FAUNA UND FLORA

DES GOLFES VON NEAPEL

UND DER

ANGRENZENDEN MEERES-ABSCHNITTE.

HERAUSGEGEBEN

VON DER

ZOOLOGISCHEN STATION ZU NEAPEL.

24. MONOGRAPHIE:

SEESTERNE

VON

Dr. HUBERT LUDWIG.

MIT 12 FIGUREN IM TEXT UND 12 TAFELN.

BERLIN.

VERLAG VON R. FRIEDLÄNDER & SOHN.

1897.

Subscriptionspreis jährlich 50 Mark.
FAUNA UND FLORA

DES GOLFES VON NEAPEL

UND DER

ANGRENNZENDEN MEERES-ABSCHNITTE.

HERAUSGEGEBEN

VON DER

ZOOLOGISCHEN STATION ZU NEAPEL.

24. MONOGRAPHIE:

SEESTERNE

VON

DR. HUBERT LUDWIG.

MIT 12 FIGUREN IM TEXT UND 12 TAFELN.

BERLIN

VERLAG VON R. FRIEDLÄNDER & SOHN

1897.

Subscriptionspreis jährlich 50 Mark.
DIE

SEESTERNE

DES

MITTELMEERES

VON

DR. HUBERT LUDWIG,
PROFESSOR DER ZOOLOGIE UND VERGLEICHENDEN ANATOMIE AN DER UNIVERSITÄT BONN.

MIT 12 FIGUREN IM TEXT UND 12 TAFELN.

HERAUSGEGEBEN
VON DER
ZOOLOGISCHEN STATION ZU NEAPEL.

 BERLIN
VERLAG VON R. FRIEDLÄNDER & SOHN
1897.

Ladenpreis 100 Mark.
HERRN

ANTON DOHRN

dem Begründer und Leiter der zoologischen Station zu Neapel

am Tage ihres

Fünfundzwanzigjährigen Bestehens

in dankbarer Verehrung

zugeeignet.
VORWORT.

Das Manuskript wurde im October des vorigen Jahres abgeschlossen, sodass später erschiene Arbeiten nur unvollständig, in Form nachträglicher Bemerkungen, berücksichtigt werden konnten.
Durch die mich tief verpflichtende Unterstützung des königlichen Unterrichtsministeriums und der königlichen Akademie der Wissenschaften zu Berlin war ich in der Lage, drei Frühlinge (1880, 1890, 1894) in der zoologischen Station zu Neapel arbeiten zu können. Dennoch hätte ich das vorliegende Buch nicht zu vollenden vermocht, wenn mir nicht die zoologische Station und namentlich ihr vortrefflicher Conservator, Herr Dr. Lo Bianco, ununterbrochen Material gesammelt und in bester Erhaltung überschickt hätte. Auch die von Herrn Colombo bei seiner Durchforschung des neapolitanischen Golfes erbeuteten Echinodermen wurden mir von der Station übergeben. Ferner schulde ich für wertvolle Notizen und Objecte verbindlichen Dank den Herren Prof. Camerano (Turin), Dr. Driesch (Neapel), Prof. v. Graff (Graz), Prof. Grenacher (Halle), Prof. Metschnikoff (Paris), Prof. Spengel (Giessen), der Wittwe von Prof. Greeff (Marburg) und vor Allem Herrn Dr. v. Marenzeller (Wien), der mir die im Wiener Hofmuseum aufbewahrten Funde der österreichischen Mittelmeer-Expeditionen zur freiesten Benützung anvertraute.

Für etwaige Nachuntersuchungen will ich bemerken, dass ich das ganze in meinen Händen befindliche Material dem hiesigen zoologischen Museum überwiesen habe, damit es in sorgfältiger Aufstellung an einem Orte vereinigt bleibt.

Bei der Drucklegung hatte ich mich bei der Anordnung der Tafeln und bei der Correctur des Textes der Mitwirkung der beiden hochverdienten Beamten der Station, meiner lieben Freunde, Prof. Mayer und Dr. Giesbrecht, zu erfreuen. Die von Herrn Merculiano’s (Neapel) Meisterhand nach dem Leben gemalten Abbildungen wurden von den Herren Werner & Winter (Frankfurt a.M.) in prächtigster Vollendung wiedergegeben.

Bonn, 14. April 1897.

Hubert Ludwig.
INHALTS-VERZEICHNIS.

<table>
<thead>
<tr>
<th>Erster Abschnitt. Beschreibung der Arten</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestimmungsschlüssel der im Mittelmeer vorkommenden Gattungen</td>
<td>1</td>
</tr>
<tr>
<td>Fam. Astropectinidae</td>
<td>2</td>
</tr>
<tr>
<td>1.Gatt. Astropecten</td>
<td>2</td>
</tr>
<tr>
<td>Bestimmungsschlüssel der fünf Arten</td>
<td>3</td>
</tr>
<tr>
<td>1. Art. Astropecten aurantiacus</td>
<td>3</td>
</tr>
<tr>
<td>2. Art. Astropecten bispinosus</td>
<td>16</td>
</tr>
<tr>
<td>3. Art. Astropecten spinulosus</td>
<td>31</td>
</tr>
<tr>
<td>4. Art. Astropecten pentaeanthus</td>
<td>39</td>
</tr>
<tr>
<td>5. Art. Astropecten jonstoni</td>
<td>50</td>
</tr>
<tr>
<td>2.Gatt. Luidia</td>
<td>60</td>
</tr>
<tr>
<td>Bestimmungsschlüssel der beiden Arten</td>
<td>60</td>
</tr>
<tr>
<td>6. Art. Luidia ciliaris</td>
<td>61</td>
</tr>
<tr>
<td>7. Art. Luidia sarsi</td>
<td>85</td>
</tr>
<tr>
<td>Fam. Archasteridae</td>
<td>104</td>
</tr>
<tr>
<td>Bestimmungsschlüssel der beiden Arten</td>
<td>104</td>
</tr>
<tr>
<td>5. Art. Plutonaster subinermis</td>
<td>105</td>
</tr>
<tr>
<td>4. Gatt. Odontaster</td>
<td>125</td>
</tr>
<tr>
<td>16. Art. Odontaster mediterraneus</td>
<td>125</td>
</tr>
<tr>
<td>Fam. Chaetasteridae</td>
<td>134</td>
</tr>
<tr>
<td>5. Gatt. Chaetaster</td>
<td>134</td>
</tr>
<tr>
<td>11. Art. Chaetaster longipes</td>
<td>134</td>
</tr>
<tr>
<td>Fam. Pentagonasteridae</td>
<td>157</td>
</tr>
<tr>
<td>Bestimmungsschlüssel der beiden Arten</td>
<td>157</td>
</tr>
<tr>
<td>Fam. Poraniidae</td>
<td>189</td>
</tr>
<tr>
<td>Fam. Asterinidae</td>
<td>207</td>
</tr>
<tr>
<td>8. Gatt. Asterina</td>
<td>207</td>
</tr>
<tr>
<td>15. Art. Asterina gibbosa</td>
<td>207</td>
</tr>
<tr>
<td>16a. Palmipes lobianci = Palmipes membranaceus × Asterina gibbosa</td>
<td>267</td>
</tr>
<tr>
<td>Fam. Linckiidae</td>
<td>271</td>
</tr>
<tr>
<td>17. Art. Hacelia attenuata</td>
<td>272</td>
</tr>
<tr>
<td>18. Art. Ophidiaster ophidianus</td>
<td>300</td>
</tr>
<tr>
<td>Fam. Echinasteridae</td>
<td>313</td>
</tr>
<tr>
<td>19. Art. Echinaster sepositus</td>
<td>313</td>
</tr>
<tr>
<td>Fam. Asteriidae</td>
<td>314</td>
</tr>
<tr>
<td>Bestimmungsschlüssel der vier Arten</td>
<td>314</td>
</tr>
<tr>
<td>20. Art. Asterias tenuispina</td>
<td>314</td>
</tr>
<tr>
<td>22. Art. Asterias edmundi</td>
<td>395</td>
</tr>
<tr>
<td>23. Art. Asterias richardi</td>
<td>403</td>
</tr>
<tr>
<td>Fam. Brisingidae</td>
<td>418</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zweiter Abschnitt. Brutzeiten und Jugendstadien</th>
<th>Seite</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dritter Abschnitt. Geographische Verbreitung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Horizontale Verbreitung</td>
<td>441</td>
</tr>
<tr>
<td>2. Verticale Verbreitung</td>
<td>446</td>
</tr>
<tr>
<td>3. Bodenbeschaffenheit</td>
<td>448</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vierter Abschnitt. Systematische Ergebnisse</th>
<th>Seite</th>
</tr>
</thead>
</table>

Fünfter Abschnitt. Morphologische Ergebnisse 455
1. Allgemeine Wachstumsverhältnisse 455
2. Das Dorsalskelet der Scheibe 456
3. Die Terminalplatten 459
4. Das Dorsalskelet der Arme 461
5. Die oberen und unteren Randplatten 461
6. Die Zwischenrandplatten 466
7. Die Madreporenplatte 467
8. Die Bewaffnung der Munddeckplatten 467
9. Die adambulacrale Bewaffnung 468
10. Die Adambulacralplatten 469
11. Die Ventrolateralplatten 470
12. Die Superambulacralplatten 473
13. Die äusseren Skeletanhänge samt den Pedicellarien 473
14. Die Papulae 476
15. Die Papulae 479
16. Die adambulacrale Bewaffnung 468
17. Alphabetisches Register zu der Beschreibung der Arten 188

Bestimmungsschlüssel der im Mittelmeer vorkommenden Gattungen.

Rand nicht zugeschärft; die unteren Randplatten meist auch die oberen durch ihre Größe sofort unterscheidbar; obere Randplatten anscheinend fehlend, weil zu Paxillen umgebildet; Rücken mit Paxillen besetzt; Scheibe verhältnismässig klein; Arme lang, ziemlich schmal, erst im distalen Theile zugespitzt; Papulae viellappig; Füsschen ohne deutliche Saugscheibe; ventrale Interradialfelder sehr klein; Ventrolateralplatten in einer langen Längsreihe; After fehlt .. 1. Astrepecten.

Rand zugeschärft, nur von den horizontal gestellten unteren Randplatten gebildet und mit feinem Stachelchen- saume; Papulæ einfach; Füsschen mit deutlicher Saugscheibe; Arme lang, von der Basis an zugespitzt; Füsschen ohne deutliche Saugscheibe; Rücken mit Paxillen besetzt; Scheibe verhältnismässig gross; Interradialfelder groß; Ventrolateralplatten in zahlreichen, zum Theil langen Längsreihen; After vorhanden; die des Rückens stellen Paxillen dar; im Armwinkel eine unpaare obere und untere Randplatte; Mundecken mit je einem grossen, unpaaren, beiden Mundeckplatten gemeinsamen, aberal gerichteten, dornförmigen Stachel .. 2. Luidia.

untere Randplatten verhältnismässig gross; Körper pentagonal, oben gewölbt, unten abgeflacht; Rückenplatten, obere Randplatten und Ventrolateralplatten sammt ihren kurzen, sparen Stacheln in der Haut versteckt; Pedicellarien fehlen .. 3. Plutonaster.

Randplatten klein und derhalb nicht sofort auffallend; Körper kurzarmig-sternförmig bis pentagonal, oben gewölbt, unten flach. oben und unten mit Gruppen kleiner Stachelchen besetzt; Pedicellarien vorhanden .. 4. Odontaster.

Körper fünfflappig umrandet und bis zur Dünneheit eines Kartonstückes abgeplattet, oben mit bästenförmigen, unten mit Raymondverzahnten Pfropfenkleinen Stachelchen; Pedicellarien fehlen .. 5. Pentagonaster.

1) Diese Bestimmungstabelle bezieht sich in erster Linie nur auf die Mittelmeerformen und ist aus praktischen Gründen so ausgefallen, dass die Gattungen nicht ganz genau in der durch die römischen Ziffern angegebenen systematischen Reihenfolge stehen.

Arme mehr oder weniger drehrund bis fünfkantig; Arme und Scheibe ohne ausgeprägten Rand; Füsschen mit deutlicher Saugscheibe.

mit gekreuzten Pedicellarien;

keine gekreuzten Pedicellarien; Füsschen zweireihig;
Papulae auf die Rückenseite beschränkt; keinerlei Pedicellarien;
Papulae auch zwischen den Randplatten und an der Ventralseite, in grossen büschelförmigen Gruppen auf regelmässig angeordnete Längsreihen von sog. Porenhäuptern vertieft; granulirte Haut verhält die Skeletplatten;
Scheibe nicht scharf von den langen Armen abgesetzt; Papulae auf dem Rücken sowie zwischen den oben und unteren Randplatten, oft auch zwischen letzteren und den Adamobulceralplatten, einzeln oder in Gruppen; Randstacheln der Arme massig gross oder klein; Füsschen vierreihig.
Scheibe klein, scharf abgesetzt von den ungewöhnlich langen, in der Nähe der Basis angeschwollenen, sehr dünn auslaufenden Armen; Papulae fehlen; Randstacheln der Arme sehr lang; Füsschen zweireihig.

Arme von der Basis an zugespitzt; Porenhäupter der Arme in zehn Längsreihen; bei älteren Exemplaren vereinzelte, salzfassformige Pedicellarien.

Körper niedergedrückt, am Rande bestachelt, mit grossen oberen und unteren Randplatten; Scheibe verhältnissmassig gross: Arme lang, von der Basis an allmählich zugespitzt; Rücken der Scheibe und der Arme mit Paxillen besetzt: ventrale Interradialfelder klein; Ventrolateralplatten in 1—2 kurzen Längsreihen; keine Pedicellarien; Papulae einfach; Füsschen ohne deutliche Saugscheibe; After fehlt.

1) Diese und alle anderen Gattungsdiaignosen dieses Werkes sind mit besonderer Beziehung auf die Mittelmeerfauna abgefasst.
Bestimmungsschlüssel der fünf Arten:
in zwei sich abloßenden Reihen; obere Randplatten dicht granulirt; untere Randplatten mit
je einem grossen, meist drehrundem Randstachel; Ambulacralplatten mit je 3 inneren und
2 äusseren Furchenstacheln und mit zahlreichen subambulacralen Stacheln; am suturalen
Rande der Munddeckplatten eine doppelte Stachelreihe; Madreporenplatte mit gelapptem Um-
risse und centralem Körnchenbesatz
in einer einzigem Reihe; obere Randplatten mit nacktem oder beschupptem Mittelfeld und mit
kleinen cylinderförmigen Stachelchen auf den Randzonen; untere Randplatten mit je einem
grossen, abgeflachten Randstachel; Ambulacralplatten mit je 3 inneren und 2 oder 3
äusseren Furchenstacheln und mit sparsamen, meist nur 2 subambulacralen Stacheln; am su-
turalen Rande der Munddeckplatten eine einfache Stachelreihe; Madreporenplatte mit kri-
förmigem Umriss und ohne centrales Körnchenbesatz
auf jeder Ambulacralplatte nur 1 innerer Furchenstachel, ferner 2 äussere mittlere und
2 subambulacrale äussere; untere Randplatten bestachelt, mit je 1 grossen Randstachel; am
suturalen Rande der Munddeckplatten eine einfache Stachelreihe
ferner 3 äussere Furchenstacheln und 2 subambulacrale; untere Randplatten bestachelt, mit je einem Büschel von 4—6 feinen Randstacheln; am suturalen Rande der Munddeckplatten eine einfache Stachelreihe
ferner 3 äussere Furchenstacheln und 2—4 subambulacrale; untere Randplatten mit nachtem, von zierlichen Schuppen eingefasstem Mittelfeld und
im mittleren Armabsehnitt 2 gleich- oder ungleichgrossen Randstacheln; am suturalen Rande der Munddeckplatten mehrere Stachelreihen

Schematische Darstellung der Ambulacralbewaffnung. pdo der adoralen, men der ambulacralen, ab der aboralen Rand der Amb-
bulacralplatte. Die Stacheln sind durch Umrisslinien ihrer Basen angedeutet. Leer sind die subambulacralen Stacheln, die die
Stacheln der inneren, die der äusseren Reihe und die bei aurantiacus vorkommenden überzähligen Stacheln.

1733 Astropecten echinatus major Linne p. 27, T. 5,
VI. No. 6.
Astropecten stellatus Linne p. 36, T. 27, No. 41.
1758 Asterias aranciaca Linne p. 662.
1792 Asterias aranciaca Olivi p. 63.
1823 Asterias aurantia Otto p. 255.
1825 Asterias aranciaca Delle Chiaja Vol. 2, p. 355,
T. 19, f. 1.
1826 Asterias aurantia Risso p. 270.
1831 Asterias aranciaca Gravenhorst p. 98—103.
1831 Stellaria aurantia Nardo p. 716.
1835 Asterias aurantia L. Agassiz p. 191 [1837,
p. 251].
1837 Asterias aurantia Philippi p. 193.
1839 Asterias aranciaca D’Orbigny p. 148, T. 1, f. 1—7.
1840 Astropecten aurantiacus Gray p. 181.
1840 Asterias aurantia Costa p. 56.
1841 Asterias aurantia Delle Chiaja Vol. 4, p. 56—57;
Vol. 5, p. 123; T. 129, f. 1, 2, 5, 6, 17;
T. 130, f. 1, 4, 12, 18; T. 132, f. 5, 18, 19;
T. 171, f. 9, 16—21.
1842 Astropecten aurantiacus Müllner & Troeschel p. 67
—681/.
1846 Asterias aurantia Verany p. 5.
1857 Astropecten aurantiacus M. Sars p. 102.
1860 Astropecten aurantiacus Lorenz p. 650.
1861 Astropecten aurantia Grube p. 131.
1862 Astropecten crenaster Dujardin & Hupé p. 114.

Die Kenntniss dieser Art, die wohl die am besten und längsten bekannte aller mittelmeerschen \textit{Astropecten}-Arten ist, beginnt schon vor LINCK (1733) mit Besler und ALDRONAND. Nachdem LINÉ (1758) ihr den noch heute gebräuchlichen Speciesnamen gegeben, hat nur dreimal ein anderer Artname auf sie Anwendung gefunden. DJAARDIN & HUPÉ (1862) nannten sie mit dem von LUDIUS herrührenden Namen \textit{crenaster}; eine Benennung, die deshalb nicht angenommen werden kann, weil sie erstens vordilinæisch ist und weil zweitens ihr Autor sie eher im Sinne eines Gattungsnamens (LINCK's \textit{Astropecten} entsprechend) denn eines Artnamens gemeint hat. PERRIER (1869) hat sie durch einen von ihm selbst später erkannten Irrthum als n. sp. unter dem Namen \textit{perarmatus} beschrieben. Endlich hat sie STUDER (1876), veranlasst durch eine von ihm selbst später aufgedeckte Verwechslung der Fundortsetiquette,

1) Diese Diagnose bezieht sich hier wie bei allen folgenden Arten zunächst nur auf erwachsene Thiere.
2) Sie wird nach OLIVI (1792), dessen Angabe GRUBE (1861) wiederholte, an der Adria mit dem Vulgärnamen Stellon bezeichnet.
Astropecten aurantiacus.

A. meridionalis n. sp. genannt und ihr bei Gelegenheit des Widerrufes (1884) dieser angeblichen neuen Art durch ein weiteres Versuchen auch noch den Namen antarcticus beigelegt.

Auch in ihrer Gattungszugehörigkeit hat die vorliegende Art nur wenige Wandlungen durchgemacht. Mit der Auflösung der Linne-Lamarck'schen Gattung Asterias wurde sie zunächst von Nardo (1834) als Typus seiner nicht näher charakterisirten Gattung Stellaria betrachtet, an deren Stelle L. Agassiz (1835) seine viel enger als bei Lamarck umgrenzte Gattung Asterias setzte, die dann durch Gray (1840), dem sich Müller & Troschel (1842) anschlossen, ihren Namen mit dem älteren, schon von Linck gegebenen Namen Astropecten vertauschte.

Die Art fällt durch ihren kräftigen Habitus (Taf. 2, Fig. 1, 2) auf, der sich besonders in der ansehnlichen Körpergröße sowie in der starken Ausbildung der Randplatten, der Paxillen und der Randstacheln ausprägt. Rücken und Bauch sind abgeflacht; der Rand des Rückens geht auf den gewölbt en oberen Randplatten allmählich in die senkrechten Seitenflächen über. Im Leben ist das Paxillenfeld des Rückens leicht gewölbt, auf der Scheibe oft viel stärker, als auf den Armen. Die Seitenränder der Arme sind in der Regel ganz geradlinig und biegen in den Armwinkeln durch eine kurze Bogenlinie von kleinem Radius in einander um. An der Spitze endigt der Arm abgerundet: bei Exemplaren von 160 mm Armradius misst die Breite des Armes an der Spitze 9 mm. Gewöhnlich ist das Armende, insbesondere soweit es von der Terminalplatte gebildet wird, aufwärts gebogen.

Das Verhältniss des Scheibenradius zum Armradius ist bei dem grössten meiner Exemplare 1 : 4,44. Bei zwanzig genau gemessenen Thieren, worüber die folgende Tabelle nähere Auskunft gibt, berechnete sich das durchschnittliche Verhältniss von r : R = 1 : 4,36 (im Minimum 1 : 3,95; im Maximum 1 : 4,87); das kleinste dieser Exemplare hat eine Länge von 162 mm, das grösste eine solche von 360 mm. Legt man der Berechnung nur ganz grosse Thiere mit einer Länge von 300 mm und darüber zu Grunde, so ergiebt sich für diese (Durchschnitt von 4 Exemplaren) r : R = 1 : 4,63. Bei kleinen jugendlichen Exemplaren von 66—80 mm Länge beträgt das Verhältniss r : R = 1 : 3,66.

1. Die Umrechnung in mm habe ich unter der Annahme gemacht, dass hier preussische Zoll gemeint sind; ebensoviele pariser Zoll ergeben 406 bez. 568 mm.
Astropectinidae

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Länge $= L$</th>
<th>Armradius $= R$</th>
<th>Scheibenradius $= r$</th>
<th>Zahl der oberen Randplatten $= Z$</th>
<th>Breite eines Armes an seiner Basis $= AB$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>1</td>
<td>162</td>
<td>94</td>
<td>22</td>
<td>31</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>165</td>
<td>92</td>
<td>22</td>
<td>31</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>170</td>
<td>94</td>
<td>22,5</td>
<td>31</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>170</td>
<td>98</td>
<td>23</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>176</td>
<td>102</td>
<td>25</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>182</td>
<td>100</td>
<td>25</td>
<td>31</td>
<td>28</td>
</tr>
<tr>
<td>7</td>
<td>185</td>
<td>102</td>
<td>24</td>
<td>30</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>185</td>
<td>103</td>
<td>22</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>190</td>
<td>105</td>
<td>24,5</td>
<td>36</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>196</td>
<td>110</td>
<td>27</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>204</td>
<td>110</td>
<td>24,5</td>
<td>33</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>205</td>
<td>110</td>
<td>27</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>216</td>
<td>120</td>
<td>26</td>
<td>35</td>
<td>29</td>
</tr>
<tr>
<td>14</td>
<td>218</td>
<td>116</td>
<td>25</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>15</td>
<td>220</td>
<td>120</td>
<td>27</td>
<td>36</td>
<td>32</td>
</tr>
<tr>
<td>16</td>
<td>243</td>
<td>130</td>
<td>30</td>
<td>37</td>
<td>33</td>
</tr>
<tr>
<td>17</td>
<td>283</td>
<td>158</td>
<td>40</td>
<td>33</td>
<td>45</td>
</tr>
<tr>
<td>18</td>
<td>309</td>
<td>172</td>
<td>38</td>
<td>39</td>
<td>45</td>
</tr>
<tr>
<td>19</td>
<td>340</td>
<td>195</td>
<td>40</td>
<td>42</td>
<td>45</td>
</tr>
<tr>
<td>20</td>
<td>360</td>
<td>200</td>
<td>45</td>
<td>40</td>
<td>53</td>
</tr>
</tbody>
</table>

Maasse zweier jungen Exemplare:

<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
<th>r</th>
<th>Z</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>66</td>
<td>36</td>
<td>10,5</td>
<td>23</td>
<td>13</td>
</tr>
<tr>
<td>80</td>
<td>50</td>
<td>13</td>
<td>26</td>
<td>16</td>
</tr>
</tbody>
</table>

Aus diesen Ziffern ergibt sich, dass der Arm im Verhältniss zur Scheibe beim jungen Thiere kürzer ist als beim erwachsenen und dass auch noch bei ziemlich alten Thieren der Arm im Verhältniss zur Scheibe eine Längenzuname erfährt. Dagegen wird das von Müller & Troschel (1842) angegebene Verhältniss $r : R = 1 : 5 — 6$ meines Wissens niemals erreicht. Vielleicht haben diese Forscher nur mit dem Auge die Maasse geschätzt, aber nicht genau gemessen. Philipps (1837) gibt das Verhältniss $2 \times r$ (= Scheibendurchmesser) : $R = 1 : 2,12$. was in unserer Ausdrucksweise gleich ist mit $r : R = 1 : 4,24$. Da sein Exemplar eine Länge von 262 mm hatte, so muss es zunächst mit annähernd gleichgrossen verglichen werden. Es liegt
Astropecten auranticacus.

mir ein solches von 243 und eines von 283 mm Länge vor. Berechnet man aus den Maassen dieser beiden das in Rede stehende Verhältniss, so ergibt sich der Durchschnitt \(r : R = 1 : 4,11 \), was also ziemlich genau der Philipp'schen Angabe entspricht. Ebenso passt das von PERRIER (1869) als \(A. \) \textit{perarmatus} erwähnte Exemplar zu meinen Messungen, sowie auch das von STUDER (1876) als \(A. \) \textit{meridionalis} beschriebene.

Die zwanzig oben erwähnten erwachsenen Exemplare haben eine durchschnittliche Armbreite' (an der Basis, also von Armwinkel zu Armwinkel gemessen) von 32,1 mm. Diese Grösse verhält sich zur durchschnittlichen Grösse von R wie \(1 : 3,78 \). Bei ganz grossen Thieren beträgt dies Verhältniss \(1 : 4 \), bei jungen Thieren (von 66—80 mm Länge) \(1 : 3 \). Dennach ist bei jüngeren Thieren die Armbreite, entsprechend der verhältnissmässig grösseren Scheibe, im Verhältniss zur Armlänge grösser, als bei alten Exemplaren.

Die kräftig entwickelten Paxillen (LINCK's »fungi« oder »funguli«, DELLE CHIAJE's »calicettis«) nehmen im distalen Theile der Arme sowie an den oberen Randplatten und auf einem kleinen centralen Bezirke der Scheibe allmählich an Grösse ab. Auf den Armen kann man deutlich ein medianes Mittelfeld und jederseits ein in das Mittelfeld übergehendes Seitenfeld der Paxillen unterscheiden. Mittelfeld und Seitenfelder sind ungefähr gleich breit. Die Paxillen des Mittelfeldes sind grösser und dadurch weniger zahlreich als die der Seitenfelder. An der Armbasis zählt man quer über den ganzen Armrücken etwa 20 Paxillen (bei einem auch den nachfolgenden Angaben vorzugsweise zu Grunde liegenden Exemplare, dessen Armradius 170 mm beträgt). In den Seitenfeldern ordnen sich die Paxillen zu regelmässigen Querreihen, deren man von der sechsten bis zur dreizehnten oberen Randplatte 28 zählt; es kommen also in diesem Abschnitte des Armes drei bis vier Querreihen auf jede obere Randplatte. Auf der Medianlinie des proximalen Armbezirkes, wo die Paxillen am kräftigsten entwickelt sind, erreicht ihre ausgebreitete Krone einen Querdurchmesser von 2 mm oder noch etwas mehr, während der Schaft bis 3 mm hoch und in seiner etwas eingezogenen Mitte 1,5 mm dick wird. Die Krone dieser grossen Paxillen wird von 30—40 stumpfen rauen Stachelchen gebildet, von denen etwa 20—25 den Rand des Paxillengipfels besetzen, während das Mittelfeld des Gipfels von 12—16 manchmal ein wenig kräftigeren Stachelchen eingenommen wird; mitunter sind die letzteren so vertheilt, dass 3—6 das Centrum des Gipfels einnehmen und von den 10—12 übrigen kranzförmig und zugleich concentrisch mit dem Kranze der Randstachelchen umstellt werden. Die Basalplatten der Paxillenschäfte (Taf. 6. Fig. 1) bleiben beim jungen wie beim alten Thiere überall voneinander getrennt; sie stellen durchweg in die Länge gezogene, an den Winkeln stark abgerundete Sechsecke dar, deren Längsachse parallel mit der Längsachse des Antimers verläuft; nicht selten ziehen sich ihre Ecken so weit aus, dass die Basalplatte eine abgerundet sechstrahlige oder auch nur fünf- oder vierstrahlige Form annimmt; im Mittelfelde des proximalen Armbezirkes und auf der Scheibe runden sich die Basalplatten kreisförmig ab und haben hier einen Querdurchmesser von 2 mm. Neue Paxillen bilden sich besonders an der Arm spitze und an den oberen Randplatten, doch können sie sich auch an allen anderen Stellen der Rückenhaut zwischen die schon vorhandenen einschieben. Wie der Vergleich junger
Astropectinidae.

Paxillen mit alten und junger Thiere mit erwachsenen lehrt, ist die Zahl der die Paxillenkrone zusammensetzenden Stachelchen anfänglich viel geringer als später. Unter den kleinen Paxillen des Scheibencentrums liegen kleine, unregelmässig umgrenzte, plättchenförmige Kalkkörper, die man sonst überall vermisst: auch Viguet (1879) hat sie in seiner Analyse des Skeletes unserer Art nicht erwähnt.

Zwischen den sie beschützenden Paxillen liegen die Papulæ (Kiemenbläschen) als einfach schlachtförmige, zugespitzte, also gestreckt kegelförmige (fingerförmige), dünnwandige Ausstülpungen der Haut (Taf. 6, Fig. 1). Sie fehlen indessen erstens im Mittelfelde des Armrückens, zweitens in dem centralen, mit immer kleiner werdenden Paxillen besetzten Bezirke des Scheibenrückens; diese beiden der Papulæ entbehrenden Regionen gehen unmittelbar in einander über. In den Seitenfeldern des Armrückens sind die Papulæ anfänglich ganz regelmässig so vertieft, dass im Umkreise eines jeden Paxillus deren genaue Anzahl durch die Höhle der Papulæ sichtbar zu erkennen ist. Es erklären sich aber diese unzutreffende Behauptung daraus, dass sie die Maass der grössten Länge des ganzen Thieres und die grösste Zahl der oberen Randplatten von verschiedenen Autoren entlehnt haben und so zu einer unrichtigen Combination gekommen sind. Die erste Notiz stammt von Tiedemann, die zweite von Otto. Nun aber gibt Tiedemann (1816) selbst für sein 18 Zoll langes Exemplar die Zahl der oberen Randplatten auf 44 an, und Otto (1843) zählte bei seinem 21 Zoll grossen Thiere deren 50. Diese Originalangaben Tiedemanns und Ottos stimmen zu dem, was man nach meiner Tabelle für solche besonders grosse Thiere erwarten kann. Studer (1876) nennt bei seinem als A. meridionalis beschriebenen Exemplare, dessen R = 80 betrug, die Ziffer 37—38, was nach den mir vorliegenden Thieren so offenbar viel zu hoch ist, dass ich annehmen muss, es sei hier ein Schreib- oder Druckfehler mit untergelaufen und es müsse richtig statt 37—38 heissen 27—28.

Vergleicht man die Zahl der oberen Randplatten = Z mit der in Millimetern ausgedrückten Länge von R, so ergiebt sich bei jungen Thieren Z : R = 1 : 1,75, bei mittelalten
Z: \(R = 3:6 \), bei ganz alten \(Z: R = 1:4,6 \). Die Zahl der oberen Randplatten nimmt also durchaus nicht ebenso rasch zu, wie die Länge des Armes, sondern sehr viel langsamer. Der Armradius, der anfänglich noch nicht doppelt so viele Millimeter misst, wie die Zahl der Randplatten beträgt, misst schliesslich mehr als viereinhalbmal soviel. Das zeigt, dass die einzelnen Randplatten eine starke Längenzunahme\(^1\) erfahren. Während \(R \) von 36 auf 200 zunimmt, hat die Zahl der Randplatten sich nur von 23 auf 40 vermehrt. \(R \) hat sich also in derselben Zeit mehr als verfünffacht, in der die Zahl der oberen Randplatten sich noch nicht einmal verdoppelt hat. Die Längenzunahme der einzelnen Randplatte muss also in dieser Zeit durchschnittlich mehr als das zweifache der ursprünglichen Länge betragen. Doch nehmen die einzelnen Randplatten, untereinander verglichen, an dieser Längenzunahme in ungleichem Maasse Theil, indem die dem Armwinkel zunächst gelegenen immer erheblich kürzer bleiben, als die nächstfolgenden. Bei \(R = 170 \text{ mm} \) ist die erste obere Randplatte an ihrem oberen Rande kaum 3 mm, an ihrem unteren Rande nur 1,5 mm lang, während ihre Höhe 9 mm beträgt und die Breite ihrer dorsalen Fläche 4,5 mm misst. An demselben Exemplare hat dagegen die 10. Platte am oberen und unteren Rande die gleiche Länge von stark 4 mm, eine Höhe von 6,5 mm und eine Breite ihrer dorsalen Fläche von 4,5 mm. In der Nähe der Arm spitze sind die Platten 3 mm lang, 2,5 mm hoch und 4 mm breit.

Die dorsale Fläche der oberen Randplatten geht allmählich durch eine Wölbung in die laterale Fläche über, nur die 4—5 ersten Platten fallen lateralwärts steiler ab; dagegen wird in der Nähe der Arm spitze die Wölbung nach und nach noch flacher als im mittleren Bezirk des Arms.

Auf ihrer ganzen Oberfläche sind die Platten mit sehr dicht gestellten Granula bedeckt, deren man (bei \(R = 170 \text{ mm} \)) auf der siebenten bis neunten Platte vom adoralen bis zum aboralen Rande der Platte etwa 12 zählt; auf dem mittleren Bezirk der Platte sind die Körner am grössten und nehmen von hier aus nach dem adoralen und aboralen Rande hin um mehr als die Hälfte ihrer Grösse ab.

Zwischen den Granula erheben sich die zugespitzten, kegelförmigen, oberen Randstacheln, die in zwei sich allmählich ablösenden Reihen geordnet sind, die man als innere und äussere Reihe unterscheiden kann. In jeder Reihe kommt immer nur ein Stachel auf je eine Platte. Die innere Reihe liegt am oberen Rande der Platten, beginnt stets auf der ersten Platte und hat hier ihren stärksten, bis 4,5 mm hohen Stachel; unter Grössenabnahme der Stacheln endigt sie bei jungen Thieren (\(R = 36—50 \text{ mm} \)) auf der 3. Platte, bei mittelalten (\(R = 165—205 \text{ mm} \)) meistens auf der 12.—16., seltener reicht sie bis zur 20. oder 21., noch seltener hört sie schon auf der 4. oder 5. auf; bei ganz alten Thieren und auch bei mittelalten lässt sie sich oft in Spuren bis nahe zur Arm spitze verfolgen. Aus dem Gesagten folgt,

dass der innere Stachel der 4. und der folgenden Platten erst ziemlich spät auftritt, nachdem die Thiere schon eine Länge von 80 mm überschritten haben. Die äussere Reihe der Stacheln ist auf der Wölbung angebracht, durch welche die dorsale Fläche der Platte in der laterale übergeht. Sie nimmt bei jungen Thieren erst auf der 4. Platte ihren Anfang, sodass bei ihnen noch keine einzige Platte mit zwei Stacheln ausgerüstet ist. Bei mittelalten und alten Thieren beginnt sie auf der 3.—7., am häufigsten auf der 5.; also haben hier gewöhnlich die 5.—16. Platte zwei Stacheln. In allen Altersstadien endigt die äussere Stachelreihe erst an der Armspitze.

Die Terminalplatte ist verhältnismässig gross und kräftig gewölbt. Bei R = 170 mm hat sie eine Breite von 4 und eine Länge von 3 mm. Mit ihrem Seitenrande grenzt sie an die beiden letzten oberen Randplatten. Oberflächlich ist sie ebenso granulirt wie die oberen Randplatten und trägt ausserdem rechts und links von dem Ende der Ambulacralfurche zwei oder drei kurze, stumpfe Stachelchen, die parallel mit der Medianebene des Arms aufeinanderfolgen.

Die unteren Randplatten stimmen in Zahl und Anordnung mit den oberen überein: nur an der Spitze des Armes findet man unter den beiden letzten oberen Randplatten nicht zwei, sondern drei untere; es ist demnach genau genommen jederseits in jedem Arm die Zahl der unteren Randplatten um eins höher als die der oberen. Im Armwinkel sind die unteren Randplatten in ähnlicher Weise comprimirt wie die oberen; am schärfsten ausgeprägt ist diese Zusammendrückung an den beiden ersten Platten, weniger stark wird sie an der dritten und vierten bemerklich. Die Länge\(^1\) der ersten Platte beträgt (bei R = 170 mm) nur 2,5, der zweiten 3, der dritten 3,5, der vierten 3,7 mm; erst von der fünften an misst die Länge für diese und die zunächst folgenden Platten 4 mm, um dann nach der Armspitze hin allmählich abzunehmen. Im selben Maasse, in dem die unteren Randplatten im Armwinkel zusammengedrückt werden und dadurch an Länge einbüßen, nimmt ihre Breite zu. Während die achte eine Breite von 9 mm hat, steigt die Breite bei der siebenten auf 9,5, bei der sechzehnten auf 10, bei der fünften auf 10,5, bei der vierten auf 11,5, bei der dritten auf 12, bei der zweiten auf 12,5 und bei der ersten auf 13,5 mm.

Dicht an ihrem äusseren Rande trägt jede untere Randplatte einen grossen Stachel, den unteren Randstachel. Derselbe ist auf der ersten und zweiten, manchmal auch auf der dritten Platte kleiner als auf den folgenden, wo er eine Länge von 13 mm erreicht; nach der Armspitze hin nehmen die Randstacheln ganz allmählich an Länge ab. Meistens zeigen die unteren Randstacheln eine leichte, nach der Armspitze gerichtete Krümmung; sie sind in der Regel drehrund und zugespitzt; nur in der Nähe der Armwinkel haben sie in dorsoventraler Richtung eine Abplattung erfahren; die drei ersten sind am freien Ende oft abgestutzt statt zugespitzt. Ausser den grossen Randstacheln besitzt jede untere Randplatte noch eine Querreise

\(^1\) An den unteren Randplatten bezeichne ich mit Länge die Entfernung des aboralen (=: distalen) Randes vom adoralen (=: proximalen) und mit Breite die Entfernung des äusseren (an die obere Randplatte angrenzenden) Randes vom inneren.
von kleineren Stacheln, die den aboralen Rand der Platte begleitet. An der ersten Platte besteht diese Stachelnreihe aus 7, an der zweiten aus 6, an der dritten aus 5, an den folgenden Platten meist aus 4, weiter nach der Armsspitze hin nur aus 3 und endlich nur noch aus 2 Stacheln; doch kommen häufig Abweichungen von diesen Ziffern vor, sodass z. B. die erste Platte nur 5 oder 6, die zweite 4 oder 5, die folgenden 3 oder 4 Stacheln besitzen. Bei jüngeren Thieren (R = 94 mm) ist die Zahl dieser Stacheln durchweg kleiner, sodass man gewöhnlich schon auf der ersten und ebenso auf den meisten folgenden deren nur 3 antrifft. In jeder Querreihen nehmen die Stacheln in der Richtung nach der Ambulacralfurche an Grösse ab; der grösste steht also immer dem unteren Randstachel zunächst. Die Stacheln haben eine abgeplattete, zugespitzte Form, liegen etwas angedrückt und sind schräg nach aussen und distal gerichtet. Zwischen den Basen der Stacheln sowie auf ihrer ganzen übrigen Oberfläche sind die unteren Randplatten mit kleinen, abgeplatteten, an der Spitze abgerundeten, schüppchenförmigen Stachelchen bedeckt, die aufgerichtet stehen, in dichter Quincunx-Stellung angeordnet sind und am äusseren Rande der Platte allmählich in die Granula übergehen, von denen die oberen Randplatten bedeckt sind; vom adoralen Rande der unteren Randplatten bis zur Stachelreihe des aboralen Randes zählt man der schüppchenförmigen Stachelchen gewöhnlich 5 oder 6.

Das Auftreten von Ventrolateralplatten (Taf. 6, Fig. 2) beschränkt sich auf einen kleinen Bezirk zwischen den ersten unteren Randplatten und den ersten Adambulacralplatten, ist aber doch, wenigstens bei grösseren Exemplaren, ein etwas reicheres, als Viguier (1879) das von einem Exemplare, dessen R = 105 mm betrug, beschrieben hat. Von der interradialen Hauptebene aus schiebt sich nämlich eine bei R = 170 mm aus neun allmählich kleiner werdenden Stücken gebildete Längsreihe zwischen die Adambulacralplatten und die unteren Randplatten, während Viguier bei seinem Exemplare nur sieben zeichnet. Die Reihe endigt zwischen der fünften unteren Randplatte und der neunten Adambulacralplatte. Ausserdem ist eine bei Viguier nicht erwähnte Andeutung einer zweiten Reihe von Ventrolateralplatten vorhanden, indem sich zwischen die eben beschriebene Reihe und die erste untere Randplatte noch eine winzige Platte eindrängt. Oberflächlich sind die Ventrolateralplatten mit denselben schüppchenförmigen Stachelchen bekleidet wie die unteren Randplatten.

Die Zahl der Adambulacralplatten ist im mittleren Abschnitte der Arme andertalbmal so gross wie die der Randplatten, indem man auf die Länge von sechs Randplatten neun Adambulacralplatten zählt. Ihre Bewaffnung (s. Fig. auf p. 3) ist eine reichliche. Die eigentlichen Adambulacralstacheln sind in zwei Reihen, eine innere und eine äussere, geordnet. Die innere Reihe steht auf der in die Ambulacralrinne gerichteten Flächen der Platten und ist auf jeder Platte aus drei dicht beisammenstehenden Stacheln gebildet. Von diesen drei Stacheln ist stets der mittlere viel stärker und fast um die Hälfte länger als die beiden anderen, von denen wieder der adorale in der Regel ein klein wenig länger ist als der aborale. Ferner ist der

Astropectinidae.

mittlere Stachel in der Längsrichtung des Armes comprimirt, sodass er eine der Medianebene des Armes zugekehrt, überdies leicht gebogene Kante und auf diese Weise im ganzen eine annähernd säbelförmige Gestalt bekommt; er endigt stumpf zugespitzt oder leicht abgerundet. Mit seiner Basis tritt der mittlere Stachel etwas weiter in die Armfurche vor als seine beiden einfach stachelförmigen kleineren Nachbarn; zugleich liegt seine Basis etwas höher (bei natürlicher, mit dem Munde nach unten gerichteter Stellung des Thieres). Da die drei Adambulacralstacheln der inneren Reihe mit ihren Spitzen auseinander weichen, so stellt ihre ganze Gruppe einen kleinen Fächer vor. In Bezug auf die Füsschen fällt der lange, mittlere Stachel wie bei anderen Arten der Gattung immer ganz genau zwischen je zwei derselben. Räumt man von der Armfurche her die eben beschriebenen inneren Adambulacralstacheln weg, so findet man hinter jedem der beiden kleineren versteckt noch einen winzigen Stachel, der auch schon bei jüngeren Thieren (R = 94 mm) vorhanden ist. Nimmt man auch diese hinweg, so trifft man hinter dem adoralen, aber nicht hinter dem aboralen, ein noch winzigeres Stachelchen. Es schliessen sich also im ganzen auf jeder Adambulacralplatte am adoralen Rande zwei und am aboralen Rande ein Stachelchen an die drei inneren größeren Stacheln an. Weder MüLLER & TROSCHEL (1842) noch Perrier (in seiner Beschreibung des A. perarmatus 1869) noch irgend ein anderer Forscher mit alleiniger Ausnahme von Horst scheint diese drei winzigen Stachelchen bemerkt zu haben. Horst (1856 p. 74, Tab. 5, Fig. 2) hat freilich von diesen drei Stachelchen nur die beiden grösseren, also das aborale und das eine adorale, gesehen, giebt aber von diesen eine ganz zutreffende Abbildung und Beschreibung. Nun kommen weiter nach aussen auf der Umbiegungskante der ambulacralen Fläche der Adambulacralplatte in die ventrale je zwei grosse Stacheln, die mit ihren Basen in der Längsrichtung des Armes aufeinanderfolgen. Diese äusseren Adambulacralstacheln sind parallel zur Medianebene des Armes abgeplattet, sodass sie die eine ihrer beiden Flächen der Medianebene zukehren, und endigen nicht zugespitzt, sondern abgestutzt. Noch weiter nach aussen sind die Adambulacralplatten mit einer Menge kleiner, abgeplatterter und abgestutzteter, subambulacraler Stachelchen dicht besetzt, die, je weiter sie sich von der Armfurche entfernen, um so kleiner werden und endlich unmerklich in die schüppchenförmige, dichte Bekleidung der unteren Randplatten (bez. der Ventrolateralplatten) übergehen. Auf der ersten Adambulacralplatte werden die inneren und äusseren Adambulacrastacheln kleiner und in der Regel auch etwas zahlreicher; sie bilden hier den Übergang zu der reichen Bewaffnung der Mundeckplatte.

Jede der beiden eine Mundecke (Taf. 6, Fig. 4, 5) bildenden Mundeckplatten ist auf ihrer ventralen Oberfläche mit zwei parallel mit der interradialen Hauptebene verlaufenden, nicht ganz regelmässig geordneten Längsreihen von je 12—17 Stacheln (Taf. 6, Fig. 4a, b; Fig. 5a) besetzt, die stumpf zugespitzt und leicht comprimirt sind und nach dem Munde hin an Grösse zunehmen, um schliesslich an der Mundecke selbst mit je einem noch kräftigeren Mundeckstachel (Taf. 6, Fig. 4, 5; 1, 2) zu endigen. Ausserdem trägt jede Mundeckplatte nach ihrem distalen und ambulacralen Rande hin erstens eine unregelmässig geordnete, ein- bis dreifache Reihe kleinerer Stachelchen (Taf. 6, Fig. 5b), die an der Mundecke mit einem dritten Mundeckstachel
(Taf. 6, Fig. 4, 5; 3) endigt, und zweitens eine andere Reihe kleinerer Stachelchen (Taf. 6, Fig. 5c), die mit einem vierten Mundeckstachel (Taf. 6, Fig. 4, 5; 4) ihren Abschluss findet. Blickt man also von der Dorsalseite auf eine Mundecke, so sieht man sie jederseits von der interradialen Hauptebene mit vier Stacheln besetzt, von denen die beiden ersten, jener Ebene zunächst gelegenen erheblich grösser sind als der dritte und vierte.

Die Madreporenpfanne (Taf. 6, Fig. 3) zeichnet sich durch ihre Grösse und ihren gelappten Umriß aus. Bei einem Exemplare, dessen R = 160 mm beträgt, hat sie eine Länge

\[1)\]

von 11 und eine Breite von 10 mm. Ihre Oberfläche ist gewölbt, indessen auf dem Gipfel etwas abgeflacht. Ihr Rand hat durch eine wechselnde Anzahl von Einkerbungen eine gelappte Form angenommen. Die Einkerbungen sind manchmal abwechselnd tiefer und weniger tief und dienen zur Aufnahme je eines, dicht an die Platte gerückten Paxillus. Man muss also, um den Rand der Platte freizulegen, diese Paxillen erst wegräumen. Die Zahl und Tiefe der Einkerbungen nimmt mit dem Alter zu, desgleichen die Grösse der ganzen Platte. Bei R = 160 mm zählte ich der Einkerbungen 14, dagegen beträgt ihre Zahl bei R = 95 mm an der dann erst 5 mm grossen Platte nur 7—8, und die Einkerbungen selbst sind dann auch noch so flach, dass der ganze Umriß weniger gelappt als wellenförmig erscheint. Schon LINCK (1733) hat die Einkerbungen des Randes gesehen, wie aus seiner Taf. 5 hervorgeht; auch TIEDEMANN (1816), OTTO (1823) und GRAVENHORST (1831) erwähnten sie; D'ORBIGNY (1839) bildet sie in Fig. 6 seiner ohne jede nähere Erläuterung publicirten Tafel ab, und zuletzt hat sie VIGUER (1879) kurz beschrieben und durch eine Abbildung erläutert. Der abgeflachte Gipfel der Platte fällt nach dem Rande zu in kleine Einsenkungen oder Thäler ab, die den Einkerbungen entsprechen. Die ganze Oberfläche der Platte ist mit gewundenen, feinen Furchen überzogen, die nach der Peripherie hin (auf den Lappen und Einsenkungen frei zu Tage liegen, dagegen auf dem abgeflachten Gipfel durch kleine, körnchenförmige Kalkpapillen (Taf. 6, Fig. 3) verdeckt sind, die in dichter Anordnung den ganzen Gipfel besetzen und auch schon bei jüngerem Thieren (R = 95 mm) nicht fehlen. Diese winzigen Papillen scheinen bis jetzt nicht beachtet worden zu sein; nur auf D'ORBIGNY's vorhin erwähnter Abbildung findet man sie angedeutet. Vom Mittelpunkte des Scheibenrückens ist die Madreporenpfanne bei R = 160 mm 17,5 mm, also um etwas mehr als das Anderthalbfache der eigenen Länge entfernt, während ihre Entfernung von den ersten oberen Randplatten nur 4,5 mm, also weniger als die Hälfte ihrer eigenen Länge beträgt. Zwischen der Madreporenpfanne und den ersten oberen Randplatten zählt man gewöhnlich vier Paxillen.

Die Färbung Taf. 2, Fig. 1 u. 2. setzt sich vorwiegend aus Gelb und Roth zusammen. Die oberen Randplatten (Taf. 2, Fig. 1) sind dunkelgelb bis orangegelb. Ebenso sind auf dem Rücken des Thieres gefärbt: erstens ein Theil der grossen Paxillen, welche die Mitte des Scheibenrückens umstellen, und an diese sich anschliessend die meisten Paxillen, die auf der

1) Unter Länge der Madreporenpfanne verstehe ich ihre Ausdehnung in der Richtung vom Scheibencenrum zum Scheibenrande.
Längsmitte des Armes stehen und hier einen unregelmässig begrenzten, hier und da gelockerten Längsstreifen bilden; zweitens, auf den Seitenfeldern des Armrückens, zweifache oder dreifache (im Armwinkel nur einfache) Querreihen von Paxillen, welche an Zahl den oberen Randplatten entsprechen und an diesen beginnen, aber das gelbe Längsband der Armmitte nicht erreichen. Alle anderen Paxillen haben eine scharlachrote Farbe. Oft sind der gelben Paxillen noch mehr und der rothen dann entsprechend weniger vorhanden als in der beigebenen Abbildung. Meistens zieht das Gelb der Rückenseite etwas ins Grünliche, was indessen an dem abgebildeten Exemplare nicht der Fall war. Die Madreporenplatte zeichnet sich durch bläuliche oder bläulichen Anflug aus, doch ist das Blau nicht immer so ausgeprägt wie in unserer Abbildung. Auch der in der Abbildung angegebene rothe Fleck an der Basis der oberen Randstacheln ist nur selten deutlich ausgebildet. Die Terminalplatte des Armes hat an ihrer Spitze oft einen bläulichen Ton.

Die Unterseite des Thieres (Taf. 2, Fig. 2) ist immer viel heller als der Rücken; sie sieht weisslich aus und ist mit feinen, bläulichen Flecken übersät. Ihre Bestachelung ist weisslich. Die unteren Randstacheln sind, namentlich in ihrem basalen Abschnitte, röthlich-gelb. Oft ist die ganze Unterseite weiss mit graublaulichem Anflug; stets aber fehlt das intensive Roth und Gelb der Rückenseite. Die Füsschen haben einen bläulichen oder oft einen lebhaft orangefarbenen Ton, mit scharfbegrenzter, weisser Spitze.

Bei jungen Thieren (R = 50 mm) ist die Grundfarbe des Rückens ein mittelhelles Olivengrün; darauf stehen rostrote oder rothgelbe Flecken, die manchmal auf den Seitenfeldern des Armes kurze, den oberen Randplatten entsprechende Querreihen bilden. Die Madreporenplatte ist weiss, die Bauchseite gelblichweiss.

Die horizontale Verbreitung unserer Art ist eine beschränktere, als man nach manchen Angaben in der Literatur annehmen könnte. Denn wenn Müller & Troschel (1842) und deren Angabe wiederholend Carus (1885) als Wohnort die «europäischen Meere» bezeichnen, so ist damit entschieden zuviel gesagt. Alle beglaubigten Fundorte, die wir bis jetzt kennen, beschränken sich auf das Mittelmeer und den nächst gelegenen Theil des Atlantischen Oceans. Im östlichen Theile des Mittelmeeres ist die Art namentlich aus der Adria bekannt: aus dem Golf von Venedig (Olivi), von Triest (Tiedemann, Joh. Müller, Sars, Metschnikoff, Stossich, Graeffe), von Rovigno (Slutter), aus dem Golf von Fiume (von Portoré durch Grube), aus dem Quarnero (Lorenz, von Lusin durch Grube), von der dalmatinischen Insel Lesina (Heller). Andere Fundorte aus dem östlichen Mittelmeere sind in der Literatur nicht erwähnt, doch liegen mir aus der Bonner Sammlung 3 Exemplare von Beirut vor; die Art reicht also östlich bis in das levantinische Meer. Zahlreicher sind die Fundorte aus dem westlichen Mittelmeer. Hier kennen wir sie von Sicilien (Philippi, von Messina in der Bonner Sammlung). Neapel (Otto, Delle Chaje, Sars, Lo Bianco, ich), Capri (Costa), von Spezia (Metschnikoff), Genua (Verany), Nizza (Risso, Verany), La Ciotat (Koehler), Marseille (Marion), Cette (Vogt & Yung), Port-Vendres (Pariser Sammlung), Banyuls (Cénot), Menorca (Braun), Algerien (Pariser Sammlung). Ausserhalb des Mittelmeeres kommt sie an der portugiesischen Küste in der Baj von Setubal vor (Greeff) und findet sich ferner bei
Astropecten aurantiacus.

Die verticale Verbreitung reicht nach den vorliegenden Angaben von 1 bis 183 m. Bei Neapel findet sie sich nach Lo Bianco zwischen 5 und 80 m, während Sars sie aus Tiefen bis zu 183 m angiebt. Kohler traf sie im Golf von La Ciotat in 10 bis 50 m Tiefe an, Marion bei Marseille in 1 bis 60 m. In der Adria lebt sie in Tiefen von 15 bis 101 m nach Grube, Heller und Graeffe. Bei Madeira erbeutete sie Studer aus 91 m.

Wo die Art vorkommt, scheint sie fast immer in grosser Menge das ganze Jahr hindurch aufzutreten und sandigen oder schlammigen Grund zu bevorzugen, in dem sie halb eingegraben ihrer Beute nachgeht; seltener wird sie auf Detritus- und Korallinenboden angetroffen.

Ihre Nahrung besteht, wie der Mageninhalt erweist, in erster Linie aus Schnecken und Muscheln; doch verzieht sie auch Seeigel, Seesterne, kleinere Holothurien und Fische.

Als Fortpflanzungszeit geben Joh. Müller (1852), Graeffe (1881) und Metschnikoff (1885) bei Triest die Monate April und Mai an, während Lo Bianco (1888) sie bei Neapel von November bis März geschlechtsreif fand; ebendort konnte Driesch (nach mündlicher Mittheilung) im Anfang Dezember die künstliche Befruchtung erfolgreich vornehmen.

Die wahrscheinlich zu ihr gehörige Bipinnaria-Larve ist von Joh. Müller (1852, p. 31) und Metschnikoff (1869, p. 33; 1874, p. 69; 1885, p. 660, 663) beschrieben worden und kommt nach Metschnikoff (1869) bei Spezia im Mai und Juni, nach Graeffe bei Triest von Mai bis September vor.

1. Perrier giebt zwar in seiner Arbeit über die geographische Verbreitung der Seesterne (1878, p. 33) an, dass unsere Art an der Westküste Frankreichs vorkomme. Er beruft sich dabei auf P. Fischer (1869, p. 33), aber mit Unrecht, denn Th. Barros hat uns später (1882, p. 10) darüber aufgeklärt, dass die von Fischer als *aurantiacus* bezeichnete Art nicht diese, sondern Linck’s *irregularis* ist. Ebenso scheint es sich mit der von Bellermieux (1864, p. 90, T. 2, f. 3 von La Rochelle angeführten Asterias aurantiaca zu verhalten, doch ist seine Abbildung zu skizzenhaft und dürftig, um darüber zu einem sicheren Entscheid zu gelangen.

3. Vielleicht handelt es sich dabei um die Bipinnaria zweier verschiedener *Astropecten*-Arten, nämlich des *A. aurantiacus* und eines anderen. Während nämlich die Müller’sche Bipinnaria von Triest farblos ist und nach Metschnikoff (1855) wohl sicher zu *Astropecten aurantiacus* gehört, ist die von Metschnikoff früher (1869) beschriebene grösser und durch ein diffuses braunes Pigment an der Wimperschnur ausgezeichnet. Er fand die farb-

Taf. 2, Fig. 6; Taf. 6, Fig. 6.

1831 Asterias bispinosa Gravenhorst p. 96—103.
1834 Stellaria bispinosa Nardo p. 716.
1835 Asterias bispinosa L. Agassiz p. 191 (1837, p. 254).
1837 Asterias bispinosa Philippi p. 194.

1837 Asterias platyacantha Philippi p. 193.
1840 Astropecten echinatus Gray p. 181.
1840 Asterias platyacantha Grube p. 25.
1841 Asterias bispinosa Delle Chiaje Vol. 4, p. 57; Vol. 5, p. 123; T. 132, f. 11; T. 172, f. 2.
1842 Astropecten bispinosus Müller & Troschel p. 69.

Astropecten bispinosus.

1812 Astropecten platyacanthus Müller & Troschel p. 70.
1816 Asterias bispinosus Verany p. 5.
1857 Astropecten bispinosus M. Sars p. 192.
1857 Astropecten platyacanthus M. Sars p. 102—103.
1860 Astropecten platyacanthus var. flanaticus Lorenz p. 680.
1861 Astropecten bispinosus Grube p. 131.
1862 Astropecten bispinosus Giebel p. 325.
1862 Astropecten platyacanthus Giebel p. 326.
1862 Astropecten bispinosus Dujardin & Hupé p. 116—117.
1862 Astropecten platyacanthus Dujardin & Hupé p. 417.
1863 Astropecten bispinosus Heller p. 144.
1864 Astropecten platyacanthus Heller p. 144.
1864 Astropecten bispinosus Giebel p. 105.
1865 Astropecten bispinosus Heller p. 55—56.
1865 Astropecten platyacanthus Heller p. 56.
1869 Astropecten myosurus Perrier p. 298.

Zwar beginnt die Kenntniss dieser Art schon mit LINCK (1733), doch hat erst OTTO (1823) sie scharf von A. *ausanticus* als besondere Art unterschieden und ihr den Speciesnamen beigelegt. DELLE CIJAIE (1825) und GRAVENHORST (1831) bestätigten seine Auffassung und acceptirten den von ihm vorgeschlagenen Namen, der seitdem fast ununterbrochen in Gebrauch geblieben ist: nur GRAY (1840) versuchte auf die LINCK’sche Benennung *echinatus* zurück-

1) Die Exemplare, welche FERRIER ebendort p. 354—355 unter *platyacanthus* erwähnt, gehören nicht hierher, sondern zu *A. jonstoni.*
zugreifen, was mit Recht ohne Nachahmung blieb, und PERRIER (1869) nannte sie vorübergehend, in der von ihm selbst später als Irrthum erkannten Meinung eine noch unbekannte Art vor sich zu haben, mit einem niemals publicierten und deshalb ungültigen Valenciennes'schen Museumsnamen.myosurus. Etwas verwickelter wurde die Geschichte der vorliegenden Art nur dadurch, dass PHILIPPI (1837) von ihr eine zweite Art unter dem Namen platyacanthus glaubte abtrennen zu können — eine Ansicht, die zwar sehr bald von DELLE CHIAJE (1841) bekämpft wurde, aber trotzdem zu allgemeiner Geltung gelangte, weil MÜLLER & TROSCHEL (1842) in ihrem bahnbrechenden System der Asteriden sich derselben anschlossen. Seitdem gehen bispinosus und platyacanthus nebeneinander durch die Litteratur; insbesondere hat v. MARENZELLER (1875) sich bemüht ihre Unterschiede schärfer als vordem zu erfassen und darzulegen. Da ich selbst durch wiederholtes Studium der Frage zu einem anderen Ergebnisse als v. MARENZELLER gelangt bin, so werde ich im Folgenden ausführlicher auf die von mir im Anschluss an DELLE CHIAJE behauptete Zusammengehörigkeit des platyacanthus mit bispinosus eingehen müssen. Zur Vollständigkeit der Artgeschichte ist hier nur noch zu bemerken, dass LORENZ (1860) eine besondere Varietät des platyacanthus unter dem Namen flanaticus aufgestellt hat, deren Berechtigung ich ebenfalls nicht zugestehen kann.

In ihrer Gattungszugehörigkeit hat die vorliegende Art keine anderen Wandlungen durchgemacht als der ihr nahestehende A. aurantiacus (s. p. 5).

In ihrem Habit (Taf. 2, Fig. 6) zeichnet sie sich vor allem durch die kräftige Ausbildung der in einer einzigen Reihe geordneten, aufrecht stehenden oberen Randstacheln aus. Dazu kommt die steile Stellung der oberen Randplatten, die namentlich in der Nähe der Armwinkel am schärfsten ausgeprägt ist; in Folge dessen werden die oberen Randplatten in der Dorsalansicht des Thieres nur mit einem viel schmäleren Stücke sichtbar als es z. B. bei A. aurantiacus der Fall ist. Rücken und Bauch sind abgeflacht. Das Paxillenfeld des Rückens ist im Leben leicht gewölbt und in seinem Bereiche ist die Haut von zarter, etwas durchscheinender Beschaffenheit. Bei kleinen Exemplaren, z. B. Nr. 1, 8, 9 der Tabelle, erhebt sich die Rückenhaut der Scheibe dort, wo sie in der Nähe des Scheibencentrums durch kleinere Paxillen ausgezeichnet ist, zu einer deutlichen, wenn auch niedrigen Protuberanz, die sich bei grösseren Thieren nicht mehr wahrnehmen lässt und dem bei manchen anderen Seesternen besser entwickelten Rückenfortsatz (PERRIER's appendice épiproctal) entspricht. Nach v. MARENZELLER soll die Höhe der Scheibe und der Arme bei typischen Exemplaren von bispinosus kleiner sein als bei platyacanthus. Ich habe mich aber an den in Neapel lebend beobachteten Thieren vergeblich bemüht, mich von der Richtigkeit dieser Angabe zu überzeugen. Aber darin kann ich v. MARENZELLER bestätigen, dass im allgemeinen, von Uebergangszuständen und Ausnahmen abgesehen, die Varietät platyacanthus einen kräftigeren, derberen Eindruck macht als bispinosus. Die Seitenräder der Arme biegen in den Armwinkeln durch eine kurze Bogenlinie von kleinem oder etwas grösseren Radius in einander um; in jenem Falle erscheinen die Arme an ihrer Basis breiter als in diesem. Nach der Armspitze hin verlaufen die Armräder bald ganz gradlinig, bald nehmen sie (Taf. 2, Fig. 6) im distalen Abschnitte des Armes eine
Astropecten bispinosus.

flachconvexe Richtung an, in letzterem Falle sehen die Arme weniger zugespitzt aus als in ersterem und nähern sich einem lanzettförmigen Umriss. Die Armspitze selbst ist, namentlich soweit sie von der Terminalplatte gebildet wird, in der Regel aufwärts gebogen.

Neben den regulären fünfarmigen Individuen kommen mitunter vierarmige vor. Giebel (1862) erwähnt deren zwei aus der Sammlung in Halle und mir liegt ein solches von Neapel vor.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>Z</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>1</td>
<td>54</td>
<td>30</td>
<td>8</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>47</td>
<td>11</td>
<td>36</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>107</td>
<td>61</td>
<td>14</td>
<td>37</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>130</td>
<td>70</td>
<td>14</td>
<td>44</td>
<td>16,5</td>
</tr>
<tr>
<td>5</td>
<td>165</td>
<td>90</td>
<td>15</td>
<td>59</td>
<td>16,5</td>
</tr>
<tr>
<td>6</td>
<td>34</td>
<td>19</td>
<td>7</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>47</td>
<td>27</td>
<td>9</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>49</td>
<td>27</td>
<td>9</td>
<td>17</td>
<td>9,75</td>
</tr>
<tr>
<td>9</td>
<td>53</td>
<td>29</td>
<td>9</td>
<td>19</td>
<td>10,5</td>
</tr>
<tr>
<td>10</td>
<td>79</td>
<td>45</td>
<td>13</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>83</td>
<td>48</td>
<td>12</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>87</td>
<td>47</td>
<td>12</td>
<td>29</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>89</td>
<td>45</td>
<td>12</td>
<td>25</td>
<td>16,5</td>
</tr>
<tr>
<td>14</td>
<td>90</td>
<td>48</td>
<td>14</td>
<td>24</td>
<td>15,5</td>
</tr>
<tr>
<td>15</td>
<td>95</td>
<td>55</td>
<td>15</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>105</td>
<td>57</td>
<td>13</td>
<td>30</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>128</td>
<td>70</td>
<td>13,5</td>
<td>35</td>
<td>15,5</td>
</tr>
<tr>
<td>18</td>
<td>137</td>
<td>74</td>
<td>15</td>
<td>37</td>
<td>17</td>
</tr>
<tr>
<td>19</td>
<td>139</td>
<td>74</td>
<td>13</td>
<td>42</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>182</td>
<td>100</td>
<td>17</td>
<td>48</td>
<td>19</td>
</tr>
</tbody>
</table>

Nr. 1—5 sind typische bispinosus-Exemplare, Nr. 6—20 gehören zu der Varietät platyacanthus.

Astropectinidae.

r : R sich verhielt wie 1 : 9. Legt man der Berechnung nur die grösseren Exemplare von mehr als 100 mm Länge zu Grunde, so erhält man für diese das Verhältniss (Durchschnitt von acht Exemplaren) von r : R = 1 : 5,18 (Minimum 1 : 4,36; Maximum 1 : 6). Für die sieben mittelgrossen Thiere von 70—100 mm Länge ergiebt sich dagegen das durchschnittliche Verhältniss von r : R = 1 : 3,82 (Minimum 1 : 3,43; Maximum 1 : 4,27) und für die fünf kleinen Thiere von weniger als 70 mm Länge das Durchschnittsverhältniss r : R = 1 : 3,13 (Minimum 1 : 2,71; Maximum 1 : 3,75). Daraus folgt, dass, wie bei A. aurantiacus, so auch bei der vorliegenden Art der Arm im Verhältniss zur Scheibe beim jungen Thiere kürzer ist als beim erwachsenen. Das Wachsthum des Armes ist aber bei den älteren Thieren von A. bispinosus im Verhältniss zur Grössenzunahme der Scheibe sehr viel stärker als bei A. aurantiacus.

Die durchschnittliche Breite des Armes an seiner Basis beträgt bei den 20 in die Tabelle aufgenommenen Exemplaren 13,5 mm und verhält sich zur Durchschnittsgrösse von R wie 1 : 3,95. Indessen unterliegt die Armbreite, wie bereits Gravenhorst (1831) zum Theil an der Hand der Otto'schen Originalexemplare, Müller & Troschel (1842), M. Sars (1857), Heller (1868) und Perrier (1875) hervorgehoben haben, beträchtlichen Schwankungen, die sich im Verhältniss zu R ausgedrückt an den Exemplaren unserer Tabelle zwischen 1 : 2,7 und 1 : 5,26 bewegen. Die Tabelle zeigt, dass die Armbröthe bei einem älteren Thiere geringer als bei einem jüngeren und bei annähernd gleichgrossen Thieren ungleichgross sein kann.

Asterpecten bispinosus.

Die oberen Randplatten sind namentlich im proximalen Armbezirke so geformt und gestaltet, dass nur ein kleiner Theil ihrer freien Oberfläche dorsal liegt und unter sich, fast kantiger Krümmung in die viel ausgedehntere, senkrecht gestellte laterale Fläche übergeht. Schon Otto hat diesen Gegensatz in Gestalt und Stellung der oberen Randplatten zu A. aurantiacus betont. Nach der Armeispitze hin wird an den hier natürlich allmählich kleineren oberen Randplatten die dorsale Fläche derselben im Verhältniss zur lateralen nach und nach etwas grösser und geht gewölbter in dieselbe über, sodass sich hier eine gewisse Annäherung an A. aurantiacus zu erkennen giebt.

v. Marenzeller's erster Satz besagt, dass das Verhältniss von r : R sich für bispinosus (Exemplare von 90—190 mm Grösse) nicht unter 1 : 5,9 und nicht über 1 : 8, dagegen für platyacanthus (Exemplare von 90—170 mm) nicht unter 1 : 4 und nicht über 1 : 6,5 stellt. Dem widerspricht aber, was bispinosus angeht, dass erstens v. Marenzeller selbst bei einem 90 mm grossen Thiere das Verhältniss r : R als 1 : 5 angiebt und dass zweitens mir ein
Astropectinidae.

Anders liegt die Sache wieder mit seinem dritten Satze, in dem er behauptet, dass platyacanthus nie die volle Grösse von bispinosus erreiche. Er habe nie ein 190 mm grosses Exemplar von platyacanthus gesehen; sein grösstes Exemplar hatte eine Länge von 170 mm, während sein grösster bispinosus 190 mm maass. Dagegen muss ich hervorheben, dass sich in der Bonner Sammlung ein trockenes Exemplar aus dem Mittelmeer befindet, das unzweifelhaft platyacanthus ist und doch die Länge von 182 mm besitzt. Ferner ist darauf hinzuweisen, dass Müller & Troschel für bispinosus und platyacanthus die gleiche Maximalgrösse von $7'' = 183$ mm angeben. Daraus folgt, dass platyacanthus dieselbe Grösse erreichen kann wie bispinosus.

v. Marenzeller’s viertes Satz bezeichnet es als unrichtig, dass bispinosus durch schlankere, platyacanthus durch breitere Arme gekennzeichnet sei; denn bei gleicher Arm- länge kann irgend ein Individuum von bispinosus breitere oder mindestens ebenso breite Arme besitzen wie platyacanthus. Hier kann ich wieder beistimmen; wenn auch in der Mehrzahl der von mir beobachteten Fälle die echten und unzweifelhaften platyacanthus breitere Arme hatten als die ebenso grossen Exemplare von bispinosus, so liegen mir doch auch Beispiele des Gegentheils vor, z. B. ein bispinosus von 130 mm Grösse mit 16,5 mm breiten Armen und daneben ein platyacanthus von 139 mm Grösse mit nur 15 mm breiten Armen.

Bei bispinosus fand ich bei erwachsenen, 90 mm und darüber grossen Thieren die Zahl der Platten den v. Marenzeller’schen Angaben ziemlich entsprechend, z. B. bei 165 mm Grösse 59, bei 107 mm Grösse 37 Stück. Jüngere Thiere unter 90 mm Grösse hat v. Marenzeller überhaupt nicht in Händen gehabt; ich fand bei einem solchen, 54 mm grossen Exemplare 24 obere Randplatten, und Perrier giebt für seinen mit bispinosus identischen myosaurus bei 60 mm Grösse

v. Marenzeller's sechster Satz lautet: Immer ist die Zahl der Randplatten bei gleicher
Grösse des Thieres bei *bispinosus* grösser als bei *platyacanthus*. Das kann ich nur bestätigen und hinzufügen, dass es auch für jüngere Thiere, die kleiner als 90 mm sind, zutrifft.

in vielen Fällen durch die Feststellung von $r:Z$ ebenso wie auch durch die Berechnung von $R:Z$ die *bispinosus*-Form von der *platyacanthus*-Form trennen kann, aber für alle Fälle reicht das, wie ich im Gegensatz zu v. Marenzeller finde und im Vorstehenden glaube nachgewiesen zu haben, nicht aus.

Wir müssen also am Ende dieser zwar umständlichen, aber leider nothwendigen Auseinandersetzung gestehen, dass wir weder in dem Verhältnisse $r:Z$ noch in dem von $R:Z$ ein sicheres, zur Artunterscheidung ausreichendes Merkmal gewonnen haben. Vielmehr werden wir dazu gedrängt, die bisher als *bispinosus* und *platyacanthus* unterschiedenen Formen zu einer und derselben Art zu ziehen. Diese Art besitzt eben die Eigentümlichkeit, dass sie beim Wachsthum ihrer Arme bald die Zahl der Randplatten rasch vermehrt, wobei natürlich die einzelnen Randplatten verhältnissmässig kurz bleiben, bald die Zahl der Randplatten nur langsam steigert und dann ein stärkeres Längenwachsthum der einzelnen Platten erfährt. Als Typus der Art muss nach den geltenden Nomenclatur-Regeln die plattenreichere Form *bispinosus* angesehen werden, wozu dann die plattenärmere Form *platyacanthus* als Varietät zu stellen wäre.

