A MODIFIED BECKMAN MODEL DU SPECTROPHOTOMETER FOR SEAGOING USE

SPECIAL SCIENTIFIC REPORT–FISHERIES No. 382
A MODIFIED BECKMAN MODEL DU SPECTROPHOTOMETER FOR SEAGOING USE

By
Robert W. Holmes and Robert J. Linn
University of California
Scripps Institution of Oceanography
La Jolla, California

Contribution from Scripps Institution of Oceanography

United States Fish and Wildlife Service
Special Scientific Report--Fisheries No. 382

Washington, D. C.
July 1961
This work was financed by the Bureau of Commercial Fisheries under Contract No. 14-19-008-9354, with funds available under the Act of July 1, 1954 (68 Stat. 376), commonly known as the Saltonstall-Kennedy Act.
CONTENTS

Introduction	1
Description of modifications:	
Desiccant holders	1
External "C" battery unit and associated circuitry	3
The battery charger unit	3
Modification of cell holder	4
Discussion and conclusions	5

FIGURES

1. *Modified Beckman DU Spectrophotometer* | iv |
2. *View of modified cell compartment and phototube housing* | iv |
3. *Diagrammatic representation of Spectrophotometer modification* | 3 |
4. *Diagram of wiring in "C" battery unit and meter test unit*
 (Terminal strip positions B and C are connected to the yellow and white leads in the Beckman DU Spectrophotometer, respectively.) | 4 |
5. *Wiring diagram (semidiagrammatic) of battery charger unit* | 5 |
Figure 1.—Modified Beckman DU Spectrophotometer.

Figure 2.—View of modified cell compartment and phototube housing.
A MODIFIED BECKMAN
MODEL DU SPECTROPHOTOMETER
FOR SEAGOING USE

by
Robert W. Holmes and Robert J. Linn

ABSTRACT

Several modifications of the Beckman DU Spectrophotometer are
described which facilitate operation and maintenance on a seagoing
vessel. These include the replacement of the desiccant holders in the
instrument with readily accessible units of somewhat larger volume;
the placement of the "C" battery supply in a separate compartment
provided with a switch and meter jack, permitting rapid measure-
ment of critical voltages; two trickle chargers for the 6-volt "A"
batteries, provided with rate-of-charge meters; and a cell holder
designed to accommodate as many as four 10 cm. semimicroabsor-
tion cells.

INTRODUCTION

Certain modifications of many
ty requires a frequent change of
kinds of commercial instruments are
desiccant, especially in the phototube
required for their most effective use
housing. In this latter unit, desiccant
on an oceanographic vessel. Amongst
changes are required every 3-5 days
the most troublesome conditions with which
when operating in the tropics and some-
one must cope on a research vessel are
what less frequently in more northern
(1) corrosion by salt air and moisture;
lattitudes. The desiccant holders pro-
(2) roll, pitch, vibration, and other mo-
vided with the instrument are difficult
tion of the vessel; and (3) general lack
to fill; e.g., to change the phototube
of time and space for complex mainte-
housing desiccant, the cell compart-
nance and repair procedures. Coping
ment must be detached from the photo-
with these difficult conditions at sea
tube housing and the back plate of the
has led the authors to make a number
phototube housing unscrewed to gain
of modifications in the Beckman Model
access to the desiccant holder.
DU Spectrophotometer which improve
These difficulties have been re-
the reliability of operation and simplify
mediated to a large degree by the construc-
maintenance. Such modifications have
ation of two transparent plastic
been made on two Model DU Spectro-
perforated tubes which may be screwed
photometers, and these instruments
into receptacles mounted on the instru-
have given excellent service on several
ment. Silicone grease-coated O-rings
expeditions and cruises during the past
serve as moisture seals in these units.
2 years.

DESCRIPTION OF MODIFICATIONS

Desiccant Holders

The moist air encountered on a
vessel in a nonair-conditioned labora-

Note.--Robert W. Holmes, Assistant Research Biol-
ogist, and Robert J. Linn, Senior Marine Technician, Scripps
institution of Oceanography, La Jolla, California.
shows the desiccant cartridge, the O-ring, and the receptacle as used on the phototube house.

