turns to the character of the audience, and shows how that must be studied; for some expect to be entertained
by the manner of the lecturer as well as his subject, while others care for something which will instruct. He dwells on the superiority of the eye over the ear as a channel of knowledge, and lays down some rules for this kind of instruction, which he of all men subsequently carried out to perfection. "Apparatus is an essential part of every lecture in which it can be introduced. . . . Diagrams and tables, too, are necessary, or at least add in an eminent degree to the illustration and perfection of a lecture. When an experimental lecture is to be delivered, and apparatus is to be exhibited, some kind of order should be observed in the arrangement of them on the lecture table. Every particular part illustrative of the lecture should be in view; no one thing should hide another from the audience, nor should anything stand in the way of or obstruct the lecturer. They should be so placed, too, as to produce a kind of uniformity in appearance. No one part should appear naked and another crowded, unless some particular reason exists and makes it necessary to be so. At the same time the whole should be so arranged as to keep one operation from interfering with another." A good delivery comes in for its share of praise; "for though to all true philosophers science and nature will have charms innumerable in every dress, yet I am sorry to say that the generality of mankind cannot accompany us one short hour unless the path is strewed with flowers." Then, "a lecturer should appear easy and collected, un- daunted and unconcerned, his thoughts about him, and his mind clear and free for the contemplation and description of his subject. His action should not be hasty and violent, but slow, easy, and natural, consisting principally in changes
of the posture of the body, in order to avoid the air of stiffness or sameness that would otherwise be unavoidable. His whole behaviour should evince respect for his audience, and he should in no case forget that he is in their presence." He allows a lecturer to prepare his discourse in writing, but not to read it before the audience, and points out how necessary it is "to raise their interest at the commencement of the lecture, and by a series of imperceptible gradations, unnoticed by the company, keep it alive as long as the subject demands it." This of course forbids breaks in the argument, or digressions foreign to the main purpose, and limits the length of the lecture to a period during which the listeners can pay unwearyed attention. He castigates those speakers who descend so low as "to angle for claps," or who throw out hints for commendation, and shows that apologies should be made as seldom as possible. Experiments should be to the point, clear, and easily understood: "they should rather approach to simplicity, and explain the established principles of the subject, than be elaborate and apply to minute phenomena only. . . . 'Tis well, too, when the lecturer has the ready wit and the presence of mind to turn any casual circumstance to an illustration of his subject." But experiments should be explained by a satisfactory theory; or if the scientific world is divided in opinion, both sides of the question ought to be stated with the strongest arguments for each, that justice may be done and honour satisfied.

Often in later days was his experience in lecturing made use of for the benefit of others. "If," he once remarked to a young lecturer, "I said to my audience, 'This stone will fall to the ground if I open my hand,' I should open my
hand and let it fall. Take nothing for granted as known; inform the eye at the same time as you address the ear.” I remember him once giving me hints on the laying of the lecture table at the Institution, and telling me that where possible he was accustomed to arrange the apparatus in such a way as to suggest the order of the experiments. An incident told me by Dr. Carpenter will illustrate some of the foregoing points. The first time he heard Faraday lecture at the Royal Institution, the Professor was explaining the researches of Melloni on radiant heat. During the discourse he touched on the refraction and polarization of heat; and to explain refraction he showed the simple experiment of fixing some coloured wafers at the bottom of a basin, and then pouring in water so as to make them apparently rise. Dr. Carpenter, who had come up from Bristol with grand ideas of the lectures at Albemarle Street, wondered greatly at the introduction of so commonplace an experiment. Of course there were many other illustrations, and beautiful ones too. He went down, however, after the lecture, to the table, and among the crowd chatting there was an old gentleman who remarked, “I think the best experiment to-night was that of the wafers in the basin.”

When a young lecturer, Faraday took lessons in elocution from Mr. Smart, and was at great pains to cure himself of any defect of pronunciation or manner; for this purpose he would get a friendly critic to form part of his audience. On the fly-leaves of many of the notes of his lectures are written the reminders—“Stand up”—“Don’t talk quick.” Indeed, in early days it was so much a matter of anxiety to him that everything in his lectures should be as perfect as
possible, that he not only was accustomed to go over everything again and again in his mind, but the difficulty of satisfying himself used to trouble his dreams. I was told this, if I am not mistaken, by himself; and it goes far to explain how his discourses possessed such a fascination.

Some of his feelings in regard to lecturing may be learnt from the following particulars, for which I am indebted to Mr. Charles Tomlinson. They relate to a course of lectures he delivered in 1849 on Statical Electricity. The first lecture began thus:—"Time moves on, and brings changes to ourselves as well as to science. I feel that I must soon resign into the hands of my successors the position which I now occupy at this table. Indeed, I have long felt how much rather I would sit among you and be instructed than stand here and attempt to instruct. I have always felt my position in this Institution as a very strange one. Coming after such a man as Davy, and associated with such a man as Brande, and having had to make a position for myself, I have always felt myself here in a strange position. You will wonder why I make these remarks. It is not from any affectation of modesty that I do so, but I feel that loss of memory may soon incapacitate me altogether for my duties. Without, however, troubling you more about myself, let us proceed to the subject before us, and fall back upon the beginnings of the wonderful science of electricity. I shall have to trouble you with very little of them. The facts are so wonderful that I shall not attempt to explain them." At the second lecture, "Faraday advanced to the table at three o'clock, and began to apologize for an obstruction of voice," which indeed was painfully evident. He said that, "in an
engagement where the contracting parties were one and many, the one ought not on any slight ground to break his part of the engagement with the many, and therefore, if the audience would excuse his imperfect utterance, he would endeavour—'. Murmurs arose: 'Put off the lecture.' Faraday begged to be allowed to go on. A medical man then rose and said he had given it as his opinion that it would be dangerous to Dr. Faraday to proceed. Faraday again urged his wish to proceed—said it was giving so much trouble to the ladies, who had sent away their carriages, and perhaps put off other engagements. On this the whole audience rose as by a single impulse, and a number of persons surrounded Faraday, who now yielded to the general desire to spare him the pain and inconvenience of lecturing." A fortnight elapsed before he could again make his appearance, but he continued his course later than usual, in order not to deprive his audience of any of the eight lectures he had undertaken to give them. Prince Albert came to one of these extra lectures.

Faraday's opinion as to the honours due to scientific men from society or from Government, may be gathered from the following extract from a letter written me by his private friend Mr. Blaikley:—"On one occasion, when making some remark in reference to a movement on behalf of science, I inadvertently spoke of the proper honour due to science. He at once remarked, 'I am not one who considers that science can be honoured.' I at once saw the point. His views of the grandeur of truth, when once apprehended, raised it far beyond any honour that man could give it; but man might honour himself by respecting and acknowledging it."
Professor George Wilson, of Edinburgh, has thus described his first visit to the philosopher: "Faraday was very kind, showed me his whole laboratory with labours going on, and talked frankly and kindly; but to the usual question of something to do, gave the usual round O answer, and treated me to a just, but not very cheering animadversion on the Government of this country, which, unlike that of every other civilized country, will give no help to scientific inquiry, and will afford no aid or means of study for young chemists."

"Take care of your money," was his advice to Mr. Joule, then another young aspirant to scientific honours, but who has since rendered the highest service to science, without leaning on any hopes of Government help or public support.

But the impressions given in conversation may not be always correct. Happily there exist his written opinions on this subject. In a letter addressed to Professor Andrews of Belfast, and dated 2nd February, 1843, there occurs this passage:—"As to the particular point of your letter about which you honour me by asking my advice, I have no advice to give; but I have a strong feeling in the matter, and will tell you what I should do. I have always felt that there is something degrading in offering rewards for intellectual exertion, and that societies or academies, or even Kings and Emperors, should mingle in the matter does not remove the degradation, for the feeling which is hurt is a point above their condition, and belongs to the respect which a man owes to himself. With this feeling, I have never since I was a boy aimed at any such prize; or even if,
as in your case, they came near me, have allowed them to move me from my course; and I have always contended that such rewards will never move the men who are most worthy of reward. Still, I think rewards and honours good if properly distributed, but they should be given for what a man has done, and not offered for what he is to do, or else talent must be considered as a thing marketable and to be bought and sold, and then down falls that high tone of mind which is the best excitement to a man of power, and will make him do more than any commonplace reward. When a man is rewarded for his deserts, he honours those who grant the reward, and they give it not as a moving impulse to him, but to all those who by the reward are led to look to that man for an example."

Eleven years afterwards Faraday expressed similar views, but more fully, in a letter to the late Lord Wrottesley as chairman of the Parliamentary Committee of the British Association:—

"**ROYAL INSTITUTION, March 10th, 1854.**

"**My Lord,**

"I feel unfit to give a deliberate opinion on the course it might be advisable for the Government to pursue if it were anxious to improve the position of science and its cultivators in our country. My course of life, and the circumstances which make it a happy one for me, are not those of persons who conform to the usages and habits of society. Through the kindness of all, from my Sovereign downwards, I have that which supplies all my need; and in respect of honours, I have, as a scientific man, received from foreign countries and Sovereigns, those which, belong-
ing to very limited and select classes, surpass in my opinion anything that it is in the power of my own to bestow.

"I cannot say that I have not valued such distinctions; on the contrary, I esteem them very highly, but I do not think I have ever worked for or sought after them. Even were such to be now created here, the time is past when these would possess any attraction for me; and you will see therefore how unfit I am, upon the strength of any personal motive or feeling, to judge of what might be influential upon the minds of others. Nevertheless, I will make one or two remarks which have often occurred to my mind.

"Without thinking of the effect it might have upon distinguished men of science, or upon the minds of those who, stimulated to exertion, might become distinguished, I do think that a Government should *for its own sake* honour the men who do honour and service to the country. I refer now to honours only, not to beneficial rewards; of such honours I think there are none. Knighthoods and baronetcies are sometimes conferred with such intentions, but I think them utterly unfit for that purpose. Instead of conferring distinction, they confound the man who is one of twenty, or perhaps fifty, with hundreds of others. They depress rather than exalt him, for they tend to lower the especial distinction of mind to the commonplaces of society. An intelligent country ought to recognize the scientific men among its people as a class. If honours are conferred upon eminence in any class, as that of the law or the army, they should be in this also. The aristocracy of the class should have other distinctions than those of lowly and high-born, rich and poor, yet they should be such as to be
worthy of those whom the Sovereign and the country should
delight to honour, and, being rendered very desirable and
even enviable in the eyes of the aristocracy by birth, should
be unattainable except to that of science. Thus much I
think the Government and the country ought to do, for their
own sake and the good of science, more than for the sake
of the men who might be thought worthy of such distinc-
tion. The latter have attained to their fit place, whether
the community at large recognize it or not.

"But besides that, and as a matter of reward and encourage-
ment to those who have not yet risen to great distinction, I
think the Government should, in the very many cases which
come before it having a relation to scientific knowledge,
employ men who pursue science, provided they are also men
of business. This is perhaps now done to some extent,
but to nothing like the degree which is practicable with
advantage to all parties. The right means cannot have
occurred to a Government which has not yet learned to
approach and distinguish the class as a whole.

"At the same time, I am free to confess that I am unable
to advise how that which I think should be may come to
pass. I believe I have written the expression of feelings
rather than the conclusions of judgment, and I would wish
your lordship to consider this letter as private rather than
as one addressed to the chairman of a committee.

"I have the honour to be, my Lord,

"Your very faithful Servant,

"M. FARADAY."

In this day, when so many allow their names to be used
for offices of which they never intended to discharge the
duties, the following letter may convey an appropriate lesson:—

"ROYAL INSTITUTION, Oct. 17th, 1849.

"MY DEAR PERCY,

"I cannot be on the committee; I avoid everything of that kind, that I may keep my stupid mind a little clear. As to being on a committee and not working, that is worse still. * * *

"Ever yours and Mrs. Percy's,

"M. FARADAY."

It is well known that he waged implacable war with the Spiritualists. Eighteen years ago tables took to spinning mysteriously under the fingers of ladies and gentlemen who sat or stood around the animated furniture; much was said about a new force, much too about strange revelations from another sphere, but Faraday made a simple apparatus which convinced him and most others that the tables moved through the unconscious pressure of the hands that touched them. The account of this will be found in the Athenæum of July 2, 1853. Three weeks afterwards he wrote to his friend Schönbein: "I have not been at work except in turning the tables upon the table-turners, nor should I have done that, but that so many inquiries poured in upon me, that I thought it better to stop the inpouring flood by letting all know at once what my views and thoughts were. What a weak, credulous, incredulous, unbelieving, superstitious, bold, frightened,—what a ridiculous world ours is, as far as concerns the mind of man. How full of inconsistencies, contradictions, and absurdities it is!" But the believers in
these occult phenomena, some of them holding high positions about the Court, would not let him alone; and there are many indications of the annoyance and irritation they caused him. He declined to meet the professors of the mysterious art, and the following letter will serve to show the way in which he regarded them:

"ROYAL INSTITUTION, Nov. 1, 1864.

"SIR,

"I beg to thank you for your papers, but have wasted more thought and time on so-called spiritual manifestation than it has deserved. Unless the spirits are utterly contemptible, they will find means to draw my attention.

"How is it that your name is not signed to the testimony that you give? Are you doubtful even whilst you publish? I've no evidence that any natural or unnatural power is concerned in the phenomena that requires investigation or deserves it. If I could consult the spirits, or move them to make themselves honestly manifest, I would do it. But I cannot, and am weary of them.

"I am, Sir, your obedient Servant,

"M. FARADAY."

There was once a strange statement put forth to the effect that Faraday said electricity was life. He himself denied it indignantly; but as most falsehoods are perversions of some truth, this one probably originated in his experiments on the Gymnotus. He felt an intense interest in those marine animals that give shocks, and sought "to identify the living

1 I myself once heard this advanced by an infidel lecturer on Paddington Green.
power which they possess, with that which man can call into action from inert matter, and by him named electricity.”¹ The most powerful of these is the Gymnotus, or electrical eel, and a live specimen of this creature, forty inches long, was secured by the Adelaide Gallery—a predecessor of the Polytechnic—in the summer of 1838. Four days after its arrival the poor creature lost an eye; for two months it could not be coaxed to eat either meat or fish, worms or frogs; but at last one day it killed and devoured four small fishes, and afterwards swallowed about a fish per diem. It was accustomed to swim round and round the tank, till a live fish was dropped in, when, in some cases bending round its victim, it would discharge a shock that made the fish float on its back stunned and ready to be sucked into the jaws of its assailant.

Faraday examined this eel and the water around it, both with his hands and with special collectors of electricity, and satisfied himself not merely of the shock, which was easy enough, but of its power to deflect a galvanometer, to make a magnet, to effect chemical decomposition, and to give a spark. His account of the experiments terminates with some speculations on the connection of this animal electricity with nervous power; but there the matter rested. His own views were thus expressed to his friend Dumas:—“As living creatures produce heat, and a heat certainly identical with that of our hearths, why should they not produce electricity also, and an electricity in like manner identical with that of our machines? But if the heat produced during life, and necessary to life, is not life after all, why should electricity

¹ “Electrical Researches,” Series XV.

1 2
itself be life? Like heat, like chemical action, electricity is an implement of life, and nothing more."

Whether the belief that electricity is life would be inconsistent with the Christian faith or not, it is clear that when an infidel preacher asserts that Faraday held such an opinion, his assertion will influence few who are not already disposed to materialism. Far more damaging is it to the cause of religion when her ministers repeat the assumption of the infidel that those who study the truths of nature are particularly prone to disbelieve. Yet such statements have been made, even with reference to Faraday. I have it on the best authority that one of the leading clergymen of the day, preaching on a special occasion from Peter's words, "The elements shall melt with fervent heat, the earth also and the works that are therein shall be burned up," spoke in antagonism to scientific men, alluding to Faraday by name, and to his computation of the tremendous electrical forces that would be produced by sundering the elements of one drop of water. "They shall be confuted by their own element—fire," added the preacher, careless of the conclusion which his audience might legitimately draw from such a two-edged argument. The accuser of the men of science was much astonished when told after his sermon, by a brother clergyman, that Faraday and other eminent physicists of the day were believers in a Divine revelation.

It may be doubted whether Faraday ever tried to form a definite idea of the relation in which the physical forces stand to the Supreme Intelligence, as Newton did, or his own friend Sir John Herschel; nor did he consider it part of his duty as a lecturer to look beyond the natural laws he
was describing. His practice in this respect has been well described by the Rev. Professor Pritchard:—“This great and good man never obtruded the strength of his faith upon those whom he publicly addressed; upon principle he was habitually reticent on such topics, because he believed they were ill suited for the ordinary assemblages of men. Yet on more than one occasion when he had been discoursing on some of the magnificent pre-arrangements of Divine Providence so lavishly scattered in nature, I have seen him struggle to repress the emotion which was visibly striving for utterance; and then, at the last, with one single far-reaching word, he would just hint at his meaning rather than express it. On such occasions he only who had ears to hear, could hear.”

In his more familiar lectures to the cadets at Woolwich, however, he more than hinted at such elevated thoughts. In conversation, too, Faraday has been known to express his wonder that anyone should fail to recognize the constant traces of design; and in his writings there sometimes occur such passages as the following:—“When I consider the multitude of associated forces which are diffused through nature—when I think of that calm and tranquil balancing of their energies which enables elements most powerful in themselves, most destructive to the world’s creatures and economy, to dwell associated together and be made subservient to the wants of creation, I rise from the contemplation more than ever impressed with the wisdom, the beneficence, and grandeur beyond our language to express, of the Great Disposer of all!”.

Faraday’s journals abound with descriptions of “nature

1 “Analogies in the Progress of Nature and Grace,” p. 121.
and human nature." He had evidently a keen eye for the beauties of scenery, and occasionally the objects around him suggested higher thoughts. Here are two instances taken from his notes of a Swiss tour in 1841:

"Monday, 19th.—Very fine day; walk with dear Sarah on the lake side to Oberhofen, through the beautiful vineyards; very busy were the women and men in trimming the vines, stripping off leaves and tendrils from the fruit-bearing branches. The churchyard was beautiful, and the simplicity of the little remembrance-posts set upon the graves very pleasant. One who had been too poor to put up an engraved brass plate, or even a painted board, had written with ink on paper the birth and death of the being whose remains were below, and this had been fastened to a board, and mounted on the top of a stick at the head of the grave, the paper being protected by a little edge and roof. Such was the simple remembrance, but Nature had added her pathos, for under the shelter by the writing a caterpillar had fastened itself, and passed into its deathlike state of chrysalis, and, having ultimately assumed its final state, it had winged its way from the spot, and had left the corpse-like relics behind. How old and how beautiful is this figure of the resurrection! Surely it can never appear before our eyes without touching the thoughts."

"August 12th, Brienz Lake.—George and I crossed the lake in a boat to the Giessbach—he to draw, and I to saunter... This most beautiful fall consists of a fine river, which passes by successive steps down a very deep precipice into the lake. In some of these steps there is a clear leap of water of 100 feet or more, in others most beautiful
combinations of leap, cataract, and rapid, the finest rocks occurring at the sides and bed of the torrent. In one part a bridge passes over it. In another a cavern and a path occur under it. To-day every fall was foaming from the abundance of water, and the current of wind brought down by it was in some parts almost too strong to stand against. The sun shone brightly, and the rainbows seen from various points were very beautiful. One at the bottom of a fine but furious fall was very pleasant. There it remained motionless, whilst the gusts and clouds of spray swept furiously across its place, and were dashed against the rock. It looked like a spirit strong in faith and steadfast in the midst of the storm of passions sweeping across it; and though it might fade and revive, still it held on to the rock as in hope and giving hope; and the very drops which in the whirlwind of their fury seemed as if they would carry all away, were made to revive it and give it greater beauty.

"How often are the things we fear and esteem as troubles made to become blessings to those who are led to receive them with humility and patience."

In concluding this section it may be well to string together a few gems from Faraday's lectures or correspondence, though they are greatly damaged by being torn away from their original setting:—

"After all, though your science is much to me, we are not friends for science sake only, but for something better in a man, something more important in his nature, affection, kindness, good feeling, moral worth; and so, in re-
membrance of these, I now write to place myself in your presence, and in thought shake hands, tongues, and hearts together.” This was addressed to Schönbein.

“I should be glad to think that high mental powers insured something like a high moral sense, but have often been grieved to see the contrary; as also, on the other hand, my spirit has been cheered by observing in some lowly and uninstructed creature such a healthful and honourable and dignified mind as made one in love with human nature. When that which is good mentally and morally meet in one being, that that being is more fitted to work out and manifest the glory of God in the creation, I fully admit.”

“Let me, as an old man who ought by this time to have profited by experience, say that when I was younger I found I often misinterpreted the intentions of people, and found they did not mean what at the time I supposed they meant; and further, that as a general rule, it was better to be a little dull of apprehension when phrases seemed to imply pique, and quick in perception when, on the contrary, they seemed to imply kindly feeling. The real truth never fails ultimately to appear; and opposing parties, if wrong, are sooner convinced when replied to forbearingly, than when overwhelmed.”

“Man is an improving animal. Unlike the animated world around him, which remains in the same constant state, he is continually varying; and it is one of the noblest prerogatives of his nature, that in the highest of earthly distinctions he has the power of raising and exalting himself continually. The transitory state of man has been
held up to him as a memento of his weakness: to man degraded it may be so with justice; to man as he ought to be it is no reproach; and in knowledge, that man only is to be contemned and despised who is not in a state of transition.”

“It is not the duty or place of a philosopher to dictate belief, and all hypothesis is more or less matter of belief; he has but to give his facts and his conclusions, and so much of the logic which connects the former with the latter as he may think necessary, and then to commit the whole to the scientific world for present, and, as he may sometimes without presumption believe, for future judgment.”
SECTION IV.

HIS METHOD OF WORKING.

It is on record that when a young aspirant asked Faraday the secret of his success as a scientific investigator, he replied, "The secret is comprised in three words—Work, Finish, Publish."

Each of these words, we may be sure, is full of meaning, and will guide us in a useful inquiry.