Die oberen Randstacheln sind kräftig ausgebildet und stehen aufrecht ganz nahe am oberen, mit winzigen Stachelchen besetzten Rande der Platten; im Armwinkel haben sie eine Höhe von 3,5 — 4 mm und reichen, je einer auf jeder Platte, eine ununterbrochene Reihe bildend unter allmählicher Größenaufnahme bis zur Terminalplatte. An ihrem freien Ende sind sie einfach zugespitzt, nur im Armwinkel manchmal stumpf-zweispitzig. Auf dem Querschnitt sind sie, namentlich im proximalen Armabschnitte, nicht genau kreisrund, sondern bald mehr bald weniger comprimirt und zwar immer in dem Sinne, dass die eine Fläche nach der Medianebene des Antimers hinsicht, die entgegengesetzte davon abgewendet ist. Nach Müller & Trotschel und nach v. Marenzeller soll diese Compression der oberen Randstacheln bei *platyacanthus* immer stärker sein als bei *bispinosus*; indessen auch das trifft wohl häufig, aber durchaus nicht ausnahmslos zu; der Querschnitt der oberen Randstacheln kann sich bei einzelnen Exemplaren von *platyacanthus* nicht weniger der Kreisform nähern als bei *bispinosus* und sich bei letzterer Form ebenso weit davon entfernen wie bei jener. Grebe (1840) glaubte an den unteren Randstacheln einen anderen Unterschied zwischen *platyacanthus* und *bispinosus* gefunden zu haben: sie seien bei *platyacanthus* kürzer als die unteren Randstacheln und hörten (was auch Giebel (1862) angiebt; gegen die Armspitze hin in der Regel ganz auf, was beides bei *bispinosus* nicht der Fall sei. Zugleich wirft er die Frage auf, ob nicht *platyacanthus* eine Jugendform von *bispinosus* sei. Beiden Ansichten muss ich widersprechen. Es gibt *platyacanthus*, deren obere Randstacheln ebenso lang sind wie die unteren, und nicht „in der Regel“, sondern nur ganz ausnahmsweise schwinden die oberen Randstacheln im distalen Armabschnitt. Grebe hat allerdings nur halbwüchsige Exemplare von *platyacanthus* vor sich gehabt — aber wir haben schon weiter oben geschen, dass *platyacanthus* die gleiche Grösse wie *bispinosus* erreichen kann, also sicher nicht die Jugendform des letzteren ist.

Die Terminalplatte ist stets von feinen Granula bedeckt und trägt jederseits vom Ende der Ambulacralfurche eine Längsreihe von drei (seltener vier) kurzen Stachelchen. Bei den grösseren Exemplaren hat sie eine Breite von 2,5 und eine Länge von 2 mm. Auf ihrer Dorsalseite besitzt sie manchmal eine seichte, aber deutliche Längsinne. Ihr Seitenrand grenzt an die letzte oder auch teilweise an die vorletzte obere Randplatte.

Die unteren Randplatten entsprechen in Zahl und Anordnung den oberen bis auf den einen Punkt, dass auch bei dieser Art an der Armspitze, unterhalb der Terminalplatte, die Reihe der unteren Randplatten um eine (seltener um zwei) länger ist als die der oberen. Bei typischen *bispinosus* sind die unteren Randplatten, wenn wir zunächst den an ihrem äusseren Rande stehenden grossen Randstachel ausser Acht lassen, durchweg schwächer bewaffnet, als bei den meisten *platyacanthus*. Es bleibt nämlich bei ihnen ein
über die ganze Breite der Platte sich ausdehnendes Mittelfeld völlig nackt und nur die Ränder der Platte sind mit kleinen Stacheln besetzt, die am aboralen Rande der Platte grösser sind als am adoralen. Nur auf den beiden ersten unteren Randplatten werden die kleinen Stacheln des aboralen Randes fast ebenso gross wie die des aboralen Randes und es füllt sich auf denselben Platten auch das hier sehr schmal gewordene Mittelfeld mit einigen ähnlichen Stachelchen. Auf den übrigen Platten treten die grösseren Stachelchen des aboralen Randes in einer Reihe auf, die dem Plattenrande entlang zieht und im proximalen Armabschnitt anfangs aus 7, dann aus 6 und weiter gegen die Armspitze hin nur noch aus 5 oder 4 Stachelchen besteht. Von diesen Stachelchen ist das äusserste erheblich grösser als die übrigen; es steht dem unteren Randstachel am nächsten und hat offenbar die Veranlassung dazu gegeben, dass PERRIER (1869) an seinem mit bispinosus identischen myosurus an jeder unteren Randplatte nicht einen, sondern zwei untere Randstacheln angiebt. Bei den meisten platyacanthus füllt sich das sonst nackte Mittelfeld an sämtlichen unteren Randplatten mit einigen Stachelchen aus, während man dann am aboralen Plattenrande oft nur 4 etwas grössere Stachelchen zählt. Es geht demnach in der Regel bei platyacanthus die stärkere Bewaffnung der unteren Randplatten Hand in Hand mit der reicheren Bewehrung der oberen.

Das von den Ventrolateralplatten eingenommene Feld ist verhältnissmassig noch kleiner als bei A. aurantiacus. Dasselbe reicht von der interradialen Hauptebene aus nur bis zur dritten unteren Randplatte und umschliesst nur eine einzige Reihe von kleinen Platten, die von der interradialen Hauptebene aus rasch an Grösse abnehmen; die bei A. aurantiacus wenigstens angedeutete zweite Reihe von Ventrolateralplatten fehlt hier vollständig. Jederseits von der interradialen Hauptebene zähle ich bei dem 130 mm grossen Exemplare 7 und bei dem 107 mm grossen Exemplare 6 deutliche und dann noch zwei sehr kleine undeutliche, also im Ganzen 8 Ventrolateralplatten. Bei dem 107 mm grossen Exemplare liegt die letzte d. h. der Armspitze nächste Ventrolateralplatte zwischen der dritten unteren Randplatte und der

1) Wie LÜTKEN bereits bei Gelegenheit seiner Schilderung des Astropecten aster = jonstoni richtig bemerkt hat, s. LÜTKEN 1864, p. 130.
achtet Adambulacralplatte. Oberflächlich sind diese Platten mit je einer kurzen Doppelreihe kleiner Stachelchen besetzt, die in ihrer Gesamtheit auf jeder Platte ein anscheinend zusammenklappbares Büschel darstellen und in ihrer Form mit den nachher zu erwähnenden Stachelchen auf der ersten Adambulacralplatte übereinstimmen.

Die Adambulacralplatten sind im mittleren Armabschnitte etwa anderthalbmal so zahlreich wie die Randplatten. Ihre Bewaffnung (s. Figur auf p. 3) ähnelt, soweit es sich um die eigentlichen Adambulacralstacheln handelt, derjenigen von *A. aurantiacus*. Man kann auch hier eine innere und eine äussere Stachelreihe unterscheiden. Die innere ist auf jeder Platte, wie schon Grube (1840) beschrieben hat, aus einer fächerartigen Gruppe von drei Stacheln gebildet, von denen der mittlere wie bei *aurantiacus* grösser, comprimirt, leicht säbelförmig ist und mit seiner Basis weiter in die Armfurche vortritt als die beiden anderen. Nach Müller & Troeschel soll es bei *platycanthus* auch vorkommen, dass die innere Reihe auf einer Platte aus mehr als drei Stacheln besteht, während Heller (1868) drei oder auch nur zwei angiebt; ich selbst habe mich aber an meinen Exemplaren vergeblich nach solchen Fällen von mehr oder weniger als drei Stacheln umgesehen. Die äussere Reihe der Adambulacralstacheln besteht nach denselben Autoren bei *platycanthus* auf jeder Platte aus zwei platten „Papillen“, die viel grösser sind als die Stacheln der inneren Reihe, während sie bei *bispinosus* die Zahl der grösseren „Papillen“ der äusseren Reihe nicht genau angeben.

Doch hat schon Grube (1840) von *bispinosus* ganz zutreffend bemerkt, dass die äussere Reihe (die er die mittlere nennt) aus meist spatelförmigen, längeren, paarweise vereinigten Stacheln gebildet wird. Nach v. Marenzeller sollen die Stacheln der äusseren Reihe bei *bispinosus* spitz und mehr conisch, hingegen bei *platycanthus* abgestutzt und platter sein. Einen solchen Unterschied kann ich aber nach meinen Beobachtungen nicht als durchgreifend gelten lassen. Ich finde in der äusseren Reihe durchweg auf jeder Platte zwei verhältnissmässig grosse Stacheln, die quer zur Armfurche abgeplattet sind und meistens abgestutzt (abgerundet) endigen; ihre Basen stehen dicht aneinander auf einer Linie, die nicht genau der Medianebene des Antimers parallel läuft, sondern adoral sich etwas weiter davon entfernt als aboral. Der adorale von diesen beiden Stacheln ist gewöhnlich etwas grösser, oft aber auch nur ebensogross wie der aboralen. Meistens, jedoch nicht immer, findet man, dass sich an die beiden eben beschriebenen Stacheln der äusseren Reihe, adoralwärts davon, noch ein dritter kleinerer Stachel anschliesst, der in der Literatur nirgends erwähnt wird. Nach aussen von der äusseren Reihe der eigentlichen Adambulacralstacheln trägt jede Platte nun noch in der Regel zwei kleinere, schon von Grube richtig angegebene, subambulacrale Stachelchen, die bei jüngeren Thieren, z. B. bei Nr. 8 der Tabelle, noch ganz fehlen können. Auf der ersten Adambulacralplatte (Taf. 6, Fig. 6) nimmt die ganze Bewaffnung eine andere Form an; die Stacheln werden hier zahlreicher und feiner und ordnen sich zu einer Doppelreihe, die parallel mit dem distalen Rande der Munddeckplatte verläuft.

Jede Munddeckplatte (Taf. 6, Fig. 6) trägt ihrem suturalen Rande entlang eine Reihe von 9 oder 10 ziemlich kräftigen Stachelchen. Die beiden zur selben Mundcke gehörigen Reihen
Astrepecten bispinosus.

29

sind einander genähert und neigen ihre Stacheln manchmal gegeneinander. An der Mund-
ecke selbst ist der ambulacrare Rand jeder Mundeckplatte mit zwei grösseren nebeneinander-
stehenden Mundeckstacheln (Taf. 6, Fig. 6 1, 2) besetzt; an die sich dann weiterhin dem ambula-
cralen Rande entlang noch eine kurze Reihe (Taf. 6, Fig. 6 b) allmählich an Grösse abnehmender
Stachelchen anschliesst, von denen wieder der erste (Taf. 6, Fig. 6 3) grösser ist als die folgenden
und sich nach Form und Stellung als kleinerer dritter Mundeckstachel auffassen lässt. Blickt
man also von der Dorsalseite auf eine Mundecke, so sieht man sie jederseits von der inter-
radialen Hauptebene mit drei Stacheln besetzt, von denen die beiden ersten, jener Ebene
zunächst gelegenen erheblich grösser sind als der dritte. Im Ganzen ist demnach die Be-
waffnung der Mundeckplatten bei bispinosus sparsamer als bei aurantiacus.

Wie schon Orro (1823) richtig hervorgehoben hat, unterscheidet sich die Madreporen-
platte durch ihren kreisförmigen, der Einkerbungen entbehrenden Rand von derjenigen
des A. aurantiacus; sie ist auch kleiner als jene und trägt auf ihrem Gipfel niemals die dort
erwähnten körnchenförmigen Kalkpapillen, sondern die wellenförmig gewundenen Furchen ihrer
Oberfläche liegen überall frei zu Tage. Bei Exemplaren von 107 bis 137 mm Länge hat
sie einen Durchmesser von 2 bis 2,5 mm. Zwischen ihr und den oberen Randplatten zählt
man in der Regel drei Paxillen. Zu der Orro'schen, auch von DELLE CHIAJE (1825) wieder-
holten Angabe, dass die Madreporenpalte bei bispinosus dem Rande der Scheibe ein wenig
näher stehe als bei aurantiacus, habe ich zu bemerken, dass das nur zutrifft, wenn man in
beiden Fällen die Entfernung der Madreporenpalte vom Scheibenmittelpunkt und von den
ersten Randplatten so misst, dass man vom Mittelpunkte der Madreporenpalte und nicht
von ihrem Rande ausgeht; dann erhält man z. B. bei A. aurantiacus (R = 160 mm) als Abstand
vom Scheibenmittelpunkt 23 und als Abstand von der ersten oberen Randplatte 10 mm, da-
gegen bei bispinosus (R = 74 mm) als Abstand vom Scheibenmittelpunkt 10 und als Abstand von
der ersten oberen Randplatte 4 mm; die erstere Entfernung ist also bei aurantiacus 2/3 und
bei bispinosus 2/5 mal so gross wie die zweite. Misst man aber jene Abstände vom oberen
und vom unteren Rande der Madreporenpalte aus, so ergiebt sich bei aurantiacus für den
Abstand des oberen Randes der Platte vom Scheibencentrum 17,5 und für den Abstand des
unteren Randes der Platte von der ersten oberen Randplatte 4,5 mm, dagegen bei bispinosus
für jenen Abstand 9 und für diesen 3 mm; der erstere Abstand ist dann bei aurantiacus fast
dvimal, dagegen bei bispinosus nur dreimal so gross wie der zweite. Man sieht daraus, dass
Orro's Angabe nur bei der einen Art zu messen richtig ist, bei der anderen aber nicht. Weil
indessen die Madreporenpalte bei bispinosus überhaupt relativ viel kleiner ist als bei aurantiacus
— bei gleicher Körpergrösse ist sie nur halb so gross — so macht es doch auf den ersten
Blick den Eindruck, dass sie erheblich weiter vom Scheibencentrum abgerückt sei, als es bei
aurantiacus der Fall ist. Bei aurantiacus ist sie um etwas mehr als das Anderthalbfache der eigenen
Grösse vom Scheibencentrum entfernt, bei bispinosus jedoch um rund das Vierfache. Bei jener
Art beträgt ihr Abstand von der ersten oberen Randplatte weniger als die Hälfte ihrer eigenen
Grösse und bei bispinosus rund das Anderthalbfache. GIEBEL (1862) behauptet, dass bei bispinosus

Die Grundfarbe des Rückens (Taf. 2, Fig. 6) ist olivengrün, seltener zieht sie ins Olivenbräunliche; doch kann ich nicht finden, dass die brauneren Exemplare, wie von Marenzeller behauptet, immer typische *bispinosus* und die grünen immer *platyacanthus* sind; auch M. Sars giebt die Farbe des Rückens bei *bispinosus* als „grünlich braungelb“ an. Auf der Grundfarbe nimmt man, namentlich an frischen Thieren, blassblaue (cobaltblaue) Fleckchen wahr, die dadurch zu Stande kommen, dass die Gipfel der Paxillenstiele samt dem Centrastachel der Paxillenkronen blau gefärbt sind; die blauen Fleckchen sind deshalb am besten zu sehen, wenn der peripherische Stachelkranz der Paxillenkronen sich horizontal ausgebreitet hat. Lorenz (1860) scheint der Einzige zu sein, der diese blauen Fleckchen (bei seinem *platyacanthus var. flanaticus*) beachtet hat, doch lässt er sie nur neben den oberen Randplatten statt auf der ganzen Dorsalseite stehen und den „häutigen Papillen?“, das heisst also doch wohl den Kiemenbläschen, entsprechen. Auf der Mitte ist der Scheibenrücke, meist mit Ausnahme des Centrums selbst, gewöhnlich etwas dunkler; in der Regel setzt sich dieser dunklere Ton in fünf Bänder fort, von denen ein jedes das dorsale Mittelfeld eines Armes einnimmt. Bei guter Ausbildung der blauen Fleckchen scheinen fast sämtliche Paxillen damit ausgestattet zu sein; doch habe ich in Neapel auch Thiere vor mir gehabt, welche die blauen Fleckchen nur undeutlich oder gar nicht zeigten. Die Madreporenplatte ist meistens durch die Farbe nicht besonders ausgezeichnet; bald ist sie etwas dunkler, bald etwas heller als ihre nächste Umgebung, doch kommt es auch vor, dass sie dasselbe Hellblau besitzt wie die Paxillenköpfe. Die dorsalen und ventralen Randstacheln sind weisslich und meistens an ihrer Basis etwas bläulich. Otto fand die oberen Randstacheln sogar „blendend weiss“, was ich ebenso wenig gesehen habe, als ich v. Marenzeller’s Angabe bestätigen kann, dass bei der Varietät *platyacanthus* die Randstacheln sich regelmässig durch gelbbliche Farbe und oft auch noch durch eine grünliche Spitze auszeichnen. Der Bauch ist gewöhnlich hell olivenbräulich, seltener gelbweiss. Unter den schlankerem Exemplaren finden sich einzelne, bei denen der Rücken heller als oben beschrieben, von blassbläulichgrünlicher Färbung, ist; solche Individuen lassen die blauen Fleckchen des Rückens fast noch deutlicher erkennen als die dunkler gefärbten Exemplare.

M. Sars, Lo Bianco, ich), Genna und Nizza (Verany), Rapallo (Marchisio), nur noch Bone an der Küste von Algier (Pariser Museum), La Ciotat (Koehler), Banyuls (Cuénot) und Menorca (Braun) als Fundort erwähnt; doch ist nicht zu bezweifeln, dass sie auch an zahlreichen anderen Orten der Mittelmeerküsten sich wird nachweisen lassen. Ausserhalb des Mittelmeeres ist sie bis jetzt einzig und allein von den Azoren durch Th. Barrois bekannt geworden. Was die Varietät platyacanthus angeht, so findet sie sich an denselben Orten wie der typische bispinosus; wenigstens kennen wir im Mittelmeere keinen Fundort, an dem nur die eine oder nur die andere Form auftritt. Daraus folgt, dass man platyacanthus nicht als eine Localvarietät anschen kann.

Die verticale Verbreitung reicht in der Adria von 3,7 bis 64 m (M. Sars, Lorenz, Grube, Heller); bei Neapel lebt sie, soweit bestimmte Angaben darüber vorliegen (M. Sars), in Tiefen von 9 bis 55 m; im Golf von La Ciotat fand Koehler sie nur in der geringen Tiefe von 3 bis 4 m; an den Azoren wurde sie aus 15 bis 20 m heraufgeholt. Sie scheint also im Ganzen der Oberfläche näher zu leben als A. aurantiacus.

Ihre Fortpflanzungszeit fällt bei Triest nach Graeffe (1881) in die Monate April und Mai, während Joh. Müller (1852) sie ebendort im Frühling und Herbst unreif fand. Bei Neapel sah Lo Bianco (1888) ihre Eier im April bereits hoch entwickelt, aber noch nicht ganz herangereift.

Über ihre Entwicklung, namentlich auch über die zugehörige Larvenform, ist noch nichts Sicheres bekannt. Über ihre Anatomie macht Cuénot (1888) einige Angaben.

Taf. 2, Fig. 1; Taf. 6, Fig. 7.

1837 Asterias spinulosa Philippi p. 193. 1857 Astropecten spinulosus M. Sars p. 103—104, T. 1,
1842 Astropecten spinulosus Müller & Troschel p. 72—73. f. 16, 17.
1842 Astropecten jonstoni Müller & Troschel p. 723. 1862 Astropecten spinulosus Dujardin & Hupé p. 423.

2) Die Beschreibung, welche Müller & Troschel von jonstoni geben, passt nicht auf diese Art, sondern auf spinulosus; dagegen gehört die von denselben Autoren bei jonstoni angeführte Litteratur zu der echten jonstoni (s. p. 50).

2) Der von Heller unter den Synonymen angeführte A. plathyacanthus var. fanalicus Lorenz gehört nicht hierher, sondern zu bispinosus (s. p. 18).

3) Von der dort angeführten Litteratur bezieht sich das Cif A. jonstoni Delle Chiaje nicht auf spinulosus, sondern auf den davon verschiedenen echten Astropecten jonstoni.
Astropecten spinulosus.

Wiener Hofmuseum zwei von Müller's eigener Hand als jonstoni etikettirte Exemplare von spinulosus befinden 1).

Der Habitus (Taf. 2, Fig. 4): dieser im Vergleich zu A. aurantiacus und bispinosus ziemlich kleinen Art ist kräftig und wird bedingt durch die im Vergleich zu ihrer Länge ziemlich breiten, am Ende stumpf abgerundeten Arme und die verhältnismässig grossen Paxillen. Auffallend ist die schwache Ausbildung der oberen Randstacheln, die wie verkümmert aussieht und hinter den unteren Randstacheln merklich an Grösse zurückbleiben. Der Seitenrand der Arme verläuft anfänglich gradlinig, wird aber vom Beginne des letzten Drittels oder Viertels an convex und führt so in die abgerundete Armspitze über. In den Armwinkeln biegen die Seitenränder durch einen kurzen, scharfen Bogen ineinander um.

Die Zahl der Arme ist bei allen mir bekannt gewordenen und bei allen in der Literatur erwähnten Exemplaren ausnahmslos fünf.

Die grösste Länge der mir vorliegenden Thiere beträgt, wie aus der unten stehenden Tabelle hervorgeht, 96 mm. Philippi's Exemplar hatte eine Grösse von rund 100 mm.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>Z</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>1</td>
<td>70</td>
<td>41</td>
<td>12,5</td>
<td>23</td>
<td>14,5</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>39</td>
<td>11</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>73</td>
<td>41</td>
<td>12</td>
<td>27</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>41</td>
<td>11,5</td>
<td>28</td>
<td>12,5</td>
</tr>
<tr>
<td>5</td>
<td>96</td>
<td>55</td>
<td>15</td>
<td>31</td>
<td>16</td>
</tr>
</tbody>
</table>

Maasse halbwüchsiger Exemplare:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>Z</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>40</td>
<td>22</td>
<td>8,5</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>34</td>
<td>12</td>
<td>20</td>
<td>13,5</td>
</tr>
</tbody>
</table>

Müller & Troschel geben die Grösse zu 5 Zoll an; das sind 104 mm oder, wenn man nach pariser Fuss umrechnet, wie DuJARDIN & HuPÉ gethan haben, 108 mm. v. Marenzeller gibt die Grösse seiner 6 Exemplare auf 43—48 mm an; doch muss hier wohl in der zweiten Ziffer ein Druckfehler vorliegen, da sonst die von ihm angegebene Maximalzahl der oberen Randplatten (27) nicht stimmt. Nach den Exemplaren No. 3 und 4 meiner Tabelle zu schliessen, soll es wohl bei v. Marenzeller statt 48 heissen 78. Man wird also die Maximalgrösse der vorliegenden Art mit rund 100 mm richtig bezeichnen können.

Das Verhältniss des Scheibenradius zum Armradius berechnet sich bei den fünf erwachsenen Exemplaren meiner Tabelle, deren Länge 70 mm und darüber misst, zu durchschnittlich $1:3,5$ (Minimum $1:3,28$; Maximum $1:3,67$). Bei den zwei kleineren Tieren von 40 und 60 mm Länge erhält man das Durchschnittsverhältniss $r:R = 1:2,73$ (Minimum $1:2,59$; Maximum $1:2,83$). Wie bei *A. aurantiacus* und *bispinosus* wächst also auch bei *spinulosus* der Arm verhältnissmässig rascher als die Scheibe und ist bei jüngeren Tieren im Verhältniss zur Scheibe kürzer als bei erwachsenen. *Philippi* gibt das Verhältniss von $2r:R = 1:1,32$, d. h. $r:R = 1:2,64$ an, was nach meinen Beobachtungen zwar für jüngere Thiere zutrifft, jedoch für die von ihm angegebene Grösse von rund 100 mm entschieden zu niedrig ist. Dagegen ist das von Müller & Trostel angegebene Verhältniss $r:R = 1:4,5$ auch für die von ihnen erwähnte Grösse von 104 mm zu hoch gegriffen; es stimmt zu keinem einzigen der mir vorliegenden Thiere und wird selbst bei meinem 96 mm grossen Exemplare noch lange nicht erreicht, indem es hier statt $1:4,5$ nur $1:3,67$ beträgt.

Genau aber passt die Angabe derselben Autoren bei ihrem 3 Zoll = 78 mm grossen, irrtümlich als *jonstoni* beschriebenen Exemplare, nämlich $r:R = 1:3,5$. Ganz dasselbe Verhältniss erwähnt auch M. Sans (1857) für ein 65 mm grosses Exemplar, und wenn man erwägt, dass das eine der mir vorliegenden Thiere ein Verhältniss von $r:R = 1:3,67$ besitzt, so wird man es nicht für unmöglich halten, dass dieses Verhältniss hier und da bis $1:4$ steigen kann, wie v. Marenzeller andeutet, wenn er bei seinen Exemplaren $r:R = 1:3,5—4$ angiebt.

Die Breite des Armes an seiner Basis misst bei den 5 grösseren Exemplaren meiner Tabelle durchschnittlich 13,8 mm und verhält sich zur durchschnittlichen Grösse von $R (= 43,44)$ wie $1:3,14$; bei dem einen jüngeren, 60 mm grossen Exemplare ergiebt sich AB (= Armbreite) $: R = 1:2,52$, bei dem noch jüngeren, nur 40 mm grossen $= 1:2,44$.

Wie bei *A. aurantiacus* nimmt also auch hier dieses Verhältniss um so mehr ab, je jünger das Thier ist. Die 5 grösseren Exemplare geben nach der Grösse dieses Verhältnisses geordnet genau dieselbe Reihenfolge wie nach ihrer Gesammtgrösse; es ist nämlich bei No. 1 $AB : R = 1:2,83$; bei No. 2 $= 1:3$; bei No. 3 $= 1:3,15$; bei No. 4 $= 1:3,28$; bei No. 5 $= 1:3,44$.

Die Paxillen sind kräftig entwickelt. Im proximalen Armab schnitte zählt man quer über den ganzen Rücken des Armes 15—17 derselben. Hier und im peripherischen Bezirke des Scheibenrückens sind sie auch am grössten. Den oberen Randplatten entlang und besonders nach der Arm spitze hin werden sie allmäthlich kleiner, ebenso im centralen Bezirk des Scheibenrückens; indessen ist dieser centrale Bezirk relativ kleiner und weniger auffallend als bei anderen Arten, da er nur aus einigen wenigen, schwächer als die übrigen ausgebildeten Paxillen besteht. Von diesem centralen Bezirke strahlen auch bei dieser Art die Mittelfelder der Armücken ab, die am lebenden Thiere durch ihre hellere Farbe auffallen und nur halb so breit sind wie die Seitenfelder; ihre Paxillen stehen noch nicht in deutlichen Querreihen und sind mit ihren Basalplatten näher aneinander gerückt als in den Seitenfeldern; in der Regel hat das Mittelfeld nur die Breite von drei Paxillen. In den Seitenfeldern stehen die
Astropecten spinulosus.

Auch bei dieser Art trifft die Regel zu, dass die Zahl der oberen Randplatten im allgemeinen mit dem Wachsen von R zunimmt. Vergleicht man diese Zahl mit der in mm ausgedrückten Länge von R, so erhält man bei den 6 grösseren Exemplaren (No. 1—5 und No. 7 meiner Tabelle) der Reihe nach das Verhältniss \(Z : R = 1 : 1,78; 1 : 1,62; 1 : 1,52; 1 : 1,55; 1 : 1,77; 1 : 1,7 \) oder im Durchschnitt \(Z : R = 1 : 1,66 \). Für das kleinere, nur 40 mm grosse Exemplar (No. 6) aber ergibt sich \(Z : R = 1 : 1,29 \). Die Schnelligkeit, mit welcher sich die oberen Randplatten vermehren, bleibt also hier niemals so sehr wie bei *A. aurantiacus* hinter der Schnelligkeit zurück, mit der die Armänge wächst: in derselben Zeit, in der R um das Zweiundeinhalbmaße (von 22 auf 55) wächst, hat die Zahl der oberen Randplatten eine Vermehrung um fast das Doppelte erfahren (von 17 auf 31). Die einzelne Randplatte erfährt demzufolge hier eine relativ geringere Längenzunahme als bei *aurantiacus*.

Ahnlich wie bei *A. aurantiacus* sind die oberen Randplatten so gewölbt, dass ihre dorsale und laterale Oberfläche allmählich ineinander übergehen; nur im Armwinkel sind die Platten etwas steiler gestellt, während sie nach der Arm spitze hin flacher werden. Wie auch bei anderen Arten der Gattung sind die 2 oder 3 ersten Platten kürzer, aber etwas höher als die
nächstfolgenden. Die fünfte besitzt eine Länge von 1,5 und eine Breite von 2 mm. An den folgenden wird dieses Verhältniss der Länge zur Breite unter allmählicher Grössenabnahme der ganzen Platte festgehalten. Es stimmt also, wenn M. SARS (1857) und HELLER (1868) von den Platten sagen, dass sie etwas höher als breit seien; denn es gebrauchen diese Autoren die Ausdrücke »hoch« und »breit« im selben Sinne wie ich »breit« und »lang«. Die Bedeckung der oberen Randplatten besteht aus dicht gestellten, kurzen Stachelchen, die am adoralen und aboralen Rande der Platte feiner sind und hier die Form von kurzen Cylinderchen oder Granula haben, auf dem Mittelfeld der Platte aber grösser werden und dann bald mehr die Form kleiner, gedrungener Stachelchen (wenn ihr Ende zugespitst ist, bald von Granula haben (wenn sie abgerundet endigen). Durchweg bleiben aber diese Stachelchen in ihrer Grösse hinter denjenigen der unteren Randplatten zurück. Am oberen Rande der Platten gleichen die Stachelchen mehr oder weniger in Grösse und Form den Randstachelchen der Paxillenkronen und veranlassen so das schon von MÜLLER & TROSchEL und HELLER erwähnte Verhalten, dass die dorsalen Randplatten sich bei dieser Art weniger scharf als bei anderen vom Paxillenfelde abheben. Aus der eben geschilderten allgemeinen Bedeckung der oberen Randplatten ragt in der Regel ein etwas grösserer, zugespitzt kegelförmiger Stachel hervor, der offenbar als verkürmter oberer Randstachel aufzufassen ist. Er steht meistens annähernd auf der Quermitte der Platte, auf dem Gipfel ihrer Wölbung; nur auf den 2 oder 3 ersten Platten rückt er dem oberen Rande der Platten näher. Meistens ist der Stachel 0,5—1 mm lang; seltener, und dann namentlich im distalen Armabschnitte, wird er bis 2 mm lang; häufig ist er im Armwinkel kleiner als im mittleren und distalen Theile des Armes oder fehlt hier wohl auch ganz. Unterhalb (im Armwinkel) oder oberhalb (im mittleren Armabschnitte) dieses Stachels tritt manchmal noch ein zweiter, aber noch kleinerer hervor, sodass man alsdann sehr an die Anordnung der beiden Reihen von oberen Randstacheln bei A. aurantiacus erinnert wird. Bei jungen Thieren, z. B. meinem Exemplare No. 6, fehlen die oberen Randstacheln auf den drei ersten Platten noch gänzlich und mangelt auch einzelnen der übrigen Platten, während sie sonst deutlich, wenn auch schwach, entwickelt sind.

MÜLLER & TROSchEL (1842) beschreiben die oberen Randstacheln unserer Art als »sehr kleine Spitzen« und stellen die Art in ihre dritte Gruppe der Astropecten-Arten, deren »dorsale Randplatten statt der Stacheln kleine Tuberkeln tragen«. M. SARS (1857) ist ganz im Rechte, wenn er dieser Stellung der Art widerspricht, denn dafür sind die Stacheln doch in der Regel zu gut ausgebildet, als dass man sie als »Tuberkeln« bezeichnen könnte; doch kann ich ihm darin nicht folgen, dass er sie nunmehr in der zweiten MÜLLER-TROSchEL'schen Gruppe: »Arten mit einem Stachel auf den dorsalen Randplatten« unterbringen will. Hält man überhaupt an den MÜLLER-TROSchEL'schen Gruppen für diesen Fall fest, so muss man, wie mir scheint, den A. spinulosus wegen der vorhin erwähnten Aehnlichkeit der Stachelanordnung mit A. aurantiacus in die erste Gruppe: »Arten mit zwei oder mehr Stacheln auf den dorsalen Randplatten« einreihen, jedoch mit dem Zusatz, dass die Stacheln schwach ausgebildet, in Rückbildung begriffen sind und theilweise fehlen können. Damit steht die Philippische Originaldiagnose des A. spinu-
losus keineswegs in Widerspruch; denn wenn er darin in Bezug auf die oberen Randplatten sagt: »spina distincta nulla«, so liegt der Nachdruck auf »distincta« und nicht auf »nulla«.

Die Terminalplatte hat eine Breite von 2 mm bei einer Länge von 1,5 mm. Oberflächlich ist sie mit Granula bedeckt, die denen der oberen Randplatten gleichen und zwischen denen sich jederseits vom Ende der Armfurchen gewöhnlich drei in einer Längsreihe stehende, etwas größere, stumpfe Stachelchen unterscheiden lassen. Seitlich grenzt die Terminalplatte an die letzte obere und die letzte untere Randplatte.

Die Reihe der unteren Randplatten ist auch bei spinulosus jederseits in jedem Arme um eine Platte länger als die der oberen. An ihrem adoralen und aboralen Rand sind die unteren Randplatten mit dicht gestellten Cylinderchen, auf ihrem Mittelfeld aber mit weniger dicht stehenden, stumpfen, leicht abgeplatteten Stachelchen bedeckt, von denen die letzteren in unregelmässiger Anordnung gewöhnlich so vertreibt sind, dass man vom adoralen zum aboralen Plattenrande deren zwei oder drei zählt. Unter diesen Stachelchen des Mittelfeldes zeichnen sich im proximalen Armabschnitt drei oder vier (selten fünf und weiterhin in distaler Richtung nur noch zwei oder drei durch ihre Grösse und schärfere Zuspitzung aus; auf jeder Platte nehmen sie an Grösse zu, je weiter sie von der Armfurchen entfernt sind, und bilden so einen allmählichen Uebergang zu dem nahe am äusseren Rand der Platte sitzenden unteren Randstachel. Dieser hat im proximalen Armabschnitt eine Länge von 2,5—3,25 mm, ist horizontal gerichtet und namentlich im Armwinkel von oben nach unten etwas abgeflacht; er endigt meistens scharf zugespitzt; seltener und dann besonders im Armwinkel ist seine Spitze stumpf abgerundet.

Die Ventrolateralplatten sind noch weniger zahlreich und nehmen einen noch beschränkteren Bezirk ein, als das bei A. aurantiacus und bispinosus der Fall ist. Jederseits von der interradialen Hauptebene zählt man (bei dem grössten der mir vorliegenden Exemplare) nur eine einzige Reihe derselben, die schon zwischen der ersten unteren Randplatte und der vierten Adambulacralplatte ihr Ende erreicht und aus nur vier Platten besteht. Von der interradialen Hauptebene aus nehmen die Platten rasch an Grösse ab. Bei meinem kleinsten, nur 40 mm grossen Exemplare sind nur drei Platten vorhanden; es fehlt die kleinste, vierte. Oberflächlich tragen die Ventrolateralplatten ein kleines Büschel von 6—10 Stachelchen, die denen auf der ersten Adambulacralplatte ähnlich sehen.

Die Bewaffnung der Adambulacralplatten (s. Figur auf p. 3), die im mittleren Armabschnitt anderthalbmal so zahlreich sind wie die Randplatten, besteht aus einer inneren, mittleren und äusseren Reihe, von denen die innere und mittlere die eigentlichen, die äussere die subambulacrallen Adambulacralstacheln darstellen. Die innere ist auf jeder Platte nur aus einem einzigen, comprimirten, zugespitzen, leicht säbelförmig gebogenen Stachel gebildet, der dem mittleren der drei inneren Furchenstacheln bei A. aurantiacus und bispinosus in Form und Stellung entspricht. Die mittlere und die äussere Reihe bestehen auf jeder Platte aus je zwei Stacheln, welche die Form von ziemlich gleichbreiten, in der Querrichtung des Armes abgeplatteten, am Ende abgestutzten (gerade abgeschnittenen) Stäben haben, von denen die beiden
der mittleren Reihe ebenso lang sind wie der innere Stachel, während die beiden äusseren ein wenig kürzer sind. Die beiden Stacheln der mittleren Reihe stehen mit ihren Basen dicht zusammen. Mitunter legen sich alle fünf Stacheln einer Platte zu einem keilförmigen Haufen zusammen, wie das MÜLLER & TROSCHEL von ihrem irrhümlich für jonstoni gehaltenen Exemplare erwähnen. Von den Beschreibungen, die frühere Autoren von der Adambulacrabelwaffnung gegeben haben, finde ich nur die M. SARS'sche (1857) genau mit meinen Exemplaren übereinstimmend. Dagegen muss ich gegen MÜLLER & TROSCHEL und HELLER betonen, dass in der mittleren und äusseren Reihe höchstens ganz ausnahmsweise einmal drei statt zwei Stacheln stehen. — Auf der zweiten Adambulacralplatte vermehren sich bereits die mittleren und äusseren Stacheln und ordnen sich auf der ersten ähnlich wie bei A. bispinosus in zwei parallel miteinander verlaufende Querreihen von je sieben oder acht Stachelchen (Taf. 6, Fig. 7).

Jede Mundeckplatte (Taf. 6, Fig. 7) trägt ihrem suturalen Rande entlang eine Reihe von etwa neun Stacheln und ist an ihrem ambulacralen Rande mit sechs oder sieben Mundstacheln besetzt, die verhältnissmässig kurz sind und von der interradialen Hauptebee aus an Grösse abnehmen.

Die Madreporenplatte ist etwas mehr in die Breite gezogen als bei bispinosus und trägt auf ihrer stark gewölbten Oberfläche, wie bei jener Art, ganz frei liegende, wellenförmig verlaufende Furchen. Während sie sonst keinerlei Einkerbungen ihres Umrisses zeigt, besitzt sie in der Regel eine solche in der Mitte ihres oberen Randes, die zur Aufnahme eines Paxillus dient und dadurch an die zahlreicheren Einkerbungen bei aurantacus erinnert; durch die obere Einbuchtung bekommt die ganze Platte eine herzförmige Gestalt. Vom unteren Rande der Platte bis zu den oberen Randplatten zählt man 3—5 (meist 4) Paxillen. Die Platte selbst hat eine Länge von 3 mm und ist mit ihrem oberen Rande 8,5 mm vom Mittelpunkt der Scheibe, mit ihrem unteren Rande 3,5 mm von den oberen Randplatten entfernt.

Die horizontale Verbreitung des A. spinulosus erstreckt sich nur auf das adriatische Meer und das westliche Mittelmeer. In der Adria sind als Fundorte bekannt: Triest (M.
Sars, v. Marenzeller, Graeffe, der Quarnaro (Stossich) und Lesina (Heller); im westlichen Mittelmeer: Neapel (ich), Sicilien (Philippi, v. Marenzeller, von Palermo im Pariser Museum), La Ciotat (Koehler), Marseille (Marion), Banyuls (Cuénot) und Menorca (Braun).

Taf. 2, Fig. 5; Taf. 6, Fig. 5.

1837 Asterias pentacantha Philippi p. 191.
1840 Asterias pentacantha Deshayes bei Lamarck Vol. 3, p. 252.
1844 Asterias pentacantha Delle Chiaje Vol. 4, p. 55; Vol. 5, p. 124; T. 125, f. 3; T. 129, f. 9.
1842 Astropecten pentacanthus Müller & Troschel p. 74.
1846 Asterias pentacantha Verany p. 5.
1857 Astropecten pentacanthus M. Sars p. 104.
1860 Astropecten pentacanthus var. brevior Lorenz p. 650.
1861 Asterias pentacantha Grube p. 131.
1862 Astropecten pentacanthus Giebel p. 325.
1862 Astropecten pentacanthus Dujardin & Hupé p. 125.

1863 Astropecten pentacanthus Heller p. 441.
1864 Astropecten pentacanthus Grube p. 105.
1865 Astropecten pentacanthus Heller p. 56—57.
1875 Astropecten pentacanthus Perrier p. 370.
1876 Astropecten pentacanthus Stossich p. 354.
1879 Astropecten pentacanthus Ludwig p. 543 2.
1884 Astropecten pentacanthus Studer p. 44.
1885 Astropecten pentacanthus Carus p. 90.
1886 Astropecten pentacanthus Preyer p. 29.
1888 Astropecten pentacanthus Simroth p. 231.
1889 Astropecten pentacanthus Cuénot p. 134.
1899 Astropecten pentacanthus Sladen p. 195, 736.
1893 Astropecten pentacanthus v. Marenzeller p. 3.
1895 Astropecten pentacanthus v. Marenzeller p. 23.
1896 Astropecten pentacanthus Marchisio p. 3.

1) Nicht f. 1—3, wie in meinem Prodromus 1879 p. 543 irrthümlich steht.
2) Das dort nach dem Vorgange von Müller & Troschel angeführte Citat: Asterias aranciaca Johnston 1836, p. 298, Fig. 43 ist zu streichen, da es sich auf eine nicht mit A. pentacanthus, sondern mit irregularis identische Form bezieht.

Diese leicht kenntliche, mittelgrosse Art ist, nachdem Delle Chiaje (1825) sie zuerst unterschieden und Müller & Troschel (1842) sie in die Gattung Astropecten eingereiht hatten, niemals der Gegenstand von Meinungsverschiedenheiten über ihre Nomenclatur oder systematische Stellung gewesen 1).

In ihrem Habitus (Taf. 2, Fig. 5) kennzeichnet sie sich durch ziemlich lange Arme, den völligen Mangel oberer Randstacheln, Feinheit und in der Rückenansicht des Thieres büschelförmige Gruppirung der unteren Randstacheln und durch die zarte, etwas durchscheinende Beschaffenheit der Rückenhaut, die auf der Scheibenmitte manchmal etwas vorgewölbt ist. Die Seitenränder gehen erst nahe der Arm spitze aus dem gradlinigen Verlaufe in einen leichtconvexen über und biegen in den Armwinkeln durch einen kurzen Bogen von kleinem Radius ineinander um. Mitunter sind die Arme in der nächsten Nähe der Armwinkel wie eingeschnürt und sehen dann im ganzen schmäler aus als bei anderen Exemplaren, denen diese Einschnüfung fehlt. Bei kleinen und mittelgrossen Thieren erhebt sich die durch kleinere Paxillen ausgezeichnete Scheibenmitte oft zu einer Protuberanz, die am conservirten Thiere manchmal noch schärfer hervortritt als am lebenden. Schon Grube (1840) hat auf diese Erscheinung aufmerksam gemacht und die Protuberanz als eine flache, rundliche Erhöhung beschrieben; ebenso hebt Simroth (1888) dasselbe Verhalten bei jungen Thieren hervor. Wenn aber Grube des Weiteren be richtet, dass die Erhöhung bei einem seiner Exemplare wirklich durchbohrt war, so muss ich dem nach meinen eigens darauf gerichteten Untersuchungen jünger Thiere widersprechen; ich habe niemals eine Öffnung an dieser Stelle finden können und kann mir Grube's Beobachtung nicht anders als durch die Annahme erklären, dass es sich in seinem Falle um eine künstlich entstandene Durchlöcherung gehandelt habe. Vielleicht bezieht es sich auf die Rückenprotuberanz, wenn Delle Chiaje (1841) in seiner Diagnose der Art sagt: »disco elevato«. An meinem Exemplar Nr. 14 (s. die Tabelle auf p. 41) hatte die hier erst post mortem deut-

1) Nur Deshayes hat in der zweiten Auflage des Lamarck'schen Werkes (1840) ohne jede Begründung die ungerechtfertigte Vermuthung geäussert, dass pentaconthus lediglich eine schlecht beobachtete Varietät von aurantiacus sei.
lich gewordene Protuberanz eine Höhe von 3 mm; dagegen war sie an dem Exemplar Nr. 1 nur noch 1,5 mm hoch.

Die Zahl der Arme beträgt fünf. Exemplare mit abnormer Arzmzahl sind bis jetzt nicht bekannt geworden.

Das größte der von mir beobachteten Thiere hatte einen Armradius von 100 mm und einen Scheibenradius von 10 mm; leider habe ich das Thier weder conservirt noch die übrigen Maasse von ihm genommen; doch lässt sich aus der Grösse von R schliessen, dass die ganze Länge des Thieres rund 180 mm betragen haben wird. Von den übrigen mir vorgelegenen Exemplaren hat das grösste eine Länge von 132 mm. Das von PHILIPPI (1837) gemessene Exemplar war rund 140 mm lang; MÜLLER & TROSCHEL (1842) geben die Länge der Art zu 130 mm (oder, wenn man wie Dujardin & Hupé nach pariser Fuss umrechnet, 135 mm) an.

Der Scheibenradius verhält sich zum Armradius bei den fünf erwachsenen (70 mm und darüber grossen) Thieren meiner Tabelle durchschnittlich wie 1 : 4,6 und steigt bei

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>Z</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>71</td>
<td>42</td>
<td>10,5</td>
<td>30</td>
<td>11,5</td>
</tr>
<tr>
<td>2</td>
<td>95</td>
<td>51</td>
<td>12</td>
<td>31</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>112</td>
<td>55</td>
<td>12,5</td>
<td>35</td>
<td>14,5</td>
</tr>
<tr>
<td>4</td>
<td>125</td>
<td>70</td>
<td>13,5</td>
<td>40</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>132</td>
<td>73</td>
<td>15</td>
<td>37</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>Z</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>28</td>
<td>15</td>
<td>4</td>
<td>18</td>
<td>4,5</td>
</tr>
<tr>
<td>7</td>
<td>31</td>
<td>18</td>
<td>5</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>18,5</td>
<td>7</td>
<td>16</td>
<td>7,5</td>
</tr>
<tr>
<td>9</td>
<td>35</td>
<td>19</td>
<td>5,5</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>36</td>
<td>20</td>
<td>5,5</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>38</td>
<td>22</td>
<td>5,5</td>
<td>22</td>
<td>6,5</td>
</tr>
<tr>
<td>12</td>
<td>40</td>
<td>21</td>
<td>5,5</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>45</td>
<td>24</td>
<td>6</td>
<td>23</td>
<td>6,5</td>
</tr>
</tbody>
</table>
| 14 | 51 | 28 | 9 | 25 | 101^

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>Z</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>19</td>
<td>10,5</td>
<td>3,75</td>
<td>12</td>
<td>4 ; r : R = 1 : 2,8</td>
</tr>
<tr>
<td>16</td>
<td>23</td>
<td>13</td>
<td>5</td>
<td>13</td>
<td>5,5; r : R = 1 : 2,6.</td>
</tr>
</tbody>
</table>

1 Nachträglich kommen mir zwei noch kleinere Exemplare in die Hände, auf deren Maasse oben im Texte keine Rücksicht mehr genommen werden konnte. Die Maasse sind die folgenden:

Zuul Station a Neapel, Fauna und Flora, gezogen von Neapel, Sesterne
liegenden Exemplare. Bei dem grössten der mir überhaupt bekannt gewordenen Thiere, dessen Länge rund 180 mm betrug, verhält sich \(r : R \) wie 1 : 6. Bei jüngeren Thieren ist wie gewöhnlich der Arm im Vergleich zur Scheibe um so kürzer, je jünger das Thier ist. Bei den drei Exemplaren (No. 12—14) meiner Tabelle, deren Länge zwischen 40 und 70 mm beträgt, ergiebt sich das Durchschnittsverhältniss \(r : R = 1 : 3,6 \) (Minimum 1 : 3,14; Maximum 1 : 4); bei den sechs noch weniger als 40 mm grossen Thieren (No. 6—11) ist das Durchschnittsverhältniss \(r : R = 1 : 3,5 \) (Minimum 1 : 2,64; Maximum 1 : 4).

Vergleichen wir damit die von früheren Forschern gemachten Angaben, so zeigt sich, dass diejenige Philippi's (1837): \(2 r : R = 1 : 2,3 \), also \(r : R = 1 : 4,6 \) für sein rund 140 mm grosses Exemplar vollständig mit dem von mir für erwachsene Thiere gefundenen Durchschnitt übereinstimmt. Grube (1840) gab für vier junge Exemplare, deren \(R = 14, 14, 20, 24 \) mm betrug, Maasse an, aus denen sich ein Durchschnitt von \(r : R = 1 : 3,69 \) berechnet, was im Vergleich zu dem von mir für annähernd ebenso grosse jüngere Thiere gefundenen Werthe ziemlich genau stimmt. Das von Müller & Troschel (1842) angegebene Verhältniss 1 : 5 stimmt ebenfalls zu zwei meiner grösseren Exemplare. Lorenz (1860) behauptet, dass im Quarnero die von sandigem oder grusigem Grunde heraufgeholten Exemplare das Verhältniss \(r : R = 1 : 3 \), dagegen die von mörteelig-schlamigem Grunde das Verhältniss \(r : R = 1 : 4 \) besitzen. Da er aber keine absoluten Maasse seiner Exemplare angibt, so lässt sich die Frage nicht beantworten, ob es nicht durchweg jugendliche Thiere waren, die ihm von dem einen Fundort in noch jüngeren Exemplaren vorlagen als von dem anderen. Je nachdem diese einstweilen offen bleibende Frage durch weitere Untersuchungen beantwortet werden wird, wird sich zeigen, ob meine Vermuthung gerechtfertigt ist, dass es sich hier nicht um Localvarietäten, sondern um verschiedene Alterszustände handelt.

Die an der Basis gemessene Armubreite beträgt bei den fünf grossen Exemplaren durchschnittlich 14,4 mm (Minimum 11,5; Maximum 17), bei den drei jüngeren durchschnittlich 7,53 (Minimum 6,5; Maximum 10) und bei den 6 jüngsten durchschnittlich 5,92 (Minimum 4,5; Maximum 7,5). Das Verhältniss der Armubreite zur durchschnittlichen Länge des Armaradius berechnet sich bei den fünf grösseren Thieren auf 1 : 4,04 und bei den neun jüngeren auf 1 : 3,14.

Dass die Paxillen durch besondere Feinheit und geringe Höhe ausgezeichnet seien, wie Grube (1840) hervorhebt, kann ich nicht finden. Seine Angabe erklärt sich aber daraus, dass er, wie aus seinen Maassen hervorgeht, nur jüngere Thiere vor sich gehabt hat. Bei erwachsenen Exemplaren sind die Paxillen im Verhältniss zur Grösse des ganzen Thieres recht kräftig entwickelt, sowohl was ihre Krone als was den Schaft anbelangt. Nach der Armspitze hin sowie den oberen Randplatten entlang und auf dem centralen Bezirke der Scheibe werden sie allmählich kleiner. Die Krone der grösseren Paxillen ist aus 9—11, seltener 12 oder 13 peripherischen und 4 oder 5, seltener 6—8 centralen stumpfen Stachelchen zusammengesetzt; an den kleineren Paxillen nimmt die Zahl der peripherischen und centralen Stachelchen der Krone immer mehr ab. Auf den Armen kann man wie bei den anderen

Auch die Papulac unterscheiden sich weder in der Form und Grösse, noch in der Anordnung von denen der anderen Astropecten- Arten.

Die Zahl der oberen Randplatten beläuft sich bei den fünf grossen Exemplaren meiner Tabelle auf durchschnittlich 34,75, also rund 35, und beträgt bei denselben Exemplaren im Minimum 30 und im Maximum 40. Bei den drei jüngeren Thieren zählte ich durchschnittlich 23 Platten (im Minimum 21, im Maximum 25) und bei den sechs jüngsten durchschnittlich 19,17, also rund 19 (Minimum 16; Maximum 22). Die Angabe PHILIPPS (1837) von circa 40 oberen Randplatten bei einem 140 mm grossen Thiere stimmt zu meinen Befunden; doch dürfte es zu hoch gegriffen sein, wenn MÜLLER & TROSCHEL (1842) bei kaum ebenso grossen Thieren die Zahl der Platten zwischen 40 und 50 schwanken lassen. Immerhin ist es nicht unmöglich, dass bei noch grösseren (bis 180 mm langen) Thieren, als sie MÜLLER & TROSCHEL vorlagen, die Zahl der Platten sich der Ziffer 50 nähert oder sie selbst erreicht. GRUBE (1840) giebt 17—29 Platten bei Exemplaren an, deren R 14—24 betrug, was einigermassen mit meinen Befunden vereinbar ist. Da LORENZ (1860) nur 20—30 Platten angeibt, so wird dadurch meine schon oben ausgesprochene Vermuthung, dass ihm nur jüngere Exemplare vorlagen, erheblich verstärkt; denn diese geringe Plattenzahl habe ich nur bei Exemplaren angetroffen, die erst eine Grösse von 35 bis etwa 80 mm erlangt hatten. Seine Varietät brevior kann demnach nicht anerkannt werden, da sie aller Wahrscheinlichkeit nach lediglich ein jüngeres Altersstadium unserer Art darstellt. GIEBEL (1862) zählte bei einem circa 50 mm grossen Exemplare 35 Randplatten, eine Ziffer, die nach meinen Beobachtungen erst bei etwas grösseren Thieren erreicht wird.

Vergleicht man die Zahl der oberen Randplatten = Z mit der in mm ausgedrückten Länge des Armradius = R, so erhält man bei den fünf grossen Exemplaren meiner Tabelle das Verhältniss Z : R = 1 : 1,68, bei den drei jüngeren Thieren (No. 12—14) Z : R = 1 : 1,06 und bei den sechs jüngsten (No. 6—11) Z : R = 1 : 0,98. Bei dem grössten Exemplare ist Z : R = 1 : 1,97 und bei dem kleinsten Z : R = 1 : 0,83. Die dorsale Fläche der oberen Randplatten geht gewölb in die laterale Fläche über und ist annähernd ebenso gross wie diese; nur in den Armwinkeln stellen sich auch bei dieser Art die oberen Randplatten etwas steiler und sehen wie comprimirt aus; ihre dorsale Fläche ist hier erheblich kleiner als die laterale. Bei dem grössten Exemplare meiner
Tabelle haben die ersten oberen Randplatten (also die im Armwinkel) eine Länge von 2 mm (an ihrem oberen Rande gemessen) und eine Breite von 6 mm; in der Armmitte sind sie 1,75 mm lang und 3,5 mm breit. Bei dem zweitgrößten Exemplare der Tabelle fand ich geringere Maasse für die oberen Randplatten; die ersten sind hier 1,5 mm lang und 3,5 mm breit, die des mittleren Armbandschnittes 1,5 mm lang und 2 mm breit. Bei dem kleinsten Exemplare der Tabelle haben die ersten oberen Randplatten eine Länge von 1,3 mm und eine Breite von 3 mm, die des mittleren Armbandschnittes eine Länge von 1,3 und eine Breite von 2 mm. In ihrer Bedeckung sind die oberen Randplatten durch den völligen Mangel von Stacheln ausgezeichnet. Dafür sind sie auf ihrer ganzen Oberfläche dicht mit kleinen Granula besetzt, die GRUBE (1840) als rundliche Pustelchen beschreibt, die aber bei näherer Untersuchung sich als kurze, abgerundet endigende Cylinderchen herausstellen, wie das MÜLLER & TROSCHEL (1842) schon ganz richtig erwähnen. Bei grossen Exemplaren zählt man im proximalen Armbandschnitt vom aboralen zum aboralen Rande der Platte 9 oder 10 dieser Granula, von denen die drei oder vier mittleren einen Durchmesser von 0,25 mm haben und fast doppelt so dick sind wie die seitlichen; dass aber die mittleren Granula zugleich sehr viel niedriger sind als die seitlichen, wie MÜLLER & TROSCHEL angeben, kann ich nicht bestätigen; sowohl an den gröberen mittleren als an den feineren seitlichen beträgt die Höhe 0,25—0,3 mm.

Die bei dem grössten Exemplare der Tabelle 2,5 mm breite und 2 mm lange, kräftig gewölbte Terminalplatte ist mit denselben Granula bedeckt wie die oberen Randplatten; doch treten zwischen den Granula jederseits vom Ende der Ambulacrallrinne 2—4 kleine, kegelförmige Stachelchen hervor.

Die Ventrolateralplatten sind nur in einer einzigen Reihe ausgebildet, die an dem 132 mm langen Exemplare jederseits von der interradialen Hauptebene aus sechs an Grösse allmählich abnehmenden, kleinen Platten besteht und zwischen der dritten unteren Randplatte und der sechsten Adambulacralplatte ihr Ende findet. Auf ihrer freien Oberfläche trägt jede Platte eine Gruppe von schüpchenförmigen, aufgerichteten Stachelchen, die mit denjenigen auf den unteren Randplatten ziemlich übereinstimmen. Wie sonst ist auch hier die Zahl dieser Stachelchen auf den grösseren ersten Ventrolateralplatten beträchtlicher als auf den letzten kleineren.

Die Adambulacralplatten sind im mittleren Armabschnitte anderthalbmal so zahlreich wie die Randplatten. Von der Adambulacralbewaffnung (s. Figur auf p. 3) geben sämtliche frühere Forscher, die sich darüber äussern: Grube, Müller & Troschel, M. Sars, Heller, an, dass sie aus zwei Reihen von Stacheln bestehe. Das ist aber nur richtig, wenn man darunter nicht die ganze Bewaffnung der Platten, sondern nur die eigentlichen. d. h. die auf dem freien Rande angebrachten Adambulacralstacheln versteht. Betrachten wir diese echten Adambulacralstacheln zunächst, so sind sie allerdings in ganz unverkennbarer Weise in zwei Reihen, eine innere und eine äussere, geordnet, von denen, wie Grube (1840) zuerst bemerkte, eine jede aus drei Stacheln besteht. Aus diesem Grunde nannte Grube die Stacheln »dreiingerig«, eine Bezeichnung, die für die inneren Stacheln in höherem Maasse zutrifft als für die äusseren, weil ihre Basen noch enger zusammengerückt sind als bei jenen. Wie Müller & Troschel (1842) erwähnen, sind ferner die inneren Stacheln dünner als die äusseren. Ihre Form ist mehr stabförmig mit verjüngtem Ende; der mittlere ist etwas länger als die beiden anderen und ähnlich wie bei anderen Arten in der Längsrichtung der Arme, jedoch nur wenig, comprimirt.

Die drei (selten nur zwei) Stacheln der äusseren Reihe stehen auf einer Linie, die sich adoral etwas weiter von der Armfurche entfernt als aboral. Der mittelste von ihnen ist der längste und zugleich etwas breiter und platter als die zwei anderen; er ist von seiner Basis bis zur Spitze gleichbreit und endigt abgerundet. Die Abplattung der äusseren Stacheln erfolgt auch bei dieser Art in der Querrichtung des Armes. Müller & Troschel geben in der äusseren Reihe nur zwei Stacheln an; doch hat schon M. Sars (1857) diese nur ausnahmsweise zutreffende Angabe berichtig. Nun folgen weiter nach aussen auf jeder Platte noch zwei selten drei, von den früheren Forschern überschene subambulacrale Stacheln, die sich in Form und Grösse den Stachelchen nähern, welche die unteren Randplatten bedecken, und eben deshalb unbeachtet bleiben konnten. Bei jungen und selbst noch bei mittelgrossen Thieren können diese beiden Stacheln übrigens auch noch ganz fehlen. Auf der zweiten Adambulacralplatte tritt schon eine Vermehrung der äusseren adambulacralen und der subambulacralen Stacheln ein, und auf der ersten Adambulacralplatte findet man sie ersetzt durch zwei parallel mit einander und quer zur Armfurche verlaufende Reihen (Taf. 6, Fig. 5) von je 9 oder 10 kleinen, cylindrischen Stachelchen, die in ihrer Form zu den Stachelchen der Ventrolateralplatten überleiten. Vergleicht man die ganze Adambulacralbewaffnung des A. pentacanthus mit derjenigen der vorher geschilderten Arten, so stellt sich eine grosse Aehn-
Astropectinidae.

licheit mit derjenigen des A. bispinosus für alle jene Fälle heraus, in denen die äussere Reihe der echten Ambulacralstacheln auch bei dieser Art sich aus drei Stacheln zusammensetzt.

Die Munddeckplatten (Taf. 6, Fig. 8) sind in ähnlicher Weise bewehrt wie bei bispinosus und spinulosus. Jede Platte trägt ihrem suturealen Rande entlang eine Reihe von 10—12 kurzen, stumpfspitzigen Stachelchen; die beiden zu einer Munddecke gehörigen Reihen weichen in der Mitte ihres Verlaufes weiter auseinander als an ihren Enden und fassen den weichen Hautbezirk ein, welcher den zwischen je zwei zusammengehörigen Munddeckplatten befindlichen Quernuskul bedeckt. Diese Haut ist es offenbar, welche GRUBE (1840) meint, wenn er in seiner Schilderung der »Mundlappen« von einem »weichhätigen, ovalvallcettefförmigen Feldes« spricht. Ferner besitzt jede Munddeckplatte an ihrem ambulacralen Rande eine Reihe von etwa 8 Mundstacheln, von denen die beiden der interradialen Hauptebene zunächst stehenden die grössten sind und die eigentlichen Munddeckstacheln darstellen. GRUBE spricht von einer äusseren Einfassung der »Mundlappen« von jederseits etwa 18 Stacheln, was ich mir nur so erklären kann, dass er einen Theil der auf der ersten Ambulacralplatte stehenden Stacheln mitgezählt hat.

Die Madreporenplatte ist bei dem 132 mm langen Exemplare 3 mm lang und 3,5 mm breit. Auf ihrer stark gewölbten Oberfläche liegen die weilig und meist der Länge nach verlaufenden Furchen frei zu Tage. Ihr Umriss ist leicht gewellt und zeigt nur in der Mitte des oberen Randes eine fast 1 mm tiefe Einbuchtung, in die sich eine Gruppe von 4 oder 5 kleinen, dichtstehenden Paxillen (bei anderen Exemplaren wohl auch nur ein, dann aber viel grösserer Paxillus) eingesenkt hat. Die Entfernung des unteren Randes der Platte von den oberen Randplatten beträgt 2 mm, die des oberen Randes vom Scheibencentrum etwa 7 mm. Vom unteren Rande der Platte bis zu den oberen Randplatten zählt man 4 Paxillen.

Der Rücken (Taf. 2, Fig. 5) ist zart gelblichbraun mit einer dunkleren bräunlichen Längsbinde auf dem Mittelfelde der Arme; »graurothe« oder »graulich ins Gelbliche« gefärbte oder gar »ziegelrothe« Exemplare, von denen GRUBE, MÜLLER & TROSCHEL und HELLER sprechen, sind mir nie zu Gesicht gekommen. DELLE CHIAIE bezeichnet die Farbe das eine Mal (1825) als dunkelfleischfarbig, das andere Mal (1841) als ockerfarb. In den Interradien schimmert häufig die Ansatzlinie des Interbrachialsegments als eine etwas dunklere Linie durch. Die oberen Randplatten sind im distalen Abschnitt des Armes durch einen zarten hellen violetten oder lilafarbenen oder himmelblauen, seltener (bei jungen Thieren) rosafarbenen Anflug ausgezeichnet, der gegen die Armpitze hin an Intensität zunimmt und auf der Terminalplatte am stärksten ist. Die Madreporenplatte ist zart hellviolett oder blau oder lila oder (bei Jungen) rosa gefärbt. Die Bauchseite ist gelblich mit einem Hauch von rosa; die Füsschen gelblichweiß (selten dunkler), an der Spitze weiss. Junge Thiere sind oft auf der ganzen Oberseite blass fleischfarbig, auf der Unterseite rosa, an den Armenden weiss.

In horizontaler Richtung erstreckt sich die Verbreitung der Art durch das Mittelmeer und den zunächst gelegenen Theil des atlantischen Oceans. Im östlichen Theile des Mittelmeeres ist sie namentlich aus dem adriatischen Meere bekannt: von Triest (Jon.

Vertical reicht ihr Verbreitungsbezirk von 9 bis 932 m. Während sie bis dahin nur bis zu Tiefen von 64 m beobachtet war, fand v. Marenzeller (1893) sie bei Anti-Milos in der beträchtlichen Tiefe von 629 m und neuerdings (1895) in der südlichen Adria in 70—179, in der Strasse von Otranto sogar in 932 m und Studer bei den Capverden in 210 m. Bemerkenswerth ist, dass aus diesen grösseren Tiefen vorzugsweise junge Exemplare hervorgeholt worden sind. Ebenso sind es nur junge Thiere, die ich in Colombo's Ausbeute aus der Umgegend von Capri (südlich, nordwestlich und nordöstlich von der Insel) aus Tiefen von 66 bis 110 m vorfand.

4a. Astropecten pentacanthus (Delle Chiaje) var. serratus (M. T.).

1512 Astropecten serratus Müller & Troschel p. 72.
1562 Astropecten serratus Dujardin & Hupé p. 123.
1575 Astropecten serratus Perrier p. 280—281.
1579 Astropecten serratus Ludwig p. 515.

1853 Astropecten mülleri Marion (Nr. 2) p. 24—25.
1855 Astropecten serratus Carus p. 90.
1889 Astropecten serratus Sladen p. 193, 212.
Ueber diese bisher für eine besondere Art gehaltene Varietät finden sich nähere Angaben nur bei Müller & Troschel (1842) und bei Perrier (1875). Dujardin & Hupé (1862) geben ebenso wie Carus (1855) nichts als Uebersetzungen der Müller-Troschel'schen Beschreibung, und Sladen (1889) wiederholt nur die Perrier'schen Mittheilungen über das Vorkommen. Die einzigen bis jetzt bekannten Exemplare befinden sich im Pariser Museum und stammen nach Perrier, der bezüglich ihrer Merkmale sich fast ganz auf den Hinweis auf Müller & Troschel's Beschreibung beschränkt, theils aus dem Mittelmeer (2 Exemplare ohne genauere Fundortsangabe, 1 von Toulon), theils von La Rochelle und aus der Bucht von Arcachon. Mit dem einzigen Zusatze, dass Perrier nur 3 oder 4 untere Randstacheln, statt wie Müller & Troschel 4 oder 5, angiebt, ist alles, was wir über die Merkmale dieser Form wissen, in der von Troschel verfassten Diagnose im »System der Asteriden« enthalten.

Das Thier hat eine Länge von 112 mm; der Armradius misst 62, der Scheibenradius 15 mm; die Zahl der oberen Randplatten beträgt 29 und die basale Breite des Armes ist 16,5 mm. Das Verhältniss r : R = 1 : 4,13; das Verhältniss der Armbreite zu R = 1 : 3,76, und die Zahl der Randplatten verhält sich zu R wie 1 : 2,14.

Die Zahl der oberen Randplatten ist also etwas kleiner als bei gleichgrossen typischen pentacanthus. Andere Unterschiede von pentacanthus sind nur in Betreff der Bewehrung der oberen und unteren Randplatten vorhanden, während Paxillen, Madreporenplatte, Terminalplatte, Adambulacralbewaffnung, Mundbewaffnung und Ventrolateralplatten ganz übereinstimmen. Zu Müller & Troschel's Beschreibung passt das vorliegende Exemplar ebenfalls bis auf einige unbedeutende Punkte, die sich gleichfalls auf die Bewehrung der Randplatten beziehen und sogleich erläutert werden sollen.

Auf den oberen Randplatten, die im übrigen ganz ebenso granulirt sind wie bei echten pentacanthus, erhebt sich, namentlich in den Armwinkeln und in den äusseren zwei Dritteln des Armes, meistens, aber nicht immer, ein in der Nähe des oberen Plattenrandes oder doch nicht weit davon entfernt stehendes, gröberes Granulum zu einem kurzen, bis 1 mm hohen, kegelförmigen Stachelchen. Mitunter geschieht das nicht nur mit einem, sondern mit zwei oder drei Granula, die dann eine kurze Querreihe bilden; doch bleibt auch dann das oberste Stachelchen grösser, während das zweite oder auch dritte den Uebergang zu den gewöhnlichen Granula der oberen Randplatten macht. Der ganze Unterschied zu der Müller-Troschel'schen Beschreibung liegt hier nur darin, dass diese Autoren 2, 3 oder mehr Stachelchen angeben, ich dagegen an meinem Exemplare meist nur eines und nur ausnahmsweise 2 oder 3 finde.

Untere Randstacheln stehen im proximalen Armaschnitt, so wie Perrier angiebt, nur drei oder vier auf je einer Platte, während bei typischen pentacanthus vier bis sechs
Astropecten pentacanthus var. serratus.

vorhanden sind. Von diesen Stacheln soll nach Müller & Troschel «der dritte vom Rande aus», also, da damit der äussere Rand der Platte gemeint ist, der drittoberste der längste sein, während bei typischen pentacanthus der zweitoberste der grösste ist. Bei dem vorliegenden Exemplare finde ich nun, dass der drittoberste allerdings verhältnissmässig länger ist, als er bei typischen Individuen zu sein pflegt, dass er auch die Länge des zweitobersten erreichen kann, aber sie doch nie übertrifft und in der Regel etwas dahinter zurückbleibt. Beide Stacheln, der zweitoberste und der drittoberste, zeichnen sich durch ihre Schlankheit aus und werden bis 4,5 mm lang; im Armwinkel nehmen sie wie bei typischen Vertretern der Art eine abgeplattete Form an.

Nach dem Gesagten wird wohl kein Zweifel sein, dass man auf solch unbedeutende, der Variabilität stark unterworfene Unterschiede hin keine besondere Art von pentacanthus abtrennen kann. Aber als Varietät kann man serratus gelten lassen und als ihre Merkmale angeben, dass

1. die Zahl der oberen Randplatten etwas kleiner ist;
2. einzelne Granula der oberen Randplatten sich zu winzigen Stachelchen erheben;
3. die unteren Randstacheln etwas sparsamer an Zahl, dafür aber länger werden.

Zu dieser Varietät gehört auch der von Marion (1883 Nr. 2) unvollständig beschriebene und als Astropecten mülleri M. Tr. bezeichnete Seestern, den er südlich von Marseille aus 105 m Tiefe fischt1).

Im Anschluss an die Besprechung des A. serratus mögen einige Bemerkungen über eine andere angebliche Art folgen.

nacher die beiden von Giebel erwähnten Exemplare in Augenschein nehmen und fand meine Vermuthung, dass es sich um eine mit serratus übereinstimmende Form handle, bestätigt. Ich trage deshalb kein Bedenken, der seit Müller & Troschel von Niemandem wiedergefundenen Art A. hispidus dadurch ein Ende ihres zweifelhaften Daseins zu bereiten, dass ich sie als identisch mit der Varietät serratus ebenfalls zu pentacanthus ziehe.

1) Durch Marion's irrthümliche Meinung, dass er den echten A. mülleri = irregularis bei Marseille aufgefunden habe, erklärt sich, dass Sladen (1859, p. 195 u. 731) den A. irregularis Linn. als Bewohner des Mittelmeeres aufführt.

5. Art. Astropecten jonstoni (Delle Chiaje).

Taf. 2, Fig. 3; Taf. 6, Fig. 9.

1844 1859 1862 1862 Astropecten jonstoni Delle Chiaje Vol. 4, p. 58; 1880 1889 1883 1885 1888 1889 1893 1896
(—partim). 1883 Astropecten squamatus Marion [Nr. 1] p. 54.
1862 Astropecten squamatus Dujardin & Hupé p. 127. 1885 Astropecten squamatus Carus p. 90.
1889 Astropecten squamatus Koehler p. 410. 1891 Astropecten squamatus Marchisio p. 3.
1896 Astropecten squamatus Marchisio p. 3.

Nicht weniger als dreimal ist die vorliegende Form, die in ihrer Gattungszugehörigkeit dieselbe einfache Geschichte wie die beiden vorhergehenden Arten hat, als neue Art beschrieben worden, zuerst von DELLE CHIAJE (1825) unter dem Namen jonstoni, dann von Müller & Troschel (1844) als squamatus und endlich von DE FILIPPI (1859) als aster. Dass De Filippi's A. aster mit Müller & Troschel's squamatus identisch sei, wurde schon von Lüt-

1) Nicht f. 25, wie es in meinem Prodromus 1879, p. 543 durch Wiederholung eines im DELLE CHIAJEschen Text stehenden Druckfehlers heisst.
2) DUJARDIN & HUPÉ schreiben johnstoni statt jonstoni. DELLE CHIAJE hat die Art zu Ehren des JOHANNES JONSTONUS (1603—1675) genannt, der zwar eigentlich JOHN JOHNSTONE hiess, sich aber in seinen wissenschaftlichen Publikationen stets Jonstonus schrieb.
3) Von den dort aufgeführten Citaten gehören Astropecten jonstoni Müller & Troschel und A. jonstoni Heller nicht klerher, sondern zu A. spinulosus.
Astropecten jonstoni.