External "C" Battery Unit and Associated Circuitry

Many investigators as well as the manufacturer have resorted to an external "C" battery supply. This permits the changing of the "C" batteries without inverting the instrument and removing the bottom plate. Additional modifications (fig. 4) which we have found advantageous are: (1) the inclusions of an extra "C" battery in series with Beckman batteries Nos. 3 and 4--this extra battery reduces the frequency of battery renewal, (2) the inclusion of a four-position rotary switch which permits adjustment of the screen voltage without entry into the "C" battery unit, and (3) the inclusion of another rotary switch (2-deck, 11-position) and a test meter outlet which permits the operator to check voltages on the terminal strip.

A portable test meter has also been constructed which facilitates the voltage measurements. This unit (fig. 4) has a reverse polarity switch, two volt meters, and an on-off push-button switch.

These "C" battery and test meter units may be seen in figure 1 located adjacent to the phototube housing. The circuitry is diagrammed in figures 3 and 4.

The Battery Charger Unit

For convenience the battery charger unit has been mounted alongside the spectrophotometer above the transmittance dial (fig. 1). This unit contains two conventional 6-volt trickle chargers with provision for charging two 6-volt storage batteries simultaneously or independently, and a panel

Figure 3.--Diagrammatic representation of Spectrophotometer modification.
"C" BATTERY MODIFICATION FOR SPECTROPHOTOMETER

"C" BATTERY UNIT

Due to a vessel's motion the level of the electrolyte in the "A" batteries (i.e., 6-volt storage batteries) must be kept at a high level or an unstable dark current will result. Mounting these batteries athwartships also helps stabilize the dark current for the same reason. Also, best results have been obtained by soldering the 6-volt, 2-volt, and negative leads directly to the battery.

Modification of Cell Holder

One spectrophotometer is used solely for the measurement of phytoplankton pigments. In tropical waters this requires the use of a 10-cm. path length and an absorption cell of relatively small volume (i.e., ca. 5-6 ml.)

Figure 4.—Diagram of wiring in "C" battery unit and meter test unit. (Terminal strip positions B and C are connected to the yellow and white leads in the Beckman DU Spectrophotometer, respectively.)

Connection between the storage battery box and charger unit is made by a six-conductor "extension" cord equipped with polarized amphenol or similar connectors. These connectors (also used elsewhere in the modified instrument) have given excellent service and have shown no tendency to corrode under these conditions.

Figure 5 shows the wiring diagram for the battery charger unit.

meter which shows the rate of charge of the batteries. In addition, the operator may select from this unit the battery which will be used during the operation of the instrument.

The "A" batteries are contained in a separate box and may be placed in some convenient or remote location. Connection between the storage battery box and charger unit is made by a six-conductor "extension" cord equipped with polarized amphenol or similar connectors. These connectors (also used elsewhere in the modified instrument) have given excellent service and have shown no tendency to corrode under these conditions.
if the volume of water to be filtered is to be kept below 6 liters. The measurement of extinction at the various wave lengths has been made less time consuming by the construction of a cell holder which will accommodate as many as four semimicroabsorption cells.

DISCUSSION AND CONCLUSIONS

While the modifications described are not in any sense radical, they have greatly simplified the maintenance and operation of the DU Spectrophotometer both in the laboratory and especially on oceanographic research vessels. Instruments provided with these modifications have given virtually trouble-free operation over the past 2 years under most severe field conditions.

The authors have not used the Beckman 14500 battery power regulator nor the newer batteryless power supply (Beckman 23700) under field conditions. These units, especially the latter, have not been so employed because they would require special skills in repairing. Furthermore, spare parts for such equipment are not generally available in foreign ports, whereas batteries such as are used in the conventional DU Spectrophotometer power supply are available almost everywhere.