Already in the "Story of his Life" we have caught some glimpses of the philosopher at work in his laboratory; but before looking at him more closely let us learn from a foreigner with what feelings to enter a place that is hallowed by so many memories sacred in the history of science. Professor Schönbein, of Basle, who visited England in 1840, says: "During my stay in London, I once worked with Faraday for a whole day long in the laboratory of the Royal Institution, and I cannot forbear to say that this was one of the most enjoyable days that I ever spent in the British Capital. We commenced our day's work with breakfast; and when that was over I was supplied with one of the laboratory dresses of my friend, which, when I was pre-
sent in it to the ladies, gave occasion to no little amusement, as the dimensions of Faraday are different from those of my precious body.

"To work with a man like Faraday was in itself a great pleasure; but this pleasure was not a little heightened in doing so in a place where such grand secrets of nature had been unfolded, the most brilliant discoveries of the century had been made, and entirely new branches of knowledge had been brought forth. For the empty intellect circumstances of this nature are indeed of little special value; but they stand in quite another relation to our power of imagination and inner nature.

"I do not deny that my surroundings produced in me a very peculiar feeling; and whilst I trod the floor upon which Davy had once walked—whilst I availed myself of some instrument which this great discoverer had himself handled—whilst I stood working at the very table at which the ever-memorable man sought to solve the most difficult problems of science, at which Faraday enticed the first sparks out of the magnet, and discovered the most beautiful laws of the chemical action of current electricity, I felt myself inwardly elevated, and believed that I myself experienced something of the inbreathing of the scientific spirit which formerly ruled there with such creative power, and which still works on." ¹

The habit of Faraday was to think out carefully beforehand the subject on which he was working, and to plan his mode of attack. Then, if he saw that some new piece

¹ "Mittheilungen aus dem Reisetagebuche eines deutschen Naturforschers," p. 275.
of apparatus was needed, he would describe it fully to the instrument maker with a drawing, and it rarely happened that there was any need of alteration in executing the order. If, however, the means of experiment existed already, he would give Anderson a written list of the things he would require, at least a day before—for Anderson was not to be hurried. When all was ready, he would descend into the laboratory, give a quick glance round to see that all was right, take his apron from the drawer, and rub his hands together as he looked at the preparations made for his work. There must be no tool on the table but such as he required. As he began, his face would be exceedingly grave, and during the progress of an experiment all must be perfectly quiet; but if it was proceeding according to his wish, he would commence to hum a tune, and sometimes to rock himself sideways, balancing alternately on either foot. Then, too, he would often talk to his assistant about the result he was expecting. He would put away each tool in its own place as soon as done with, or at any rate when the day's work was over, and he would not unnecessarily take a thing away from its place: thus, if he wanted a perforated cork, he would go to the drawer which contained the corks and cork-borers, make there what he wanted, replace the borers, and shut the drawer. No bottle was allowed to remain without its stopper; no open glass might stand for a night without a paper cover; no rubbish was to be left on the floor; bad smells were to be avoided if possible; and machinery in motion was not permitted to grate. In working, also, he was very careful not to employ more force than was wanted to produce the effect. When his
experiments were finished and put away, he would leave the laboratory, and think further about them upstairs.

This orderliness and this economy of means he not only practised himself, but he expected them also to be followed by any who worked with him; and it is from conversation with these that I have been enabled to give this sketch of his manner of working.

This exactness was also apparent in the accounts he kept with the Royal Institution and Trinity House, in which he entered every little item of expenditure with the greatest minuteness of detail.

It was through this lifelong series of experiments that Faraday won his knowledge and mastered the forces of nature. The rare ingenuity of his mind was ably seconded by his manipulative skill, while the quickness of his perceptions was equalled by the calm rapidity of his movements.

He had indeed a passion for experimenting. I recollect his meeting me at the entrance to the lecture theatre at Jermyn Street, when Lyon Playfair was to give the first, or one of the first lectures ever delivered in the building. "Let us go up here," said he, leading me far away from the central table. I asked him why he chose such an out-of-the-way place. "Oh," he replied, "we shall be able here to find out what are the acoustic qualities of the room."

The simplicity of the means with which he made his experiments was often astonishing, and was indeed one of the manifestations of his genius.

A good instance is thus narrated by Sir Frederick Arrow. "When the electric light was first exhibited permanently at
Dungeness, on 6th June, 1862, a committee of the Elder Brethren, of which I was one, accompanied Faraday to observe it. We dined, I think, at Dover, and embarked in the yacht from there, and were out for some hours watching it, to Faraday's great delight—(a very fine night),—and especially we did so from the Varne lightship, about equi-distant between it and the French light of Grisnez, using all our best glasses and photometers to ascertain the relative value of the lights: and this brings me to my story. Before we left Dover, Faraday, with his usual bright smile, in great glee showed me a little common paper box, and said, 'I must take care of this; it's my special photometer'—and then, opening it, produced a lady's ordinary black shawl-pin,—jet, or imitation perhaps,—and then holding it a little way off the candle, showed me the image very distinct; and then, putting it a little further off, placed another candle near it, and the relative distance was shown by the size of the image. He lent me this afterwards when we were at the Varne lightship, and it acted admirably; and ever since I have used one as a very convenient mode of observing, and I never do so but I think of that night and dear good Faraday, and his genial happy way of showing how even common things may be made useful." After this Faraday modified his glass-bead photometer, and he might be seen comparing the relative intensity of two lights by watching their luminous images on a bead of black glass, which he had threaded on a string, and was twirling round so as to resolve the brilliant points into circles of fainter light; or he fixed the black glass balls on pieces of cork, and, attaching them to a little wheel, set
them spinning for the same purpose. Some of these beads are preserved by the Trinity House, with other treasures of a like kind, including a flat piece of solder of an irregular oval form, turned up at one side so as to form a thumb-rest, and which served the philosopher as a candlestick to support the wax-light that he used as a standard. The museum of the Royal Institution contains a most instructive collection of his experimental apparatus, including the common electrical machine which he made while still an apprentice at Riebau's, and the ring of soft iron, with its twisted coils of wire isolated by calico and tied with common string, by means of which he first obtained electrical effects from a magnet.

A lady, calling on his wife, happened to mention that a needle had been once broken into her foot, and she did not know whether it had been all extracted or not. "Oh!" said Faraday, "I will soon tell you that,"—and taking a finely suspended magnetic needle, he held it close to her foot, and it dipped to the concealed iron.

"An artist was once maintaining that in natural appearances and in pictures, up and down, and high and low, were fixed indubitable realities; but Faraday told him that they were merely conventional acceptations, based on standards often arbitrary. The disputant could not be convinced that ideas which he had hitherto never doubted had such shifting foundations. 'Well,' said Faraday, 'hold a walking-stick between your chin and your great toe; look along it and say which is the upper end.' The experiment was tried, and the artist found his idea of perspective at complete variance with his sense of reality; either end of the stick
might be called 'upper,'—pictorially it was one, physically it was the other."

On this subject Schönbein has also some good remarks. "The laboratory of the Institution is indeed efficiently arranged, though anything but large and elaborately furnished. And yet something extraordinary has happened in this room for the extension of the limits of knowledge; and already more has been done in it than in many other institutions where the greatest luxury in the supply of apparatus prevails, and where there is the greatest command of money. But when men work with the creative genius of a Davy, and the intuitive spirit of investigation and the wealth of ideas of a Faraday, important and great things must come to pass, even though the appliances at command should be of so limited a character. For the experimental investigator of nature, it is especially desirable that, according to the kind of his researches, he should have at command such and such appliances, that he should possess a 'philosophical apparatus,' a laboratory, &c.; but for the purpose of producing something important, of greatly widening the sphere of knowledge, it in no way follows that a superfluity of such things is necessary to him. . . . He who understands how to put appropriate questions to Nature, generally knows how to extract the answers by simple means; and he who wants this capacity will, I fear, obtain no profitable result, even though all conceivable tools and apparatus may be ready to his hand."

Nor did Faraday require elaborate apparatus to illustrate his meaning. Steaming up the Thames one July day in a penny boat, he was struck with the offensiveness of the
water. He tore some white cards into pieces, wetted them so as to make them sink easily, and dropped them into the river at each pier they came to. Their sudden disappearance from sight, though the sun was shining brightly, was proof enough of the impurity of the stream; and he wrote a letter to the Times describing his observations, and calling public attention to the dangerous state of the river.\(^1\) At a meeting of the British Association he wished to explain the manner in which certain crystallized bodies place themselves between the poles of an electro-magnet: two or three raw potatoes furnished the material out of which he cut admirable models of the crystals.

Faraday's manner of experimenting may be further illustrated by the recollections of other friends who have had the opportunity of watching him at work.

Mr. James Young, who was in the laboratory of University College in 1838, thus writes:—"About that time Professor Graham had got from Paris Thilorier's apparatus for producing liquid and solid carbonic acid; hearing of this, Mr. Faraday came to Graham's laboratory, and, as one might expect, showed great interest in this apparatus, and asked Graham for the loan of it for a Friday evening lecture at the Royal Institution, which of course Graham readily granted, and Faraday asked me to come down to the Institution and give him the benefit of my experience in charging and working the apparatus; so I spent a long evening at the Royal Institution laboratory. There was

\(^1\) Punch's cartoon next week represented Professor Faraday holding his nose, and presenting his card to Father Thames, who rises out of the unsavoury ooze.
no one present but Faraday, Anderson, and myself. The principal thing we did was to charge the apparatus and work with the solid carbonic acid, Mr. Faraday working with great activity: his motions were wonderfully rapid; and if he had to cross the laboratory for anything, he did not walk at an ordinary step, but ran for it, and when he wanted anything he spoke quickly. Faraday had a theory at that time that all metals would become magnetic if their temperature were low enough; and he tried that evening some experiments with cobalt and manganese, which he cooled in a mixture of carbonic acid and ether, but the results were negative."

Among the deep mines of the Durham coalfield is one called the Haswell Colliery. One Saturday afternoon, while the men were at work in it as usual, a terrible explosion occurred: it proceeded from the fire-damp that collects in the vaulted space that is formed in old workings when the supporting pillars of coal are removed and the roof falls in: the suffocating gases rushed along the narrow passages, and overwhelmed ninety-five poor fellows with destruction. Of course there was an inquiry, and the Government sent down to the spot as their commissioners Professor Faraday and Sir Charles Lyell. The two gentlemen attended at the coroner's inquest, where they took part in the examination of the witnesses; they inspected the shattered safety-lamps; they descended into the mine, spending the best part of a day in the damaged and therefore dangerous galleries where the catastrophe had occurred, and they did not leave without showing in a practical form their sympathy with the sufferers. When down in the
pit, an inspector showed them the way in which the work-
men estimated the rapidity of the ventilation draught, by
throwing a pinch of gunpowder through the flame of a
candle, and timing the movement of the little puff of
smoke. Faraday, not admiring the free and easy way in
which they handled their powder, asked where they kept
their store of it, and learnt that it was in a large black
bag which had been assigned to him as the most comfort-
able seat they could offer. We may imagine the liveliness
with which he sprang to his feet, and expostulated with
them on their culpable carelessness.

My own opportunities of observing Faraday at work were
nearly confined to a series of experiments, which are the
better worth describing here as they have escaped the
notice of previous biographers. The Royal Commission
appointed to inquire into our whole system of Lights,
Buoys, and Beacons, perceived a great defect that ren-
dered many of our finest shore or harbour lights com-
paratively ineffective. The great central lamp in a light-
house is surrounded by a complicated arrangement of
lenses and prisms, with the object of gathering up as many
of the rays as possible and sending them over the surface
of the sea towards the horizon. Now, it is evident that
if this apparatus be adjusted so as to send the beam two
or three degrees upwards, the light will be lost to the ship-
ping and wasted on the clouds, and if two or three degrees
downwards, it will only illuminate the water in the neigh-
bourhood; in either case the beautiful and expensive
apparatus would be worse than useless. It is evident also
that if the eye be placed just above the wick of the lamp,
it will see through any particular piece of glass that very portion of the landscape which will be illuminated by a ray starting from the same spot; or the photographic image formed in the place of the flame by any one of the lenses will tell us the direction in which that lens will throw the luminous rays. This simple principle was applied by the Commissioners for testing the adjustment of the apparatus in the different lights, and it was found that few were rightly placed, or rather that no method of adjustment was in use better than the mason's plumpline. The Royal Commissioners therefore in 1860 drew the attention of all the lighthouse authorities to this fact, and asked the Elder Brethren of the Trinity House, with Faraday and other parties, to meet them at the lights recently erected at the North Foreland and Whitby. I, as the scientific member of the Commission, had drawn out in detail the course of rays from different parts of the flame, through different parts of the apparatus, and I was struck with the readiness with which Faraday, who had never before considered the matter, took

1 Since writing the above I have come across a letter written by Faraday in answer to one by Captain Weller as far back as 13th Sept. 1839, in which he pointed out the maladjustment of the dioptic apparatus at Orfordness. In July of the following year he made lengthy suggestions to the Trinity House, in which he proposed using a flat white circle or square, half an inch across, on a piece of black paper or card, as a "focal object." This was to be looked at from outside, in order to test the regularity of the glass apparatus. He also suggested observations on the divergence by looking at this white circle at a distance of twenty feet at most. Another plan he proposed was that of lighting the lamp and putting up a white screen outside. These methods of examining he carried out very shortly afterwards at Blackwall, on French and English refractors, but it seems never to have occurred to
up the idea, and recognized its importance and its practical application. With his characteristic ingenuity, too, he devised a little piece of apparatus for the more exact observation of the matter inside the lighthouse. He took to Mr. Ladd, the optical instrument maker, a drawing, very neatly executed, with written directions, and a cork cut into proper shape with two lucifer matches stuck through it, to serve as a further explanation of his meaning: and from this the "focimeter," as he called it, was made. The position of the glass panels at Whitby was corrected by means of this little instrument, and there were many journeys down to Chance's glassworks near Birmingham, where, declining the hospitality of the proprietor in order to be absolutely independent, he put up at a small hotel while he made his experiments, and jotted down his observations on the cards he habitually carried in his pocket. At length we were invited down to see the result. Faraday explained carefully all that had been done, and at the risk of sea-sickness (no trifling matter in his case) accompanied us out to sea to observe the effect from various directions and at various distances. The experience acquired at Whitby was applied elsewhere, and in May 1861 the Trinity House appointed a Visiting Committee, "to examine all dioptric light establishments, with the view of remedying any inaccuracies of arrangement that may be found to exist."

Faraday had instructed and practised Captain Nisbet and some others of the Elder Brethren in the use of the focimeter, and now wrote a careful letter of suggestions on the question of adjustment between the lamp and the lenses him to place his eye in the focus, or in any other manner to observe the course of the rays from inside the apparatus.
and prisms; so thoughtfully did he work for the benefit of those who "go down to the sea in ships, that do business in great waters."

As to the mental process that devised, directed, and interpreted his experiments, it must be borne in mind that Faraday was no mathematician; his power of appreciating an a priori reason often appeared comparatively weak. "It has been stated on good authority that Faraday boasted on a certain occasion of having only once in the course of his life performed a mathematical calculation: that once was when he turned the handle of Babbage's calculating machine."¹ Though there was more pleasantry than truth in this professed innocence of numbers, probably no one acquainted with his electrical researches will doubt that, had he possessed more mathematical ability, he would have been saved much trouble, and would sometimes have expressed his conclusions with greater ease and precision. Yet, as Sir William Thomson has remarked with reference to certain magnetic phenomena, "Faraday, without mathematics, divined the result of the mathematical investigation; and, what has proved of infinite value to the mathematicians themselves, he has given them an articulate language in which to express their results. Indeed, the whole language of the magnetic field and 'lines of force' is Faraday's. It must be said for the mathematicians that they greedily accepted it, and have ever since been most zealous in using it to the best advantage."

The peculiarity of his mind was indeed well known to himself. In a letter to Dr. Becker he says: "I was

¹ Dr. Scoffer, Belgravia, October 1867.
never able to make a fact my own without seeing it; and the descriptions of the best works altogether failed to convey to my mind such a knowledge of things as to allow myself to form a judgment upon them. It was so with new things. If Grove, or Wheatstone, or Gassiot, or any other told me a new fact, and wanted my opinion either of its value, or the cause, or the evidence it could give on any subject, I never could say anything until I had seen the fact. For the same reason I never could work, as some Professors do most extensively, by students or pupils. All the work had to be my own."

The following story by Mr, Robert Mallet serves as an illustration:—"It must be now eighteen years ago when I paid him a visit and brought some slips of flexible and tough Muntz's yellow metal, to show him the instantaneous change to complete brittleness with rigidity produced by dipping into pernitrated of mercury solution. He got the solution, and I showed him the facts; he obviously did not doubt what he saw me do before and close to him: but a sort of experimental instinct seemed to require he should try it himself. So he took one of the slips, bent it forwards and backwards, dipped it, and broke it up into short bits between his own fingers. He had not before spoken. Then he said, 'Yes, it is pliable, and it does become instantly brittle.' And after a few moments' pause he added, 'Well, now have you any more facts of the sort?' and seemed a little disappointed when I said 'No; none that are new.' It has often since occurred to me how his mind needed absolute satisfaction that he had grasped a fact, and then instantly rushed to colligate it with another if possible."
But as the Professor watched these new facts, new thoughts would shape themselves in his mind, and this would lead to fresh experiments in order to test their truth. The answers so obtained would lead to further questions. Thus his work often consisted in the defeat of one hypothesis after another, till the true conditions of the phenomena came forth and claimed the assent of the experimenter and ultimately of the scientific world.

A. de la Rive has some acute observations on this subject. He explains how Faraday did not place himself before his apparatus, setting it to work, without a preconceived idea. Neither did he take up known phenomena, as some scientific men do, and determine their numerical data, or study with great precision the laws which regulate them. "A third method, very different from the preceding, is that which, quitting the beaten track, leads, as if by inspiration, to those great discoveries which open new horizons to science. This method, in order to be fertile, requires one condition—a condition, it is true, which is but rarely met with—namely, genius. Now, this condition existed in Faraday. Endowed, as he himself perceived, with much imagination, he dared to advance where many others would have recoiled: his sagacity, joined to an exquisite scientific tact, by furnishing him with a presentiment of the possible, prevented him from wandering into the fantastic; while, always wishing only for facts, and accepting theories only with difficulty, he was nevertheless more or less directed by preconceived ideas, which, whether true or false, led him into new roads, where most frequently he found what he sought, and sometimes also
what he did not seek, but where he constantly met with some important discovery.

"Such a method, if indeed it can be called one, although barren and even dangerous with mediocre minds, produced great things in Faraday’s hands; thanks, as we have said, to his genius, but thanks also to that love of truth which characterized him, and which preserved him from the temptation so often experienced by every discoverer, of seeing what he wishes to see, and not seeing what he dreads."

This love of truth deserves a moment’s pause. It was one of the most beautiful and most essential of his characteristics; it taught him to be extremely cautious in receiving the statements of others or in drawing his own conclusions,¹

¹ A good instance of his caution in drawing conclusions is contained in one of his letters to me:

"ROYAL INSTITUTION OF GREAT BRITAIN,
2 July, 1859.

"MY DEAR GLADSTONE,

"Although I have frequently observed lights from the sea, the only thing I have learnt in relation to their relative brilliancy is that the average of a very great number of observations would be required for the attainment of a moderate approximation to truth. One has to be some miles off at sea, or else the observation is not made in the chief ray, and then one does not know the state of the atmosphere about a given lighthouse. Strong lights like that of Cape Grisnez have been invisible when they should have been strong; feeble lights by comparison have risen up in force when one might have expected them to be relatively weak; and after inquiry has not shown a state of the air at the lighthouse explaining such differences. It is probable that the cause of difference often exists at sea.

"Besides these difficulties there is that other great one of not seeing the two lights to be compared in the field of view at the same time and same distance. If the eye has to turn 90° from one to the other, I have no confidence in the comparison; and if both be in the field
and it led him, if his scepticism was overcome, to adopt at once the new view, and to maintain it, if need be, against the world.

“The thing I am proudest of, Pearsall, is that I have never been found to be wrong,” he could say in the early part of his scientific history without fear of contradiction. After his death A. de la Rive wrote, “I do not think that Faraday has once been caught in a mistake; so precise and conscientious was his mode of experimenting and observing.” This is not absolutely true; but the extreme rarity of his mistakes, notwithstanding the immense amount of his published researches, is one of those marvels which can be appreciated only by those who are in the habit of

of sight at once, still unexpected and unexplained causes of difference occur. The two lights at the South Foreland are beautifully situated for comparison, and yet sometimes the upper did not equal the lower when it ought to have surpassed it. This I referred at the time to an upper stratum of haze; but on shore they knew nothing of the kind, nor had any such or other reason to expect particular effects.

“Ever truly yours,
“M. Faraday.”

As an instance of his unwillingness to commit himself to an opinion unless he was sure about it, may be cited a letter he wrote to Mr. Airy, the Astronomer Royal, who asked for his advice in regard to the material of which the national standard of length should be made:—

“I do not see any reason why a pure metal should be particularly free from internal change of its particles, and on the whole should rather incline to the hard alloy than to soft copper, and yet I hardly know why. I suppose the labour would be too great to lay down the standard on different metals and substances; and yet the comparison of them might be very important hereafter, for twenty years seem to do or tell a great deal in relation to standard measures.” Bronze was finally chosen.
describing what they have seen in the mist land that lies beyond the boundaries of previous knowledge.

Into this unknown region his mental vision was ever stretched. "I well remember one day," writes Mr. Barrett, a former assistant at the Royal Institution, "when Mr. Faraday was by my side, I happened to be steadying, by means of a magnet, the motion of a magnetic needle under a glass shade. Mr. Faraday suddenly looked most impressively and earnestly as he said, 'How wonderful and mysterious is that power you have there! the more I think over it the less I seem to know:'—and yet he who said this knew more of it than any living man."