Sie ist die kleinste unter den mittelmeerischen Astropecten-Arten und zeichnet sich durch einen zarten, zierlichen Habitus (Taf. 2, Fig. 3) aus. Ihre Arme sind verhältnismässig kürzer und an der Basis breiter als bei den anderen Arten; die Seitenränder verlaufen bis zu dem ziemlich spitzen Ende der Arme in gerader Richtung und biegen in den Armwinkeln in flacherem Bogen in einander um, als es bei den anderen Arten der Fall ist. Die dünne Rückenhaut ist im Leben leicht gewölbt, mit fünf den Interradien entsprechenden, seichten Einsenkungen, die in den Armwinkeln an den oberen Randplatten beginnen und etwa halb so lang sind wie der Radius der Scheibe; unterhalb dieser Einsenkungen befestigen sich die interbrachialen Septen an die innere Fläche der Rückenhaut. Die mittlere Partie des Scheibenrückens erhebt sich zu einer niedrigen, flach gewölbten bis kegelförmigen Protuberanz, die im Leben nicht immer deutlich ist, an den Spiritus-Exemplaren aber, deren Rückenhaut im übrigen einsinkt und flacher wird, in der Regel deutlich hervortritt. Bei jungen Thieren ist die Protuberanz durchweg höher als bei älteren. Bei jungen und alten Exemplaren fallen an der stark abgeflachten Bauchseite die von einem zierlichen Schuppensaume eingefassten nackten Mittelfelder der unteren Randplatten sofort ins Auge.

Die Zahl der Arme beträgt an allen in der Litteratur erwähnten Exemplaren fünf, ebenso an allen, die mir vor Augen gekommen sind, mit alleiniger Ausnahme eines vierarmigen Thieres, das sich in der Sammlung der zoologischen Station zu Neapel befindet.

Das grösste der mir vorliegenden Exemplare hat eine Länge von 68 mm. Lütken hatte, wie sich aus den von ihm mitgetheilten Maassen des Armradius ableiten lässt, Exemplare vor sich, deren grösstes etwa 65 mm lang war. De Filippi's Thiere überschritten die Länge von 60 mm nicht. Man wird also nicht fehl gehen, wenn man rund 70 mm als die normale Maximalgrösse der Art ansieht. Das schliesst nicht aus, dass in seltenen Ausnahmefällen eine noch bedeutendere Grösse erreicht werden kann; Philippi gibt nämlich für sein Exemplar die Länge von 3 Zoll = annähernd 80 mm an.

Der Scheibenradius verhält sich zum Armradius bei den 22 Exemplaren der Tabelle im Durchschnitt wie 1 : 2,93, also rund wie 1 : 3 (Minimum 1 : 2,5; Maximum 1 : 3,22). Bei den 11 grösseren Exemplaren der Tabelle erhält man das Durchschnittsverhältniss

1) Ich kann deshalb Koehler (1894) nicht zustimmen, wenn er in seiner vor Kurzem erschiene[n] Schrift über die Echinodermen des Golfes von La Ciotat Asterias jonstoni Delle Chiaje als Synonym zu Astropecten spinulosus stellt.
A. strotectinidae.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>Z</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>1</td>
<td>68</td>
<td>37</td>
<td>11,5</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
<td>33</td>
<td>11</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>36</td>
<td>12</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>64</td>
<td>34</td>
<td>12</td>
<td>27</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>63</td>
<td>37</td>
<td>12</td>
<td>30</td>
<td>13,5</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>33</td>
<td>11</td>
<td>27</td>
<td>12,5</td>
</tr>
<tr>
<td>7</td>
<td>59</td>
<td>33</td>
<td>11</td>
<td>28</td>
<td>11,5</td>
</tr>
<tr>
<td>8</td>
<td>59</td>
<td>33</td>
<td>10,5</td>
<td>25</td>
<td>12,5</td>
</tr>
<tr>
<td>9</td>
<td>58</td>
<td>33</td>
<td>11</td>
<td>26</td>
<td>12,5</td>
</tr>
<tr>
<td>10</td>
<td>58</td>
<td>31</td>
<td>10</td>
<td>28</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>58</td>
<td>32</td>
<td>11</td>
<td>27</td>
<td>12,5</td>
</tr>
<tr>
<td>12</td>
<td>55</td>
<td>33</td>
<td>12</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>52</td>
<td>30</td>
<td>12</td>
<td>26</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>51</td>
<td>29</td>
<td>9,5</td>
<td>28</td>
<td>10,5</td>
</tr>
<tr>
<td>15</td>
<td>50</td>
<td>28</td>
<td>9,5</td>
<td>24</td>
<td>10,5</td>
</tr>
<tr>
<td>16</td>
<td>49</td>
<td>27</td>
<td>9</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>47</td>
<td>27</td>
<td>10</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>44</td>
<td>25</td>
<td>9</td>
<td>25</td>
<td>9,5</td>
</tr>
<tr>
<td>19</td>
<td>40</td>
<td>23</td>
<td>8</td>
<td>24</td>
<td>8,5</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>22</td>
<td>7</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>21</td>
<td>36</td>
<td>21</td>
<td>8</td>
<td>20</td>
<td>8,5</td>
</tr>
<tr>
<td>22</td>
<td>33</td>
<td>18</td>
<td>6,5</td>
<td>19</td>
<td>7</td>
</tr>
</tbody>
</table>

1:3,03, bei den 11 kleineren 1:2,82. Vergleicht man nur die fünf grössten mit den fünf kleinsten, so ergiebt sich für jene r':R = 1:3,03 (Minimum 1:2,83; Maximum 1:3,22), für diese r':R = 1:2,83 (Minimum 1:2,62; Maximum 1:3,14).

bei typischen Exemplaren von 165 und 85 mm Grösse, zu 1,71 bei Exemplaren der Varietät platyacanthus von 182 und 90 mm Grösse. Bei spinulosus von 96 und 40 mm Grösse beträgt er 1,42 und bei pentacanthus von 180 und 95 mm Grösse 1,18. Dagegen fand ich bei jonstoni von 65 und 33 mm Grösse den betr. Werth nur zu 1,08. Ordnet man die fünf Arten nach diesem Gesichtspunkte in eine aufsteigende Reihe, so folgen aufeinander jonstoni, auwantiacus, pentacanthus, bispinosus, spinulosus und endlich bispinosus var. platyacanthus.

Vergleicht man die von mir für das Verhältniss \(r : R \) bei der vorliegenden Art gefundenen Ziffern mit den Angaben früherer Autoren, so ist zunächst zu bemerken, dass Philipp's (1837) Bemerkung \(2 r : R = 1 : 1,3 \), d. h. \(r : R = 1 : 2,6 \), bei einer Grösse des Thieres von rund 80 mm nicht recht stimmt, sodass man Zweifel daran bekommt, ob wirklich Philipp's Form, wie er annimmt, mit Delle Chiaje's jonstoni identisch ist. Doch muss man diesen Zweifel unterdrücken, wenn man seine einzig und allein auf die vorliegende Art passende Bemerkung, dass die unteren Randplatten nackt seien, daneben hält. Müller & Troschel's (1844) Angabe \(1 : 3 \) stimmt, wie ich mich an ihrem Originalexemplar überzeugen konnte, durchaus mit meinem Ergebniss überein. De Filippi (1859) drückt sich über das Verhältniss der Armlänge zur Grösse der Scheibe so aus, dass man auf den ersten Blick glaubt, es sei wesentlich von dem Werthe \(1 : 3 \) verschieden. Er sagt nämlich »diametro disci ad longitudinem radiorum uti 1 : 1«. Doch erweist sich die vollständigste Übereinstimmung mit Müller & Troschel's Behauptung, sobald man überlegt, dass De Filippi unter Armlänge nicht die Länge des ganzen Antimers, sondern nur die Länge des freien Armes, von der Scheibe an gemessen, meint. Dass seine Worte so verstanden werden müssen, geht übrigens auch zweifellos aus den Maassen hervor, die neuerdings Marchio (1893) von den ihm vorgelegenen 19 Originalexemplaren De Filippi's veröffentlicht hat. Aus denselben berechnet sich das Durchschnittsverhältniss \(r : R = 1 : 2,99 \); es unterscheidet sich also nur unbedeutend von dem von mir beobachteten Durchschnitt. Die Differenz erklärt sich daraus, dass De Filippi's Exemplare sich alle zwischen einer Länge von 46—60 mm bewegen, die meigen dagegen von 33—65 mm schwanken; greife ich aus meiner Tabelle nur die 12 Exemplare von 47—60 mm Grösse heraus (Nr. 6—17), so erhält ich für diese das Verhältniss \(1 : 2,92 \), also ganz übereinstimmend mit den De Filippi'schen Exemplaren. Ebenso trifft es im Ganzen zu, wenn Lütken (1864) mittheilt, dass bei Thieren, deren R zwischen 25 und 33 mm schwankt, \(r : R \) höchstens \(1 : 3 \) beträgt; doch giebt es kleine Ausnahmen davon; z. B. ist bei meinem Exemplar No. 8 \(r : R = 1 : 3,14 \), bei No. 10 = 1 : 3,1 und bei No. 14 = 1 : 3,05.

Die Breite der an ihrer Basis gemessenen Arme beträgt bei den 22 Exemplaren der Tabelle durchschnittlich 11,25 mm, was sich zur durchschnittlichen Länge von R (= 29,77 mm) verhält wie \(1 : 2,67 \). Bei den fünf grössten Exemplaren ergiebt sich dieses Verhältniss wie \(1 : 2,66 \), bei den fünf kleinsten wie \(1 : 2,56 \). Die Arnbreite ist demnach bei jüngeren Thieren

1) Marchio (1893) giebt zwar selbst das Verhältniss \(1 : 2,5 \) an; aus seinen eigenen Ziffern geht aber hervor, dass das ein Irrthum ist.
im Verhältniss zur Armlänge nur wenig grösser als bei erwachsenen. Schon De Filippi verglich die Armbreite mit der Armlänge, d. h. mit der Länge des freien Armes. Letztere beträgt fast das Doppelte von jener und es kann deshalb nur auf einem Versehen beruhen, wenn in De Filippi's Text gerade das Umgekehrte zu lesen steht: «Cinq bras, dont la largeur à la base mesure deux fois la longueur».

Die kleinen, aber im Verhältniss zur Grösse des ganzen Thieres doch kräftig entwickelten, 0,5 mm hohen und bei ausgebreiteter Krone fast ebenso breiten Paxillen nehmen wie gewöhnlich nach der Arm spitze hin, ferner am Rande der oberen Randplatten und in einem hier ziemlich grossen centralen Bezirke der Scheibe an Grösse ab. Im mittleren Abschnitte des Armes zählt man quer über den ganzen Armrücken 16—18 Paxillen, von denen 4 oder 5 dichter gestellte dem Mittelfelde, die übrigen den Seitenfeldern des Armrückens angehören; letztere sind in deutliche Querreihen geordnet, deren man auf die Länge von 6 Randplatten 14 zählt, also 2—3 auf je eine Platte. Die Paxillenkronen setzen sich im peripherischen Theile der Scheibe und im proximalen Armabschnitt aus etwa 20 cylindrischen Stachelchen zusammen, von denen 11—13 einen äusseren und 6—8 einen inneren concentrischen Kreis um ein centrales Stachelchen bilden; am häufigsten stehen im äusseren Kranze genau 12 und im inneren genau 6. In der Nähe der Arm spitze fällt der innere Kranz allmählich aus und der äussere besteht aus immer weniger Stachelchen. Der Schaft der Paxillen ist am oberen Ende deutlich angeschwollen; das innere Ende des Schaftes springt etwas über die untere Fläche der Basalplatte vor, sodass man bei der Innenansicht der Rückenhaut an einem getrockneten Exemplare auf der Mitte einer jeden Basalplatte eine niedrige warzenförmige Vorwölbung antrifft. Die Basalplatten selbst sind, wie bei den übrigen Arten, stets ohne unmittelbare Verbindung miteinander und haben bei 0,5 mm Querdurchmesser auch hier eine hexagonale Grundform, die sich im Mittelfelde der Arme fast kreisförmig abrundet, in den Seitenfeldern aber weniger als bei den anderen Arten in die Länge streckt, dafür aber ihre abgerundeten Ecken häufiger als kurze Fortsätze hervortreten lässt und dadurch eine sechs- oder auch nur fünf- oder vierarmige Sternform annimmt.

Die Papulae stimmen in Form und Anordnung mit denen der anderen mittelmeerischen Astropecten-Arten überein.

Die Zahl der oberen Randplatten beträgt bei den 22 Exemplaren der Tabelle 19—30, im Durchschnitt 26; bei den fünf jüngsten Exemplaren zählt man 19—25, im Durchschnitt 22,4, bei den fünf ältesten 27—30, im Durchschnitt 28,8. Philippi (1837) giebt für ein grosses Exemplar etwa 30 an; Müller & Troschel (1844) ebenfalls 30, was aber für die Grösse ihres Exemplares wohl ein wenig zu hoch gegriffen ist. De Filippi (1859) spricht von nur 22 Platten, was indessen nach Marchisio (1893) in 25—28 zu berichtigen ist und dann auch nach meinen Beobachtungen für 46—60 mm grosse Thiere zutrifft mit der alleinigen unbedeutenden Ausnahme, dass mein Exemplar No. 15 erst 24 obere Randplatten aufweist. Lütken (1864) zählte bei vier Exemplaren, deren R 25—33 mm maass, 26—28 Platten, während ich bei ebenso grossen 24—28 antrat.
Bei meinen fünf jüngsten Thieren verhält sich die Randplattendicke zu der in mm ausgedrückten Länge von R durchschnittlich wie 1 : 0,97, dagegen bei den fünf grössten wie 1 : 1,23; bei dem kleinsten wie 1 : 0,95, bei dem grössten wie 1 : 1,23. Die Zahl der oberen Randplatten nimmt also auch bei dieser Art langsamer zu als die Armlänge. Anfänglich misst die Armlänge noch etwas weniger mm, als man Randplatten zählt, und schliesslich etwa 1 1/4 mal so viele. Während R sich an Länge verdoppelt hat (von 18 auf 37 mm), hat die Zahl der oberen Randplatten nur um rund die Hälfte ihrer anfänglichen Ziffer zugenommen (von 19 auf 30).

Die dorsale Fläche der oberen Randplatten geht durch eine im Armwinkel schärfer Wölbung in die laterale Fläche über. Bei erwachsenen Exemplaren hat die erste obere Randplatte an ihrem oberen Rande eine Länge von 1 mm; in der Armmitte beträgt die Länge der Platten ebensoviel, sinkt dagegen an der Arm spitze auf 0,75 mm. Die Breite der ersten Platte misst 3—4 mm, während sie im mittleren Armabschnitt 2,5—2,25 und an der Arm spitze nur noch 1,25—1 mm beträgt.

Oberflächlich sind die Platten ganz dicht mit Granula bedeckt, die an den Rändern der Platte an Dicke abnehmen; vom adoralen zum aboralen Plattenrande zählt man der Granula (im mittleren Armabschnitt 6 oder 7. Nach MÜLLER & TROSCHEL (1844) sollen die oberen Randplatten der Stacheln vollständig entbehren. Aber schon an ihrem Originalexemplare konnte ich (1880) vereinzelte kurze Stacheln nachweisen. Nach LÜTKEN'S (1864) und meinen übereinstimmenden Beobachtungen ist das völlige Fehlen dorsaler Randstacheln der seltenere Fall; viel häufiger sind sie vorhanden und zwar nicht nur bei alten, sondern auch bei jungen Thieren, sodass man ihr Auftreten keineswegs etwa als eine Alterserscheinung auffassen kann. Das Unbeständige in ihrem Vorkommen und Fehlen, auf das übrigens schon DE FILIPPI (1859) hingewiesen hat, scheint ganz individueller Art zu sein. Bei sieben Exemplaren von 40—68 mm Grösse fand ich z. B. bei einem (68 mm grossen) alle dorsalen Randplatten mit Ausnahme der beiden ersten, bei vier anderen (40—58 mm grossen) alle mit Ausnahme der (drei oder) vier ersten bestachelt1; bei dem sechsten Exemplare (von 51 mm Länge) ist an einem Arme eine einzige Platte, die zehnte, bestachelt, alle übrigen sind ohne Stacheln; bei dem siebenten Exemplare endlich (von 59 mm Länge) sind alle dorsalen Randplatten ausnahmslos unbestachelt. Ferner zeigte MARCHISIO (1893) an den DE FILIPPISchen Originalexemplaren, dass selbst die rechte und linke Seite desselben Armes sich in Zahl und Anordnung der Stacheln recht verschieden verhalten kann. Ueberblickt man eine grössere Anzahl von Exemplaren, so stellt sich heraus, dass die Stacheln mit besonderer Vorliebe, wie schon DE FILIPPI bemerkt hat, im proximalen Abschnitt und dann zunächst, worauf auch LÜTKEN hinweist, im distalen Armabschnitt in Wegfall kommen, am längsten aber erhalten bleiben auf dem mittleren Theile des Armes. Stets kommt auf eine Platte nicht mehr als ein Stachel und dieser ist auf der

1 In meiner kleinen Abhandlung aus dem Jahre 1880, p. 59, Zeile 12 von unten heisst es durch ein Verschen bei der Correctur »stachellos« statt »bestachelt«. — Neuerdings erwähnt KÖHLER 1894, dass seine Exemplare aus dem Golf von La Cotat durchweg nur auf den ersten oberen Randplatten der Stacheln entbehren.
dorsalen Fläche derselben in der Nähe ihrer Umbiegung in die laterale Fläche so angebracht, dass er auf der Längsmitte der Platte steht und von ihrem oberen Rande um 4—6 Granula entfernt bleibt. Immer haben die Stacheln die Form eines kleinen, stumpfspitzen Kegels von etwa 0,5 mm Höhe.

Die Terminalplatte besitzt meistens eine Länge von 1,5 und eine Breite von 2 mm und ist mit ähnlichen Granula bedeckt wie die oberen Randplatten. In der Nähe des Endes der Ambulacralfurche strecken sich die Granula zu ganz kurzen, stumpfen, kegelförmigen Stacheln, die jederseits von der Furche eine Längsreihe bilden können.

Über die Zahl der am Aussenrande der unteren Randplatten stehenden unteren Randstacheln lauten die Angaben der Autoren nicht ganz übereinstimmend; doch lässt sich
Astropecten jonstoni.

57
der Widerspruch leicht durch Vergleichung einer grösseren Anzahl von Exemplaren heben. PHILIPPI (1837) gibt nur einen Randstachel auf jeder unteren Randplatte an, DELLE CHIAE (1825, 1841) und LÜTKEN 1864 einen oder zwei, MÜLLER & TROSCHEL (1844) und DE FILIPPI (1859) zwei und MARCISIO (1893) zwei oder mehr. Alle diese Beobachtungen treffen zu je nach dem Exemplare, das man gerade vor sich hat, und je nachdem, ob man den proximalen oder den mittleren Armabschnitt untersucht. Bei grossen Exemplaren finde ich in der Regel die folgenden Verhältnisse, mit denen LÜTKEN’s Angaben am besten übereinstimmen: die erste Platte besitzt nur einen Randstachel, ebenso die zweite; bei der dritten und vierten tritt zu diesem Randstachel noch ein kleinerer hinzu, der aber auf der vierten schon ebenso gross werden kann wie der andere; von der fünften Platte an sind zwei gleich grosse Randstacheln vorhanden, neben denen aber von der sechsten Platte an manchmal noch ein dritter kleinerer stehen kann. Häufig kommt es indessen vor, dass die beiden grossen Randstacheln von ungleicher Grösse sind; dann ist immer der aborale derjenige, der den anderen erheblich an Länge und Breite übertrifft. Diese, namentlich im proximalen Theile des Armes häufige Ungleichheit der beiden Stacheln haben sowohl DELLE CHIAE („spina unica, compressa, subspatulata, saepius inaequaliter geminata“) als auch DE FILIPPI und MARCISIO beobachtet und ich selbst habe sie an einem der MÜLLER & TROSCHEL’schen Original-Exemplare wieder- gefunden. Die Stacheln stehen nebeneinander, d. h. in der Längsrichtung der Arme hintereinander, sind horizontal gerichtet, in dorsoventraler Richtung abgeplattet, ziemlich breit, an ihrem freien Ende gewöhnlich kurz zugespitzt oder lanzettförmig und werden 2—2,5 mm lang.

Ventrolateralplatten fand ich bei einem 64 mm grossen Exemplare jederseits von der interradialen Hauptebene nur sechs, die sich in einer einzigen Reihe bis zur sechsten Adambulacralplatte erstreckten. Die vier ersten sind etwas grösser und nehmen den Raum zwischen der ersten unteren Randplatte und den vier ersten Adambulacralplatten ein: die beiden letztten sind kleiner, nur halb so gross wie jene und liegen zwischen der zweiten unteren Randplatte und der fünften und sechsten Adambulacralplatte. Oberflächlich sind die Ventrolateralplatten mit aufgerichtet, etwas abgeplattet, stumpf endigenden, kleinen Stachelchen bedeckt, die den Übergang von den Schüppchen der unteren Randplatten zu den Stacheln der Adambulacralplatten machen.

Die Adambulacralplatten sind im mittleren Armabschnitte anderthalbmal so zahlreich wie die Randplatten. Die eigentlichen Adambulacralstacheln sind so angeordnet, dass sie, wie schon DE FILIPPI (1859) und MÜLLER & TROSCHEL (1844) angeben, auf jeder Platte eine innere und eine äussere Längsreihe bilden, von denen eine jede aus drei Stacheln zusammengesetzt ist s. Figur auf p. 3. Unter den drei Stacheln der inneren Reihe ist der mittlere leicht säbelförmig comprimirt und gebogen, erheblich länger und auch ein wenig dicker als die beiden anderen, die unter sich gleich gross sind und die Form eines nur wenig gebogenen, cylindrischen Stübschens haben. Auch unter den drei Stacheln der äusseren Reihe ist der mittlere durch seine Grösse ausgezeichnet: er ist nicht nur länger (bis 1,5 mm lang), breiter, dicker und dabei verhältnissmässig doch platter als seine beiden mehr cylindrischen Nachbarn, sondern überraschend.
trifft überhaupt durch seine Stärke alle anderen Stacheln der Adambulacralplatte. Seine Spitze hat eine kurz abgestumpfte Gestalt. Die besondere Grösse dieses Stachelns hat schon De Filippi bemerkt; aber es ist nicht ganz zutreffend, wenn er ihn conisch nennt, da er in der Querrichtung des Armes deutlich abgeplattet erscheint. Weiter nach aussen von den eben beschriebenen Stacheln trägt jede Adambulacralplatte noch 2—4 kleinere Stacheln, die von allen früheren Autoren mit alleiniger Ausnahme von Lütken (1864) unbeachtet gelassen worden sind. Indessen fasste Lütken sie nicht als eine besondere Gruppe auf, sondern warf sie mit den drei Stacheln der äusseren Reihe zusammen; so erklärt es sich, dass er im Gegensatz zu De Filippi und Müller & Troschel, statt von drei von fünf bis sechs äusseren Adambulacralstacheln spricht. — Auf der dritten und zweiten Adambulacralplatte vermehrt sich die Zahl der äusseren Adambulacralstacheln und der subambulacralen Stacheln; zugleich wird der sonst durch seine Stärke ausgezeichnete mittlere unter den äusseren kleiner und den anderen ähnlicher. Noch reichlicher ist die Bewaffnung der ersten Adambulacralplatte; ausser den drei Stacheln der inneren Reihe trägt sie eine quer zur Armfurchen verlaufende Doppellreihe von je 8 oder 9 kleinen, gleichgrossen, cylindrischen Stachelchen.

Die Munddeckplatten (Taf. 6, Fig. 9) sind auf ihrer ventralen Oberfläche ziemlich dicht mit stumpf endigenden Stachelchen bedeckt, von denen eine Reihe dem natürlichen Rande entlang läuft und aus sieben bis neun Stachelchen besteht; auf diese Reihe folgen, fast parallel damit verlaufend, noch zwei allmäthlich kürzere und dementsprechend weniger stachelreiche Reihen; ferner sind auch der distale und ambulacrale Rand der Platte mit ähnlichen geformten Stacheln besetzt, die am ambulacralen Rande um so mehr an Grösse (bis zum Doppelten) zunehmen, je näher sie der interradialen Hauptebene stehen. Blickt man von der Dorsalseite auf eine Munddecke, so sieht man sie jederseits von der interradialen Hauptebene mit drei grösseren, etwas gebogenen, stumpf endigenden Mundstacheln besetzt, die an Länge und Dicke abnehmen und an die sich manchmal noch ein kleinerer vierter anschliesst. Bis jetzt ist die Mundbewaffnung nur von Lütken (1864) ganz kurz beschrieben worden. An seinen Exemplaren fand er jederseits von der interradialen Hauptebene zwei längere und zwei kürzere Munddeckstacheln, was nach meinen Beobachtungen zwar mitunter, aber durchaus nicht immer der Fall ist, da der vierte Stachel so klein und so gestellt sein kann, dass er sich von den Stachelchen der ventralen Oberfläche der Platte nicht unterscheiden lässt.

Dieser Abstand hat eine Länge von 1,5—2 mm, beträgt also, entsprechend den Angaben von MÜLLER & TROSCHEL (1844) und MARCHISIO (1893), ungefähr ebensoviel wie die eigene Länge der Platte. Vom Mittelpunkte der Scheibe ist der obere Rand der Platte etwa 7 mm, also das 3—3½ fache der Plattenlänge entfernt.

In der Rückenansicht (Taf. 2, Fig. 3) des Thieres fällt stets auf, dass die oberen Randplatten einschliesslich der Terminalplatten eine blau bis blaugraue Farbe haben, von der sich die Färbung der am Rande hervorstehenden unteren Randstacheln scharf absetzt; letztere sind nämlich gelblichweiss, an ihrer Basis orangegelb und haben kurz über ihrer Basis einen bräunlichen Fleck. Das Blau der oberen Randplatten ist bald dunkel, bald (an anderen Exemplaren heller, ebenso das Orange der unteren Randstacheln. Im Uebrigen ist der Rücken grünlich oder bräunlich olivenfarbig, auf der Längsmitte der Arme dunkel. Manchmal hat der ganze Rücken eine blaugrüne, helle Färbung; aber auch dann sind die oberen Randplatten entschiedener blau als der übrige Rücken. Die Madreporenpalte zeichnet sich meistens durch etwas hellere Färbung vor ihrer Umgebung aus und hat mitunter einen fahl rötlichen Anflug. An der Unterseite sind die nackte Stellen der unteren Randplatten blass zinnoberroth, sonst ist die ganze Bauchseite gelblich-weisslich. Die Fässchen sind farblos.

Ueber die verticale Verbreitung bemerkt KOELLER (1894), dass die Species im Golf von La Ciotat nur in der geringen Tiefe von 3—4 m angetroffen wird und sich auf Sandboden aufhält. MARION (1883) fand sie im Golf von Marseille in 3—10 m im Sand, und MARCHISIO (1896, gibt an, dass sie bei Rapallo wenige Centimeter unter dem Wasserspiegel zwischen

1) PERREIR (1878) führt zwar in seiner Arbeit über die geographische Verbreitung der Seesterne p. 89 die Art auch aus dem adriatischen Meer an, und auch STROSSICH (1883, p. 189) nennt sie von Lesina; doch scheinen mir diese beiden Angaben nur auf HELLE'S Mittheilung (1863) zu beruhen, von der ich oben (p. 32) schon ange-merkt habe, dass sie sich nicht auf die vorliegende Art, sondern auf A. spinulosus bezieht.

5°
Astropectinidae.

Anmerkung zur Gattung Astropecten.

Körper niedergedrückt, am Rande bestachelt; untere Randplatten deutlich, obere zu Paxillen umgewandelt; Scheibe verhältnismässig klein; Arme lang, schmal, erst im distalen Theil zugespitzt; Rücken der Scheibe und der Arme mit Paxillen besetzt; Ventrale Interradialfelder sehr klein; Ventrolateralplatten in einer langen Längsreihe; Pedicellarien vorhanden, sitzend, zangen- bis büschelförmig, aus 2 oder 3 Zangenstücken gebildet; Papulae viellappig; Füsschen ohne deutliche Saugscheibe; After fehlt.

Zwei Arten im Mittelmeer: $L.\, ciliaris$ (Phil.) und $L.\, sarsi$ (D. K.).

Bestimmungsschlüssel der beiden Arten:

Sieben Arme. Seitenpaxillen in 3 Längsreihen. 3 Querreihen von Seitenpaxillen auf je 2 Randpaxillen. Untere Randplatten mit 4 oder 5 Stacheln ciliaris.

Fünf Arme. Seitenpaxillen in 2 Längsreihen. 4 Querreihen von Seitenpaxillen auf je 2 Randpaxillen. Untere Randplatten mit 3 (selten 4) Stacheln sarsi.

1) Über eine möglicherweise hierher gehörige Bipinnaria s. die Anmerkung auf p. 16.

Taf. 1, Fig. 1, 2; Taf. 6, Fig. 25—36.

1826 Asterias tenuissima Risso p. 269.
1837 Asterias ciliaris Philippi p. 194.
1839 Luidia fragilissima Forbes p. 125 partim.
1840 Asterias pectinata Couch p. 34.
1840 Asterias ciliaris Lamarck Vol. 3, p. 258.
1841 Asterias imperati Delle Chiàje Vol. 1, p. 57—58; Vol. 5, p. 123; T. 135, f. 1, 3, 4; T. 171, f. 25; T. 172, f. S.
1842 Luidia savignyi Müller & Troeschel p. 772.
1846 Luidia savignyi Düb & Koren p. 254 partim.
1857 Luidia savignyi M. Sars p. 100—102.
1857 Luidia savignyi Lötken p. 71.
1862 Luidia ciliaris Dujardin & Hupé p. 433 partim.
1863 Luidia savignyi Heller p. 444.
1865 Luidia savignyi Norman p. 117—118.
1866 Luidia ciliaris Gray p. 4.
1865 Luidia savignyi Heller p. 55.
1869 Luidia fragilissima Robertson p. 36—37.
1869 Luidia savignyi Perrier p. 300—301; T. 18, f. 17.
1872 Luidia ciliaris Fishe p. 363.
1875 Luidia savignyi Möbius & Bütschli p. 146.
1875 Luidia ciliaris Perrier p. 32, 33, 91, 94.
1879 Luidia ciliaris Ludwig p. 541.
1883 Luidia ciliaris Sladen (»Triton«) p. 155.
1883 Luidia ciliaris Stossich p. 157.
1883 Luidia ciliaris Marion (Nr. 1) p. 94, 105.
1884 Luidia ciliaris Studer p. 43.
1885 Luidia savignyi Braun p. 309.
1885 Luidia ciliaris Carus p. 91.
1886 Luidia ciliaris Preyer p. 30.
1886 Luidia savignyi Haddon p. 618.
1886 Luidia savignyi Herdan p. 136.
1886 Luidia fragilissima Koehler p. 564.
1888 Luidia ciliaris Cuénot p. 16—18, 28, 31, 35, 42, 63, 77, 82, 83, 92, 93, 95, 105, 115, 132; T. 1, f. 22; T. 2, f. 1; T. 3, f. 3, 15; T. 5, f. 19, 20; T. 6, f. 21—25; T. 9, f. 2.
1888 Luidia ciliaris Lo Bianco p. 396.

1 Risso verweist zwar selbst bei seiner tenuissima auf Lamarck's tenuispina, sodass man glauben muss, tenuissima sei bei Risso nur ein Druckfehler für tenuispina. Seine Beschreibung der tenuissima passt aber nicht auf tenuispina, mit der vielmehr seine Asterias rubens identisch ist. Dass Risso's tenuissima sich nicht auf Asterias tenuispina, sondern nur auf Luidia ciliaris beziehen kann, geht schon aus der Schilderung der Färbung, besonders aber daraus hervor, dass er die Arme des siebenarmigen Thieres abgeplattet nennt und nur an den Seiten bestachelt sein lässt, und dass er von den Stacheln hervorhebt, sie seien »sans mamelons«, worunter er, wie aus seiner Beschreibung der Asterias glacialis zu ersehen ist, die Pedicellariengruppen rings um die Basen der Stacheln versteht. Wenn nun aber Risso's Asterias tenuissima mit Luidia ciliaris identisch ist, so ist sein Artname der ältere, dem der elf Jahre jüngere Name ciliaris welchen müsste; wir hätten dann den wunderlichen Fall, dass ein Name die Priorität bekommen soll, der nur durch einen Druckfehler entstanden ist und von seinem unabsichtlichen Urheber gar nicht in dem Bewusstsein, dass es sich um eine damals noch nicht unterschiedene Art handelt, gebraucht worden ist. Ich denke, in einem solchen Falle wird man dann doch von einer starren Anwendung des Prioritätsgesetzes Abstand nehmen müssen und dem Thiere den Namen lassen, den ihm derjenige Forscher gegeben, der zuerst eine neue Art in ihm erkannte.

2 Das Müller & Troeschi'sche Citat von Audouin's Asterias savignyi gehört nicht hierher; alle übrigen Angaben von Müller & Troeschel beziehen sich aber auf die echte L. ciliaris.

3 Aus Koehler's Notiz geht nicht sicher hervor, ob er unter L. fragilissima die L. ciliaris oder die von Forbes damit vermengte L. sarsi nennt. Ich kann also seine Angabe nur mit einigem Zweifel auf L. ciliaris beziehen.
Diagnose s. S. 103.

Nachdem FORBES die Gattung *Luidia* aufgestellt hatte, ist über die Zugehörigkeit der vorliegenden von PHILLIP (1837) aufgestellten Art zu dieser Gattung von keiner Seite irgend ein Zweifel erhoben worden. Um so schwankender ist die Bezeichnung der Art als solcher. Dass der Russosche (1826) Namen *tenassima* nicht angenommen werden kann, habe ich schon in der dem Litteraturverzeichnis beigefügten Anmerkung auseinandergesetzt. JOHNSTON's (1836) Artnamen *rubens* beruht auf einer Verwechslung 2) mit der echten *Asterias rubens* L. und kann deshalb ebenfalls keinen Anspruch auf Berücksichtigung erheben. Die Speciesnamen *perinata* von COUCH (1840) und *imperati* von DELLE CHIAJE (1841) sind ungültig, weil sie jüngeren Datums als der Name *ciliaris* sind. FORBES (1839) vermengte unter der Bezeichnung *fragilissima* unsere Art mit DUBEN & KOREN's allerdings nahe verwandter *Luidia sarsi*; andererseits haben MÜLLER & TROSCHEL (1842) die *L. ciliaris* für identisch mit AUDOUIN's *Asterias (Luidia) savignyi* gehalten. Im Folgenden wird Gelegenheit sein, die Unterschiede der *L. ciliaris* von *sarsi* näher auseinanderzusetzen. Die späteren Autoren bedienen sich meistens der richtigen Benennung *ciliaris*, doch gebräuchlich auch nicht wenige; in ungerecht- fertigter Weisuschleppung des MÜLLER & TROSCHEL'schen Irrthums, den Namen *savignyi*. Dass die echte *L. savignyi* eine ganz andere Art ist, geht aus PERRIER's (1875) und de LORIOL's (1885) Untersuchungen zweifellos hervor; es genügt hier darauf zu verweisen.

In ihrem Habitus (Taf. 4, Fig. 1) fällt die Art sofort durch die Siebenzahl ihrer Arme auf, die sich bei mittelmeerischen Seesternen regelmäßig nur noch bei *Asterias tenassima* Lam. vorfindet. Von dieser Art aber unterscheidet sich die *Luidia ciliaris* ohne Weiteres schon durch die abgeplattete, mit Paxillen gleichmässig besetzte Rückenseite, durch die reiche Bestachelung der Armränder und durch die Zweireihigkeit der Füsschen. Scheide und Arme sind auf dem Rücken flach gewölbt. Die ebenfalls abgeflachte Unterseite, die an den Armrändern vermittelt der aufwärts gebogenen unteren Randplatten in die Rückenhaut übergeht, trägt verhältnissmässig grosse, schlanke, abstehende Stacheln. Trotz der Paxillen ist die Rückenhaut

1) Ob nicht diese von COLOMBO angeführten Funde von *L. ciliaris* sich alle oder zum Theil auf *Luidia sarsi* beziehen, ist fraglich. Vergl. darüber die Anmerkung bei *Luidia sarsi* p. 55.

2) JOHNSTON bezweifelt übrigens schon selbst die Zugehörigkeit der ihm vorliegenden Thiere zu *Asterias rubens* L.
Luidia ciliaris.

wenigstens bei kleineren und mittelgrossen Exemplaren zart und sehr biegsam. Die Ränder
der langen, schmalen, zugespitzten Arme stossen an der verhältnissmässig kleinen Scheibe
unter spitzen, scharfen Winkeln zusammen.

Alle mir bekannt gewordenen Exemplare besitzen ausnahmslos sieben Arme. Schon
die jüngsten, noch an der Bipinnaria befestigten Individuen sind bereits mit sieben Armanlagen
versehen, die unter sich gleichgestaltet sind und dadurch den Gedanken an einen nachträg-
lichen Einschub zweier Arme an einem ursprünglich fünfarmigen Stern abweisen. Es ist eben
die Siebenzahl der Arme bei dieser Art von Anfang an angelegt und zu einem so beharr-
llichen Merkmal geworden, dass sie nur ganz ausnahmsweise eine Abänderung erfährt. In der
Litteratur finden sich in dieser Hinsicht nur zwei Angaben. M. Sars erwähnt (1857) ein
sechszähriges Exemplar von Messina und Bell (Catalogue, 1892) gibt an, dass auch acht-
armige Exemplare vorkommen).

Bei den jüngsten, eben erst an der Bipinnaria entstandenen Thieren sowie bei jugend-
lichen Exemplaren, deren R erst 5,5 mm misst (z. B. No. 8 meiner Tabelle2), stimmen die

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>Z</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
<td>nm</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>91</td>
<td>13</td>
<td>70</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>92</td>
<td>15</td>
<td>75</td>
<td>10,5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>104</td>
<td>13</td>
<td>81</td>
<td>11,5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>117</td>
<td>16</td>
<td>83</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>150</td>
<td>20</td>
<td>87</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>215</td>
<td>23</td>
<td>?</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>258</td>
<td>25</td>
<td>125</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>5,5</td>
<td>2,5</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>15</td>
<td>4</td>
<td>24</td>
<td>3,5</td>
</tr>
</tbody>
</table>

Arme desselben Individuums unter sich an Länge vollständig überein. Aber schon bei
einigen grösseren Exemplaren (z. B. No. 9 der Tabelle) werden sie an Länge ungleich, und bei
mittelgrossen und ganz grossen Individuen sind sie das stets mehr oder weniger; so misst
z. B. bei dem Exemplar No. 4 der Tabelle der Armaradius der sieben Arme: 117, 73, 80,
82, 85, 47 und 90 mm. Die Folge der ungleichen Armlänge ist, dass man für die Länge des

1) Einen näheren Nachweis für die Angabe Bell's kann ich in der mir zugänglichen Litteratur nicht finden.
2) Aus der auffallenden Grösse von r scheint mir hervorzuheben, dass auch der längste Arm dieses Exem-
plares, dessen R 92 mm beträgt, eine Regeneration durchgemacht und seine frühere Länge noch nicht wieder erreicht hat.
3) Für eine genaue Zählung der Randplatten war dieses Exemplar zu defekt.
4) Bei diesem Exemplare allein sind alle sieben Arme gleichlang.

An dem grössten der mir von Neapel vorliegenden Thiere hat R an dem grössten Arme gemessen eine Länge von 258 mm; wären alle anderen Arme ebenso lang, so würde das ganze Thier eine Länge von rund einem halben Meter besitzen, also fast die Maximalgrösse des Astropycten aurantiacus erreichen. Ein noch grösseres Exemplar, dessen Armradius 350 mm misst, woraus sich eine Gesammtgrösse von rund 630 mm berechnet, erwähnt neuerdings Koehler (1895) von La Ciotat; die M. Sars'schen (1857) Exemplare von Messina hatten nur bis 433 mm Durchmesser; doch stammt möglicherweise eines der Müller & Troschel'schen (1842) Exemplare, deren Maximalgrösse rund 630 mm betrug, ebenfalls aus dem Mittelmecere. An den englischen Küsten sind nach Angaben bei Forbes (1841) Exemplare mit einem Armradius von rund 230 mm keine Seltenheit; ja es lag ihm selbst ein Exemplar mit einem Durchmesser von etwa 600 mm vor. Johnston (1836) gibt 20 engl. Zoll = 508 mm als Maximalgrösse an; Bell's (Cat. 1892) grösstes Exemplar von der englischen Küste hatte einen Armradius von 220 mm. Die Art kann demnach eine Grösse erreichen, welche die von Astropycten aurantiacus noch übertrifft. Die sicilianischen Exemplare, nach denen Philipp (1837) die Art aufgestellt hat, hatten dagegen nur einen Armradius von rund 125 mm und bei den meisten
Luidia ciliaris.

65
der von mir bei Neapel beobachteten Thiere schwankte die Länge von R zwischen 100 und 200 mm.

Trotz der ungleichen Länge der sieben Arme ist deren Breite an der Basis bei allen mir vorliegenden Exemplaren unter sich gleich. Auch dieser Umstand deutet darauf hin, dass die Siebzahl der Arme von Haus aus angelegt ist, und zeigt zugleich, dass die Arme, wenn sie abbrechen, niemals hart an der Scheibe, sondern immer mehr oder weniger davon entfernt ihre Bruch- und Regenerationsstelle haben. Wie die Tabelle des Nächeren lehrt, steigt die Armbreite bei Thieren, deren R 91—258 mm misst, von 10,5 bis auf 22 mm. Zu der Länge von R verhält sich die Armbreite bei sechs mittelgrossen und grossen Exemplaren (Nr. 1, 3—7 der Tabelle) durchschnittlich wie 1 : 9,53 (im Minimum 1 : 8,27; im Maximum wie 1 : 11,9). Bei den beiden ganz jungen Thieren (Nr. 8 und 9) berechnet sich das Verhältniss AB : R = 1 : 2,75 (bei Nr. 8) und 1 : 4,28 (bei Nr. 9).

Die kräftig ausgebildeten Paxillen, die ich an dem grössten der mir vorliegenden Thiere näher untersuchte, lassen sich in drei Gruppen theilen: 1) solche, die an den oberen Rand der unteren Randplatten anstossen; wir wollen sie die ad marginalen oder Randpaxillen nennen; 2) diesen zunächst gelegene, die sich durch ihre Anordnung in deutliche Querreihen auszeichnen; sie mögen laterale oder Seitenpaxillen heissen, weil sie in ihrer Gesammtheit im Verein mit den Randpaxillen die Seitenfelder des Armrückens bilden; 3) die Paxillen des Mittelfeldes der Arme und des Rückens der Scheibe, die keine Anordnung in Querreihen erkennen lassen und mediale oder Mittelpaxillen heissen mögen.

Die Randpaxillen bilden eine einfache Längsreihe, die dem oberen Rande der unteren Randplatten folgt, und sind so vertheilt, dass jeder unteren Randplatte ein einziger admarginaler Paxillus entspricht. Die dann folgenden Seitenpaxillen sind erheblich kleiner und so gestellt, dass sie drei Längsreihen, eine äussere, mittlere und innere, und gleichzeitig

Astropectinidae.

Querreihen bilden, von denen eine jede demgemäß aus drei Stück besteht. Auf 10 untere Randplatten kommen im proximalen Armabschnitt 16 Querreihen der Seitenpaxillen; es kommen also ziemlich genau drei Querreihen auf je zwei untere Randplatten. Das breite Mittelfeld der Arme und die Scheibe, letztere nach Abzug der von den Rand- und Seitenpaxillen besetzten Peripherie, sind von den etwas kleineren, unregelmässig und dicht zusammengedrängten Mittelpaxillen eingenommen, deren man quer über den Armrückchen im proximalen Armabschnitt etwa 10 Stück zählt.

Die Paxillenkrone besteht bei den Randpaxillen aus einem Kranze von 18—20 peripherischen, abgerundeten Stachelchen und einer aus 4—6 kräftigeren Stachelchen gebildeten centralen Gruppe, in der sich meistens ein Stachelchen durch bedeutendere Stärke von den übrigen unterscheidet. Auf diese Sorte von Paxillen passt am besten die Schilderung DELLE CHIAJE'S (1841): «calicetti (so heissen bei ihm die Paxillen) con l'apice corredato di due ineguali serie di raggetti muricati, oltre il centrale. Die Kronen der übrigen Paxillen sind aus einer geringeren Anzahl von Stachelchen gebildet. An den Kronen der Seitenpaxillen (Taf. 6, Fig. 30) zählt man 10—12 peripherische und 1—3 dickere, centrale Stachelchen. Die Mittelpaxillen besitzen auf den Armen in ihrer Krone meistens 10 peripherische und nur ein dickeres centrales Stachelchen; auf der Scheibe verhalten sie sich ähnlich, doch beträgt hier die Zahl der peripherischen Stachelchen in der Regel 12. Bei jüngeren Thieren ist die Zahl der Stachelchen in den Kronen aller Paxillen geringer. So besitzen z. B. bei dem Exemplare Nr. 1 der Tabelle die Seitenpaxillen gewöhnlich nur 8 peripherische und nur 1 (selten 2) viel dickeres, centrales Stachelchen. Die Mittelpaxillen haben bei demselben Exemplare nur 7, 6 oder 5 peripherische Stachelchen und ein centrales, das schwächer ist als das der Seitenpaxillen; nach der Arm spitze hin sinkt die Zahl der peripherischen Stachelchen auf 5 oder 4, und das centrale fehlt meistens ganz. Auf dem Scheibenrückchen dieses Exemplares haben die Paxillen in der Regel 8 peripherische und 1 dickeres centrales Stachelchen.

Der Gipfel des Paxillenschafes hat bei den admarginalen und lateralen Paxillen von oben gesehen einen deutlich ovalen Umriss, dessen längerer Durchmesser quer zur Längsachse des Armes liegt. DELLE CHIAJE (1841) hat diese längliche Form des Paxillengipfels bereits bemerkt und in seine Diagnose der Art aufgenommen.

Ebenso war ihm auch schon die vierstrahlige Gestalt der Paxillenbasis aufgefallen. Es findet sich diese Vierstrahligkeit in guter Ausbildung aber nur an den Seitenpaxillen. Wie die schematische Figur (Taf. 6, Fig. 31) erläutert, ist die Basis von der Form eines lateinischen Kreuzes. Von den vier an ihren Enden abgerundeten Armen, die wir als den medialen, lateralen, adoralen und aboralen unterscheiden können, ist der laterale stets länger als die drei anderen und von diesen wieder der mediale ein klein wenig länger als der adorale und der aborale. Die Arme benachbarter Paxillen übergreifen einander in ähnlicher Weise, wie es die sechs Fortsätze der Paxillenbasen bei Plotonaster subinermis thun, nämlich so, dass der laterale und der aborale Arm in der Ansicht von aussen tiefer liegen, als der mediale und der adorale. Die Überlagerung der Fortsätze erfolgt also einerseits in der Richtung nach der Medianlinie des
Armest, anderseits in der Richtung nach der Armbasis, wie das bereits von Viguer1 für die westatlantische L. clathrata Say) gezeigt worden ist. Die längere Achse der Paxillenbasis müsste bei den Seitenpaxillen des proximalen Armabschnittes bei grossen Thieren 2,5 mm. Der bis 1,75 mm hohe Schaft der Seitenpaxillen (Taf. 6, Fig. 30) steht nicht senkrecht auf der Basis, sondern schräg, sodass er sich etwas nach der Medianebene des Armes hinneigt. Die Mittelpaxillen haben nicht mehr die gestreckte vierarmige Form der Basis; ihre Basalplatte ist vielmehr von fast gleichem Längs- und Querdurchmesser und meistens von unregelmässig sternförmigem Umriiss, indem der Rand sich in kurze, gewöhnlich in der Zahl 4, 5 oder 6 auftretende, abgerundete Fortsätze auszieht. Die, von kräftigem Bau, ebenso wie die Arme der Seitenpaxillen aus mehreren übereinanderliegenden Schichten des maschigen Kalkgewebes aufgebaut sind.

In der Nähe der Arm spitze übergreifen die Basen der Mittelpaxillen einander noch nicht und haben hier einen unregelmässig polygonalen Umriiss (Taf. 6, Fig. 25). Weiter nach der proximalen Armhälfte hin gehen sie allmähtlich in die mehr sternförmige Gestalt über und legen sich mit den Enden ihrer Fortsätze dachziegelig übereinander. Dieselbe Form, welche die Paxillen in der Nähe der Arm spitze besitzen, zeigen sie bei jungen Thieren in der ganzen Ausdehnung des Paxillenfeldes, was sich einfach daraus erklärt, dass mit dem Wachsthum des Armes im distalen Abschnitt desselben eine beständige Neubildung von Paxillen erfolgt. Ausserdem schieben sich aber auch im Mittelfelder des ganzen Armes nachträglich noch hier und da, in regeloser Weise, neue Paxillen zwischen die bereits vorhandenen, sodass man jüngere Stadien der Paxillen nicht nur an der Arm spitze, sondern in geringerer Anzahl auch in dem ganzen Mittelfelder antrifft.

Die zahlreichen Entwicklungstadien der Paxillen, die man sonach bei jungen und älteren Thieren zu beobachten Gelegenheit hat, lehnen, dass sich zuerst die Basis des Paxillus anlegt. In ihrem frühesten Stadium wird die Basis durch ein kleines, dreiaarmiges Kalkkörperchen dargestellt, dessen Arme in einem Winkel von 120° auseinanderweichen, parallel der Hautoberfläche in einer Ebene liegen und sich an den Enden wiederum unter einem Winkel von 120° gabeln. So entsteht als zweites Stadium (Taf. 6, Fig. 27) ein sechsaarmiges Körperchen, dessen Arme an ihren Enden sich aufs Neue zu vergabeln beginnen. Zugleich bemerkt man jetzt schon, dass sich auf dem Mittelpunkte des Körperchens ein nach der Hautoberfläche gerichteter kleiner Zapfen erhebt, der die Bildung des späteren Paxillenschaftes einleitet. Das ganze Körperchen hat jetzt einen Querdurchmesser von 0,042 mm. Nun fangen erst einige (Fig. 4) und schliesslich alle Gabeläste, sobald sie mit ihren Enden aufeinander treffen, an, an diesen Berührungsstellen miteinander zu verwachsen und so die ersten sechs um den Mittelpunkt des Körperchens angeordneten Skeletmaschen zu schliessen. Es ergiebt sich daraus, dass die Bildung der Maschen nach derselben Regel erfolgt wie bei den Kalkkörperchen der Holothurien2) und wohl allen Echinodermen überhaupt, jedoch in diesem be-

sonderen Falle in der Weise, dass das Primärstäbchen nur an einem Ende gegabelt, also nicht \(V \) fürmig, sondern \(V \) fürmig ist. Schematisch sind die weiteren Stadien dann die folgenden:

\[A \quad B \quad C \quad D \]

I, I, I die drei Maschen erster, II, II, II die drei Maschen zweiter Ordnung.

Da sich aber die Maschen in ihren Winkeln sofort abrunden, so erhalten sie statt der hexagonalen Grundform einen rundlichen Umriss. Werden ausserdem die Seiten der hexagonalen Maschen ungleichlang, so schieben sich die drei secundären Maschen so tief nach dem Centrum hin zwischen die drei primären, dass alle sechs fast in gleichen Abstand vom Centrum kommen. So findet man denn auch thatsächlich, dass in unserem Falle, wenn alle sechs Maschen der jungen, jetzt 0,063 mm breiten Paxillenbasis sich geschlossen haben (Taf. 6, Fig. 29), davon drei dem Mittelpunkte etwas näher liegen als die drei anderen, mit ihnen abwechselnd.

Unterdessen hat auch die Entwicklung des Paxillenschaftes weitere Fortschritte gemacht. Der kleine centrale Zapfen ist höher geworden und hat drei schräg aufsteigende, gleichweit voneinander entfernte Aeste getrieben, die sich wiederholt gabeln (Taf. 6, Fig. 29). Die Gabeläste schliessen sich dann später wieder zu Maschen, sowohl unter sich als auch mit anderen von dem Basalplättchen ausgehenden Erhebungen. Durch Wiederholung dieses Vorganges baut sich schliesslich ein immer kräftiger und höher werdender Paxillenschafft (Taf. 6, Fig. 26) auf, der sich an seinem numehr 0,08 mm dicken Gipfel abrundet, während er an seiner Wurzel verbreitert in die Basalplatte übergeht, die unterdessen durch immer neue peripherische Maschenbildung einen Querdurchmesser von 0,32 bis 0,34 mm erreicht hat.

Über der einheitlichen Anlage der Paxillenbasis und des Paxillenschaftes entwickeln sich aus besonderen Anlagen die Stacheln der späteren Paxillenkrone. Schon im Stadium der Fig. 28 (Taf. 6), wenn sich die ersten sechs Maschen der Paxillenbasis noch nicht alle geschlossen haben, bemerkt man über ihr ein nur 0,015 mm grosses sechsstrahliges Sternchen. Aus dem Sternchen wird sehr bald ein sechsspeichiges Rädchen, dass die Basis des jungen Stachels darstellt. Auf seiner Aussenseite erheben sich vier senkrecht zu ihm gestellte Kalkstäbe: ein centraler und drei peripherische, die zugespitzt endigen und in ihrem Verlaufe durch quere Kalkbrücken Maschen miteinander bilden. Die Reihenfolge, in der diese Maschen zur Ausbildung gelangen, zeigt, dass das Wachsthum des jungen Stachels im Sinne einer aufsteigenden rechtsdrehenden Spirale erfolgt. Bald nach dem Auftreten der ersten Stachelanlage bemerkt
man in ihrer Nähe eine zweite, dritte u. s. w. über dem sich entwickelnden Paxillenschafte. Mit zunehmendem Wachsthum des Schaftes werden die Stachelanlagen in die Höhe gehoben, sodass sie endlich die äusseren Hautlagen nach aussen drängen und vorstülpfen; die jungen Stacheln ragen alsdann, von einer häutigen Scheide umkleidet, als kleine Höckerchen über die Oberfläche des Thieres hervor. Stets beschränken sich die Stachelanlagen auf den Gipfel des Paxillenschafte und ordnen sich hier so, dass ein Stachelchen eine centrale, die übrigen eine peripherische Stellung einnehmen (Taf. 6, Fig. 25). Die Länge des jungen Stachels beträgt in dem in Fig. 26 (Taf. 6) gezeichneten Präparate, das aus der Rückenhaut der Scheibe eines jungen Thieres herrührt, 0,165 mm. Entsprechend seiner Entstehungsweise ist der junge Stachel seiner Länge nach dreikantig. Meistens bietet er sich in solcher Ansicht dar, dass die eine Längskante dem Beobachter genau zugekehrt oder abgekehrt liegt. Die Folge davon ist, dass man erst einen platten, nur aus zwei Längsreihen von Maschen gebildeten und am Ende dreispitzigen Stachel zu sehen glaubt. Sobald man aber die Einstellung des Mikroskopes entsprechend ändert, überzeugt man sich bald von dem wirklich sächlichen Sachverhalt. Später verliert sich durch Zwischentreten neuer Kalkmaschen die dreikantige Grundform des jungen Stachelschaftes und geht allmählich in eine drehrunde über; ebenso kommen zu den vier ursprünglichen Endspitzen bald zahlreiche andere Dornen hinzu, wie das Fig. 25 (Taf. 6) zeigt, die einem Präparate aus der Armspitze eines erwachsenen Exemplares entnommen ist.

Die Papulæ sind bei erwachsenen Exemplaren über das ganze Paxillenfeld der Arme und der Scheibe vertheilt. Völlig vermisst man sie nur zwischen den admarginalen Paxillen und den unteren Randplatten sowie an der äussersten Spitze der Arme. Am kräftigsten sind sie zwischen den lateralen Paxillen entwickelt, während sie zwischen den Mittelpaxillen um so kleiner werden, je mehr man sich der Mittellinie der Arme und dem Mittelpunkte der Scheibe nähert. Von den einfach schlauchförmigen Papulæ der Astrophycon-Arten unterscheiden sie sich, wie schon Cuenot (1888) bemerkt hat, dadurch, dass ihre Wandung sich zu zahlreichen, kleinen, kegelförmigen Läppchen ausbuchtet; in zurückgezogenem Zustande sehen sie infolgedessen von aussen wie ein Häufchen kleiner Papillen aus, die dicht nebeneinander auf einer gemeinschaftlichen weichhäutigen Basis stehen; von innen gesehen erkennt

1 Ohne zu wissen, dass die ihm vorliegende Bipinnaria die Larve von L. ciliaris war, hat übrigens schon vor fast 10 Jahren Simon (1857) diese Übereinstimmung in der Stachelentwicklung mit der von mir bei Asterina gefundenen Regel nachgewiesen und durch Abbildungen vortrefflich erläutert (s. auch die Anmerkung bei L. sarri p. 91.)
Astropectinidae.

Bei mittelgrossen Thieren sind die Papulac zwischen den Mittelpaxillen des distalen Armbabschnittes erst ganz vereinzelten zur Ausbildung gelangt, während sie zwischen den Seitenpaxillen nirgends fehlen. Ein Vergleich mit noch jüngerem Exemplaren lehrt, dass überhaupt die zwischen den Seitenpaxillen stehenden Papulac früher auftreten als die zwischen den Mittelpaxillen befindlichen, und von jenen wieder die proximalen, also dem Armwinkel zunächst gelegenen früher als die distalen. Auch die Zahl der Läppchen, in die das freie Ende der Papula sich theilt, ist um so grösser, je älter die Papula ist; anfanglich hat jede Papula die einfache Schlauchform, die sie bei der Gattung Astropecten dauernd festhält.

Die Terminalplatte gleicht, wenn man sie am unversehrten Thiere betrachtet, in ihrem Umrisse derjenigen anderer Luidia-Arten (vergl. z. B. die A. Agassiz'schen Abbildungen der Terminalplatte von Luidia clathrata (Say)\(^1\)). Sie ist mit kleinen Granula dicht bedeckt und trägt an ihrem aboralen Rande eine gut abgegrenzte Gruppe von 8—10 (jederseits 4 oder 5) zusammengeneigten, gestreckt kegelförmigen, bis 1,5 mm langen Stachelchen. Bei grossen Exemplaren hat sie eine anscheinende Länge von 3 mm und ist fast ebenso breit, bei mittel-

\(^1\) A. Agassiz, North American Starfishes, Cambridge, Mass. 1877, T. 20, f. 9—11.
grosen misst man 2,5 mm Länge und 2 mm Breite. Isolirt man sie aber, so stellt sich heraus, dass ihre Länge noch etwas beträchtlicher ist, indem der Körper der Platte jederseits in adoraler Richtung einen flügelförmigen, stumpf zugespitzten Fortsatz entendet, der vorher nicht deutlich zu sehen war, weil sein Ende von der Rückenhaut bedeckt ist: die isolirte Platte alter Thiere ist 3,5 mm lang. Bei einem kleineren Exemplare maass ich die Länge der isolirten Platte (Taf. 6, Fig. 32, 33, 34) zu 2,16 mm, ihre Breite zu 1,6 mm, ihre Höhe (Dicke) an ihrem distalen Ende zu 1 mm. Oberflächlich (Taf. 6, Fig. 34) ist sie mit zahlreichen, ganz flach gewölbten, kreisrunden, im Querdurchmesser 0,2 mm grossen Buckelchen besetzt, auf denen die vorhin erwähnten Granula und Stachelchen aufsitzen. Die Granula unterscheiden sich von den Stachelchen nur durch ihre kurze, gedrungene Form, indem sie nur etwa 1,5—2 mal so lang wie dick sind. Durch die flügelförmigen Fortsätze kommt es, dass die isolirte Platte in ihrem Mittelstück nur halb so lang ist wie in ihren Seitenhälften. Betrachtet man sie von der Dorso-seite (Taf. 6, Fig. 32), so erkennt man, dass sie ausser der tiefen adoralen Einbuchtung, welche die beiden Flügel trennt, auch an ihrem aboralen Ende eine seichtere Einbuchtung besitzt. Von der Ventralseite sehen (Taf. 6, Fig. 33), zeigt sie in Fortsetzung jener aboralen Einbuchtung eine tiefe Längsrinne, die von hohen, gebuchten, adoralwärts verstrechenden Rändern begrenzt ist; in dieser Rinne, deren Breite etwas mehr als ein Drittel der Breite der ganzen Platte beträgt, liegen ausser dem Fühler und dem Auge die jüngsten Wirbelanlagen. Bis an den adoralen Eingang in diese Rinne lassen sich die Adambulacralplatten und unteren Randplatten verfolgen, während die Randpaxillen schon etwas früher zwischen den flügelförmigen Fortsätzen aufhören. Da demnach die Randpaxillen immerhin sich eine Strecke weit unter dem ventralen Rande der flügelförmigen Fortsätze verfolgen lassen, während das hinsichtlich aller übrigen Paxillen der Armrückenhaut nicht der Fall ist, so spricht auch dieses Verhalten für die Auffassung der Randpaxillen als modifizirter oberer Randplatten. Denn wo sonst, z. B. bei der Gattung Astrophytum, die oberen Randplatten in unverkennbarer Weise ausgebildet sind, reichen sie stets mit den unteren bis unter den ventralen Rande der Terminalplatte, um hier früher zu endigen als die unteren. Es verhalten sich sonach die Randpaxillen von Luidia zur Terminalplatte genau so, wie es zweifellose obere Randplatten thun. Die Seitenansicht der Terminalplatte (Taf. 6, Fig. 34), endlich zeigt, dass die Platte im Bereiche ihrer Flügelfortsätze auch an Höhe rasch abnimmt. — Bei noch jüngeren Thieren, z. B. bei dem Exemplar Nr. 9 der Tabelle, ist die Länge der Platten im Verhältniss zu ihrer Breite geringer als später, indem sowohl Länge als Breite derselben 1,1 mm messen.

Die unteren Randplatten nehmen durch die kräftige Wölbung ihrer Aussenseite nicht nur an der ventralen, sondern auch an der lateralen Begrenzung der Arme und der Scheibe Antheil. Der Körper einer jeden Randplatte erhebt sich zu einer hohen Querleiste, deren flache Aussenseite die freie Oberfläche der Randplatte darstellt. Die Leisten der aufeinanderfolgenden Platten sind durch tiefe Rinnen voneinander getrennt; die Seitenflächen der Leisten sind also zugleich die Seitenwände der Rinnen. — Die Zahl der unteren Randplatten beträgt bei sechs mittelgrossen und grossen Exemplaren (No. 1—5, 7 der Tabelle) im Durch-
schnitt S7, im Minimum 70, im Maximum 125. Müller & Troschel geben bei ihren noch grösseren Thieren 140 Randplatten an. Zu der in mm ausgedrückten Länge von R verhält sich die Zahl der unteren Randplatten (bei den Exemplaren No. 1, 3, 4, 5, 7 der Tabelle) durchschnittlich wie 1:1,55 (im Minimum 1:1,28; im Maximum 1:2,06). Bei jugendlichen Exemplaren (No. 8 und 9 der Tabelle) sinkt das Verhältniss von Z:R auf 1:0,625 (bei No. 9) und auf nur 1:0,46 (bei No. 8). Der Armradius, der also bei den kleinsten dieser Exemplare noch nicht halb so viel mm misst wie die Zahl der Randplatten beträgt, misst schliesslich (bei meinem grössten Exemplare) stark zweimal so viel mm wie Randplatten da sind. Die einzelnen Randplatten müssen demnach beträchtlich länger geworden sein. Während der Armradius von 5,5 auf 258 mm gestiegen ist, sich also um das 47fache verlängert hat, hat die Zahl der unteren Randplatten nur eine Vermehrung auf rund das 10fache (von 12 auf 125) erreicht.

Das Mittelfeld der freien Oberfläche der unteren Randplatten ist mit einer Querreihé von 4 oder 5 (Müller & Troschel geben 4 an) grossen Stacheln besetzt, die von innen nach aussen an Grösse zunehmen, sodass der äusserste, den man als Randstachel im eigentlichen Sinne bezeichnen kann, der grösste ist. Bei dem grössten meiner Exemplare maass ich im proximalen Armsglanschnitt die Länge dieser Stacheln von innen nach aussen zu 3,5—6,5—7—8,5—9 mm. Dazu ist zu bemerken, dass nicht selten der äusserste (= Randstachel) nur ebenso lang oder selbst etwas kürzer ist als der vorhergehende. Bei mittelgrossen Thieren (No. 1, 3, 4) trägt jede Platte nur 3 oder 4 dieser grossen Stacheln, von denen der Randstachel 4—4,5 mm lang ist, während der kleinste innerste) nur 2,5—3 mm Länge hat. Die Stacheln haben eine langgestreckte, zugespitzte Form, sind meist in der Querrichtung des Armes leicht comprimirt (also nicht ganz drehrund, wie Philippi angiebt) und mit ihrer Spitze oft leicht nach der Armspitze hin gebogen. Nicht selten ist die Spitze des Stachels durch einen ganz kurzen Einschnitt gegabelt. An unversehrten mittelgrossen lebenden Thieren z. B. Nr. 4 der Tabelle erkennt man, dass die Stacheln, wie in der Jugend (Taf. 6, Fig. 36), so auch am erwachsenen Thiere von einer durchsichtigen weichen Scheide überkleidet sind, die auch dann, wenn die Stachelspitze leicht gegabelt ist, abgerundet über die ganze Stachelspitze hinweggeht und hier umsoviel dicker als an der Stachelbasis ist, dass dadurch der ganze Stachel mit samt seiner Hülle am freien Ende etwas verdickt erscheint, also fast kolbenförmig aussieht. Bei alten Thieren dagegen (z. B. Nr. 6 der Tabelle) war jene transparente Hülle der Armstacheln nicht mehr wahrzunehmen; sie scheint also später durch Abscheuerung verloren zu gehen. Die gleichnummernigen Stacheln der aufeinanderfolgenden Randplatten sind nicht alle auf gleicher Höhe eingelenkt, sondern alterniren in unregelmässiger Weise, sodass z. B. der dritte Stachel der einen Platte bald höher bald etwas tiefer inserirt als der dritte der vorhergehenden oder folgenden Platte. Wie schon Müller & Troschel (1842) hervorgehoben haben, besitzen die unteren Randplatten ausser jenen grossen Stacheln auch noch zahlreiche kleine Stachelchen. Zunächst trägt der untere (= innere) Rand der Platten einige kleine, bei dem grössten Exemplare 1—2 mm lange Stachelchen, an die sich noch kleinere, nur 0,5 mm grosse anschliessen, die dem adoralen und dem aboralen Rande entlang einen dichten Kamm bilden und unter
weiterer Grössenabnahme die einander zugekehrten Flächen der Querleisten der Randplatten, also die Wände der zwischen den Randplatten befindlichen Querrinnen, dicht besetzen. Sie sind von Cuëxor (1888) als Wimmerstachelchen (»radioles vibratiles«) beschrieben worden. In ihrer Gesamtheit stellen sie das von mir schon vor längerer Zeit bei Cladopodium krausei beschriebene Homologon der cribriformen Organe der Porcellanasteriden dar). Endlich kommen auf den unteren Randplatten auch Pedicellarien vor, die zusammen mit den übrigen bei unserer Art auftretenden Pedicellarien eine besondere Betrachtung nöthig machen (s. S. 77).

Die älteste unter allen Ventrolateralplatten unserer Art ist die unpaare, genau interradial gelegene, die schon bei jungen Exemplaren von nur 5,5 mm Armmradius (No. 8 der Tabelle) vorhanden ist und hier ein Plättchen von 0,18 mm Länge und 0,16 mm Breite darstellt (Taf. 6, Fig. 35). Bei demselben jungen Thiere ist auch schon die erste paarige Ventrolateralplatte zwischen der zweiten Adambulacralplatte und der ersten unteren Randplatte angelegt.
aber erst halb so gross wie die unpaare. Andere Ventrolateralplatten sind jetzt noch nicht vorhanden. Wohl aber ist das bei Exemplaren von 15 mm Armradius (No. 9 der Tabelle) der Fall, bei denen sowohl die zweite paarige, zwischen der dritten Adambulacralplatte und der ersten unteren Randplatte befindliche, als auch einige der nächstfolgenden Ventrolateralplatten in abnehmender Grösse zu sehen sind. Wie bei den ambulacralen, adambulacralen und Rand-Platten ist auch unter den Ventrolateralplatten stets diejenige die jüngste, die der Arnspitze zunächst liegt, und zugleich ist jede Ventrolateralplatte stets jünger als die ihr entsprechende Adambulacralplatte und untere Randplatte.

Nur ausnahmsweise kommt es vor, dass einmal in einem oder dem anderen Interradius bei alten wie bei jungen Thieren statt der einen unpaaren Ventrolateralplatte deren zwei oder gar drei an derselben Stelle zur Ausbildung gelangen.

Bei dem grössten Exemplare (No. 7 der Tabelle) trägt jede Ventrolateralplatte eine Gruppe von 4–7 Stachelchen, die 1–2 mm lang sind und den subambulacralen Stachelchen der nachher zu besprechenden Adambulacralplatten gleich sind. Bei mittelgrossen Thieren (No. 1, 2, 3 der Tabelle) sind die Stachelchen entsprechend kleiner und in der Regel in der Zahl 3, 4, 5 oder 6 vorhanden; sie sind in jeder büschelförmigen Gruppe meist so gestellt, dass sie bald mit ihren Spitzen divergiren, bald sich zusammenneigen. Ueber die auf den Ventrolateralplatten vorkommenden Pedicellarien s. p. 77.

Bei dem Exemplar No. 9 (R = 15 mm) besitzt die unpaare Ventrolateralplatte bereits eine Gruppe von drei Stachelchen; die erste und zweite paarige tragen deren ebenfalls drei, dagegen sitzt auf der dritten paarigen Ventrolateralplatte erst ein Stachelchen. Bei dem Exemplar No. 8 (R = 5.5 mm) steht auf der unpaaren Platte entweder nur ein Stachelchen (Taf. 6, Fig. 35) oder auch noch die winzige Anlage eines zweiten, und auf der ersten paarigen Platte befindet sich nur eine Stachelanlage.

Unmittelbar unter den Ventrolateralplatten liegen die Superambulacralia, die sich in Form von quer zur Längsachse des Armes gestellten kleinen Spangen darbieten (Taf. 6, Fig. 35). Mit ihrem lateralen Ende stützen sie sich von innen her auf die unteren Randplatten, mit ihrem medialen Ende in gleicher Weise auf das laterale Ende der Ambulacralstücke. Sie treten früher auf als die sie von aussen überdeckenden Ventrolateralplatten; so besitzt z. B. das kleine Exemplar No. 8 zwischen dem dritten Ambulacralstück und der ersten unteren Randplatte ein Superambulacrum (Taf. 6, Fig. 35), während an derselben Stelle die Ventrolateralplatte jetzt noch fehlt; ebenso verhälts es sich zwischen den nächstfolgenden Randplatten und Ambulacralplatten. Gleichwie die paarigen Ventrolateralplatten, so fehlen auch die Superambulacralstücke in der Gegend des ersten Wirbels; auch kommt unter der unpaaren Ventrolateralplatte kein superambulacrales Skeletstück zur Ausbildung. Es liegt also das erste und zugleich älteste Superambulacralia unter der ersten paarigen Ventrolateralplatte und reicht vom zweiten Ambulacralstück zur unteren Randplatte.

Die Adambulacralbewaffnung besteht auf jeder Adambulacralplatte aus einem inneren und einem äusseren Stachel, stellt also im ganzen zwei Längsreihen von Stacheln dar. Der
innere Adambulacralstachel ist in der Längsrichtung des Armes etwas comprimirt und in der Querrichtung leicht nach auswärts gebogen, sodass er eine säbelförmige Gestalt zeigt. Bei dem grössten meiner Exemplare (Nr. 7 der Tabelle) hat er im proximalen Armabschnitt eine Länge von 3,5—4 mm. Bei kleineren Exemplaren (No. 1, 3, 4 der Tabelle) ist er nur 1,5—2 mm lang. Der äussere Adambulacralstachel ist viel länger und kräftiger als der innere, gerade, cylindrisch, an seiner Basis etwas dicker, im ganzen säulenförmig. Seine Länge beträgt im proximalen Armabschnitt meines grössten Exemplares 6 mm; der Abstand seiner Spitze von der Spitze des inneren Stachels misst 3 mm. Bei mittelgrossen Individuen (No. 1, 3, 4) misst seine Länge 3—4 mm und der Abstand seiner Spitze von der Spitze des inneren Stachels 1,5—2 mm. M. Sars (1857) gibt also das relative Grössenverhältniss des inneren zum äusseren Stachel richtig an, wenn er sagt, dass dieser fast doppelt so lang sei wie jener. Nach aussen von dem äusseren Adambulacralstachel folgen in der Regel noch 2 (manchmal 3, selten nur 1) viel kleinere Stacheln (= subambulacrale Stachelchen), die von den früheren Forschern nur wenig beachtet worden sind. Nur Sladen (1889) bemerkt, dass der äussere Adambulacralstachel mitunter einen kleinen Gefährten hat, und neuerdings hat auch Köhler (1894, 1895) auf diese subambulacralen Stachelchen aufmerksam gemacht. Der eine von ihnen ist dem adoralen, der andere dem aboralen Rande der Adambulacralplatte genähert; sieht man also von der Seite des Armes her auf die Adambulacralplatte, so stehen diese beiden kleinen Stachelchen rechts und links von dem grossen äusseren Adambulacralstachel. Bei dem grössten Exemplare haben sie eine Länge von 2, bei den mittelgrossen nur eine Länge von 1 mm.