It is easy to imagine with what wonder he would stand before the apples or leaves or pieces of meat that swung round into a transverse position between the poles of his gigantic magnet, or the sand that danced and eddied into regular figures on plates of glass touched by the fiddle-bow, or gold so finely divided that it appeared purple and when diffused in water took a twelvemonth to settle. It is easy, too, to imagine how he would long to gain a clear idea of what was taking place behind the phenomena. But it is far from easy to grasp the conceptions of his brain: language is a clumsy vehicle for such thoughts. He strove to get rid of such figurative terms as "currents" and "poles"; in discussing the mode of propagation of light and radiant heat he endeavoured "to dismiss the ether, but not the vibrations"; and in conceiving of atoms, he says: "As to the little solid particles . . . I cannot form any idea of them apart from the forces, so I neither admit nor deny them. They do not afford me the least help in
my endeavour to form an idea of a particle of matter. On the contrary, they greatly embarrass me.” Yet he could not himself escape from the tyranny of words or the deceitfulness of metaphors, and it is hard for his readers to comprehend what was his precise idea of those centres of forces that occupy no space, or of those lines of force which he beheld with his mental eye, curving alike round his magnetic needle, and that mightiest of all magnets—the earth.

As he was jealous of his own fame, and had learnt by experience that discoveries could be stolen, he talked little about them till they were ready for the public; indeed, he has been known to twit a brother electrician for telling his discoveries before printing them, adding with a knowing laugh, “I never do that.” He was obliged, however, to explain his results to Professor Whewell, or some other learned friend, if he wished to christen some new idea with a Greek name. One of Whewell’s letters on such an occasion, dated Trinity College, Cambridge, October 14, 1837, begins thus:

“MY DEAR SIR,

“I am always glad to hear of the progress of your researches, and never the less so because they require the fabrication of a new word or two. Such a coinage has always taken place at the great epochs of discovery; like the medals that are struck at the beginning of a new reign, or rather like the change of currency produced by the accession of a new Sovereign; for their value and influence consists in their coming into common circulation.”
During the whole time of an investigation Faraday had kept ample notes, and when all was completed he had little to do but to copy these notes, condensing or re-arranging some parts, and omitting what was useless. The paper then usually consisted of a series of numbered paragraphs, containing first a statement of the subject of inquiry, then a series of experiments giving negative results, and afterwards the positive discoveries. In this form it was sent to the Royal Society or some other learned body. Yet this often involved considerable labour, as the following words written to Miss Moore in 1850 from a summer retreat in Upper Norwood will show:—"I write and write and write, until nearly three papers for the Royal Society are nearly completed, and I hope that two of them will be good if they do justify my hopes, for I have to criticise them again and again before I let them loose. You shall hear of them at some of the next Friday evenings."

This criticism did not cease with their publication, for he endeavoured always to improve on his previous work. Thus, in 1832 he bound his papers together in one volume, and the introduction on the fly-leaf shows the object with which it was done:—

"Papers of mine, published in octavo, in the Quarterly Journal of Science, and elsewhere, since the time that Sir H. Davy encouraged me to write the analysis of caustic lime.

"Some, I think (at this date), are good, others moderate, and some bad. But I have put all into the volume, because of the utility they have been of to me—and none more than
the bad—in pointing out to me in future, or rather after
times, the faults it became me to watch and to avoid.
"As I never looked over one of my papers a year after
it was written, without believing, both in philosophy and
manner, it could have been much better done, I still hope
the collection may be of great use to me.
"M. Faraday.

"August 18, 1832."

This section may be summed up in the words of Dumas
when he gave the first "Faraday Lecture" of the Chemical
Society:—"Faraday is the type of the most fortunate and
the most accomplished of the learned men of our age. His
hand in the execution of his conceptions kept pace with his
mind in designing them; he never wanted boldness when
he undertook an experiment, never lacked resources to
ensure success, and was full of discretion in interpreting
results. His hardihood, which never halted when once he
had undertaken a task, and his wariness, which felt its way
carefully in adopting a received conclusion, will ever serve
as models for the experimentalist."
SECTION V.

THE VALUE OF HIS DISCOVERIES.

Science is pursued by different men from different motives.

"To some she is the goddess great;
To some the milch-cow of the field:
Their business is to calculate
The butter she will yield."

Now, Faraday had been warned by Davy before he entered his service that Science was a mistress who paid badly; and in 1833 we have seen him deliberately make his calculation, give up the butter, and worship the goddess.

For the same reason also he declined most of the positions of honour which he was invited to fill, believing that they would encroach too much on his time, though he willingly accepted the honorary degrees and scientific distinctions that were showered upon him.¹

¹ De la Rive points this out in his brief notice of Faraday immediately on receiving the news of his death:—"Je n'ai parlé que du savant, je tiens aussi à dire un mot de l'homme. Alliant à une modestie vraie, parcequ'elle provenait de l'élévation de son âme, une droiture à toute épreuve et une candeur admirable, Faraday n'aimait la science que pour elle-même. Aussi jouissait-il des succès des autres au moins autant
And among those who follow Science lovingly, there are
two very distinct bands: there are the philosophers, the
discoverers, men who persistently ask questions of Nature;
and there are the practical men, who apply her answers to
the various purposes of human life. Many noble names are
inscribed in either bead-roll, but few are able to take rank
in both services: indeed, the question of practical utility
would terribly cramp the investigator, while the enjoyment
of patient research in unexplored regions of knowledge is
usually too ethereal for those who seek their pleasure in
useful inventions. The mental configuration is different in
the two cases; each may claim and receive his due award
of honour.

Faraday was pre-eminently a discoverer; he liked the
name of "philosopher." His favourite paths of study seem
to wander far enough from the common abodes of human
thought or the requirements of ordinary life. He became
familiar, as no other man ever was, with the varied forces of
magnetism and electricity, heat and light, gravitation and
galvanism, chemical affinity and mechanical motion; but he
did not seek to "harness the lightnings," or to chain those
giants and make them grind like Samson in the prison-
house. His way of treating them reminds us rather of the old
fable of Proteus, who would transform himself into a whirl-
ique des siens propres; et quant à lui, s'il a accepté, avec une sincère
satisfaction, les honneurs scientifiques qui lui ont été prodigués à si
juste titre, il a constamment refusé toutes les autres distinctions et les
récompenses qu'on eût voulu lui décerner. Il s'est contenté toute sa vie
de la position relativement modeste qu'il occupait à l'Institution Royale
de Londres; avoir son laboratoire et strictement de quoi vivre, c'est
tout ce qu'il lui fallait.—Presinge, le 29 août, 1867.—A. DE LA RIVE."
wind or a dragon, a flame of fire, or a rushing stream, in
order to elude his pursuer; but if the wary inquirer could
catch him asleep in his cave, he might be constrained to
utter all his secret knowledge: for the favourite thought of
Faraday seems to have been that these various forces were
the changing forms of a Proteus, and his great desire seems
to have been to learn the secret of their origin and their
transformations. Thus he loved to break down the walls of
separation between different classes of phenomena, and his
eye doubtless sparkled with delight when he saw what had
always been looked upon as permanent gases liquefy like
common vapours under the constraint of pressure and cold
—when the wires that coiled round his magnets gave signs
of an electric wave, or coruscated with sparks—when the
electricities derived from the friction machine and from the
voltaic pile yielded him the same series of phenomena—
when he recognized the cumulative proof that the quantity
of electricity in a galvanic battery is exactly proportional to
the chemical action—when his electro-static theory seemed
to break down the barrier between conductors and insula-
tors, and many other barriers beside—when he sent a ray of
polarized light through a piece of heavy glass between the
poles of an electro-magnet, and on making contact saw that
the plane of polarization was rotated, or, as he said, the light
was magnetized—and when he watched pieces of bismuth,
or crystals of Iceland spar, or bubbles of oxygen, ranging
themselves in a definite position in the magnetic field.

"I delight in hearing of exact numbers, and the determi-
nations of the equivalents of force when different forms of
force are compared one with another," he wrote to Joule
in 1845; and no wonder, for these quantitative comparisons have proved many of his speculations to be true, and have made them the creed of the scientific world. When he began to investigate the different sciences, they might be compared to so many separate countries with impassable frontiers, different languages and laws, and various weights and measures; but when he ceased they resembled rather a brotherhood of states, linked together by a community of interests and of speech, and a federal code; and in bringing about this unification no one had so great a share as himself.

He loved to speculate, too, on Matter and Force, on the nature of atoms and of imponderable agents. "It is these things," says the great German physicist Professor Helmholtz, "that Faraday in his mature works ever seeks to purify more and more from everything that is theoretical, and is not the direct and simple expression of the fact. For instance, he contended against the action of forces at a distance, and the adoption of two electrical and two magnetic fluids, as well as all hypotheses contrary to the law of the conservation of force, which he early foresaw, though he misunderstood it in its scientific expression. And it is just in this direction that he exercised the most unmistakeable influence first of all on the English physicists." ¹

While, however, Faraday was pre-eminently an experimental philosopher, he was far from being indifferent to the useful applications of science. His own connection with the practical side of the question was threefold: he undertook some laborious investigations of this nature himself; he was

¹ Preface to "Faraday und seine Entdeckungen."
frequently called upon, especially by the Trinity House, to give his opinions on the inventions of others; and he was fond of bringing useful inventions before the members of the Royal Institution in his Friday evening discourses. The first of these, on February 3, 1826, was on India-rubber, and was illustrated by an abundance of specimens both in the raw and manufactured states. In this way also he continued to throw the magic of his genius around Morden's machinery for manufacturing Bramah's locks, Ericsson's caloric engine, Brunel's block machinery at Portsmouth, Petitjean's process for silvering mirrors, the prevention of dry-rot in timber, De la Rue's envelope machinery, artificial rubies, Bonelli's electric silk loom, Barry's mode of ventilating the House of Lords, and many kindred subjects.

It may not be amiss to describe the last of his Friday evenings, in which he brought before the public Mr. C. W. Siemens' Regenerative Gas Furnace. The following letter to the inventor will tell the first steps:—

"Royal Institution, March 22, 1862.

"My dear Sir,

"I have just returned from Birmingham—and there saw at Chance's works the application of your furnaces to glass-making. I was very much struck with the whole matter.

"As our managers want me to end the F. evenings here after Easter, I have looked about for a thought, for I have none in myself. I think I should like to speak of the effects I saw at Chance's, if you do not object. If you assent, can you help me with any drawings or models, or
illustrations either in the way of thoughts or experiments? Do not say much about it out of doors as yet, for my mind is not settled in what way (if you assent) I shall present the subject.

"Ever truly yours,

"C. W. SIEMENS, ESQ."

"M. FARADAY."

Of course the permission was gladly given, and Mr. Siemens met him at Birmingham, and for two days conducted him about works for flint and crown glass, or for enamel, as well as about ironworks, in which his principle was adopted, wondering at the Professor’s simplicity of character as well as at his ready power of grasping the whole idea. Then came the Friday evening, 20th June, 1862, in which he explained the great saving of heat effected, and pictured the world of flame into which he had gazed in some of those furnaces. But his powers of lecturing were enfeebled, and during the course of the hour he burnt his notes by accident, and at the conclusion he very pathetically bade his audience farewell, telling them that he felt he had been before them too long, and that the experience of that evening showed he was now useless as their public servant, but he would still endeavour to do what he could privately for the Institution. The usual abstract of the lecture appeared, but not from his unaided pen.

Inventors, and promoters of useful inventions, frequently benefited by the advice of Faraday, or by his generous help. A remarkable instance of this was told me by Cyrus Field. Near the commencement of his great enterprise, when he wished to unite the old and the new worlds by the
telegraphic cable, he sought the advice of the great electrician, and Faraday told him that he doubted the possibility of getting a message across the Atlantic. Mr. Field saw that this fatal objection must be settled at once, and begged Faraday to make the necessary experiments, offering to pay him properly for his services. The philosopher, however, declined all remuneration, but worked away at the question, and presently reported to Mr. Field:—"It can be done, but you will not get an instantaneous message." "How long will it take?" was the next inquiry. "Oh, perhaps a second." "Well, that's quick enough for me," was the conclusion of the American; and the enterprise was proceeded with.

As to the electric telegraph itself, Faraday does not appear among those who claim its parentage, but he was constantly associated with those who do; his criticisms led Ritchie to develop more fully his early conception, and he was constantly engaged with batteries and wires and magnets, while the telegraph was being perfected by others, and especially by his friend Wheatstone, whose name will always be associated with what is perhaps the most wonderful invention of modern times.

As to Faraday's own work in applied science, his attempts to improve the manufacture of steel, and afterwards of glass for optical purposes, were among the least satisfactory of his researches. He was more successful in the matter of ventilation of lamp-burners. The windows of lighthouses were frequently found streaming with water that arose from the combustion of the oil, and in winter this was often converted into thick ice. He devised a plan by which this water was
effectually carried away, and the room was also made more healthy for the keepers. At the Athenæum Club serious complaints were made that the brilliantly lighted drawing-room became excessively hot, and that headaches were very common, while the bindings of the books were greatly injured by the sulphuric acid that arose from the burnt coal-gas. Faraday cured this by an arrangement of glass cylinders over the ordinary lamp chimneys, and descending tubes which carried off the whole products of combustion without their ever mixing with the air of the room. This principle could of course be applied to brackets or chandeliers elsewhere, but the Professor made over any pecuniary benefit that might accrue from it to his brother, who was a lamp manufacturer and had aided him in the invention.

The achievements of Faraday are certainly not to be tested by a money standard, nor by their immediate adaptation to the necessities or conveniences of life. "Practical men" might be disposed to think slightly of the grand discoveries of the philosopher. Their ideas of "utility" will probably be different. One man may take his wheat corn and convert it into loaves of bread, while his neighbour appears to lose his labour by throwing the precious grain into the earth: but which is after all most productive? The loaves will at once feed the hungry, but the sower's toil will be crowned in process of time by waving harvests.

Yet some of Faraday's most recondite inquiries did bear practical fruit even during his own lifetime. In proof of this I will take one of his chemical and two of his electrical discoveries.
Long ago there was a Portable Gas Company, which made oil-gas and condensed it into a liquid. This liquid Faraday examined in 1824, and he found the most important constituent of it to be a light volatile oil, which he called bicarburet of hydrogen. The gas company, I presume, came to an end; but what of the volatile liquid? Obtained from coal-tar, and renamed Benzine or Benzol, it is now prepared on a large scale, and used as a solvent in some of our industrial arts. But other chemists have worked upon it, and torturing it with nitric acid, they have produced nitrobenzol—a gift to the confectioner and the perfumer. And by attacking this with reducing agents there was called into existence the wondrous base aniline,—wondrous indeed when we consider the transformations it underwent in the hands of Hofmann, and the light it was made to throw on the internal structure of organic compounds. Faraday used sometimes to pay a visit to the Royal College of Chemistry, and revel in watching these marvellous reactions. But aniline was of use to others besides the theoretical chemist. Tortured by fresh appliances, this base gave highly-coloured bodies which it was found possible to fix on cotton as well as woollen and silken fabrics, and thence sprang up a large and novel branch of industry, while our eyes were delighted with the rich hues of mauve and magenta, the Bleu de Paris, and various other "aniline dyes."

Everyone who is at all acquainted with the habits of electricity knows that the most impassable of obstacles is the air, while iron bolts and bars only help it in its flight: yet, if an electrified body be brought near another body,
with this invisible barrier between them, the electrical state of the second body is disturbed. Faraday thought much over this question of "induction," as it is called, and found himself greatly puzzled to comprehend how a body should act where it is not. At length he satisfied himself by experiment that the interposed obstacle is itself affected by the electricity, and acquires an electro-polar state by which it modifies electric action in its neighbourhood. The amount varies with the nature of the substance, and Faraday estimated it for such dielectrics as sulphur, shellac, or spermaceti, compared with air. He termed this new property of matter "specific inductive capacity," and figured in his own mind the play of the molecules as they propagated and for a while retained the force. Now, these very recondite observations were opposed to the philosophy of the day, and they were not received by some of the leading electricians, especially of the Continent, while those who first tried to extend his experiments blundered over the matter. However, the present Professor Sir William Thomson, then a student at Cambridge, showed that while Faraday's views were rigorously deducible from Coulomb's theory, this discovery was a great advance in the philosophy of the subject. When submarine telegraph wires had to be manufactured, Thomson took "specific inductive capacity" into account in determining the dimensions of the cable: for we have there all the necessary conditions—the copper wire is charged with electricity, the covering of gutta-percha is a "dielectric," and the water outside is ready to have an opposite electric condition induced in it. The result is that, as Faraday himself predicted, the message is somewhat retarded; and of course
it becomes a thing of importance so to arrange matters that this retardation may be as small as possible, and the signals may follow one another speedily. Now this must depend not only on the thickness of the covering, but also on the nature of the substance employed, and it was likely enough that gutta-percha was not the best possible substance. In fact, when Professor Fleeming Jenkin came to try the inductive capacity of gutta-percha by means of the Red Sea cable, he found it to be almost double that of shellac, which was the highest that Faraday had determined, and attempts have been made since to obtain some substance which should have less of this objectionable quality and be as well adapted otherwise for coating a wire. There is Hooper's material, the great merit of which is its low specific inductive capacity, so that it permits of the sending of four signals while gutta-percha will only allow three to pass along; and Mr. Willoughby Smith has made an improved kind of gutta-percha with reduced capacity. Of course no opinion is expressed here on the value of these inventions, as many other circumstances must be taken into account, such as their durability and their power of insulation,—that is, preventing the leakage of the galvanic charge; but at least they show that one of the most abstruse discoveries of Faraday has penetrated already into our patent offices and manufactories. Two students in the Physical Laboratory at Glasgow have lately determined with great care the inductive capacity of paraffin, and there can be little doubt that the speculations of the philosopher as to the condition of a dielectric will result in rendering it still more easy than at present to send words of information or of friendly
greeting to our cousins across the Atlantic or the Indian Ocean.

The history of the magneto-electric light affords another remarkable instance of the way in which one of Faraday's most recondite discoveries bore fruit in his own lifetime; and it is the more interesting as it fell to his own lot to assist in bringing the fruit to maturity.

"BRIGHTON, November 29, 1831.

"DEAR PHILLIPS,

"For once in my life I am able to sit down and write to you without feeling that my time is so little that my letter must of necessity be a short one; and accordingly I have taken an extra large sheet of paper, intending to fill it with news.

"But how are you getting on? Are you comfortable? And how does Mrs. Phillips do; and the girls? Bad correspondent as I am, I think you owe me a letter; and as in the course of half an hour you will be doubly in my debt, pray write us, and let us know all about you. Mrs. Faraday wishes me not to forget to put her kind remembrances to you and Mrs. Phillips in my letter.

"We are here to refresh. I have been working and writing a paper that always knocks me up in health; but now I feel well again, and able to pursue my subject; and now I will tell you what it is about. The title will be, I think, 'Experimental Researches in Electricity':—I. On the Induction of Electric Currents; II. On the Evolution of Electricity from Magnetism; III. On a new Electrical Condition of Matter; IV. On Arago's Magnetic Phenomena.
There is a bill of fare for you; and, what is more, I hope it will not disappoint you. Now, the pith of all this I must give you very briefly; the demonstrations you shall have in the paper when printed."

So wrote Faraday to his intimate friend Richard Phillips, on November 29th, 1831, and the letter goes on to describe the great harvest of results which he had gathered since the 29th of August, when he first obtained evidence of an electric current from a magnet. A few days afterwards he was at work again on these curious relations of magnetism and electricity in his laboratory, and at the Round Pond in Kensington Gardens, and with Father Thames at Waterloo Bridge. On the 8th of February he entered in his note-book: "This evening, at Woolwich, experimented with magnet, and for the first time got the magnetic spark myself. Connected ends of a helix into two general ends, and then crossed the wires in such a way that a blow at \(a \), \(b \) would open them a little. Then bringing \(a \), \(b \) against the poles of a magnet, the ends were disjoined, and bright sparks resulted."

Next day he repeated this experiment at home with Mr. Daniell's magnet, and then invited some of his best friends to come and see the tiny speck of light.¹

¹ I am indebted to Sir Charles Wheatstone for the following impromptu by Herbert Mayo:

"Around the magnet Faraday
Was sure that Volta's lightnings play:
 But how to draw them from the wire?
He drew a lesson from the heart:
'Tis when we meet, 'tis when we part,
 Breaks forth the electric fire."
But what was the use of this little spark between the shaken wires? "What is the use of an infant?" asked Franklin once, when some such question was proposed to him. Faraday said that the experimentalist's answer was, "Endeavour to make it useful." But he passed to other researches in the same field.

"I have rather been desirous," he says, "of discovering new facts and new relations dependent on magneto-electric induction, than of exalting the force of those already obtained; being assured that the latter would find their full development hereafter." And in this assurance he was not mistaken. Electro-magnetism has been taken advantage of on a large scale by the metallurgist and the telegrapher; and even the photographer and sugar-refiner have attempted to make it their servant; but it is its application as a source of light that is most interesting to us in connection with its discoverer.

Many "electric lights" were invented by "practical men," the power being generally derived from a galvanic battery; and it was discovered that by making the terminals of the wires of charcoal, the brilliancy of the spark could be enormously increased. Some of these inventions were proposed for lighthouses, and so came officially under the notice of Faraday as scientific adviser to the Trinity House. Thus he was engaged in 1853 and 1854 with the beautiful electric light of Dr. Watson, which he examined most carefully, evidently hoping it might be of service, and at length he wrote an elaborate report pointing out its advantages, but at the same time the difficulties in the way of its practical adoption. The Trinity Corporation passed a special
vote of thanks for his report, and hesitated to proceed further in the matter.