In der Nähe des Mundes ändert sich die Adambulacralbewaffnung in der Weise, dass die Zahl der kleinen Stacheln (= subambulacralen Stachelchen) zunimmt. Bei dem grössten meiner Exemplare beginnt diese Zunahme schon an der siebenten Adambulacralplatte und steigt sich, je mehr man sich dem Munde nähert, sodass man auf der zweiten Adambulacralplatte deren etwa 10, auf der ersten etwa 12 zählt. Dazu kommt, dass von der siebenten bis zur zweiten Adambulacralplatte eines dieser Stachelchen merklich grösser wird als die übrigen; hierauf scheint es sich des Näheren zu beziehen, wenn Sladen (1889), wie schon erwähnt, in seiner Differentialdiagnose der Art angiebt, dass der äussere Adambulacralstachel manchmal einen kleineren Genossen habe. Indessen konnte ich dieses Verhalten bei mittelgrossen Thieren, bei denen überhaupt die Vermehrung der kleinen Stachelchen weit geringer ist, nicht wahrnehmen.

Bei dem jungen Exemplare, dessen R erst 5,5 beträgt (No. 8 der Tabelle), ist die Adambulacralbewaffnung (Taf. 6, Fig. 35) im proximalen und im mittleren Abschnitte des Armes bereits vollständig ausgebildet. Sowohl der innere und der viel kräftigere und längere äussere Stachel als auch die beiden kleinen subambulacralen Stachelchen sind vorhanden; letztere zeigen aber noch keine Vermehrung in der Nähe des Mundes, wie das bei älteren Exemplaren der Fall ist.

Die Bewaffnung der Munddeckplatten des grössten Exemplares ist die folgende. Dem naturalen Rande entlang, aber in einigem Abstande davon, steht eine Reihe von 8 oder 9
Astropectinidae.

Stacheln, die vom Munde aus gerechnet an Grösse nach und nach abnehmen; die vier innersten sind 4—4,5 mm lang, die übrigen erheblich kleiner; der innerste ist der eigentliche Munddeckstachel. Am distalen Rande findet man etwa 12 ganz kleine Stachelchen, die den subambulacralen Stachelchen der zweiten Adambulacralplatte gleich; ausserdem befindet sich am inneren Theile der distalen Bemrandung noch eine Gruppe von 3 oder 4 ganz kleinen Stäbchen. Endlich sind am ambulacralen Rande noch 3 oder 4 je 2 mm lange Stacheln eingefügt, die ebenso wie der innerste Stachel der suturalen Reihe gegen die Mundöffnung gerichtet sind. — Bei mittelgrossen Thieren, z. B. No.3 der Tabelle, sind die Stacheln der Munddeckplatten weniger zahlreich und erheblich kleiner. Der Sutur entlang findet man zwar auch hier etwa 9, von denen die 4 oder 5 innersten die grössten sind; der innerste ist 2,5 mm lang. Aber am distalen Rande sind erst einige wenige kleine Stachelchen vorhanden, und am ambulacralen Rande stehen nur 2 oder 3. — Noch ärmer an Stacheln ist die Munddeckplatte bei jungen Thieren. Ich untersuchte darauf zunächst das Exemplar No.8 meiner Tabelle und fand hier auf jeder Munddeckplatte (Taf. 6, Fig. 35) der Sutur entlang nur zwei hintereinander stehende Stacheln am adoralen Ende der Sutur. Von diesen beiden Stacheln ist der erste (innerste) durch seine Länge (=0,5 mm) und Dicke vor allen anderen Stacheln der Munddeckplatte ausgezeichnet und stellt den Munddeckstachel dar. Der zweite ist nur halb so lang. Die anderen Stacheln des suturalen Randes fehlen noch. Auf dem distalen Bezirke der Platte steht eine Gruppe von drei winzigen Stachelchen, von denen der mittlere etwas grösser als die beiden anderen ist. Ferner trägt der ambulacrale Rand der Platte noch ausser dem schon erwähnten Munddeckstachel zwei kleinere nebeneinander stehende Stachelchen, von denen der dem Eckstachel nächste in der Regel noch etwas kleiner ist als der andere; doch können sich beide in ihrer Grösse auch umgekehrt verhalten. — Bei dem Exemplar No.9 der Tabelle hat die Bestachelung der Munddeckplatten schon einige Fortschritte gemacht. Es sind der Sutur entlang bereits drei Stacheln auf dem adoralen Ende der Platte vorhanden; von diesen ist der äusserste der kleinste und jüngste. Auf dem distalen Theile der Platte stehen jetzt schon vier Stachelchen. Dagegen ist die Zahl der Stachelchen des ambulacralen Randes dieselbe wie an dem vorhin beschriebenen Exemplare.

Die Madreporenplatte liegt, unter Paxillen verborgen, so versteckt in einem Armwinkel, dass man einige Mühe hat sie zu finden. Bei dem grössten der mir vorliegenden Exemplare ist sie von den unteren Randplatten nur durch die Reihe der Randpaxillen und die erste Reihe der Seitenpaxillen getrennt. Ihre Länge misst bei diesem Exemplare 4 mm, ihre Breite 3 mm. Sie ist unregelmässig länglich umrandet und trägt auf ihrer schwach gewölbten, überall von gewundenen Furchen bedeckten Oberfläche, näher an ihrem oberen als an ihrem unteren Rande, einen Paxillus oder, genauer gesagt, einen mit seiner Krone ausgestatteten Paxillenschaff.

Die Pedicellarien finden sich bei unserer Art in zwei verschiedenen Formen, die auch nach dem Orte ihres Vorkommens verschieden sind, bei jüngeren Thieren vollständig fehlen und bei älteren sich gegenseitig auszuschliessen scheinen. Die eine Sorte besteht aus drei,
die andere aus zwei Zangenstücken; jene findet sich auf den Ventrolateralplatten, diese auf den unteren Randplatten. Beide gehören zu der Gruppe der sitzenden zangenförmigen Pedicellarien, in welcher die aus zwei Zangenstücken gebildeten zu den »zangenförmigen« (im engeren Sinne), dagegen die aus drei Zangenstücken gebildeten zu den »büschelförmigen« zu rechnen sind.

Die zangenförmigen Pedicellarien wurden bei unserer Art erst durch Cuenot (1888) an Exemplaren aus dem Mittelmeere (Banyuls) entdeckt, während er sie an Exemplaren von Roscoff vermisste. Er fand sie nur an den Rändern der unteren Randplatten in der Nachbarschaft seiner »Winperstachelchen« (s. p. 73) und beschreibt sie unter Beifügung einer Abbildung als ½ mm lange, gedrungene Organe, die aus zwei fein gezähnelten, ihrer ganzen Länge nach aneinander schliessenden Zangenstücken bestehen. An den mir vorliegenden Exemplaren mittelmeerischer Thiere treffe ich ganz dieselben Pedicellarien nur bei dem grössten Individuum (Nr. 7 meiner Tabelle), während die übrigen derselben völlig entbehren. Sie haben eine Länge von 0,8—0,9 mm und eine Breite von 0,6 mm. Ihre Form ist die eines an der Spitze stark abgerundeten, plumpen Kegels. Die beiden kräftigen Zangenstücke berühren sich ihrer ganzen Länge nach mit einem fein, aber unregelmässig gezähnelten Rande. An seiner Innenseite besitzt jedes Zangenstück in seiner unteren Hälfte eine grosse, fast kreisrund umgrenzte Grube für den Ansatz des Schliessmuskels. Es finden sich diese Pedicellarien auch an meinem Exemplare ausschliesslich auf den unteren Randplatten und stehen hier meistens, aber nicht immer, an dem adoralen oder aboralen Rande der freien Oberfläche der Platte. Gewöhnlich liegen sie zwischen dem zweiten und dritten und zwischen dem dritten und vierten Stachel der Randplatte oder, falls die Randplatte fünf Stacheln besitzt, auch zwischen dem vierten und fünften. Ihre Zahl schwankt auf jeder Randplatte zwischen 1 und 4, ist also im ganzen grösser, als Cuenot sie angiebt, was sich vermutlich auf das ungliche Alter der von uns untersuchten Thiere zurückführen lässt.

schrumpfung den Anschein von Poren erwecken können, aber an Spiritus-Exemplaren und lebenden Thieren ihre wahre Natur sofort erkennen lassen. Ferner sind die »rippenförmigen Kalkstücke« zwischen den »Poren«, von denen Norman spricht, nichts anderes als die Ventrolateralplatten. In jetziger Ausdrucksweise zeigen also die Norman'schen Beobachtungen, dass die büschelförmigen Pedicellarien unserer Art auf die Ventrolateralplatten beschränkt sind, und zwar so, dass auf jeder dieser Platten nur eine Pedicellarie steht. Das ist genau dieselbe Anordnung, wie ich sie z. B. auch bei den ähnlichen Pedicellarien der Laidia alternata (Say; sehe, bei der diese regelmässige Stellung bis jetzt noch von keiner Seite hervorgehoben worden ist. Perrier (1869), Cuénot (1888) und Koehler (1894), die später ebenfalls die büschelförmigen Pedicellarien unserer Art aufgefunden und untersucht haben, sagen über ihre Stellung im Gegensatz zu Norman, dessen Angaben sie übrigens gar nicht beachtet zu haben scheinen, nur die nicht hinreichend bestimmten Worte »in der Nähe der Ambulacralfurchen oder »an den Rändern der Ambulacralfurchen« oder »nach aussen von den Ambulacralstacheln«\(^1\). Ihre Form hat Perrier (1869) am genauesten in Wort und Bild geschildert. Nach ihm stellt die Pedicellarie einen Kegel mit abgerundeter Spitze dar, der der Länge nach in drei, dicht aneinander schliessende Arme getheilt ist; jeder Zangenarm besitzt an seiner Innenseite in der Nähe der Basis eine halbkreisförmige Aushöhlung für die Insertion des Schliessmuskels; die ganze Pedicellarie ruht auf einer hockerförmigen Erhebung des darunter befindlichen Skeletstückes, also der Ventrolateralplatte.

Schon Cuénot (1888) hebt die bemerkenswerthe Thatsache hervor, dass er an all' seinen von Banyuls stammenden Exemplaren diese büschelförmigen Pedicellarien vermisste. Das Gleiche kann ich für alle mir aus dem Mittelmeere vorliegenden Thiere bestätigen. Dennoch glaubte ich (1895) annehmen zu dürfen, dass es sich bei diesem Mangel der büschelförmigen Pedicellarien bei der L. ciliaris des Mittelmeeres nicht nur, wie Cuénot meint, um eine individuelle Besonderheit handele, sondern um ein für die Mittelmeer-Individuen überhaupt constant gewordenes Merkmal, auf Grund dessen man sie als eine dem Mittelmeer-eigenthümliche Varietät betrachten dürfte, umsomerh, wenn man das Vorkommen der weiter oben beschriebenen zweiteiligen Pedicellarien dazu nimmt. Ich unterschied deshalb (1895) hinsichtlich der Pedicellarien zwei Varietäten der L. ciliaris: erstens die mittelmeerische mit zangenförmigen, aber ohne büschelförmige, und zweitens die nördlichere mit büschelförmigen, aber ohne zangenförmige Pedicellarien. Da die Art von Philippi auf mittelmeerische Exemplare gegründet worden ist, müssten diese als die typischen Vertreter der Art angesehen werden. Der nördlichen Varietät aber gab ich den Namen var. normani, weil wir Norman die ersten genauen Angaben über ihre Pedicellarien verdanken. Die büschelförmigen Pedicellarien der nördlichen Exemplare sind offenbar Umbildungen der bei der typischen Mittelmeerform auf den Ventrolateralplatten angebrachten Gruppen von kleinen Stachelchen. Bei der Mittelmeer-

\(^1\) Erst in seiner neuesten, durch meine vorläufige Notiz (1895) veranlassten Mittheilung bezeichnet auch Koehler genauer die Ventrolateralplatten als die Träger der büschelförmigen Pedicellarien.

Schliesslich möchte ich noch darauf hinweisen, dass das Fehlen aller Pedicellarien bei noch nicht ganz erwachsenen Thieren nicht ohne Beispiel bei anderen Luidia-Arten ist. So
habe ich schon vor Jahren\(^1\) auf das gleiche, seitdem durch Sladen (1889, p. 251) bestätigte Verhalten der \textit{L. alternata} (Say) hingewiesen und daraufhin Perrier's \textit{L. cariégata} mit \textit{L. alternata} vereinigt.

Die Farbe der Rückenseite (Taf. 4, Fig. 1) ist ein prächtiges, nach Orange ziehendes oder reines Ziegelroth. Dem entspricht einigermassen die Angabe Philippi's, der die Art in einer brieflichen Mittheilung an Müller & Troschel orangefarbig nannte. Johnston beschreibt sie als bräunlich oder röthlich orangefarben. Noch zutreffender aber ist es, wenn Forbes von einer ziegelrothen Färbung von wechselder Intensität spricht, woraus Müller & Troschel durch ungenaue Übersetzung "dunkelroth" gemacht haben. Auch M. Sars bezeichnet die Oberseite als rothgelb oder orange, selten gelbbraun. Risso nennt sie blutroth, was nur dann stimmt, wenn man sich darunter ein sehr helles Blattroth vorstellt. Rosenfarbig aber, wie Delle Chiaje sagt, kann man die Farbe doch kaum nennen. An der Basis der Stachelchen der Paxillenkrone lagert sich ein braunrothes Pigment in um so grösserer Verbreitung ab, je älter die Thiere sind. Bei mittelgrossen Exemplaren tritt dieser braunrothe bis braune, dunkle Ton besonders in der Nähe der Armspitzen und den Randplatten entlang auf; bei alten Thieren aber (Taf. 4, Fig. 2) breitet er sich über den ganzen Rücken aus. Ausserdem bemerkt man bei alten Thieren, dass die Spitzen der Paxillenstachelchen weiss gefärbt erscheinen, während ihre Basen dunkelbraunroth aussehen. Auch die Spitzen der Papulæ sind weiss. Weiss sind auch die Armspitzen bei mittelgrossen wie bei alten Thieren sowohl auf der Oberseite als auf der Unterseite. Die Madreporenplatte zeichnet sich durch die Farbe nicht vor ihrer Umgebung aus. Die Randstacheln sind röthlichgelb, an ihrer Basis dunkler und mehr röthlich. Die Bauchseite ist am lebenden Thiere gelblich; Forbes nennt sie strohgelb. Delle Chiaje weisslich, M. Sars weiss. Die Füsschen haben im ausgestreckten Zustande eine gelblichweisse Färbung und lassen unter der Lupe eine ganz feine, rothbraune Querringelung erkennen.

In horizontaler Richtung bewohnt die \textit{L. ciliaris} ein zwar ziemlich grosses, aber doch auch eigenartig beschränktes Gebiet, das vom Mittelmeere aus südlich bis zu den Kapverden, nördlich bis zu den Färöer reicht. Während im westlichen Mittelmeere Sicilien (Philippi; Messina, M. Sars, Bonner Sammlung), der Golf von Neapel (Delle Chiaje, Lo Bianco, Colombo, ich), die Ponza-Inseln (Zoologische Station zu Neapel, Nizza (Risso), der Golf von Marseille (Marion), der Golf von La Ciotat (Koehler), Banjuls Cénot) und Menorca (Braun) als Fundorte bekannt sind, beruht unsere ganze Kenntniss des Vorkommens im östlichen Mittelmeere einzig und allein auf der Mittheilung Heller's, dass Steindachner einmal ein Exemplar bei Spalato gefunden habe. Da nun aber weder Grube, Lorenz, Graeffe, Slossich, noch auch Heller selbst die Art in der Adria angetroffen haben und auch von Marenzeller sie im östlichen Mittelmeere nicht gefunden hat, so ware es sehr erwünscht, über den Steindachnerschen Fund sicherere Auskunft zu haben; bei der Heller'schen

Luidia ciliaris

S1
darauf bezüglichen Angabe komme ich über den Zweifel nicht hinweg, dass es sich bei Steindachner's Exemplar möglicherweise nicht um L. ciliaris, sondern um die damals noch nicht aus dem Mittelmeere bekannte L. sarsi gehandelt habe.

Ausserhalb des Mittelmeeres sind südwestwärts nur allein die Kapverden [durch Studer] als Fundort bekannt geworden. Nordwärts erstreckt sich das Wohngebiet der französischen Küste entlang bis in den Kanal, dann weiter rings um England, Schottland und Irland, an den Shetland-Inseln (Bell, Norman), und den Färöer (Sladen) und dehnt sich durch die Nordsee bis an das Skager Rak aus. Dagegen fehlt die Art bemerkenswertherweise an der Westküste Norwegens; wenigstens vermisste sie Grieb im Hardangerfjord, Appellöf im Bergensfjord und Nordgaard im Beitstadtfjord. Als Fundorte an der französischen Küste sind insbesondere bekannt: Arcachon P. Fischer, Concarneau Th. Barrois, Roscoff (Cuvon); an den Küsten von Grossbritanien: die Hebriden (Norman), Südwest-Englands (Forbes', Haddon, Sladen, Bell), die englische Kanalküste (Plymouth, Polperro, Falmouth) (Heape, Bell, Norman), die Westküste Englands (Bell), die Insel Man (Forbes') und die irische See (Herdm. Chadwick), die Westküste Schottlands (Robertson, Bell, Norman, Henderson), die Ostküste Englands (Forbes, Möbius & Bütschli), die Ostküste von Schottland (Bell, Möbius & Bütschli). In der Nordsee wurde sie westlich von Jüldland (Möbius & Bütschli) und im Skager Rak (Lovén nach Angabe von Dürer & Koren) gefunden.

In verticaler Richtung findet sich unsere Art nach den in der Litteratur vorliegenden Angaben und den mir vorliegenden Funden in Tiefen von 4 bis 159 m. Die tiefst Fundstelle (159 m) wurde bei den Färöer festgestellt. Im Mittelmeere lebt sie vorzugsweise in Tiefen von 20—100 m; so fand sie z. B. Colombo nordöstlich von Capri in 19—71 m, an der Secca di Benda Palummo in 65—83 m, am Cap Misenum in 35—75 m; bei den Ponza-Inseln wurde sie in 40—60 m, bei Pozzuoli in 60 m erbeutet. Doch geht sie auch im Mittelmeere in grösere Tiefen, da KoeHLER sie im Golf von La Ciotat nur aus 120—150 m erhielt.

Im Golf von Neapél gehört sie zu den häufigen Seestern-Arten. Auch an den übrigen Orten ihres Vorkommens scheint sie nicht selten zu sein. Hinsichtlich der Bodenbeschaffenheit bevorzugt sie sandigen Boden, namentlich solchen, der mit kleinen Steinen, Conchylien, Corallinen und allerlei Detritus untermischt ist; seltener kommt sie z. B. im Golf von Mor-

1. Nähere über die von Bell zusammengestellten Fundorte s. in seinem Catalogue of the British Echinoderms 1892, p. 71—72.

seille und im Golf von La Ciotat) auf Schlammgrund vor. Was ihre Nahrung anbetrifft, so fand Ball (nach einer Angabe bei Forbes) ihren Magen erfüllt von einer Natica-Art und Couch (ebenfalls bei Forbes erwähnt) traf einmal in ihrem Magen einen Syllanthus an; Cuvier beobachtete bei Roscoff, dass sie Köderfische an den Angelreilen angreift. Ich selbst entnahm dem Magen eines grössten Exemplares eine vollständige, halb verdaute Ophioglypha sowie dem Magen eines kleinen Thieres (R = 44 mm) vier halbwüchsige Echinococcus pusillus.

2) Wahrscheinlich war diese Ablösung nicht von dem jungen Sterne selbst, sondern von Metschnikoff künstlich bewerkstelligt worden.
Diese jüngsten Exemplare (Taf. 6, Fig. 36) sind wie gesagt bereits siebenarmig und haben eine Grösse von 1 mm. R beträgt 0,52, r 0,34 mm; das Verhältniss r : R = 1 : 1,53. Die Arme sind also noch sehr kurz; an ihrem Ende sehen sie quer abgestutzt aus und sind hier fast eben so breit wie an ihrer Basis. In der Rückenhaut liegen auseinander gerückte Paxillenanlagen, die ganz mit denen übereinstimmen, die man später noch im distalen Bezirke des Armrückens antrifft. Die Terminalplatte hat eine quere Form, ist in der Mitte kürzer als in ihren seitlichen Bezirken und entsendet jederseits einen adoral gerichteten, jetzt erst kurzen, flügelförmigen Fortsatz; sie ist viel breiter als lang, während sie später, wie wir oben gesehen haben, länger als breit wird. Jederseits trägt sie vier oder fünf, oberflächlich von einer weichen Hautscheide umhüllte Stachelanlagen, die ebenso wie diejenigen auf den Adambulacralplatten vierspitzig endigen; doch sind die vier Spitzen verhältnismässig länger und divergiren stärker als an den Adambulacralstacheln; insbesondere überragt die axiale Spitze sehr erheblich die drei anderen Spitzen. Es sind also schon in diesem frühen Stadium alle die Stachelchen angelegt, die wir später (s. oben p. 70) auf dem aboralen Rande der Platte antrifffen. Distal von den Mundeckplatten sind bereits die ersten und zweiten Adambulacralplatten angelegt. Jede dieser beiden Adambulacralplatten trägt einen einzigen jungen Stachel, der sich später zum inneren Adambulacralstachel des erwachsenen Thieres entwickelt. Die übrige Adambulacralbewaffnung der Erwachsenen ist noch nicht angelegt. Auch die Mundbewaffnung ist noch viel einfacher als später. Sie besteht auf jeder Mundeckplatte nur aus zwei jungen Stacheln, von denen der eine am adoralen, der andere auf dem aboralen Ende der Platte angebracht ist; jener ist die Anlage des innersten Stachels der naturalen Stachelschicht, also des eigentlichen Mund- deckstachel des Erwachsenen, dieser aber wird zu einem der Stachelchen, die auf dem distalen Bezirke der ausgebildeten Mundeckplatte stehen. Auch diese Stacheln endigen mit vier Spitzen, die aber alle vier ganz kurz bleiben. Im übrigen stimmen diese Stacheln mit denen der Adambulacralplatten und der Terminalplatte in ihrem Aufbaue vollständig überein. Bei tiefer Einstellung des Mikroskopes bemerkt man, dass nach innen von der Sutur einer jeden Mundecke ein ummaures Skeletstück liegt, welches die Anlage des inneren intermediären Stückes (= Viguier's Odontophor) ist, für das ich den Namen Zwischenmundplatte oder Interoralplatte vorschlagen möchte. In der Mitte der Mundhaut ist eine kleine Mundöffnung schon zum Durchbruche gelangt. Jeder der sieben Arme besitzt in seiner Adambulacratsurche drei Paare von jungen Füsschen und die endständige Fühleranlage. Von Wirbeln sind angelegt: der sog. erste, der sich aus dem Ambulacralfortsatz des Mundeckstückes und dem ersten eigentlichen Ambulacralstück zusammensetzt, ferner der zweite und dritte, der letztere aber erst in ganz winziger Gestalt: im Ganzen sind also die Anlagen der drei ersten Paare der Ambulacralstücke vorhanden. Anlagen von Ventrolateralplatten und Supernambulacralplatten sind noch nicht wahrzunehmen. Dorsalwärts grenzen die Adambulacralplatten an junge Skeletstücke, die genau wie die Paxillenanlagen älterer Thiere aussehen und deshalb auch vorhin als solche bezeichnet wurden. Wahrscheinlich sind diese zunächst an die Adambulacralplatten grenzenden Anlagen aber dazu bestimmt, in ihrer weiteren Entwicklung zu den unteren Randplatten des erwachsenen Thieres

Anatomische Notizen. In der Mundhaut kommen bei alten wie bei ganz jungen Thieren (z. B. bei No. 9 und 8 der Tabelle) zahlreiche, kleine Kalkkörperchen vor, die eine Grösse von 0,05—0,08 mm haben und zum Theile die Form einfacher, gedrungener Stäbchen, zum grösseren Theile aber eine verästelte Gestalt aufweisen; auch können sich die Aeste zu Maschen schliessen, sodass das ganze Kalkkörperchen ein unregelmässiges, durchlöchertes Plättchen darstellt.

Bei einem mittelgrossen Exemplare (No. 1) habe ich die Länge der radialen Blinddärme gemessen. Ihr äusseres Ende ist nur 25 mm vom Mittelpunkte der Scheibe entfernt. Da an diesem Exemplare $r = 16$ mm misst, so reichen die Blinddärme nur 12 mm weit in den freien Arm hinein, und da R = 117 mm beträgt, so bleibt an den Armen das mittlere und äussere, zusammen 117 — 25 = 92 mm lange Stück ganz frei von den Blinddärmen; es nehmen also die radialen Blinddärme nur das erste Achtel des freien Armes ein. Bei einem Exemplare von $R = 14$, $r = 8,5$ mm erreicht das äussere Ende der Blinddärme die Gegend des 12. Wirbels, ist 14 mm vom Mittelpunkte der Scheibe entfernt und erstreckt sich nur 5,5 mm weit in den freien Arm; die Blinddärme nehmen demnach hier das erste Siebentel des freien Armes ein. Bei noch kleineren Thieren, z. B. dem Exemplare No. 9 der Tabelle, gehen die Blinddärme erst bis zum dritten Wirbel, erstrecken sich also noch gar nicht bis in die freien Arme, sondern liegen noch ganz in der Scheibe. Schon bei diesen kleinen Thieren bemerkt man übrigens, dass vom dorsalen Bezirke des Magens über jedem Paare der Radialblinddärme sich eine unpaare Magenbucht aussucht. Dagegen fehlen, wie schon MÜLLER & TROSCHEL (1814) gefunden haben, die interradialen Blinddärme bei dieser wie bei anderen Luidia-Arten.

Das interessanteste Verhalten bieten unter den inneren Organen die Geschlechtsdrüsen. Wie bereits MÜLLER & TROSCHEL (1812) in ihrer Diagnose der Gattung hervorheben, reichen die Genitalsorganen bis in das Ende der Arme. »In jedem Arm befinden sich zwei Reihen an der Rückseite aufgehängter, verästelter Schläuche und in jeder Reihe beträgt die Zahl gegen einige Hunderter« (vergl. die Abbildung auf Taf. 11, Fig. 4 des MÜLLER-TROSCHELschen Werkes). An dem grössten meiner Exemplare fand ich, dass die einzelnen Bäschel der Genitalschläuche der jedenseitigen Reihe an ihrer Basis durch einen Strang verbunden sind, der der Rückenwand der Arme dicht anliegt und genau unter den Schäften der zweiten (von den admarginalen Paxillen aus gezählt) Längsreihe der Seitenpaxillen verläuft. Von diesem Strange geht unterhalb eines jeden zweiten Seitenpaxillus ein ganz kurzer Ast rechtwinkelig in medianer Richtung ab, der an die Basis eines Genitalbäschels herantritt. Diese Basis liegt unterhalb der Stelle.

7. Art. Luidia sarsi (Düben & Koren).

Taf. 1, Fig. 3; Taf. 7, Fig. 1—12.

1839 Luidia fragilissima Forbes p. 123 (partim); T. 3, f. S.
1841 Luidia fragilissima Forbes p. 135—110 (partim).
1845 Luidia sarsi Düren & Koren p. 113.
1846 Luidia savignyi Düren & Koren p. 254; T. S., f. 23, 24.
1857 Luidia sarsi M. Sars p. 102.
1857 Luidia sarsi Lütken p. 71.
1861 Luidia sarsi M. Sars p. 25.
1865 Luidia sarsi Norman p. 118—119.
1871 Luidia sarsi Hodge p. 134.
1875 Luidia sarsi Perrier p. 342.
1878 Luidia sarsi Perrier p. 32, 91.
1882 Astrella simplex Perrier (Rapport etc. p. 21.
1883 Luidia sarsi Sladen (»Triton«) p. 155.
1884 Luidia sarsi Danielssen & Koren p. 94—95.
1884 Luidia sarsi Studer p. 13.
1885 Astrella simplex Carus p. 91.
1886 Luidia sarsi Kükenthal & Weissenborn p. 779.
1886 Luidia sarsi Haddon p. 618.
1888 Luidia sarsi Storm p. 63.
1888 Luidia ciliaris Colombo p. 18, Dragata 561).
1889 Luidia sarsi Grieg p. 3.
1891 Luidia sarsi Sladen p. 688.
1891 Luidia sarsi Herdfm p. 201.
1891 Luidia sarsi Brunehorst p. 30.
1892 Luidia sarsi Scott p. 82.
1892 Luidia sarsi Bell (Catalogue) p. 72.
1892 Luidia sarsi Bell (»Fingal« und »Harlequin«) p. 525.
1893 Luidia paucispina v. Marenzeller p. 3—1: T. 1, f. 1—1C.
1894 Luidia sarsi Koehler p. 411.
1894 Luidia sarsi Perrier (»Travailleurs«) p. 195.
1894 Astrella simplex Perrier (»Travailleurs«) p. 93—194; Pl. 11, (25).
1894 Luidia sarsi (=L. ciliaris var.) Meissner & Collin p. 336.
1895 Luidia sarsi Koehler p. 322—323; Pl. 9, f. 6 n. 7.
1895 Luidia sarsi v. Marenzeller p. 10—11.
1896 Luidia sarsi Grieg p. 6, 12.
1896 Luidia sarsi Koehler p. 449.
1896 Luidia sarsi Koehler p. 51—52.

Diagnose s. p. 103.

Über die nahe Verwandtschaft dieser Art mit der L. ciliaris hat niemals ein Zweifel bestanden. Nachdem schon M. Sars (1835) auf das Vorkommen einer fünfarmigen Form (nämlich eben unserer L. sarsi) aufmerksam gemacht hatte, vereinigte Forbes (1839) sie mit der siebenarmigen ciliaris zu seiner Species fragilissima. Düben & Koren (1845) dagegen unterschieden die fünfarmige Form als eine besondere Art, der sie ihrem Entdecker zu Ehren

2. Nicht Fig. 1, wie es durch einen Druckfehler in Perrier's Text heisst.
den Namen *sarsi* (die neueren Autoren schreiben dafür kürzer und ebensogut *sarsi*) beilegten. Kurz nachher aber zogen sie diesen Namen zurück (1846), da sie zu der irrtümlichen Meinung gelangt waren, in ihrer *L. sarsi* die Audouinsche *L. savignyi* vor sich zu haben. Erst elf Jahre später stellte M. Sars (1857) den Namen *L. sarsi* mit Recht wieder her, indem er ihre Unterschiede von *L. ciliaris*, die er *savignyi* nennt, hervor hob und die erste Diagnose der Art gab. Seitdem ist sie in der Litteratur als *L. sarsi* weitergeführt worden.

Endlich hat Perrier (1882) eine neue Gattung und Art unter der Bezeichnung *Astrella simplex* aufgestellt, von der sich im Folgenden ergeben wird, dass sie nichts Anderes als eine jugendliche Form der *L. sarsi* ist.

Von der *L. ciliaris*, der sie, wie bereits M. Sars (1857) bemerkt hat, im Uebrigen in ihrem Habitus (Taf. 4, Fig. 3: sehr ähnlich ist, die aber noch niemals in einem fünfarmigen Exemplare angetroffen worden ist, unterscheidet sie sich sofort durch die beständige Fünfzahl der Arme. Schon M. Sars hat betont, dass er unter Hunderten von Exemplaren nie eine andere Zahl von Armen gefunden habe, und keinem der späteren Beobachter ist bisher ein Exemplar mit mehr oder weniger als fünf Armen zu Gesicht gekommen; auch alle mir vorliegenden Individuen haben die normale Armzahl. Dagegen lässt sich, wie ich im Gegensatze zu Bell (Catalogue 1892) bei einer Vergleichung einer grossen Zahl von Exemplaren finde, kein durchgreifender Unterschied in der Form der Arme zwischen den beiden Arten bemerken.

In der Grösse bleibt die *L. sarsi* hinter ihrer Verwandten so sehr zurück, dass sie höchstens deren halbe Länge erreicht. Das grösste der in die nebenstehende Tabelle aufgenommenen Exemplare (Nr. 12) hat eine Länge von 161 mm. Nachträglich ging mir von Neapel ein noch grösseres Exemplar zu, dessen Maasse die folgenden sind: L = 216, R = 115, r = 13, Z = 79, AB = 14. Dasselbe wird noch übertroffen durch das von Merculiano zu seiner Abbildung (Taf. 4 Fig. 3) benützte Thier mit den Maassen: L = 280, R = 155, r = 16, AB = 17 mm. Das grösste Exemplar aber erwähnt Koehler (1895) von La Ciotat mit den Maassen: L = 311, R = 172, r = 16, AB = 18 mm. Die durchschnittliche Länge der zwölf

neapolitanischen Exemplare meiner Tabelle beträgt 93 mm. Von zwei nordischen Exemplaren (von der norwegischen Küste), die ich zum Vergleiche benutzen konnte, hat das eine eine Länge von nur 61, das andere von 66 mm¹). Größere nordische Exemplare, bis 162 mm, haben M. Sars (1857) vorgelegen; ebenso erwähnt HADDOX (1886) von Südwest-Irland Exemplare von 165—184 mm Länge. V. MARENZELLER (1895) und KOEHLER (1896) meinen, dass die Art im Atlantischen Ocean überhaupt nicht so gross werde wie im Mittelmeer. Das Exemplar, das v. MARENZELLER (1893) seiner Beschreibung der L. paucispina zu Grunde gelegt hat, entspricht nach den von ihm angegebenen Maassen ungefähr den mittelgrossen Exemplaren (Nr. 6, 7, S. meiner Tabelle²).

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>Z</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>25</td>
<td>5</td>
<td>36</td>
<td>5,5</td>
</tr>
<tr>
<td>2</td>
<td>53</td>
<td>30</td>
<td>6</td>
<td>37</td>
<td>6,5</td>
</tr>
<tr>
<td>3</td>
<td>58</td>
<td>31</td>
<td>6</td>
<td>39</td>
<td>6,5</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>33</td>
<td>6</td>
<td>40</td>
<td>6,5</td>
</tr>
<tr>
<td>5</td>
<td>65</td>
<td>35</td>
<td>6,5</td>
<td>43</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>57</td>
<td>47</td>
<td>7</td>
<td>51</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>90</td>
<td>49</td>
<td>7,5</td>
<td>53</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>94</td>
<td>45</td>
<td>6</td>
<td>50</td>
<td>6,5</td>
</tr>
<tr>
<td>9</td>
<td>106</td>
<td>56</td>
<td>7</td>
<td>59</td>
<td>7,5</td>
</tr>
<tr>
<td>10</td>
<td>138</td>
<td>78</td>
<td>9</td>
<td>66</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>85</td>
<td>10</td>
<td>70</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>161</td>
<td>91</td>
<td>10</td>
<td>75</td>
<td>12</td>
</tr>
</tbody>
</table>

Das Verhältniss r : R beträgt bei den vier kleinen, nur 50—60 mm grossen Thieren im Durchschnitt 1 : 3,3 (im Minimum 1 : 5; im Maximum 1 : 5,6), bei den vier mittelgrossen, 65—94 mm langen Exemplaren im Durchschnitt 1 : 6,5 (im Minimum 1 : 5,38; im Maximum 1 : 7,5) und bei den vier grossen, 106—161 mm langen Exemplaren im Durchschnitt 1 : 8,6 (im Minimum 1 : 8; im Maximum 1 : 9,1³). Das Durchschnittsverhältniss aller zwölf Exemplare ist r : R = 1 : 7, ist also beträchtlich grösser, als Bell (1892) in seiner Diagnose angiebt. Seine Angabe R = 5 r erklärt sich aber daraus, dass er zwei kleine Thiere gemessen hat, deren R nur 31 und 35 mm maass. Bei den grössten der in die Tabelle aufgenommenen Thiere ist r : R = 1 : 9,1; das ist ein Verhältniss, das bei L. ciliaris erst von Exemplaren erreicht

1) Die übrigen Maasse dieser beiden Exemplare sind: R = 32 u. 35; r = 7,5 u. 6,5; Z = 36 u. 40; AB = 9 u. 7,5; r : R = 1 : 4,3 u. 5,4.
2) Nach der Niederschrift des Textes erhielt ich durch die Güte v. MARENZELLER's ein auffallend grosses, leider zerbrochenes Exemplar, dessen R, wie sich aus der Länge eines abgetrennten Armes ergiebt, mindestens 130 mm betragen haben muss, also noch die Länge des grössten mir von Neapel bekannt gewordenen Stückes überstieg.
3) KOEHLER's (1895) gröstes Exemplar hat sogar das Verhältniss r : R = 1 : 10,75 und bei dem von MERCULIANO abgebildeten Thiere beträgt r : R = 1 : 9,69.
wird, deren R mehr als 150 mm misst, während es sich bei der vorliegenden Art schon ein-
stellt, wenn R 91 mm lang ist. Daraus folgt, dass bei gleicher Grösse des ganzen Thieres das
Verhältniss r: R bei L. sarsi grösser ist als bei L. ciliaris. Vergleicht man z. B. das Exemplar
Nr. 1 von L. ciliaris mit dem Exemplar Nr. 12 von L. sarsi, die beide die gleiche Länge von
R (nämlich 91 mm) haben, so finden wir bei jenem das Verhältniss r: R = 1 : 7, bei diesem
aber r: R = 1 : 9,1. Oder nehmen wir das allерgrösste der mir vorliegenden neapolitanischen
Exemplare von L. sarsi, dessen R = 115 mm misst, und vergleichen es mit dem Exemplar
Nr. 4 von L. ciliaris, dessen R = 117 mm lang ist, so ergibt sich für das letztere r: R = 1 : 7,3, dagegen für das erstere r: R = 1 : 8,85. Die Arme wachsen also bei L. sarsi im Ver-
hältniss zur Scheibe rascher, als das bei der L. ciliaris der Fall ist, und es trifft durchaus
nicht zu, wenn Bell (Catalogue 1892) behauptet, dass L. sarsi verhältnissmässig kürzere Arme
als L. ciliaris habe.

Die Armbreite (an der Basis gemessen) steigt bei den zwölf Exemplaren der Tabelle
von 5,5 bis 12 mm. Schon bei R = 85 mm erreicht sie 12 mm, während die gleiche Armbreite bei L. ciliaris erst bei Thieren eintritt, deren R mehr als 104 mm misst. Die Basis der
Arme ist demnach bei gleicher Körpergrösse bei L. sarsi breiter als bei ciliaris, was nicht auf-
fällen kann, da vom Umkreis der Scheibe bei L. ciliaris sieben statt fünf Arme abgehen. Zur
Länge von R verhält sich die Breite der Armbasis bei den vier kleinen Thieren durchschnittlich
wie 1 : 4,88, bei den vier mittelgrossen durchschnittlich wie 1 : 5,97 und bei den vier grossen
durchschnittlich wie 1 : 7,471). Vergleicht man in dieser Hinsicht zwei gleichgrosse Exemplare
von L. sarsi und L. ciliaris (z. B. die beiden Exemplare von je 91 mm Armradius), so erhält man
bei L. sarsi Ab: R = 1 : 7,58, dagegen bei L. ciliaris AB : R = 1 : 8,27; die Arme sind also
verhältnissmässig bei L. ciliaris ein wenig schlanker als bei sarsi. Der gegenheiligen Be-
hauptung von Koehler (1895), die übrigens mit seinen eigenen Maassangaben im Widerspruch
steht, vermag ich also nicht beizupflichten.

Die Paxillen sind im Vergleich zu denen der L. ciliaris kleiner, zierlicher und, da sie überdies auch noch dichter gedrängt stehen, verhältnissmässig zahlreicher. Wie bei
den meisten Exemplen von der sarsi sind sie in ihrer Anzahl im Armabjagen und in der Armmuskularis, lateral oder Seitenpaxillen und medial oder Mittelpaxillen. Von den in eine Längsreihe geordneten Randpaxillen liegt je einer am oberen Rande einer jeden unteren Randplatte. Die be-
trächtlicheren Seitenpaxillen stehen im Gegensatze zu L. ciliaris nicht in drei, sondern nur in zwei Längsreihen, einer äusseren und einer inneren, und ordnen sich zugleich in deut-
liche Querreihen, von denen eine jede den ganzen aus zwei Paxillen gebildet wird. Auf 10
untere Randplatten kommen im proximalen Armabjagen gewöhnlich 20, seltener nur 19
oder wohl auch nur 18 Querreihen der Seitenpaxillen, sodass in der Regel genau zwei (nicht
drei, wie Koehler [1895] behauptet) Querreihen auf eine untere Randplatte kommen. Noch

1) Bei noch grösseren Exemplaren als den in die Tabelle aufgenommenen steigt das Verhältniss AB : R
weiter bis auf 1 : 9,5 bei dem von Koehler erwähnten grössten Exemplare von La Giotat.)

An den Randpaxillen setzt sich die Paxillenkronen im proximalen Armabschnitte bei dem grössten Exemplare aus 18—20 peripherischen und bis 9 etwas kräftigeren, unregelmässig gestellten, centralen Stachelchen zusammen. Dass v. Marenzeller (1893) eine geringere Anzahl von peripherischen und centralen Stachelchen in der Krone der Randpaxillen angiebt, beruht darauf, dass sich seine Beobachtungen auf ein nur mittelgrosses Exemplar beziehen. Die Kronen der Seitenpaxillen haben bei meinem grössten Exemplare durchschnittlich 12 peripherische und 1—3 centrale Stachelchen (im proximalen Armabschnitte). Noch geringer ist die Zahl der Stachelchen in den Kronen der Mittelpaxillen. Bei dem grössten Exemplare zählt man an ihnen nur ein centrales Stachelchen, das, je mehr man sich der Armmittellinie nähert, von erst nur 10, dann 9, 8 und endlich nur 7 oder 6 peripherischen Stachelchen umstellt ist. Ebenso wie auf dem Arme verhalten sich die Kronen der Mittelpaxillen auf der Scheibe. Bei jüngeren Thieren ist auch bei dieser Art die Zahl der Stachelchen in der Krone aller Paxillen geringer; ebenso nimmt die Zahl ab, je mehr man sich der Armspitze nähert. Dass aber die Stachelchen der Paxillenkronen bei der vorliegenden Art, wie Bell 1892 (Catalogue) behauptet, verhältnissmässig länger seien als bei *L. ciliaris*, kann ich nicht finden. Die einzelnen Kronenstachelchen haben, wie v. Marenzeller (1893) in seiner Beschreibung seiner *L. paucispina* richtig hervorhebt, keine glatten, sondern unregelmässig gesägte oder gezaunte Ränder, was indessen auch für *L. ciliaris* und wohl noch manche andere Art zutrifft. Dass die Stachelchen, wie er ferner bemerkt, an ihrer Spitze oft in drei Zacken ausgehen, sieht man fast regelmässig an jungen Paxillen (Taf. 7, Fig. 10, s. p. 91).

Der Gipfel des Paxillenschäftes hat bei den ad marginalen Paxillen eine längliche Form, dessen grösserer Durchmesser jedoch nicht wie bei *L. ciliaris* quer zur Längsachse des Armes, sondern parallel mit ihr gerichtet ist. Ausserdem sind die Schäfte der Randpaxillen dem oberen Rande der untern Randplatten so dicht angepresst, dass ihr Gipfel einen bohnenförmigen Umriss annehmen kann, dessen Concavität sich dem oberen Rande der unteren Randplatte eng anschmiegt. Auch die Gipfel der lateralen Paxillenschäfte sind etwas länglich, stellen aber wie bei *L. ciliaris* ihren längeren Durchmesser quer zur Längsachse des Armes. Die Basis der Seitenpaxillen hat wie bei *L. ciliaris* eine kreuzförmige Gestalt; aber die vier Arme des Kreuzes: ein medialer, ein lateraler, ein adoraler und ein aboraler, sind im Gegensatz zu *L. ciliaris* unter sich fast gleich lang; der mediale und der laterale Arm sind breiter als der adoraler und der aboraler,

Vergleicht man jüngere Exemplare beider Arten mit Rücksicht auf die Paxillen, so überzeugt man sich bald davon, dass es möglich ist, schon an einem kleinen Stückchen der Rückenhaut festzustellen, ob es von L. sarsi oder L. ciliaris herrührt. Ich habe z. B. bei zwei gleich grossen Exemplaren beider Arten, deren R 30 mm maass, Präparate der Rückenhaut des proximalen Armabschnittes hergestellt, welche lehren, dass schon auf dieser Altersstufe die Mittelpaxillen bei L. sarsi dichter stehen und eine annähernd kreisförmige, nur aus einer Schicht von Kalkmaschen gebildete Basis besitzen, während sie bei L. ciliaris weniger dicht stehen und eine vielschichtige, dickere Basis haben, deren Umrisse sich in drei, vier oder fünf kurze Fortsätze auszieht.

Die Entwicklungsstadien der Paxillen zeigen die grösste Aehnlichkeit mit denjenigen der L. ciliaris. Ich habe dieselben insbesondere bei den nachher zu besprechenden, von Perrier als Astrella simplex bezeichneten jungen Thieren näher untersucht. Da sie aber auch bei den älteren Thieren, namentlich in der Nähe der Armspitze, sich in der gleichen Gestaltung vonfinden, so mögen sie schon hier erörtert werden. Auch hier entstehen Paxillenbasen und Paxillenkrone aus einer einheitlichen Anlage, während die Stachelchen der Paxillenkrone sich gesondert anlegen. Die junge, erst 0,034 mm grosse Basis (Taf. 7, Fig. 5) unterscheidet sich anfänglich gar nicht von derjenigen der L. ciliaris; nachher aber (Taf. 7, Fig. 6, 7, 8) zeigt sich, dass sich die Maschen zweiter Ordnung in Zahl und Stellung weniger regelmässig ausbilden, als dort. Weiterhin ist zu bemerken, dass die Anlage des Schaftes später als bei ciliaris auftritt und auch im fertigen Paxillus der Schaft mit schmälerer Basis aus der Basalplatte entspringt (Taf. 7, Fig. 9, 10), als das bei L. ciliaris der Fall ist. Dass überhaupt die Basalplatte, wenigstens bei den Mittelpaxillen, nur eine Schicht von Maschen entwickelt, also entsprechend dünner bleibt als bei L. ciliaris, habe ich schon weiter oben erwähnt.

Während der Schaft sich verhältnismässig später anlegt als bei L. ciliaris, treten die Anlagen der Stachelchen schon etwas früher auf. Bereits über der jüngsten, erst ein dreiarmedes, an den Enden gegabeltes Kalkkörperchen darstellenden Basis (Taf. 7, Fig. 5) sieht man ein winziges, sechsspitziges, nur 0,006 mm grosses Sternchen liegen, das sich in derselben Weise wie bei L. ciliaris zu einem sechsspeichigen Rädchen und damit zur Basis eines jungen Stachelchens weiterbildet (Taf. 7, Fig. 6, 7, 8). Die späteren Stadien in der Entwicklung der Stachelchen bestätigen auch hier, dass das Wachsthum des jungen Stachels im Sinne einer rechtsdrehenden Spirale erfolgt. Doch ist dabei bemerkenswerth, dass an den Stachelchen der Paxillenkrone in der Regel von den vier Endspitzen die centrale im Gegensatze zu L. ciliaris
Luidia sarsi.

91

sehr kurz oder ganz reduziert ist, während sich dafür die drei peripherischen desto länger und kräftiger ausbilden und auffallend stark divergiren (Taf. 7, Fig. 10).

Auch die übrigen Stachelchen und Stacheln der L. sarsi entwickeln sich in der gleichen Weise; nur zeigen ihre Endspitzen gewöhnlich darin ein anderes Verhalten, dass die centrale Spitze nicht verkürzt oder verkümmert ist, sondern sogar an Länge die drei peripherischen erheblich überragt. So z. B. verhalten sich in deutlichster Weise die jungen Stacheln (Taf. 7, Fig. 11) auf den Terminalplatten des nachher zu besprechenden kleinen Thieres, dessen R nur 1 mm lang ist. Schon bei den noch an der Larve befestigten Seesternen haben Koren & Danielsen (1847), ohne zu wissen, dass sie es mit der Jugendform unserer Art zu thun hatten, die jungen Stachelchen der Paxillen und der Rand- und Terminalplatten gesehen. Indessen passt ihre Beschreibung nur dann, wenn man das Mikroskop so auf einen jungen Stachel einstellt, dass man einen optischen Längsschnitt erhält. Denn sie sagen, dass die Stachelchen platt (in Wirklichkeit sind sie in diesem Stadium dreikantig und mit vier oder fünf Paar Öffnungen versehen seien (sie haben also die dritte Längsreihe von Maschen überscheinen, weil sie dieselben in der Kantenansicht vor sich hatten). Sie lassen ferner die Stachelchen mit drei Spitzen endigen, von denen die mittlere die längste ist, was z. B. auf die Terminalstachelchen (Taf. 7, Fig. 11) ganz gut passt, wenn man einen optischen Längsschnitt einstellt. Auch das trifft vollkommen zu, dass sie die jungen Stachelchen von einer weichen Haut umhüllt sein lassen.

1) Aus dieser kleinen Differenz lässt sich ableiten, dass die Bipinnarien, von deren jungem Seestern Semon 1857, die Entwicklung der Stachelchen ganz richtig beschrieb und abbildete (s. die Anmerkung bei L. ciliaris p. 69), nicht, wie er meint, die echte Bipinnaria asterigera, sondern die damit sehr ähnliche Bipinnaria von L. ciliaris darstellten.
Astropectinidae.

Athembedürfnisse mit einer geringeren Anzahl von Papulæ genügen kann, als das bei *L. ciliaris* der Fall ist.

Die oberen Randplatten werden wie bei den übrigen *Ludia*-Arten durch die weiter oben beschriebenen Randpaxillen dargestellt (vergl. auch p. 70).

Die Terminalplatte ist in Form und Bedeckung derjenigen der *L. ciliaris* ähnlich, doch ist sie im Ganzen etwas aufgetriebener. Bei meinem grössten Exemplare hat sie eine Länge von 2,15 mm und eine Breite von 1,63 mm. Aus ihrer von kleinen Granula gebildeten Bedeckung ragen auf dem distalen Bezirke der Platte jederseits gewöhnlich vier oder fünf grössere Stachelchen hervor, die aber in ihrer Gesammtheit sich weniger deutlich von den Granula absetzen, weil sie in ihrer Grösse allmählicher in die Granula übergehen und keine so bestimmte umgrenzte Gruppe bilden, wie es bei *L. ciliaris* der Fall ist. Ihre Form, die im Einzelnen verschiedene kleine Abweichungen von derjenigen der *L. ciliaris* erkennen lässt, erhellt am besten aus den beigefügten Abbildungen (Fig. 7. Taf. 1, 2, 3, 4), die sich alle auf eine Terminalplatte meines grössten Exemplares (R = 115 mm) beziehen. Die Flügel, deren letzte Enden auch hier unter der Rückenhaut des Armes versteckt sind, haben eine Länge von 1,05 mm. Zu den Ambulacrall- und Adambulacrall-, unteren Randplatten und Randpaxillen hat die Terminalplatte dieselben Lagebeziehungen wie bei *L. ciliaris*.

Vergleicht man die Zahl der unteren Randplatten mit der in Millimetern ausgedrückten Länge von R, so ergiebt sich bei den vier kleinen Exemplaren der Tabelle durchschnittlich Z : R = 1 : 0,8 (Minimum 1 : 0,78; Maximum 1 : 0,82), bei den vier mittelgrossen Exemplaren durchschnittlich Z : R = 1 : 0,89 (Minimum 1 : 0,81; Maximum 1 : 0,92), bei den vier grossen durchschnittlich Z : R = 1 : 1,15 (Minimum 1 : 0,95; Maximum 1 : 1,21) und bei dem allergrösssten mir bekannten Exemplare Z : R = 1 : 1,45. Während also noch bei mittelgrossen Thieren der Armiradius weniger Millimeter misst als untere Randplatten vorhanden sind, tritt bei grossen Thieren allmählich das umgekehrte Verhältniss ein, was sich auch hier aus einer nachträglichen Längenzunahme der unteren Randplatten erklärt. Während der Armiradius sich von 28 mm auf 115 mm vergrössert, also eine Verlängerung um rund das Vierfache erfahren hat, ist die Zahl der unteren Randplatten nur wenig mehr als verdoppelt worden, von 36 auf 79.

In ihrer Bewaffnung schliessen sich die unteren Randplatten ebenfalls eng an diejenigen der *L. ciliaris* an (s. p. 72). Bei mittelgrossen und grossen Exemplaren zählt man

1) V. Marenzeller gibt bei seinem mittelgrossen Exemplare der *L. paucispina* gegen sechzig Randplatten an.
gewöhnlich drei, seltener vier Stacheln, die, in eine Querreihc geordnet, das Mittelfeld einer jeden Randplatte besetzen. Der mittlere und der äussere Stachel einer jeden Platte sind fast von gleicher Grösse; ihre Länge beträgt z. B. bei den Exemplaren Nr. 8 und 9 der Tabelle 3,5 mm). Dagegen ist der innerste der drei Stacheln viel kleiner als die beiden anderen, sodass er sich oft kaum von den kleinen Stacheln seiner Umgebung unterscheidet. Daraus erklärt es sich, dass v. Marenzeller (1893) den unteren Randplatten seiner L. paucispina nur zwei Stacheln (bei die beiden grossen) zuschreibt, während Sladen (1889) und Bell (1892, Catalogue) für L. sarsi richtig drei oder wohl auch vier Stacheln angeben. Indessen hat v. Marenzeller den kleinen inneren Stachel doch nicht unbeachtet gelassen, denn nur auf ihn kann es sich beziehen, wenn er weiter sagt: »nach innen von den 2 grösseren Stacheln bemerkt man noch einen kurzen dünnen Stachel«. In dem selteneren Falle, dass vier Stacheln zur Ausbildung gelangt sind, verhalten sich der dritte und vierte (bei die beiden äusseren) wie sonst der zweite und dritte, sind also die grössten, während der zweite etwas länger ist als sonst der erste, und der erste sich wieder nur wenig von seiner Umgebung auszeichnet. Wie schon v. Marenzeller hervorgehoben hat, sind die beiden grossen Stacheln abwechselnd höher und tiefer auf den Randplatten eingelenkt, sodass sie in ihrer Gesammtanordnung dem Rande des Armes entlang vier Längszeilen bilden, die bei dieser Art sehr viel regelmässiger ausgebildet zu sein pflegen als bei der L. ciliaris. Auf denjenigen Platten, auf denen der äusserste Stachel = eigentlicher Randstachel) so hoch eingelenkt ist, dass er in die äusserste jener vier Längszeilen eintritt, liegt seine Insertion hart am oberen Plattenrande und wird von den peripherischen Stachelchen der dicht angesprengten admarginalen Paxillenkrone berührt.

Bei jüngeren Thieren, z. B. bei meinem Exemplare Nr. 2, sind die Ventrolateralplatten erst im proximalen Abschnitte des Armes zur Ausbildung gelangt. Doch besitzt dieses Exemplar in dem im Uebrigen nackten, von dünner Haut verschlossenen Felde, das den Raum zwischen den Munderkplatten, ersten Adambulacralplatten und ersten unteren Randplatten einnimmt, schon eine kleine, in der Mitte des Feldes isolirt gelegene, unpaare Ventrolateralplatte und lässt ferner am Aussenrande jeder ersten Adambulacralplatte die ganz kleine Anlage einer

1 Bei dem grossen p. 57, Anmerkung 2: erwähnten Exemplare zeichnen sich die Stacheln im Vergleich zu den grössten neapolitanischen Exemplaren durch ihre auffallende Länge aus, die im proximalen Armabschnitt 6, ja mitunter 7 mm erreicht.

Wie zuerst M. Sars (1857) bemerkt und seitdem Norman (1865) und Koehler (1894) bestätigt haben, unterscheidet sich die Adambulacralsbewaffnung der L. sarsi dadurch von derjenigen der L. ciliaris, dass sie aus drei Längsreihen von Stacheln gebildet wird. Jede Adambulacralplatte trägt nämlich einen inneren, mittleren und äusseren Adamabulacralstachel. Der innere ist, wie ebenfalls bereits M. Sars hervorgehoben hat, stärker nach außwärts gebogen als der entsprechende Stachel der L. ciliaris, mit dem er im Übrigen in seiner comprimirten, sabelförmigen Gestalt übereinstimmt. Bei mittelgrossen Exemplaren (No. S u. 9 der Tabelle) hat er in der proximalen Armhälfte eine Länge von 1,5 mm. Der mittlere Stachel entspricht dem äusseren der L. ciliaris. Wie bei jener Art ist er fast doppelt so lang wie der innere, indem er z. B. bei den eben erwähnten mittelgrossen Exemplaren eine Länge von 2,5 mm besitzt. Er ist kräftig, an der Spitze etwas abgestumpft und fast ganz gerade. Dann folgt der äussere Adambulacralstachel, der beinahe oder genau ebenso lang und kräftig ist wie der mittlere; er ist gerade gestreckt und hat bei den Exemplaren No. S u. 9 im proximalen Armbezirk eine Länge von 2—2,5 mm. An seiner adoralen Seite ist er stets von einem erheblich
kleineren geraden Stachel begleitet, der meistens eine Länge von 1—1,5 mm erreicht. Dieser kleinere äussere Stachel ist von den früheren Beobachtern, insbesondere von M. Sars, übersehen worden, obschon er, wie ich mich überzeugen konnte, auch an Exemplaren der norwegischen Küste wohl ausgebildet ist. Nur v. Marenzeller (1893) hat ihn bei seiner L. paucispina beachtet. Die äussere Längsreihe der Adambulacralstacheln besteht also eigentlich auf jeder Adambulacralplatte aus zwei Stacheln, einem grösseren aboralen und einem kleineren adoralen. Beide entsprechen offenbar den beiden kleinen subambulacralen Stacheln, die sich bei der L. ciliaris nach aussen von den äusseren Adambulacralstacheln befinden (s. p. 75). In den Armwinkeln findet man nach aussen von den ebenerwähnten beiden äusseren Adambulacralstacheln der L. sarsi, sowohl bei mittelmeerischen als auch bei norwegischen Exemplaren, häufig noch einen weiteren ganz kleinen Stachel, sodass sich alsdann genau diejenige Anordnungsweise der Stacheln ergibt, die v. Marenzeller von seiner L. paucispina abbildet (s. seine Taf. 1, Fig. 1 B).

Die Madreporeenplatte ist meistens etwas leichter zu sehen als bei L. ciliaris. Bei dem grössten Exemplare (R = 115 mm) befindet sie sich unmittelbar über der Reihe der Randpaxillen und drängt sich hier in den Verlauf der beiden Reihen der Seitenpaxillen ein, durch deren Kronen sie zum Theil verdeckt wird. Einer der oberen Seitenpaxillen keilt sich in einen Einschnitt des oberen Randes der Madreporeenplatte ein. Die Länge der Platte beträgt bei diesem Exemplare nicht viel mehr als 1 mm; die Breite misst 1,5 mm.

Nachdem noch im Jahre 1861 M. Sars das Vorkommen von Pedicellarien bei der vorliegenden Art ganz in Abrede gestellt hatte, wurden sie einige Jahre später von Norman (1865) entdeckt. Er hebt ihre Verschiedenheit von den büschelförmigen Pedicellarien der L. ciliaris (s. p. 77) hervor und giebt richtig an, dass sie auf den von ihm als »rippenförmige

Beim meinem Exemplare No. 12 steht auf jeder Ventrolateralplatte des proximalen Armmittelschnittes eine zweieilige Pedicellarien. Diese Pedicellarien lassen sich bis zum Bereiche der 28 unteren Randplatten verfolgen. Eine jede besteht aus zwei länglichen, allmählich verjüngten, an ihrer Spitze abgerundeten Zangenstücken, die sich mit etwas welligen, feingezähnelten, in der Nähe der Basis glatten Rändern aneinanderlegen und auf ihrer Aussenseite von dicker Haut überzogen sind. Sie haben eine Länge von 0,5 mm und erinnern in ihrer Form an diejenigen, die Perrier (1869, Taf. 2, Fig. 16) von L. savignyi abgebildet hat. Bei den kleineren Exemplaren (Nr. 1—5 der Tabelle) hören die Pedicellarien, die auch hier auf der ersten Ventrolateralplatte beginnen, schon viel früher in aboraler Richtung auf. Auch bei meinen beiden norwegischen Exemplaren sind die Pedicellarien im proximalen Armmittelschnitt vorhanden.

Nur ganz ausnahmsweise kommt es vor, dass man eine Pedicellarien in der Bewaffnung des Mundes antrifft. Mir ist nur ein derartiger Fall vor Augen gekommen. Bei dem allergrössten meiner Exemplare (R = 115 mm) fand ich nämlich auf einer, aber auch nur auf dieser einen Mundeckplatte, dass sich in die Reihe der sutralen Stacheln eine kleine, zweiarmige Zangenpedicellarien einschiebt, die in Grösse und Form ganz mit den Pedicellarien der Ventrolateralplatten übereinstimmt.

Die Farbe der lebenden Thiere bezeichnet M. Sars (1861) in Uebereinstimmung mit den älteren Angaben von Düben & Koren (1846) bei den norischen Exemplaren auf der Rückenseite als braungelb, röthgelb oder orangefarben mit einer Reihe von dunkleren braunen Punkten, die dem Rande der Arme folgen und in Zahl und Stellung den Randplatten entsprechen. Ausserdem hoben Düben & Koren hervor, dass jeder Arm einen dunkleren mittleren Längsstreifen besitzt. Diesen dunkleren mittleren Längsstreifen sehe ich an einigen meiner conservirten Neapel Exemplare, während er an anderen, ebenso wie an dem von Murculiano abgebildeten Thiere (Taf. 4, Fig. 3), fehlt. Die Unterseite fand Sars schneeeweiss; die Mundöffnung und der ausgestülppte Magen zeichneten sich an seinen Exemplaren durch eine

1) Wenn Koehler (1895) in seiner Gegenüberstellung der Unterscheidungsmerkmale der L. sarsi von der L. etiaris die Pedicellarien der L. sarsi am Rande der Arme zwischen den Randstacheln stehen lässt, so setzt er sich damit in Widerspruch mit seiner eigenen unmittelbar vorhergehenden Beschreibung.
Luidia sarsi.

97

hübsch zinnober- oder rosenrothe Färbung aus. Die noch mit der Bipinnaria (s. p. 99) verbundenen ganz jungen Thiere sind nach Koren & Danielssen (1847) zinnoberroth.

Ueber die Färbung der mittelmeerischen Exemplare kann ich aus eigener Anschauung nicht berichten, da mir keine lebenden Thiere vorgelegen haben. Greeff gibt in einer hinterlassenen Farbenskizze eines von ihm bei Neapel beobachteten Thieres einen hellen, bräunlichrothen Ton an. Das alte von Merculiano (Taf. 4, Fig. 3) abgebildete Exemplar hat eine bräunlichgelbe helle Grundfarbe, auf der zahlreiche, den Paxillen entsprechende, dunkelbraune Punkte liegen, die nach den Randplatten hin grösser werden und sich hier in kurze Querreihen ordnen; auch die Randstacheln sind dunkelbraun.

Das horizontale Verbreitungsgebiet der L. sarsi fällt annähernd, aber doch nicht ganz mit dem der L. ciliaris zusammen, indem es sich etwas weiter nördlich bis zum Thondhjemfjord an der norwegischen Küste ausdehnt und im Mittelmeer weiter östlich bis nach Kreta reicht.

Ausschließlich des Mittelmeeres liegt der südlichste Punkt ihres Vorkommens an den Kapverden. Von da zieht sich ihr Wohngebiet nordwärts an der afrikanischen (Perrier) und an der portugiesischen Küste (Greeff: bei Cezimbra) hin. Westlich von Frankreich hat Koehler sie neuerdings im Golf von Biscaya gefunden. Im Kanal ist sie bis jetzt noch nicht angetroffen worden. Weiter nordwärts kennen wir sie von Südwestirland (Bell, Haddon, Sladen), Westirland (Hermon), Nordwestirland (Bell), zwischen Schottland und der Färöer-Bank (Bell), östlich von den Shetland Inseln (Bell) und an den Orkney-Inseln (Forbes, Bell). An der Ostküste Schottlands (Forbes, Scott) und Englands (Forbes, Norman) geht sie nicht weiter südlich als bis zum 55.° nördlicher Breite. Von dort erstreckt sich ihr Verbreitungsbezirk an der norwegischen Küste nördlich bis Kristiansund (Düben & Koren) und dem Thondhjemfjord (Storm). Während die L. ciliaris (s. p. 81) an der norwegischen Küste fehlt, ist die

1) Seine Beobachtung stammt, wie ich aus seinem Nachschr. heraus, bereits aus dem Jahre 1874; in seinem Manuskript gab er damals der Art den vorläufigen Namen Luidia dubia.

Astropectinidae.

L. sarsi daselbst ausser an den eben genannten Fundorten auch aus dem Sognefjord (Danielssen & Koren, Grieg) und anderen benachbarten Fjorden (Grieg), von Bergen (M. Sars, Kükenthal & Weissenborn, Brunchorst) und von Moster (Grieg) nachgewiesen und geht von hier südlich bis in das Skager Rak (Düben & Koren, Meissner & Collin) und den Eingang des Kattegat (M. Sars).

In verticaler Richtung steigt die *L. sarsi*, wie das schon Forbes richtig hervorgehoben hat, in größere Tiefen hinab als die *L. ciliaris*. In geringerer Tiefe als 9 m ist sie überhaupt noch nie gefunden worden; die grösste Tiefe, aus der man sie bis jetzt heraufgeholt hat, beträgt 1292 m (südöstlich von Cap Malia). An ihren west- und nordeuropäischen Fundorten wird sie meistens in Tiefen von 50—180 m angetroffen, kommt aber auch schon in Tiefen von 9—50 m vor. Bis vor Kurzem war nur ein erheblich tieferer Fundort aus dem nördlichen Teile ihres Wohngebietes, nämlich zwischen Schottland und der Färöer-Bank, bekannt, der 684 m beträgt; doch gibt neuerdings Grieg an, dass die Art auch im Sognefjord bis zu 366 m hinabsteigt.

Im Mittelmeer lebt sie im Golfe von Neapel in Tiefen von 35—300 m (z. B. am Postlip in 35 m, auf der Secca di Benda Palummo in 80 m, bei Capri in 80—150 m, in der Bocca piccola in 50 m). Bei La Ciotat fand Koehler sie in 120—150 m; an der Küste von Marocco kommt sie nach Perrier in 322 m¹ vor, und im östlichen Mittelmeer hat v. Marenzeller sie aus Tiefen von 755, 808 und 1292 m erbeutet. Im Ganzen kann man demnach sagen, dass sie im Mittelmeer die Neigung zeigt, in noch bedeutendere Tiefen zu gehen, als das in den nordeuropäischen Meeren der Fall ist. Westlich von Afrika ist sie aus 86 und 235 m bekannt.

An manchen Orten ihres Vorkommens ist sie durchaus nicht sehr selten, so z. B. an der norwegischen Küste und im Golf von Neapel; an letzterem Orte ist sie an manchen Stellen fast ebenso häufig wie *L. ciliaris*. Bezüglich der Bodenbeschaffenheit hält sie sich anscheinend mit Vorliebe auf schlammigem oder sandigem Boden auf, findet sich aber auch auf Denitus und Corallineen.

Über ihre Nahrung liegen keine bestimmten Beobachtungen vor.

Schon Forbes (1841) giebt an, dass die Arme in ähnlicher Weise, nur nicht ganz so leicht abbrechen wie bei *L. ciliaris*. Das scheint auch für die mittelmeerischen Exemplare zuzutreffen, denn man findet unter ihnen sehr viel häufiger als bei der siebenarmigen Art Thiere mit annähernd gleich grossen Armen, die nirgends eine Regenerationsstelle aufweisen. Unter zehn beliebig herausgegriffenen mittelgrossen und grossen Exemplaren zählte ich z. B. fünf, die keine Spur einer Regeneration erkennen liessen; von den fünf übrigen besassen zwei je einen, zwei andere je zwei und eines drei regenerirt Arme.

Über die Fortpflanzungszeit besitzen wir ebenfalls keine bestimmte Angabe. Die Larve ist zwar schon seit 60 Jahren bekannt, jedoch war ihre Zugehörigkeit zur vorliegenden *L.-Art* bis jetzt noch nicht ermittelt. Die am längsten bekannte Seestern- und überhaupt

¹) In seiner vorläufigen Mittheilung (1882) gibt Perrier 332 m an.

Der Rücken ist mit zahlreichen derartigen Höckerchen bedeckt, die nichts Anderes sein können als entkalkte Paxillenanlagen, über deren Bau ich schon weiter oben (p. 90) berichtet habe. Auf jeder Adambulacralplatte stehen zwei Stachelanlagen. Jede Mundeckplatte trägt zwei junge Stacheln: einen mundwärts gerichteten auf der Ecke, an der der satturale Plattenrand mit dem ambulacralen zusammenstösst, das ist der eigentliche Mund-echstachel, und einen aufrecht stehenden auf dem distalen Bezirke der Platte. Schon Koren & Danielssen (1847) haben diese Bewaffnung der Mundeckplatten gesehen, denn sie sagen, dass jede "lamelle angulaire de la bouche", worunter sie den ganzen aus zwei Mundeckplatten gebildeten Skeletabschnitt verstehen, mit zwei Paar Stacheln ausgerüstet sei. Es stimmt also die Mundbewaffnung mit derjenigen der jungen Exemplare von *L. ciliaris* überein, während die Adambulacralbewaffnung bei den jüngsten *L. ciliaris* (s. p. 83) auf jeder Platte erst aus einem einzigen jungen Stachel besteht, bei *L. sarsi* aber aus zwei. Möglicherweise beruht aber diese Differenz in der Zahl der jungen Adambulacralstacheln nur darauf, dass jene jüngsten Exemplare von *L. ciliaris* noch jünger waren als die mir vorliegenden jüngsten Stadien der *L. sarsi*. Ferner ist über den Bau der jungen noch mit der Larve verbundenen *L. sarsi* zu bemerken, dass ihr Mund noch geschlossen ist und in jedem Radius, ausser dem Fühler, schon sechs bis acht Paare von Füsschen angelegt sind. Die Länge des ganzen kleinen Sternes beträgt bei der einen Larve 1,64 mm, der Scheibenradius 0,52 mm, der Armradius 0,89 mm, das Verhältniss \(r : R = 1 : 1,7 \), und es sind sechs Füsschenpaare vorhanden. Bei einem anderen Exemplare misst die Länge des Sternes 3 mm, der Scheibenradius 0,74 mm, der Armradius 1,46 mm, das Verhältniss \(r : R = 1 : 1,97 \); acht Paar Füsschen.

Nach der Ablösung von der Larve entwickelt sich unser Seestern zu einer Jugendform, die neuerdings den Anlass zur Aufstellung einer besonderen neuenGattung und Art gegeben hat. Es beschrieb nämlich PERRIER erst in einer vorläufigen Mittheilung (1852, Rapport etc.) und dann ausführlicher (1894) unter dem Namen *Astrella simplex* einen kleinen Seestern von der marokkanischen Mittelmeeerküste, den er ganz richtig in die Familie der Astropectiniden stellt, hier aber als n. g. n. sp. ansieht, obgleich ihm schon der Verdacht aufsteigt, dass es sich dabei um eine Jugendform der *L. sarsi* handle. An seinen vier Exemplaren mass der Armradius 8, der Scheibenradius 2 mm. Mir ist dieselbe Jugendform seit dem Jahre 1880 bekannt, wo ich sie bei Neapel in einem Exemplare fand, an dem \(R = 6,5 \) mm und \(r = 2 \) mm misst, das also noch etwas kleiner als die PERRIERSchen ist.

Ein noch kleineres Exemplar, dessen R nur 1 mm, \(r \) nur 0,54 mm misst (\(r : R = 1 : 1,75 \)), erhielt ich im Winter 1894/95 gleichfalls von Neapel. Dieses kleinste, im Ganzen nur 1,5 mm lange Exemplar kann sich, wie aus diesen Maassen im Vergleich zu denen des noch an der Bipinnaria haftenden Jungen hervorgeht, erst vor Kurzem von der Larve abgelöst haben. Das wird auch dadurch bestätigt, dass erst ein Füsschenpaar mehr vorhanden ist nämlich 7, als bei dem einen oben erwähnten, noch mit der Larve verbundenen Sternchen. Der Rücken ist mit Paxillen-Anlagen (s. p. 90) bedeckt und jede Adambulacralplatte mit zwei jungen Stacheln ausgerüstet, von denen der eine zum inneren, der andere zum mittleren Adambulacral-

Die Terminalplatte, die nach Perrier verhältnissmässig wenig entwickelt sein soll, hat an meinem Exemplare schon eine Länge von 0,6 mm und eine grössere Breite von 0,5 mm. Ihr Körper ist freilich nur 0,22 mm lang, aber ihre beiden flügelförmigen, divergirenden Fortsätze haben eine Länge von 0,38 mm. An seiner Unterseite trägt der Körper der Platte eine stark 0,1 mm breite Längsrinne; das abgerundet zugespitzte Ende der Flügel fällt in dieselbe Querschnittsebene, in dem das fünfliederte Wirbelpaar liegt. Seitlich und am aboralen Rande ist der Körper der Terminalplatte dicht mit Stachelanlagen besetzt, die auf dem aboralen Rande an Länge zunehmen und so die beiden Stachelbüschel bilden, mit denen nach Perrier die Arme der *Astrella* endigen. — Untere Randplatten, die in Zahl und Lage wie beim alten Thiere den Adambulacralplatten entsprechen, lassen sich mit aller Deutlichkeit unterscheiden. Sie tragen nach Perrier’s erster Angabe je einen, nach seiner späteren Angabe aber 1—3, dann in eine Querreihen geordnete Stacheln, die an ihrer Basis von viel kleineren Stacheln umstellt seien. An meinem Exemplare finde ich fast immer nur einen oder zwei grössere Stacheln auf jeder unteren Randplatte; nur hier und da steht ihrem unteren Rande zunächst noch ein dritter, erheblich kleinerer. Auch die winzigen Stachelchen, von denen Perrier berichtet, sind vorhanden; doch stehen sie nicht rings um die Basen der grösseren, sondern folgen wie an dem erwachsenen Thiere dem adoralen und aboralen Rande der Platte. — Nach Perrier verbindet sich jede untere Randplatte mit der entsprechenden Adambulacralplatte durch ein kleines Transversalstück. Auch bei meinem Exemplare sind diese Transversalstücke vorhanden, verbinden sich aber an ihrem medialen Ende nicht mit den Adambulacralplatten, sondern mit den Ambulacralplatten. Diese Stücke sind demnach noch nicht die späteren Ventrolaterallplatten, sondern die Anlagen der Superambulacralstücke, und entsprechen in ihrer Anordnung durchaus denjenigen der jungen *L. ciliaris* (s. p. 74); es verbinden sich also auch hier die
Schliesslich gebe ich eine Gegenüberstellung der unterscheidenden Merkmale der L. sarsi und der L. ciliaris, welche sich zunächst auf mittelgroße und grosse Exemplare bezieht und, wie mir scheint, mehr als ausreichend beweist, dass es sich bei sarsi nicht um eine Varietät der L. ciliaris, sondern um eine besondere Art handelt.

Luidia ciliaris.

Sieben Arme.
Maximalgrösse 50—63 cm.
$r : R$ im Durchschnitt $= 1 : 7—9$.

Gipfel der Randpaxillen queroval.
Seitenpaxillen in drei Längsreihen.
3 Querreihen von Seitenpaxillen auf je 2 Randpaxillen.
Basis der Seitenpaxillen ein lateinisches Kreuz.
Quer über den Armrücken etwa 10 Mittelpaxillen.
Basalplatte der Mittelpaxillen aus mehreren Schichten von Maschen gebildet.
Die jungen Stachelchen der Paxillenkronen endigen vierspitzig.
Papulæ bis 30 lappig, fehlen nur an der äussersten Spitze des Armes.

Untere Randplatten mit 4 oder 5 Stacheln.
Adambulaeralplatten mit 1 inneren und 1 äusseren Stachel (nach aussen davon noch 2 ganz kleine Stacheln).

Distaler Bezirk der Munddeckplatten mit etwa 12 Stachelchen.
Madreporenplatte von den Randpaxillen durch die erste Reihe der Seitenpaxillen getrennt.
Mit zweiarmigen Pedicellarien auf den un-

Luidia sarsi.

Fünf Arme.
Maximalgrösse 31 cm.
$r : R$ im Durchschnitt $= 1 : 6—9(—10)$; aber bei gleicher Körpergrösse ist R immer relativ grösser als bei ciliaris; die Arme wachsen im Verhältniss zur Scheibe rascher als bei ciliaris.

Gipfel der Randpaxillen längsoval.
Seitenpaxillen in zwei Längsreihen.
4 Querreihen von Seitenpaxillen auf je 2 Randpaxillen.
Basis der Seitenpaxillen ein griechisches Kreuz.
Quer über den Armrücken 15—20 Mittelpaxillen.
Basalplatte der Mittelpaxillen nur aus einer Schicht von Maschen gebildet.
Die jungen Stachelchen der Paxillenkronen endigen dreisitzig.
Papulæ weniger reich gelappt, fehlen auch im Mittelstreifen der Arme und im Mittelfelde der Scheibe.
Untere Randplatten mit 3 (selten 4) Stacheln.
Adambulaeralplatten mit 1 inneren, 1 mittleren und 2 äusseren Stacheln; von den beiden äusseren der adorale viel kleiner als der aborale.
Distaler Bezirk der Munddeckplatten mit 2—4 Stachelchen.
Madreporenplatte unmittelbar über den Randpaxillen.
Pedicellarien nur auf den Ventrolateral-
Archasteridae.

teren Randplatten oder mit dreiarmigen auf den Ventrolateralplatten; selten mit beiden Sorten von Pedicellarien.

Färbung ziegelroth mit Braunroth. Färbung bräunlich gelb bis bräunlich roth.

Anatomische Notizen. In der Mundhaut kommen ähnlich wie bei L. ciliaris zerstreut liegende kleine Kalkkörperchen vor. Die radialen Blinddärme reichen bei dem Exemplare Nr. 2 bis zum elften Wirbel; ihr distales Ende ist 11 mm vom Mittelpunkte der Scheibe entfernt; sie erstrecken sich demnach bis zum Ende des ersten Fünftels der freien Arme. Später wachsen sie langsamer als die Arme, denn bei dem Exemplar No. 12 endigen sie am dreizehnten Wirbel in einer Entfernung von 20 mm vom Scheibennmittelpunkt, nehmen also hier nur das erste Achtel der freien Arme ein. Die Genitalorgane stimmen in Form und Anordnung bemerkenswerte Übereinstimmung unter dem Exemplar Nr. 22. Die Basen der einzelnen Genitalbüschel um die Breite eines Seitenpaxillus dem Rand der Arme näher gerückt, sodass die Basis eines jeden Genitalbüschels genau unterhalb der Stelle, an der sich der mediale Basalfortsatz eines ersten mit dem lateralen Basalfortsatz eines zweiten Seitenpaxillus verbindet.

Fam. Archasteridae.

Körper niedergedrückt, am Rande schwach oder deutlich bestachelt, mit grossen oberen und unteren Randplatten; Scheibe verhältnismässig gross; Arme lang, von der Basis an zugespitzt; Rücken der Scheibe und der Arme mit Paxillen besetzt; ventrale Interradialfelder gross; Ventrolateralplatten in zahlreichen, zum Theil langen Längsreihen; keine Pedicellarien; Papulæ einfach; Füsschen ohne deutliche Saugscheibe; After vorhanden.

Zwei Arten im Mittelmeere: Pl. subinermis (Phil.) und Pl. bifrons (Wyv. Th.).

Bestimmungsschlüssel der beiden Arten:

Keine oberen Randstacheln; untere Randplatten mit einer Querreihen grosserer Stacheln; Ventrolateralplatten gleichförmig kurz bestachelt; Adamulacralplatten mit 3 inneren und 2 äusseren Furchenstacheln; kein grösserer Stachel zwischen den kleineren subambulacralen Stachelchen. subinermis.

Obere und untere Randplatten mit je einem mässig grossen Randstachel; Ventrolateralplatten mit einem grösseren Stachel (beim erwachsenen Thier) zwischen den kleinen; Adamulacralplatten mit 6—10 Furchenstacheln; zwischen den subambulacralen Stachelchen ein grösserer Stachel bifrons.
S. Art. Plutonaster subinermis (Philippi).

Taf. 1, Fig. 1, 2; Taf. 6, Fig. 16—21.

1837 Asterias subinermis Philippi p. 193.
1840 Asterias subinermis Lamarck Vol. 3, p. 255.
1842 Astropecten subinermis Müller & Troschel p. 74—75.
1862 Astropecten subinermis Dujardin & Hupé p. 425.
1875 Astropecten subinermis Perrier p. 369.
1878 Archaster subinermis Perrier p. 33, 57, 85.
1884 Astropecten subinermis Studer p. 46.
1885 Goniopecten subinermis Perrier p. 71.
1885 Astropecten subinermis Carus p. 90—91.
1886 Astropecten subinermis Preyer p. 32.
1888 Astropecten subinermis Cuénot p. 134.
1888 Astropecten subinermis Colombo p. 47, 66.
1889 Plutonaster (subg. Tethyaster) subinermis Sladen p. 82, 83, 101, 102‡, 722.
1894 Tethyaster subinermis Perrier p. 323.
1895 Astropecten subinermis v. Marenzeller p. 23.
1896 Tethyaster subinermis Koecher p. 56—57.

Da diese seltene Art nur in Tiefen von mehr als 50 m lebt, so konnte sie trotz ihrer Grösse und auffallenden Färbung selbst noch DELLE CHIAJE unbekannt bleiben. Wir begegnen ihr erst bei PHILLIPI (1837)‡, der ihr den Speciesnamen gab, und wenn sie auch neuerdings öfter gefunden worden ist, so haben doch nur M. SARS (1857) und vorher Müller & Troschel (1842) Einiges zu ihrer Kenntniss beigetragen. So gehört sie auch jetzt noch zu den am wenigsten bekannten Formen der mediterranen Fauna.

1) Nicht p. 89, wie Perrier 1894 citirt.
Nachdem Müller & Troschel (1842) sie der Gattung Astropecten einverleibt hatten, behielt sie daseitst unbeanstandet ihre Stellung bis zum Jahre 1878, um von dann an ein Irrleben in anderen, zum Theil neuen Gattungen anzutreten, ohne dass bei dieser Wanderung die Kenntniss ihres Baues irgend eine Förderung erfahren hätte. Perrier stellte sie in jenem Jahre zur Gattung Archaster und im Jahre 1885 zur Gattung Goniopecten. Als dann brachte Sladen sie 1889 in der Gattung Plutonaster unter, in welcher er sie zusammen mit Astropecten parelii Düb. & Kor. die Untergattung Tethyaster bildet, die dann unlängst (1894) von Perrier zum Range einer besonderen Gattung erhoben wurde. Wir werden erst später, wenn wir uns die Art genauer vorgeführt haben, auf eine Bearbeitung ihrer systematischen Stellung näher eingehen können.

In ihrem Habitus (Taf. 1, Fig. 1 u. 2) schliesst sie sich zunächst an Astropecten an, unterscheidet sich aber sofort von allen mittelmeerischen Arten dieser Gattung durch ihre grossen actinalen Interradialfelder. Obere Randstacheln fehlen. Die unteren sind klein und mehr oder weniger angedrückt. Die Scheibe ist verhältnissmassig recht gross und die Arme sind zugespitzt. Die Seitenränder der Arme biegen in den Armwinkeln durch einen grossen Bogen ineinander um, der einen grösseren Krümmungsradius als bei irgend einer mittelmeerischen Astropecten-Art hat.

Die Zahl der Arme beträgt bei allen bis jetzt bekannt gewordenen Exemplaren ausnahmslos fünf.

Die Art erreicht eine bedeutende Grösse, welche sich derjenigen des Astropecten aurantium näher, aber doch immer noch rund 10 cm hinter dem grössten bekannten Exemplare jener Art zurückbleibt. M. Sars (1857) gibt 10, Müller & Troschel (1842) 12, Philipp (1837) 14 Zoll an; das sind unter der Annahme, dass preussisches Maass gemeint ist, 261, 314, 366 mm und, wenn man nach pariser Maass umrechnet, 270, 325, 379 mm. Mir liegt aber ein noch viel ansehnlicheres Exemplar vor, dessen Länge 440 mm beträgt.

Der Scheibenradius verhält sich zum Armradius bei dem grössten Exemplare (Nr. 4 der untenstehenden Tabelle wie 1 : 3,57; dasselbe Verhältniss ergiebt sich bei einem 225 mm.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L (mm)</th>
<th>R (mm)</th>
<th>r</th>
<th>Z</th>
<th>AB (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>139</td>
<td>77</td>
<td>19</td>
<td>62</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>225</td>
<td>125</td>
<td>35</td>
<td>68</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>275</td>
<td>150</td>
<td>38</td>
<td>76</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>440</td>
<td>250</td>
<td>70</td>
<td>85</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maasse junger Exemplare:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
grosen Thiere, während es bei einem 275 mm grossen 1 : 3,95 beträgt. Daran ergibt sich als Durchschnitt für diese drei erwachsenen Thiere r : R = 1 : 3,68. Bei einem nur mittel-grossen Exemplare von 139 mm Länge (Nr. 1 der Tabelle) steigt r : R sogar auf 1 : 4,05. Bei jugendlichen Thieren aber von nur 33 und 34 mm Länge (Nr. 5 und 6 der Tabelle) sinkt das Verhältniss r : R auf 1 : 3 und 1 : 2,71 hinauf. Es ist also bei jungen Thieren der Arm im Verhältniss zur Scheibe erheblich kürzer als bei den erwachsenen. Philippi (1837) gibt das Verhältniss von 2 r : R = 1 : 1,78 an, also r : R = 1 : 3,56, was zu meinen beiden Exemplaren Nr. 2 und 4 stimmt. Nach Müller & Troschel (1842) beträgt r : R = 1 : 4, was ebenfalls zutrifft, wie meine Exemplare Nr. 1 und 3 lehren.

Die Breite des Armes an der Armbasis gemessen) verhält sich bei den vier grösseren Exemplaren meiner Tabelle zu R wie 1 : 3,67; 1 : 3,29; 1 : 3,41; 1 : 3,33: im Durchschnitt 1 : 3,42. Bei den beiden jungen Thieren dagegen beträgt dieses Verhältniss 1 : 2,37 und 1 : 2,57, im Durchschnitt 1 : 2,47.

Die Paxillen sind bei erwachsenen Thieren recht kräftig entwickelt und stehen so dicht, dass ihre Kronen, namentlich auf der Scheibe, durch gegenseitigen Druck meist einen hexagonalen Umriss (Taf. 6. Fig. 11) darbieten, sodass man an ein regelmässiges Pflasterwerk erinnert wird. Die Schäfte der Paxillen (Taf. 6. Fig. 17) sind aber trotzdem drehrund; die anscheinend sechseckige Umrandung der Paxillengipfel wird nur durch die Stellung der Randstachelchen der Kronen hervorgerufen. Am grössten sind die Paxillen auf der Scheibe und auf dem proximalen Abschritte der Arme. Nach der Armmuskelte in sowie den oberen Randplatten entlang nehmen sie an Grösse ab. Ebenso begegnet man in dem hier wie bei den Astropuncten-Arten unterscheidbaren Mittelfelde der Arme etwas kleineren, aber dafür desto dichter stehenden Paxillen. Dagegen fehlt das bei unseren sämmtlichen Astropuncten-Arten deutlich ausgeprägte Feld kleiner Paxillen auf der Mitte des Scheibenrückens. Hier finden wir vielmehr bei der vorliegenden Art die Paxillen von derselben Grösse wie auf der Peripherie des Scheibenrückens. Auf den Armen sind die Paxillen der Seitenfelder ganz regelmässig in schiefre Querreihen geordnet, deren ich an dem 225 mm grossen Exemplare von der fünften bis zur vierzehnten oberen Randplatte, also auf die Länge von 10 Platten, 19 zählte; es kommen dannach fast genau zwei Reihen auf je eine Platte. An der achten oberen Randplatte desselben Exemplares zählte ich quer über den ganzen Armmücken 25 Paxillen, von denen 5 dem Mittelfelde und je 10 den beiden Seitenfeldern angehören. Betrachtet man das Mittelfeld genauer, so kann man oft deutlich sehen, dass eine mediane Längsreihe von Paxillen vorhanden ist, in der die einzelnen Paxillen ein klein wenig grösser sind, als die übrigen, rechts und links davon stehenden Mittelfeld-Paxillen und sich in ihrer Grösse zwischen diese und die noch etwas grösseren der Seitenfelder stellen. Die grossen Paxillen sind bis 2 mm hoch. Ihr Schaft verbreitert sich etwas nach oben und endigt mit einer Gipffläche, die fast horizontal abgeflacht und jedenfalls viel schwächer gewölbt ist, als es für die Paxillen der Astropuncten-Arten Regel ist. Die Breite der Gipffläche beträgt an grossen Paxillen 1 mm. Der ganze Gipfel (Taf. 6. Fig. 11) ist mit 0,5 mm langen, abgerundet endigenden, cylinder-
förmigen Stachelchen besetzt, von denen 15—25 den Rand der Krone und 8—12 manchmal etwas dickere die Mitte der Krone bilden. An kleineren Paxillen ist die Zahl dieser Stachelchen entsprechend kleiner. Die 1,5 mm breite Basalschicht der Paxillen fällt dadurch auf, dass die Ecken ihrer hexagonalen Grundform in Gestalt von 0,3—0,4 mm langen, abgerundeten Fortsätzen hervortreten und so der Basalplatte den Umriß eines sechseckigen Sternchens (Taf. 6, Fig. 17) in viel deutlicherer Weise geben, als das bei irgend einer mittelmeersichen *Astropecten*-Art vorkommt. Im Bereich der Arme sind die Basalplatten stets so orientiert, dass ein Fortsatz aboral, der gegenüberliegende adoral gerichtet ist; die vier anderen Fortsätze lassen sich als zwei laterale und zwei mediale unterscheiden (Taf. 6, Fig. 18). Noch mehr treten die Basalplatten zu denen der *Astropecten*-Arten dadurch in Gegensatz, dass sie nicht räumlich voneinander getrennt bleiben, sondern mit den Enden ihrer aborformigen Fortsätze gegenseitig übergreifen. Das geschieht in einer, wie es die schematische Figur (Taf. 6, Fig. 18) erläutert, ganz regelmäßigen Weise, nämlich so, dass alle Fortsätze einer jeden Basalplatte sich an dieser Uberlagerung betheiligen und sich dabei so verhalten, dass in den Seitenfeldern der Arme stets der adorale und die beiden medialen Fortsätze der einen Platte den aboralen einer benachbarten Platte und von zwei anderen benachbarten Platten je einen lateralen Fortsatz bedecken. Von innen gesehen sind also umgekehrt der aboralen und die beiden lateralen Fortsätze einer jeden Platte die höher liegenden, während der adorale und die medialen Fortsätze in dieser Ansicht verdeckte Enden haben.

Die Papulae haben die gewöhnliche, einfache Schlauchform mit abgerundetem freiem Ende. Zwischen den Paxillen sind sie so vertheilt, dass, wie bei den *Astropecten*-Arten, im Umkreis eines Paxillus immer sechs Stück stehen (Taf. 6, Fig. 18). Aus der Anordnung der Paxillen und der Verbindungsweise ihrer Basalfortsätze ergibt sich, dass die zum Durchtritt einer Papula bestimmte Skeletlücke stets von 3×2 Fortsätzen umrandet wird, die zu drei benachbarten Basalplatten gehören (vergl. Fig. 18). Im Gegensatz zu den *Astropecten*-Arten sind die Papulae über das ganze Paxillenfeld verbreitet, fehlen also weder im Mittelfeld der Arme noch im centralen Bezirke des Scheibenrückens. Indessen ist das nur eine Eigenthümlichkeit der erwachsenen Exemplare. Bei jungen, erst 33—34 mm grossen Thieren fand ich den centralen Theil des Scheibenrückens und eine schmale Längszone auf der Mitte der Arme ebenso frei von Papulae wie bei den *Astropecten*-Arten; jene Längszone hat nur die Breite der medianen und der jederseits daran angrenzenden Paxillenreihe. Später gelangen auch zwischen diesen Paxillenreihen der Arme sowie zwischen den centralen Paxillen des Scheibenrückens Papulae zur Ausbildung. Demnach wird die Papulae-Anordnung der Gattung *Astropecten* von unserer Art nur als ein Jugendstadium durchlaufen.

Die Zahl der oberen Randplatten schwankt bei den drei grossen Exemplaren meiner Tabelle von 68—85 und beträgt im Durchschnitt rund 76. Bei dem mittelgrossen Thiere von 139 mm Länge sind 62 obere Randplatten vorhanden, und bei den zwei jugendlichen Exemplaren (Nr. 5 und 6 meiner Tabelle) sinkt ihre Zahl auf 31 und 27 herab. Philippi's (1837) Bemerkung, dass bei einem 366 mm grossen Thiere 70—78 Platten vorhanden
Plutonaster subinermis.

seien, stimmt mit meinen Beobachtungen überein; dagegen ist die Müller & Troschel'sche (1842) Angabe von 70—80 Platten für die von ihnen erwähnte Maximalgröße von rund 320 mm etwas zu hoch gegriffen.

Vergleicht man die Zahl der Randplatten mit der in Millimetern ausgedrückten Länge von R, so erhält man für die drei grössten Exemplare der Tabelle, deren R durchschnittlich 175 mm lang ist, das Verhältniss Z : R = 1 : 2,29; bei dem Exemplar Nr. 2 ist Z : R = 1 : 1,84; bei Nr. 3 = 1 : 1,97; bei Nr. 4 = 1 : 2,94. Bei dem mittelgrossen Exemplare Nr. 1 beträgt Z : R = 1 : 1,24. Bei den beiden jungen Thieren sinkt dies Verhältniss ganz bedeutend, sodass es bei Nr. 6 nur noch 1 : 0,7 und bei Nr. 5 nur noch 1 : 0,58 beträgt. Daraus ergibt sich, dass die Zahl der oberen Randplatten viel langsamer zunimmt als die Länge des Armes. Der Armiradius, der bei den jungen Thieren nur etwa 0,5 Millimeter, wie die Zahl der Platten beträgt, misst schliesslich fast dreimal so viele Millimeter. Während R von 18 auf 77 steigt, sich also mehr als vervierfacht, hat sich die Zahl der oberen Randplatten erst verdoppelt (von 31 auf 62), und während dann R weiter bis 250 zunimmt, also rund das Vierzehnfache der anfänglichen Größe erreicht, hat die Zahl der Platten sich erst auf 85, also kaum das Dreifache ihres anfänglichen Betrages gesteigert.

Die Oberfläche der dorsalen Randplatten ist so gewölbt, dass ihr dorsaler Bezirk ganz allmählich in den lateralen übergeht; nach der Armspitze hin wird diese Wölbung flacher, während sie in den Armwinkeln, unter Zunahme der Höhe und Breite der Platte, schlanker wird. Bei dem 225 mm grossen Exemplare (Nr. 2 der Tabelle) habe ich die Platten gemessen. Die erste ist an ihrem oberen Rande 1,5 mm lang; ihre Breite beträgt 6,5, ihre Höhe 5,5 mm; in der Armmitte messen die Platten an ihrem oberen wie unteren Rande 2 mm an Länge und haben eine Breite von 4,5 und eine Höhe von 3,5 mm. Oberflächlich sind die Platten dicht bedeckt mit Granula (= abgestutzte, kurze Cylinderehen), die durch gegenseitigen Druck abgerundet sechseckig erscheinen und kaum höher als breit sind; vom adoralen zum aboralen Plattenrande zählt man in der unteren Armhälfte 7, 8 oder 9 Granula; in der Nähe des unteren Plattenrandes werden die Granula oft ein wenig grösser, und es kann vorkommen, dass sich hier ein in der Längsmitte der Platte stehendes Granulum zu einem stumpfen, vorragenden Stachelchen streckt. Auf den Platten des distalen Armabschnittes werden die Granula immer feiner und fallen hier an conservirten Thieren leicht ab. Räumt man die am adoralen und aboralen Plattenrande sitzenden Granula hinweg, so bemerkt man, dass die Aussenflächen der Platten wie in der Gattung Astropecten durch tiefe, im mittleren Armabschnitt fast 1 mm breite Rinnen von einander getrennt sind. Jedem der beiden Rinnenränder entlang zieht eine dichte, hinter den Granula versteckte Reihe sehr feiner, erst mit der Lupe deutlich erkennbarer Stachelchen (= Cuvier's Wimperstachelchen), deren Anwesenheit M. Sars (1857) bei seinem Vergleiche unserer Art mit Psolaster (Astropecten) andromeda (M. Tr.) irrtümlich in Abrede gestellt hat.

Obere Randstacheln sind nicht vorhanden.

Die Terminalplatte (Taf. 6, Fig. 15) nimmt fast die ganze Breite der Armspitze ein. Bei dem 275 mm grossen Exemplare hat sie eine Länge und Breite von 2,5 mm. In der
Nähe ihres kräftig eingebuchteten distalen Randes ist sie stärker aufgetrieben (Taf. 6, Fig. 16) als in ihrem proximalen Bezirke, der eine leichte mediane Einsenkung erkennen lässt. Oberflächlich ist sie von ebensolchen hinfälligen Granula bedeckt wie die oberen Randplatten des distalen Armbezirkes. Seitlich grenzt sie an die fünf (oder, z. B. an dem 225 mm grossen Exemplaren, nur an die vier) letzten oberen Randplatten, die sich in der Ansicht von oben ganz oder theilweise unter sie verstecken (Taf. 6, Fig. 15). Da die Reihe der unteren Randplatten um eine Platte länger ist, als die der oberen, so stösst die Terminalplatte mit ihrem distalen Theile auch noch an die letzte untere Randplatte an (Taf. 6, Fig. 16).

Die unteren Randplatten, deren Reihen an den Armspitzen um eine Platte länger sind als die der oberen, sind in ihrem äusseren Abschnitte so nach oben gebogen, dass sich ihre Krümmungslinie unmittelbar in die Wölbung der oberen Randplatten fortsetzt; infolgedessen haben die Arme regelmässig abgerundete Seiten, die nur durch eine feine Längsline unterbrochen werden, welche der Berührungsstelle der oberen und unteren Randplatten entspricht. An ihrem adoralen, aboralen und inneren Rande sind die unteren Randplatten mit einer ziemlich dichten Reihe feiner, cylinderförmiger Stachelchen (Wimperstachelchen) besetzt, die ein wenig grösser sind als die an den Rinnen der oberen Randplatten beschriebenen. Auf ihrer freien Fläche tragen die unteren Randplatten eine vollständige Bedeckung von (in der unteren Armhälfte etwa fünf unregelmässigen, quer zur Armfurche verlaufenden Reihen kurzer, plumper, fast schuppenförmiger Stachelchen, unter denen sich, dem aboralen Plattenrande etwas näher als dem adoralen, einige grössere, abgeplattete, stumpfspitze bis lanzettförmige, angedrückte oder schräg abstehende Stacheln erheben, die in einer Querreihen stehen und bei grossen Exemplaren 2—4 mm lang werden. Nach der Arm spitze hin nimmt die Zahl dieser Stacheln immer mehr ab, und auf den letzten Platten können sie sogar ganz fehlen. Beigrossen Exemplaren zählt man dieser Stacheln auf den Platten des proximalen Armabschnittes 4 oder 5 (bei mittelgrossen nur 3), im mittleren Armabschnitte 4 oder 3 und im distalen Armabschnitte nur noch 2, 1 oder endlich 0. Da diese Stacheln niemals so deutlich wie bei den mittelmeerischen Astropecten-Arten in horizontaler Richtung über den Rand des Armes hervortreten, so kann man es verständlich finden, dass Müller & Troschel (1842) in ihrer Diagnose bemerken: «Die grossen Randstacheln der Bauchplatten fehlen ganz». Phili ppi (1837) dagegen schreibt unserer Art auf jeder unteren Randplatte je einen kleinen Randstachel zu, während doch mehrere, unter sich gleichwerthige Stacheln vorhanden sind, wie das auch schon M. Sars (1857) richtig bemerkt hat. Da aber Philip pi auch bei Astropecten aurantiacus nur von einer „spina simplex“ der unteren Randplatten spricht, wo auch deren mehrere da sind, so, denke ich, beziehen sich seine Worte eigentlich nur auf den äusseren Stachel der unteren Armpalte; der Gegensatz zu der „spina simplex“ bei Philippi ist die „spina quina“ des Astropecten pentacanthus (s. p. 44). — Bei den beiden jungen, 33 und 34 mm grossen Exemplaren sind die unteren Randplatten noch ohne alle besonderen Stacheln; ihre Oberfläche ist vielmehr mit ebensolchen Granula dicht bedeckt wie die oberen Randplatten. Dass die unteren Randplatten ihre grösseren Stacheln erst später entwickeln, kommt auch sonst vor. So bemerkt
z. B. Bell, in einer vor Kurzem erschienenen Abhandlung über die Echinodermen der Macclesfield Bank, dass junge Archaster typicus M. Tr. sich durch den Mangel der unteren Randstacheln von den alten unterscheiden.

2) Bei grösseren Thieren ist die Zahl der ventrolateralen Längsreihen noch grösser, bei kleineren Exemplaren kleiner als bei dem vorliegenden.
Archasteridae.

unserem Beispielen, lateral von der Munddecke und lateral von der dritten und vierten Adambulacralplatte, noch je ein unvollständiger, d. h. die unteren Randplatten nicht erreichender Bogen von Ventrolateralplatten zwischen die vollständigen Bogen ein. Weiter distal kommen ebenfalls einige unvollständige Bogen vor, die aber, umgekehrt wie jene, von den unteren Randplatten ausgehen und dafür die Adambulacralplatten nicht erreichen. In ihrer Stellung zeigen alle diese reducirten Bogen ein je nach den Individuen und auch an denselben Individuum in den einzelnen Antimeren schwankendes Verhalten, was aber doch immer zu Wege bringt, dass etwa von der 23. Randplatte an die Ziffern der Randplatten mit denjenigen der gegenüberliegenden Adambulacralplatten eine Strecke weit übereinstimmen. Hier kann man also von gut ausgebildeten Skeletsegmenten des Arms reden, deren jedes jederseits der Medianeebene aus einem Ambulacralstück, einem Adambulacralstück, einer unteren und einer oberen Randplatte und zwei Reihen von Paxillen zusammengesetzt ist. Durch die Reduction einzelner Ventrolateralbogen ist bis zur 23. Randplatte eine völlige Ausgleichung in der im proximalen Theile des Antimers hinter der Zahl der Adambulacralplatten zurückstehenden Ziffer der unteren Randplatten erfolgt; noch an der neunten Randplatte beträgt der Unterschied beider Ziffern drei, denn die ihr gegenüberliegende Adambulacralplatte ist die zwölfte. Verfolgt man das Lageverhältniss der Randplatten zu den Adambulacralplatten aber noch weiter nach der Armspitze hin, so zeigt sich, dass die Zahl der Randplatten in dieser Gegend allmählich grösser wird als die der an sie grenzenden Adambulacralplatten. Die vorhin erwähnte Übereinstimmung in der Ziffer der Randplatten und Adambulacralplatten gilt demnach nur für die mittlere Armstrecke, und es ist im Ganzen genommen die Zahl der Adambulacralplatten (und der Ambulacralplatten) eines ganzen Antimers geringer als die Zahl der Randplatten. — Um aber auf die Ventrolateralplatten zurückzukommen, sei schliesslich noch bemerkt, dass sich zwischen den Bogen der Ventrolateralplatten die queren Rinnen der Randplatten bis zur Ambulacralfurche fortsetzen.

Die Bewaffnung der Adambulacralplatten (Taf. 6, Fig. 13) ist eine reichliche. Jede Platte trägt auf ihrem in die Ambulacralfurche einspringenden Winkel eine Gruppe von drei in der Längsrichtung des Arms comprimirten, kräftigen, breiten, am Ende stumpf abgerundeten Stacheln (Taf. 6, Fig. 13a), von denen der mittlere, auf der Spitze des Winkels stehende etwas länger ist als die beiden seitlichen. Auf der Fläche der Platte stehen sechs bis acht kleinere, ähnliche Stacheln, die aber nicht in der Längs-, sondern in der Querrichtung des Arms comprimirt sind; von diesen Stacheln schliessen sich die beiden grössten, der Ambulacralfurche zunächst stehenden (Taf. 6, Fig. 13b) unmittelbar an die seitlichen Stacheln der inneren Stachelgruppe an, sodass man sie auch dieser zurechnen könnte, die dann statt aus drei aus fünf Stacheln bestehen würde. Ausserdem ist jede Platte noch an ihrem adoralen und aboralen Rande mit je vier oder fünf ganz kleinen Stachelchen besetzt, die dem Rande entlang eine Reihe bilden. Auf der ersten Adambulacralplatte vermehren sich die Stacheln ihrer ventralen Fläche (Taf. 6, Fig. 12, 14) nur wenig und bleiben in Form und Anordnung denjenigen der übrigen Adambulacralplatten viel ähnlicher, als das bei Astropcenten Regel ist.
Die Munddeckstücke (Taf. 6, Fig. 12, 14) sind auf ihrer stark gewölbten ventralen Oberfläche ziemlich gleichmässig mit kurzen, plumpen, abgerundeten, fast granulaförmigen Stachelchen bedeckt, in deren Anordnung sich auf jedem Munddeckstücke etwa drei (also auf einer ganzen Munddecke sechs) unregelmässige Längsreihen von je 6—10 Stück unterscheiden lassen. Nur in der Nähe der Mundöffnung werden diese Oberflächenstacheln etwas länger und bilden so den Übergang zu den eigentlichen Mundstacheln des ambulacralen Randes der Munddeckstücke. Auch diese sind, obschon länger, von gedrungener, am freien Ende stumpf abgerundeter Gestalt. An jeder Munddeckplatte stehen in der Regel sechs oder sieben, von denen der eigentliche Eckstachel der grösste ist; während die übrigen allmählich an Grösse abnehmen. Endlich darf nicht unerwähnt bleiben, dass der distale Rand einer jeden Munddeckplatte mit einer Reihe ebensolcher feiner, cylinderrörmiger Stachelchen besetzt ist, wie wir sie an den einander zugeklebten Rändern der Adambulacralplatten kennen gelernt haben.

Die Madreporenplatte hat bei dem grössten meiner Exemplare eine Länge von 10 und eine Breite von 9 mm. Bei dem 225 mm grossen Thiere misst sie an Länge 6,5 und an Breite 7 mm. Um sie in ihrer wirklichen Grösse messen zu können, muss man erst die an sie angrenzenden, ihren Rand überdeckenden Paxillen wegräumen. Hat man das gethan, so erkennt man auch, dass ihre Umrandung eine Anzahl leichter Einbuchtungen (ich zählte deren an dem 225 mm grossen Thiere 14) zeigt, denen je einer der die Platte dicht umstehenden Paxillen entspricht; so tief wie bei Astropecten aurantiacus werden indessen diese Einbuchtungen niemals. Im Ganzen ist die Platte von anschnellerer Dicke; während sie nach ihrem Rande hin stärker abfällt, ist sie auf ihrer Mitte ziemlich platt; die Furchen der Oberfläche liegen frei zu Tage und strahlen unter Vergabelung vom Mittelpunkte der Platte aus. Vom unteren Rande der Platte bis zu den oberen Randplatten zählte ich bei dem 225 mm grossen Exemplare 10 Paxillen. Derselbe Abstand beträgt in mm ausgedrückt 10, die Entfernung des oberen Plattenrandes vom Scheibenmittelpunkte 16 mm. Bei demselben Exemplare ist abnormerweise eine überzählige zweite Madreporenplatte vorhanden, die, durch einen Radius von der normalen getrennt, im vorderen (= analen) Interradius ihre Lage hat. Sie ist kleiner als jene, misst an Länge 4,5, an Breite 4 mm; ihre Entfernung von den oberen Randplatten beträgt 13 Paxillen oder 13 mm, ihr Abstand vom Scheibencentrum 15 mm. Das gelegentliche Vorkommen einer überzähligen Madreporenplatte war bisher bei dieser Art noch nicht bekannt.

Die prächtige Färbung der Rückenseite (Taf. 1, Fig. 1) setzt sich aus Hellscharlachroth, Weiss und Gelb zusammen. Der ganze von den Paxillen eingenommene Bezirk zeigt ein herrliches, helles Scharlachroth, von dem die weissen Köpfe der Paxillen sich scharf abheben. Die oberen Randplatten und die Madreporenplatte sind gelb bis orangegelb, mit feiner, scharlachfarbener Beimischung, die auf den Randplatten als eine feine Punktrierung auftritt. Die Terminalplatten sind fast rein gelb; Die Bauchseite (Taf. 1, Fig. 2) ist im Ganzen erheblich heller als die Oberseite. Ihre Randstacheln sind lichtgelb; die unteren Randplatten haben ebenfalls einen weisslichgelben Ton, der aber ins Blassbräunliche zieht. Die übrige Unterseite hat eine blassscharlachfarbene Grundfarbe, während ihre Stachelgruppen gelblich ausschen.

Auf jeder Munddecke fällt eine lichte, weisslichgelbe Stelle ins Auge. Die Füsschen sehen im zurückgezogenen Zustände schmutziggelb aus.

In verticaler Richtung lebt sie vorzüglicherweise in Tiefen von 59—300 m. Aus einer geringeren Tiefe ist sie überhaupt bis jetzt noch nicht erbeutet worden, wohl aber, nach Pernier's Angabe, einmal in viel grösserer Tiefe, 1283—1425 m, an der Westküste Maroccos. Im Golfe von Neapel fand Colombo sie nordöstlich von Capri in der sog. Bocca piccola in Tiefen von 59—80 m, und nach mündlicher Mittheilung Lo Bianco's lebt sie an der Seecca di Benda Palummo in annähernd 100 m. Die einzige adriatische Fundstelle (östlich von Pelagosa) hat nach v. Marenzeller eine Tiefe von 131 m. Soweit die wenigen sicherer Angaben über die Beschaffenheit des Bodens, von dem die Exemplare heraufgeholt wurden, einen Schlussgestatten, bevorzog die Art sandigen und schlammigen, mit Corallen, Corallinen, Melobesen und Conchylia untermischten Boden, wo sie ziemlich vereinzelt zu leben scheint.

Über die Fortpflanzungszeit und die Larvenform1) wissen wir einstweilen nichts. Doch bin ich in der Lage, ein ganz junges Exemplar (Taf. 6, Fig. 22, 23, 24) zu beschreiben, das mancherlei Bemerkenswerthes darbietet. Dasselbe wurde im Golf von Neapel am 30. August 1889 an der Seecca di Benda Palummo aus einer Tiefe von 100 m heraufgeholt. Seine Länge beträgt nur 6,5 mm, sein grosser Radius 3,5 mm und sein kleiner Radius 2,5 mm; seine Länge ist also nur 1/18 und sein grosser Radius nur 1/71 der Grösse, welche diese Masse bei dem grössen erwachsenen Thiere (Nr. 4 der Tabelle) erreichen. In seinem Habitus erinnert es sofort an die Gattung Pentagonaster, insbesondere an Sladen's (1889, p. 275) P. lepidus, von dem dieser Forscher schon den Verdacht äussert, dass es sich dabei um eine Jugendform einer anderen Gattung handeln könne. Indessen unterscheidet sich das vorliegende Exemplar dennoch von Pentagonaster lepidus, da es in den Armwinkeln keine unpaare obere und untere Randplatte besitzt.

Die Körperform ist abgeplattet pentagonal, mit abgerundeten Ecken und concaven Seiten. Das Paxillenfeld des Rückens (Taf. 6, Fig. 22, 23) ist dicht besetzt mit kleinen Paxillen, die auf dem distalen Bezirke der Arme in drei ziemlich regelmässigen Längs-

reißen stehen und auf ihrem Gipfel in der Regel 6—8—10 peripherische und 1 oder 2 centrale Stachelchen tragen. Diese Stachelchen sind an ihren Enden mit einigen (in der Abbildung nicht angegebenen) feinen Dörnchen besetzt.

Obere Randplatten sind jederseits an jedem Antimer drei vorhanden; dazu kommt an drei Armen noch die Anlage einer vierten oberen Randplatte. Alle oberen Randplatten sind erheblich breiter als lang; Breite und Länge betragen bei der ersten 0,7 mm und 0,54 mm, bei der zweiten 0,62 mm und 0,37 mm, bei der dritten 0,54 mm und 0,3 mm, bei der vierten 0,42 mm und 0,12 mm. Oberflächlich sind die Platten mit zahlreichen, winzigen, ganz kurzen Stachelchen besetzt, aus denen später die Granula werden, die aber jetzt sich gegenseitig noch nicht berühren.

Mit denselben Gebilden ist auch die Terminalplatte bedeckt, die, an Länge 0,96 mm und an Breite 1,3 mm messend, die ganze Arm spitze einnimmt, an ihrem distalen Rande die spätere Einbuchtung noch nicht aufweist, dafür aber an ihrem proximalen Rande eine Einbuchtung besitzt. Auch die Unterseite der Platte (Taf. 6, Fig. 24) ist ebenfalls mit jungen Granula bedeckt. Die ganze Platte erscheint in der Ansicht von unten kürzer, nur 0,62 mm lang, weil ihre proximalen seitlichen Bezirke in dieser Ansicht von der jüngsten unteren Randplatte verdeckt werden.

Die Zahl der unteren Randplatten (Taf. 6, Fig. 24) ist schon jetzt wie bei den alten Thieren um 1 (oder gar 2) höher als die der oberen; denn es sind an jedem Antimer jederseits fünf vorhanden, die gleich den oberen breiter als lang sind, an Länge und Breite nach der Arm spitze hin abnehmen und wie bei den jüngsten Thieren (Nr. 5 und 6) dieselbe Bedeckung zeigen wie die oberen Randplatten.

Ventralateralplatten (Taf. 6, Fig. 24) sind in jedem Interradialfeld erst sieben vorhanden. Zwei davon grenzen an den Aussenrand der Mund deckplatten und der ersten Adambulacralplatten; die dritte ist unpaar und liegt zwischen jenen beiden ersten und den ersten unteren Randplatten. Von den vier anderen liegen jederseits zwei so in der Längsrichtung des Armes hintereinander, dass sie mit der ersten paarigen eine Längsreihe bilden; die erste von ihnen befindet sich zwischen der zweiten Adambulacralplatte und der ersten unteren Randplatte, die zweite zwischen der dritten Adambulacralplatte und der ersten unteren Randplatte. Oberflächlich trägt jede Ventralateralplatte auf ihrer Mitte eine Gruppe von 6—14 Stachelchen.

Die Zahl der Adambulacralplatten (Taf. 6, Fig. 24) beträgt sieben; wenigstens liessen sich so viele mit aller Deutlichkeit erkennen; wahrscheinlich ist aber auch schon die achte angelegt. Die drei ersten sind durch die Ventralateralplatten von der ersten unteren Randplatte getrennt. Die vierte stösst an die zweite, die fünfte an die dritte, die sechste an die vierte und die siebente an die fünfte untere Randplatte. Auf ihrem ambulacralen (= inneren) Rande ist jede Adambulacralplatte mit fünf Stacheln bewehrt, von denen der adorale und der aborale etwas weiter nach aussen stehen als die drei mittleren. Ausserdem trägt jede Platte auf ihrer ventralen Oberfläche eine Anzahl (6—9) schwächere und kürzere Stacheln, die zu den Stacheln der Ventralateralplatten überleiten.
Archasteridae.

Auch die Bewaffnung der Munddeckstücke (Taf. 6, Fig. 24) nähert sich bereits den Verhältnissen, die wir an den erwachsenen Thieren kennen gelernt haben. Es lassen sich schon die drei unregelmässigen Längsreihen auf der gewölbten ventralen Oberfläche unterscheiden. Am kräftigsten ausgebildet, an Länge und Breite alle anderen übertreffend, ist der eigentliche Eckstachel, an den sich dem ambulacralen Rande entlang fünf erheblich kleinere Stacheln in einer Reihe anschliessen.

Die Füsschen waren bei dem grössten der mir vorliegenden Exemplare im ausgestreckten Zustande bis 30 mm lang und an ihrer Basis bis 5 mm dick. Sie endigen ebensowenig wie die der Astropectiniden mit einer Saugscheibe, sondern kegelförmig verjüngt mit einer (im contrahirten Zustande) sehr kleinen, wärzchenförmigen Spitze. In ihrer Wandung liegen sehr zerstreut glatte, gerade oder unregelmässig gekrümmte, an den Enden abgerundete Kalkstücken (Taf. 6, Fig. 20) von 0,122 — 0,235 — 0,269 mm Länge. Ganz ähnliche Kalkkörperchen finden sich vereinzelt auch in den interbranchialen Septen, denen die grösseren Kalkstücke mancher anderer Archasteriden fehlen, sowie in geringerer Grösse (nur 0,04 — 0,117 mm lang; in der Wand der Füsschenampullen (Taf. 6, Fig. 21), wo ich in der Wand einer Polischen Blase vergeblich danach gesucht habe. Sehr zahlreich aber trifft man ebensolche, durchschnittlich 0,109 mm lange, mitunter dreieckige Kalkstäbchen (Taf. 6, Fig. 19) in der Wand des Magens an.

An dem Magen (Taf. 6, Fig. 19) hängen auffallend kurze radiäre Blindsäcke, die mit ihrem distalen Ende nicht über den Radius der Scheibe hinausreichen; bei dem Exemplare Nr. 3 meiner Tabelle, dessen R 150 mm beträgt, misst die Entfernung des Scheibencentrums vom Ende der Blindsäcke nur 35 — 35 mm, während r ebenfalls 38 mm lang ist. Die beiden Blindsäcke eines jeden Armes entspringen wie gewöhnlich gesondert voneinander aus der Unterseite einer radialen Bucht des Magens, an dessen Rückenseite ich keine interradiären Blindsäcke wahrnahm, wohl aber einen ganz kurzen, interradial gelegenen, zum After gerade aufsteigenden Enddarm.

Der After ist bei unserer Art zwar nicht sofort von aussen zu sehen, aber doch leicht aufzufinden, wenn man im vorderen Interradius des Scheibenringes in der Nähe des Centrums die Paxillen abkippt oder wenn man die abgelöste Rückenwand der Scheibe von innen betrachtet. Beim in Rede stehenden Exemplare Nr. 3 ist der After 3,5 mm vom Mittelpunkt des Scheibenringes entfernt und stellt eine kleine, kaum 1 mm grosse, runde Öffnung dar, deren Rand von einem Skeletringe gebildet wird, der dadurch entsteht, dass sich die Basalplatten von sechs Paxillen zu einem Kranze aneinander schliessen. Schon bei jungem, erst 33 und 34 mm grossen Thieren ist der After in derselben Weise von einem aus sechs Paxillenbasen zusammengesetzten Ringe umgeben.

Von Polischen Blasen fand ich bei dem Exemplare Nr. 3 in vier Interradien je eine, die, von der Hauptachse des Sceeternas gesehen, immer unmittelbar links von dem interbranchialen Septum lag; im fünften Interradius aber, nämlich in dem des Steinkanals, fehlte die Polische Blase gänzlich. Auch die beiden einem jeden Interradius zukommenden Tiedemannsehen Körperchen sind im Interradius des Steinkanals zwar vorhanden, aber viel kleiner als in den vier anderen Interradien.

Plutonaster subinermis.

der Scheibe; darüber hinaus, nach der Armspitze hin, liessen sich noch eine Strecke weit junge, immer kleinere, in Bildung begriffene Anlagen solcher Büschel verfolgen. Sonach besitzt die vorliegende Art eine ähnliche Auflösung der Genitalorgane in einzelne, weit in die Arme reichende Büschel, wie sie Müller & Troschel (1842) von ihrem Archaster typicus erwähnt haben und wie sie sich bekanntlich auch bei Luidia und Chaetaster vorkündet.

1873 Archaster bifrons Wyville Thomson 1) p. 122, f. 17 und 74.
1878 Archaster bifrons Perrier p. 32, 88.
1882 Archaster bifrons Perrier in Milne-Edwards p. 29.
1883 Archaster bifrons Marion (Nr. 2) p. 40.
1883 Archaster bifrons Sladen p. 154.
1885 Goniopecten bifrons Perrier (Ann. sc. nat.) p. 71.
1885 Archaster bifrons Carus p. 89.
1886 Goniopecten bifrons Perrier p. 264, f. 1802).
1886 Archaster bifrons Norman p. 6.
1889 Plutonaster bifrons Sladen p. 82, 83, 84—88, 720; T. 11, f. 1—4; T. 13, f. 9—10.
1891 Plutonaster bifrons Sladen p. 657.
1893 Plutonaster bifrons v. Marenzeller p. 3.
1894 Plutonaster bifrons Perrier p. 313, 314—316.
1896 Plutonaster bifrons Kochler p. 150.
1896 Plutonaster bifrons Kochler p. 56.

Diagnose. Grösse bis 165 mm. r : R = 1 : 3,5—4,3. 2 oder 3 Paxillen auf die Länge je einer oberen Randplatte. Paxillen unregelmässig geordnet, auf der Scheibenmitte kleiner; ihre Kronen mit 18—25 kurzen Stachelchen (Granula), von denen 5 oder 6 die Mitte einnehmen. Zahl der oberen Randplatten durchschnittlich 28. Obere Randplatten gewölbt, mit Granula (kurzen Stachelchen) bedeckt und mit je einem nach aussen gerichteten, mässig grossen Randstachel, der bei jungen Thieren fehlt. Untere Randplatten eine mehr als obere,

1) In der französischen Ausgabe Paris 1875 p. 103, f. 17 u. f. 74.
2) Copie der W. Thomson’schen Figur 17.
Plutumaster bifrons.

119
ebenfalls mit Granula (kurzen Stachelchen) besetzt und mit je einem horizontalen, mässig
grossen Randstachel. Ventrale Interradialfelder gross, mit zahlreichen, in regelmässigen
Bogen angeordneten Ventrolateralplatten, die ausser einem kurzen Stachelbesatz beim er-
wachsenen Thiere je einen grösseren, spitzen Stachel tragen. Adambulacralplatten mit einer
Längsreihe von 6—10 Furchenstacheln und mit zahlreichen kleinen subambulacralen Stachel-
chen, zwischen denen ein grösserer spitzer Stachel steht. Munddeckplatten mit einer Reihe
von 8—12 Mundstacheln dem ambulacralen Rande entlang und mit einem Besatz von kurzen
Stacheln auf der gewölbten ventralen Oberfläche. Madreporenplatte unter einer Anzahl grösserer,
sie umstellender Paxillen versteckt. Färbung crèmefarbig mit Rosa.

Erst durch die Tiefseeaufstiegsforschen der Neuzeit sind wir mit dieser zweiten Plutu-
master-Art des Mittelmeeres und des östlichen atlantischen Oceans bekannt geworden, da sie in viel
grossen Tiefen zu leben pflegt als Pl. subinermis. Sie wurde von Wyville Thomson auf den
Fahrten des Schiffes „Porcupine“ westlich von den Shetland-Inseln in einer Tiefe von etwa
1000—1100 m entdeckt und unter Beilage ihres Artnamens in sicher erkennbarer Weise
durch zwei Abbildungen veröffentlicht (1875), die das ganze Thier in Rücken- und Bauch-
ansicht darstellen. Sladen fand sie in denselben Theile des nördlichen atlantischen Oceans
wieder und gab die erste Beschreibung (1882). Gleichzeitig war sie auf den Fahrten des
„Travailleur“ durch Perrier (1882) auch im westlichen Mittelmeere angetroffen worden. Der-
selbe Forscher machte uns dann später (1885, 1894) mit ihrer weiteren Verbreitung im at-
lantischen Meere bekannt, während wir durch v. Marenzeller den Nachweis ihres Vorkom-
mens in den östlichen Mittelmeeren erhielten (1891). Dazu kamen neuerdings (1896) noch die
Funde Koehler's im Golf von Biscaya. Alle diese Forscher haben den Thomson'schen Art-
namen festgehalten, aber nur Sladen hat das Thier ausführlich nach erwachsenen und jugend-
lichen Exemplaren in Wort und Bild geschildert (1889), sodass ich im Folgenden fast nur auf
seine Beschreibung Bezug zu nehmen habe. Mir selbst liegt nur ein einziges, etwas defektes
Exemplar vor, dass ich der Güte v. Marenzeller's verdanke. Dasselbe gestattet wenigstens,
die Angaben Sladen's zu prüfen und in einigen Punkten zu ergänzen.

Hinsichtlich der Gattungszugehörigkeit wurde die Art von ihrem Entdecker zu
Archaster gestellt, dann von Perrier in der Familie der Archasteriden anfänglich (1885) zu
seiner Gattung Goniopecten und später (1894), nach engerer Begrenzung dieser Gattung, in
Uebereinstimmung mit Sladen (1889) zu dessen Gattung Plutumaster gerechnet; auch v. Mar-
enzeller (1891, 1893) und Koehler (1896) haben sich der Sladen'schen Auffassung angeschlossen.

Der Habitus der erwachsenen Individuen 's. Sladen, T. 11, f. 1, 2) erinnert in der
grossen Scheibe und den zugespitzten Armen an Plutumaster subinermis und unterscheidet sich wie
bei diesem von dem der Astropecten-Arten, abgesehen von dem Besitze einer Afteröffnung, durch
die Ausbildung auseinander gerichteter Interradialfelder. Die Arme sind aber verhältnissmässig
schlanker als bei subinermis, und vor Allem sind nicht nur die unteren, sondern auch die oberen
Randplatten mit einem wohlentwickelten Randstachel versehen. Die Seitenränder der Arme
gehen wie bei jener grösseren Art in den Armwinkeln in einem grossen, ziemlich flachen
Bogen ineinander über. Junge Thiere (s. Sladen, T. 11, f. 3, 4) nähern sich durch die Kürze ihrer Arme, je jünger sie sind um so mehr, einer pentagonalen Gestalt.

Exemplare mit mehr oder weniger als fünf Armen sind bis jetzt nicht gefunden worden.

Über die Grössen der zahlreichen von Perrier und Köhler erbeuteten Individuen liegen leider keine Angaben vor. Aus den Mittheilungen Thomson's und Sladen's geht aber zur Genüge hervor, dass die Art in ihrer Maximalgrösse niemals die Maasse des *Plutonaster subinermis* erreicht, sondern ganz erheblich dahinter zurückbleibt. Das grösste in der Litteratur erwähnte Exemplar hat Sladen vor sich gehabt; bei einem Armradius von 90 mm berechnet sich die Länge desselben auf 163 mm.

Stellt man alle jungen und alten Exemplare, von denen Maassangaben vorliegen oder sich an den vorhandenen Abbildungen gewinnen lassen, zusammen, so erhält man die folgende Tabelle:

<table>
<thead>
<tr>
<th>Nr. (Sladen)</th>
<th>L (mm)</th>
<th>R (mm)</th>
<th>r (mm)</th>
<th>r : R</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sladen</td>
<td>8,14</td>
<td>4,5</td>
<td>2,5</td>
<td>1 : 1,8</td>
<td>6</td>
</tr>
<tr>
<td>2 Sladen</td>
<td>13,6</td>
<td>7,5</td>
<td>3</td>
<td>1 : 2,5</td>
<td>9</td>
</tr>
<tr>
<td>3 Sladen</td>
<td>20</td>
<td>11</td>
<td>4</td>
<td>1 : 2,75</td>
<td>14</td>
</tr>
<tr>
<td>4 Sladen</td>
<td>23</td>
<td>12,5</td>
<td>4,25</td>
<td>1 : 2,94</td>
<td>15</td>
</tr>
<tr>
<td>5 Sladen</td>
<td>33</td>
<td>18</td>
<td>5,25</td>
<td>1 : 3,13</td>
<td>?</td>
</tr>
<tr>
<td>6 Sladen</td>
<td>67</td>
<td>37</td>
<td>10,5</td>
<td>1 : 3,52</td>
<td>25</td>
</tr>
<tr>
<td>7 Sladen</td>
<td>74</td>
<td>41</td>
<td>10</td>
<td>1 : 4,1</td>
<td>25</td>
</tr>
<tr>
<td>8 (ich)</td>
<td>76</td>
<td>42</td>
<td>12</td>
<td>1 : 3,5</td>
<td>32</td>
</tr>
<tr>
<td>9 (Sladen's Abbildung)</td>
<td>109</td>
<td>60</td>
<td>15,5</td>
<td>1 : 3,87</td>
<td>27</td>
</tr>
<tr>
<td>10 Sladen</td>
<td>163</td>
<td>90</td>
<td>21</td>
<td>1 : 4,3</td>
<td>33</td>
</tr>
</tbody>
</table>

Bei dem grössten Exemplare ist demnach R $4^{1/3}$ mal so lang wie r. Als Durchschnittswert des Verhältnisses r : R ergiebt sich für die fünf erwachsenen Exemplare der Tabelle (Nr. 6—10) $1 : 3,9$ (im Minimum $1 : 3,5$; im Maximum $1 : 4,3$), für die fünf jungen Exemplare (Nr. 1—5) $1 : 2,8$ (im Minimum $1 : 1,8$; im Maximum $1 : 3,43$).

Die Breite des Armes misst bei Nr. 8 13 mm, bei Nr. 9 19 mm, bei Nr. 10 25 mm. Daraus berechnet sich für das Verhältniss $AB : R = 1 : 3,23$; $1 : 3,16$; $1 : 3,6$; im Durchschnitt $1 : 3,37$. In einem Abstande von 21 mm vom Mittelpunkt der Scheibe haben die an ihrer Basis 13 mm breiten Arme des mir vorliegenden Stückes nur noch eine Breite von 5 mm und verschmälern sich von hier an langsamer bis zu der 2 mm breiten Armspitze.

Die ziemlich kleinen Paxillen sind gut entwickelt. Nach Sladen stehen sie dicht gedrängt; an meinem Exemplare finde ich sie aber weniger eng beisammen als in der Sladen'schen Abbildung (s. seine T. 13, f. 10). Auf der Scheibenmitte sind sie kleiner als nach dem Scheibennande hin; auch nach der Armspitze hin nehmen sie an Grösse sehr ab.
Auf dem Scheibenrücken zählte ich in einem interradialen Bezirke an meinem Exemplare meist 8 bis 10, auf der Längsmitte der Arme aber 14 oder 15 Paxillen auf die Länge von 5 mm. Im Uebrigen sind sie unregelmässig angeordnet, sodass man weder Längsreihen noch schiefe Querreihen deutlich unterscheiden kann, noch auch das bei Pl. subinermis und den Astropocen-Arten vorhandene Mittelfeld des Armrückens wahrnimmt. Im Armwinkel kommen an meinem Exemplare gewöhnlich annähernd zwei, dagegen in Sladen's Abbildung (T. 11, f. 1) drei Paxillen auf die Länge des oberen Randes einer oberen Randplatte. Unter den Paxillen des Scheibenrückens zeichnen sich an meinem Exemplare sechs durch ihre Grösse aus; sie stehen im Umkreis der Madreporenplatte und haben einen Kronendurchmesser von 1—1,2 mm; während die übrigen Paxillen des Scheibenrückens nur einen Kronendurchmesser von 0,5 bis 0,7 mm besitzen. Die Krone der gewöhnlichen Paxillen besteht aus 18—25 kurzen Stachelchen, von denen 5 oder 6 nur wenig dickere die Mitte einnehmen, die übrigen den Randbesatz der Krone darstellen. Sladen nennt die Stachelchen papillenförmig; ich möchte sie lieber als kurze Stäbchen oder abgerundete Cylinderchen bezeichnen; auch stehen sie an dem mir verliegenden Stücke lange nicht so dicht beisammen wie in der Sladen'schen Figur.

Die oberen Randplatten, die sonst ähnlich geformt sind wie bei Pl. subinermis, haben im Armwinkel an meinem Exemplare eine Länge von 1,25 mm und eine Breite von 2 mm; im distalen Armabschnitte sind sie ebensolang wie breit. Bei jungen Thieren von 4,5 mm Armradius fand Sladen sämtliche obere Randplatten breiter als lang, wie ich das auch bei jungen Pl. subinermis beobachtete. Die queren Rinnen zwischen den aufeinanderfolgenden oberen Randplatten sind wohl entwickelt. Oberflächlich sind die Platten mit Granula bedeckt, die auf der lateralen Hälfte der Platte sowie am adoralen und aboralen Plattenrande, also den queren Rinnen entlang, gestreckter und dadurch mehr stachelartig werden als auf der übrigen Oberfläche der Platte. Aus dieser Granulation, bez. feiner, kurzer Bestachelung, erhebt sich
mitten auf der gewölbten Kante der Platte, durch welche ihre dorsale Oberfläche in die laterale übergeht, ein kegelförmiger, zugespitzter, schräg nach aussen gerichteter oberer Randstachel, dessen Länge ich an meinem Exemplare in der Längsmitte des Armes zu 1,5—1,75 mm maass. Nach der Armpitze und in geringerem Maasse auch nach dem Armwinkel hin nimmt die Länge der oberen Randstacheln ab. Nach Sladen kommt es mitunter vor, dass sich der obere Randstachel auf zwei oder drei Platten in der Nähe der Armmitte verdoppelt. Bemerkenswertherweise treten die oberen Randstacheln (nach Sladen) erst bei Individuen von 7,5 mm Armm(radius auf und zwar zunächst in Form einer niedrigen, kegelförmigen Papille, die sich erst später zu einem Stachel vergrössert. Mit dieser Anlage des oberen Randstachelns kann man das stumpfe Stachelchen vergleichen, das ich mitunter an den oberen Randplatten des Pl. subinermis angetroffen habe (s. p. 109).

Die Terminalplatte, von der Sladen nur bemerkte, dass sie klein sei, war an dem mir vorliegenden Exemplare nur an der Spitze eines einzigen Armes erhalten. Sie nimmt für sich allein fast die ganze Breite der Armpitze ein und hat eine Länge und Breite von 1,75 mm, ist also verhältnissmässig nicht kleiner als bei Pl. subinermis. Ihr distaler Rand ist convex gerundet; ihr proximaler dorsaler Rand in der Mitte concav eingebuchtet; in dieser Einbuchtung liegen die jüngsten Paxillen der Rückenhaut. Oberflächlich ist die Platte mit kleinen Granula bedeckt, die mit den Granula der letzten oberen Randplatten übereinstimmen. Die drei spitzen Stachelchen (ein medianes und jederseits ein laterales), die Sladen bei einem jungen Thiere auf dem distalen Rande der Platte bemerkte, waren an meinem Exemplare abgescheuert.

Die Reihe der unteren Randplatten ist nach Sladen bei jungen und alten Thieren (z. B. bei Nr. 1 und 2 der Tabelle und bei dem seinen Abbildungen zu Grunde liegenden Thiere) um eine Platte länger als die Reihe der oberen, was mit dem Verhalten von Pl. subinermis übereinstimmt. Im Uebrigen liegen die unteren Randplatten, von kleinen, unbedeutenden Verschiebungen abgesehen, genau unter den der Ziffer nach entsprechenden oberen und stossen mit diesen in einer Linie zusammen, die sich äusserlich als eine seichte, nackte Längsrinne zu erkennen giebt. In Grösse und Bedeckung verhalten sich die unteren Randplatten ganz ähnliche wie die oberen (s. Sladen, T. 13, f. 9). Jede untere Randplatte trägt auf ihrem lateralen Bezirke einen horizontal gestellten unteren Randstachel von gleicher Form und ungefähr gleicher Grösse wie der Randstachel der oberen Randplatten. In der Längsmitte des Armes, wo auch die unteren Randstacheln länger sind als im Armwinkel und an der Armpitze, maass ich ihre Länge zu 2—2,5 mm. Bei jungen Thieren von 4,5 mm Armradius, denen die oberen Randstacheln noch völlig fehlen, sind die unteren (nach Sladen schon wohl ausgebildet.

Die grossen Interradialfelder, die sich an dem mir vorliegenden Exemplare bis zur siebenten oder achten, an dem von Sladen abgebildeten bis zur neunten oder zehnten unteren Randplatte erstrecken, haben in der Interradiallinie von der ersten unteren Randplatte bis zu den Mundeckstücken einen Durchmesser von 6 mm (an meinem Exemplar) bis 8 mm (an dem
von Sladen abgebildeten). Die Ventrolateralplatten, aus denen sich die Interradialfelder zusammensetzen, sind höchstens halb so gross wie die unteren Randplatten und von quadratischem oder polygonalem Umriess. Ihre Oberfläche, die über den Verbindungsnahten der einzelnen Platten zu seichten, nackten Furchen einsinkt, ist mit dicht stehenden, kurzen Stachelchen besetzt, die denen der unteren Randplatten gleich. Auf den grösseren Platten zählte ich dieser Stachelchen 20—22. Zwischen den kleinen Stachelchen erhebt sich im Bereiche der Scheibe auf der Mitte der meisten Ventrolateralplatten ein einzelner, grösserer, kegelförmiger, zugespitzter Stachel, der 1—1,5 mm lang wird und sich mit seiner Spitze nach dem Scheibenrande hinneigt. Dieser grössere Stachel der Ventrolateralplatten tritt aber nach Sladen's Beobachtungen erst sehr spät auf: er vermisste ihn noch gänzlich bei jungen Thieren von 4,5, 7,5 und 11 mm Armradius; ebenso fehlt er nach Perrier (1894) bei 15 mm Armradius. Bei 37 mm Armradius fand Sladen den grösseren Stachel der Ventrolateralplatten deutlich entwickelt, und auch bei dem mir vorliegenden Exemplare von 42 mm Armradius ist er vorhanden, während Sladen ihn bei einem fast gleich grossen Thiere von 41 mm Armradius nicht antrat. Es scheinen also individuelle Verschiedenheiten in dieser Hinsicht vorzukommen. Bei noch älteren Thieren ist er aber stets vorhanden. Die Zahl der Ventrolateralplatten nimmt mit dem Alter zu. Bei $R = 4,5$ mm zählte Sladen in einem halben Interradialfeld 4, bei $R = 7,5$ mm 6 oder 7, bei $R = 11$ mindestens 12; bei meinem Exemplare von $R = 42$ mm sind 22 vorhanden. Die Platten ordnen sich in regelmässige Längs- und Querreihen. Die erste Längsreihe reicht an meinem Exemplare bis zur siebenten oder achten, die zweite bis zur vierten, die dritte bis zur zweiten unteren Randplatte. Von den Querreihen (= quere Bögen) besteht die erste aus 5, die zweite aus 4, die dritte aus 3, die vierte aus 2 oder 3, die fünfte und sechste aus 2 Platten; von da an sind die Querreihen nur noch durch je eine Platte repräsentiert, die dann von der achten unteren Randplatte an ebenfalls in Wegfall kommt.

An den durch die Convexität ihrer ventralen Oberfläche deutlich hervortretenden Munddeckstücken sitzt dem ambulacralen Rande entlang eine geschlossene Reihe von Mund-

Die Madreporenplatte liegt versteckt unter den oben (s. p. 121) erwähnten grösseren Paxillen, die auch schon durch ihre weniger dichte Stellung die Gegend der Platte verrathen. Bei meinem Exemplare von 12 mm Scheibenradius ist ihr Mittelpunkt 5 mm vom Scheibenrande und 7 mm vom Scheibencentrum entfernt; bei dem von Sladen abgebildeten grossen Thiere von 15,5 mm Scheibenradius betragen diese Entfernungen 6,5 und 9 mm. Von einer Zusammensetzung der Platte aus mehreren Stücken, wie sie Sladen überhaupt für seine Gattung Plutonaster angiebt, vermöge ich mich nicht zu überzeugen.

Färbung. Im Leben ist die Art nach der einzigen darüber vorliegenden Notiz von W. Thomson schön erdnußfarbig oder mit einem Anfluge von zartem Rosa.

In verticaler Richtung hat die Art ebenfalls eine weitere Verbreitung als Pl. subinermis, denn sie wurde aus Tiefen heraufgeholt, die sich zwischen 106 und 2525 m bewegen. Ihre meisten Fundorte liegen in annähernd 1000 m und darüber. Von den mittelmeirischen Fundorten hat der eine eine Tiefe von 2020, der andere von 2525 m. Wo sie vorkommt, scheint sie nach den Befunden von Perrier und Koehler häufig in grösserer Zahl beisammen zu leben.

Als Unterlage liebt sie Schlammboden oder Schlamm, der mit feinem Sand oder Globigerinen vermengt ist.

Über ihre Nahrung, Fortpflanzung und Larvenform wissen wir noch nichts.

Körper niedergedrückt, pentagonal mit mehr oder weniger ausgezogenen Ecken, auf all seinen dorsalen und ventralen Skeletplatten mit kurzen Stachelchen besetzt; die Rückenplatten insbesondere paxillenförmig; Rand dick, von kräftigen, grossen, oberen und unteren Randplatten gebildet, in den Armwinkeln mit einer unpaaren oberen und einer unpaaren unteren Randplatte; Munddecken mit je einem grossen, unpaaren, beiden Munddeckplatten gemeinsamen, aboral gerichteten, dornförmigen Stachel; Pedicellarien büschelförmig, vereinzelt; Papulae einfach; Füsschen mit deutlicher Saugscheibe.

Im Mittelmeer nur eine Art: *O. mediterraneus* Marenz.

stacheln; an jeden dieser Stacheln schliesst sich eine aus 4 oder 5 subambulacralen Stacheln gebildete Querreihen an; alle diese Stacheln sind grösser und stärker als die der Ventrolateralplatten. Der unpaare, 1 mm breite und 2,5 mm lange Dorn einer jeden Munddecke ist gestreckt kegelförmig und an seiner Spitze glasig durchscheinend. Ausserdem trägt jede Munddeckplatte am ambulacralen Rande eine Reihe von 7 Stacheln, von denen die innersten am grösssten sind, und auf dem distalen Bezirke 3 grössere und 1 kleineren Stachel. Madreporenplatte rundlich, vom Scheibenrande etwa anderthalbmal soweit entfernt wie vom Scheibencentrum. Pedicellarien büschelförmig, vereinzelt auf den Rückenpaxillen. Färbung?

Der fünfstrahlige, sternförmige Körper stellt ein Pentagon dar, dessen Seiten in etwas spitzem Bogen tief eingebuchtet sind (vergl. v. Marenzeller's Abbildungen). Die Rückenseite ist im Bereiche des Paxillenfeldes bei den erwachsenen Thieren leicht gewölbt, bei dem jugendlichen Exemplare flach. Die Wölbung ist am stärksten auf den Armen, während die Scheibenmitte leicht eingesenkt ist; auch sind die Interradien durch eine seichte, an den oberen Randplatten beginnende und centralwärts bald verstrechende Furche markirt. Der Körperrand ist ziemlich dick und dorsal flacher abgerundet als ventral, sodass er, besonders in den Armwinkeln, fast kantig in die Ventralseite umbiegt, dagegen in die Rückenseite ganz allmählich übergeht. Auch sieht es in der Dorsalansicht so aus, als wenn die unteren Randplatten etwas vorstünden, was aber nur dadurch kommt, dass sie längere Dornen tragen als die oberen Randplatten. Die Arme, die an dem grössten Exemplare leicht nach oben gebogen sind, verjüngen sich rasch und endigen mit abgerundeter Spitze.

Die Länge des kleinsten Exemplares beträgt 13,5, die des grössten 65 mm. Die

1) Sie ist neben dem an der Neu-England-Küste vorkommenden O. hispidus Verrill die einzige nördlich vom Aequator lebende Vertreterin ihrer Gattung.
Maasse von r und R sind bei dem kleinsten Exemplare 4 und 8 mm; bei drei grösseren (darunter auch dem gröststen) betragen sie für r 15, 15,5, 18, für R 31, 32, 39 mm. Daraus berechnet sich für alle vier Exemplare im Durchschnitt das Verhältniss $r : R = 1 : 2,09$, im Minimum (bei dem kleinsten Exemplare) 1 : 2 und im Maximum (bei dem gröststen) 1 : 2,17. Die Breite der Arme misst bei dem gröststen Exemplare, zwischen der ersten und zweiten oberen Randplatte, 17,5 mm, bei den beiden kleinern 14, bez. 13 und bei dem kleinsten nicht ganz 4 mm.

Alle Rückenplatten (vergl. v. Marenzeller 1893, Taf. 3, Fig. 4 B) haben die Form niedergedrückter Paxillen, deren Schaft nicht deutlich ausgebildet ist, sondern nur durch eine kräftige gewölbte Verdickung fast der ganzen äusseren Plattenoberfläche dargestellt wird, und deren Bestachelung gleichartig und insofern regellos ist, als man in der Paxillenkronen keine centrale Stachelgruppe von den den Rand besetzenden Stacheln sondern kann. v. Marenzeller hat deshalb Bedenken getragen, die Platten als Paxillen gelten zu lassen, und zieht dafür im Anschlusses an Sladen die Bezeichnung Pseudopaxillen vor. Wo aber soll man die Grenze zwischen einem echten Paxillus und einem Pseudopaxillus ziehen? Von einer in der Mitte verdickten und nur hier bestachelten Platte führen alle Uebergänge so ganz allmählich zu der typischen Gestalt eines Paxillus mit deutlichem hohem Schafte und regelmässig geordneter Stachelkrone, dass man es offenbar hier nur mit gradweisen Verschiedenheiten desselben Gebildes zu thun hat. Ich meine, dass man den Dingen Gewalt antheut, wenn man durch die Aufstellung des Terminus Pseudopaxillus den Anschein erweckt, als handle es sich dabei um etwas wesentlich von einem Paxillus Verschiedenes.