But Faraday's own spark was destined to be more successful. In 1853 some large magneto-electric machines were set up in Paris for producing combustible gas by the decomposition of water. The scheme failed, but a Mr. F. H. Holmes suggested that these expensive toys might be turned to account for the production of light. "My propositions," he told the Royal Commissioners of Light-houses, "were entirely ridiculed, and the consequence was, that instead of saying that I thought I could do it, I promised to do it by a certain day. On that day, with one of Duboscq's regulators or lamps, I produced the magneto-electric light for the first time; but as the machines were ill-constructed for the purpose, and as I had considerable difficulty to make even a temporary adjustment to produce a fitting current, the light could only be exhibited for a few minutes at a time." He turned his attention to the reconstruction of the machines, and after carrying on his experiments in Belgium, he applied to the Trinity Board in February 1857. Here was the tiny spark, which Faraday had produced just twenty-five years before, exalted into a magnificent star, and for Faraday it was reserved to decide whether this star should shed its brilliance from the cliffs of Albion. A good piece of optical apparatus, intended for the Bishop Rock in the Scillies, happened to be at the experimental station at Blackwall, and with this comparative experiments were made. We can imagine something of the interest with which Faraday watched the light from Woolwich, and asked questions of the inventor about all the
details of its working and expense; and we can picture the alternations of hope and caution as he wrote in his report, "The light is so intense, so abundant, so concentrated and focal, so free from under-shadows (caused in the common lamp by the burner), so free from flickering, that one cannot but desire it should succeed. But," he adds, "it would require very careful and progressive introduction—men with peculiar knowledge and skill to attend it; and the means of instantly substituting one lamp for another in case of accident. The common lamp is so simple, both in principle and practice, that its liability to failure is very small. There is no doubt that the magneto-electric lamp involves a great number of circumstances tending to make its application more refined and delicate; but I would fain hope that none of these will prove a barrier to its introduction. Nevertheless, it must pass into practice only through the ordeal of a full, searching, and prolonged trial." This trial was made in the upper of the two light towers at the South Foreland; but it was not till the 8th December, 1858, that the experiment was commenced. Faraday made observations on it for the first two days, but it did not act well, and was discontinued till March 28, 1859, when it again shot forth its powerful rays across the Channel.

It was soon inspected by Faraday inside and outside, by land and by sea. His notes terminate in this way:—"Went to the hills round, about a mile off, or perhaps more, so as to see both upper and lower light at once. The effect was very fine. The lower light does not come near the upper in its power, and, as to colour, looks red whilst the upper is white. The visible rays proceed from both horizontally,
but those from the low light are not half so long as those from the electric light. The radiation from the upper light was beautifully horizontal, going out right and left with intenseness like a horizontal flood of light, with blackness above and blackness below, yet the sky was clear and the stars shining brightly. It seemed as if the lanthorn only were above the earth, so dark was the part immediately below the lanthorn, yet the whole tower was visible from the place. As to the shadows of the uprights, one could walk into one and across, and see the diminution of the light, and could easily see when the edge of the shadow was passed. They varied in width according to the distance from the lanthorn. With upright bars their effect is considerable at a distance, as seen last night; but inclining these bars would help in the distance, though not so much as with a light having considerable upright dimension, as is the case with an oil-lamp.

"The shadows on a white card were very clear on the edge—a watch very distinct and legible. On lowering the head near certain valleys, the feeble shadow of the distant grass and leaves was evident. The light was beautifully steady and bright, with no signs of variation—the appearance was such as to give confidence to the mind—no doubt about its continuance.

"As a light it is unexceptionable—as a magneto-electric light wonderful—and seems to have all the adjustments of quality and more than can be applied to a voltaic electric light or a Ruhmkorff coil."

1 The room with glass sides, from which the light is exhibited at the top of a lighthouse, is called by this name.
The Royal Commissioners and others saw with gratification this beautiful light, and arrangements were made for getting systematic observations of it by the keepers of all the lighthouses within view, the masters of the light-vessels that guard the Goodwin Sands, and the crews of pilot cutters; after which Faraday wrote a very favourable report, saying, among other things: "I beg to state that in my opinion Professor Holmes has practically established the fitness and sufficiency of the magneto-electric light for lighthouse purposes, so far as its nature and management are concerned. The light produced is powerful beyond any other that I have yet seen so applied, and in principle may be accumulated to any degree; its regularity in the lanthorn is great, its management easy, and its care there may be confided to attentive keepers of the ordinary degree of intellect and knowledge." 1

The Elder Brethren then wished a further trial of six months, during which time the light was to be entirely under their own control. It was therefore again kindled on August 22, and the experiment happened soon to be exposed to a severe test, as one of the light-keepers, who had been accustomed to the arrangement of the lamps in the lantern, was suddenly removed, and another took his place without any previous instruction. This man thought the light sufficiently strong if he allowed the carbon points to touch, as the lamp then required no attendance whatever,

1 One night there was a beautiful aurora. Mr. Holmes remarked that his poor electric light could not compare with that for beauty; but Faraday rejoined, "Don't abuse your light. The aurora is very beautiful, and so is a wild horse, but you have tamed it and made it valuable."
and he could leave it in that way for hours together. On being remonstrated with, he said, "It is quite good enough." Notwithstanding such difficulties as these, the experiment was considered satisfactory, but it was discontinued at the South Foreland, for the cliffs there are marked by a double light, and the electric spark was so much brighter than the oil flames in the other house, that there was no small danger of its being seen alone in thick weather, and thus fatally misleading some unfortunate vessel.

After this Faraday made further observations, estimates of the expense, and experiments on the divergence of the beam, while Mr. Holmes worked away at Northfleet perfecting his apparatus, and the authorities debated whether it was to be exhibited again at the Start, which is a revolving light, or at Dungeness, which is fixed. The scientific adviser was in favour of the Start, but after an interview with Mr. Milner Gibson, then President of the Board of Trade, Dungeness was determined on; a beautiful small combination of lenses and prisms was made expressly for it by Messrs. Chance, and at last, after two years' delay, the light again shone on our southern coast.

It may be well to describe the apparatus. There are 120 permanent magnets, weighing about 50 lbs. each, ranged on the periphery of two large wheels. A steam-engine of about three-horse power causes a series of 180 soft iron cores, surrounded by coils of wire, to rotate past the magnets. This calls the power into action, and the small streams of electricity are all collected together, and by what is called a "commutator" the alternate positive and negative currents are brought into one direction. The whole power is
then conveyed by a thick wire from the engine-house to the lighthouse tower, and up into the centre of the glass apparatus. There it passes between two charcoal points, and produces an intensely brilliant continuous spark. At sunset the machine is started, making about 100 revolutions per minute; and the attendant has only to draw two bolts in the lamp, when the power thus spun in the engine-room bursts into light of full intensity. The "lamp" regulates itself, so as to keep the points always at a proper distance apart, and continues to burn, needing little or no attention for three hours and a half, when, the charcoals being consumed, the lamp must be changed, but this is done without extinguishing the light.

Again there were inspections, and reports from pilots and other observers, and Faraday propounded lists of questions to the engineer about bolts and screws and donkey-engines, while he estimated that at the Varne light-ship, about equidistant from Cape Grisnez and Dungeness, the maximum effect of the revolving French light was equalled by the constant gleam from the English tower. But delays again ensued till intelligent keepers could be found and properly instructed; but on the 6th June, 1862, Faraday's own light, the baby grown into a giant, shone permanently on the coast of Britain.

France, too, was alert. Berlioz's machine, which was displayed at the International Exhibition in London, and which was also examined by Faraday, was approved by the French Government, and was soon illuminating the double lighthouse near Havre. These magneto-electric lights on either side of the Channel have stood the test of years; and
for the last twelvemonth there has shone another still more beautiful one at Souter Point, near Tynemouth; while the narrow strait between England and France is now guarded by these "sentinels of peaceful progress," for the revolving light at Grisnez has been lately illuminated on this principle, and on the 1st of January of this year the two lights of the South Foreland flashed forth with the electric flame.¹

In describing thus the valuable applications of Faraday's discoveries of benzol, of specific inductive capacity, and of magneto-electricity, it is not intended to exalt these above other discoveries which as yet have paid no tribute to the material wants of man. The good fruit borne by other researches may not be sufficiently mature, but it doubtless contains the seeds of many useful inventions. Yet, after all, we must not measure the worth of Faraday's discoveries by any standard of practical utility in the present or in the future. His chief merit is that he enlarged so much the boundaries of our knowledge of the physical forces, opened up so many new realms of thought, and won so many heights which have become the starting-points for other explorers.

¹ The illuminating apparatus at Dungeness is one of what is termed the sixth order, 300 millimetres (about 12 inches) in diameter. Mr. Chance constructed one for Souter Point of the third order, one metre (nearly 40 inches) in diameter, with special arrangements for giving artificial divergence to the beam in a vertical direction, in order to obviate the danger arising from the luminous point not being always precisely in the same spot. It has also additional contrivances for utilizing the back light. Similar arrangements have been made for the South Foreland lights, which are also of the third order; and every portion of the machinery and apparatus is in duplicate in case of accident, and the double force can be employed in times of fog.
SUPPLEMENTARY PORTRAITS.

It has been said that there is no photograph or painting of Faraday which is a satisfactory likeness; not because good portraits have never been published, but because they cannot give the varied and ever-shifting expression of his features. Similarly, I fear that the mental portraiture which I have attempted will fail to satisfy his intimate acquaintance. Yet, as one who never saw him in the flesh may gain a good idea of his personal appearance by comparing several pictures, so the reader may learn more of his intellectual and moral features by combining the several estimates which have been made by different minds. Earlier biographies have been already referred to, but my sketch may well be supplemented by an anonymous poem that appeared immediately after his death, and by the words of two of the most distinguished foreign philosophers—Messrs. De la Rive and Dumas.

"Statesmen and soldiers, authors, artists,—still
The topmost leaves fall off our English oak:
Some in green summer's prime, some in the chill
Of autumn-tide, some by late winter's stroke."
"Another leaf has dropped on that sere heap—
One that hung highest; earliest to invite
The golden kiss of morn, and last to keep
The fire of eve—but still turned to the light.

"No soldier's, statesman's, poet's, painter's name
Was this, thro' which is drawn Death's last black line;
But one of rarer, if not loftier fame—
A priest of Truth, who lived within her shrine.

"A priest of Truth: his office to expound
Earth's mysteries to all who willed to hear—
Who in the book of science sought and found,
With love, that knew all reverence, but no fear.

"A priest, who prayed as well as ministered:
Who grasped the faith he preached, and held it fast:
Knowing the light he followed never stirred,
Howe'er might drive the clouds thro' which it past.

"And if Truth's priest, servant of Science too,
Whose work was wrought for love and not for gain:
Not one of those who serve but to ensue
Their private profit: lordship to attain.

"Over their lord, and bind him in green withes,
For grinding at the mill 'neath rod and cord;
Of the large grist that they may take their tithes—
So some serve Science that call Science lord.

"One rule his life was fashioned to fulfil:
That he who tends Truth's shrine, and does the best
Of Science, with a humble, faithful will,
The God of Truth and Knowledge serveth best.

"And from his humbleness what heights he won!
By slow march of induction, pace on pace,
Scaling the peaks that seemed to strike the sun;
Whence few can look, unblinded, in his face.
"Until he reached the stand which they that win
A bird’s-eye glance o’er Nature’s realm may throw;
Whence the mind’s ken by larger sweeps takes in
What seems confusion, looked at from below.

"Till out of seeming chaos order grows,
In ever-widening orbs of Law restrained,
And the Creation’s mighty music flows
In perfect harmony, serene, sustained;

"And from varieties of force and power,
A larger unity, and larger still,
Broadens to view, till in some breathless hour
All force is known, grasped in a central Will,

"Thunder and light revealed as one same strength—
Modes of the force that works at Nature’s heart—
And through the Universe’s veinèd length
Bids, wave on wave, mysterious pulses dart.

"That cosmic heart-beat it was his to list,
To trace those pulses in their ebb and flow
Towards the fountain-head, where they subsist
In form as yet not given e’en him to know.

"Yet, living face to face with these great laws,
Great truths, great myst’ries, all who saw him near
Knew him for child-like, simple, free from flaws
Of temper, full of love that casts out fear:

"Untired in charity, of cheer serene;
Not caring world’s wealth or good word to earn;
Childhood’s or manhood’s ear content to win;
And still as glad to teach as meek to learn.

"Such lives are precious: not so much for all
Of wider insight won where they have striven,
As for the still small voice with which they call
Along the beamy way from earth to heaven."

Punch, September 7, 1867.
The estimate of M. A. de la Rive is from a letter he addressed to Faraday himself:—

"I am grieved to hear that your brain is weary; this has sometimes happened on former occasions, in consequence of your numerous and persevering labours, and you will bear in mind that a little rest is necessary to restore you. You possess that which best contributes to peace of mind and serenity of spirit—a full and perfect faith, a pure and tranquil conscience, filling your heart with the glorious hopes which the Gospel imparts. You have also the advantage of having always led a smooth and well-regulated life, free from ambition, and therefore exempt from all the anxieties and drawbacks which are inseparable from it. Honour has sought you in spite of yourself; you have known, without despising it, how to value it at its true worth. You have known how to gain the high esteem, and at the same time the affection, of all those acquainted with you.

"Moreover, thanks to the goodness of God, you have not suffered any of those family misfortunes which crush one's life. You should, therefore, watch the approach of old age without fear and without bitterness, having the comforting feeling that the wonders which you have been able to decipher in the book of nature must contribute to the greater reverence and adoration of their Supreme Author.

"Such, my dear friend, is the impression that your beautiful life always leaves upon me; and when I compare it with our troubled and ill-fulfilled life-course, with all that accumulation of drawbacks and griefs by which mine in particular has been attended, I put you down as very
happy, especially as you are worthy of your good fortune. This leads me to reflect on the miserable state of those who are without that religious faith which you possess in so great a degree.”

In M. Dumas’ Eloge at the Académie des Sciences, occur the following sentences:—

“I do not know whether there is a savant who would not feel happy in leaving behind him such works as those with which Faraday has gladdened his contemporaries, and which he has left as a legacy to posterity: but I am certain that all those who have known him would wish to approach that moral perfection which he attained to without effort. In him it appeared to be a natural grace, which made him a professor full of ardour for the diffusion of truth, an indefatigable worker, full of enthusiasm and sprightliness in his laboratory, the best and most amiable of men in the bosom of his family, and the most enlightened preacher amongst the humble flock whose faith he followed.

“The simplicity of his heart, his candour, his ardent love of the truth, his fellow-interest in all the successes, and ingenuous admiration of all the discoveries of others, his natural modesty in regard to what he himself discovered, his noble soul—independent and bold,—all these combined gave an incomparable charm to the features of the illustrious physicist.

“I have never known a man more worthy of being loved, of being admired, of being mourned.

“Fidelity to his religious faith, and the constant observance of the moral law, constitute the ruling characteristics of his life. Doubtless his firm belief in that justice on high
which weighs all our merits, in that sovereign goodness which weighs all our sufferings, did not inspire Faraday with his great discoveries, but it gave him the straightforwardness, the self-respect, the self-control, and the spirit of justice, which enabled him to combat evil fortune with boldness, and to accept prosperity without being puffed up.

"There was nothing dramatic in the life of Faraday. It should be presented under that simplicity of aspect which is the grandeur of it. There is, however, more than one useful lesson to be learnt from the proper study of this illustrious man, whose youth endured poverty with dignity, whose mature age bore honours with moderation, and whose last years have just passed gently away surrounded by marks of respect and tender affection."
APPENDIX.

LIST OF LEARNED SOCIETIES TO WHICH MICHAEL FARADAY BELONGED.

ANNO.

1823. Corresponding member of the Academy of Sciences, Paris.
 Corresponding member of the Accademia dei Georgofili, Florence.
 Honorary member of the Cambridge Philosophical Society.
 Honorary member of the British Institution.

1824. Fellow of the Royal Society.
 Honorary member of the Cambrian Society, Swansea.
 Fellow of the Geological Society.

1825. Member of the Royal Institution.
 Corresponding member of the Society of Medical Chemists, Paris.

1826. Honorary member of the Westminster Medical Society.

1828. Fellow of the Natural Society of Science, Heidelberg.

1829. Honorary member of the Society of Arts, Scotland.

1831. Honorary member of the Imperial Academy of Sciences, St. Petersburg.

1832. Honorary member of the College of Pharmacy, Philadelphia.
 Honorary member of the Chemical and Physical Society, Paris.
 Fellow of the American Academy of Arts and Sciences, Boston.
 Member of the Royal Society of Science, Copenhagen.

1833. Corresponding member of the Royal Academy of Sciences, Berlin.
 Honorary member of the Hull Philosophical Society.

1834. Foreign corresponding member of the Academy of Sciences and Literature, Palermo.
APPENDIX.

ANNEX.

1835. Corresponding member of the Royal Academy of Medicine, Paris.
Honorary member of the Royal Society, Edinburgh.
Honorary member of the Institution of British Architects.
Honorary member of the Physical Society, Frankfort.
Honorary Fellow of the Medico-Chirurgical Society, London.

1836. Senator of the University of London.
Honorary member of the Society of Pharmacy, Lisbon.
Honorary member of the Sussex Royal Institution.
Foreign member of the Society of Sciences, Modena.
Foreign member of the Natural History Society, Basle.

1837. Honorary member of the Literary and Scientific Institution, Liverpool.

1838. Honorary member of the Institution of Civil Engineers.
Foreign member of the Royal Academy of Sciences, Stockholm.

1840. Member of the American Philosophical Society, Philadelphia.
Honorary member of the Hunterian Medical Society, Edinburgh.

1842. Foreign Associate of the Royal Academy of Sciences, Berlin.

1843. Honorary member of the Literary and Philosophical Society, Manchester.
Honorary member of the Useful Knowledge Society, Aix-la-Chapelle.

1844. Foreign Associate of the Academy of Sciences, Paris.
Honorary member of the Sheffield Scientific Society.

1845. Corresponding member of the National Institute, Washington.
Corresponding member of the Société d'Encouragement, Paris.

1846. Honorary member of the Society of Sciences, Vaud.

1847. Member of the Academy of Sciences, Bologna.
Foreign Associate of the Royal Academy of Sciences of Belgium.
Fellow of the Royal Bavarian Academy of Sciences, Munich.
Correspondent of the Academy of Natural Sciences, Philadelphia.

1848. Foreign honorary member of the Imperial Academy of Sciences, Vienna.

1849. Honorary member, first class, of the Institut Royal des Pays-Bas.
Foreign correspondent of the Institute, Madrid.

1850. Corresponding Associate of the Accademia Pontificia, Rome.
Foreign Associate of the Academy of Sciences, Haarlem.
ANNO.

1851. Member of the Royal Academy of Sciences, The Hague.
 Corresponding member of the Batavian Society of Experimental
 Philosophy, Rotterdam.
 Fellow of the Royal Society of Sciences, Upsala.

1853. Foreign Associate of the Royal Academy of Sciences, Turin.
 Honorary member of the Royal Society of Arts and Sciences,
 Mauritius.

1854. Corresponding Associate of the Royal Academy of Sciences,
 Naples.

1855. Honorary member of the Imperial Society of Naturalists,
 Moscow.
 Corresponding Associate of the Imperial Institute of Sciences
 of Lombardy.

1856. Corresponding member of the Netherlands' Society of Sciences,
 Batavia.
 Member of the Imperial Royal Institute, Padua.

1857. Member of the Institute of Breslau.
 Corresponding Associate of the Institute of Sciences, Venice.
 Member of the Imperial Academy, Breslau.

1858. Corresponding member of the Hungarian Academy of Sciences,
 Pesth.

1860. Foreign Associate of the Academy of Sciences, Pesth.
 Honorary member of the Philosophical Society, Glasgow.

1861. Honorary member of the Medical Society, Edinburgh.

1863. Foreign Associate of the Imperial Academy of Medicine, Paris.

1864. Foreign Associate of the Royal Academy of Sciences, Naples.
INDEX.

A.
ABBOTT, Benjamin, 3.
Abel, F. A., reminiscences by, 29, 71.
Anderson, Sergeant, 31.
Apparatus, simplicity of, 125, 128.
Arrow, Sir Frederick, anecdote by, 125.
Astley's Theatre, adventure at, 20.
Athenaeum Club, 21, 150.
Atoms, or centres of force? 139.

B.
BARLOW, Rev. John, 57; incident at his house, 68.
Barnard, F., anecdotes by, 81, 83, 127.
Barnard, Miss Jane, 57.
Barrett, W. F., reminiscences by, 72, 139.
Blacksmith's shop, 40, 79.
Bollaert, William, 19.
Bores, 43.
British Association, 40.

C.
CHARACTER of Faraday, 60.
Charitable gifts, 75.
Chemical Society, 59.
Children and Faraday, 31, 34, 69.
Churchyard at Oberhofen, 118.
City Philosophical Society, 11, 16.
Close, Captain, anecdotes by, 86.
Colliery explosion at Haswell, 130.
Continent, visits to the, 12, 38.
Correspondence, 47.
Crosse, Mrs. A., visit of, 88.

D.
DANIELL, Professor, 64.
Davy, Sir Humphry, 7, 8, 15, 17, 67; his safety-lamp, 16.
De la Rive, A., 76; sketches by, 136, 143, 167.
Discoveries, value of, 143, 163.
Domestic affection, 79.
Dumas, sketches by, 66, 142, 168.

E.
EDUCATION, views on, 100.
Enthusiasm, 62.
Experiment, love of, 125, 135.
Explosions, 10.

F.
FAITHFULNESS, 61.
Faraday, Michael, his birth, 1; apprenticed to a bookseller, 2, 61; begins to experiment, 3, 4; attends Tatum's lectures, 3; Davy's, 7; becomes journeyman bookbinder, 7; engaged by Davy, 8, 9; his attempts at self-improve-
ment, 11, 20; travels on the Continent, 12; gives his first lecture, 16; writes his first paper, 17; assists Professor Brande, 18; his amusements, 20, 39, 42; marries, 24; gives courses of lectures, 26; appointed Fullerian Professor, 27; his income, 27, 75; accepts lectureship at Woolwich, 29; becomes scientific adviser to Trinity House, 29; his usual day's work, 31; his Friday evenings, 32, 33; his juvenile lectures, 34; his Sunday engagements, 35; his Wednesday meetings, 36; his visits to the country, 38; his correspondence, 47; his publications, 51; his honours, 53, 170; declines presidency of Royal Society, 54; refuses and accepts pension, 55; resigns his appointments, 55, 56; his last illness, 57; his death, 58.