Verrill') geht sogar noch viel weiter und unterscheidet neben echten Paxillen Spino- paxillen, Parapaxillen, Protopaxillen und Pseudopaxillen"), die er näher zu definiren versucht. Mir erscheint das als eine terminologische Tiftelei, die sich bei dem Mangel einer scharfen Sonderung dieser fünf Sorten paxillärer Gebilde doch nicht durchführen lässt. Nennen wir also lieber auch bei der vorliegenden Art die Rückenplatten einfach Paxillen. Von aussen gesehen haben sie, d. h. eigentlich ihre niedrigen Schäfte, eine mehr oder weniger gewölbte Oberfläche und einen vorwiegend rundlichen oder abgerundet eckigen Umriss, und sie sind durch Furchen getrennt, deren Boden wahrscheinlich zum Theil durch die Basis der Paxillen gebildet wird (sicher liesse sich das nur durch Isolirung der Platten feststellen, die einstweilen bei der Kostbarkeit der Objecte unterbleiben musste).

Am kräftigsten entwickelt sind die Paxillen in dem medianen Bezirke der proximalen Hälfte des Armrückens; kleiner sind sie im Mittelfelde der Scheibe, in den Interradien, den Randplatten entlang und im distalen Armbezirke. Bei näherer Betrachtung lassen sich die

2) Unter Pseudopaxillen versteht er aber eine andere Form der Abweichung von dem typischen Paxillus, als Sladen und v. Marenzeller mit Pseudopaxillus bezeichnen wollen. Die Paxillen der vorliegenden Art fallen unter das, was Verrill Parapaxillen nennt.
primären Interradial- und Radialplatten durch ihre Grösse und Stellung unter den übrigen Dorsalplatten herausfinden. Die primären Interradialplatten zeichnen sich durch ihren fast doppelt so grossen Durchmesser vor den benachbarten Platten aus und liegen bei dem grössten Exemplare 6 mm vom Centrum entfernt.

Weniger leicht sind die primären Radialplatten zu erkennen. Folgt man aber der die Mittellinie des Armrückens einnehmenden Reihe von grösseren Platten, so bemerkt man, dass diese Reihe erst in einem Abstande von 8 mm vom Mittelpunkte beginnt. Die erste Platte dieser Reihe kann nicht wohl etwas Anderes sein als die gesuchte primäre Radialplatte, während die übrigen Platten der medianen Reihe die secundären Radialplatten (= Perrier's Caralia) darstellen. Diese sämtlichen Radialplatten bilden bis zum Armende, genauer bis dahin, wo die oberen Randplatten medianwärts zusammenstossen, eine ziemlich regelmässige Reihe, in deren proximalen Theile die Platten (d. h. die Paxillenschäfte) abgerundet und auseinander gerückt sind, während sie im distalen Theile allmählich immer dichter gedrängt stehen und dann meistens eine quere sechseitige Umrandung zeigen, wie das in v. Marenzeller's Abbildung (1895, Taf. 1, Fig. 1) ganz gut wiedergegeben ist. Von dieser Radialreihe aus nehmen die Paxillen sowohl nach dem Centrum als auch nach dem Rande und nach den interradialen Hauptlinien hin an Grösse ab. Jederseits von der Radialreihe ist diese Grössenabnahme aber nicht so rasch wie im Mittelfelde der Scheibe; man kann jederseits von der Radialreihe 1 oder 2 adradiale Längsreihen unterscheiden, in denen die Paxillen einen grösseren Durchmesser haben als im Centralfelde. Ferner sieht man, dass die dorsolateralen Paxillen in regelmässige oder doch annähernd regelmässige schief Reihen geordnet sind, von denen gewöhnlich vier an die unpaare obere Randplatte und je drei an jede erste und zweite paarige obere Randplatte anstossen.

Die Bestachelung der Paxillen besteht aus zahlreichen stäbchenförmigen Stacheln, die ebenso wie alle übrigen Stacheln unseres Thieres aus einem sehr engmaschigen, also verhältnissmassig dichten Kalkgewebe aufgebaut sind. Entweder sind sie ihrer ganzen, 0,5—0,6 mm betragenden Länge nach von gleicher Dicke oder an der Spitze sogar ein wenig verdickt oder, auf den grösseren Paxillen, an der Spitze leicht verjüngt; im letzenen Falle sind sie demnach weniger stabförmig als wirklich stachelförmig. Die stets abgerundete Spitze der Stacheln ist durch zahlreiche, ganz kurze Dörnchen rauh. Auf den kleineren Paxillen zählt man 25—30, auf den grösseren 40—50 Stacheln; die centralen unterscheiden sich nicht von den peripherischen; alle sind regellos über die Oberfläche des Paxillenschafes vertheilt.

Bei dem kleinsten Exemplare unterscheiden sich die primären Interradial- und Radialplatten in ähnlicher Weise wie später durch ihre relative Grösse; die übrigen Dorsalplatten deuten bereits die späteren Quer- und Längsreihen an. Die Stacheln sind erst 0,2 mm lang, endigen mit mehreren Dörnchen und sind hier und da auch seitlich mit solchen besetzt.

Schon bei dem kleinsten Exemplare hat v. Marenzeller auf dem proximalen Armabschnitt eine in einzelne Papulae zwischen den Paxillen bemerkt. Bei den erwachsenen Thieren
Die oberen und unteren Randplatten sind kräftig entwickelt und so geordnet, dass eine unpaare den Armwinkel einnimmt. Schon durch dieses Merkmal unterscheidet sich die Art von allen anderen mittelmeerischen Seesternen mit alleiniger Ausnahme des Chaetaster longipes, bei dem jedoch die unpaaren Randplatten so wenig auffallen, dass sie bisher ganz unbeachtet blieben (s. p. 148).

An dem grössten Exemplare zählt man von der unpaaren oberen Randplatte bis zur Terminalplatte 17 Platten; nur an einem Arme ist auf einer Seite eine 18. in Bildung. Die kleineren Individuen besitzen zwischen der unpaaren oberen Randplatte und der Terminalplatte nur 12, 11 oder 13 Platten; bei dem kleinsten sind erst 5 oder 6 vorhanden. Durch deutliche Furchen sind die sammlichen oberen Randplatten gegeneinander und gegen die benachbarten Skeletstücke begrenzt. Die 6 (oder 4) letzten stossen bei erwachsenen Thieren mit ihren Gegnern in der Medianlinie des Armes zusammen. Durchweg sind die oberen Randplatten breiter als lang. An dem grössten Exemplare ist die erste (paarige) 3 mm breit und stark 2 mm lang; die achte ist noch immer 2,5 mm breit und fast 2 mm lang; die zwölfte 2,25 mm breit, aber nur noch 1,25 mm lang; dann werden die Platten rasch viel kürzer und auch schmäler. Die letzte oder auch schon die vorletzte stossst an die Terminalplatte und ist an ihrem Oberen (= inneren) Ende zugespitzt, sodass sie im Ganzen keinen viereckigen, sondern einen dreieckigen Umriss hat; an ihrem unteren (= äusseren) Rande ist sie nur 0,5 mm lang, und ihre Breite misst 1 mm. Die unpaare Platte, die sich im Übrigen nicht von den paarigen unterscheidet, ist an ihrem oberen (= inneren) Rande kaum kürzer als die nächsten paarigen Platten; an ihrem äusseren Rande aber ist sie nur 3/4 so lang.

Bei dem jüngsten Exemplare ist die unpaare Platte deutlich trapezförmig; ihr innerer Rand ist 1,5, ihr äusserer 0,5 mm lang, und ihre Breite beträgt 1 mm. Die erste paarige ist fast quadratisch, 1 mm lang und breit; die zweite und dritte sind ebenso breit, aber etwas kürzer.

Die Bewaffnung der oberen Randplatten besteht in einer gleichmässigen Bedeckung von sehr kurzen, feinen, mit freiem Auge kaum bemerkbaren Stäbchen, die sich in ihrer Form an die Stachelchen der nächsten Paxillen anschliessen. Sie stehen aufrecht, endigen abgestumpft und sind zwar durch kleine Zwischenräume getrennt, aber doch so zahlreich, dass man bei dem grössten Exemplare auf der Mitte der ersten paarigen Platte von distalen bis zum
proximalen Rande etwa 12 zählt. Auch bei dem kleinsten Thiere sind sie schon so zahl-
reich, dass man an derselben Stelle 7—9 antrifft.

Die gewölbte Terminalplatte ist an dem grössten Exemplare 1,5 mm lang und an
ihrem breitesten (= distalen) Ende 1 mm breit. Dieses Ende ist abgerundet; das entgegen-
gesetzte (proximale) Ende ist zugespitzt1 und zwischen die letzten oberen Randplatten eingeklebt.
Bei dem kleinsten Individuum ist die Terminalplatte bereits ebenso breit wie später, aber erst
1 mm lang, fällt also hier durch ihre relativ zur Grösse des Thieres ansehnliche Entwicklung
mehr ins Auge als bei den Erwachsenen. Oberflächlich ist sie mit derselben feinen Be-
stachelung bedeckt wie die oberen Randplatten.

Untere Randplatten sind bei dem grössten Exemplare von der unpaaren Platte bis
zur Terminalplatte 15 vorhanden. Ein kleineres Exemplar besitzt 12, das kleinste 6. Wie
die oberen, so sind auch die unteren Randplatten breiter als lang: die erste (paarige) ist bei
dem grössten Exemplare 3 mm breit und 2 mm lang, die achte 2,5 mm breit und 2 mm lang.
Während die unpaare untere Platte sowie die erste paarige genau unter den entsprechenden oberen
liegen, verschieben sich weiterhin die Grenzen der unteren so gegen die der oberen, dass man
bis zum distalen Rande der elften unteren zwölf obere zählt; weiterhin treffen auf die vier
letzten unteren die fünf letzten oberen. In der Nähe des Armwinkels sind die unteren Platten
mit dem äusseren Drittel ihrer Oberfläche so in die Höhe gebogen, dass eine abgerundete
Kante entsteht, durch welche die Bauchseite des Thieres in den Rand umbiegt; weiter nach der
Armspitze hin verstreicht diese Kante, sodass die Biegung der Platten-Oberfläche flacher wird.
Dass die Furchen zwischen den unteren Randplatten nicht so deutlich erscheinen wie zwischen
den oberen, kommt durch die längere Bestachelung der unteren, die sich bei aller sonstigen
Ähnlichkeit mit der der oberen durch bedeutendere Länge und Stärke sowie durch die
spitzere Form ihrer Stachelchen unterscheidet. Diese Stachelchen erreichen annähernd die
Länge der Paxillenstachelchen, bleiben aber doch noch immer hinter der Länge der auf den
Ventrolateralplatten befindlichen Stacheln zurück. Sie stehen auch etwas weiter auseinander
gerückt als die der oberen Randplatten, sodass man vom proximalen zum distalen Platten-
rande meist nur 10 zählt.

Die Ventrolateralplatten sind in regelmässige Längs- und schiefe Querreihen ge-
ordnet, in denen, wie bei sehr vielen anderen Seesternen, die Grösse der Platten nach dem
Runde und nach der Armspitze hin abnimmt. Die erste Längsreihe reicht bei dem grössten
Exemplare noch etwas über die siebente untere Randplatte hinaus, die zweite reicht bis an
die sechste, die dritte bis an die vierte und die vierte bis an die dritte Randplatte; die übrigen
reichen nur bis an die zweite und erste (paarige) Randplatte. Die Querreihen zeigen die
folgende Anordnung. Im adoralen Winkel des interbrachialfeldes liegen vier Platten (= un-
vollständige Querreihen), die den Zwischenraum zwischen den Ansenseiten der drei ersten
Adambulakralplatten ausfüllen. Dann folgen jederseits zwei Querreihen, die an der 4.—6. Adam-
bulakralplatte beginnen und zur unpaaren Randplatte ziehen; aber nur drei von diesen vier
Querreihen erreichen die Randplatte, die vierte wird vorher unterdrückt. An die erste paarige

Bei dem kleinsten Exemplare (s. v. Marenzeller's Abbildung, 1893, Taf. 2, Fig. 4, A) sind die Ventrolateralplatten von unregelmässig rundlichem bis polygonalem Umriß. Das Feld, das sie einnehmen, erstreckt sich seitlich bis zum Ende der ersten (paarigen) Randplatte und der achten Adambulacralplatte. Im Ganzen sind in einem solchen Felde noch nicht mehr als 16 oder 17 Platten entwickelt, deren erste Längsreihe bis zum Ende der achten Adambulacralplatte und der ersten Randplatte reicht und aus sechs Platten gebildet wird, von denen die erste unpaar ist und unmittelbar nach aussen von der Mundende und den ersten Adambulacralplatten liegt. Die zweite Längsreihe beginnt mit einer zweiten unpaaren Platte, auf die nur noch zwei Platten folgen, von denen die letzte den Anfang der ersten Randplatte erreicht. Eine dritte Reihe ist nur durch eine einzige kleine dritte unpaare Platte an der Innenseite der unpaaren Randplatte angedeutet.

Die Ambulacralfurchen, deren aller Kulkkörperchen entbehrende Füsschen mit einer gut abgesetzten Saugscheibe endigen, sind von Adambulacralplatten begrenzt, die im proximalen Armabschnitt fast doppelt so breit wie lang sind. Die Adambulacral-Bewaffnung (s. v. Marenzeller's Abbildung, 1895, Taf. 1, Fig. 1b) beschreibt v. Marenzeller folgendermaassen: "Höchstens auf der ersten Adambulacralplatte zu innerst vier, auf den folgenden drei von vorn nach hinten comprimirte Furchenstacheln, die allmäthlich zu gleicher Länge heranwachsen. An jüngeren Thieren" ist der mittlere der längste und neigt sich oft allein gegen die Ambulacralfurche. Nach aussen folgen mehrere Reihen von Furchenstacheln, deren Zahl von dem Alter des Thieres abhängt. Bei einem Individuum von R = 22 mm waren sehr deutlich vier zu unterscheiden, ebenso noch bei dem von R = 32 mm, wobei die innersten Furchenstacheln die stärksten und längsten, die äussersten sehr klein waren. Jede

1 Das Gleiche ist der Fall im distalen Armbezirke der erwachsenen Exemplare.
Reihe bestand aus drei Stacheln. Bei dem grössten war noch eine fünfte Reihe ausgebildet und die Stacheln waren bis auf die der äussersten Reihe untereinander mehr ausgeglichen. An den conservirten Stücken ist die Regelmässigkeit der Stachelanordnung nicht stets zu erkennen, auch stört die und da ein überzähliger «. Nach dem, was ich an dem grössten Exemplare sehe, lässt sich die Ambulacralbewaffnung vielleicht besser beschreiben, wenn man die nach aussen von den eigentlichen Furchenstacheln stehenden subambulacralen Stacheln nicht als Längsreihen, sondern als Querreihen auffasst. Es geht von jedem der drei Furchenstacheln eine solche Querreihe aus; die eine Querreihe besetzt also den adoralen, die andere den aboralen Plattenrand und die dritte zieht dazwischen quer über die Mitte der Platte. Jede dieser Querreihen besteht in der Regel im proximalen Armabschnitte aus vier (selten fünf) Stacheln; weiter nach der Armspitze ist jede Querreihe nur noch aus drei Stacheln gebildet. Im Ganzen hebt sich die ambulacralbewaffnung durch die Grösse und Stärke ihrer Stacheln vor der übrigen ventralen Bestachelung hervor. Die einzelnen Stacheln erreichen eine Länge von 1 mm, sind oft nicht drehrund, sondern leicht comprimirt und haben, da sie sowohl ihrer Länge nach als auch an der abgerundeten Spitze mit feinsten Dörnchen besetzt sind, eine rauhe Oberfläche.

In der Mundbewaffnung fällt sofort der mächtige, aboralwärts gerichtete Dorn («Zahn») auf. Es sitzt mit seiner Basis quer auf der durch ihn verdeckten Sutur je zweier Munddeckstücke. In der Ansicht von aussen hat er eine gestreckt kegelförmige Gestalt und scheint an seiner Basis so mit den Munddeckplatten verbunden zu sein, dass er etwas aufgerichtet und niedergelegt werden kann. Der Körper des Dorns ist opak, die ein wenig ausgezogene Spitze aber von glasiger durchscheinender Beschaffenheit. An der Basis hat er eine Breite von 1 mm; seine Länge beträgt 2,5 mm. Der ambulacrale Rand eines jeden Munddeckstückes ist von einer aus sieben Stacheln gebildeten Stachelreihe eingenommen; die innersten dieser Stacheln sind am stärksten und etwas gekrümmt. Ausserdem stehen auf jedem Munddeckstücke in der Nähe des distalen Randes noch vier Stacheln: drei grössere und ein kleinerer, von denen jene sich neben, dieser nach aussen und unter dem «Zahn» befindet. — Bei dem jüngsten Exemplare ist der Zahn entsprechend kleiner; am ambulacralen Rande der Munddeckstücke stehen erst sechs und auf dem distalen Bezirk erste zwei bis drei Stachelchen.

Die dicht am distalen Rande einer primären Interradialplatte gelegene Madreporenplatte des grössten Exemplares ist rundlich, mit einem Durchmesser von 2,25 mm, flach gewölbt. Ihre unregelmässig gekrümmten Furchen strahlen von der Mitte aus. Der Mittelpunkt der Platte liegt gleichweit vom Centrum und vom oberen Rande der unpaaren oberen Randplatte entfernt (je 7,5 mm); vom Rande des Körpers hat er einen Abstand von 11 mm. Die Platte liegt also im Ganzen dem Centrum näher als dem Rande. — Der After befindet sich nahezu central.

Pedicellarien finden sich bei dem grössten Exemplare auf den grösseren radialen und adradialen Paxillen der Papularien, wo sie einzeln oder zu zweien zwischen den übrigen Paxillenstachelchen stehen oder von einer seitlichen Vertiefung des Paxillenschaftes ausgehen.
Bei einem kleinen Exemplare fand v. MARENZELLER je eine Pedicellarie auf jeder primären Interradialplatte sowie auf anderen Platten in der Nähe und auf den Platten in der Umgebung des Afters. Es scheint also, dass sie in regelloser Weise auf fast allen Paxillen des centralen Feldes und der Papularen vorkommen können. Bei dem jüngsten Exemplare fehlen sie noch völlig. Jede Pedicellarie stellt eine aus 2—6 gegeneinander geneigten Stachelchen gebildete, büschelförmige Gruppe dar; die 0,55 mm langen, an ihrer Basis 0,18 mm, an ihrer Spitze nur halb so breiten Stachelchen sind kräftig gebaut, an der Spitze leicht zu einander hin gebogen und an der einander zugekehrten Seite mit einer feinen unregelmässigen Bedornung ausgestattet.

Wie die Thiere im Leben gefärbt sind, ist nicht bekannt. Conservirt haben sie eine trübe gelbliche Färbung.

Ueber ihre Nahrung, Fortpflanzungszeit und Larvenformen ist nichts bekannt.

Fam. Chaetasteridae

5. Gattung. Chaetaster Müller & Troschel.

Arme lang, schmal, fast drehrund, ebenso wie die Scheibe mit Paxillen besetzt, ohne ausgeprägten Rand, aber mit deutlichen, aufgerichteten, zahlreichen, ebenfalls paxillenförmigen oberen und unteren Randplatten; in den Armwinkeln eine unpaare obere und untere Randplatte; alle diese paxillenförmigen Platten mit Glasstachelchen dicht besetzt; Ventrolateralplatten ebenfalls paxillenförmig und mit Glasstachelchen, in Längs- und Querreihen geordnet; keine Pedicellarien; Papulac einfach, auf die Armrückens beschränkt; Füsschen zweireibig, mit deutlicher Saugscheibe.

Im Mittelmeer nur eine Art: Ch. longipes (Retz.).

Taf. 1, Fig. 3, 4; Taf. 9, Fig. 15—31.

1805 Asterias longipes Retzis p. 20.
1826 Asterias verrucosa Risso p. 271.
1840 Asterias subulata Grube p. 22—23.
1840 Asterias subulata Lamarck Vol. 3, p. 256.
1840 Nephthia tesselata Gray p. 287.
1841 Asterias subulata Delle Chiaje Vol. 4, p. 58; Vol. 5, p. 124; T. 130, f. 5, 6, 14, 22; T. 171, f. 22.
1842 Chaetaster longipes Müller & Troschel p. 27, 127, 134; T. 2, f. 1a—e.
1842 Nephthia tesselata Müller & Troschel p. 28.

1) Diese Aufstellung einer besonderen Familie für die Gattung Chaetaster hat nur eine provisorische Bedeutung, s. p. 156.
2) Perrier (1875) citirt hinter der Jahreszahl 1816 die Band- und Seitenzahl der zweiten Ausgabe des Lamarck'schen Werkes vom Jahre 1840.
3) Perrier (1875) citirt fälschlich Fig. 16 statt Fig. 6 und dazu die verkehrte Jahreszahl 1823 statt 1825.
4) Diese Risso'sche Art, die später ganz in Vergessenheit gekommen ist und auch bei Sladen (1889) gar nicht mehr erwähnt wird, ist offenbar, wie aus der kurzen Beschreibung Risso's hervorgeht, mit Chaetaster longipes identisch. Risso's Diagnose lautet: »Asterias disco auranto, radius quinque semiteretibus, apicibus submucronatis, supra verrucis minutis, equilibus, seriatis dispositis obtecto; subitus verrucis depressis in serie transversali dispositis.«
5) Nicht longipes, wie in meinem Prodromus (1879, p. 539) irrtümlich steht.
1846 Asterias subulata Verany p. 5.
1851 Chaetaster subulatus Gaudry p. 367, 369; T. 13, f. 6, 12.
1857 Chaetaster longipes M. Sars p. 1071.
1862 Chaetaster longipes Dujardin & Hupé p. 356.
1864 Chaetaster longipes Lütken p. 169.
1866 Nepanthia tessellata Gray p. 15.
1878 Chaetaster longipes Perrier p. 33, 90.
1879 Chaetaster longipes Viguier p. 152—155; T. 10, f. 8—13.
1879 Chaetaster longipes Ludwig p. 539—540.
1881 Chaetaster longipes Studer p. 25.
1885 Chaetaster longipes Carus p. 87.
1886 Chaetaster longipes Preyer p. 30.
1886 Chaetaster longipes Norman p. 6.
1888 Chaetaster longipes Lo Bianco p. 395.
1888 Chaetaster longipes Colombo p. 53, 64, 65, 75, 78, 80.
1889 Chaetaster longipes Sladen p. 398, 399—400, 778.
1896 Chaetaster longipes Ludwig p. 52—55.

Dass die von Retzius im Anfange unseres Jahrhunderts (1805) unter ihrem heute allgemein gebräuchlichen Namen beschriebene Art identisch ist mit Lamarck's elf Jahre später aufgestellter Asterias subulata, wurde von Müller & Troshel erst nachträglich erkannt, nachdem sie anfänglich, ebenso wie vor ihnen Delle Chiaje (1825, 1841) und Grube (1840), an dem Lamarck'schen Namen festgehalten hatten. Dagegen liessen sie die Frage offen, ob auch Gray's (1840) Nepanthia tessellata mit der Retzius'schen Art identisch sei, woran indessen nach

1 Dujardin & Hupé (1862) und Perrier (1875) citiren [vielleicht nach einer Separatausgabe] p. 51.4.
Sladen (1889) länger kein Zweifel sein kann. Zugleich übersahen sie, dass die Art noch unter einem vierten Namen in der Literatur aufgetaucht war, indem Risso sie als Asterias verrucosa (1826) beschrieben hatte. Nach Müller & Troschel kehrte der Lamarck'sche Namen nur noch bei Verany (1846) und Gaudry (1851) wieder, um dann vor der allein richtigen Benennung longipes ganz zu verschwinden. Die von Sladen (1889) ausgesprochene Vermuthung, dass auch noch Gray's Astropecten (Astrops) longipes auf unsere Art zu beziehen sei, wird wohl eine Vermuthung bleiben müssen, da einerseits der unter diesem Namen im British Museum aufbewahrte Seestern zwar sicher ein Chaetaster longipes ist, aber andererseits nicht darüber hinweg zu kommen ist, dass Gray's Diagnose auf unsere Art nicht passt.

In ihrem Habitus (Taf. 1, Fig. 3, 4) kennzeichnet sich die vorliegende mittelgrosse Art durch die langen, schmalen, fast drehrunden, nur an der Ventralseite flacheren, pfriemenförmigen Arme, die unter allmählicher Verjüngung stumpf abgerundet, mit verhältnismässig grosser Terminalplatte endigen und an der kleinen Scheibe in gerundetem Bogen in die Nachbararme übergehen. Ebenso wie die an der Rückenseite flachgewölbte Scheibe sind die Armrücken mit niedrigen, flachen, durch Furchen getrennten Paxillenschäften besetzt, die, wie fast alle anderen Skeletplatten, zahlreiche, dichtgestellte, feine Glasstachelchen tragen. Die Randplatten setzen sich nicht scharf ab, bilden keinen kantenförmigen Körperrand und leiten in ihrer Form zu den
in Querreihen geordneten Ventrolateralplatten über. Im Ganzen erinnert die Art unter den Mittelmeer-Seesternen in ihrer Körperform zunächst an die *Ophidiaster*-Arten, von denen sie aber schon durch die feine Bestachelung und die helle, gelbliche Färbung sofort zu unterscheiden ist. Junge Individuen haben noch nicht die annähernd drehunde, dorsal stark gewölbte Form der Arme, wie sie die Erwachsenen darbieten; vielmehr sind die Arme des jungen Thieres dorsal und ventral abgeflacht; die oberen und unteren Randplatten sind noch nicht so steil aufgerichtet wie später und bilden mit ihren Aussenrändern eine, wenn auch verhältnis-mässig dicke, so doch deutlich ausgeprägte Randkante.

Die Zahl der Arme beträgt bei allen in der Litteratur erwähnten Exemplaren fünf. Ebenso verhalten sich alle mir vorliegenden Stücke. Doch sah ich einmal ein abnormal Exemplar unter den Vorräthen der Neapler Station, an dem einer der fünf Arme sich gegend die Grösse, an Gesamtlänge etwas weniger, nämlich „gegen 7 Zoll“, was nach rheinischem Maasse umgerechnet 183, nach pariser Maass 189 mm ausmach. Das grössste von mir bei Neapel gesehene Stück hatte eine Länge von 148 mm, das von Herrn Merculiano zu den Abbildungen benützte eine solche von 141 mm. Die Grösse anderer mir vorliegender erwachsener Thiere bewegte sich zwischen 105—128 mm; ebenso hatte das von Grube (1840) von Palermo erwähnte Exemplar eine Länge von 115 mm. Man wird demnach die Grösse der erwachsenen Thiere auf 100—200 mm angeben können. Exemplare von nur 60 mm Länge, wie Risso (1826) sie erwähnt, kann man wohl noch nicht als erwachsen bezeichnen. Auf halbwüchsige Thiere, deren Länge nicht mehr als 50 und nicht weniger als 21 mm betr., sowie auf noch kleinere, jugendliche werden wir im Folgenden öfter zurückkommen müssen.

Sehr häufig, namentlich an älteren Thieren, findet man, wie bereits Risso und Delle Chiaje bemerken, die Arme von verschiedener Länge und kann dann leicht feststellen, dass erlittene Verluste von grösseren oder kleineren Armstücken und darauf erfolgte Regenerationsvorgänge jene Ungleichheit der Arme herbeigeführt haben. So betrugen z. B. an einem erwachsenen Exemplare die Maasse der fünf Armradien 72, 69, 67, 66, 65 mm und bei einem anderen dieselben Maasse 115, 108, 108, 104, 102 mm. Bei diesen Exemplaren hatte die Regeneration die früheren Verluste fast ganz eingeholt; die ausgeheilten Bruchstellen der Arme liessen sich nur noch an Unregelmässigkeiten der Skeletanordnung erkennen. Bei jüngerem Datum der Verluste sind natürlich die regenerirten Armabschüttte schärfer abgesetzt und kürzer als später. In allen Fällen liegt die Bruch- und Regenerationsstelle bald näher an der Basis, bald näher an der Spitze des Armes. So liegt mir z. B. ein Exemplar vor, dessen $r = 7$ mm misst, an dem alle fünf Arme regenerirt sind; der eine Armmixdus ist 20 mm
(vom Scheibenmittelpunkt bis zur Regenerationsstelle) + 5,5 mm (von der Regenerationsstelle bis zur Armpitze) lang, der zweite Armradius misst 26 + 4, der dritte 22 + 2, der vierte 9 + 7,5 und der fünfte 7 + 4,5 mm.

Das Verhältniss \(r : R \) wird von Müller & Troschel (1842) wie 1 : 7—10 angegeben. Damit stimmen von den sechs erwachsenen Individuen, die ich in die untenstehende Tabelle aufgenommen habe, fünf (Nr. 2—6) überein, da sich bei ihnen das Verhältniss \(r : R \) auf 1 : 7,25—10,25 berechnet. Das sechste, grösste Exemplar (Nr. 1), dessen Maasse ich allerdings nicht am Thiere selbst, sondern nur an der von Greeff hinterlassenen Abbildung nehmen konnte (in der möglicherweise die Scheibe ein wenig zu klein ausgefallen ist), hat das Verhältniss \(r : R = 1 : 12,6 \). Im Durchschnitt beträgt bei diesen sechs erwachsenen Thieren \(r : R = 1 : 9,24 \) und, wenn man das grösste Exemplar aus dem angedeuteten Grunde ausser Betracht lässt, 1 : 8,57. Bei den halbwüchsigen Exemplaren (Nr. 7 und 8) ist \(R \) verhältnissmässig kürzer, im Durchschnitt nur 5,3 mal so gross wie \(r \), und bei den jugendlichen Individuen (Nr. 9—11) sinkt \(R \) in seiner relativen Grösse im Durchschnitt bis auf das 3,1fache von \(r \), im Minimum auf das 2,6fache herab. Während \(r \) von 1,75 mm (bei Exemplar Nr. 11) bis auf 9 mm (bei Exemplar Nr. 3) gestiegen ist, sich also nur um rund das Fünffache vergrössert hat, hat \(R \) statt der anfänglichen Länge von 4,5 mm (bei Nr. 11) die Länge von 78 mm (bei Nr. 3) erreicht, also seine anfängliche Länge um rund das 17fache gesteigert. Daraus geht hervor, dass die Wachsthumsschnelligkeit des Armes bei der vorliegenden Art mehr als dreimal so gross ist wie die der Scheibe.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>(L)</th>
<th>(R)</th>
<th>(r)</th>
<th>(r : R)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>203</td>
<td>107</td>
<td>8,5</td>
<td>1 : 12,6</td>
</tr>
<tr>
<td>2</td>
<td>148</td>
<td>82</td>
<td>8</td>
<td>1 : 10,25</td>
</tr>
<tr>
<td>3</td>
<td>141</td>
<td>78</td>
<td>9</td>
<td>1 : 8,67</td>
</tr>
<tr>
<td>4</td>
<td>128</td>
<td>72</td>
<td>8</td>
<td>1 : 9</td>
</tr>
<tr>
<td>5</td>
<td>127</td>
<td>69</td>
<td>9</td>
<td>1 : 7,67</td>
</tr>
<tr>
<td>6</td>
<td>105</td>
<td>58</td>
<td>8</td>
<td>1 : 7,25</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>24</td>
<td>4</td>
<td>1 : 6</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>15</td>
<td>3,25</td>
<td>1 : 4,6</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>9</td>
<td>2,75</td>
<td>1 : 3,3</td>
</tr>
<tr>
<td>10</td>
<td>15,5</td>
<td>8,5</td>
<td>2,5</td>
<td>1 : 3,1</td>
</tr>
<tr>
<td>11</td>
<td>8,5</td>
<td>4,5</td>
<td>1,75</td>
<td>1 : 2,6</td>
</tr>
</tbody>
</table>

Die Breite der Arme beträgt an ihrer Basis bei erwachsenen Exemplaren 8—9 mm, verhält sich also zu dem 77 mm betragenden durchschnittlichen Werthe von \(R \) (bei Exemplar Nr. 1—6) wie 1 : 9, wonach die Angabe bei Müller & Troschel, dass die Arme siebenmal so lang wie breit seien, zu berichtigen ist. Bei jüngeren Exemplaren ergiebt sich natürlich in dem Verhältniss von AB : R ein geringerer Werth für R. So z. B. beträgt bei dem
Exemplar Nr. 7 die basale Armbreite 4, bei Exemplar Nr. 8 nur 3 mm; bei jenem Exemplare ist also AB: R = 1:6 und bei diesem 1:5. Bei den jugendlichen Exemplaren (Nr. 9—11) nimmt die basale Breite der Arme von 3 bis auf 2 mm ab, und ihr Verhältniss zur Länge von R berechnet sich bei Exemplar Nr. 9 auf 1:3, bei Exemplar Nr. 10 auf 1:3,4 und bei Exemplar Nr. 11 auf 1:2,25. An ihrer Spitze haben die Arme der erwachsenen Thiere eine Breite von 2,5 mm, indem hier die Spitzenbreite, ausser von der nach oben gedrängten Terminalplatte, anch noch von den beiderseitigen letzten Randplatten gebildet wird. Bei den jugendlichen Exemplaren dagegen, und selbst noch bei halbwächsigen Thieren, deren R noch nicht mehr als 15 mm misst (Exemplar Nr. 8), wird die Armspitze lediglich von der Terminalplatte dargestellt, die, wie wir später sehen werden, schon recht frühzeitig sich ihrer definitiven Grösse nähert und mit einer Breite von 1,25 (bei Nr. 11) bis 1,5 mm (bei Nr. 8, 9, 10) die ganze Breite der Armspitze einnimmt.

Die Rückenseite ist mit paxillenförmigen Platten besetzt, die auf den Armen so angeordnet sind, dass sie regelmässige Längsreihen und zugleich jederseits von der Mittellinie des Armes schief e Querreihen bilden. Von den Längsreihen reicht nur die mittelste, die wir als die radiale bezeichnen können (Perrier's «Caralia»), bis an die Terminalplatte des Armes; die übrigen, die wir die dorsolateralen nennen, endigen früher. Je nach dem Alter des Thieres beträgt die Zahl der jederseits von der Radialreihe befindlichen dorsolateralen Reihen 1—5. Jugendliche Individuen (z. B. Nr. 9—11) haben erst eine jederseitige dorsolaterale Längsreihe, und auch diese ist bei dem jüngsten mir vorliegenden Exemplare (Nr. 11) erst durch ein einziges, winziges, erstes Plättchen angedeutet (Taf. 9, Fig. 26, 31). Bei halbwächsigen Thieren (z. B. Nr. 7 u. 8) besitzen die Arme jederseits zwei dorsolaterale Längsreihen (Taf. 9, Fig. 27). Bei älteren Thieren (z. B. Nr. 5) sind jederseits drei Längsreihen vorhanden, oder es ist auch schon eine vierte (z. B. bei Nr. 4) angedeutet. Bei noch älteren Exemplaren (z. B. Nr. 2) findet man die vierte Längsreihe gut entwickelt (Taf. 9, Fig. 28). Da Müller & Troschel im Maximum jederseits fünf Längsreihen angeben, mir aber so grosse Exemplare wie die grössten von ihnen beobachteten nicht zur Verfügung standen, so muss ich annehmen, dass die fünfte Längsreihe erst bei ganz alten Thieren auftritt, deren Armradius noch mehr als 82 mm misst.

Von den dorsolateralen Reihen ist stets diejenige die jüngste und kürzeste, die am weitesten von der Radialreihe entfernt liegt. Wo man also z. B. im proximalen Armabschnitte jederseits vier Reihen zählt, findet man deren, wenn man allmählich zur Armspitze fortschreitet, bald nur noch drei, dann zwei, eine, und schliesslich fehlt auch diese. Die erste seitliche Längsreihe, die man auch die ad radiale nennen könnte, tritt wie alle späteren zuerst im proximalen Bezirke des Armes auf; ihre spätere Länge erreicht sie erst nach und nach durch das Hinzukommen neuer Platten an ihrem distalen Ende. Sobald die Reihe eine gewisse (aber noch keineswegs ihre definitive) Länge erreicht hat, beginnt in ganz ähnlicher Weise die Ausbildung der zweiten Längsreihe u. s. w. Es findet also mit dem fortschreitenden Alter des Thieres sowohl eine Vermehrung als auch eine Verlängerung der Längsreihen statt. Da die jüngeren Platten kleiner sind als die älteren, so ergiebt sich von selbst, dass die
Platten am größten sind im proximalen Theil der Radialreihe und von hier aus sowohl nach der Armpitze, als auch nach den Randplatten hin an Grösse abnehmen.

Bei dem jüngsten mir vorliegenden Exemplare (Nr. 11) besteht die Radialreihe erst aus sieben Platten, und die eben erst beginnende erste seitliche Reihe endigt schon an der ersten paarigen oberen Randplatte (Taf. 9, Fig. 26, 31). Bei doppelt so grossen jungen Thieren (Nr. 9 u. 10) zählt die radiale Längsreihe elf bis vierzehn Platten, und die erste dorsolaterale Reihe geht bis zur siebenten oder acht paarigen oberen Randplatte. Von erwachsenen Thieren habe ich beispielsweise ein Exemplar von 72 mm Armradius näher auf diese Verhältnisse geprüft und dabei gefunden, dass hier die Radialreihe aus 72 Platten besteht (bei 69 oberen Randplatten), und dass ferner die erste dorsolaterale Längsreihe erst in einem Abstande von 3 mm von der Terminalplatte endigt, die zweite Längsreihe an der 44., die dritte an der 29. und die vierte an der 20. oberen Randplatte ihre Ende erreicht.

Was die schiefe, von den Platten gebildeten Querreihen angeht, so schliesst sich (mit Ausnahme des distalen Armendes, wo die Querreihen natürlich ganz fehlen, jedesseits an jede Radialplatte eine Querreihe an, die wie gewöhnlich in der Weise schiefläuft, dass ihr Aussenende der Armpitze näher liegt. Auf den ersten Blick scheint es, als wenn die Querreihen genau den oberen Randplatten entsprechen, sicht man aber näher zu, so findet man, dass sie trotzdem in ihrer Zahl davon unabhängig sind; denn es kommen mitunter auf eine obere Randplatte statt einer Querreihe deren zwei; bei dem Exemplare Nr. 5 z. B. kommen im proximalen Armaabschnitte auf eine Länge von 20 oberen Randplatten 23 Querreihen.

Störungen in der regelmässigen Anordnung der Längsreihen und Querreihen sind namentlich bei erwachsenen Individuen häufig zu bemerken, lassen sich aber immer auf Vernarbungen erhaltener Wunden und Regenerationsstellen abgebrochener Armstücke zurückführen.

Die einzelnen Rückenplatten stellen unverkennbare Paxillen dar, als welche sie schon Grube (1840), Delle Chiaje (1841) und Müller & Troeschel (1842) aufgefasst haben. Man kann den gemäss an ihnen eine Basis, einen Schaft und eine Krone unterscheiden. Die Krone wird von den später zu beschreibenden Stachelchen gebildet, während die Platte selbst die Basis und den Schaft des Paxillus darstellt. Der Schaft hat die Gestalt eines dicken, niedergedrückten Cylinders, der aber meistens nicht drehrund bleibt, sondern genauer gesagt, die Form eines niedrigen, bald hexagonalen, bald pentagonalen, bald tetragonalen Prismas mit abgerundeten Kanten annimmt. In Folge dessen stellen die Paxillenschäfte von oben gesehen ein Pflasterwerk dar, in welchem die einzelnen polygonalen Stücke des Pfasters also die oberen Flächen der Prismen) durch schmale Furchen von einander getrennt sind.

Die obere Endfläche des Schafthes ist fast ganz flach abgestutzt und dicht mit zahlreichen, feinsten Gelenkwärzchen für die Einlenkung der die Krone bildenden Stachelchen besetzt. Diese Wärzchen stehen sowohl in geschlossener Reihe ringsum am ganzen Rande der Endfläche als auch in gleicher Dichtigkeit und, annähernd in concentrische Reihen geordnet, auf dem ganzen übrigen Räume der Endfläche. An seinem unteren Ende verbreitet
sich der Schaft zu einer ziemlich dicken Basalplatte, deren untere innere Fläche leicht ge- wölbt gegen das Innere des Armes gerichtet ist. Die Basalplatte ist nur wenig breiter als der Schaft. Bei einem erwachsenen Exemplare (Nr. 5) z. B. hatte die Basis der grössten Paxillen des proximalen Armbauschnittes einen Durchmesser von 1.3 mm, während der Schaft einen Querdurchmesser von 1—1,2 mm darbot; die Höhe des ganzen Paxillus maass ebenfalls 1.3 mm, und davon kam mehr als die Hälfte (0.75 mm) auf die Höhe des Schaftes. Der Umriß der Basis stellt ein abgerundetes Hexagon dar, dessen Ecken als ganz kurze Lappen vortreten. Mit Hülfe dieser Randlappen nähern sich die Basen der benachbarten Paxillen einander, während zwischen den Randlappen eine kleine Skeletlücke entsteht, die für die Aufnahme je einer Papula bestimmt ist. Von den sechs Randlappen einer jeden Paxillenbasis fallen zwei einander entgegengesetzt in die Richtung der Längsachse des Armes, die vier anderen sind paarweise quer zur Längsachse des Armes gerichtet.

Betrachtet man ein Stück des dorsalen Armskeletes von innen her, so bemerkt man noch eine zweite Sorte von Skeletelementen, die in seinen Aufbau eintreten. Fast überall, wo sich zwei Randlappen der Basis zweier benachbarter Paxillen einander bis zur Berührung nähern, sitzt ein kleines Skeletplättchen, das etwa 0.3—0.4 mm breit ist und mit seinem längeren, 0.7—0.8 mm messenden Durchmesser in das Innere des Armes vorspringt. Dieses Plättchen hat eine längliche, ungefähr birnförmige Gestalt und ist mit seinem einen dickeren Ende zwischen die beiden sich berührenden Randlappen der Paxillenbasen eingeklebt. Des Näheren ist die Vertheilung dieser Plättchen eine solche, dass sie immer nur an den queren Randlappen der Paxillenbasen (Taf. 9, Fig. 25) auftreten, dagegen an den in die Längsrichtung des Armes fallenden Randlappen fehlen. Die Paxillen derselben Längsreihe verbinden sich also ohne Vermittlung derartiger Plättchen unmittelbar miteinander; dagegen erfolgt die Verbindung eines jeden Paxillus mit den Paxillen der beiden angrenzenden Längsreihen durch Vermittlung von jederseits zwei, im Ganzen also vier Plättchen; ebenso wird die Verbindung der jüngsten Paxillenreihe mit den oberen Randplatten durch solche Plättchen hergestellt. GAUDRY (1851) hat zuerst auf diese «supplementäre» Plättchen des Rückenskeletes aufmerksam gemacht. Auch VIGUER (1879) hat ihnen Beachtung geschenkt und ihre Anordnung zutreffend geschildert: wenn er aber dabei Veranlassung nimmt, die Abbildung, welche GAUDRY von ihrer Anordnung gegeben hat, zu tadeln und als fehlerhaft zu bezeichnen, so kann das nur auf einer zu flüchtigen Betrachtung jener Abbildung beruhen. Die supplementären Plättchen gehören in die Gruppe der von PERRIER (1893) als Reticularia, von mir 1) auch als Connectivplättchen bezeichneten Skeletelemente, die sowohl als transversal als auch als longitudinal auftreten können; bei der vorliegenden Art sind nur transversale, aber keine longitudinalen vorhanden.

In ganz ähnlicher Weise wie die Rückenseite der Arme ist auch der Scheibenrücken mit Paxillen besetzt, deren flacher Gipfel bei erwachsenen Thieren bis zu 80 Glasstachelchen

1) In meiner Bearbeitung der Echinodermen in BRONN's Klassen und Ordnungen p. 540.
trägt. Viguier behauptet, dass die Paxillen des Scheibenrückens kleiner seien als die des Armes; doch trifft diese Angabe, wie aus einem Blick auf unsere Fig. 28 (Taf. 9) hervorgeht, kaum zu, da ein bemerkenswerther Grössenunterschied thatsächlich nicht vorhanden ist. Auch kann ich der anderen, schon von Müller & Troschel herführenden und von Viguier wiederholten Behauptung, dass die Anordnung der Paxillen des Scheibenrückens unregelmässig sei, nicht ganz zustimmen, denn man kann sowohl die primären Interradialplatten als auch die primären Radialplatten ohne besondere Schwierigkeiten unter den übrigen Platten herausfinden (Taf. 9, Fig. 28). Die primäre Radialplatte kennzeichnet sich dadurch, dass die erste paarige Querreihen der Dorsolateralplatten an ihr endigt. Zwischen den beiden ersten paarigen dorsolateralen Querreihen eines jeden Armwinkels liegt nun aber noch eine unpaare Reihe von Dorsolateralplatten, die an der später zu besprechenden unpaaren oberen Randplatte beginnt und genau in die Richtung des Interradius fällt. Scheitelwärts gabelt sich diese Reihe (Taf. 9, Fig. 28) und umfasst hier mit den beiden Aesten der Gabelung die primäre Interradialplatte, und im Interradius des Steinkanales überdies die Madreporenplatte. Dass es sich in den soeben dafür angesprochenen Platten in Wirklichkeit um die primären Radial- und Interradialplatten handelt, geht aus's Sicherste aus der Untersuchung halbwüchsiger und jugendlicher Thiere hervor. Bei dem Exemplar Nr. 8 z. B. (Taf. 9, Fig. 27) zeichnen sich diese zehn primären Platten ausser durch ihre Stellung auch durch ihre verhältnissmässige Grösse vor allen anderen Platten des Scheibenrückens aus. Erst später bleiben sie im Wachsthum um soviel zurück, dass sie von den dann schneller wachsenden secundären Platten ihrer Umgebung in der Grösse eingeholt werden. Jetzt aber sind die secundären Platten entsprechend ihrem jüngeren Alter noch durchweg kleiner als die primären. Dadurch wird es auch möglich, die fast genau im Mittelpunkt gelegene primäre Centralplatte aufzufinden. Sie liegt unmittelbar dem After an, der sich in nächster Nähe des Scheibenmittelpunktes befindet und noch von drei anderen, im Ganzen also von vier Platten umstellt ist (Taf. 9, Fig. 27). Dieses Verhältniss, dass der After von vier verhältnissmässig grossen Platten umgeben wird, bleibt sehr häufig im erwachsenen Thiere bestehen, sodass man auch dort meistens im unmittelbaren Umkreis des Afteres einen Kranz von vier grossen Paxillen antrifft; indessen ist das dennoch für das erwachsene Thier kein constantes Merkmal, denn es kommt auch vor, dass der After des erwachsenen Thieres (Taf. 9, Fig. 28) von einer grösseren Paxillenzahl umgeben wird. Stellt man den halbwüchsigen Seestern so, dass der After bei der Rückenansicht nach vorn liegt, so befindet sich die Centralplatte etwas nach hinten und links vom genauen Mittelpunkte der Scheibe. Orientirt man den erwachsenen Seestern ebenso, so findet man gleichfalls nach hinten und ein wenig nach links vom After eine Platte, die sich zwar jetzt nicht mehr durch ihre Grösse auszeichnet, aber dennoch durch ihre Stellung sich als die vom jungen Thiere übernommene Centralplatte zu erkennen gibt (Taf. 9, Fig. 28). Zwischen der Centralplatte und der das Scheitelfeld begrenzenden primären Radial- und Interradialplatten liegen bei dem halbwüchsigen Thiere sehr viel weniger und auch merklich kleinere Platten als beim erwachsenen. Nicht minder ist bemerkenswerth, dass im Armwinkel eine unpaare
dorsolaterale Querreihen jetzt noch nicht entwickelt ist, sondern sich zwischen jede primäre Interradialplatte und die unpaare obere Randplatte nur ein Paar von Platten einschiebt, das offenbar identisch ist mit den beiden Platten, die auch beim alten Thiere unmittelbar nach aussen von jeder primären Interradialplatte liegen und dort die obenerwähnten Gabeläste der unpaaren dorsolateralen Querreihen aufbauen helfen.

Ganz zweifellos wird unsere Deutung der primären Skeletstücke des Scheibenrückens aber erst dann, wenn wir noch jüngere Thiere zu Rate ziehen. Bei dem jüngsten der mir vorliegenden Exemplare (Nr. 11) ist der Scheibenrücken fast lediglich von den primären Platten gebildet. Die primären Radialia und Interradialia stellen in geschlossener An- einanderlagerung ein Pentagon dar, dessen Ecken von den Radialien und dessen Seitenmitten von den intervallaren Plattenpaaren. Im Scheitelfelde selbst liegt eine unverkennbare grosse Centralplatte und in deren Umkreis in der Richtung der Radien fünf kleinere, unter sich ungleich grosse, jüngere Platten. Die Centroradialia, welche die von Perrier (1894) im Vergleiche mit dem Kelch der Crinoideen sogenannten Infrahämatalia darstellen (Taf. 9, Fig. 26). Andere secundäre Platten als diese fünf sind jetzt im Scheitelfeld überhaupt noch nicht vorhanden. Später, wenn die secundären Platten im Scheitelfelde immer zahlreicher geworden sind, fällt es schwer und ist schliesslich nicht mehr mit Sicherheit möglich, die fünf ersten unter den ganz ähnlichen übrigen herauszufinden; doch gewinnt man z. B. noch bei Thieren von der Grösse unseres Exemplares Nr. 8 den Eindruck, als persistirten die fünf ersten secundären Platten des Scheitelfeldes in den in der Fig. 27 (Taf. 9) durch eine punktierte Linie miteinander verbundenen fünf Platten; es wäre aber auch möglich, dass sie in der Nähe des Afters verblieben und hier unter leichter Lageverschiebung zu den in derselben Figur durch eine ununterbrochene Linie miteinander verbundenen fünf Platten würden — eine Frage, die nur an einem noch reicherem Material von jungen Thieren, als es mir zu Gebote stand, entschieden werden kann. Die beiden bei dem halbwüchsigen Thiere nach aussen von jeder primären Interradialplatte gelegenen Platten sind bei unserem jüngsten Exemplare auch schon angelegt, berühren sich aber in der Interradiallinie noch nicht, sodass jetzt noch die primäre Interradialplatte bis zur unpaaren oberen Randplatte reicht; nur in demjenigen Interradius, in dem sich später die Madreporenplatte, die ich jetzt noch nicht sicher sehen kann, entwickelt, ist die primäre Interradialplatte etwas kleiner geblieben und etwas weiter von der unpaaren oberen Randplatte abgedrängt. Aus einem Vergleiche des jüngsten Thieres mit dem halbwüchsigen und erwachsenen (Taf. 9, Fig. 27, 28) geht endlich auch noch hervor, dass man in jenem nach aussen von der primären Interradialplatte auftretenden Plattenpaare die ersten Platten der ersten dorsolateralen Paxillen-Längsreihe des Armes vor sich hat; beim erwachsenen Thiere biegt sich diese Längsreihe (wie ich das in der Fig. 28 (Taf. 9) angedeutet habe) im Armwinkel bogenförmig nach der Interradiallinie hin, was mit der auch an den Randplatten des Armsgewinkels auftretenden engen Zusaammendrängung im Einklange steht.

Schliesslich ist in Betreff des Rückenskeletes der Scheibe noch zu bemerken, dass sich an dessen Innenseite ganz wie in den Armen auch supplementäre Plattchen (= transversale
Chaetasteridae.

Die Stachelchen der Paxillenkronen (Müller & Troschel bezeichnen sie als Borsten) haben einen sehr bemerkenswerten, bei keinem anderen mittelmeerischen Seestern vorkommenden Bau, der so auffallend ist, dass man daran allein ein winziges Armstück als sicher zu dieser Art gehört mit Leichtigkeit erkennen könnte. Die Stachelchen haben beim erwachsenen Thiere eine Länge von 0,3—0,46 mm. Jeder Stachel (Taf. 9, Fig. 15, 16) besteht aus einem bei allen fast genau gleichlangen (0,15—0,16 mm) und halb so dicken (0,07—0,08 mm) Stiel, der das gewöhnliche, maschige Gefüge der Echinodermenskeletstücke zeigt. An seinem Aussenende setzt sich der Stiel in den eigentlichen Stachel fort, der 1—2 mal so lang ist wie der Stiel und sich dadurch auszeichnet, dass er aus durch und durch solider Kalksubstanz besteht, die nirgends von Maschen durchbrochen ist und ebendadurch glashell erscheint. Dieser glashelle Stachel hat die Form eines gestreckten Kegels mit etwas stumpfer Spitze, von der aus gewöhnlich einige feine, oberflächliche Längsrinnen nach der Stachelbasis ziehen, aber, noch bevor sie diese erreichen, zu verstreichens pflegen; die Stachelspitze sieht in Folge dessen längsgerieben aus. Der basale Theil des Stachels ist häufig, aber keineswegs immer mit einer grossen Menge kleinsten Dörrchen besetzt, die seine sonst glatte Oberfläche rauh machen. Da der eigentliche Stachel sich leicht von seinem Stiel ablöst, und man deshalb oft Stiele zu sehen bekommt, die ihren Stachel verloren haben, so könnte man auf die Meinung kommen, der Stachel sei ein besonderes, auf den Stiel eingepflanztes Skeletstück. Dieser Ansicht ist denn auch DELLE CHIAJE (1841), der einzige Forscher, der den eigentümlichen Bau der Stacheln bemerkt hat (s. auch DELLE CHIAJE's Abbildung Taf. 171, Fig. 22), thatsächlich gewesen, denn er lässt den unteren kürzeren Theil des Stachels (unseren Stiel) mit dem zugespitzten, hyalin, leicht abfallenden Endabschnitt durch eine Art Gelenkkapsel verbunden sein. Bei näherer Untersuchung überzeugt man sich aber bald, dass dem nicht so ist, dass vielmehr Stiel und Stachel zusammen ein einheitliches Skeletstück bilden; man sieht die Kalkstäbe, die den Stiel aufbauen, sich unmittelbar in die Substanz des glashellen eigentlichen Stachels fortsetzen. Wahrscheinlich besitzt auch der von PERRIER (1875) beschriebene Ch. nodosus ähnlich oder ebenso gebaute Stacheln, da PERRIER sie als durchscheinend bezeichnet, und ebenso scheint sich der aus dem südlichen Meere von Bell erwähnte Ch. moorei zu verhalten, da Bell angiebt, dass seine Armlatten feine, glasige Stacheln tragen; dagegen sind bei anderen Seestern-Gattungen, soweit ich mich erinnern kann, noch niemals solche Glasstacheln angetroffen worden.

Da die Bestachelung der oberen und unteren Randplatten, der Ventrolateralplatten und bei jungen Thieren auch der Terminalplatten ebenfalls aus solchen Glasstacheln gebildet wird, wie wir sie oben von den dorsalen Paxillen kennen gelernt haben, so wollen wir gleich an dieser Stelle noch einiges Nähere über die Bestachelung aller dieser Platten bemerken.

Die auf den oberen Randplatten stehenden Glasstacheln sind bei den erwachsenen Thieren durchweg erheblich kürzer als die der dorsalen Paxillen, indem sie nur 0,17—0,19 mm an Länge messen, wovon kaum mehr als die Hälfte (0,09—0,11 mm) auf den glasigen, eigentlichen Stacheltheile kommt; doch kommen dazwischen auch bis 0,3 mm lange vor, deren Stachelstück 0,18 mm an Länge misst. Das Stachelstück ist nur selten schlank zugespitzt, meistens von stumpf abgerundeter, gedrungener Form und oft auf dem basalen Theile mit Dornspitzen besetzt (Taf. 9, Fig. 18, 20). Ganz ebenso verhalten sich in Größe und Form die Glasstacheln, die auf den unteren Randplatten sitzen (Taf. 9, Fig. 19). Auf den ventrolateralen Platten finden sich dieselben Stacheln, nur nehmen sie hier gegen die Ambulacralfurchen hin an Länge wieder allmählich zu. Am grössten sind sie in der auf der Ventralfläche der Adambulacralplatten stehenden (subambulacralen) Stachelgruppe; hier erreichen sie (Taf. 9, Fig. 17) eine Länge von 0,64 mm, wovon 0,52 mm auf den Stacheltheil und 0,12 mm auf den Stiel kommen.

Aus allen angegebenen Maassen erhellt, dass die verschiedene Länge sämtlicher Glasstacheln fast ganz oder doch vorwiegend auf Rechnung des eigentlichen Stacheltheiles kommt, während der Stiel nur geringe Längenunterschiede zeigt.

Bei den jungen Thieren sind die Glasstacheln (Taf. 9, Fig. 21—24) viel schlanker und zarter als bei den erwachsenen. Die stumpfen, plumpen Formen, die wir bei den alten Thieren namentlich auf den Randplatten fanden, fehlen noch ganz, sodass man zu der Annahme gedrängt wird, dass jene plumpen Stacheln erst später dadurch entstehen, dass die erstgebildeten, schlanken Stachel spitzen abbrechen und durch plumpere, kürzere Spitzen ersetzt werden. Daraus erklärt sich auch, warum man diesen plumpen Stacheln vorwiegend auf den Randplatten des alten Thieres begegnet; denn hier sind die Stacheln in hohem Grade der Gefahr ausgesetzt, durch Berührung mit anderen Thieren und mit harten Gegenständen der Außenwelt ihre feinen, ursprünglichen Spitzen zu verlieren. Auf der Terminalplatte, wo diese Gefahr am allergrössten ist, gehen die anfänglichen Stacheln sogar schliesslich ganz verloren. Beim jungen Thiere (z. B. Nr. 9 und 11) aber haben die Stacheln der Terminalplatte eine Länge von 0,18 bis 0,29 mm, wovon 0,7 mm auf den Stiel kommen; es sind hohe, sehr schlanke Kegel, die mit einfach abgerundeter Spitze endigen und oberflächlich völlig glatt erscheinen. Ebensolcherhalten sich bei jungen Thieren die Stacheln der Paxillenkronen, doch mit dem Unterschiede, dass sie bereits die Länge von 0,3—0,45 mm erreichen, also in der Länge den Paxillenstacheln der alten Thiere gleichkommen. Demnach muss bei Stacheln, die, ohne abzubrechen, vom jungen Thiere bis in das alte Thier fortbestehen, vorzugsweise ein Dickenwachsthum stattfinden, und erst mit diesem Dickenwachsthum treten dann auch die Längsriffelung der Stachelspitze und die feinen Dörnchen der Stacheloberfläche auf, die den jungen Stacheln durchweg fehlen.

Zwischen den Stacheln der jungen Thiere trifft man auch hier und da auf jüngere Entwicklungsstadien der Stacheln, welche lehren, dass die erste Anlage des ganzen späteren Stachels, wie ich das zuerst bei Asterina gefunden, ein sechsspechiges Räden von 0,04 mm Querdurchmesser darstellt (Taf. 9, Fig. 24), auf dem sich ein centraler und drei peripherische, senkrechte Kalkstäbe erheben. Der centrale Stab wächst viel rascher und bildet mit seinem Endabschnitt schliesslich den eigentlichen Glasstachel, während die drei peripherischen Stäbe sich durch quere Verbindungsstäbe unter Maschenbildung mit dem centralen in Zusammenhang setzen und so den jungen, anfänglich immer dreikantigen Stiel liefern, der sich erst später durch sekundäre Kalkstäbe verdickt und rundet. Mitunter sieht man an jungen Stacheln die distalen Enden der drei peripherischen Stäbe als kurze, hakenförmige Spitzen aus dem oberen Stielende heraustreten (Taf. 9, Fig. 23).

Die Papulae, die Grube (1840) zuerst bemerkt hat, sind auf dem Rücken der Arme so angeordnet, dass an jeder Seite der hexagonalen Basis eines Paxillus je eine isolirte Papula in der dort befindlichen Skelettlücke (s. p. 141) sich in Gestalt eines einfach fingerförmigen, dünnwandigen Bläschens erhebt, das mit seinem kegelförmig abgerundeten Ende die Höhe der Paxillen erreicht oder ein wenig überragt. In Folge dieser regelmässigen Anordnung der Papulae zählt man, wie schon Delle Chiaje (1841) richtig angegeben hat und auch Müller & Troschel (1842) in ihrer betreffenden Abbildung dargestellt haben, im Umkreis eines Paxillus sechs in ziemlich gleichen Abständen stehende Papulae. Delle Chiaje schreibt den Papulae (seinen »Rückenfüsschen«), die oben auf dem Armücken stehen, eine lanzettförmige, dagegen den mehr an den Seiten, also in der Nähe der oberen Randplatten befindlichen, eine keulenförmige Gestalt zu. Indessen kann ich mich von einer solchen Differenz nicht überzeugen, denn, soweit ich sehe, haben alle Papulae dieselbe oben beschriebene Form.

Bei näherer Untersuchung fand ich ferner, dass die Papulae, worauf bis jetzt noch von keiner Seite geachtet worden ist, keineswegs über die ganze Dorsalseite des Thieres verbreitet sind, sondern sich auf fünf voneinander getrennte radiäre Bezirke, sog. Papularien, beschränken. Jedes Papularium beginnt bei den jüngeren (Taf. 9, Fig. 27) wie bei den alten Thieren distal von einem durch die Verbindungslinien der fünf ersten Radial- und der fünf ersten Interradialplatten bestimmten Scheitelfelde, welches selbst durchaus der Papulae entspricht. Von diesem papulafreien Scheitelfelde gehen in der Richtung der Interradien fünf ebenfalls papulafreie Streifen aus, die bis an die oberen Randplatten reichen und hier an der unpaaren und an der dieser benachbarten ersten paarigen oberen Randplatte endigen. Jeder papulafreie Interradialstreifen hat also (bei den erwachsenen Thieren) die Breite der drei Paxillenreihen, die sich vom Scheitel zu den drei den Armwinkel einnehmenden oberen Randplatten hinziehen. Durch diese Interradialstreifen verlaufen die proximalen Enden der fünf Papularien völlig voneinander getrennt. Nach der Armspitze hin endigt das Papularium in einem Abstande von der Terminalplatte, der genau dem distalen Ende der jederseitigen ersten dorsolateralen Paxillen-Längsreihe entspricht. Von da an also, von wo ab die radiale Paxillenreihe rechts und links in unmittelbare Berührung mit den oberen Randplatten tritt, fehlen die Pa-
pulac. Ebenso fehlen sie in der ganzen übrigen Länge des Armes zwischen den oberen Randplatten und der ihnen zunächst liegenden äussersten (= jüngsten) dorsolateralen Paxillen-Längsreihe. Schon bei jungen Thieren, deren Armradius erst 9 mm beträgt (Nr. 9), lässt sich die soeben dargelegte Vertheilung der Pulacae wahrnehmen; in distaler Richtung endigt hier jedes Papularium an der 10. Radialplatte in einem Abstande von 2,5 mm von der Armspitze. Bei noch jüngeren Exemplaren (z. B. Nr. 10 und 11) konnte ich die Pulacae überhaupt noch nicht mit Sicherheit erkennen, wie sie denn auch bei jenem nur wenig älteren Thiere (Nr. 9) ihre spätere Grösse noch nicht erlangt haben, sondern nur ganz niedrige dünne Hauteinbuchtungen darstellen. Bei halbwüchsigen Exemplaren (z. B. Nr. 8) sind sie aber schon recht deutlich ausgebildet und ordnen sich auch hier in der angegebenen Weise; mit seinem distalen Ende reicht hier jedes Papularium bis auf einen Abstand von 5,5 mm von der Armspitze. Auffallend ist, dass die interradialen papulafreien Streifen bei jungen und halbwüchsigen Thieren (Nr. 8 und 9) relativ schmäler sind, als bei den erwachsenen, indem die Pulacae nur zwischen den von der ersten Interradialplatte zur unpaaren oberen Randplatte ziehenden Paxillen fehlen. Mir scheint das darauf hinzuweisen, dass an diesen Stellen später ein Einschub von Paxillen stattfindet, der die interradialen papulafreien Streifen verbreitert.

Die schon von Grupe (1840) und Müller & Troschel (1842) unterschieden, aber nur von Viguié (1879) etwas näher beschriebenen, abgerundet viereckigen Randplatten nehmen als zwei Längsreihen leichtgewölbter Platten die Seiten der Arme ein, indem sie die Paxillen des Rückens von den paxillenförmigen Ventrolateralplatten trennen. In der Rückenansicht sieht man nur die oberen, in der ventralen Ansicht nur die unteren Randplatten. Dass unser Seestern fast drehrunde Arme besitzt, also eine deutliche, die Rückenseite von der Bauchseite trennende Kante nicht vorhanden ist, kommt wesentlich dadurch zu Stande, dass sich die oberen und unteren Randplatten nicht mit ihren inneren Flächen aufeinanderlegen, sondern nur mit ihren Aussenrändern zusammenstossen. Obere und untere Randplatten stehen also aufgerichtet (und nur wenig gebogen) übereinander. Dabei greift sogar der Aussenrand der oberen Randplatte ein wenig über den Aussenrand der unteren. Ferner greift jede obere und untere Randplatte mit ihrem adoralen Rande über den aboralen der nächsten oberen, bez. unteren Platte. Von den benachbarten Rücken- und Bauchplatten unterscheiden sich die Randplatten durch ihre Anordnung und durch ihre Grösse. Letztere misst im proximalen Armabschnitt erwachsener Thiere bis 1,5 mm an Breite und bis 1,3 mm an Länge. Die Platten sind also etwas breiter als lang; doch wird daran nicht immer festgehalten, denn man findet auch solche, die ebenso lang wie breit sind. In der Nähe der Armspitze überwiegt an den oberen Randplatten, wie schon Viguié hervorgehoben hat, stets die Breite über die Länge. Das Gleiche ist an beiden Reihen der Randplatten in noch stärkerem Maasse in den Armwinkeln der Fall. Auch legen sich in der Nähe der Armspitze die oberen Randplatten immer mehr horizontal, um so die Mitte des dorsalen Paxillen zu erreichen. Die 3 oder 4 letzten oberen und unteren Randplatten liegen an und unter den Seitenrändern der Terminalplatte. Obere und untere Randplatten sind durchweg von gleicher Grösse, nur in der Nähe der Armspitze sind die
oberen größer (breiter) als die unteren. Meistens liegen die oberen und unteren genau übereinander, doch kommen hier und da auch Verschiebungen dieser regelmässigen Anordnung vor, was sich schon daraus ergiebt, dass durchweg bei alten und jungen Thieren die Zahl der unteren Randplatten um 1 oder 2 größer ist als die Zahl der oberen. An vernarbten Wunden und an Regenerationsstellen abgebrochener Arme ist die Anordnung der Randplatten stets mehr oder weniger unregelmässig.

Die Zahlen, in denen die oberen und unteren Randplatten auftreten, sind entsprechend der geringen Grösse der Platten und der Länge der Arme verhältnissmässig hoch. So zählte ich bei einem Exemplare von 72 mm Armradius (Nr. 4) 66, bei einem anderen von 69 mm Armradius (Nr. 5) 58 und bei einem Exemplare von 58 mm Armadius (Nr. 6) 48 obere Randplatten und jedesmal 1 oder 2 untere mehr. Bei den halbwüchsigen Thieren (Nr. 7 u. 8) sind 27 bez. 22 obere und 28 bez. 24 untere Randplatten vorhanden. Von den jungen Thieren hat Nr. 9 13 obere und 15 untere, Nr. 10 12 obere und 14 untere und Nr. 11 erst 6 obere und 7 untere Randplatten. Dabei habe ich in allen diesen Zählungen die unpaare Platte, von der nachher die Rede sein wird, nicht mitgezählt.

Zu der in Millimetern ausgedrückten Länge des Armradius verhält sich die Zahl der oberen Randplatten bei jungen Thieren (z. B. Nr. 9—11) wie 1 : 0,7, bei erwachsenen (z. B. Nr. 4—6) wie 1 : 1,1—1,2. Der Armradius misst also anfänglich kaum dreiviertelmal soviel Millimeter, wie obere Randplatten da sind, und schliesslich fast einundeinviertelmal soviel. Oder mit anderen Worten: die Zahl der oberen Randplatten nimmt langsamer zu als die Länge des Armes. Während R von 4,5 bis 72 mm gewachsen ist, sich also auf das Sechzehnfache vergrössert hat, hat die Zahl der oberen Randplatten eine Vermehrung von 6 auf 66, also nur auf das elffache erfahren.

Von besonderem Interesse, namentlich für die Feststellung der Verwandtschaftsbeziehungen der vorliegenden Art, scheint mir der von allen bisherigen Forschern völlig überschene Umstand zu sein, dass in jedem Armwinkel genau in der Richtung des Interradius eine unpaare obere und darunter eine unpaare untere Randplatte vorhanden ist. Dass sie bisher so gänzlich übersehen werden konnte, erklärt sich wohl daraus, dass sie bei der engen Zusammenschiebung, welche die Randplatten überhaupt in den Armwinkeln der erwachsenen Thiere erfahren haben, nicht ohne Weiteres ins Auge fällt, und dass junge Thiere den früheren Forschern nicht vorgelegen haben. Bei jungen Thieren bemerkt man die unpaare (obere und untere) Platte sofort, und hat man sie dort einmal gesehen, so fällt es nicht schwer, sich auch

Die Terminalplatte, die Grube (1840) als eine gewölbte, steinige Warze an der Armpitze beschrieb, zeichnet sich durch ihre Grösse und ihre annähernd halbkugelige Gestalt aus. Bei jungen Thieren (Nr. 8—11) nimmt sie die ganze, 1,25—1,5 mm betragende Breite der Armpitze ein. Bei erwachsenen betheiligen sich auch die letzten Randplatten an der Bildung der Armpitze; die Terminalplatte wird zugleich von den jederzeitigen drei letzten oberen Randplatten dorsalwärtls in die Höhe gedrängt; sie tritt dadurch deutlich mit ihrer stark gewölbten, fast halbkugeligen, dorsalen Oberfläche über die beiderseitigen drei letzten oberen Randplatten hervor. Isolirt man sie bei einem erwachsenen Exemplare, so bietet sie in der Rükenansicht einen fast kreisrunden Umriss dar und misst an Länge 1,69, an Breite 1,77 mm. Ihre dorsale Oberfläche ist namentlich in der Nähe der oberen Randplatten mit dicht stehenden, sehr kleinen und sehr flachen Höckerchen besetzt, die auf dem Gipfel der Platte mehr oder weniger abgeschenet sind. Es stellen diese mit der Granulation der Paxillengipfel ganz übereinstimmenden Höckerchen die Insertionswärzchen für die bei den alten Thieren verloren gegangene Bestachelung der Terminalplatte dar, die bei den jungen Thieren (Taf. 9, Fig. 31) wie ein feiner, langer und dichter Pelz die ganze Oberfläche der Platte bekleidet und aus dem uns schon bekannt gewordenen Glasstachelchen besteht. In der Seitenansicht hat die isolirte Platte eine Höhe von 1,46 mm. Mit ihren nach innen schräg gestellten Seitenflächen ist sie von oben her zwischen die beiderseitigen letzten oberen Randplatten eingekleidet. Am unteren Rande ihrer distalen Seite besitzt sie eine kleine, nur 0,26 mm breite Einkerbung, die sich in eine
an der Ventralseite der Platte adoralwärts ziehende und sich allmählich bis auf fast 1 mm verbreiternde Rinne für die Aufnahme des Fühlers, Auges und der jüngsten Füßchen fortsetzt.

Die Ventrolateralplatten sind in deutliche Längsreihen und ebenso deutliche Querreihen geordnet. Müller & Troschel geben bei erwachsenen Thieren ganz richtig drei bis vier Längsreihen an. Wenn sie aber hinzufügen, dass zwei von diesen Längsreihen bis zur Spitze des Armes gehen, so stimmt das nicht ganz. Denn die Plattenreihen endigen in Wirklichkeit etwas früher, sodass genau genommen keine einzige die Armspitze erreicht. Es liegt vielmehr die letzte ventrolaterale Platte (= die letzte Platte der ersten ventrolateralen Längsreihe) z. B. bei meinem Exemplare Nr. 5 zwischen der drittletzten unteren Randplatte und der sechstletzten Adambulacralplatte. Auf die letzte Ventrolateralplatte folgt demnach ein kleiner (etwa 2,5 mm langer), terminaler Armabschnitt, der der Ventrolateralplatten völlig er- mangelt. Noch weniger, als das für die erste ventrolaterale Längsreihe der Fall ist, stimmt die Müller & Troschel'sche Angabe für die zweite Längsreihe. Bei meinem Exemplare Nr. 4 z. B. hört die zweite ventrolaterale Längsreihe an einem Arme schon in der Gegend der 14.—16. unteren Randplatte auf, sodass von hier an bis zur 65. unteren Randplatte nur eine einzige (die erste) ventrolaterale Plattenreihe den Raum zwischen den Adambulacralplatten und den unteren Randplatten einnimmt; an einem anderen Arme geht die zweite Längsreihe bis zur 22. unteren Randplatte. Bei dem Exemplare Nr. 2 lässt sich die zweite Längsreihe bis zur 41. unteren Randplatte verfolgen. Bei Exemplar Nr. 4 geht ferner die dritte ventrolaterale Längsreihe bis zur 8.—10. unteren Randplatte, und eine vierte Längsreihe, die nur in der Gegend des Armwinkels in einigen wenigen Platten angedeutet ist, reicht nur bis zur dritten unteren Randplatte. Bei anderen erwachsenen Exemplaren, z. B. Nr. 2, ist eine vierte Längsreihe überhaupt nicht vorhanden. Wenn man also von dieser ganz kurzen, inconstanten, vierten Längsreihe absicht, so kann man sagen, dass bei erwachsenen Thieren im proximalen Armabschnitt drei, im mittleren Armabschnitt zwei und im distalen nur eine ventrolaterale Längsreihe von Platten zur Ausbildung gelangt sind.

Bei jüngeren Individuen ist die Zahl und die relative Länge der ventrolateralen Längsreihen erheblich geringer als bei den Erwachsenen und nimmt bei ganz jungen Thieren immer mehr ab. So z. B. besitzen die Exemplare Nr. 7 und Nr. 8 erst zwei Längsreihen, von denen die erste bis Exemplar Nr. 7 bis zur zehnten und bei Exemplar Nr. 8 erst bis zur neunten unteren Randplatte geht, während die zweite Längsreihe bei Exemplar Nr. 7 an der vierten und bei Exemplar Nr. 8 schon an der zweiten unteren Randplatte ihr Ende erreicht. Die kleinen Exemplare Nr. 9—11 besitzen überhaupt erst eine einzige ventrolaterale Längsreihe, die bei Exemplar Nr. 9 nur aus drei und bei Exemplar Nr. 11 sogar nur aus einer einzigen Platte besteht. Diese unter allen Ventrolateralplatten älteste Platte, die später zur ersten Platte der ersten Längsreihe wird, fällt bei dem jungen Thiere mit ihrem Gegner das kleine Feld aus, das sich zwischen den Munddeckstücken, der unpaaren unteren Randplatte und den jederseitigen beiden ersten Adambulacralplatten befindet. Aus dem Gesagten geht hervor, dass die erste ventrolaterale Plattenreihe eines jeden Armes an der Interradiallinie mit einer
nur ihr angehörigen ersten Platte beginnt. Im Gegensatz dazu ist die erste Platte einer jeden der übrigen (also der zweiten, dritten und vierten) Längsreihe nicht an, sondern in der Inter-
radiallinie gelegen, also für die beiden gleichnamigen Längsreihen zweier angrenzender Arme
gemeinschaftlich.

Die von den Ventrolateralplatten gebildeten, im Allgemeinen der Zahl der Adambula-
cralplatten entsprechenden Querreihen haben in der Nähe der Interradialebene einen gebogenen,
weiterhin aber einen auf die Ambulacralfurche rechtwinkelig gerichteten Verlauf. VIGIER behauptet,
that fast überall zwei von diesen Querreihen auf je eine untere Randplatte treffen. Ich finde
dagegen, dass die Zahl der Querreihen hinter dieser Angabe zurückbleibt. Bei meinem Exemplare Nr. 5 z. B. zählte ich im proximalen Armabschnitt 13 Querreihen
auf die Länge von 9 unteren Randplatten; bald kamen zwei, bald nur eine Querreihe auf
die Länge einer unteren Randplatte; meistens zählte ich bei diesem wie bei meinen anderen
erwachsenen Thieren je drei Querreihen auf die Länge von zwei unteren Randplatten. Im
Armwinkel gelangen einige Querreihen nicht zu vollständiger Ausbildung, d. h. sie erreichen
entweder die unteren Randplatten nicht oder sie erstrecken sich nicht bis zu den Adambula-
cralplatten. So wird die Interradiallinie selbst eingenommen von einer unpaaren Querreihe, die
nach aussen von den beiden ersten Ventrolateralplatten beginnt und (bei Exemplar Nr. 5) aus
vier (bei anderen Exemplaren nur aus drei) auf einander folgenden Platten besteht, von denen
die äusserste an die unpare untere Randplatte stösst. Dann folgt jederseits von dieser un-
paaren Querreihe die erste paarige, die vollständig ausgebildet ist, aus vier (bez. drei) Platten
besteht und von der dritten und vierten Adambulacralplatte zur ersten paarigen unteren Rand-
platte läuft. Nun folgt wieder eine unvollständige Querreihe, nämlich die zweite paarige, die
an der vierten und fünften Adambulacralplatte beginnt, aber nur aus zwei Platten besteht und
die unteren Randplatten nicht erreicht. Die dritte Querreihe ist wieder vollständig, ist aus
vier (bez. drei) Platten zusammengesetzt, fängt an der fünften und sechsten Adambulacralplatte
an und hört an der zweiten unteren Randplatte auf. Von nun an sind alle Querreihen voll-
ständig und bestehen aus einer der Zahl der Längsreihen entsprechenden Plattenzahl. Meistens
liegen die Querreihen so, dass sie mit den Adambulacralplatten abwechseln, also die erste
Platte jeder Querreihe in die Richtung der Trennungslinie zweier aufeinanderfolgender Adambula-
cralplatten fällt; indessen kommt es auch vor (z. B. bei meinem Exemplar Nr. 5), dass in
langen Strecken der Arme die Querreihen sich genau an den Aussenrand je einer Adambula-
cralplatte anlegen, sodass die Querachse der Adambulacralplatte sich in die Querachse der
angrenzenden Ventrolateralplatte fortsetzt. Daraus folgt, dass auch bei dieser Art die Ventro-
lateralplatten in keiner strengen Abhängigkeit ihrer Lage von den Adambulacralplatten stehen.

Bei dieser Gelegenheit muss überhaupt hervorgehoben werden, dass die im Vorstehenden
beschriebene Anordnung der Ventrolateralplatten in Längs- und Querreihen sehr häufige Stö-
run gen erfährt, die sich ähnlich wie die Unregelmässigkeiten in der Anordnung der Rücken-
platten (s. p. 140) auf vernarbte Verletzungen zurückführen lassen.

Die einzelnen Ventrolateralplatten sind in der ersten Längsreihe durchweg am grössten;

Die Adambulacralplatten sind verhältnismässig klein, ungefähr 1 1/2 mal so breit wie lang (im proximalen Armabschnitt erwachsener Thiere 1,1 mm breit und 0,75 mm lang) und übertreffen an Zahl sowohl bei jungen wie bei älteren Thieren die Zahl der unteren Randplatten um fast das Doppelte. Bei den halbwüchsigen Exemplaren zählte ich z. B. an dem Exemplare Nr. 7 bei 28 unteren Randplatten 48, an dem Exemplare Nr. 8 bei 24 unteren Randplatten 38 und bei den jungen Thieren Nr. 9, 10 und 11 bei 15, 14 und 8 unteren Randplatten 24, 23 und 15 Adambulacralplatten an jeder Seite der Armfurche. Der ambulacrale Rand jeder Platte hat einen convexen Verlauf und trägt (im proximalen Armabschnitt) eine seine ganze Länge besetzende, bogenförmige (gegen die Furche convexe) Längsreihe von fünf oder häufig sechs an ihrer Basis durch Haut verbundenen Stacheln, von denen der adorale, oder bei sechs Stacheln die beiden adoralen auf den adoralen Plattenrand rücken und dadurch etwas weiter von der Furche zurücktreten als die vier anderen. Müller & Troeschel haben diese Anordnung der Furchenstacheln bereits richtig beschrieben, und schon vor ihnen hat Grube die Adambulacralbewaffnung als «fünfzähnige Stachelkämme» geschildert. Was aber bis jetzt nicht bemerkt worden war, ist der Umstand, dass zu den fünf von diesen Forschern erwähnten Stacheln recht häufig noch, wie vorhin angegeben, ein sechster Stachel hinzukommt. Die Furchenstacheln sind in ihrem Baue dadurch ausgezeichnet, dass sie keine Glasstacheln sind, sondern ihrer ganzen Länge und Dicke nach aus demselben engmaschigen Kalkgewebe aufgebaut sind wie der Stiel der Glasstacheln. Sie haben beim erwachsenen Thiere die Form eines an seinem freien Ende allmählich verjüngten, abgerundet endigenden Stäbchens von 0,6 bis 0,76 mm Länge und 0,14—0,17 mm Dicke, das auf seiner ganzen Oberfläche durch eine dichte, feine, nur mit dem Mikroskop erkennbare Bedornung rann erscheint. Ausser diesen eigentlichen Adambulacralstacheln trägt jede Platte auf ihrer zu einem flachen Wulst erhobenen ventralen Oberfläche eine rundlich begrenzte Gruppe von rund 20—25 Glasstachelchen (= subambulacralen Stachelchen), die kleiner als die Furchenstacheln, aber etwas kräftiger und weniger dicht gestellt sind als die Glasstachelchen der angrenzenden Ventrolateralplatten.

In der Nähe der Arm spitze nimmt sowohl die Zahl der subambulacralen Glasstachelchen als auch die der Furchenstacheln ab. Von letzteren zählt man nur noch vier und schliesslich, auf den allerjüngsten Adambulacralplatten, nur noch drei.
Ebenso ist bei jüngeren Thieren die Zahl der Furchenstacheln durchweg geringer als bei den erwachsenen. Bei dem Exemplare Nr. 8 z. B. sind im proximalen und mittleren Armabschnitt meist nur vier, seltener fünf Furchenstacheln vorhanden, von denen aber schon jetzt der adorale etwas weiter von der Furche zurücksteht. Das Exemplar Nr. 10 hat auf den fünf ersten Adambulacralplatten je vier und auf den folgenden je drei Furchenstacheln, und bei meinem kleinsten Thiere (Nr. 11) sind nur auf der ersten und zweiten Platte vier Stacheln zu sehen, während die folgenden deren drei besitzen. Zugleich ist bei den jüngeren Thieren die Zahl der subambulacralen Glasstachelchen nur etwa halb so gross wie bei den erwachsenen.

Die von Grube (1840) vergeblich gesuchte, aber dennoch recht deutlich ausgebildete Madreporenplatte soll nach Viguier sehr nahe am Centrum des Rückens liegen. Ich finde aber, dass sie bei den erwachsenen Thieren (und nur solche hat Viguier vor sich gehabt) stets ebensowohl (bei Exemplar Nr. 4 z. B. 4 mm) vom Centrum wie vom Rande der Scheibe entfernt ist. Sie ist keine umgewandelte erste Interradialplatte, sondern stellt eine besondere Platte vor.
dar, die unmittelbar nach aussen von der ersten Interradialplatte ihres Interradius liegt. Sie hat einen abgerundet fünf- bis dreiseitigen Umriss und grenzt mit ihrer breitesten Seite an die genannte Interradialplatte. Ihre Länge misst 1,25—1,4, ihre Breite 1,3—1,5 mm; bald ist sie etwas länger als breit, bald umgekehrt etwas breiter als lang. Die äussere Oberfläche ist flachgewölbt und von gewundenen Furchen durchzogen, die von der Mitte nach den Rändern laufen. Die Seitenansicht der isolirten Platte zeigt, dass sie fast so dick wie breit ist und dass die Seitenwände in schräg er Richtung nach innen convergiren; infolge dessen ist die innere, den Steinkanal aufnehmende Oberfläche der Platte erheblich kleiner als die äussere Oberfläche. Die ganze Platte gleicht also einem dicken, abgestützten Keile, der von aussen her zwischen die benachbarten Platten des Rückskeletes hineingetrieben ist. An der an die Madreporenplatte grenzenden Seite der ersten Interradialplatte befindet sich an der letzteren eine Grube für das Ende des schlauchförmigen Kanales.

Soweit wir wissen, gehört die Art zu den selteneren Formen, die fast immer nur in einzelnen Exemplaren gefunden werden. Im Mittelmeer war sie bis jetzt nur aus dem westlichen Becken bekannt geworden: von Palermo (Grube), Neapel (Delle Chiaje, M. Sars, ich. Lo Bianco, Colombo, von der ligurischen Küste Verany), von Nizza (Risso) und von Algier (Pariser Museum). Im Golf von Neapel kommt sie insbesondere vor auf der Secca di Benda Palumno, auf der Gaiola, an der Westseite der Insel Capri, in der Gegend der Fara-

¹) Die Notiz von Lamarck, nach der das Thier oben braun und unten weisslich sein soll, sowie die Angabe bei Dujardin & Hufé, die das Thier grünlichbraun nennen, sind offenbar nach Sammlungsstücken gemacht.

Ausserhalb des Mittelmeeres erstreckt sich ihr Verbreitungsgebiet von 4°—40° n. Br. und reicht westwärts bis zu 65° w. L. An der westafrikanischen Küste wurde sie bei Cap Palmas (Studer), an der Küste der Berberei und Maroccos (Perrier) nachgewiesen; ferner kennt man sie von den Azoren (Sladen) und von den Bermuda-Inseln (Sladen).

In verticaler Richtung geht sie von 23 bis 1139 m. Im Golf von Neapel bevorzugs sie Tiefen von 30—100 m (Colombo, Lo Bianco), ist aber auch schon aus 23 m (Colombo) wie aus 188 m (M. Sars) erbeutet worden. Ihre westafrikanischen Fundorte liegen zwischen 102—1139 m; an den Azoren wurde sie aus 823, an den Bermudas aus nur 65 m herausgeholt.

In der Bodenbeschaffenheit liebt sie sandigen Corallineen- und Detritus-(Conchylien-)Grund sowie Corallienboden; viel seltener kommt sie auf Schlamm oder auf schlammigem Sand vor.

Über ihre Fortpflanzungszeit kann man aus der Mittheilung Lo Bianco's, dass er im Oktober bei den Männchen stark entwickelte Hoden gefunden habe, nur vermuten, dass sie in den Herbst fällt. Die Entwicklung der Spermatozoen ist durch Field (1895) genauer bekannt geworden. Üeber ihre Larvenformen wissen wir jetzt nichts; ebensowenig über ihre Nahrung.

platten noch zwischen den Ventrolateralplatten findet sich eine Spur davon. Chaetaster gehört also überhaupt nicht zu den Adetopneusia = Cryptozonia im Sinne Sladen’s, sondern muss zu seinen Stenopneusia = Phanerozonia gerechnet werden. Hier aber treffen wir keine einzige Familie an, in die sich Chaetaster ganz zwanglos einordnen liess. Da aber bis jetzt nur bei den Archasteriden (in der Abgrenzung, die Perrier zuletzt (1894) dieser Familie gegeben hat) einige Gattungen mit einer unpaaren oberen und unteren Randplatte bekannt geworden sind (Pararchaster und die Unterfamilie der Gnathasterinae) und auch die Paxillenform der Skeletplatten ein typisches Merkmal der Archasteriden ist, so könnte man sich versucht fühlen, Chaetaster in den Verwandtschaftskreis dieser Familie zu ziehen, und würde sich damit der älteren, allerdings anders begründeten Auffassung Perrier’s (1875) wieder nähern. Indessen stimmt dazu das Auftreten der Connectivplatten im Rückenskelet von Chaetaster nicht recht; denn es sind meines Wissens derartige Skeletstücke bis jetzt bei den Archasteriden noch nicht angetroffen worden. Dass sie nicht dennoch bei einer oder der anderen Art vorhanden sind, will ich aber damit durchaus nicht behaupten. Wir müssen vielmehr weitere Untersuchungen des Skeletes der verschiedenen Archasteriden-Gattungen abwarten. Auch ist nicht ausgeschlossen, dass sich etwa auch noch in anderen Familien Formen mit bisher übersehenen unpaaren Randplatten herausstellen werden. Bei dem augenblicklichen Zustande unserer Kenntnisse scheint es mir also am besten zu sein, die Gattung Chaetaster provisorisch als den Vertreter einer besonderen Familie in der Ordnung der Phanerozonia im Sinne Sladen’s oder in der Ordnung der Paxillosa im Sinne Perrier’s anzusehen und die weitere Aufklärung ihrer verwandtschaftlichen Beziehungen zukünftigen vergleichenden Untersuchungen zu überlassen.

Fam. Pentagonasteridae.

Körper abgeflacht, pentagonal mit mehr oder weniger ausgezogenen Ecken, auf all seinen dicht zusammenschiessenden, kräftigen, dorsalen und ventralen Skeletplatten mit kleinen Granula bedeckt; Rand dick, aus grossen bis sehr grossen, oberen und unteren Randplatten gebildet; Pedicellarien, wenn vorhanden, in Alveolen: Papulae einfach; Füsschen mit deutlicher Saugscheibe.

Im Mittelmeer durch zwei Arten vertreten: *P. placenta* (M. Tr.) und *P. hystricis* Marenz.

Bestimmungsschlüssel der beiden Arten:

<table>
<thead>
<tr>
<th>r : R</th>
<th>Art</th>
<th>Beschreibung</th>
</tr>
</thead>
</table>

Taf. 5, Fig. 1, 2, 10; Taf. 7, Fig. 24—42.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Autoren</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1842</td>
<td>Goniodiscus placenta Müller & Troschel p. 59.</td>
<td></td>
</tr>
<tr>
<td>1862</td>
<td>Goniodiscus placenta Dujardin & Hupé p. 402.</td>
<td></td>
</tr>
<tr>
<td>1863</td>
<td>Goniodiscus placentaformis Heller p. 419—420; T. 1, f. 1—2.</td>
<td></td>
</tr>
<tr>
<td>1863</td>
<td>Goniodiscus acutus Heller p. 420—421; T. 1, f. 3—4.</td>
<td></td>
</tr>
<tr>
<td>1864</td>
<td>Goniodiscus placentaformis Lütken p. 145—147.</td>
<td></td>
</tr>
<tr>
<td>1864</td>
<td>Goniodiscus acutus Lütken p. 145—147.</td>
<td></td>
</tr>
<tr>
<td>1865</td>
<td>Goniodiscus placentaformis Heller p. 54.</td>
<td></td>
</tr>
<tr>
<td>1868</td>
<td>Goniodiscus acutus Heller p. 51.</td>
<td></td>
</tr>
<tr>
<td>1875</td>
<td>Pentagonaster placenta v. Marenzeller p. 361.</td>
<td></td>
</tr>
<tr>
<td>1875</td>
<td>Pentagonaster mirabilis Perrier p. 224—225.</td>
<td></td>
</tr>
<tr>
<td>1876</td>
<td>Goniodiscus placentaformis Gasco p. 11—12, f. 11.</td>
<td></td>
</tr>
<tr>
<td>1878</td>
<td>Pentagonaster placenta Perrier p. 21, 84.</td>
<td></td>
</tr>
<tr>
<td>1878</td>
<td>Pentagonaster acutus Perrier p. 21, 84.</td>
<td></td>
</tr>
<tr>
<td>1878</td>
<td>Pentagonaster mirabilis Perrier p. 21, 84.</td>
<td></td>
</tr>
<tr>
<td>1879</td>
<td>Pentagonaster placenta Ludwig p. 540.</td>
<td></td>
</tr>
<tr>
<td>1879</td>
<td>Pentagonaster mirabilis Ludwig p. 540.</td>
<td></td>
</tr>
<tr>
<td>1883</td>
<td>Goniodiscus placenta Stossich p. 189.</td>
<td></td>
</tr>
<tr>
<td>1883</td>
<td>Goniodiscus acutus Stossich p. 189.</td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Pentagonaster placenta Carus p. 57.</td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Pentagonaster acutus Carus p. 57.</td>
<td></td>
</tr>
<tr>
<td>1885</td>
<td>Pentagonaster mirabilis Carus p. 88.</td>
<td></td>
</tr>
<tr>
<td>1888</td>
<td>Pentagonaster placenta Colombo p. 68.</td>
<td></td>
</tr>
<tr>
<td>1889</td>
<td>Pentagonaster placenta Sladen p. 265, 266, 746.</td>
<td></td>
</tr>
<tr>
<td>1889</td>
<td>Pentagonaster mirabilis Sladen p. 265, 746.</td>
<td></td>
</tr>
<tr>
<td>1890</td>
<td>Pentagonaster placenta Lütken p. 359—360.</td>
<td></td>
</tr>
<tr>
<td>1891</td>
<td>Pentagonaster placenta Perrier p. 390.</td>
<td></td>
</tr>
<tr>
<td>1894</td>
<td>Pentagonaster mirabilis Perrier p. 390.</td>
<td></td>
</tr>
<tr>
<td>1895</td>
<td>Pentagonaster placenta v. Marenzeller p. 11, 23.</td>
<td></td>
</tr>
<tr>
<td>1896</td>
<td>Pentagonaster placenta Koehler p. 451—455.</td>
<td></td>
</tr>
<tr>
<td>1896</td>
<td>Pentagonaster minor = placenta Ludwig p. 55.</td>
<td></td>
</tr>
<tr>
<td>1896</td>
<td>Pentagonaster minor Koehler p. 61—62; T. 2, f. 5—7.</td>
<td></td>
</tr>
</tbody>
</table>

acutus vertritt Gasco die Ansicht, dass derselbe keine besondere Art, sondern nur eine Varietät des placentaformis darstelle. Die späteren Autoren, die unsere Art erwähnen, haben zu deren näherer Kenntniss keinerlei weitere Beiträge geliefert; doch haben sowohl Sladen (1889) als auch Lütken (1890), dieser in schürferer Betonung seiner früheren Ansicht und auf Grund eines ihm nunmehr vorliegenden Exemplares, sich für die Identität auch des acutus mit Müller & Troschel's placenta ausgesprochen. Wie ich im Folgenden zeigen werde, kann ich ebenso wie unlängst Koehler (1896) mich dieser Anschauung nur anschliessen.1)

Unter den mittelmeerischen Seesternen fällt der Pentagonaster placenta sofort durch die pentagonale, abgeflachte, überall mit feinen Granula bedeckte, am Rande mit besonders grossen oberen und unteren Randplatten ausgestattete, ahschlich grosse Körperform (Taf. 5, Fig. 1, 2) auf. Er könnte höchstens mit v. Marenzeller's P. kysticis verwechselt werden, von dem er sich aber leicht durch die bedeutendere Grösse, die schwächere Concavität der Seiten, die bei gleichgrossen Exemplaren weniger zahlreichen, aber dafür desto umfangreicheren Randplatten und den völligen Mangel der Pedicellarien unterscheidet. Der Umriss stellt ein Fünfeck mit abgerundeten Ecken und nur wenig eingebogenen Seiten dar. Die Tiefe der Concavität der

Pentagonasteridae.

Alle bis jetzt bekannten gewordenen Exemplare haben die normale Zahl von fünf Antennern.

Die Länge des ganzen Thieres steigt, wie ich an dem grössten der im Grazer Museum befindlichen Exemplare sehe (vergl. die nachträgliche Bemerkung p. 161), bis 160 mm. Schon Müller & Troschel geben 6 Zoll an, was nach rheinischem Maasse 157 mm und nach pariser Maasse 162 mm betragen würde; indessen erhält man unter Zugrundelegung der v. Marenzeller'schen Messungen an dem grössten Müller & Troschel'schen Originalsexemplare nur die etwas geringere Länge von 150 mm. Fast ebenso gross, nämlich 148 mm lang, war das Exemplar, nach dem Merculiano die beifolgenden Abbildungen des Thieres (Taf. 5, Fig. 1 u. 2) angefertigt hat, das jedoch mir selbst nicht vorgelegen hat. An diese Exemplare reiht sich der Grösse nach zunächst eines der von Gasco untersuchten Thiere mit 128 mm Länge an. Dann folgen ein nach v. Marenzeller's Angaben 116 mm langes Originalsexemplar von Müller & Troschel, das von Heller als acutus beschriebene 111 mm lange Stück und ein von Lütken (1890) erwähntes Exemplar von 100 mm Länge. Das einzige mir von Neapel1) vorliegende erwachsene Thier bleibt hinter diesen Grössen zurück, indem es nur 98 mm lang ist und demnach fast genau dem 97 mm langen, von Heller als placentaetormis unterschiedenen Stücke gleichkommt. Das von Gasco zu seiner Abbildung benützte Exemplar war 73 mm und das kleinste, ihm zu Gesicht gekommene nur 62 mm lang. Ferner liegen mir zwei jugendliche Exemplare vor, von denen das eine eine Länge von 8,5 und das andere eine Länge von nur 3 mm hat. In eine Tabelle gebracht, sind die Maasse aller näher bekannten Exemplare die folgenden:

1) In dem wissenschaftlichen Nachlasse Geeff's finde ich eine Notiz, nach welcher ihm im Herbst des Jahres 1871 in Neapel ein lebendes Exemplar von 118 mm Länge vorlag.
Nachträgliche Bemerkungen. Durch die Güte meines Freundes v. Graeff habe ich vier trockene, als
P. acutus Heller bestimmte Exemplare der Grazer Universitätsammlung vergleichen können, die von Buccigl
bei Lesina gesammelt worden sind. Ihre Maasse sind die folgenden:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>Z</th>
<th>Z'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>139</td>
<td>75</td>
<td>55</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>b</td>
<td>147</td>
<td>79</td>
<td>54</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>c</td>
<td>156</td>
<td>87</td>
<td>55</td>
<td>7 [mitunter 8]</td>
<td>9 [mitunter 10]</td>
</tr>
<tr>
<td>d</td>
<td>159</td>
<td>91</td>
<td>62</td>
<td>8</td>
<td>10 [mitunter 11]</td>
</tr>
</tbody>
</table>

Das Verhältniss von r : R beträgt bei a 1 : 1,36, bei b 1 : 1,46, bei c 1 : 1,55 und bei d 1 : 1,47, im Durchschnitt bei allen vier Exemplaren 1 : 1,47. Durch die Eintrocknung sind die Exemplare stark geschrunken; der Rücken ist namentlich in den interradialen Bezirken stark eingefallen; an einem Exemplare sind auch die ventralen Interradialbezirke sehr eingesunken; die Armapitzen sind stärker als bei den in Weingeist conservirten Stückern nach oben gebogen.

Das von Graeff 1874 bei Neapel beobachtete Exemplar hatte folgende Maasse:

<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
<th>r</th>
<th>Z</th>
<th>Z'</th>
</tr>
</thead>
<tbody>
<tr>
<td>118</td>
<td>63</td>
<td>45</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Das Verhältniss r : R beträgt bei diesem Exemplare 1 : 1,1.

Endlich fand ich nachträglich noch unter meinen neapelischen Vorräthen zwei Exemplare, welche die Lücke zwischen Nr. 2 und 3 der in der Tabelle aufgeführten Stücke ausfüllen. Das kleinere will ich als 2a, das größere als 2b bezeichnen. Die Maasse dieser beiden Exemplare sind folgende:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>Z</th>
<th>Z'</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>16</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2b</td>
<td>42</td>
<td>23</td>
<td>18</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Die fünfte untere Randplatte des Exemplares 2b ist eben erst angelegt und noch sehr klein.

Das Verhältniss r : R beträgt bei den 10 mittelgrossen und grossen Exemplaren (Nr. 3—12 der Tabelle) im Durchschnitt 1 : 1,38, im Minimum 1 : 1,3, im Maximum 1 : 1,5. R ist also 1 1/3 bis 1 1/2 mal solang wie r und wächst auch bei dieser Art schneller als r. Bei meinem zweitkleinsten Exemplare (Nr. 2) ist r : R = 1 : 1,29 und bei meinem kleinsten (Nr. 1) nur 1 : 1,17.

Der ganze Rücken ist, abgesehen von den nachher zu besprechenden oberen Randplatten, von einem Pflasterwerk bedeckt, das aus polygonalen oder kreisförmig abgerundeten Platten besteht, die sich auf der Armmittellinie von einem Punkte an, der etwa der Entfernung der Madreporenplatte vom Centrum entspricht, zu einer Längsreihe ordnen. In ihrem distalen Theile ist die Längsreihe ununterbrochen, in ihren proximalen Theile aber drängen sich kleinere secundäre Platten in sie ein. Die Platten der Längsreihe (Perrier's Carinalia) sind ebenfalls abgerundet polygonal (meist hexagonal); im distalen Theile des Antimers haben sie eine deutlich querhexagonale Form; im proximalen Theile sind sie am grössten und haben hier durchweg einen Durchmesser von 2,5 mm. Sämtliche Dorsalplatten sind auf ihrer nur sehr flach gewölbten, fast ebenen, äusseren Oberfläche mit niedrigen, runden, auf kleinen Gruben (Taf. 7, Fig. 32) sitzenden Granula dicht bedeckt. Auf einer Platte zählt man dem Plattenrande entlang meist 24—28 Granula und ausserdem auf ihrer Fläche, je nach der Grösse der Platte, noch 32—50. Auf die Länge von 2 mm kommen auf allen Rückenplatten sieben oder acht Granula, die hier ebenso wie auf den Rand- und Ventrolateralplatten eigentlich kurze, am Ende abgerundete Cylinderchen darstellen, deren Höhe (0,15 mm) kaum ihre Dicke übertrifft. Besonders auf der Mitte der einzelnen Platten lösen sich die Granula leicht ab. Namentlich sind es die Platten der Scheibennitte und der radialen Regionen, die dadurch häufig ein Aussehen erhalten, als wären sie nur mit einer Saumreihe von Granula ausgestattet; indessen beweist das Vorhandensein und die Anordnung der Insertionsgrübchen, dass normalerweise die ganze Platte mit Granula bedeckt war.
Isoliert man die Rückenplatten (Taf. 7, Fig. 33—34), so stellt sich heraus, dass sie mit ihren Basen weder fest verbunden sind, noch über einander greifen. Ihre Höhe beträgt 1,5 mm; ihre basale Breite (2,5 mm) stimmt mit dem Durchmesser ihrer äußeren Oberfläche überein. Die Seitenansicht einer isolierten Platte (Taf. 7, Fig. 34) zeigt, dass sie unterhalb ihrer äußeren Oberfläche leicht eingeschnürt ist. Ihre Basis (Taf. 7, Fig. 33) hat einen gelappten (welligen) Umriss; jeder Randlappen ist das untere Ende eines nach oben verstreichen den Wulstes. Vergleicht man eine solche Platte mit einem Paxillus derGattung Astropecten oder Luidia, so liegen die Unterschiede nur in den relativen Grössenverhältnissen: die Basalplatte ist hier nur durch den gelappten, unteren Rand angedeutet; der Schaft ist dicker als hoch, statt umgekehrt, und die Stachelchen der Krone sind zu den kleinen Granula herabgesunken.

Kaum 2 mm vom Mittelpunkte des Scheibenrückens entfernt liegt die Afteröffnung, umgeben von fünf, ziemlich genau den Interradien entsprechenden Platten, die sich zu einem unregelmässigen Sterne ordnen.

Bei jungen Thieren fällt sofort auf, dass sich unter den dorsalen Platten fünf interradial gelegene durch ihre Grösse auszeichnen. Sie stellen offenbar die bei verschiedenen anderen Seesternen nachgewiesenen primären Interradialplatten dar und lassen sich auch noch beim erwachsenen Thiere nachweisen, bei dem sie in einem Abstande von 8—10 mm vom Centrum liegen und nur deshalb nicht sofort ins Auge fallen, weil sie sich in ihrer Grösse kaum mehr von den benachbarten Platten unterscheiden. Bei dem jüngsten Exemplar (Nr. 1) haben diese 0,56 mm langen und 0,45 mm breiten primären Interradialplatten einen abgerundet sechseckigen Umriss mit ungleicher Seitenlänge (Taf. 7, Fig. 41). Wir können an ihnen einen inneren, einen äusseren, sowie jederseits einen kürzeren und einen längeren Seitenrand unterscheiden. Mit den kürzeren Seitenrändern stossen die fünf Interradialplatten unter sich zusammen. Mit ihren längeren Seitenrändern, die die längsten Ränder des Sechseckes darstellen, weichen die benachbarten Interradialplatten in einem ungefähr rechten Winkel auseinander, der sich in radialer Richtung öffnet. Mit ihren Innenrändern umgrenzen die Interradialplatten ein pentagonales Centralfeld. Mit ihren Aussenrändern stossen sie unmittelbar an die oberen Randplatten. Das Centralfeld (Taf. 7, Fig. 41) wird von zwei grösseren und drei kleineren Analplättchen eingenommen, die unregelmässig angeordnet sind. Der After (Taf. 7, Fig. 41) liegt zwischen dem Aussenrande eines der beiden grösseren Analplättchen und dem Innenrande der angrenzenden Interradialplatte. Möglicherweise stellt dasjenige Analplättchen, an dessen Rande die Afteröffnung sich befindet, die Centralkonne anderer Seesterne dar; denn bei einem 16 mm langen jungen Thiere (Taf. 7, Fig. 42) nimmt diese Platte genau den Mittelpunkt des Scheitels ein. In radialer Richtung keilt sich in den zwischen je zwei Interradialplatten befindlichen Winkel die erste Radialplatte (Taf. 7, Fig. 41) ein, die bei 0,34 mm Länge und 0,43 mm Breite ein abgerundetes Dreieck darstellt, dessen äussere convexse Seite nach der Armspitze sieht. Den zwischen ihr und der Terminalplatte übrigen Raum füllen fünf kleine Platten aus: vier paarige und eine unpaare. Von den paarigen grenzen die beiden proximalen (Taf. 7, Fig. 41, D1) an die Radial-
Pentagonasteridae.

platte, stossen in der radialen Hauptlinie zusammen und berühren seitwärts die oberen Randplatten; die beiden dann folgenden distalen (Taf. 7, Fig. 41, D2) stossen ebenfalls in der Mittellinie zusammen, grenzen proximal an die vorigen und seitwärts ebenfalls an die oberen Randplatten. Zwischen die beiden des distalen Paares und die Terminalplatte ist die fünfte (unpaare) Platte eingefügt, die die zweite Radialplatte (Taf. 7, Fig. 41, R3) darstellt. Alle diese dorsalen Platten der Scheibe und der Arme tragen bereits je nach ihrer Grösse ein bis vier winzige Granula.

Bei dem zweijüngsten Exemplar (Nr. 2) haben sich die Verhältnisse (Taf. 7, Fig. 40) insoweit geändert, dass wir jetzt die Randplatten nirgends mehr in Berührung mit den primären Interradialplatten finden: zwischen beiden liegt eine den Randplatten entlang laufende Reihe von vier (seltener drei oder fünf) kleineren Platten. Die zweite Radialplatte (Taf. 7, Fig. 40, R2) ist nunmehr in unmittelbarer Berührung mit der ersten (Taf. 7, Fig. 40, R1), während die im vorigen Stadium dazwischen gelegenen beiden Platten (Taf. 7, Fig. 40, D1, D2) auf die Seite gedrangt und in die vorhin erwähnte Randreihe eingerückt sind. Das Centralfeld (Taf. 7, Fig. 39) ist von nur drei kleinen Analplatten ausgefüllt, welche die ein wenig exzentrisch liegende Afteröffnung (Taf. 7, Fig. 39, A) umstellen, und von denen eine reichlich doppelt so gross ist wie jede der beiden anderen. Aus dem Vergleiche mit dem vorigen Altersstadium scheint mir hervorzugehen, dass bei der vorliegenden Art die Zahl der Analplatten von vorne herein an keine feste Regel gebunden ist. Die Granula (Taf. 7, Fig. 39, 40, Gr) besetzen in diesem Stadium vorwiegend nur die Ränder der Platten, bald in einfacher, bald in doppelter Reihe, und stehen auf der übrigen Oberfläche der Platten entweder vereinzelt oder lassen sie wohl auch ganz frei.

Die Papulae haben nach Gasco's und meinen Beobachtungen im ausgestreckten Zustande die Form kleiner, sehr dünnwandiger Schläuche mit zugespitztem Ende. Ihre Mündungen in die Leibeshöhle liegen stets an den Stellen, welche den Winkeln zwischen drei benachbarten Dorsoalplatten entsprechen. Von hier aus steigt der Innenraum der Papulae als ein weiter Kanal, der sich sofort in mehrere Kanäle theilen kann, durch die Haut empor; falls sich der Kanal theilt, führt jeder Theilkanal in eine besondere Papula: demnach kann in jenen Winkeln bald eine einzelne, bald eine kleine Gruppe von Papulae auftreten. Die Papulae nehmen übrigens nicht die ganze Rückenseite ein, sondern fehlen in fünf interradialen Streifen, die am äusseren (= distalen) Rande der primären Interradialplatten in einer Breite von 4—5 mm beginnen und, indem sie sich bis auf 12 mm verbreitern, bis zu den Randplatten erstrecken. In Gruppen von drei bis vier Stück treffen wir die Papulae namentlich auf den medianen Bezirken der Arme, d. h. nach aussen von dem durch die primären Interradialplatten bezeichneten Pentagon; in der Nähe der Randplatten aber sowie im Inneren jenes Pentagons stehen sie entweder nur zu zweien oder einzeln. Bei dem jungen Thiere Nr. 2 sind sie, wie ich mit Bestimmtheit sehe, bereits vorhanden und ausschliesslich einzeln gestellt. Es findet sich hier je eine an jeder Stelle, wo ausserhalb des centralen Pentagons in den radialen Regionen drei dorsale Platten unter sich (nicht auch mit den Randplatten) zusammentreffen.
Daraus lässt sich schliessen, dass die beim erwachsenen Thiere auch im Inneren jenes Pentagons vorhandenen Papuhae erst verhältnissmässig sehr spät zur Ausbildung gelangen, womit die erwähnte Eigenthümlichkeit übereinstimmt, dass sie ebendort beim erwachsenen Thiere nicht zu mehreren gruppirt, sondern einzeln höchstens zu je zwei stehen.

Obere Randplatten, deren Zahl bei erwachsenen Thieren sechs bis neun beträgt, sind an dem mir vorliegenden Exemplare Nr. 6 an jedem Antimer jederseits sechs vorhanden mit Ausnahme eines Antimers, das auf seiner Seite nur fünf besitzt. Von den Platten eines jeden Antimers stossen schon die beiden vierten und nicht, wie in Heller's Abbildung seines placentaformis, erst die fünften mit der distalen Hälfte ihres oberen Randes in der radialen Hauptlinie zusammen. Die dorsale Berührungslinie der beiderseitigen oberen Randplatten erstreckt sich also über die 2 1/2 letzten Platten, während sie sich nach Heller bei seinen

1) Wie die mir nachträglich zugegangenen acutus-Exemplare von Lesina, s. Anmerkung p. 161, zeigen, passt die Heller'sche Angabe schon für adriatische Exemplare nicht immer; denn von jenen vier Exemplaren haben zwei je zwei und zwei je drei untere Randplatten mehr als obere.
beiden »Arten« nur über die 1 1/2 letzten Platten ausdehnt\(^1\). Dieselben zwei bis drei letzten Platten sind auf ihrer äußeren Oberfläche vom proximalen zum distalen Rande etwas stärker gewölbt (angeschwollen) als die vorhergehenden, wie das bereits Heller (für seinen *placentae-formis*) und Gasco hervorgehoben haben. Der äußere (= untere) Rand der Platten ist gerade, ebenso der proximale und distale, die jedoch an den letzten Platten concav werden; dagegen ist der innere (= obere) Rand der Platten bis zum Zusammenstoss mit den Platten der anderen Armhälfte leicht convex gebogen. An der kleinsten letzten Platte fließen oberer und distaler Rand in eine Linie zusammen, sodass die Platte einen dreieckigen Umriß erhält, entsprechend der Heller'schen Beschreibung seines *acutus*. Von oben gesehen sind die Maasse der Platten die folgenden:

1. **Erste Platte**: 8 mm lang, 7 mm breit;
2. **Zweite Platte**: 8 mm lang, 7 mm breit;
3. **Dritte Platte**: 6 mm lang, 7,75 mm breit;
4. **Vierte Platte**: 4 mm lang, 8,5 mm breit;
5. **Fünfte Platte**: 3,5 mm lang, 5 mm breit;
6. **Sechste Platte**: 2 mm lang, 4 mm breit.

Die beiden ersten sind also ein wenig länger als breit, während alle folgenden breiter als lang sind; am stärksten überwiegt die Breite über die Länge an der vierten Platte. Ähnliche Maassverhältnisse geben Müller & Troschel, Heller (für seine beiden »Arten«), Gasco und v. Marenzeller an.

Bei jüngeren Exemplaren sind nach Gasco sämtliche obere Randplatten doppelt so breit wie lang, was ich an meinem zweitkleinsten Exemplare (Taf. 7, Fig. 40) einigermaassen

1) Dass es sich dabei um individuelle Unterschiede handelt, zeigen die mir nachträglich (s. p. 161) zugegangenen Exemplare von Lesina. Bei dem Exemplare a stossen die beiden letzten oberen Randplatten (die sechste und siebente) an vier Armen mit der ganzen Länge ihres oberen Randes zusammen, an dem fünften aber ist die vorletzte Platz nur mit kaum der Hälfte ihres oberen Randes an diesem Zusammenstoss betheiligt. Dieser fünfte Arm verhält sich also ähnlich, wie es Heller bei seinen beiden »Arten« zeichnet. Ebenso verhalten sich zwei Arme des Exemplares b, nur mit dem Unterschiede, dass es sich, in völliger Übereinstimmung mit Heller's Abbildungen, nicht wie beim Exemplare a um die sechste und siebente, sondern um die fünfte und sechste Platte handelt, da das Exemplar b nur 6 obere Randplatten besitzt. An den drei anderen Armen des Exemplares b ist die Beteiligung der vorletzten Platten an der medianen Verbindungslinie der oberen Randplatten noch viel geringer, indem sich die vorletzten Platten nur mit der distalen Ecke ihres oberen Randes treffen, sodass sich jene Verbindungslinie eigentlich nur über die letzte Platte erstreckt. Bei dem Exemplare c treffen sich dorsal an vier Armen die letzte (siebente) obere Platte und die distale Hälfte der vorletzten (sechsten), an dem mit acht oberen Randplatten ausgestatteten, fünften Arme aber stossen auch noch die kleinen, dreieckigen, achten Platten dorsal zusammen; es gleich also dieser fünfte Arm, da sich die dorsale Berührungslinie der oberen Randplatten auf 2 1/2 Platten ausdehnt, dem oben von mir beschriebenen neapolitanischen Exemplare, nur sind es hier entsprechend der grösseren Plattenzahl nicht die vierte, fünfte und sechste, sondern die sechste, siebente und achte, aber doch in beiden Füllen die drittletzte, zweitletzte und letzte Platte. Bei dem Exemplare d endlich betheiligt sich die drittletzte (sechste) Platte mit der ganzen Länge ihres oberen Randes an dem Zusammenstoss, der sich somach über die drei letzten Platten ausdehnt. Aus allem geht also hervor, dass die dorsale Berührungslinie der oberen Randplatten bei erwachsenen Thieren sich über 1—3 Platten ausdehnen kann; stets ist die letzte Platte daran betheiligt, meistens auch die vorletzte, häufig auch die drittletzte.
bestätigt finde; denn die Breite seiner beiden Platten beträgt je 1,38 mm, die Länge nur 0,9—1 mm. Umgekehrt aber verhält sich die Breite zur Länge bei meinem jüngsten Exemplare (Taf. 7, Fig. 41): hier hat die einzige vorhandene obere Randplatte eine Breite von 0,29 mm, dagegen eine Länge von 0,64 mm, ist also völlig doppelt so lang wie breit.

Die Höhe (Dicke) der ersten Platte beträgt bei dem erwachsenen Thiere am inneren Rande der isolirten Platte 4,8 mm. Die äussere Oberfläche sämtlicher oberen Randplatten ist so gebogen, dass der dorsale Theil dieser Fläche ganz unmerklich in den lateralen übergeht. Auf der äusseren Oberfläche befinden sich in kleinen Grübchen stehende, dicht gedrängte Granula von ähnlicher Gestalt, wie wir sie auf den Rückenplatten angetroffen haben; bei jüngeren Thieren, z. B. bei meinem Exemplare Nr. 2, treten sie zunächst an den Rändern der Platte auf (Taf. 7, Fig. 39) und dehnen sich erst später auch über das Mittelfeld der Plattenoberfläche aus.

Untere Randplatten, deren man bei erwachsenen Thieren sechs bis zehn zählt, sind an meinem Exemplare Nr. 6 sieben vorhanden; nur dasjenige Antimer, das an einer Seite ausnahmsweise nur fünf obere Randplatten besitzt, hat an derselben Stelle auch nur sechs untere. Von oben gesehen fällt sofort auf, dass die unteren Randplatten ein wenig über die oberen vorstechen, sodass man einen schmalen Streifen ihrer Oberfläche in der Dorsalansicht zu sehen bekommt. Der innere (= untere) Rand der Platten tritt gegen das von den Ventrolateralplatten besetzte Feld abgerundet stumpfwinkelig vor. Die äussere Oberfläche der Platten ist vom inneren zum äusseren (= oberen) Rande noch etwas stärker gewölbt als die Oberfläche der oberen Randplatten. Die Höhe (Dicke) der ersten Platte misst, am inneren Rande der isolirten Platte gemessen, 5,4 mm, übertrifft also die der ersten oberen Platte. Alle Platten sind oberflächlich dicht mit Granula bedeckt, die in ihrer Grösse den Übergang von den Granula des Rückens zu den etwas grösseren Granula der Bauchseite bilden; man zählt ihrer auf eine Länge von 2 mm in der Regel sechs, seltener sieben; auf der Mitte der dritten und vierten Platte stehen die Granula weniger dicht als sonst. Die Maasse der Platten sind an meinem Exemplare die folgenden:

<table>
<thead>
<tr>
<th>Platte</th>
<th>Länge</th>
<th>Breite</th>
</tr>
</thead>
<tbody>
<tr>
<td>erste</td>
<td>8 mm lang</td>
<td>8 mm breit</td>
</tr>
<tr>
<td>zweite</td>
<td>8,5 mm lang</td>
<td>9 mm breit</td>
</tr>
<tr>
<td>dritte</td>
<td>7,5 mm lang</td>
<td>8 mm breit</td>
</tr>
<tr>
<td>vierte</td>
<td>5 mm lang</td>
<td>7,5 mm breit</td>
</tr>
<tr>
<td>fünfte</td>
<td>4 mm lang</td>
<td>5,5 mm breit</td>
</tr>
<tr>
<td>sechste</td>
<td>3 mm lang</td>
<td>2,5 mm breit</td>
</tr>
<tr>
<td>siebente</td>
<td>1,5 mm lang</td>
<td>1 mm breit</td>
</tr>
</tbody>
</table>

Dazu ist zu bemerken, dass ich die Breite ohne Berücksichtigung der Wölbung von der Mitte des inneren Randes zur Mitte des äusseren gemessen habe. Die Platten sind demnach anfänglich genau oder fast ebensolange wie breit, dann entschieden breiter als lang und schliesslich, an der Armspitze, länger als breit. Damit stimmen die Angaben Heller's hinsichtlich seines placentaformis überein, und dass auch sein acutus sich so verhält, geht aus der be-
richtigenden Bemerkung v. Marenzeller's hervor, dass die unteren Randplatten an der Spitze der Arme »nicht verbreitert« sind. Wenn trotzdem v. Marenzeller hier einen Gegensatz des *acutus* zu *placentaeformis* erkennen will, so übersieht er offenbar, dass Heller selbst bei seinem *placentaeformis* die drei letzten unteren Randplatten »verschmälert«, d. h. länger als breit, nennt. Auch Gasco's Angaben stimmen zu meinen mitgetheilten Maassen. Bei meinem zweitkleinsten Exemplare sind die beiden unteren Randplatten breiter als lang und ihren Rändern entlang mit Granula besetzt. Bei dem jüngsten aber ist die einzige vorhandene untere Randplatte länger als breit (0,45 mm lang und 0,25 mm breit).

Die von Heller und Gasco unberücksichtigt gelassene Terminalplatte (Taf. 7, Fig. 25 bis 28) zeichnet sich, wie auch Heller's Abbildung zum Theil andeutet, dadurch sehr auffallend vor den Randplatten, Rückenplatten und Ventrolateralplatten aus, dass sie ganz frei von Granula bleibt. Nur am Rande ihrer gleich zu erwähnenden, ambulacralen Rinne sitzen einige kleine, papillenförmige Stachelchen. Von oben gesehen hat sie den Umriß einer kurzen, 2,7 mm langen und 2 mm breiten Spindel, deren distale (äussere) Spitze sich in Form eines abgerundeten Kegels 1,5 mm hoch erhebt (Taf. 7, Fig. 25). Diese kegelförmige Erhebung überdacht die an ihrer äusseren Fläche befindliche Nische (Taf. 7, Fig. 27, 28; a), die sich ihrerseits an der ventralen Seite der Platte in eine breite Rinne (Taf. 7, Fig. 27, 28; e) fortsetzt. Die Übergangsstelle von der für den Fühler und das nach Gasco kleine, intensiv rothe Auge bestimmten Nische in die die letzten Wirbel beherbergende Rinne ist durch einen lappenförmigen Vorsprung der Seitenränder der Nische und Rinne gekennzeichnet (Taf. 7, Fig. 26, 27, 28; b). Die isolirte Platte lässt ferner erkennen, dass ihr Körper sich von den beiden proximalen Rändern der äusseren Oberfläche aus nach unten keilförmig zuschrägt (Taf. 7, Fig. 26, 28); mit den Seitenflächen dieses Kieles ist die Platte zwischen die beiden letzten oberen Randplatten eingerannt.

Bei dem jungen Exemplare Nr. 2 ist die Terminalplatte (Taf. 7, Fig. 40, T) im Gegen satze zu ihrer späteren Form breiter als lang; ihre Breite misst 1,45 mm, ihre Länge nur 1 mm. Von oben hat sie etwa den Umriß eines Trapçzes, dessen grössere Seite winkelig zwischen die beiden angrenzenden oberen Randplatten vortritt; man könnte deshalb ihre Um randung auch als abgerundet fünfeckig beschreiben. Wie später, so ist sie auch jetzt durch den Mangel der Granula auf ihrer nackten Oberfläche ausgezeichnet. Auch ist sie schon jetzt an ihrem proximalen Rande durch die zusammenstossenden oberen Randplatten von den Rücken-
platten getrennt. Anders verhält sie sich in dieser Hinsicht bei dem jüngsten Exemplare Nr. 1. Hier berührt sie sich noch direct mit den Rückenplatten (Taf. 7, Fig. 41, T) und in ihrer Form walitet in noch höherem Maasse als in dem vorigen Stadium die Breite über die Länge vor; sie ist doppelt so breit (0,5 mm) wie lang (0,25 mm). Ihr äusserer Rand ist halbkreisförmig gebogen, der proximale leicht concav; die Rinne ihrer Unterseite ist bereits angelegt.

Die Ventrolateralplatten füllen die grossen, dreieckigen, interambulacralen Felder zwischen den Adambulacralplatten und den unteren Randplatten mit einem Pfasterwerk (Taf. 5, Fig. 2) aus, dessen einzelne Platten bald (an meinem Exemplar Nr. 6) einen vorwiegend rautenförmigen, bald (an dem Exemplar Nr. 11) einen unregelmässig sechseckigen Umriss haben und sich so ordnen, dass ein System von sich durchkreuzenden Längs- und Querreihen zu Stande kommt; nur dem Rande der unteren Randplatten entlang und im adoralen Bezirke des ganzen Interambulacralfeldes werden sie in Anordnung und Form unregelmässiger. Im proximalen und mittleren Theile des Feldes haben sie in der Regel eine Grösse (von einer Seite der Platte zur gegenüberliegenden gemessen) von 2,5—3 mm bei dem Exemplar Nr. 6 oder von 3—4 mm bei dem grösseren Exemplar Nr. 11; sie sind also durchweg, in Uebereinstimmung mit Heller's und Gasco's Angaben, etwas grösser als die Rückenplatten. Ihre erste, an die Adambulacralplatten anstossende Längsreihe besteht bei Exemplar Nr. 6 aus etwa 20 Stück und endigt an der Mitte der vierten unteren Randplatte; die zweite Längsreihe geht ebenso wie die dritte und vierte bis an die dritte untere Randplatte, und die fünfte und sechste bis an die zweite. Auf ihrer schwach gewölbten Oberfläche tragen sämtliche Ventrolateralplatten einen dichten, gleichmässigen Ueberzug von kleinen, winzigen Grübchen aufsitzenden, rundlichen Granula, deren man auf eine Länge von 2 mm meistens fünf, seltener sechs zählt; die Granula sind demnach durchschnittlich ein wenig gröber, als auf den Rückenplatten, wie das schon Heller und Gasco bemerkt haben. Sie lösen sich ferner, womit ich eine Beobachtung Gasco's bestätige, weniger leicht ab als auf den Rückenplatten. Die den Rand einer jeden Platte besetzenden Granula sind an der Seite, die sie den entsprechenden Granula der benachbarten Platte zukehren, viel deutlicher abgeflacht, als das auf den Rückenplatten der Fall ist. Nimmt man diese randständigen Granula weg, so sieht man, dass zwischen den Platten ganz feine Streifen unverkalkter Haut liegen. Isolirte Ventrolateralplatten (Taf. 7, Fig. 29, 30, 31) lassen erkennen, dass sie (Taf. 7, Fig. 31) schräge Seitenkanten und Seitenflächen besitzen, mit denen sie sich so aneinander lagern, dass der proximale Theil der Platte sich dachziegelig über den distalen der nächst benachbarten Platten schiebt. Auch dann, wenn die äussere Oberfläche der Platte (Taf. 7, Fig. 29) viereckig ist, hat ihre basale Fläche (Taf. 7, Fig. 30) in der Regel eine sechseckige Form. Die senkrecht gemesseneDicke der Platten beträgt fast 2 mm.

Das kleine Exemplar (Nr. 2) besitzt in jedem Interambulacralfelde erst neun Ventrolateralplatten. Eine davon ist unpaar (Taf. 7, Fig. 38, VII) und grenzt an die Mundeckplatten. An sie schliessen sich jederseits bis zur sechsten Adambulacralplatte ebenso wie beim erwachsenen Thiere drei Platten an, von denen die beiden ersten (Taf. 7, Fig. 38, VII) grösser, die dritte kleiner ist als die unpaare; die erste dieser paarigen Platten stösst nach aussen von
Pentagonasteridae.
der unpaaren Platte in der interradialen Hauptlinie mit ihrem Gegner zusammen. Endlich
liegt noch ein Paar kleiner Platten in dem Raume, der zwischen den genannten Ventrolateral-
platten und den unteren Randplatten übrig bleibt. Schon jetzt sind sämtliche Ventrolateral-
platten gleichmässig dicht mit Granula besetzt.

Bei dem kleinsten Thiere (Nr. 1) fehlen die Ventrolateralplatten noch völlig, sodass nach
außen von den Munddeckplatten und den Adambulacralplatten sofort die unteren Rand-
platten folgen.

Die Adambulacralplatten stossen an meinem erwachsenen Exemplare von der Mitte
der vierten unteren Randplatte bis zur Armspitze unmittelbar an die unteren Randplatten
an. Ihre ventrale Oberfläche ist am proximalen und am mittleren Bezirke der Ambulacral-
furche breiter als lang, indem sie z. B. in der Nähe des Peristoms 3 mm an Breite und 1,5 mm
an Länge misst. Erst von der vierten unteren Randplatte an wird die ventrale Oberfläche
quadratisch, 1,5 mm breit und ebenso lang. Schliesslich, ganz nahe an der Armspitze, nimmt
sie einen abgerundet dreieckigen Umriss an, mit einem inneren, der Furche zugekehrten und
zwei äusseren Winkeln; ihre Länge (1 mm) übertrifft nunmehr die Breite (0,75—0,5 mm).
Isoliert man die Adambulacralplatten (Taf. 7, Fig. 36, 37), so stellt sich heraus, dass ihre Breite
noch übertroffen wird von ihrer Höhe, die im proximalen und mittleren Abschnitte der Amb-
bulacralfurche 3,25 mm beträgt. Daraus erklärt sich die im Uebrigen natürlich durch die
Breite und die Gelenkeinrichtungen der Ambulacralstücke bedingte ansehnliche Tiefe der
Ambulacralfurche. Bemerkenswerther Weise erreichen die Adambulacralplatten ihre definitive
Höhe bereits viel früher als ihre spätere Breite; so z. B. besitzen sie schon eine Höhe von
3 mm, wenn ihre äussere (ventrale) Oberfläche erst 1 mm lang und kaum ebenso breit ist.

Ihre Bewaffnung besteht aus einer beträchtlichen Menge kurzer, säulchenförmiger,
bei älteren Thieren mehr oder weniger prismatischer Kalkpapillen, die die ventrale Oberfläche
der Platte ziemlich dicht besetzen und auf dem äusseren Bezirke dieser Fläche allmählich in die
Form der den Ventrolateralplatten aufsitzenden Granula übergehen. Die Anordnung der
Papillen ist eine solche, dass man eine innere oder erste, eine darauf folgende zweite und
drei dann folgende, weniger regelmässige, äussere Längsreihen, im Ganzen also fünf (Taf. 7,
Fig. 24, 1—V) und nicht, wie Heller angiebt, nur drei oder vier Längsreihen unterscheiden
cann. Gasco beschreibt die drei unregelmässigen äusseren Reihen zusammen als einen Streifen
von Kalkhöckerehen.

Die innere Reihe (Taf. 7, Fig. 24, 1) besteht bei meinem Exemplare auf jeder Platte aus
fünf säulchenförmigen Stachelchen, die so auf dem die Ambulacralfurche begrenzenden Innen-
rande eingepflanzt sind, dass sie mit ihrer schrag abgestutzten Basis ein wenig in die Furche
selbst hineinrücken. Die fünf Säulchen stehen ferner so, dass sie keine gerade, sondern eine
gegen die Ambulacralfurche leicht convexes Längsreihe, also einem Bogen, bilden. Das aborale
(= letzte) Säulchen eines jeden Bogens tritt um so viel gegen die Ambulacralfurche vor, dass
es nach innen von dem adoralen (= ersten) Säulchen des nächstfolgenden Bogens zu liegen
kommt: die Bogen haben also mit Bezug auf die Ambulacralfurche eine leichte Schrägstellung,
und der Anfang eines jeden Bogens liegt unmittelbar nach aussen von dem Ende des vorhergehenden. **Heller** hat diese Anordnungsweise der inneren Adambulacralpapillen schon ganz richtig bei seinem *acutus* beschrieben, und auch **Gasco** meint offenbar dasselbe, wenn er sagt, dass von den inneren Adambulacralpapillen eine (das ist die adorale eines jeden Bogens) immer ein wenig hinter den anderen (d. h. nach aussen davon) stehe. Was die Zahl der je einen Bogen bildenden inneren Adambulacralpapillen anbetrifft, so finde ich an meinem Exemplare stets, sowohl auf den proximalen, wie auch auf den distalen Platten, fünf*). Ebensoviele giebt **Heller** für seinen *acutus* an; dagegen soll sein *placentaeformis* deren nur vier besitzen. Da aber im Uebrigen mein Exemplar noch besser zu **Heller**'s *placentaeformis* als zu seinem *acutus* passt, so muss ich annehmen, dass es sich hier entweder um eine individuelle Variabilität in der Zahl jener Papillen oder um eine ungenaue Zählung derselben handelt2). Nach **Gasco**, der ebenfalls fünf innere Papillen auf jeder Platte angiebt, soll ihre Zahl in der Nähe des Mundes auf sechs steigen3), was nicht auffallen kann, da eines seiner Exemplare das einzige an Grösse erheblich übertreffen, und wir auch bei anderen Seestern-Arten sehen, dass bei älteren Thieren die Zahl der Adambulacralpapillen in der Nähe des Mundes eine Zunahme erfährt. Im proximalen Bezirke haben die inneren Adambulacralpapillen auf meinem Exemplare eine Länge von 1,5 mm; gegen die Arm spitze hin werden sie sehr viel kleiner. Ihrer Form nach stellen sie kurze, am Ende abgerundete, in der Längsrichtung des Arms etwas comprimirte Säulchen (Prismen) dar, wie das **Heller** und **Gasco** bereits übereinstimmend beschrieben haben.

In der zweiten Reihe der Adambulacralpapillen (Taf. 7, Fig. 24, ii) finde ich bei meinem Exemplare von der ersten bis zur 25. Adambulacralplatte stets drei kräftige Papillen, die die inneren an Dicke übertreffen und sich auf einer Bogenlinie einpflanzen, die dem Bogen der inneren Reihe parallel läuft. Von da ab sinkt ihre Zahl auf zwei herab, weil die zumeist adorale unter ihnen nach aussen gerückt ist und sich unter gleichzeitiger Grössenabnahme zu der nächsten Reihe der äusseren Papillen gesellt hat. Einige Platten weiter spielt sich ein ähnlicher Vorgang mit der adoralen von den beiden jetzt noch übrigen Papillen der zweiten Reihe ab; auch sie wird kleiner und schwindet schliesslich ganz, so dass nunmehr von den drei Papillen der zweiten Reihe nur noch die aborale übrig bleibt, die sich unterdessen von kaum 1,5 mm Länge bis zu 2 mm Länge gestreckt und eine zugespietzte kegelförmige Gestalt angenommen hat; mit seiner Spitze neigt sich dieser Kegel nach der Arm spitze hin. Sowohl **Heller** als **Gasco** haben diese Verlängerung und kegelförmige Zuspitzung der in Rede stehenden Papillen in der Nähe der Arm spitze bemerkt, haben aber übersehen, dass auf jeder Platte nur eine der drei Papillen diese Umänderung erfährt.

1) Die gleiche Zahl giebt **Greff** für das von ihm bei Neapel beobachtete Exemplar in seinen hinterlassenen Notizen an.

2) Bei einem der mir nachträglich zugegangenen *acutus*-Exemplare (s. Anm. p. 161) stehen mitunter nur vier Papillen in der inneren Reihe, wie es nach **Heller** für *placentaeformis* charakteristisch sein soll.

3) Ebenso verhält sich eines von den vier in der vorigen Anmerkung erwähnten *acutus*-Exemplaren von Lesina.
Was das relative Verhältniss der Länge der zweiten Adambulacralpapillen zu den ersten (= inneren) angeht, so scheint Heller darin einen Unterschied zwischen seinem *placentaformis* und seinem *acutus* anzunehmen; denn von jenem sagt er, dass die inneren Papillen «fast von gleicher Länges» seien wie die der zweiten Reihe; von diesem aber, dass sie etwas länger und dünner seien. Gasco nennt die der zweiten Reihe grösser als die der ersten. An meinem Exemplare sind die der inneren Reihe im proximalen Theile etwas länger, weiterhin nach der Armspitze zu aber entschieden kürzer als die der zweiten Reihe. Es kommt also lediglich darauf an, ob man die Maasse näher an Munde oder näher an der Armspitze nimmt, um entweder das von Heller für *acutus* oder das von ihm für *placentaformis* oder endlich das von Gasco für *placentaformis* angegebene Verhältniss zu finden.

Die drei Reihen der äusseren Adambulacralpapillen (Taf. 7, Fig. 24, III, IV, v) bestehen aus je drei oder vier nach aussen allmählich kleiner werdenden Papillen. Gewöhnlich befinden sich von diesen »Aussenpapillen« in der ersten (= innersten) Reihe drei, in der zweiten (= mittleren Reihe) drei oder vier und in der dritten (= äusseren) Reihe vier, die schliesslich den Granula der anstossenden Ventrolateralplatten völlig gleichen. In der Nähe der Armspitze wird im Zusammenhange mit der abnehmenden Breite der Adambulacralplatten die Zahl der Reihen der »Aussenpapillen« auf zwei und endlich auf eine einzige beschränkt.

Bei jungen Thieren ist die Adambulacralbewaffnung erheblich einfacher als bei den erwachsenen. Bei meinem zweitkleinsten Exemplare (Taf. 7, Fig. 38) besteht z. B. die innere Reihe nur aus vier Stachelchen, die wie beim alten Thiere in einem Bogen geordnet sind, dessen adorales Ende etwas weiter nach aussen liegt, als das aborale Ende des nächstvorhergehenden. Nur zwei unter den 2×5 ersten Adambulacralplatten des ganzen Thieres machen insofern von den übrigen eine Ausnahme, als sie bereits wie die Erwachsenen fünf Papillen in ihrer inneren Reihe besitzen. Die zweite Reihe der Adambulacralpapillen ist bei diesem jugendlichen Exemplare aus einer oder zwei Papillen gebildet, von denen, falls zwei vorhanden sind, die aborale die grösse ist, was ganz dem Verhalten entspricht, das wir bei den Erwachsenen erst von der 25. Adambulacralplatte ab angetroffen haben. Auch die Aussenpapillen verhalten sich so, wie wir es bei den Erwachsenen nur in der Nähe der Armspitze fanden; es folgen nämlich nach aussen von der zweiten Papillenreihe nur noch zwei Längsreihen kleinerer Papillen, von denen auf den proximalen Platten zwei in einer ersten und drei in einer zweiten (= äusseren) Reihe stehen; in der Nähe der Armspitze kommt eine dieser Reihen auch noch in Wegfall.

Das jüngste Exemplar (Nr. 1 der Tabelle) besitzt in jedem Antimer jederseits überhaupt erst vier Adambulacralplatten, von denen die letzte eben erst angelegt ist. Ihre Bewaffnung ist die folgende. Die erste Platte hat eine innere Reihe von zwei Stachelchen statt der hier beim alten Thiere befindlichen fünf; ferner besitzt sie nach aussen davon ein Stachelchen, das allein die zweite Papillenreihe des erwachsenen Thieres repräsentirt, und nach aussen von ihm steht noch ein winziges kleineres Aussenstachelchen. Ebenso verhält sich die Bestachelung der zweiten Platte. Auf der dritten dagegen kommt von den beiden Stachelchen der inneren
Reihe eines in Wegfall. Auf der vierten endlich fehlt sowohl das eine, das auf der ersten bis dritten Platte die zweite Papillenreihe darstellte, als auch das Aussenstachelchen, sodass die vierte Platte überhaupt nur ein einziges Stachelchen trägt, das seiner Stellung nach der inneren Papillenreihe der älteren Thiere entspricht.

Die Bewaffnung der dreieckigen Munddeckplatten (Taf. 7, Fig. 35), die von keinem der früheren Autoren beschrieben worden ist, besteht ähnlich wie die der Adambulacralplatten aus kurzen, dicken, mehr oder weniger prismatischen, abgestumpft endigenden, papillenförmigen Stacheln, welche die ventrale Oberfläche und die Ränder der Platten ziemlich dicht besetzen und auf dem distalen Bezirke der Platten unter allmäßlicher Grössenabnahme in die Form der Granula der Ventrolateralplatten übergehen. Bei meinem erwachsenen Exemplare finde ich den ambulacralen Rand jeder Munddeckplatte seiner ganzen Länge nach mit einer dicht geschlossenen Reihe von sieben (ausnahmsweise nur sechs), unter sich gleichgrossen Papillen besetzt, von denen die erste, den Eckstachel darstellende, von aussen gesehen einen abgerundet dreieckigen, die übrigen einen abgerundet quadratischen Umriß darbietet. Dem suturalen Rande entlang stehen, wenn man den Eckstachel nicht mitzählt, sieben oder sechs abgerundete Papillen, und der zwischen der ambulacralen und der suturalen Reihe übrig bleibende Winkel wird von fünf oder sechs (oder auch nur vier) ebenfalls abgerundeten Papillen ausgefüllt. Von all diesen abgerundeten, weniger dicht gedrängten Papillen haben diejenigen, die den Papillen des ambulacralen Randes zunächst stehen, fast die gleiche Grösse wie diese, während die übrigen an Grösse abnehmen.

Mein zweitkleinstes Exemplar (Taf. 7, Fig. 38) besitzt am ambulacralen Rande einer jeden Munddeckplatte statt der späteren sieben erst fünf Papillen, die jetzt noch nicht durch gegenseitigen Druck in ihrer Form beeinflusst sind, sondern kurze, abgerundete, durch kleine Zwischenräume getrennte Kegel darstellen; der Eckstachel ist etwas länger als die übrigen und berührt fast seiner ganzen Länge nach den Eckstachel der anderen Platte derselben Mundecke. Der suturale Rand ist, abgesehen von dem schon erwähnten Eckstachel, statt der späteren sieben oder sechs erst mit fünf kurzen, etwas auseinander gerückten, abgerundeten Papillen besetzt. Ausserdem finden sich auf der übrigen ventralen Oberfläche der Platte noch drei oder auch nur zwei ähnliche Papillen statt der späteren fünf.

Pentagonasteridae.

dieser jugendlichen Gestaltung der Mundbewaffnung mit den beschriebenen späteren Stadien geht hervor, dass zuerst die Bewaffnung des ambulacralen Randes zur Anlage gelangt und der des natürlichen Randes vorausgeht; erst zuletzt treten die Papillen auf, die den Winkel zwischen der ambulacralen und der natürlichen Papillenreihe ausfüllen.

Die Madreporenplatte wird von Heller an seinem *placentaeformis* beschrieben als viereckig (in seiner Zeichnung ist sie unregelmässig siebenseitig, 5 mm lang und 4,5 mm breit), etwas breiter als lang, mit einem nach innen gerückten Pole, von dem die Furchen ausstrahlen, bei *acutus* dagegen heisst es: »der Pol, von dem die Streifung ausgeht, ist fast central« (in seiner Zeichnung von *acutus* stellt die Platte ein unregelmässiges Siebeneck dar von 3,5 mm Länge und 5 mm Breite). Gasco bemerkt über die Form der Platte, dass sie bei jungen Thieren dreieckig, bei alten sechseckig sei; Koehler fand sie bei einem Exemplare von 36 mm Armiradius sechseckig, bei einem etwas grösseren sechseckig mit geraden, ungleichgrossen Seiten und bei einem Thiere von 50 mm Armiradius sechseckig mit concaven Seiten und verlängerten Ecken. Bei meinem Exemplare ist sie pentagonal mit etwas ungleichen Seiten; eine Spitze des Pentagons ist nach dem Mittelpunkte der Scheibe, die gegenüberliegende Seite nach dem Rande gerichtet (auch in den Heller'schen Abbildungen läuft eine Seite der siebeneckigen Platte parallel mit dem Scheibenrande). Die wellig verlaufenden Furchen der Oberfläche strahlen an meinem Exemplare von einem central gelegenen Pole aus. Die Länge der Platte misst 3 mm, die Breite ebensoviel.

Nach Heller liegt (bei seinem *placentaeformis*) die Madreporenplatte »gerade zwischen Mittelpunkt und Scheibenrand«; doch geht aus seiner Abbildung hervor, dass er damit den inneren Rand der oberen Randplatten meint, und auch dann passt die Abbildung nur, wenn man vom äusseren Rande der Madreporenplatte aus misst. Bei seinem *acutus* giebt er an, dass die Madreporenplatte dem Mittelpunkte etwas näher stehe als dem Rande. Misst man aber auf seiner Figur in derselben Weise wie vorher nach, so findet man die Platte ganz genau in der gleichen Entfernung vom Centrum und vom Innenrand der oberen Randplatten wie bei seinem *placentaeformis*; ein Unterschied beider »Arten« ist also auch in dieser Beziehung keineswegs vorhanden. An meinem Exemplare finde ich, wenn ich ebenso messe, die Madreporenplatte (d. h. ihren äusseren Rand) vom Centrum 13 mm und vom Innenrande der oberen Randplatten 18,5 mm entfernt, was also zu den Heller'schen Angaben nicht ganz stimmt. Ich finde weiter, dass an meinem Exemplare der Abstand des oberen Randes der Madreporenplatte vom Centrum 10 mm beträgt, die Länge der Madreporenplatte 3 mm, der Abstand ihres unteren Randes von der ausseren Grenzlinie der Scheibe 25 mm. Der Mittelpunkt der Madreporenplatte liegt also vom Centrum der Scheibe 11,5 mm entfernt und vom Aussenrande der Scheibe 26,5 mm. Es trifft demnach fast genau zu, wenn Gasco in Berichtigung der Heller'schen Angabe von seinen Exemplaren sagt, dass die Madreporenplatte sich auf 1/3 des Abstandes des Scheiben- centrums vom Scheibenrande befinde.

Beim meinem jüngsten Exemplare konnte ich die Madreporenplatte noch nicht wahrnehmen, wohl aber bei dem zweijüngsten (Nr. 2). An der auf den Interradius des Afters
nach links folgenden Interradialplatte, also an ihrem für alle Seesterne normalen Orte, bemerkt man in der Mitte des äußeren (= unteren) Randes der Platte einen kleinen, rundlichen, nur 0,28 mm grossen Wulst (Fig. 7, Fig. 39, Md), der Oberflächlich einige (3) unregelmässig gewundene Furchen trägt. Anscheinend ist dieser junge Madreporit, der sich in eine Einbuchung der Interradialplatte eindrängt und von deren randständigen Granula in einem Halbkreis umfasst wird, ein selbständiges Skeletstück. Zu einer vollen Gewissheit konnte ich indessen darüber nicht gelangen, da ich das Exemplar nicht verletzen wollte. Es wird also späteren Untersuchungen an reichlicherem Material der definitive Entscheid darüber vorbehalten bleiben, ob auch bei dieser Art ebenso wie bei Odontaster mediterraneus, Marginaster capreensis und anderen Arten die Madreporenplatte sich als ein von der betreffenden Interradialplatte selbständiges Skeletstück entwickelt; dass der Entscheid bejahend ausfallen wird, bezeichne ich aber schon jetzt nicht.