Faraday's father, 1, 25, 40, 79.

Field, Cyrus, 148.

Firmness with gentleness, 81.

Force, a Proteus, 145.

Foucault, visit to, 66.

Friday evenings at the Royal Institution, 25, 33, 147.

Fuller, John, 27.

Funeral, 58.

G.

Gießbach Falls, 118.

Graham, Professor, 58, 129.

Gymnotus, 114.

H.

Hampton Court, house at, 55.

Helmholtz, Professor, quotation from, 146.

Holland, Sir Henry, 46.

Holmes, F. H., 157, 160.

Home life, 25, 31, 38, 79.

Honours, scientific, views on, 108.

Humility, 91.

Humour, 64.

I.

Indignation against wrong, 68.

Infidelity, accusation of, 116.

Inner conflicts, 84.

J.

Jermyn Street, incident at, 125.

Jones, Dr. H. Bence, 62, 93.

Journals, 14, 118.

Juvenile lectures at Royal Institution, 26, 34.

K.

Kindliness, 69, 76, 81.

L.

Lectures at Royal Institution, 26, 107.

Lecturing, views on, 103.

Letters to Faraday, from Bonaparte, Louis Napoleon, 47; Davy, Sir Humphry, 17; De la Rive, A., 167; Whewell, Dr., 140.

Letters from Faraday to Abbott, B., 12; Abel, F. A., 30; Airy, G. B. (Astronomer Royal), 138; Andrews, Prof., 109; Auckland, Lord, 28; Barnard, F., 50; Barnard, Miss Sarah, 24; Becker, Dr., 134; Coutts, Lady Burdett, 46, 83; Crosse, Mrs. Andrew, 80; Deacon, Mrs., 57; Faraday, Mrs. (his mother), 13; Faraday, Mrs. (his wife), 24, 25; Field, F., 94; Gladstone, J. H., 137; Inventors, 77; Joule, J. P., 49, 145; Matteucci, 67; Moore, Miss, 49, 141; Noad, Dr., 73; Paris, Comte de, 57; Paris, Dr., 8, 48; Percy, Dr., 113; Phillips, R., 154; Riebau, G., 4; Schönbein,
INDEX

113, 119; Siemens, C. W., 147; Spiritualist, 114; Wheatstone, Sir Charles, 46; Wrottesley, Lord, 110.
Lighthouses, adjustment of apparatus in, 131; illuminated by electricity, 156.
Love of study, 62.
Love to children, 69.

M.
Magnetism, wonder at, 139.
Magneto-electric light, 157.
Magrath, Mr., 11, 21.
Mallet, Robert, reminiscences by, 44, 135.
Masquerier, M., 5, 43.
Mathematics, want of, 134.
Mayo, Herbert, impromptu by, 155.
Melbourne, Lord, 54.
Mental education, views on, 96.
Mental and moral greatness conjoined, 87, 120.

N.
Napoleon III., 47.
Natural theology, views on, 116.
Noad, Dr., 73.
Noble, Mr. (the sculptor), 79.
Note-books, 4, 7, 26.

O.
Orderliness, 124.

P.
Peel, Sir Robert, 54.
Philosopher portrayed, 93, 121.
Philosophers and practical men, 144, 150.
Photometer, special, 126.
Playfulness, 40, 63.
Poetry of nature, 86, 118.
Politics, indifference to, 41.

Pollock, Lady, description of Friday evening discourse, 33.
Potato models, 129.
Power of imagination, 62.
Practical applications of science, 146.
Preaching, style of, 36.
Prince Consort, 35.
Pritchard, Rev. C., quotation from, 117.
Publications, scientific, 51, 141.
Public Schools Commission, evidence before, 101.
Punch, verses in, 164.

Q.
Queen Victoria, 47, 55.

R.
Reid, Miss, reminiscences by, 38, 84.
Religious belief, views on, 98.
Religious character, 90.
Researches, early, 19; on electricity and magnetism, 19, 52, 151, 154; electrical eel, 115; telegraphy, 149; ventilation, 149; benzol, 150.
Reverence, 65, 66, 69, 81.
Roman Carnival, 15.
Royal Institution, 5, 25, 55 122, 128; Faraday laboratory assistant at, 9, 16; superintendent of house at, 25; Fullerian Professorship, 27; relics at, 2, 127.
Royal Society, fellowship, 52; presidency declined, 54; communications to, 51, 141.

S.
Sandemanians, 21, 91; Faraday's eldership among, 35.
Schönbein, Prof., remarks of, 122, 128.
Science a branch of education, 100.
<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitiveness, 68, 85.</td>
</tr>
<tr>
<td>Sermons, Faraday's, 36, 37.</td>
</tr>
<tr>
<td>Simple-minded joyousness, 63, 88.</td>
</tr>
<tr>
<td>Simplicity of character, 82.</td>
</tr>
<tr>
<td>Sirius alias Vestium, 18.</td>
</tr>
<tr>
<td>Social character, 85, 89.</td>
</tr>
<tr>
<td>Society of Arts, 20.</td>
</tr>
<tr>
<td>Spiritualists, opinion of, 113.</td>
</tr>
<tr>
<td>Submarine cables, 152.</td>
</tr>
</tbody>
</table>

U.

Unworldliness, 89.

V.

Velocipede riding, 20.

Visitors, attention to, 31, 44.

Visits to the sick, 76.

W.

Walmer, visit to, 38.

Welsh damsel at waterfall, 71.

William IV., 55.

Wiseman, Cardinal, visit of, 91.

Woolwich Academy, 29, 30.

Y.

Young, James, reminiscence by, 129.

THE END.

AUG 9 1918

W. CLAY, SONS, AND TAYLOR, Printers, Bread Street Hill.
Macmillan & Co.'s Catalogue of Works in the Departments of History, Biography, and Travels; Politics, Political and Social Economy, Law, etc.; and Works connected with Language. With some short Account or Critical Notice concerning each Book.

History, Biography, and Travels.

Baker (Sir Samuel W.)—Works by Sir Samuel Baker M.A., F.R.G.S.:—

"Bruce won the source of the Blue Nile; Speke and Grant won the Victoria source of the great White Nile; and I have been permitted to succeed in completing the Nile Sources by the discovery of the great reservoir of the equatorial waters, the Albert N'yanza, from which the river issues as the entire White Nile."—Preface. "As a Macaulay arose among the historians," says the Reader, "so a Baker has arisen among the explorers." "Charmingly written," says the Spectator, "full, as might be expected, of incident, and free from that wearisome reiteration of useless facts which is the drawback to almost all books of African travel."

Sir Samuel Baker here describes twelve months' exploration, during which he examined the rivers that are tributary to the Nile from Abyssinia, including the Athara, Settie, Royan, Salam, Angrab, Rahad, Dinder, and the Blue Nile. The interest attached to these portions of Africa differs entirely from that of the White Nile regions, as the whole of Upper Egypt and Abyssinia is capable of development, and is inhabited by races having some degree of civilisation; while Central Africa is peopled by a race of savages, whose future is more problematical. The TIMES says: "It solves finally a geographical riddle which hitherto had been extremely perplexing, and it adds much to our information respecting Egyptian Abyssinia and the different races that spread over it. It contains, moreover, some notable instances of English daring and enterprising skill; it abounds in animated tales of exploits dear to the heart of the British sportsman; and it will attract even the least studious reader, as the author tells a story well, and can describe nature with uncommon power."

Barante (M. De).—See Guizot.

Mr. Baring-Gould's previous contributions to the History of Mythology and the formation of a science of comparative religion are admitted to be of high importance; the present work, it is believed, will be found to be of equal value. He has collected from the Talmud and other sources, Jewish and Mohammedan, a large number of curious and interesting legends concerning the principal characters of the Old Testament, comparing these frequently with similar legends current among many of the peoples, savage and civilized, all over the world. "These volumes contain much that is very strange, and, to the ordinary English reader, very novel."—Daily News.

Barker (Lady).—See also Belles Lettres Catalogue.

STATION LIFE IN NEW ZEALAND. By Lady Barker. Second and Cheaper Edition. Globe 8vo. 3s. 6d.
These letters are the exact account of a lady's experience of the brighter and less practical side of colonization. They record the expeditions, adventures, and emergencies diversifying the daily life of the wife of a New Zealand sheep-farmer; and, as each was written while the novelty and excitement of the scenes it describes were fresh upon her, they may succeed in giving here in England an adequate impression of the delight and freedom of an existence so far removed from our own highly-wrought civilisation. "We have never read a more truthful or a pleasanter little book." — Athenæum.

Bernard, St.—See Morison.

Blanford (W. T.)—Geology and Zoology of Abyssinia. By W. T. Blanford. 8vo. 21s.

This work contains an account of the Geological and Zoological Observations made by the author in Abyssinia, when accompanying the British Army on its march to Magdala and back in 1868, and during a short journey in Northern Abyssinia, after the departure of the troops. Part I. Personal Narrative; Part II. Geology; Part III. Zoology. With Coloured Illustrations and Geological Map. "The result of his labours," the Academy says, "is an important contribution to the natural history of the country."

The object of this treatise is not so much to give a narrative history of the countries included in the Romano-Germanic Empire—Italy during the Middle Ages, Germany from the ninth century to the nineteenth—as to describe the Holy Empire itself as an institution or system, the wonderful offspring of a body of beliefs and traditions which have almost wholly passed away from the world. To make such a description intelligible it has appeared best to give the book the form rather of a narrative than of a dissertation; and to combine with an exposition of what may be called the theory of the Empire an outline of the political history of Germany, as well as some notice of the affairs of medieval Italy. Nothing else so directly linked the old world to the new as the Roman Empire, which exercised over the minds of men an influence such as its material strength could never have commanded. It is of this influence, and the causes that gave it power, that the present work is designed to treat. "It exactly supplies a want; it affords a key
to much which men read of in their books as isolated facts, but of which they
have hitherto had no connected exposition set before them. We know of no
writer who has so thoroughly grasped the real nature of the mediæval
Empire, and its relations alike to earlier and to later times."—SATURDAY
REVIEW.

Burke (Edmund).—See Morley (John).

Cameos from English History.—See Yonge (Miss).

Chatterton.—See Wilson (Daniel).

Cooper.—ATHENÆ CANTABRIGIENSES. By Charles
Henry Cooper, F.S.A., and Thompson Cooper, F.S.A.

This elaborate work, which is dedicated by permission to Lord Macaulay,
contains lives of the eminent men sent forth by Cambridge, after the
fashion of Anthony à Wood, in his famous "Athenæ Oxonienses."

Cox (G. V., M.A.)—RECOLLECTIONS OF OXFORD.
By G. V. Cox, M.A., New College, late Esquire Bedel and
6s.

"An amusing farrago of anecdote, and will pleasantly recall in many
a country parsonage the memory of youthful days."—TIMES. "Those
who wish to make acquaintance with the Oxford of their grandfathers,
and to keep up the intercourse with Alma Mater during their father's time,
even to the latest novelties in fashion or learning of the present day, will do
well to procure this pleasant, unpretending little volume."—ATLAS.

"Daily News."—THE DAILY NEWS CORRESPOND-
ENCE of the War between Germany and France, 1870—1. Edited
with Notes and Comments. New Edition. Complete in One

This Correspondence has been translated into German. In a Preface
the Editor says:—

"Among the various pictures, recitals, and descriptions which have
appeared, both of our gloriously ended national war as a whole, and of its
several episodes, we think that in laying before the German public, through
a translation, the following War Letters which appeared first in the Daily News, and were afterwards published collectively, we are offering them a picture of the events of the war of a quite peculiar character. Their communications have the advantage of being at once entertaining and instructive, free from every romantic embellishment, and nevertheless written in a vein intelligible and not fatiguing to the general reader. The writers linger over events, and do not disdain to surround the great and heroic war-pictures with arabesques, gay and grave, taken from camp-life and the life of the inhabitants of the occupied territory. A feature which distinguishes these Letters from all other delineations of the war is that they do not proceed from a single pen, but were written from the camps of both belligerents.” “These notes and comments,” according to the Saturday Review, “are in reality a very well executed and continuous history.”

Dilke.—GREATER BRITAIN. A Record of Travel in English-speaking Countries during 1866-7. (America, Australia, India.) By Sir Charles Wentworth Dilke, M.P. Fifth Edition. Crown 8vo. 6s.

“Mr. Dilke,” says the Saturday Review, “has written a book which is probably as well worth reading as any book of the same aims and character that ever was written. Its merits are that it is written in a lively and agreeable style, that it implies a great deal of physical pluck, that no page of it fails to show an acute and highly intelligent observer, that it stimulates the imagination as well as the judgment of the reader, and that it is on perhaps the most interesting subject that can attract an Englishman who cares about his country.” “Many of the subjects discussed in these pages,” says the Daily News, “are of the widest interest, and such as no man who cares for the future of his race and of the world can afford to treat with indifference.”

Dürer (Albrecht).—See HEATON (MRS. C.)

European History, Narrated in a Series of Historical Selections from the best Authorities. Edited and arranged by E. M. Sewell and C. M. Yonge. First Series, crown 8vo. 6s.; Second Series, 1068-1228, crown 8vo. 6s.

When young children have acquired the outlines of history from abridgments and catechisms, and it becomes desirable to give a more enlarged view of the subject, in order to render it really useful and interesting, a
difficulty often arises as to the choice of books. Two courses are open, either to take a general and consequently dry history of facts, such as Russell's Modern Europe, or to choose some work treating of a particular period or subject, such as the works of Macaulay and Froude. The former course usually renders history uninteresting; the latter is unsatisfactory, because it is not sufficiently comprehensive. To remedy this difficulty, selections, continuous and chronological, have in the present volume been taken from the larger works of Freeman, Milman, Palgrave, Lingard, Hume, and others, which may serve as distinct landmarks of historical reading. "We know of scarcely anything," says the Guardian, of this volume, "which is so likely to raise to a higher level the average standard of English education."

No full Life of the great Parliamentary Commander has appeared; and it is here sought to produce one—based upon careful research in contemporary records and upon family and other documents. "Highly useful to the careful student of the History of the Civil War. . . . Probably as a military chronicle Mr. Markham's book is one of the most full and accurate that we possess about the Civil War."—FORTNIGHTLY REVIEW.

Field (E. W.)—See Sadler.

Freeman.—Works by Edward A. Freeman, M.A., D.C.L.

"That special power over a subject which conscientious and patient research can only achieve, a strong grasp of facts, a true mastery over detail, with a clear and manly style—all these qualities join to make the Historian of the Conquest conspicuous in the intellectual arena."—ACADEMY.

Mr. Freeman's aim, in this elaborate and valuable work, is not so much to discuss the abstract nature of Federal Government, as to exhibit its actual working in ages and countries widely removed from one another. Four Federal Commonwealths stand out, in four different ages of the world, as commanding above all others the attention of students of political history,
Freeman (E. A.)—continued.

viz. the Achaian League, the Swiss Cantons, the United Provinces, the United States. The first volume, besides containing a General Introduction, treats of the first of these. In writing this volume the author has endeavoured to combine a text which may be instructive and interesting to any thoughtful reader, whether specially learned or not, with notes which may satisfy the requirements of the most exacting scholar. "The task Mr. Freeman has undertaken," the SATURDAY REVIEW says, "is one of great magnitude and importance. It is also a task of an almost entirely novel character. No other work professing to give the history of a political principle occurs to us, except the slight contributions to the history of representative government that is contained in a course of M. Guizot's lectures The history of the development of a principle is at least as important as the history of a dynasty, or of a race."

"Its object," the Preface says, "is to show that clear, accurate, and scientific views of history, or indeed of any subject, may be easily given to children from the very first. . . . I have throughout striven to connect the history of England with the general history of civilized Europe, and I have especially tried to make the book serve as an incentive to a more accurate study of historic geography." The rapid sale of the first edition and the universal approval with which the work has been received prove the correctness of the author's notions, and show that for such a book there was ample room. The work is suited not only for children, but will serve as an excellent text-book for older students, a clear and faithful summary of the history of the period for those who wish to revive their historical knowledge, and a book full of charms for the general reader. The work is preceded by a complete chronological Table, and appended is an exhaustive and useful Index. In the present edition the whole has been carefully revised, and such improvements as suggested themselves have been introduced. "The book indeed is full of instruction and interest to students of all ages, and he must be a well-informed man indeed who will not rise from its perusal with clearer and more accurate ideas of a too much neglected portion of English history."—SPECTATOR.

HISTORY OF THE CATHEDRAL CHURCH OF WELLS, as illustrating the History of the Cathedral Churches of the Old Foundation. Crown 8vo. 3s. 6d.
Freeman (E. A.)—continued.

"I have here," the author says, "tried to treat the history of the Church of Wells as a contribution to the general history of the Church and Kingdom of England, and specially to the history of Cathedral Churches of the Old Foundation. . . . I wish to point out the general principles of the original founders as the model to which the Old Foundations should be brought back, and the New Foundations reformed after their pattern." "The history assumes in Mr. Freeman's hands a significance, and, we may add, a practical value as suggestive of what a cathedral ought to be, which make it well worthy of mention."—Spectator.

HISTORICAL ESSAYS. Second Edition. 8vo. 10s. 6d.

The principle on which these Essays have been chosen is that of selecting papers which refer to comparatively modern times, or, at least, to the existing states and nations of Europe. By a sort of accident a number of the pieces chosen have thrown themselves into something like a continuous series bearing on the historical causes of the great events of 1870—71. Notes have been added whenever they seemed to be called for; and whenever he could gain in accuracy of statement or in force or clearness of expression, the author has freely changed, added to, or left out, what he originally wrote. To many of the Essays has been added a short note of the circumstances under which they were written. It is needless to say that any product of Mr. Freeman's pen is worthy of attentive perusal; and it is believed that the contents of this volume will throw light on several subjects of great historical importance and the widest interest. The following is a list of the subjects:—1. The Mythical and Romantic Elements in Early English History; 2. The Continuity of English History; 3. The Relations between the Crowns of England and Scotland; 4. Saint Thomas of Canterbury and his Biographers; 5. The Reign of Edward the Third; 6. The Holy Roman Empire; 7. The Franks and the Gauls; 8. The Early Sieges of Paris; 9. Frederick the First, King of Italy; 10. The Emperor Frederick the Second; 11. Charles the Bold; 12. Presidential Government. "He never touches a question without adding to our comprehension of it, without leaving the impression of an ample knowledge, a righteous purpose, a clear and powerful understanding."—Saturday Review.

THE GROWTH OF THE ENGLISH CONSTITUTION FROM THE EARLIEST TIMES. In the press.
Galileo.—THE PRIVATE LIFE OF GALILEO. Compiled principally from his Correspondence and that of his eldest daughter, Sister Maria Celeste, Nun in the Franciscan Convent of S. Matthew in Arcetri. With Portrait. Crown 8vo. 7s. 6d.

It has been the endeavour of the compiler to place before the reader a plain, ungarbled statement of facts; and, as a means to this end, to allow Galileo, his friends, and his judges to speak for themselves as far as possible. All the best authorities have been made use of, and all the materials which exist for a biography have been in this volume put into a symmetrical form. The result is a most touching picture skilfully arranged of the great heroic man of science and his devoted daughter, whose letters are full of the deepest reverential love and trust, amply repaid by the noble soul. The Saturday Review says of the book, “It is not so much the philosopher as the man who is seen in this simple and life-like sketch, and the hand which portrays the features and actions is mainly that of one who had studied the subject the closest and the most intimately. This little volume has done much within its slender compass to prove the depth and tenderness of Galileo’s heart.”

This work of Mr. Gladstone deals especially with the historic element in Homer, expounding that element and furnishing by its aid a full account of the Homeric men and the Homeric religion. It starts, after the introductory chapter, with a discussion of the several races then existing in Hellas, including the influence of the Phanicians and Egyptians. It contains chapters on the Olympian system, with its several deities; on the Ethics and the Polity of the Heroic age; on the Geography of Homer; on the characters of the Poems; presenting, in fine, a view of primitive life and primitive society as found in the poems of Homer. To this New Edition various additions have been made. “Seldom,” says the Athenaeum, “out of the great poems themselves, have these Divinities looked so majestic and respectable. To read these brilliant details is like standing on the Olympian threshold and gazing at the ineffable brightness within.” “There is,” according to the Westminster Review, “probably no other writer now living who could have done the work of this book... It would be difficult to point out a book that contains so much fulness of knowledge along with so much freshness of perception and clearness of presentation.”
Guizot.—M. DE BARANTE, a Memoir, Biographical and Autobiographical. By M. GUIZOT. Translated by the Author of "JOHN HALIFAX, GENTLEMAN." Crown 8vo. 6s. 6d.

"It is scarcely necessary to write a preface to this book. Its lifelike portrait of a true and great man, painted unconsciously by himself in his letters and autobiography, and retouched and completed by the tender hand of his surviving friend—the friend of a lifetime—is sure, I think, to be appreciated in England as it was in France, where it appeared in the Revue de Deux Mondes. Also, I believe every thoughtful mind will enjoy its clear reflections of French and European politics and history for the last seventy years, and the curious light thus thrown upon many present events and combinations of circumstances."—Preface. "The highest purposes of both history and biography are answered by a memoir so lifelike, so faithful, and so philosophical."—British Quarterly Review.

"This eloquent memoir, which for tenderness, gracefulness, and vigour, might be placed on the same shelf with Tacitus' Life of Agricola.... Mrs. Craik has rendered the language of Guizot in her own sweet translucent English."—Daily News.

Heaton (Mrs. C.)—HISTORY OF THE LIFE OF ALBRECHT DÜRER, of Nürnberg. With a Translation of his Letters and Journal, and some account of his Works. By Mrs. CHARLES HEATON. Royal 8vo. bevelled boards, extra gilt. 31s. 6d.

This work contains about Thirty Illustrations, ten of which are productions by the Autotype (carbon) process, and are printed in permanent tints by Messrs. Cundall and Fleming, under licence from the Autotype Company, Limited; the rest are Photographs and Woodcuts.

The different families are printed in distinguishing colours, thus facilitating reference.

Hozier (H. M.)—Works by CAPTAIN HENRY M. HOZIER, late Assistant Military Secretary to Lord Napier of Magdala.

Hosier (H. M.)—continued.

This account of the brief but momentous Austro-Prussian War of 1866 claims consideration as being the product of an eye-witness of some of its most interesting incidents. The author has attempted to ascertain and to advance facts. Two maps are given, one illustrating the operations of the Army of the Maine, and the other the operations from Königgrätz. In the Prefatory Chapter to this edition, events resulting from the war of 1866 are set forth, and the current of European history traced down to the recent Franco-Prussian war, a natural consequence of the war whose history is narrated in this volume. "Mr. Hosier added to the knowledge of military operations and of languages, which he had proved himself to possess, a ready and skilful pen, and excellent faculties of observation and description... All that Mr. Hosier saw of the great events of the war—and he saw a large share of them—he describes in clear and vivid language."—Saturday Review. "Mr. Hosier's volumes deserve to take a permanent place in the literature of the Seven Weeks' War."—Pall Mall Gazette.

THE BRITISH EXPEDITION TO ABYSSINIA. Compiled from Authentic Documents. 8vo. 9s.

Several accounts of the British Expedition have been published. They have, however, been written by those who have not had access to those authentic documents, which cannot be collected directly after the termination of a campaign. The endeavour of the author of this sketch has been to present to readers a succinct and impartial account of an enterprise which has rarely been equalled in the annals of war. "This," says the Spectator, "will be the account of the Abyssinian Expedition for professional reference, if not for professional reading. Its literary merits are really very great."

Huyshe (Captain G. L.)—THE RED RIVER EXPEDITION. By Captain G. L. Huyshe, Rifle Brigade, late on the Staff of Colonel Sir Garnet Wolseley. With Maps. 8vo. 10s. 6d.

This account has been written in the hope of directing attention to the successful accomplishment of an expedition which was attended with more than ordinary difficulties. The author has had access to the official
documents of the Expedition, and has also availed himself of the reports on
the line of route published by Mr. Dawson, C.E., and by the Typogra-
phical Department of the War Office. The statements made may therefore
be relied on as accurate and impartial. The endeavour has been made to
avoid tiring the general reader with dry details of military movements, and
yet not to sacrifice the character of the work as an account of a military
expedition. The volume contains a portrait of President Louis Riel, and
Maps of the route. The Athenæum calls it "an enduring authentic
record of one of the most creditable achievements ever accomplished by the
British Army."

Irving.—THE ANNALS OF OUR TIME. A Diurnal of Events,
Social and Political, Home and Foreign, from the Accession of
Queen Victoria to the Peace of Versailles. By Joseph Irving.
Second Edition. 8vo. half-bound. 16s.

Every occurrence, metropolitan or provincial, home or foreign, which
gave rise to public excitement or discussion, or became the starting point for
new trains of thought affecting our social life, has been judged proper matter
for this volume. In the proceedings of Parliament, an endeavour has
been made to notice all those Debates which were either remarkable as
affecting the fate of parties, or led to important changes in our relations
with Foreign Powers. Brief notices have been given of the death of all
noteworthy persons. Though the events are set down day by day in their
order of occurrence, the book is, in its way, the history of an important
and well-defined historic cycle. In these 'Annals,' the ordinary reader
may make himself acquainted with the history of his own time in a way
that has at least the merit of simplicity and readiness; the more cultivated
student will doubtless be thankful for the opportunity given him of passing
down the historic stream undisturbed by any other theoretical or party
feeling than what he himself has at hand to explain the philosophy of our
national story. A complete and useful Index is appended. The Table
of Administrations is designed to assist the reader in following the various
political changes noticed in their chronological order in the 'Annals.'—
In the new edition all errors and omissions have been rectified, 300 pages
been added, and as many as 46 occupied by an impartial exhibition of the
wonderful series of events marking the latter half of 1870. "We
have before us a trusty and ready guide to the events of the past thirty
years, available equally for the statesman, the politician, the public
writer, and the general reader. If Mr. Irving's object has been to bring
before the reader all the most noteworthy occurrences which have happened
since the beginning of her Majesty's reign, he may justly claim the credit of having done so most briefly, succinctly, and simply, and in such a manner, too, as to furnish him with the details necessary in each case to comprehend the event of which he is in search in an intelligent manner."
—Times.

Kingsley (Canon).—Works by the Rev. CHARLES KINGSLEY, M.A., Rector of Eversley and Canon of Chester. (For other Works by the same Author, see THEOLOGICAL and BELLES LETTRES Catalogues.)

ON THE ANCIEN RÉGIME as it existed on the Continent before the FRENCH REVOLUTION. Three Lectures delivered at the Royal Institution. Crown 8vo. 6s.

These three lectures discuss severally (1) Caste, (2) Centralization, (3) The Explosive Forces by which the Revolution was superinduced. The Preface deals at some length with certain political questions of the present day.

Mr. Kingsley's dream of forty years was at last fulfilled, when he started on a Christmas expedition to the West Indies, for the purpose of becoming personally acquainted with the scenes which he has so vividly described in "Westward Ho!" These two volumes are the journal of his voyage. Records of natural history, sketches of tropical landscape, chapters on education, views of society, all find their place in a work written, so to say, under the inspiration of Sir Walter Raleigh and the other adventurous men who three hundred years ago disputed against Philip II. the possession of the Spanish Main. "We can only say that Mr. Kingsley's account of a 'Christmas in the West Indies' is in every way worthy to be classed among his happiest productions."—Standard.

THE ROMAN AND THE TEUTON. A Series of Lectures delivered before the University of Cambridge. 8vo. 12s.

Contents:—Inaugural Lecture; The Forest Children; The Dying Empire; The Human Deluge; The Gothic Civilizer; Dietrich's End; The Nemesis of the Goths; Paulus Diaconus; The Clergy and the Heathen; The Monk a Civilizer; The Lombard Laws; The Popes and the Lombards;
The Strategy of Providence. "He has rendered," says the Nonconformist, "good service and shed a new lustre on the chair of Modern History at Cambridge. . . . He has thrown a charm around the work by the marvellous fascinations of his own genius, brought out in strong relief those great principles of which all history is a revelation, lighted up many dark and almost unknown spots, and stimulated the desire to understand more thoroughly one of the greatest movements in the story of humanity."

Kingsley (Henry, F.R.G.S.)—For other Works by same Author, see Belles Lettres Catalogue.

In this volume Mr. Henry Kingsley re-narrates, at the same time preserving much of the quaintness of the original, some of the most fascinating tales of travel contained in the collections of Hakluyt and others. The Contents are—Marco Polo; The Shipwreck of Pelsart; The Wonderful Adventures of Andrew Battel; The Wanderings of a Capuchin; Peter Carder; The Preservation of the "Terra Nova;" Spitsbergen; D'Erme- nonville's Acclimatisation Adventure; The Old Slave Trade; Miles Philips; The Sufferings of Robert Everard; "John Fox; Alvaro Nunez; The Foundation of an Empire. "We know no better book for those who want knowledge or seek to refresh it. As for the 'sensational,' most novels are tame compared with these narratives."—ATHENÆUM. "Exactly the book to interest and to do good to intelligent and high-spirited boys."—Literary Churchman.

Macmillan (Rev. Hugh).—For other Works by same Author, see Theological and Scientific Catalogues.

HOLIDAYS ON HIGH LANDS; or, Rambles and Incidents in search of Alpine Plants. Crown 8vo. cloth. 6s.

The aim of this book is to impart a general idea of the origin, character, and distribution of those rare and beautiful Alpine plants which occur on the British hills, and which are found almost everywhere on the lofty mountain chains of Europe, Asia, Africa, and America. The information the author has to give is conveyed in untechnical language, in a setting of personal adventure, and associated with descriptions of the
natural scenery and the peculiarities of the human life in the midst of which the plants were found. By this method the subject is made interesting to a very large class of readers. "Botanical knowledge is blended with a love of nature, a pious enthusiasm, and a rich felicity of diction not to be met with in any works of kindred character, if we except those of Hugh Miller."—Telegraph. "Mr. M.'s glowing pictures of Scandinavian scenery."—Saturday Review.

Martin (Frederick).—The Statesman’s Year-Book:
See p. 36 of this Catalogue.

Martineau.—Biographical Sketches, 1852—1868.

A Collection of Memoirs under these several sections:—(1) Royal, (2) Politicians, (3) Professional, (4) Scientific, (5) Social, (6) Literary. These Memoirs appeared originally in the columns of the Daily News. "Miss Martineau's large literary powers and her fine intellectual training make these little sketches more instructive, and constitute them more genuinely works of art, than many more ambitious and diffuse biographies."—Fortnightly Review. "Each memoir is a complete digest of a celebrated life, illuminated by the flood of searching light which streams from the gaze of an acute but liberal mind."—Morning Star.

Masson (David).—For other Works by same Author, see Philosophical and Belles Lettres Catalogues.

This work is not only a Biography, but also a continuous Political, Ecclesiastical, and Literary History of England through Milton's whole time. In order to understand Milton, his position, his motives, his thoughts by himself, his public words to his countrymen, and the probable effect of those words, it was necessary to refer largely to the History of his Time, not only as it is presented in well-known books, but as it had to be rediscovered by express and laborsious investigation in original and forgotten
records: thus of the Biography, a History grew: not a mere popular compilation, but a work of independent search and method from first to last, which has cost more labour by far than the Biography. The second volume is so arranged that the reader may select or omit either the History or Biography. The North British Review, speaking of the first volume of this work said, "The Life of Milton is here written once for all." The Nonconformist, in noticing the second volume, says, " Its literary excellence entitles it to take its place in the first ranks of our literature, while the whole style of its execution marks it as the only book that has done anything like adequate justice to one of the great masters of our language, and one of our truest patriots, as well as our greatest epic poet."

Mayor (J. E. B.)—WORKS Edited By JOHN E. B. MAYOR, M.A., Fellow of St. John's College, Cambridge.

CAMBRIDGE IN THE SEVENTEENTH CENTURY. Part II. Autobiography of Matthew Robinson. Fcap. 8vo. 5s. 6d.

This is the second of the Memoirs illustrative of "Cambridge in the Seventeenth Century," that of Nicholas Farrar having preceded it. It gives a lively picture of England during the Civil Wars, the most important crisis of our national life; it supplies materials for the history of the University and our Endowed Schools, and gives us a view of country clergy at a time when they are supposed to have been, with scarce an exception, scurrilous sots. Mr. Mayor has added a collection of extracts and documents relating to the history of several other Cambridge men of note belonging to the same period, all, like Robinson, of Nonconformist leanings.

LIFE OF BISHOP BEDELL. By his Son. Fcap. 8vo. 3s. 6d.

This is the third of the Memoirs illustrative of "Cambridge in the 17th Century." The life of the Bishop of Kilmore here printed for the first time is preserved in the Tanner MSS., and is preliminary to a larger one to be issued shortly.

Under the influence of more enlightened ideas and of a liberal system of policy, the old Japanese civilisation is fast disappearing, and will, in a
few years, be completely extinct. It was important, therefore, to preserve as far as possible trustworthy records of a state of society which, although venerable from its antiquity, has for Europeans the dawn of novelty; hence the series of narratives and legends translated by Mr. Mitford, and in which the Japanese are very judiciously left to tell their own tale. The two volumes comprise not only stories and episodes illustrative of Asiatic superstitions, but also three sermons. The preface, appendices, and notes explain a number of local peculiarities; the thirty-one woodcuts are the genuine work of a native artist, who, unconsciously of course, has adopted the process first introduced by the early German masters. "These very original volumes will always be interesting as memorials of a most exceptional society, while regarded simply as tales, they are sparkling, sensational, and dramatic, and the originality of their ideas and the quaintness of their language give them a most captivating piquancy. The illustrations are extremely interesting, and for the curious in such matters have a special and particular value."—PALL MALL GAZETTE.

Morley (John).—EDMUND BURKE, a Historical Study. By JOHN MORLEY, B.A. Oxon. Crown 8vo. 7s. 6d.

"The style is terse and incisive, and brilliant with epigram and point. It contains pithy aphoristic sentences which Burke himself would not have disowned. Its sustained power of reasoning, its wide sweep of observation and reflection, its elevated ethical and social tone, stamp it as a work of high excellence."—SATURDAY REVIEW. "A model of compact condensation. We have seldom met with a book in which so much matter was compressed into so limited a space."—PALL MALL GAZETTE. "An essay of unusual effort."—WESTMINSTER REVIEW.

The PALL MALL GAZETTE calls this "one of the best contributions in our literature towards a vivid, intelligent, and worthy knowledge of European interests and thoughts and feelings during the twelfth century. A delightful and instructive volume, and one of the best products of the modern historic spirit." "A work," says the NONCONFORMIST, "of great merit and value, dealing most thoroughly with one of the most interesting characters, and one of the most interesting periods, in the Church history of the Middle Ages. Mr. Morison is thoroughly master of his subject,
and writes with great discrimination and fairness, and in a chaste and
elegant style.” The Spectator says it is “not only distinguished by
research and candour, it has also the great merit of never being dull.”

Palgrave (Sir F.)—HISTORY OF NORMANDY AND
OF ENGLAND. By Sir Francis Palgrave, Deputy Keeper
of Her Majesty’s Public Records. Completing the History to the
Death of William Rufus. Four Vols. Svo. £4 4s.

Volume I. General Relations of Medieval Europe—The Carolingian
Empire—The Danish Expeditions in the Gauls—And the Establishment
of Rollo. Volume II. The Three First Dukes of Normandy; Rollo,
Guillaume Longue-Epée, and Richard Sans-Peur—The Carolingian
line supplanted by the Capets. Volume III. Richard Sans-Peur—
Richard Le-Bon—Richard III.—Robert Le Diable—William the Con-
It is needless to say anything to recommend this work of a lifetime to all
students of history; it is, as the Spectator says, “perhaps the greatest
single contribution yet made to the authentic annals of this country,” and
“must,” says the Nonconformist, “always rank among our standard
authorities.”

Palgrave (W. G.)—A NARRATIVE OF A YEAR’S
JOURNEY THROUGH CENTRAL AND EASTERN
ARABIA, 1862-3. By Liam Gifford Palgrave, late of
the Eighth Regiment Bombay N. I. Sixth Edition. With Maps,
8vo. 6s.

“The work is a model of what its class should be; the style restrained,
the narrative clear, telling us all we wish to know of the country and
people visited, and enough of the author and his feelings to enable us to
trust ourselves to his guidance in a tract hitherto untrodden, and dangerous
in more senses than one. He has not only written one of the best books
on the Arabs and one of the best books on Arabia, but he has done so in a
manner that must command the respect no less than the admiration of his
fellow-countrymen.”—Fortnightly Review. “Considering the extent
of our previous ignorance, the amount of his achievements, and the im-
portance of his contributions to our knowledge, we cannot say less of him
than was once said of a far greater discoverer—Mr. Palgrave has indeed
given a new world to Europe.”—Fall Mall Gazette.
Paris.—INSIDE PARIS DURING THE SIEGE. By an Oxford Graduate. Crown 8vo. 7s. 6d.

This volume consists of the diary kept by a gentleman who lived in Paris during the whole of its siege by the Prussians. He had many facilities for coming in contact with men of all parties and of all classes, and ascertaining the actual motives which animated them, and their real ultimate aims. These facilities he took advantage of, and in his diary, day by day, carefully recorded the results of his observations, as well as faithfully but graphically photographed the various incidents of the siege which came under his own notice, the actual condition of the besieged, the sayings and doings, the hopes and fears of the people among whom he freely moved. In the Appendix is an exhaustive and elaborate account of the Organization of the Republican party, sent to the author by M. Jules Andrieu; and a translation of the Manifesto of the Commune to the People of England, dated April 19, 1871. "The author tells his story admirably. The Oxford Graduate seems to have gone everywhere, heard what everyone had to say, and so been able to give us photographs of Paris life during the siege which we have not had from any other source."—Spectator. "He has written brightly, lightly, and pleasantly, yet in perfect good taste."—Saturday Review.

In these volumes the author has aimed to supply a full, impartial, and independent account of British India between 1859 and 1868—which is in many respects the most important epoch in the history of that country that the present century has seen. "It has the great merit that it is not exclusively devoted, as are too many histories, to military and political details, but enters thoroughly into the more important questions of social history. We find in these volumes a well-arranged and compendious reference to almost all that has been done in India during the last ten years; and the most important official documents and historical pieces are well selected and duly set forth."—Scotsman. "It is a work which every Englishman in India ought to add to his library."—Star of India.

The Daily News says: “The two books which are most likely to survive change of literary taste, and to charm while instructing generation after generation, are the ‘Diary’ of Pepys and Boswell’s ‘Life of Johnson.’ The day will come when to these many will add the ‘Diary of Henry Crabb Robinson.’ Excellences like these which render the personal revelations of Pepys and the observations of Boswell such pleasant reading abound in this work.... In it is to be found something to suit every taste and inform every mind. For the general reader it contains much light and amusing matter. To the lover of literature it conveys information which he will prize highly on account of its accuracy and rarity. The student of social life will gather from it many valuable hints whereto base theories as to the effects on English society of the progress of civilisation. For these and other reasons this ‘Diary’ is a work to which a hearty welcome should be accorded.”

Professor Rogers’s object in these sketches, which are in the form of Lectures, is to present a set of historical facts, grouped round a principal figure. The author has aimed to state the social facts of the time in which the individual whose history is handled took part in public business. It is from sketches like these of the great men who took a prominent and influential part in the affairs of their time that a clear conception of the social and economical condition of our ancestors can be obtained. History learned in this way is both instructive and agreeable. “His Essays,” the Pall Mall Gazette says, “are full of interest, pregnant, thoughtful, and readable.” “They rank far above the average of similar performances,” says the Westminster Review.

Raphael.—RAPHAEL OF URBINO AND HIS FATHER GIOVANNI SANTI. By J. D. Passavant, formerly Director of the Museum at Frankfort. With Twenty Permanent Photographs. Royal 8vo. Handsomely bound. 31s. 6d.
To the enlarged French edition of Passavant's Life of Raphael, that painter's admirers have turned whenever they have sought information, and it will doubtless remain for many years the best book of reference on all questions pertaining to the great painter. The present work consists of a translation of those parts of Passavant's volumes which are most likely to interest the general reader. Besides a complete life of Raphael, it contains the valuable descriptions of all his known paintings, and the Chronological Index, which is of so much service to amateurs who wish to study the progressive character of his works. The Illustrations by Woodbury's new permanent process of photography, are taken from the finest engravings that could be procured, and have been chosen with the intention of giving examples of Raphael's various styles of painting. The Saturday Review says of them, "We have seen not a few elegant specimens of Mr. Woodbury's new process, but we have seen none that equal these."

Sadler.—EDWIN WILKINS FIELD. A Memorial Sketch.
By THOMAS SADLER, Ph.D. With a Portrait. Crown 8vo. 4s. 6d.

Mr. Field was well known during his life-time not only as an eminent lawyer and a strenuous and successful advocate of law reform, but, both in England and America, as a man of wide and thorough culture, varied tastes, large-heartedness, and lofty aims. His sudden death was looked upon as a public loss, and it is expected that this brief Memoir will be acceptable to a large number outside of the many friends at whose request it has been written.

Somers (Robert).—THE SOUTHERN STATES SINCE THE WAR. By ROBERT SOMERS. With Map. 8vo. 9s.

This work is the result of inquiries made by the author of all authorities competent to afford him information, and of his own observation during a lengthened sojourn in the Southern States, to which writers on America so seldom direct their steps. The author's object is to give some account of the condition of the Southern States under the new social and political system introduced by the civil war. He has here collected such notes of the progress of their cotton plantations, of the state of their labouring population and of their industrial enterprises, as may help the reader to a safe opinion of their means and prospects of development. He also gives such information of their natural resources, railways, and other public works, as may tend to show to what extent they are fitted to become a profitable field of
enlarged immigration, settlement, and foreign trade. The volume contains many valuable and reliable details as to the condition of the Negro population, the state of Education and Religion, of Cotton, Sugar, and Tobacco Cultivation, of Agriculture generally, of Coal and Iron Mining, Manufactures, Trade, Means of Locomotion, and the condition of Towns and of Society. A large map of the Southern States by Messrs. W. and A. K. Johnston is appended, which shows with great clearness the Cotton, Coal, and Iron districts, the railways completed and projected, the State boundaries, and other important details. "Full of interesting and valuable information."—Saturday Review.

Smith (Professor Goldwin).—THREE ENGLISH STATESMEN. See p. 37 of this Catalogue.

Streets and Lanes of a City.—See Dutton (Amy) p. 31 of this Catalogue.

Tacitus.—THE HISTORY OF TACITUS, translated into English. By A. J. Church, M.A. and W. J. Brodrigg, M.A. With a Map and Notes. 8vo. 10s. 6d.

The translators have endeavoured to adhere as closely to the original as was thought consistent with a proper observance of English idiom. At the same time it has been their aim to reproduce the precise expressions of the author. This work is characterised by the Spectator as "a scholarly and faithful translation."

THE AGRICOLA AND GERMANIA. Translated into English by A. J. Church, M.A. and W. J. Brodrigg, M.A. With Maps and Notes. Extra fcap. 8vo. 2s. 6d.

The translators have sought to produce such a version as may satisfy scholars who demand a faithful rendering of the original, and English readers who are offended by the baldness and frigidity which commonly disfigure translations. The treatises are accompanied by Introductions, Notes, Maps, and a chronological Summary. The Athenæum says of this work that it is "a version at once readable and exact, which may be perused with pleasure by all, and consulted with advantage by the classical student;" and the Pall Mall Gazette says, "What the editors have attempted to do, it is not, we think probable that any living scholars could have done better."
Taylor (Rev. Isaac).—Words and Places. See p. 44 of this Catalogue.

Trench (Archbishop).—For other Works by the same Author, see Theological and Belles Lettres Catalogues, and p. 45 of this Catalogue.

Gustavus Adolphus: Social Aspects of the Thirty Years War. By R. Chenevix Trench, D.D., Archbishop of Dublin. Fcap. 8vo. 2s. 6d.

"Clear and lucid in style, these lectures will be a treasure to many to whom the subject is unfamiliar."—Dublin Evening Mail. "These lectures are vivid and graphic sketches: the first treats of the great King of Sweden, and of his character rather than of his actions; the second describes the condition of Germany in that dreadful time when famine, battles, and pestilence, though they exterminated three-fourths of the population, were less terrible than the fiend-like cruelty, the utter lawlessness and depravity, bred of long anarchy and suffering. The substance of the lectures is drawn from contemporary accounts, which give to them especial freshness and life."—Literary Chukchman.

Contains Notices and Anecdotes illustrating the social life of the period—extending over a quarter of a century (1799-1827). It includes also Poems and other miscellaneous pieces by Mrs. Trench.

Wallace.—Works by Alfred Russel Wallace. For other Works by same Author, see Scientific Catalogue.

Dr. Hooker, in his address to the British Association, spoke thus of the author:—"Of Mr. Wallace and his many contributions to philosophical biology it is not easy to speak without enthusiasm; for, putting aside their great merits, he, throughout his writings, with a modesty as rare as I believe it to be unconscious, forgets his own unquestioned claim to the honour of having originated, independently of Mr. Darwin, the theories which he so ably defends."
Wallace (A. R.)—continued.

A NARRATIVE OF TRAVELS ON THE AMAZON AND RIO NEGRO, with an Account of the Native Tribes, and Observations on the Climate, Geology, and Natural History of the Amazon Valley. With a Map and Illustrations. 8vo. 12s.

Mr. Wallace is acknowledged as one of the first of modern travellers and naturalists. This, his earliest work, will be found to possess many charms for the general reader, and to be full of interest to the student of natural history.

"The result is a vivid picture of tropical life, which may be read with unflagging interest, and a sufficient account of his scientific conclusions to stimulate our appetite without wearying us by detail. In short, we may safely say that we have never read a more agreeable book of its kind."—Saturday Review. "His descriptions of scenery, of the people and their manners and customs, enlivened by occasional amusing anecdotes, constitute the most interesting reading we have taken up for some time."—Standard.

Ward (Professor).—THE HOUSE OF AUSTRIA IN THE THIRTY YEARS' WAR. Two Lectures, with Notes and Illustrations. By Adolphus W. Ward, M.A., Professor of History in Owens College, Manchester. Extra fcap. 8vo. 2s. 6d.

These two Lectures were delivered in February, 1869, at the Philosophical Institution, Edinburgh, and are now published with Notes and Illustrations. "We have never read," says the Saturday Review, "any lectures which of the subject in hand." "They are," the Scotsman says, "the fruit of much labour and learning, and it would be difficult to compress into a hundred pages more information."

Warren.—AN ESSAY ON GREEK FEDERAL COINAGE.

By the Hon. J. Leicester Warren, M.A. 8vo. 2s. 6d.

The present essay is an attempt to illustrate Mr. Freeman's Federal Government by evidence deduced from the coinage of the times and countries therein treated of.
Wedgwood.—JOHN WESLEY AND THE EVANGELICAL REACTION of the Eighteenth Century. By JULIA WEDGWOOD. Crown 8vo. 8s. 6d.

This book is an attempt to delineate the influence of a particular man upon his age. The background to the central figure is treated with considerable minuteness, the object of representation being not the vicissitude of a particular life, but that element in the life which impressed itself on the life of a nation,—an element which cannot be understood without a study of aspects of national thought which on a superficial view might appear wholly unconnected with it. “In style and intellectual power, in breadth of view and clearness of insight, Miss Wedgwood’s book far surpasses all rivals.”—ATHENÆUM. “As a short account of the most remarkable movement in the eighteenth century, it must fairly be described as excellent.”—PALL MALL GAZETTE.

“An exquisite and touching portrait of a rare and beautiful spirit.”—GUARDIAN. “He more than most men of whom we have lately read deserved a minute and careful biography, and by such alone could he be understood, and become loveable and influential to his fellow-men. Such a biography his sister has written, in which letters reach almost to the extent of a complete autobiography, with all the additional charm of being unconsciously such. We revere and admire the heart, and earnestly praise the patient tender hand, by which such a worthy record of the earth-story of one of God’s true angel-men has been constructed for our delight and profit.”—NONCONFORMIST.

Wilson (Daniel, LL.D.)—Works by DANIEL WILSON, LL.D., Professor of History and English Literature in University College, Toronto:

One object aimed at when the book first appeared was to rescue archaeological research from that limited range to which a too exclusive devotion to classical studies had given rise, and, especially in relation to Scotland, to prove how greatly more comprehensive and important are its native antiquities than all
Wilson (Daniel, L.L.D.)—continued.

the traces of intruded art. The aim has been to a large extent effectually accomplished, and such an impulse given to archaeological research, that in this new edition the whole of the work has had to be remodelled. Fully a third of it has been entirely re-written; and the remaining portions have undergone so minute a revision as to render it in many respects a new work. The number of pictorial illustrations has been greatly increased, and several of the former plates and woodcuts have been re-engraved from new drawings. This is divided into four Parts. Part I. deals with The Primeval or Stone Period: Aboriginal Traces, Sepulchral Memorials, Dwellings, and Catacombs, Temples, Weapons, etc. etc.; Part II. The Bronze Period: The Metallurgic Transition, Primitive Bronze, Personal Ornaments, Religion, Arts, and Domestic Habits, with other topics; Part III. The Iron Period: The Introduction of Iron, The Roman Invasion, Strongholds, etc. etc.; Part IV. The Christian Period: Historical Data, the Norrie’s Law Relics, Primitive and Medieval Ecclesiology, Ecclesiastical and Miscellaneous Antiquities. The work is furnished with an elaborate Index. “One of the most interesting, learned, and elegant works we have seen for a long time.”—WESTMINSTER REVIEW. “The interest connected with this beautiful volume is not limited to that part of the kingdom to which it is chiefly devoted; it will be consulted with advantage and gratification by all who have a regard for National Antiquities and for the advancement of scientific Archeology.”—ARCHAEOLOGICAL JOURNAL.

PREHISTORIC MAN. New Edition, revised and partly re-written, with numerous Illustrations. One vol. 8vo. 21s.

This work, which carries out the principle of the preceding one, but with a wider scope, aims to “view Man, as far as possible, unaffected by those modifying influences which accompany the development of nations and the maturity of a true historic period, in order thereby to ascertain the sources from whence such development and maturity proceed. These researches into the origin of civilization have accordingly been pursued under the belief which influenced the author in previous inquiries that the investigations of the archaeologist, when carried on in an enlightened spirit, are replete with interest in relation to some of the most important problems of modern science. To reject the aid of archaeology in the progress of science, and especially of ethnological science, is to extinguish the lamp of the student when most dependent on its borrowed rays.” A prolonged residence on some of the newest sites of the New World has afforded the author many
Wilson (Daniel, LL.D.)—continued.

opportunities of investigating the antiquities of the American Aborigines, and of bringing to light many facts of high importance in reference to primeval man. The changes in the new edition, necessitated by the great advance in Archeology since the first, include both reconstruction and condensation, along with considerable additions alike in illustration and in argument. "We find," says the Athenæum, "the main idea of his treatise to be a pre-eminently scientific one,—namely, by archeological records to obtain a definite conception of the origin and nature of man's earliest efforts at civilisation in the New World, and to endeavour to discover, as if by analogy, the necessary conditions, phases, and epochs through which man in the prehistoric stage in the Old World also must necessarily have passed." The North British Review calls it "a mature and mellow work of an able man; free alike from crotches and from dogmatism, and exhibiting on every page the caution and moderation of a well-balanced judgment."

CHATTERTON: A Biographical Study. By Daniel Wilson, LL.D., Professor of History and English Literature in University College, Toronto. Crown 8vo. 6s. 6d.

The author here regards Chatterton as a poet, not as a "mere reseter and defacer of stolen literary treasures." Reviewed in this light, he has found much in the old materials capable of being turned to new account: and to these materials research in various directions has enabled him to make some additions. He believes that the boy-poet has been misjudged, and that the biographies hitherto written of him are not only imperfect but untrue. While dealing tenderly, the author has sought to deal truthfully with the failings as well as the virtues of the boy: baring always in remembrance, what has been too frequently lost sight of, that he was but a boy;—a boy, and yet a poet of rare power. The Examiner thinks this "the most complete and the purest biography of the poet which has yet appeared." The Literary Churchman calls it "a most charming literary biography."

Yonge (Charlotte M.)—Works by Charlotte M. Yonge, Author of "The Heir of Redclyffe," &c. &c.:

A PARALLEL HISTORY OF FRANCE AND ENGLAND: consisting of Outlines and Dates. Oblong 4to. 3s. 6d.

This tabular history has been drawn up to supply a want felt by many teachers of some means of making their pupils realize what events in the
Yonge (Charlotte M.)—continued.

two countries were contemporary. A skeleton narrative has been constructed of the chief transactions in either country, placing a column between for what affected both alike, by which means it is hoped that young people may be assisted in grasping the mutual relation of events.

CAMEOS FROM ENGLISH HISTORY. From Rollo to Edward II. Extra fcap. 8vo. Second Edition, enlarged. 5s.

A SECOND SERIES, THE WARS IN FRANCE. Extra fcap. 8vo. 5s.

The endeavour has not been to chronicle facts, but to put together a series of pictures of persons and events, so as to arrest the attention, and give some individuality and distinctness to the recollection, by gathering together details of the most memorable moments. The "Cameos" are intended as a book for young people just beyond the elementary histories of England, and able to enter in some degree into the real spirit of events, and to be struck with characters and scenes presented in some relief. "Instead of dry details," says the Nonconformist, "we have living pictures, faithful, vivid, and striking."

Round this memoir of one who held no mean place in public estimation as a tragedian, and who, as a man, by the unobtrusive simplicity and moral purity of his private life, won golden opinions from all sorts of men, are clustered extracts from the author's journals, containing many curious and interesting reminiscences of his father's and his own eminent and famous contemporaries and acquaintances, somewhat after the manner of H. Crabb Robinson's Diary. Every page will be found full both of entertainment and instruction. It contains four portraits of the tragedian, and a few other curious sketches. "In this budget of anecdotes, fables, and gossip, old and new, relative to Scott, Moore, Chalmers, Coleridge, Wordsworth, Croker, Mathews, the third and fourth Georges, Bowles, Beckford, Lockhart, Wellington, Peel, Louis Napoleon, D'Orsay, Dickens, Thackeray, Louis Blanc, Gibson, Constable, and Stanfield, etc. etc. the reader must be hard indeed to please who cannot find entertainment."—PALL MALL GAZETTE.
POLITICS, POLITICAL AND SOCIAL ECONOMY, LAW, AND KINDRED SUBJECTS.

Baxter.—NATIONAL INCOME: The United Kingdom. By R. Dudley Baxter, M.A. 8vo. 3s. 6d.

The present work endeavours to answer systematically such questions as the following:—What are the means and aggregate wages of our labouring population; what are the numbers and aggregate profits of the middle classes; what the revenues of our great proprietors and capitalists; and what the pecuniary strength of the nation to bear the burdens annually falling upon us? What capital in land and goods and money is stored up for our subsistence, and for carrying out our enterprises? The author has collected his facts from every quarter and tested them in various ways, in order to make his statements and deductions valuable and trustworthy. Part I. of the work deals with the Classification of the Population into—Chap. I. The Income Classes; Chap. II. The Upper and Middle and Manual Labour Classes. Part II. treats of the Income of the United Kingdom, divided into—Chap. III. Upper and Middle Incomes; Chap. IV. Wages of the Manual Labour Classes—England and Wales; Chap. V. Income of Scotland; Chap. VI. Income of Ireland; Chap. VII. Income of the United Kingdom. In the Appendix will be found many valuable and carefully compiled tables, illustrating in detail the subjects discussed in the text.

Bernard.—FOUR LECTURES ON SUBJECTS CONNECTED WITH DIPLOMACY. By Mountague Bernard, M.A., Chichele Professor of International Law and Diplomacy, Oxford. 8vo. 9s.
These four Lectures deal with—I. "The Congress of Westphalia;" II. "Systems of Policy;" III. "Diplomacy, Past and Present;" IV. "The Obligations of Treaties."—"Singularly interesting lectures, so able, clear, and attractive."—SPECTATOR. "The author of these lectures is full of the knowledge which belongs to his subject, and has that power of clear and vigorous expression which results from clear and vigorous thought."—SCOTS MAN.

Brightness (John, M.P.)—SPEECHES ON QUESTIONS OF PUBLIC POLICY. By the Right Hon. John Bright, M.P. Edited by Professor Thorold Rogers. Author's Popular Edition. Globe 8vo. 3s. 6d.

The speeches which have been selected for publication in these volumes possess a value, as examples of the art of public speaking, which no person will be likely to underrate. The speeches have been selected with a view of supplying the public with the evidence on which Mr. Bright's Friends assert his right to a place in the front rank of English statesmen. They are divided into groups, according to their subjects. The editor has naturally given prominence to those subjects with which Mr. Bright has been specially identified, as, for example, India, America, Ireland, and Parliamentary Reform. But nearly every topic of great public interest on which Mr. Bright has spoken is represented in these volumes. "Mr. Bright's speeches will always deserve to be studied, as an apprenticeship to popular and parliamentary oratory; they will form materials for the history of our time, and many brilliant passages, perhaps some entire speeches, will really become a part of the living literature of England."—DAILY NEWS.

LIBRARY EDITION. Two Vols. 8vo. With Portrait. 25s.

Christie.—THE BALLOT AND CORRUPTION AND EXPENDITURE AT ELECTIONS, a Collection of Essays and Addresses of different dates. By W. D. Christie, C.B., formerly Her Majesty's Minister to the Argentine Confederation and to Brazil; Author of "Life of the First Earl of Shaftesbury." Crown 8vo. 4s. 6d.

Mr. Christie has been well known for upwards of thirty years as a strenuous and able advocate for the Ballot, both in his place in Parliament and elsewhere. The papers and speeches here collected
are six in number, exclusive of the Preface and Dedication to Professor Maurice, which contains many interesting historical details concerning the Ballot. "You have thought to greater purpose on the means of preventing electoral corruption, and are likely to be of more service in passing measures for that highly important end, than any other person that I could name."—J. S. Mill, in a published letter to the Author, May 1868.

In this edition the author has revised and corrected the entire work, and made many important additions. The headings of the eleven chapters are as follow:—I. "Early Systems: Midden-Heaps and Cesspools." II. "Filth and Disease—Cause and Effect." III. "Improved Midden-Pits and Cesspools; Midden-Closets, Pail-Closets, etc." IV. "The Dry-Closet Systems." V. "Water-Closets." VI. "Sewerage." VII. "Sanitary Aspects of the Water-Carrying System." VIII. "Value of Sewage; Injury to Rivers." IX. "Town Sewage; Attempts at Utilization." X. "Filtration and Irrigation." XI. "Influence of Sewage Farming on the Public Health." An abridged account of the more recently published researches on the subject will be found in the Appendices, while the Summary contains a concise statement of the views which the author himself has been led to adopt; references have been inserted throughout to show from what sources the numerous quotations have been derived, and an Index has been added. "Mr. Corfield's work is entitled to rank as a standard authority, no less than a convenient handbook, in all matters relating to sewage."—ATHENÆUM.

This little volume records "a portion of the experience, selected out of overflowing materials, of two ladies, during several years of devoted work as district parochial visitors in a large population in the North of England." The "Reminiscences of Amy Dutton" serve
to illustrate the line of argument adopted by Miss Stephen in her work on the "Service of the Poor," because they show that as in one aspect the lady visitor may be said to be a link between rich and poor, in another she helps to blend the "religious" life with the "secular," and in both does service of extreme value to the Church and Nation. "A record only too brief of some of the real portraits of humanity, painted by a pencil, tender indeed and sympathetic, but with too clear a sight, too ready a sense of humour, and too conscientious a spirit ever to exaggerate, extenuate, or aught set down in malice."—GUARDIAN.

Fawcett.—Works by HENRY FAWCETT, M.A., M.P., Fellow of Trinity Hall, and Professor of Political Economy in the University of Cambridge:

THE ECONOMIC POSITION OF THE BRITISH LABOURER. Extra fcap. 8vo. 5s.

This work formed a portion of a course of Lectures delivered by the author in the University of Cambridge, and he has deemed it advisable to retain many of the expositions of the elementary principles of Economic Science. In the Introductory Chapter the author points out the scope of the work and shows the vast importance of the subject in relation to the commercial prosperity and even the national existence of Britain. Then follow five chapters on "The Land Tenure of England," "Co-operation," "The Causes which regulate Wages," "Trade Unions and Strikes," and "Emigration." The EXAMINER calls the work "a very scholarly exposition on some of the most essential questions of Political Economy;" and the NONCONFORMIST says "it is written with charming freshness, ease, and lucidity."

MANUAL OF POLITICAL ECONOMY. Third and Cheaper Edition, with Two New Chapters. Crown 8vo. 10s. 6d.

In this treatise no important branch of the subject has been omitted, and the author believes that the principles which are therein explained will enable the reader to obtain a tolerably complete view of the whole science. Mr. Fawcett has endeavoured to show how intimately Political Economy is connected with the practical questions of life. For the convenience of the ordinary reader, and especially for those who may use the book to prepare themselves for...
Fawcett (H.)—continued.

examinations, he has prefixed a very detailed summary of Contents, which may be regarded as an analysis of the work. The new edition has been so carefully revised that there is scarcely a page in which some improvement has not been introduced. The Daily News says: "It forms one of the best introductions to the principles of the science, and to its practical applications in the problems of modern, and especially of English, government and society." "The book is written throughout," says the Examiner, "with admirable force, clearness, and brevity, every important part of the subject being duly considered."

PAUPERISM: ITS CAUSES AND REMEDIES. Crown 8vo. 5s. 6d.

In its number for March 11th, 1871, the Spectator said: "We wish Professor Fawcett would devote a little more of his time and energy to the practical consideration of that monster problem of Pauperism, for the treatment of which his economic knowledge and popular sympathies so eminently fit him." The volume now published may be regarded as an answer to the above challenge. The seven chapters it comprises discuss the following subjects:—I. "Pauperism and the old Poor Law." II. "The present Poor Law System." III. "The Increase of Population." IV. "National Education; its Economic and Social Effects." V. "Co-partnership and Co-operation." VI. "The English System of Land Tenure." VII. "The Inclosure of Commons." The Athenæum calls the work "a repertory of interesting and well-digested information."

ESSAYS ON POLITICAL AND SOCIAL SUBJECTS. By Professor Fawcett, M.P., and Millicent Garrett Fawcett. 8vo. 10s. 6d.

This volume contains fourteen papers, some of which have appeared in various journals and periodicals; others have not before been published. They are all on subjects of great importance and universal interest, and the names of the two authors are a sufficient guarantee that each topic is discussed with full knowledge, great ability, clearness, and earnestness. The following are some of the titles:—"Modern Socialism;" "Free Education in its Economic Aspects;" "Pauperism, Charity, and the Poor Law;" "National Debt and National Prosperity;" "What can be done for the
Agricultural Labourers;" "The Education of Women;" "The Electoral Disabilities of Women;" "The House of Lords." Each article is signed with the initials of its author.

Fawcett (Mrs.)—POLITICAL ECONOMY FOR BEGINNERS. WITH QUESTIONS. By Milliecent Garrett Fawcett. 18mo. 2s. 6d.

In this little work are explained as briefly as possible the most important principles of Political Economy, in the hope that it will be useful to beginners, and perhaps be an assistance to those who are desirous of introducing the study of Political Economy to schools. In order to adapt the book especially for school use, questions have been added at the end of each chapter. The Daily News calls it "clear, compact, and comprehensive," and the Spectator says, "Mrs. Fawcett’s treatise is perfectly suited to its purpose."

Freeman (E. A., M.A., D.C.L.)—HISTORY OF FEDERAL GOVERNMENT. See p. 6 of preceding Historical Catalogue.

Godkin (James).—THE LAND WAR IN IRELAND. A History for the Times. By James Godkin, Author of "Ireland and her Churches," late Irish Correspondent of the Times. 8vo. 12s.

A History of the Irish Land Question. "There is probably no other account so compendious and so complete."—FORTNIGHTLY REVIEW.

Guide to the Unprotected, in Every Day Matters Relating to Property and Income. By a Banker’s Daughter. Third Edition. Extra fcap. 8vo. 3s. 6d.

Many widows and single ladies, and all young people, on first possessing money of their own, are in want of advice when they have commonplace business matters to transact. The author of this work writes for those who know nothing. Her aim throughout is to avoid all technicalities; to give plain and practical directions, not only as to what ought to be done, but how to do it. "Many an unprotected female will bless the head which planned and the hand which compiled this admirable little manual. ... This book was very much wanted, and it could not have been better done."—Morning Star.
Hill.—CHILDREN OF THE STATE. THE TRAINING OF JUVENILE PAUPERS. By Florence Hill. Extra fcap. 8vo. cloth. 5s.

In this work the author discusses the various systems adopted in this and other countries in the treatment of pauper children. The Birmingham Daily Gazette calls it “a valuable contribution to the great and important social question which it so ably and thoroughly discusses; and it must materially aid in producing a wise method of dealing with the Children of the State.”

Historicus.—LETTERS ON SOME QUESTIONS OF INTERNATIONAL LAW. Reprinted from the Times, with considerable Additions. 8vo. 7s. 6d. Also, ADDITIONAL LETTERS. 8vo. 2s. 6d.

The author’s intention in these Letters was to illustrate in a popular form clearly-established principles of law, or to refute, as occasion required, errors which had obtained a mischievous currency. He has endeavoured to establish, by sufficient authority, propositions which have been inconsiderately impugned, and to point out the various methods of reasoning which have led some modern writers to erroneous conclusions. The volume contains: Letters on “Recognition;” “On the Perils of Intervention;” “The Rights and Duties of Neutral Nations;” “On the Law of Blockade;” “On Neutral Trade in Contraband of War;” “On Belligerent Violation of Neutral Rights;” “The Foreign Enlistment Act;” “The Right of Search;” extracts from letters on the Affair of the Trent; and a paper on the “Territoriality of the Merchant Vessel.”—“It is seldom that the doctrines of International Law on debatable points have been stated with more vigour, precision, and certainty.”—Saturday Review.

Jevons.—Works by W. STANLEY JEVONS, M.A., Professor of Logic and Political Economy in Owens College, Manchester. (For other Works by the same Author, see Educational and Philosophical Catalogues.)

THE COAL QUESTION: An Inquiry Concerning the Progress of the Nation, and the Probable Exhaustion of our Coal Mines. Second Edition, revised. 8vo. 10s. 6d.
Jevons (W.S.)—continued.

"Day by day," the author says, "it becomes more evident that the coal we happily possess in excellent quality and abundance is the mainspring of modern material civilisation." Geologists and other competent authorities have of late been hinting that the supply of coal is by no means inexhaustible, and as it is of vast importance to the country and the world generally to know the real state of the case, Professor Jevons in this work has endeavoured to solve the question as far as the data at command admit. He believes that should the consumption multiply for rather more than a century at its present rate, the average depth of our coal mines would be so reduced that we could not long continue our present rate of progress. "We have to make the momentous choice," he believes, "between brief greatness and long-continued prosperity."—"The question of our supply of coal," says the Pall Mall Gazette, "becomes a question obviously of life or death. . . . The whole case is stated with admirable clearness and cogency. . . . We may regard his statements as unanswered and practically established."

THE THEORY OF POLITICAL ECONOMY. 8vo. 9s.

In this work Professor Jevons endeavours to construct a theory of Political Economy on a mathematical or quantititative basis, believing that many of the commonly received theories in this science are perniciously erroneous. The author here attempts to treat Economy as the Calculus of Pleasure and Pain, and has sketched out, almost irrespective of previous opinions, the form which the science, as it seems to him, must ultimately take. The theory consists in applying the differential calculus to the familiar notions of Wealth, Utility, Value, Demand, Supply, Capital, Interest, Labour, and all the other notions belonging to the daily operations of industry. As the complete theory of almost every other science involves the use of that calculus, so, the author thinks, we cannot have a true theory of Political Economy without its aid. "Professor Jevons has done invaluable service by courageously claiming political economy to be strictly a branch of Applied Mathematics."—Westminster Review.

The Statesman's Year-Book is the only work in the English language which furnishes a clear and concise account of the actual condition of all the States of Europe, the civilised countries of America, Asia, and Africa, and the British Colonies and Dependencies in all parts of the world. The new issue of the work has been revised and corrected, on the basis of official reports received direct from the heads of the leading Governments of the world, in reply to letters sent to them by the Editor. Through the valuable assistance thus given, it has been possible to collect an amount of information, political, statistical, and commercial, of the latest date, and of unimpeachable trustworthiness, such as no publication of the same kind has ever been able to furnish. The new issue of the Statesman's Year-Book has a Chronological Account of the principal events of the past momentous twelve months. "As indispensable as Bradshaw."
—Times.

Phillimore.—PRIVATE LAW AMONG THE ROMANS, from the Pandects. By John George Phillimore, Q.C. 8vo. 16s.

The author's belief that some knowledge of the Roman System of Municipal Law will contribute to improve our own, has induced him to prepare the present work. His endeavour has been to select those parts of the Digest which would best show the grand manner in which the Roman jurist dealt with his subject, as well as those which most illustrate the principles by which he was guided in establishing the great lines and propositions of jurisprudence, which every lawyer must have frequent occasion to employ. "Mr. Phillimore has done good service towards the study of jurisprudence in this country by the production of this volume. The work is one which should be in the hands of every student."—Athenæum.

Smith.—Works by Professor Goldwin Smith:

A LETTER TO A WHIG MEMBER OF THE SOUTHERN INDEPENDENCE ASSOCIATION. Extra fcap. 8vo. 2s.

This is a Letter, written in 1864, to a member of an Association formed in this country, the purpose of which was "to lend assistance
Smith (Prof. G.)—continued.

to the Slave-owners of the Southern States in their attempt to effect a
disruption of the American Commonwealth, and to establish an
independent Power, having, as they declare, Slavery for its corner-
stone.” Mr. Smith endeavours to show that in doing so they
would have committed a great folly and a still greater crime.
Throughout the Letter many points of general and permanent
importance are discussed.

THREE ENGLISH STATESMEN: PYM, CROMWELL,
Extra fcap. 8vo. New and Cheaper Edition. 5s.

“A work which neither historian nor politician can safely afford to
neglect.”—S SATURDAY REVIEW.” “There are outlines, clearly and
boldly sketched, if mere outlines, of the three Statesmen who give the
titles to his lectures, which are well deserving of study.”—SPECTATOR.

Social Duties Considered with Reference to the
ORGANIZATION OF EFFORT IN WORKS OF BE-
NEVOLENCE AND PUBLIC UTILITY. By a MAN OF
BUSINESS. (WILLIAM RATHBONE.) Fcap. 8vo. 4s. 6d.

The contents of this valuable little book are—I. “Social Disintegra-
tion.” II. “Our Charities—Done and Undone.” III. “Organisa-
tion and Individual Benevolence—their Achievements and Short-
ocumings.” IV. “Organisation and Individualism—their Co-
operation Indispensable.” V. “Instances and Experiments.” VI.
“The Sphere of Government.” “Conclusion.” The views urged
are no sentimental theories, but have grown out of the practical ex-
perience acquired in actual work. “Mr. Rathbone’s earnest and
large-hearted little book will help to generate both a larger and wiser
charity.”—BRITISH QUARTERLY.

Stephen (C. E.)—THE SERVICE OF THE POOR;
Being an Inquiry into the Reasons for and against the Establish-
ment of Religious Sisterhoods for Charitable Purposes. By
CAROLINE EMILIA STEPHEN. Crown 8vo. 6s. 6d.

Miss Stephen defines Religious Sisterhoods as “associations, the
organization of which is based upon the assumption that works of
charity are either acts of worship in themselves, or means to an end,
that end being the spiritual welfare of the objects or the performers
WORKS IN POLITICS, ETC.

of those works.” Arguing from that point of view, she devotes the first part of her volume to a brief history of religious associations, taking as specimens—I. The Deaconesses of the Primitive Church. II. The Beguines. III. The Third Order of St. Francis. IV. The Sisters of Charity of St. Vincent de Paul. V. The Deaconesses of Modern Germany. In the second part, Miss Stephen attempts to show what are the real wants met by Sisterhoods, to what extent the same wants may be effectively met by the organisation of corresponding institutions on a secular basis, and what are the reasons for endeavouring to do so. “The ablest advocate of a better line of work in this direction than we have ever seen.”—Examiner.

Stephen (J. F.)—A GENERAL VIEW OF THE CRIMINAL LAW OF ENGLAND. By James Fitzjames Stephen, M.A., Barrister-at-Law, Member of the Legislative Council of India. 8vo. 18s.

The object of this work is to give an account of the general scope, tendency, and design of an important part of our institutions, of which surely none can have a greater moral significance, or be more closely connected with broad principles of morality and politics, than those by which men rightfully, deliberately, and in cold blood, kill, enslave, and otherwise torment their fellow-creatures. The author believes it possible to explain the principles of such a system in a manner both intelligible and interesting. The Contents are—I. “The Province of the Criminal Law.” II. “Historical Sketch of English Criminal Law.” III. “Definition of Crime in General.” IV. “Classification and Definition of Particular Crimes.” V. “Criminal Procedure in General.” VI. “English Criminal Procedure.” VII. “The Principles of Evidence in Relation to the Criminal Law.” VIII. “English Rules of Evidence.” IX. “English Criminal Legislation.” The last 150 pages are occupied with the discussion of a number of important cases. “Readers feel in his book the confidence which attaches to the writings of a man who has a great practical acquaintance with the matter of which he writes, and lawyers will agree that it fully satisfies the standard of professional accuracy.”—Saturday Review. “His style is forcible and perspicuous, and singularly free from the unnecessary use of professional terms.”—Spectator.

The object of this volume is to endeavour to find "a cure for human destitution," the search after which has been the passion and the work of the author's life. The work is divided into four books, and each book into a number of chapters. Book I. "Labour's Causes of Discontent." II. "Labour and Capital in Debate." III. "Labour and Capital in Antagonism." IV. "Labour and Capital in Alliance." All the highly important problems in Social and Political Economy connected with Labour and Capital are here discussed with knowledge, vigour, and originality, and for a noble purpose. The new edition has been thoroughly revised and considerably enlarged. "We cannot fail to recognize in his work the result of independent thought, high moral aim, and generous intrepidity in a noble cause. . . . A really valuable contribution. The number of facts accumulated, both historical and statistical, make an especially valuable portion of the work."—Westminster Review.
WORKS CONNECTED WITH THE SCIENCE OR THE HISTORY OF LANGUAGE.

(For Editions of Greek and Latin Classical Authors, Grammars, and other School works, see Educational Catalogue.)

The object of this work is to furnish students of Shakespeare and Bacon with a short systematic account of some points of difference between Elizabethan Syntax and our own. The demand for a third edition within a year of the publication of the first, has encouraged the author to endeavour to make the work somewhat more useful, and to render it, as far as possible, a complete book of reference for all difficulties of Shakesperian Syntax or Prosody. For this purpose the whole of Shakespeare has been re-read, and an attempt has been made to include within this edition the explanation of every idiomatic difficulty (where the text is not confessedly corrupt) that comes within the province of a grammar as distinct from a glossary. The great object being to make a useful book of reference for students and for classes in schools, several Plays have been indexed so fully, that with the aid of a glossary and historical notes the references will serve for a complete commentary. "A critical inquiry, conducted with great skill and knowledge, and with all the appliances of modern philology."—PALL MALL GAZETTE. "Valuable not only as an aid to the critical study of Shakespeare, but as tending to familiarise the reader with Elizabethan English in general."—ATHENÆUM.
Besant.—STUDIES IN EARLY FRENCH POETRY. By Walter Besant, M.A. Crown 8vo. 8s. 6d.

A sort of impression rests on most minds that French literature begins with the "siècle de Louis Quatorze;" any previous literature being for the most part unknown or ignored. Few know anything of the enormous literary activity that began in the thirteenth century, was carried on by Rulebeuf, Marie de France, Gaston de Foix, Thibault de Champagne, and Lorris; was fostered by Charles of Orleans, by Margaret of Valois, by Francis the First; that gave a crowd of versifiers to France, enriched, strengthened, developed, and fixed the French language, and prepared the way for Corneille and for Racine. The present work aims to afford information and direction touching these early efforts of France in poetical literature. "In one moderately sized volume he has contrived to introduce us to the very best, if not to all of the early French poets."—Athenæum. "Industry, the insight of a scholar, and a genuine enthusiasm for his subject, combine to make it of very considerable value."—Spectator.

Helfenstein (James).—A COMPARATIVE GRAMMAR OF THE TEUTONIC LANGUAGES: Being at the same time a Historical Grammar of the English Language, and comprising Gothic, Anglo-Saxon, Early English, Modern English, Icelandic (Old Norse), Danish, Swedish, Old High German, Middle High German, Modern German, Old Saxon, Old Frisian, and Dutch. By James Helfenstein, Ph.D. 8vo. 18s.

This work traces the different stages of development through which the various Teutonic languages have passed, and the laws which have regulated their growth. The reader is thus enabled to study the relation which these languages bear to one another, and to the English language in particular, to which special attention is devoted throughout. In the chapters on Ancient and Middle Teutonic languages no grammatical form is omitted the knowledge of which is required for the study of ancient literature, whether Gothic or Anglo-Saxon or Early English. To each chapter is prefixed a sketch showing the relation of the Teutonic to the cognate languages, Greek, Latin, and Sanskrit. Those who have mastered the book will be in a position to proceed with intelligence to the more elaborate works of Grimm, Bopp, Pott, Schleicher, and others.
Morris.—HISTORICAL OUTLINES OF ENGLISH ACCIDENTE, comprising Chapters on the History and Development of the Language, and on Word-formation. By the Rev. Richard Morris, LL.D., Member of the Council of the Philol. Soc., Lecturer on English Language and Literature in King’s College School, Editor of “Specimens of Early English,” etc., etc. Fcap. 8vo. 6s.

Dr. Morris has endeavoured to write a work which can be profitably used by students and by the upper forms in our public schools. His almost unqualified knowledge of early English Literature renders him peculiarly qualified to write a work of this kind; and English Grammar, he believes, without a reference to the older forms, must appear altogether anomalous, inconsistent, and unintelligible. In the writing of this volume, moreover, he has taken advantage of the researches into our language made by all the most eminent scholars in England, America, and on the Continent. The author shows the place of English among the languages of the world, expounds clearly and with great minuteness “Grimm’s Law,” gives a brief history of the English language and an account of the various dialects, investigates the history and principles of Phonology, Orthography, Accent, and Etymology, and devotes several chapters to the consideration of the various Parts of Speech, and the final one to Derivation and Word-formation.

Peile (John, M.A.)—AN INTRODUCTION TO GREEK AND LATIN ETYMOLOGY. By John Peile, M.A., Fellow and Assistant Tutor of Christ’s College, Cambridge, formerly Teacher of Sanskrit in the University of Cambridge. New and revised Edition. Crown 8vo. 1os. 6d.

These Philological Lectures are the result of Notes made during the author’s reading for some years previous to their publication. These Notes were put into the shape of lectures, delivered at Christ’s College, as one set in the “Intercollegiate” list. They have been printed with some additions and modifications, but substantially as they were delivered. “The book may be accepted as a very valuable contribution to the science of language.”—SATURDAY REVIEW.
Philology.—The Journal of Sacred and Classical Philology. Four Vols. 8vo. 12s. 6d.

This work is the result of an independent and careful study of the writers of the strictly Classical period, the period embraced between the time of Plautus and that of Suetonius. The author’s aim has been to give the facts of the language in as few words as possible. It will be found that the arrangement of the book and the treatment of the various divisions differ in many respects from those of previous grammars. Mr. Roby has given special prominence to the treatment of Sounds and Word-formation; and in the First Book he has done much towards settling a discussion which is at present largely engaging the attention of scholars, viz., the Pronunciation of the Classical languages. In the full Appendices will be found various valuable details still further illustrating the subjects discussed in the text. The author’s reputation as a scholar and critic is already well known, and the publishers are encouraged to believe that his present work will take its place as perhaps the most original, exhaustive, and scientific grammar of the Latin language that has ever issued from the British press. “The book is marked by the clear and practical insight of a master in his art. It is a book which would do honour to any country.”—Athenæum. “Brings before the student in a methodical form the best results of modern philology bearing on the Latin language.”—Scotsman.

This work, as the Saturday Review acknowledges, "is one which stands alone in our language." The subject is one acknowledged to be of the highest importance as a handmaid to History, Ethnology, Geography, and even to Geology; and Mr. Taylor's work has taken its place as the only English authority of value on the subject. Not only is the work of the highest value to the student, but will be found full of interest to the general reader, affording him wonderful peeps into the past life and wanderings of the restless race to which he belongs. Every assistance is given in the way of specially prepared Maps, Indexes, and Appendices; and to anyone who wishes to pursue the study of the subject further, the Bibliographical List of Books will be found invaluable. The Nonconformist says, "The historical importance of the subject can scarcely be exaggerated." "His book," the Reader says, "will be invaluable to the student of English history." "As all cultivated minds feel curiosity about local names, it may be expected that this will become a household book," says the Guardian.

Trench.—Works by R. Chenevix Trench, D.D., Archbishop of Dublin. (For other Works by the same Author, see Theological Catalogue.)

Archbishop Trench has done much to spread an interest in the history of our English tongue. He is acknowledged to possess an uncommon power of presenting, in a clear, instructive, and interesting manner, the fruit of his own extensive research, as well as the results of the labours of other scientific and historical students of language; while, as the Athenæum says, "his sober judgment and sound sense are barriers against the misleading influence of arbitrary hypotheses."

The study of synonyms in any language is valuable as a discipline for training the mind to close and accurate habits of thought; more especially is this the case in Greek—"a language spoken by a people of the finest and subtlest intellect; who saw distinctions where others saw none; who divided out to different words what others often were content to huddle confusedly under a common term." This work is recognised as a valuable companion to every student of the New Testament in the original. This, the Seventh Edition, has been
carefully revised, and a considerable number of new synonyms added. Appended is an Index to the synonyms, and an Index to many other words alluded to or explained throughout the work. "He is," the Athenæum says, "a guide in this department of knowledge to whom his readers may entrust themselves with confidence."

ON THE STUDY OF WORDS. Lectures Addressed (originally) to the Pupils at the Diocesan Training School, Winchester. Fourteenth Edition, revised and enlarged. Fcap. 8vo. 4s. 6d.

This, it is believed, was probably the first work which drew general attention in this country to the importance and interest of the critical and historical study of English. It still retains its place as one of the most successful if not the only exponent of those aspects of Words of which it treats. The subjects of the several Lectures are—I. "Introductory." II. "On the Poetry of Words." III. "On the Morality of Words." IV. "On the History of Words." V. "On the Rise of New Words." VI. "On the Distinction of Words." VII. "The Schoolmaster's Use of Words."

ENGLISH PAST AND PRESENT. Seventh Edition, revised and improved. Fcap. 8vo. 4s. 6d.

This is a series of eight Lectures, in the first of which Archbishop Trench considers the English language as it now is, decomposes some specimens of it, and thus discovers of what elements it is compact. In the second Lecture he considers what the language might have been if the Norman Conquest had never taken place. In the following six Lectures he institutes from various points of view a comparison between the present language and the past, points out gains which it has made, losses which it has endured, and generally calls attention to some of the more important changes through which it has passed, or is at present passing.

A SELECT GLOSSARY OF ENGLISH WORDS USED FORMERLY IN SENSES DIFFERENT FROM THEIR PRESENT. Third Edition. Fcap. 8vo. 4s.

This alphabetically arranged Glossary contains many of the most important of those English words which in the course of time have gradually changed their meanings. The author's object is to point out some of these changes, to suggest how many more there may be,
Trench (R. C.)—continued.

to show how slight and subtle, while yet most real, these changes have often been, to trace here and there the progressive steps by which the old meaning has been put off and the new put on—the exact road which a word has travelled. The author thus hopes to render some assistance to those who regard this as a serviceable discipline in the training of their own minds or the minds of others. Although the book is in the form of a Glossary, it will be found as interesting as a series of brief well-told biographies.

ON SOME DEFICIENCIES IN OUR ENGLISH DICTIONARIES: Being the substance of Two Papers read before the Philological Society. Second Edition, revised and enlarged. 8vo. 3s.

The following are the main deficiencies in English dictionaries pointed out in these Papers, and illustrated by an interesting accumulation of particulars:—I. "Obsolete words are incompletely registered." II. "Families or groups of words are often imperfect." III. "Much earlier examples of the employment of words oftentimes exist than any which are cited, and much later examples of words now obsolete." IV. "Important meanings and uses of words are passed over." V. "Comparatively little attention is paid to the distinguishing of synonymous words." VI. "Many passages in our literature are passed by, which might be carefully adduced in illustration of the first introduction, etymology, and meaning of words." VII. "Our dictionaries err in redundancy as well as defect."

Wood.—Works by H. T. W. Wood, B.A., Clare College, Cambridge:—

THE RECIPROCAL INFLUENCE OF ENGLISH AND FRENCH LITERATURE IN THE EIGHTEENTH CENTURY. Crown 8vo. 2s. 6d.

This Essay gained the Le Bas Prize for the year 1869. Besides a general Introductory Section, it contains other three Sections on "The Influence of Boileau and his School;" "The Influence of English Philosophy in France;" "Secondary Influences—the Drama, Fiction," etc. Appended is a Synchronological Table of Events connected with English and French Literature, A.D. 1700—A.D. 1800.
Wood (H. T. W.)—continued.

CHANGES IN THE ENGLISH LANGUAGE BETWEEN THE PUBLICATION OF WICLIF’S BIBLE AND THAT OF THE AUTHORIZED VERSION; A.D. 1400 TO A.D. 1600. Crown 8vo. 2s. 6d.

This Essay gained the Le Bas Prize for the year 1870. Besides the Introductory Section explaining the aim and scope of the Essay, there are other three Sections and three Appendices. Section II. treats of “English before Chaucer.” III. “Chaucer to Caxton.” IV. “From Caxton to the Authorized Version.”—Appendix: I. “Table of English Literature,” A.D. 1300—A.D. 1611. II. “Early English Bible.” III. “Inflectional Changes in the Verb.” This will be found a most valuable help in the study of our language during the period embraced in the Essay. “As we go with him,” the Athenæum says, “we learn something new at every step.”

Miss Yonge’s work is acknowledged to be the authority on the interesting subject of which it treats. Until she wrote on the subject, the history of names—especially Christian Names as distinguished from Surnames—had been but little examined; nor why one should be popular and another forgotten—why one should flourish throughout Europe, another in one country alone, another around some petty district. In each case she has tried to find out whence the name came, whether it had a patron, and whether the patron took it from the myths or heroes of his own country, or from the meaning of the words. She has then tried to classify the names, as to treat them merely alphabetically would destroy all their interest and connection. They are classified first by language, beginning with Hebrew and coming down through Greek and Latin to Celtic, Teutonic, Slavonic, and other sources, ancient and modern; then by meaning or spirit. “An almost exhaustive treatment of the subject . . . The painstaking toil of a thoughtful and cultured mind on a most interesting theme.”—London Quarterly.