Die Farbe, die Heller bei seinem placentaeformis einfach gelblichroth, bei seinem acutus röthlichbraun nennt, ist nach Gasco auf der Oberseite orange mit ziegelrothen Streifen, die von der Rückenmitte in Interradialer Richtung nach dem Rande verlaufen; auf dieser Färbung hebt sich die Madreporplatte durch ihr weisses, in der Mitte rosa angehauchtes Aussehen ab; die Unterseite ist bald blass orangefarbig und nach dem Rande zu weisslich, bald weiss mit einem leichten Anflug von Rosenroth. Mit diesen Angaben stimmt das von Mercullano abgebildete Exemplar (Taf. 5, Fig. 1, 2) insofern nicht ganz überein, als der Gesammtton der Färbung matter und mehr ins Bräunliche ziehend erscheint, als man nach Gasco's Schilderung erwarten sollte; im Ganzen könnte man ihn wohl am besten ein helles Gelbbrun mit einem Stich ins Röthliche nennen¹). Die Interradialen Bezirke des Rückens sind nach den Randplatten hin etwas dunkler als die radialen; ausserdem zeichnen sich einzelne Dorsalplatten durch eine intensivere Farbe aus. Aus den dunklen Zwischenräumen der Dorsalplatten erheben sich die kleinen, gelblichweissen Papulac. Die Madreporplatte fällt durch ihre leichtere Färbung auf. Da wo die Randplatten auseinander weichen, zeigt sich ihre Verbindungshaut von reinweisser Farbe. Die Unterseite (Taf. 5, Fig. 2) ist viel heller als der Rücken; nur die unteren Randplatten sind fast ebenso tief gefärbt wie die oberen; am hellsten, fast rein blassgelb, sind die Munddecken und die Adambulacralplatten. Die Füsschen sehen im contrabirten Zustande bräunlich oder grünlich olivenfarbig aus; ausgestreckt erscheinen sie durchscheinend graugelb mit gelber Endscheibe.

Viel heller als die erwachsenen Thiere sind die jungen gefärbt. Zwar kann ich über die

¹) GIEFF nennt in seinen hinterlassenen Notizen die Farbe seines Exemplares rothbraun, in den dorsalen Interradien dunkler.
Pentagonasteridae.

Färbung meines jüngsten Exemplares nichts berichten, wohl aber über das zweitkleinste, von dessen Rückenseite Merculiano eine Farbenskizze (Taf. 5, Fig. 10) angefertigt hat. Die oberen Randplatten sind gelb, die Terminalplatten dunkler und mehr nach Orange oder Gelbbraun ziehend. Röthlich gelbbran sind auch die mittleren (älteren) Dorsalplatten, während die an die Randplatten angrenzenden wieder heller sind. Die den Rand- und Rückenplatten aufsitzenden Granula treten als feine weisse Perlchen hervor.

Als ich die vorstehende Beschreibung des P. placenta bereits niedergeschrieben hatte, veröffentlichte Köehler (1896) eine kurze, von einer Textfigur begleitete Schilderung einer angeblich neuen Art, P. minor, nach einem einzigen im Golf von Biscaya gefischt...
Exemplare, bei dem der Armaradius 16, der Scheibenradius 12 mm\(^1\) maass. Alle seine Angaben passen Wort für Wort auf junge Exemplare unserer Art. Die Übereinstimmung ist so vollständig, dass ich es nicht für nöthig halte, näher darauf einzugehen; es genügt der Hinweis auf meine vorstehenden Angaben und auf die Abbildung eines nir vorliegenden, 16 mm langen, jungen Thieres (Taf. 7, Fig. 42). Dieses Individuum lässt in der Anordnung und in den Grössenverhältnissen seiner Rückenplatten sowohl die Centralplatte als auch die fünf primären Interradialplatten sofort erkennen. Die Madreporenplatte lässt kaum einen Zweifel daran übrig, dass sie ein selbständiges Skeletstück ist. Nach aussen von dem Pentagon der primären Interradialplatten lassen sich in radialer Richtung die primären Radialplatten herausfinden, an die sich eine Reihe von Radialplatten und rechts und links davon je eine Reihe von Adradialplatten anschliessen. Die erste Adradialplatte ist in der Regel durch 1 oder 2 secundäre Plättchen von der primären Radialplatte getrennt, trifft sich aber mit der ersten Adradialplatte des nächstes Armes in der Interradiallinie, unmittelbar nach aussen von der primären Interradialplatte. Zwischen die primären Interradialplatten haben sich ebenfalls secundäre Plättchen eingeschoben, wie solche auch rings um die Centralplatte liegen; sie sind offenbar eine weitere Entfaltung der bei meinen jüngsten Individuen einfach als Analplättchen bezeichneten Skeletstücke; welche von ihnen etwa den Centroradialia (= Infrabasalia) anderer Seesterne homolog sind, lässt sich nicht mit Sicherheit entscheiden.

Diese selte Art schien bis vor Kurzem ausschliesslich dem Mittelmeer anzugehören; wenigstens war sie bis zum Jahre 1896 noch in keinem anderen Meeresgebiete mit Sicherheit nachgewiesen. Neuerdings aber wurde sie durch Koehler (1896) im Golf von Biscaya gefunden. Die Zahl ihrer Fundorte ist bislang sehr gering. Im westlichen Becken des Mittelmeeres kennt man sie nur aus dem Golfe von Neapel (Guelf, Gasco, Colombo, Zoologische Station); im südöstlichen Theile der Adria nur von Bari (Gasco), Ragusa, Lissa (Heller), Lesina (Grazer Sammlung) und Pelagosa (v. Marenzeller), weiter östlich nur südlich von Griechenland zwischen Cerigo und Cerigotto (v. Marenzeller) und von Scala nuova (= Kuschadasi) an der kleinasiatischen Küste des aegaeischen Meeres\(^2\)). Außerhalb des Mittelmeeres wird sie zwar von Lütkem aus dem Hardangerfjord an der norwegischen Küste an-gegeben, jedoch spricht soviel Zweifel aus seinen Worten, dass man wohl erst noch eine Bestätigung dieser auffallenden Mittheilung abwarten muss, bevor man diesen Fundort als einen ausreichend beglaubigten anschen kann. Sicher festgestellt aber ist, wie schon bemerkt, ihr Vorkommen im Golf von Biscaya durch Koehler.

Von den im Golfe von Neapel erbeuteten erwachsenen Exemplaren fehlt leider eine nähere Fundortsangabe (ebenso verhält es sich mit dem im British Museum befindlichen Stücke

1) Seine spätere Angabe (1896, p. 61), dass r = 15 mm lang sei, widerspricht seinen eigenen Abbildungen und ist wohl nur ein Druckfehler. Ebendort schliesst sich Koehler meinem Nachweise von der Identität seines P. minor mit P. placenta an und gibt drei genauere Abbildungen des ihm vorliegenden Exemplares.

2) Scala nuova liegt nicht im Golf von Smyrna, wie Perrier angiebt, sondern südlich davon.

Ueber Nahrung, Fortpflanzungszeit und Larvenform besitzen wir noch keinerlei Kenntnisse.

In jedem Interradius, mit Ausnahme des den Steinkanal beherbergenden, befindet sich eine langgestielte

Zum Schlusse dieser anatomischen Notizen will ich nicht unerwähnt lassen, dass Gasco zwischen den inneren Winkeln der unteren Randplatten sehr grosse Poren beschräkt, aus denen er eine schwarze Substanz ausstreten sah. Ich habe mir vergeblich bemüht, diese »sehr grossen Poren« aufzufinden, und kann auch nicht sagen, woher die von ihm gesene »schwarze Substanz« wohl gekommen sein mag.

Taf. 5, Fig. 2.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1891</td>
<td>Pentagonaster hystreics v. Marenzeller in Stein-</td>
</tr>
<tr>
<td></td>
<td>dachner's Bericht p. 415 (ohne Beschreibung).</td>
</tr>
<tr>
<td>1893</td>
<td>Pentagonaster hystreics v. Marenzeller p. 67—68.</td>
</tr>
<tr>
<td>1893</td>
<td>Pentagonaster hystreics v. Marenzeller p. 4—5;</td>
</tr>
<tr>
<td></td>
<td>T. 1, f. 2, 2A; T. 2, f. 2B, 2C.</td>
</tr>
<tr>
<td>1895</td>
<td>Pentagonaster hystreics v. Marenzeller p. 11, 23.</td>
</tr>
</tbody>
</table>

Zur Geschichte der Art ist zu bemerken, dass v. MARENZELLER der Meinung ist, dass ein von WYV. THOMSON 1870 auf der Fahrt der »Porcupine« an der Adventure Bank (zwischen Tunis und Sicilien) gefundener, aber nicht näher beschriebener Seestern 1) mit seiner

Art identisch sei. Meinerseits möchte ich, wie ich am Schlusse der Beschreibung (p. 185) näher darlegen werde, für wahrscheinlich halten, dass sie mit einigen anderen neuerdings von anderen Forschern aufgestellten Pentagonaster-Arten zusammenfällt oder doch sehr nahe verwandt ist.

Der Körper ist (vgl. v. Marenzeller's Abbildungen auf seiner Taf. 1, Fig. 2 und 2 A) pentagonal mit tief ausgesuchten Seiten, flach, der Rücken kaum vorgewölbt. Die Tiefe der seitlichen Ausschweifungen (= Einbuchtungen) des Pentagons beträgt bei den sechs Exemplaren in der Reihenfolge der folgenden Tabelle 4,5—5—5—6—6—7,7 mm, misst also bei den kleineren Exemplaren \(^1\)/R, bei den größeren ein klein wenig mehr. Bei einem Exemplar (Nr. 3) fällt auf, dass die Arm spitzen nicht wie sonst leicht aufwärts gebogen, sondern gerade gestreckt sind. Bei denselben Exemplare verlaufen auch die Seitenränder nicht regelmässig concav, sondern sind an der Grenze zwischen zweiter und dritter oberer Randplatte leicht eingeknickt; infolgedessen scheinen die Arme wie abgesetzt aus der Scheibe zu entspringen. Von dem nordischen *P. granularis* (Retzius) unterscheidet sich die Art schon durch die grössere Anordnung der Seiten, dann durch die Granulation, die grössere Zahl der Randplatten\(^3\) und Furchenstacheln, endlich durch den Besitz von Pedicellarien\(^5\).

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>Z</th>
<th>Z'(^1)</th>
<th>r : R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td></td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>26</td>
<td>13,5</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>1 : 1,69</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>16</td>
<td>9,5</td>
<td>7</td>
<td>8</td>
<td>1 : 1,68</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>19</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>1 : 1,92</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>21,5</td>
<td>12,5</td>
<td>8</td>
<td>9</td>
<td>1 : 1,72</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
<td>22</td>
<td>12</td>
<td>8</td>
<td>9</td>
<td>1 : 1,83</td>
</tr>
<tr>
<td>6</td>
<td>41</td>
<td>22</td>
<td>12</td>
<td>8</td>
<td>9</td>
<td>1 : 1,83</td>
</tr>
</tbody>
</table>

1) Z' bedeutet die Zahl der unteren Randplatten.
3) Dieser Unterschied betrügt übrigens bei fast gleichgrossen Thieren beider Arten nur eine Platte in der oberen und eine in der unteren Reihe.
4) v. Marenzeller scheint demnach wie die meisten Autoren anzunehmen, dass für *P. granularis* der Mangel von Pedicellarien etwas ganz constantes und charakteristisches sei. Thatsächlich sind auch noch niemals Pedicellarien bei dieser Art beschrieben worden. Nur Sladen gebraucht in der Schilderung seines *P. balticus* eine Wendung, aus der man schliessen muss, dass er auch bei *P. granularis* Pedicellarien gesehen hat. Mir liegen nun mehrere Exemplare des *P. granularis* von Norwegen vor, von denen das grössere, 40 mm lange (R = 22, r = 14,5 mm) in grösser Deutlichkeit klappenförmige Pedicellarien aufweist. Dieselben sind so angebracht, dass auf fünf oder sechs Platten eines jeden Armrückens nämlich auf einigen der ersten radialen Rückenplatten und auf der einen oder anderen dieser benachbarten Platte sich je eine oder (seltener) zwei befinden, die in der Nähe des Plattenrandes stehen und aus zwei, 0,2—0,26 mm breiten und 0,17 mm hohen, abgerundet recht eckigen Klappen zusammengesetzt sind, also eine ganz andere Form haben, als wie wir sie oben bei *P. hystrix* noch kennen lernen werden. Da bei meinen acht übrigen kleineren Exemplaren des *P. granularis* die Pedicellarien voll-
Die Länge des grössten Exemplares beträgt nach v. Marenzeller (1893: 42, die des kleinsten 28 mm. An dem grössten giebt er an: \(R = 23 \text{ mm}, r = 12,5 \text{ mm}, \text{also } r : R = 1 : 1,84 \); an dem kleinsten: \(R = 15 \text{ mm}, r = 8 \text{ mm}, \text{also } r : R = 1 : 1,87 \)). Bei meinen Messungen habe ich, wie aus der Tabelle hervorgeht, etwas andere Maasse erhalten, aus denen sich das Verhältniss \(r : R \) im Minimum zu 1 : 1,68, im Maximum zu 1 : 1,9 und im Durchschnitt zu 1 : 1,77 berechnet.

Die Rückenplatten haben eine «sehr unregelmässige, polygonale Form, stehen sehr dicht und weichen nur auf den Radien etwas auseinander». «Sie sind mit sehr kurzen, abge-

ständig fehlen, so glaube ich daraus ableiten zu dürfen, dass bei dieser Art die Organe in Analogie mit den bei L. ciliaris (s. p. 76) und sarsi (s. p. 102) festgestellten Verhältnissen erst im späteren Alter auftreten. Ihr Fehlen oder Vorhandensein wird man also nicht länger als ein sicheres Merkmal zur Erkennung und Unterscheidung der Art in allen ihren Altersstadien benützen können.

Da ich so nun einmal auf den P. granularis zu sprechen gekommen bin, mögen noch einige andere Bemerkungen darüber gestattet sein, obgleich die Art nicht im Mittelmeer vorkommt. Ich wende mich dabei insbesondere gegen die jüngste Beschreibung dieser Art, die Bell in seinem Katalog der britischen Echinodermen (1892. p. 73—74) gegeben hat.

Dass das von Bell angeführte Merkmal «no valve-like pedicellariae» nicht stimmt, habe ich eben schon bemerkt. — Unter den Synonyma führt er sowohl den P. bathytatus Sladen als auch den P. concinatus Sladen an, was unmöglich zutreffen kann, denn schon die Abbildungen, die Sladen von der Adambulacrallbewaffnung seiner beiden Arten giebt, zeigen der Genüge, dass von einer Identität mit P. granularis nicht die Rede sein kann. — Wie der oben erwähnte grösste der mir vorliegenden P. granularis lehrt, kann R nicht nur 1,3—1,4 mal so gross wie r sein (wie Bell angiebt), sondern bis zur Grösse von 1,52 mal r steigen. — Die Zahl der oberen und unteren Randplatten giebt Bell zu etwa sieben an, obwohl in seinen Abbildungen acht zu sehen sind; an meinem grössten Exemplare sind oben sieben, unten acht, an meinen übrigen oben sechs und unten sieben vorhanden. — Warum Bell in seiner Diagnose eigens sagt: «a single terminal plate» verstehe ich nicht; denn ich habe noch keinen Seestern gesehen, der nicht a single terminal plate besäße. — Dass die Adambulacrallbewaffnung in zwei Reihen geordnet sei, passt nur dann, wenn man die am äusseren Rande der Platten sitzenden Granula nicht mitzählt. In der inneren Reihe stehen auch nicht «zuviel oder drei», sondern ganz regelmässig drei und in der Nähe des Mundes sogar mitunter vier Stacheln. Da von der Adambulacrallbewaffnung noch keine brauchbare Abbildung vorhanden ist, so gebe ich auf Taf. 5, Fig. 1 eine solche, die sich auf das neunte und zehnte Plattenpaar meines grössten Exemplares bezieht. Wie man sieht, trägt jedes Platte zu innerst eine Längsreihe (Fig. 1, I) von drei Stacheln, dann folgt eine Längsreihe II, von zwei dicken grossen Papillen, die sich am adoralen Plattenrande durch eine (oder zwei) kleinere Papille mit einer dritten Längsreihe (III) verbunden, die aus drei zu den Granula der Ventrolateralplatten überleitenden Papillen besteht und den äusseren Rand der Platte besetzt; manchmal scheint sich dann noch zwischen die zweite und dritte Längsreihe eine kleine überzählige Papille (c) ein. Auf der ersten und zweiten und mitunter auch auf der dritten und vierten Adambulacrallplatte vermehrt sich die innerste Reihe an ihrem adoralen Ende um einen winzigen vierten Stachel, der etwas nach aussen gerückt ist. — Dass die Granulation der Randplatten mehr oder weniger verloren gegangen sei, ist eine Ausdrucksweise, die deshalb nicht ganz glücklich ist, weil die Granula, um verloren zu gehen, doch vorher dagewesen sein müssten. Gerade das aber trifft für die nachsten Felder auf den Randplatten des P. granularis nicht zu; im Gegenteil, je jünger die Thiere sind, um so grösser sind verhältniss-mässig diese nackten Stellen, auf denen man auch nirgends die Narben etwa abgefallener Granula sieht, falls die Exemplare gut erhalten sind. — Endlich habe ich zu bemerken, dass die Madreporitenplatte bei allen neun mir vorliegenden Stücken so deutlich wie möglich zu sehen ist, ich also nicht weiss, warum Bell ausdrücklich das Gegenthell sagt: «Madreporite inconspicuous».

1) Nachträglich ist hinzuzufügen, dass v. Marenzeller später (1895) noch ein Exemplar gefunden hat, das die hier erwähnten an Grösse übertrifft; sein Aradius misst 29, sein Scheibenradius 15, also \(r : R = 1 : 1,93 \) und \(L = 52 \text{ mm} \).
runden Cylinderchen oder Stiften, die in grossen Zwischenräumen stehen, bedeckt. Die den Rand einnehmenden Granula differiren gewöhnlich nicht von denjenigen, welche die Mitte der Platten bedecken, nur einige wenige, grössere, regelmässig sechseckige Platten (vergl. v. Marenzeller's Abbildung Taf. 2, Fig. 2 B) der Radien (das sind namentlich die 3—4 ersten einer jeden medianen Radialreihe) werden ganz oder zum Theil von grösseren, spatelförmi gen Granula umsäumt. Auf einer Platte von nicht ganz 1,5 mm im Durchmesser fanden sich 23 cylinderförmige Granula und 22 spatelförmige im Umkreise. Die fünf primären Interradialen Platten sind gut bemerkbar, rundlich und grösser als die übrigen. Eine derselben »stösst mit ihrer Aussenseite an die Madreporenplatte. Dem Rande zu, insbesondere deutlich in den Interradien, ordnen sich die Rückenplatten in Reihen, wovon vier bis fünf auf eine dorsale Randplatte kommen«.

Die Papulæ werden von v. Marenzeller nicht erwähnt. Soweit ich ohne anatomic Untersuchung sehen kann, scheinen sie sich auf fünf radial gerichtete Felder (Papularen) zu beschränken, die auswärts von dem durch die primären Interradialplatten bestimmten Pentagon beginnen und kaum bis zur Mitte des Armsradius reichen.

Obere Randplatten sind bei den vier grösseren Exemplaren jederseits an jedem Antimer acht vorhanden; dazu kommt bei dem grösssten Exemplare an einzelnen Armen noch eine im Entstehen begriffene winzige neunte. Die beiden kleinsten Exemplare besitzen erst sieben obere Randplatten. Die erste obere Randplatte ist etwas länger (2,5 mm) als breit (2—2,25 mm); nach der Armspitze zu ändert sich dieses Verhältniss allmälich so, dass die Breite überwiegt, so z. B. ist die siebente Platte nur 1,5 mm lang, dagegen 2 mm breit. Bei jüngeren Individuen sind die Platten »fast ganz mit Granula einerlei Art bedeckt, die denen der Scheibe gleichen und ebenso locker stehen. Bei älteren treten nahe dem inneren Rande nackte glatte Stellen auf, welche sich wesentlich von solchen unterscheiden, welche abgeschnürt wurden und noch die Narben der Granula aufweisen«. Von der drittletzten Platte an stossen die oberen Randplatten in der Medianlinie des Armes zusammen.

Die Terminalplatte erinnert in ihrer Form an diejenige des P. placenta, doch ist sie nicht ganz so hoch und auch nicht auf ihrer ganzen dorsalen Oberfläche nackt, sondern den anstossenden oberen Randplatten entlang mit Granula besetzt.

Die Zahl der unteren Randplatten beträgt bei den vier grösssten Exemplaren an jedem Arme jederseits neun, bei den beiden kleinsten acht. »Die zwei letztent entsprechen der letzten dorsalen Randplatte. Die Bedeckung der Platten gleicht der des Rückens. Die nacktten Felder sind jedoch viel kleiner und treten selten nahe dem inneren Rande, sondern näher dem vorderen (= aboralen) oder hinteren (= adoralen) Rande auf«.

Die Ventrolateralplatten »sind noch unregelmässiger als die Platten des Rückens, zum Theil rhombisch, aber grösser und mit gröberen Granula bedeckt. Die grösssten Platten grenzen an die Adambulacralplatten«.

Die Adambulacralplatten (vergl. v. Marenzeller Taf. 2, Fig. 2 C) sind »etwas breiter als langs. Ihre Bewaffnung setzt sich bei älteren Exemplaren in der Regel aus vier
Längsreihen von Stacheln oder Granula zusammen. Die innerste Reihe besteht aus fünf, an ihrer Spitze abgerundeten, 0,68 mm langen, dicht nebeneinander gestellten Stacheln, an die sich adoral meistens noch ein kleines, höchstens halb so langes und etwas nach aussen gerücktes Stachelchen anschliesst. Die dann folgende zweite Reihe wird von drei abgerundeten Papillen gebildet, die fast zweimal so dick, aber kürzer als die Stacheln der innersten Reihe sind. Die dritte Reihe besteht aus drei oder vier noch kleineren Papillen, die sich kaum noch von den gewöhnlichen Granula der Ventrolateralplatten unterscheiden. Dann folgt endlich die vierte Reihe, die in Gestalt von drei bis fünf Granula den äusseren Plattenrand begleitet.

Bei jüngeren Exemplaren ist die Zahl der Stachel- bez. Granula-Reihen um eins kleiner. Schon bei dem Exemplare Nr. 3 sind deren nur drei vorhanden, und ebenso verhält sich z. B. Exemplar Nr. 1. In der innersten Reihe besitzt Exemplar Nr. 1 meist erst vier, seltener schon die fünf Stacheln des erwachsenen Thieres, während Exemplar Nr. 3 sich in dieser Hinsicht schon ganz übereinstimmend mit den grossen Exemplaren Nr. 4—6 verhält. Die zweite Reihe besteht bei Nr. 1 und 3 durchweg aus drei grosseren Papillen, die dritte aus vier oder fünf Granula. Der Vergleich mit den älteren Thieren macht es wahrscheinlich, dass die dritte Reihe des älteren Thieres sich zwischen die zweite und dritte des jüngeren Thieres einschiebt, die dritte des jüngeren Thieres also zur vierten des erwachsenen wird.

Von den drei Papillen der zweiten Reihe nimmt die adorale «gegen das Ende der Arme immer mehr an Länge und Dicke zu, während die adorale immer mehr schwindet». Endlich fehlt sie ganz, und nun beginnt auch die adorale der beiden jetzt noch übrigen Papillen (also die frühere mittlere) sich zu verkleinern, sodass man «auf den letzten zehn Adambulacralplatten nach aussen von den Furchenstacheln» nur einen grossen Stachel (= die frühere adorale Papille der zweiten Reihe) und adoral davon eine ganz kleine Papille (= die frühere Mittelpapille) bemerkt.

Die dreieckigen, flachen Munddeckstücke tragen ihrem ambulacralen Rande entlang eine Reihe von acht (Taf. 8, Fig. 2) oder neun oder selbst zehn prismatischen Papillen, «die viel stärker sind als die Furchenstacheln». Nach aussen von dieser Reihe und parallel mit
Pentagonasteridae.

ihr laufend findet sich eine Reihe von vier oder fünf, selten sechs starken, ebenfalls prismatischen Papillen, von denen die erste (Taf. S, Fig. 2) am suturealen Rande steht und auch die zweite ihm etwas genähert ist. Dann folgen dem suturealen Rande entlang noch fünf oder sechs oder sieben, selten sogar acht kleinere, mehr granulaformige. Zwischen den erwähnten Reihen liegen schliesslich am distalen Rande noch zwei bis drei oder selbst vier Granula. Man könnte die ganze Anordnung auch so beschreiben: am ambulacralen Rande 8—10, am suturealen Rande 6—9 (ohne den eigentlichen Eckstachel), am distalen Rande 3 oder 4 und auf der zwischen den drei Randreihen übrig bleibenden Fläche noch 2 oder 3 intermediäre Stacheln, bez. Granula.

Die Madreporenplatte liegt »nicht ganz in der Mitte zwischen Rand und After, dem letzteren, der nahezu central liegt, etwas genähert«. Sie ist bei Exemplar Nr. 6 unregelmässig hexagonal, 2 mm breit und 1,5 mm lang; ihre zahlreichen, gewellten Furchen strahlen von einem centralen Punkte aus. Bei Exemplar Nr. 5 ist sie ebenfalls unregelmässig hexagonal, aber ebenso lang wie breit (2 mm).

Die Pedicellarien sind spatelförmig. Ihre beiden Arme (= Zangenstücke) sitzen den Längsrändern einer tiefen, länglichen Alveole auf (vergl. v. Marenzeller's Abbildungen, Taf. 2, Fig. 2 B und 2 C). Im zusammengeklappten Zustande ragen die Pedicellarien wie stumpfe, plume, am Ende verbreiterte Stachelchen über die Oberfläche des Körpers empor und fallen an den conservirten Stücken noch leichter ab als die Granula der Platten. Jeder Pedicellarien-Arm hat die Form eines kurzstieligen, 0,45—0,47 mm langen Spatels, dessen Griff an der Basis 0,18—0,2 mm breit ist, sich dann auf 0,11 mm Breite verschmälernt, um weiterhin in die 0,26—0,3 mm breite, am Rande drei- bis vierlappige Endplatte überzugehen; die Lappen der Endplatte sind an der Innenseite in unregelmässiger Weise mit winzigen, zähnchenförmigen Spitzchen besetzt. Solche Pedicellarien finden sich bei der vorliegenden Art:

1. auf vielen Rückenplatten, hier meist excentrisch:

2. je eine, selten zwei, auf jeder oberen Randplatte (meistens, aber nicht immer, mit Ausnahme der letzten); sie nehmen das nackte Feld der Platte ein, falls ein solches vorhanden ist;

3. je eine oder zwei auf den unteren Randplatten;

4. je eine auf einzelnen Ventrolateralplatten.

Indessen verhalten sich bezüglich des Auftretens der Pedicellarien die vorliegenden sechs Exemplare insofern nicht ganz übereinstimmend, als bei Exemplar Nr. 3 die Pedicellarien der Ventrolateralplatten fast völlig fehlen; nur in drei Interradialfeldern finde ich auf einer einzigen Ventrolateralplatte eine Pedicellarie; auch die unteren Randplatten dieses Exemplares sind erst zum Theil damit ausgestattet.

Die Färbung der lebenden Thiere war »licht gelbröthlich«.

Alle v. Marenzellerschen Exemplare stammten aus dem östlichen Becken des Mittelmeeres; der eine Fundort liegt nördlich von Bengasi an der tripolitanischen Küste, der zweite nordwärts von Kreta, der dritte südlich von Cerigo. Die Tiefen betrugen in der Reihenfolge
Pentagonaster hystricis.

dieser Fundorte 680\(^{1}\), 943 und 946\(^{2}\) m. Die Bodenbeschaffenheit war in dem einen Falle Sand und Schlamm, im zweiten zäher Schlamm und Binsentüte und im dritten steinig\(^{3}\). Falls der von Wyv. Thomson (s. oben p. 179) erwähnte See stern wirklich die vorliegende Art ist, so würde daraus hervorgehen, dass sie auch im westlichen Mittelmeer und in etwas geringeren Tiefen heimisch ist\(^{4}\).

Wie schon p. 180 bemerkt, drängt sich mir beim Vergleiche des *P. hystricis* mit einigen anderen, in den letzten Jahren aufgestellten *Pentagonaster*-Arten die Vermuthung auf, dass die v. Marenzeller’sche Art mit der einen oder anderen oder auch mit mehreren derselben nahe verwandt, wenn nicht identisch ist.

Pentagonaster greeni Bell. Zunächst kommt hier der von Bell im December 1889\(^{5}\) nach einem einzigen an der Südwestküste Irlands in 1000 Faden Tiefe gefundenen Exemplare beschriebene *P. greeni* in Betracht. Soweit sich aus seiner ziemlich dürftigen Beschreibung ersehen lässt, stimmt die Form und Granulation der Rückenplatten, sowie die gröbere Granulation und Anordnung der Ventrolateralplatten mit *hystricis* überein. Ferner stimmt die Zahl der Randplatten und die Form derselben, doch geht aus seiner Beschreibung und Abbildung nicht sicher hervor, ob die Randplatten granulirt sind; in der Abbildung erscheinen sie nackt, während man aus dem Texte eher herauslesen könnte, dass sie granulirt sind. Das Verhältniss r : R beträgt bei *P. greeni* 1 : 2,16 (r = 12,5 mm, R = 27 mm). R ist also verhältnissmässig grösser als bei *hystricis*; doch ist die Differenz nicht gross genug, als dass sie nicht auch individueller Natur sein könnte; denn wir sahen schon oben bei einem Exemplare von *hystricis* die Länge von R auf 1,9 mal r steigen. In Betreff der Adambulacralbewaffnung sind bei *greeni*, in Uebereinstimmung mit *hystricis*, auf jeder Platte fünf innere Stacheln in einer Längsreihe angebracht. Wenn aber Bell sich so ausdrückt, als bildeten bei seiner Art diese in einer Längsreihe stehenden Stacheln für sich allein die ganze Adambulacralbewaffnung, so scheint mir diese Angabe, die allerdings geeignet wäre, die Bell’sche Art scharf von der v. Marenzeller’schen zu trennen, doch höchst zweifelhaft; denn da Bell auch bei *P. granularis* die Bewaffnung der Adambulacralplatten unrichtig angegeben hat, so dürfte wohl auch bei der vorliegenden Art eine mir leider nicht mögliche Nachuntersuchung seines Exemplares zu einer Berichtigung seiner Angabe führen. Ein weiterer Unterschied beider Arten

1) In der ersten Mittheilung v. Marenzeller's (1891) steht dafür 620.
2) In der zweiten vorläufigen Mittheilung v. Marenzeller's (1893) steht dafür 620.
3) Später (1895) hat v. Marenzeller noch zwei andere Fundorte mitgetheilt. Der eine liegt im kretischen Meer, zwischen Cap Malla und Santorin in 880 m Tiefe; Bodenbeschaffenheit: Krustensteine, gelber Schlamm, kleine Binsentüte. Der andere gehört der südlichen Adria an und hat eine Tiefe von 1196 m; Bodenbeschaffenheit: sandiger Schlamm.
4) Ueber das Vorkommen der Art ausserhalb des Mittelmeeres s. die folgenden Bemerkungen über *P. balteatus, concinnus* und *kerigroenii*.
Pentagonasteridae.

scheint in dem völligen Mangel der Pedicellarien bei *P. greeni* zu liegen. Jedoch auch dieser Punkt bedarf meines Erachtens einer abermaligen genauen Prüfung. Sollte sich die Angabe als zutreffend herausstellen, so würde es mir doch immer noch bedenklich erscheinen, auf dieses Merkmal allein, wenn man nicht auch noch andere constante Unterschiede findet, eine spezifische Trennung des *greeni* von *hystericis* vorzunehmen; denn es könnte der Mangel der Pedicellarien auch eine individuelle Eigenthümlichkeit des einen Exemplares von *P. greeni* sein. Eindlich scheint sich *P. greeni* dadurch im Habitus von *hystericis* zu entfernen, dass, wie Bell sagt, das Thier durch die verhältnissmässige Dicke seiner Haut in Alkohol etwas lederig aus-sieht. — Im Ganzen kann man also an der Hand der Bell'schen Beschreibung zu keinem bestimmten Urtheil über die Beziehung seines *P. greeni* zu *P. hystericis* gelangen und muss die weitere Aufklärung in dieser Sache der Zukunft anheim geben.

Im Juni 1891 veröffentlichte SLADEN¹ die genauen, sorgfältigen Beschreibungen seiner zwei ebenfalls südwestlich von Irland in 750 Faden Tiefe erbeuteten Arten *P. balteatus* und *P. concinnus*, die BELL² in durchaus ungerechtfertigter Weise unter die Synonyma von *P. grunn-laris* steckt.

Pentagonaster balteatus Sladen. Grösse und Form des Körpers (*R* = 22, *r* = 13 mm) sowie das Verhältniss *r*: *R* = 1 : 1,69 stimmen ziemlich genau mit den Maassen von *P. hystericis* überein. Ferner stimmt die Form, Grösse und Granulation diese scheint etwas dichter zu sein) der Rückenplatten, die Zahl, Anordnung und Granulation der oberen und unteren Randplatten, die Beschreibung der Terminalplatten und der Madreporenplatte, Anordnung und Granulation der Ventrolateralplatten. Was dagegen nicht stimmt, ist erstens der Umstand, dass bei *P. balteatus* auch schon die ersten oberen Randplatten breiter als lang sind; zweitens, dass auf den Randplatten keine nackten Stellen angegeben werden; drittens, dass nur auf einzelnen Rückenplatten nicht aber auch auf den Randplatten und Ventrolateralplatten kleine spatelförmige Pedicellarien aufzufinden waren. Dafür aber zeigt sowohl die Adambulacral- als auch die Mundbewaffnung fast völlige Uebereinstimmung mit *P. hystericis*. Insbesondere stimmt die von SLADEN abgebildete Adambulacralbewaffnung sehr gut mit derjenigen, die ich oben von der achten Adambulacralplatte des Exemplares Nr. 4 erwähnt habe; denn SLADEN beschreibt ausser der ersten (= innersten), aus fünf gleichen und einem sechsten kleineren adoralen Stachel gebildeten Reihe eine zweite, aus drei kräftigen prismatischen Papillen geformte Reihe und dann noch drei, aus 3 oder 4 Granula gebildete äussere Längsreihen auf jeder Platte. Die Mundbewaffnung besteht bei balteatus wie bei hystericis auf jedem Mund-eckstück aus 9 oder 10 kurzen, prismatischen Stacheln am ambulacralen Rande, aus 6—9 mehr granulaförmigen Papillen am sutralalen Rande und überdies aus 3 intermediären Granula. Die Unterschiede des balteatus von hystericis sind demnach gegenüber der sonstigen weitgehenden Uebereinstimmung von so untergeordneter Bedeutung, dass man kaum an der Identität beider

²) s. Anm. p. 151.
Pentagonaster hystriæs.

Arten zweifeln kann. Zu einer völligen Sicherheit wird freilich auch hier die Vergleichung der Originalexemplare nöthig sein. Falls diese, wie zu erwarten steht, die hier nur als höchst wahrscheinlich ausgesprochene Übereinstimmung beider Formen erweist, so müsste der v. Marenzeller'sche Name, da ihm erst 1893 eine Diagnose beigegeben wurde, dem Sladen'schen weichen, die Art also statt P. hystriæs P. baltæatus heissen.

Art vor uns haben. Sladen erklärt den *concinnus* allerdings mit aller Bestimmtheit für spezifisch verschieden von *balteatus*. Aber wenn man überlegt, dass die angebliche Beschränkung der Granula auf den Saum der Randplatten recht zweifelhaft ist, und dass der Unterschied in der Bewaffnung der Adambulacralplatten nach dem, was wir über deren verschiedenen Verhalten bei den sechs *hystricis*-Exemplaren erfahren haben, möglicherweise individueller Art ist, so muss man es immerhin für nicht ausgeschlossen halten, dass weitere Untersuchungen uns von der Identität des *concinnus* mit *balteatus* und beider mit *hystricis* überzeugen werden.

Schliesslich möchte ich nicht unerwähnt lassen, dass ich die jetzt (1894) von Perrier\(^1\) ausführlicher gegebenen Beschreibungen der *Pentagonaster*-Arten des »Travailleur« und des »Talisman« (\(P. \text{perrieri}, \text{gosselinii}, \text{vincenti}, \text{haesitans}\)) genau verglichen habe, indem ich von der Vermuthung ausging, dass sich darunter eine mit *P. hystricis* näher verwandte oder identische Form finden werde. Doch überzeugte ich mich bald, dass zu einem erspriesslichen Vergleich die mir leider nicht ermöglichte Kenntniss der Perrier'schen Originalexemplare unerlässlich ist. Ich muss mich also hier mit einem allgemeinen Hinweis auf die von ihm beschriebenen Arten begnügen.

sein von Pedicellarien auch bei anderen *Pentagonaster*-Arten, wie ich das oben von *P. granularis* gezeigt habe, eine individuelle, zum Theil vom Alter des Thieres abhängige Erscheinung, sodass darauf allein sich keine Artunterscheidung begründen lässt. Später hat Koehler (1896, p. 65—66) trotz der von mir vorgebrachten Gegengründe seinen *P. kergrobeni* als besondere Art aufrecht zu halten versucht. Doch ist Alles, was er jetzt noch des Weiteren als Unterschiede seiner Art von *P. hystries* anführt — die Granula der Adambulacralplatten, die Grösse der Madreporenplatte, die Körperform und das Zusammenstossen der letzten oberen Randplatten — und in Abbildungen erläutert, erst recht dazu geeignet, meine Ansicht von der Identität beider Formen zu stützen.

Fam. Poraniidae.

Körper ziemlich niedergedrückt, pentagonal, mit zugeschärftem, fein bestacheltem Rande, der nur von den horizontal gestellten, verhältnismässig grossen und wenig zahlreichen unteren Randplatten gebildet wird; obere Randplatten, Dorsalplatten und Ventrolateralplatten in der Haut versteckt und mit mehreren oder einzelnen kleinen Stachelchen besetzt; Pedicellarien fehlen; Papulae einfach; Füsschen mit deutlicher Saugscheibe.

Im Mittelmeer nur eine Art: *M. capreensis* Gasco.

Taf. 7, Fig. 13—23.

1876 Asteropsis capreensis Gasco p. 9, f. 6 u. 7.
1879 Asteropsis capreensis Ludwig p. 541.
1888 Asteropsis capreensis Colombo p. 50, 53, 54, 64, 97.
1889 Marginaster (?) capreensis Sladen p. 366, 768.
1892 Cheilaster fimbriatus Bell (Catalogue) p. 81.
1893 Marginaster capreensis v. Marenzeller p. 6—8; T. 2, f. 3.
1895 Marginaster capreensis v. Marenzeller p. 11.

Diagnose. Grösse bis 20 mm. \(r : R = 1 : 1,2—1,4 \). Rücken mit in der Haut versteckten, regelmässig angeordneten, radialen und interradialen Kalkplatten, die durch Verbindungsstücke unter sich und mit den oberen Randplatten ein regelmässiges Maschenwerk bilden und kleine Stacheln tragen. Papulae einfach schlauflörmig, vereinzelt, in den Maschen des Rückenskeletes der Scheibe und der Armbasis. Obere Randplatten ebenfalls in der Haut ver-

2) Bell (1892), der im übrigen nur einen dürftigen Auszug der Sladen'schen Beschreibung des *M. fimбриatus* gibt, fühlt sich gedrungen, den von Perrier gewählten Gattungsnamen *Marginaster* in *Chelaster* umzutaufen, weil *Marginaster* eine vox hybrida sei. Seine philologische Feinfühligkeit hindert ihn aber nicht daran, den doch ebenso hybriden Namen *Solaster* bestehen zu lassen.
Furchen, die von den Berührungslinien der aufeinanderfolgenden unteren Randplatten ausgehen und quer zur Längsachse des Arms bis an die Adambulacralplatten ziehen. v. Marenzeller hat von der Anordnung dieser ventralen Hautfurchen eine Abbildung gegeben (seine Taf. 2, Fig. 3 A), die ich nur bestätigen kann. Aber auch an der Rückenseite mancher Exemplare sieht man eine ähnliche, jedoch breitere Hautfurche, die genau in interradialer Richtung liegt, zwischen den ersten unteren Randplatten beginnt und an der Interradialplatte des betreffenden Interradius (s. p. 192) endigt; Sladen erwähnt diese Furche bei seinem vermeintlich neuen M. fimbriatus.

Meine sämtlichen Exemplare sind kleiner als die von Gasco, Sladen und v. Marenzeller beschriebenen. Das grösste der mir vorliegenden Thiore hat eine Länge von 10 mm. Der Grösse nach schliesst sich daran zunächst das von Sladen als fimbriatus beschriebene Stück, das etwa 12 mm Gesamtlänge hat. Dann folgen die beiden v. Marenzeller’schen Exemplare, deren Länge 17,5 mm beträgt, und endlich das grössere bis jetzt bekannte, der Gasco’schen Beschreibung zu Grunde liegende Stück mit 20 mm (nach seinem Text) oder 23 mm (nach seiner Abbildung) Länge. Man wird also rund 20 mm als die Maximalgrösse der Art bezeichnen dürfen. Meine übrigen Exemplare, über deren Maasse die Tabelle Aus-

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>Z 1</th>
<th>Z' 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2,5</td>
<td>2,25</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5,5</td>
<td>3</td>
<td>2,5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>6,25</td>
<td>3,5</td>
<td>2,75</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>6,25</td>
<td>3,5</td>
<td>2,75</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>7,5</td>
<td>4,25</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>7,5</td>
<td>4,25</td>
<td>3,25</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>7,6</td>
<td>4,25</td>
<td>3,25</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>7,75</td>
<td>4,25</td>
<td>3,25</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>8,5</td>
<td>4,5</td>
<td>3,5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>9,5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>9,5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>9,5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>5</td>
<td>4,5</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

kunft giebt, haben meistens eine Länge von 7,5—9,5 mm; vier sind noch kleiner, indem ihre Länge von 6,25 bis 5 mm sinkt. Zwei von den mir vorliegenden Stücken sind so schlecht erhalten und derart verkrümmt, dass ich vorgezogen habe, sie gar nicht in die Tabelle aufzunehmen.

Die Höhe (= Dicke) des Körpers giebt Sladen an seinem fimbriatus zu 4,75 mm,

1) Z = Zahl der oberen, Z' = Zahl der unteren Randplatten.
Poraniidae.

v. Marenzeller zu 4 mm an. An meinen Exemplaren beträgt sie bei den kleinsten 1,5 und steigt bei den größten bis auf 3,5 mm.

Im Mittelpunkte (Taf. 7, Fig. 13, C) liegt eine von v. Marenzeller nicht erwähnte Centrallplatte von 0,44—0,59 mm Durchmesser und abgerundet pentagonalem Umriss; ihre lappenförmig vortretenden Ecken entsprechen der Richtung der Radien, ihre concaven Seiten der der Interradien; diejenige Seite, die der Afteröffnung zugekehrt ist, ist länger als die übrigen. Die centrale Platte wird in einem Abstande, der ungefähr ihrem eigenen Durchmesser gleichkommt, von einem pentagonalen Gürtel (Taf. 7, Fig. 13, IR1 und CR) von Platten umstellt, der aus zehn Platten gebildet wird. Die Ecken dieses Gürtels sind interradial gerichtet und werden von je einer 1—1,11 mm breiten und 1,12—1,14 mm langen Interradialplatte (= v. Marenzeller's »grosse, sternförmige Platte« Taf. 7, Fig. 13, IR1) dargestellt, die alle anderen Platten des Rückenskeletes an Grösse übertrifft, und deren abgerundet polygonale, mit concaven Seiten ausgestattete Grundform dadurch einen sechslappigen Umriss erhält, dass die äussere (= distale) Ecke sich zu einem kurzen, breiten Arm (seine Länge beträgt 0,5 mm) auszieht und durch eine kleine Ecke gebildet wird. Die Ecken dieses Gürtels sind interradial gerichtet und werden durch je ein quergezogenes, abgerundet dreieckiges Skeletstück gebildet, das sich mit seinen beiden seitlichen Enden von innen her an die inneren (proximalen) Ecken der Interradialplatten anlegt und sich mit seiner dritten, abgerundeten, inneren Ecke der Centrale zukehrt, ohne es jedoch zu erreichen. Wir wollen diese Platten die Verbindungsstücke der Interradialplatten oder wegen ihrer radialen Lage die Centroradialia (Taf. 7, Fig. 13, CR) nennen. Ihr querer Durchmesser beträgt 1,17—1,24 mm, ihr kürzerer Längsdurchmesser 0,43—0,5 mm. Die innere (= proximale) Ecke eines jeden Verbindungsstückes setzt sich mit der ihr zugekehrten Ecke der Centralplatte durch ein kleineres, längliches, genau in radialer Richtung befindliches, secundäres Verbindungsstück (Taf. 7, Fig. 13, sV) in Zusammenhang, das sich sowohl der Centralplatte als auch jener inneren
Ecke des Verbindungsstückes der Interradialplatten von innen her anlagert. Von den drei Ecken der zwischen den Interradialplatten befindlichen Verbindungsstücke greifen also die innere über, die beiden lateralen unter. Das von dem Gürtel der Interradialplatten und der Centroradialplatten gebildete Feld, dessen Mitte die Centralplatte einnimmt, wollen wir das centrale Feld nennen. Es wird durch die erwähnten secundären Verbindungsstücke in fünf kleinere, etwa rautenförmige, in interradialer Richtung gelegene Felder zerlegt, die als secundäre Centralfelder (Taf. 7, Fig. 13, sF) bezeichnet werden mögen. In der diese Felder ausfüllenden Haut können isolirte, winzige, nur 0,07—0,21 mmrosse Kalkplättchen (Taf. 7, Fig. 13, sK) in wechselnder Zahl auftreten, sodass man deren 0—3 in je einem Felde antrifft. Nur in einem Felde wird die Bildung derartiger Kalkplättchen stärker, nämlich in demjenigen, das die Afteröffnung beherbergt und deshalb das Analfeld (Taf. 7, Fig. 13, AF) heissen mag. Hier findet man in der Umgebung des am Rande der Centralplatte beginnenden, mit seiner Längsachse interradial gerichteten, spaltförmigen Afters mehrere (3 oder 4) kleine und ein nach aussen vom After liegendes, grösseres (0,27—0,34 mm messendes) Kalkplättchen (= Analfäldchen) (Taf. 7, Fig. 13, AP). Alle diese kleinen, in den secundären Centralfeldern auftretenden Kalkplättchen sind von v. Marenzeller übersehen worden, während seine kurze Schilderung der Interradialplatten und ihrer Verbindungsstücke bis auf einen nachher zu erwähnenden Punkt zutrifft.

Bei meinem kleinsten, nur 5 mm grossen Exemplare (Taf. 7, Fig. 14) ist die Centralplatte (Taf. 7, Fig. 14, C) erst 0,52 mm gross, und ihre abgerundeten Ecken springen noch nicht lappenförmig vor. Auch die Verbindungsstücke (Taf. 7, Fig. 14, CR) der erst 0,8 mm langen und 0,7 mm breiten Interradialplatten (Taf. 7, Fig. 14, JR) sind am Innenrande nur einfach convex, ohne eine vortretende Ecke zu bilden, und haben einen queren Durchmesser von 0,57, einen Längsdurchmesser von 0,32 mm. Der auffallendste Unterschied von dem Centralfeld des erwachsenen Thieres besteht aber darin, dass die secundären Verbindungsstücke eben erst aufzutreten beginnen. Es sind deren erst drei in der Richtung von drei benachbarten Radien in Form kleiner, nur 0,09—0,11 mm messender, abgerundeter Plättchen (Taf. 7, Fig. 14, sV) vorhanden, die dicht am Rande des Centrale liegen, aber das gegenüberliegende Centroradiale noch nicht erreichen. Im Uebrigen ist das ganze Centralfeld (Taf. 7, Fig. 14, OF) noch ganz frei von allen späteren Skeletteinlagerungen.

Nach aussen von dem Centralfeld begegnet man genau in der Richtung eines jeden Radius einer abgerundet dreieckigen, länglichen Platte, mit welcher der Rückenkiel des Armes beginnt. Wir nennen sie die erste Radialplatte (Taf. 7, Fig. 13, R1). Sie ist so gelagert, dass die beiden Ecken ihrer schmälsten Seite nach der Centralplatte blicken, während ihre dritte Ecke nach der Armspitze gerichtet ist. Sie hat eine Länge von 0,63—0,77 und eine grösste Breite von 0,46—0,5 mm. Jede dieser ersten Radialplatten setzt sich durch zwei längliche Verbindungsstücke (Taf. 7, Fig. 13, Vr1) mit den beiden ihr zunächst liegenden Interradialplatten in Zusammenhang und zwar so, dass sich je ein solches Verbindungsstück mit seinem abgerundeten Ende von innen her einer proximalen Ecke der Radialplatte anlagert
Poraniidae.

und von hier in schiefen Richtung bis zur Innenseite der lateralen Ecke der nächsten Interradialplatte reicht, um hier, ebenfalls abgerundet, zu endigen. Diese Verbindungstücke haben einen längsten Durchmesser von 0,8—0,93 und eine Breite von 0,3 mm. Auf solche Weise entstehen im nächsten Umkreise des Centralfeldes fünf ungefähr dreieckige, in radialer Richtung gelegene Felder, die wir deshalb die Radialfelder (Taf. 7, Fig. 13, RF) nennen wollen. Die Radialplatten und Interradialplatten begrenzen zusammen mit ihren Verbindungsstücken das Pentagon, von dem v. Marenzeller sagt, dass es die Mitte des Scheibenrückens einnehme und mit seinem Contur dem des Seeesternes folge. Dieses ganze apicale Pentagon hat einen Durchmesser von etwa 4 und eine Seitenlänge von 2,5 mm. Im Gegensatz zu den secundären Centralfeldern bleiben die Radialfelder auch bei meinem grössten Exemplare ganz frei von Kalkeinlagerungen.

Auch bei meinem kleinsten Exemplare sind die Radialfelder (Taf. 7, Fig. 14, RF) schon gut entwickelt. Die erste Radialplatte (Taf. 7, Fig. 14, R1) ist aber noch nicht dreieckig, sondern unregelmässig kreisförmig umrandet, 0,34 mm lang und ebenso breit. Ihre Verbindungstücke (Taf. 7, Fig. 14, VR1) mit den Interradialplatten haben dieselbe Form und Lage wie später, sind aber erst 0,4 mm lang und 0,23 mm breit.

Verfolgen wir das Rückenskelet zunächst weiter in der Richtung der ersten Radialplatte, so sehen wir, dass diese, wie das bereits v. Marenzeller richtig angegeben hat, eine Reihe von dachziegelig sich deckenden Platten eröffnet, die den Rückenkiel des Armes bildet und bis zur Terminalplatte reicht. An meinen Exemplaren Nr. 12 und 13 zählt man dieser Radialplatten (v. Marenzeller's "Armückenplattene) in jedem Arme, wenn man die schon beschriebene erste Radialplatte mitzählt, sechs. Die zweite bis fünfte (Taf. 7, Fig. 13, R2—R5) haben einen abgerundet rautenförmigen Umriess mit leicht concaven Seiten, sodass man an jeder eine proximale, eine distale und zwei laterale Ecken unterscheiden kann. Die sechste (Taf. 7, Fig. 13, R6) hat eine queroval Zeichnung. Die proximale Ecke der zweiten Platte greift über die distale Ecke der dreieckigen ersten. In derselben Weise wird die distale Ecke der zweiten von der proximalen der dritten überlagert, und ebenso verhalten sich alle folgenden Radialplatten. Die Grösse der Platten nimmt nach der Arm spitze hin allmählich ab: ihre Breite beträgt von der zweiten an der Reihe nach 0,63—0,52—0,39—0,36—0,23 mm und ihre Länge 0,68—0,6—0,43—0,36—0,16 mm. Die Zahl der Radialplatten ist um zwei höher als die Zahl der jederseitigen unteren Randplatten, denn jene beträgt wie gesagt sechs, während nur vier untere Randplatten da sind. Dieses Verhältniss scheint auch bei weiterem Wachsthum des Thieres festgehalten zu werden, denn aus v. Marenzeller's Abbildung ersieht man, dass an seinen Exemplaren bei jederseits sechs unteren Randplatten acht Radialplatten vorhanden waren. Ferner findet sich das gleiche Verhalten bei jüngeren Thieren; so z. B. besitzt mein kleinstes Exemplar (Nr. 1 der Tabelle) in jedem Radius vier jetzt erst unregelmässig kreisförmige Radialplatten und jederseits zwei untere Randplatten.

Die zweite, dritte und vierte Radialplatte setzen sich jederseits durch ein längliches, quer zur Längsachse des Armes gerichtetes Verbindungsstück (Taf. 7, Fig. 13, VR2, VR3, VR4) mit der ersten, zweiten und dritten oberen Randplatte in Zusammenhang, während die fünfte
und sechste Radialplatte zwischen sich und der vierten, bez. fünften oberen Randplatte keine derartigen Verbindungsstücke besitzen. Es sind also jederseits nur drei Verbindungsstücke zwischen der Reihe der Radialplatten und der der oberen Randplatten vorhanden. Der kleine Durchmesser dieser Verbindungsstücke beträgt 0,23 mm, der längste Durchmesser an der ersten Verbindungsplatte 0,93, an der zweiten 0,6 und an der dritten 0,36 mm. Bei meinem kleinsten Thiere, das wie gesagt nur vier Radialplatten in jedem Antimer besitzt, ist nur die zweite durch ein kleines Verbindungsstück (Taf. 7, Fig. 14, Vr2) mit der ersten oberen Randplatte in Zusammenhang; dagegen verhalten sich die dritte und vierte Radialplatte des jungen Thieres genau so wie die fünfte und sechste des erwachsenen, d. h. es sind zwischen ihnen und den entsprechenden oberen Randplatten noch keine Verbindungsstücke vorhanden. Die unverkalkten Felder zwischen den Radialplatten und den oberen Randplatten wollen wir die Armfelder (Taf. 7, Fig. 13, AF1 bis AF5) nennen. Das erste Armfeld (Taf. 7, Fig. 13, AF1) ist das grösste unter allen Feldern der Rückenseite und wird nicht nur von der ersten Radialplatte, der ersten oberen Randplatte und dem zugehörigen Verbindungsstück begrenzt, sondern auch von dem Verbindungsstück zwischen der ersten Radialplatte und der Interradialplatte, ferner von letzterer selbst und von zwei nachher zu besprechenden Platten, die sich vom distalen Arm der Interradialplatte zur ersten oberen Randplatte erstrecken. Das zweite Armfeld (Taf. 7, Fig. 13, AF2) liegt zwischen der zweiten und dritten Radialplatte, der ersten und zweiten oberen Randplatten und dem ersten und zweiten Verbindungsstück der Radialplatten mit den oberen Randplatten. Das dritte Armfeld (Taf. 7, Fig. 13, AF3) befindet sich zwischen dritter und viertter Radialplatte, zweiter und dritter oberer Randplatte und den entsprechenden Verbindungsstücken. Das vierte Armfeld (Taf. 7, Fig. 13, AF4) wird begrenzt von der vierten und fünften Radialplatte, der dritten und vierten oberen Randplatte und dem Verbindungsstück zwischen der vierten Radialplatte und der dritten oberen Randplatte. Endlich das ganz kleine fünfte Armfeld (Taf. 7, Fig. 13, AF5) ist umgeben von der fünften und sechsten Radialplatte sowie der vierten und fünften oberen Randplatte. Nur in dem ersten Armfeld tritt ähnlich wie in den secundären Centralfeldern ein kleines, isolirtes, 0,16—0,18 mm grosses Kalkplättchen (Taf. 7, Fig. 13, SK) auf, dem sich mitunter ein oder zwei noch kleinere zugesellen; bei dem kleinsten Exemplare sind indessen die ersten Armfelder noch ganz frei von jeglicher Skeletteinlagerung.

Kehren wir nun wieder zum Pentagon des Scheibenrückens zurück, so haben wir von dort aus noch die Platten zu verfolgen, die sich in interradialer Richtung daran anschliessen. Es sind deren in jedem Interradius zwei Reihen, die nebeneinander vom distalen Arm der Interradialplatte zur ersten oberen Randplatte ziehen und aus je zwei länglichen Platten bestehen. Wir wollen diese Platten die interbrachialen Platten (Taf. 7, Fig. 13, JB) nennen. Zwischen sich lassen die beiden Reihen der Interbrachialplatten ein ganz schmales, aber in distaler Richtung sich verbreiterndes Feld, das Interbrachialfeld (Taf. 7, Fig. 13, JBF). Die erste Interbrachialplatte (Taf. 7, Fig. 13, JB1) hat ein Länge von 0,7—0,77 und eine Breite von 0,31—0,36 mm. Mit ihrem proximalen Ende greift sie über einen der beiden Endlappen.
des distalen Armes der Interradialplatte, während ihr distales Ende von dem proximalen der zweiten Interbrachialplatte überlagert wird. Letztere (Taf. 7, Fig. 13, J B 2) ist 0,58—0,6 mm lang und 0,21—0,23 mm breit und liegt mit ihrem distalen Ende unter der ersten oberen Randplatte. Die v. Marenzeller'sche Abbildung ist insofern ungenau, als sie das proximale Ende der ersten Interbrachialplatte unter die Interradialplatte treten lässt, während es in Wirklichkeit, wie gesagt, darüber liegt. Zwischen und unter dem Paare der beiden ersten Interbrachialplatten schimmert das obere Ende des verkalkten Innenrandes des Interbrachialseptums durch, von dem sich hier mit aller Bestimmtheit feststellen liess, dass es dorsal am distalen Ende der Interbrachialplatte beginnt. Das zweite Paar der Interbrachialplatten ist bei meinem kleinsten Exemplare (Nr. 1) noch gar nicht angelegt, sodass das distale Ende des ersten Paares (Taf. 7, Fig. 14, J B 1) bis unter den Rand der ersten oberen Randplatten reicht.

Von den dorsalen Platten unseres Seesternes sind uns jetzt zur Betrachtung nur noch die oberen Randplatten und die Terminalplatte übrig. Die oberen Randplatten (Taf. 7, Fig. 13, øR 1 bis øR 5) sind von Sladen und v. Marenzeller erkannt worden, denn was Gasco dafür ansah, sind nur die Oberseiten der unteren Randplatten. Da sie von dem Hautüberzuge verdeckt werden, so können sie, ebenso wie die übrigen dorsalen Skeletstücke, erst durch Präparation deutlich gemacht werden. Jedersicht in jedem Antimer sind bei den in Rede stehenden Exemplaren fünf vorhanden, also eine mehr, als man untere Randplatten und eine weniger, als man Radialplatten zählt. Dasselbe Zahlverhältniss gilt auch für ältere und für jüngere Thiere, denn nach v. Marenzeller's Abbildung besassen seine Exemplare bei acht Radialplatten jederseits sechs untere und sieben obere Randplatten, und bei meinem kleinsten Exemplare sind bei vier Radialplatten jederseits zwei untere und drei obere Randplatten vorhanden. Wie Sladen und v. Marenzeller richtig hervorheben, stehen die oberen Randplatten nahezu senkrecht. Die Folge davon ist, dass man ihre Form in der Ansicht des Thieres von oben nicht ganz überblicken kann. Isolirt man aber die Platten und betrachtet sie von ihrer äusseren oder inneren Fläche, so stellt sich ihre Form als eine etwa beilförmige (Taf. 7, Fig. 18—20) dar, während die Beschreibung v. Marenzeller's, der sie „unregelmässig rhomboidal mit ausgeschweiften Seiten“ nennt, nur dann einigermaassen passt, wenn man die Platten in ihrer natürlichen Lage vom Rücken des Thieres aus ansieht. Die beilförmige Gestalt ist am besten an der ersten Platte (Taf. 7, Fig. 18) ausgeprägt. Man kann an ihr den Körper und den Stiel unterscheiden. Der Körper stellt eine kräftige, aussen leicht convex, innen leicht concav gewölbte, abgerundet vierseckige Platte dar, die an ihrem oberen Rande eine Länge von 0,75 mm hat. Von den vier Ecken des Körpers verlängert sich die untere proximale in den Stiel, der einen plumpen, starken Fortsatz des Körpers darstellt und auf dem Querschnitt noch dicker ist als der Körper selbst. Mit dem Stiele zusammen hat der proximale Seitenrand der ersten oberen Randplatte, der der interradialen Hauptebene zugekehrt ist, eine Länge von 0,89 mm. Der Stiel richtet sich nach unten und stützt sich hier auf eine kleine, abgerundet dreieckige, unpaare Platte (Taf. 7, Fig. 13, 14, 23, 8h), die sich zwischen die Stielenden der beiden ersten oberen Randplatten und das aborale Ende der ersten
unpaaren Ventrolateralplatte eindringt (über diese Platte s. auch p. 200 u. 204). Die zweite obere Randplatte (Taf. 7, Fig. 19) ist an ihrem oberen Rande ebensolang wie die erste (0,75 mm); ihr Körper ist aber im Verhältniss zu dem dicken, kräftigen, kurzen Stiele etwas kleiner und distal abgerundet; der proximale Rand des Körpers und Stieles zusammen ist 0,75 mm lang; nach unten ruht das Ende des Stieles auf dem äusseren Rande der ersten Platte des dritten ventrolateralen Bogens. Der zweiten oberen Randplatte ganz ähnlich, aber im Ganzen kleiner, ist die dritte (Taf. 7, Fig. 20), deren oberer Rand 0,7 und deren proximaler Rand 0,6 mm lang ist; ihr Stiel sitzt auf dem äusseren Rande der den vierten ventrolateralen Bogen darstellenden Skeletplatte. Noch kleiner sind die vierte und fünfte (Taf. 7, Fig. 13), an denen sich übrigens Stiel und Körper nicht mehr deutlich unterscheiden lassen. Die vierte stützt sich auf den inneren distalen Bezirk der dritten, die fünfte auf den der vierten unteren Randplatte. Mit ihrer oberen distalen Ecke greifen die erste bis dritte obere Randplatte (Taf. 7, Fig. 13) über das laterale Ende des entsprechenden Verbindungsstückes mit dem zweiten bis vierten Radialstücke; mit derselben Ecke überdeckt die vierte obere Randplatte die laterale Ecke des fünften Radialstückes. Mit ihrer oberen proximalen Ecke überlagert die erste obere Randplatte das äussere Ende der zweiten Interbrachialplatte. Die beiden folgenden oberen Randplatten legen sich mit ihrer oberen proximalen Ecke über den distalen Rand ihrer ersten, bez. zweiten Genossin, wodurch die von v. Marenzeller erwähnte und abgebildete dachziegelige Überdeckung der oberen Randplatten zu Stande kommt.

Die in v. Marenzeller's Abbildung gut wiedergegebene Terminalplatte (Taf. 7, Fig. 13, 14, 23, T, Fig. 15—17) ist kräftig entwickelt, 0,61—0,7 mm breit und 0,5—0,57 mm lang. Schon bei meinem kleinsten Exemplare stimmt sie in der Form mit ihrer späteren Gestaltung überein und bleibt auch in der Grösse nicht viel dahinter zurück, da sie bereits eine Breite von 0,62 und eine Länge von 0,43 mm hat. Von oben gesehen (Taf. 7, Fig. 15) erscheint sie gewölbt, am proximalen und distalen Ende leicht eingebuchtet; die distale Einbuchtung ist noch schwächer als die proximale. Von unten (Taf. 7, Fig. 16) betrachtet, lässt die Platte erkennen, dass diese beiden Einbuchtungen den Eingang und Ausgang einer Längsrinne bilden, die proximal breit beginnt und distal viel schmäler endigt. Die lateralen Ränder der Rinne nähern sich einander bogenförmig, bis sie an der Grenze des zweiten und dritten Längsdrittels der Platte nur noch 0,08 mm entfernt sind, um dann wieder auseinander zu weichen. An dieser Stelle ihrer stärksten Annäherung springen die Ränder lappenförmig gegeneinander vor; bis ebendorthin lassen sich in der Rinne die jüngsten Wirbelanlagen und an den Rändern der Rinne die jüngsten Adambularaplasten verfolgen, während das distale Stück der Rinne eine Nische für Fühler und Auge bildet. Die Seitenansicht der Terminalplatte lehrt, dass sie in ihrer distalen Hälfte dicker ist als in der proximalen. Die Ansicht von der Arm spitze aus (Taf. 7, Fig. 17) zeigt den thorförmigen, distalen Eingang in die Rinne.

Die sämtlichen Platten des dorsalen Skeletes tragen einen oder mehrere kleine Stacheln (Taf. 7, Fig. 21), die sich aus der den Rücken überkleidenden Haut erheben, eine zylindrische Form haben, 0,07—0,14 mm dick und 0,5—0,7 mm lang sind, und an ihrem in der Regel
kurz abgerundeten oder abgestutzten Ende feinbedornt erscheinen. Sowohl Gasco als auch Sladen und v. Marenzeller haben diese Stachelchen erwähnt, aber ihre Vertheilung auf die einzelnen Platten des Rückenskeletes nicht näher verfolgt. Indessen ist es ganz zutreffend, wenn Gasco im Allgemeinen bemerkt, dass die Stachelchen theils vereinzelt stehen, theils in Gruppen angeordnet sind. Sladen bezeichnet sie als papillenförmige, zu Stacheln überleitende Granula, was sich mit Bezug auf ihre gedrungene Gestalt wohl sagen lässt.

Stets sitzen die Stachelchen einer der darunter befindlichen, grösseren oder kleineren Skeletplatten auf, die ihnen zur Stütze dient. Bei jüngeren Thieren sind sie weniger zahlreich als bei erwachsenen, und auch bei diesen unterliegt ihre Zahl manchen Schwankungen. Bei meinem Exemplare Nr. 13 ist ihre Vertheilung auf die einzelnen Platten die folgende. Die Centralplatte ist mit 9 Stachelchen bewehrt, von denen 7 einen unregelmässigen Kranz um die 2 anderen bilden. Auf den secundären Verbindungsstücken, die die Centralplatte mit den Verbindungsstücken der Interradialplatten vereinigen, stehen 1 oder 2 Stachelchen. Von den Analplättchen trägt das grössere 3 und eines der kleineren 1 Stachelchen; es ist also ganz richtig, wenn sowohl Sladen als v. Marenzeller sagen, dass der After von kleinen Stacheln umgeben sei. Jede Interradialplatte (Taf. 7, Fig. 21) ist mit 6 oder 7 oder 8 Stachelchen ausgerüstet, von denen meistens 5 (oder 6) sich zu einem Kranze um 1 oder 2 mittlere ordnen. Die Verbindungsstücke der Interradialplatten (= Centroradialia) besitzen 2, 3, 4 oder 5 Stachelchen. Von den Radialplatten trägt die erste 3−5, die zweite 4 oder 5, die dritte 2−4, die vierte 2, die fünfte 1 oder 2 und die sechste 1 oder 0 Stachelchen. Von den kleineren, isolirt in den ersten Armfeldern gelegenen Kalkplättchen trägt das grössere 1 Stachelchen. Die Verbindungsstücke der ersten Radialplatte mit den Interradialplatten haben 2 Stachelchen (Taf. 7, Fig. 21). Die Verbindungsstücke der zweiten Radialplatte mit den ersten oberen Randplatten haben 2 oder 3, diejenigen der dritten Radialplatte mit den zweiten oberen Randplatten haben 1 Stachelchen, während die Verbindungsstücke der vierten Radialplatte mit den dritten oberen Randplatten stachellos sind. Auf jeder Interbrachialplatte (Taf. 7, Fig. 21) stehen 1 oder 2 Stachelchen. Von den oberen Randplatten trägt die erste 4, seltener 5, die zweite 3, seltener 4, die dritte 2, die vierte ebenfalls 2 und die fünfte nur 1 Stachelchen; auf der ersten und zweiten Platte bemerkt man deutlich, dass die Stachelchen sich mit Ausnahme eines tieferstehenden in eine Reihe stellen, die dem oberen Rande der Platte parallel läuft. Die Terminalplatte besitzt auf ihrem distalen Rande jederseits 4 Stachelchen, dicht darüber nochmals jederseits 4 und ausserdem noch einige kleinere mitten auf ihrer Oberseite.

Die einfach schlachtförmigen Papulae (Taf. 7, Fig. 13, p) sind, wie Sladen richtig angiebt, verhältnissmässig gross und vereinzelt gestellt. Bei meinem kleinsten Exemplare fehlen sie noch völlig. Die grösseren Exemplare sind damit vorzugsweise in den ja auch den grössten Raum dafür bietenden ersten Armfeldern ausgestattet, deren jedes vier oder fünf auseinandergriekte Papulae beherbergt. In jedem zweiten Armfeld besitzt mein Exemplar Nr. 13 zwei gleichfalls auseinandergriekte Papulae, während die übrigen Armfelder derselben entbehren. Von den Feldern des den Scheibenrücken einnehmenden Pentagons werden sowohl
die Radialfelder als auch die secundären Centralfeldern erst verhältnismässig spät mit diesen Organen besetzt. Denn während sie alle noch in meinem Exemplare Nr. 12 ohne Papulae sind, besitzen in meinem Exemplare Nr. 13 schon vier von den fünf Radialfeldern und drei von den fünf secundären Centralfeldern je eine Papula; ohne Papulae ist aber auch jetzt noch das Analfeld und das benachbarte, in der Richtung der Madreporenplatte gelegene secundäre Centralfeld. Auf der Ventralseite kommen nirgends Papulae zur Entwicklung.

Die kräftigen unteren Randplatten (Taf. 7, Fig. 13, 14, 22, 23, uR) bilden für sich allein den scharfen Rand des Körpers. Sie fallen durch ihre verhältnismässige Grösse und ihre horizontale Stellung auf. Wie schon Gasco hervorhebt, schliessen sie nicht ganz dicht aneinander, sondern sind durch schmale Strecken unverkalkter Haut voneinander getrennt. Ihre Form ist vorwiegend abgerundet viereckig, mit einem inneren, einem äusseren und zwei seitlichen Rändern; von letzteren kann man den der interradialen Hauptebene näheren als den proximalen, den entfernteren als den distalen bezeichnen.

Ihre Zahl beträgt bei meinen beiden kleinsten Exemplaren (s. die Tabelle) an jedem Antimer jederseits zwei, bei den Exemplaren Nr. 3—6 jederseits drei, bei den übrigen mir vorliegenden Exemplaren jederseits vier. An einem etwas grösseren Sladen'schen Exemplare waren jederseits fünf vorhanden, denn seine Angabe, es seien vielleicht sechs, falls man einen kleinen Stachelkamm an der Armspitze als eine besondere Platte zähle, bezieht sich offenbar auf die Bestachelung der Terminalplatte. Auch Gasco giebt an seinem viel grösseren Exemplare jederseits nur fünf an, während v. Marenzeller an seinen Exemplaren, obschon sie etwas kleiner waren als das Gasco'sche, jederseits sechs fand. Dieser Widerspruch erklärt sich wohl daraus, dass Gasco die jüngste Platte wegen ihrer Schmalheit überschien hat.

An meinem grössten Exemplare (Taf. 7, Fig. 13, 23, uR1—uR4) haben die vier unteren Randplatten fast genau die gleiche Breite von 0,8 mm, während die Länge des äusseren Randes an der ersten 0,63, an der zweiten 0,52, an der dritten ebensoviel und an der vierten 0,38 mm misst. Die Form der beiden ersten Platten ist ein Viereck mit abgerundeten Ecken, dessen Aussenseite convex ist, während die drei anderen Seiten leicht concav gebuchtet sind. Die dritte Platte hat mehr die Form eines unregelmässigen Ovals und die vierte stellt ein langes Dreieck mit abgerundeten Ecken dar. Da der grösste Durchmesser der Platte einen um so spitzeren Winkel mit der radialen Hauptebene bildet, je näher die Platte an der Armspitzte liegt, so wird es durch diese gesteigerte Schrägstellung der letzten Platten ermöglicht, dass der von den Platten gebildete Randsaum des Körpers sich nach der Armspitzte hin verschmälert, obgleich jener auch als grösste Breite bezeichnete, längste Durchmesser der Platte der gleiche bleibt.

An meinem kleinsten Exemplare (Taf. 7, Fig. 14, 22, uR1—uR2) hat die erste Platte eine abgerundet viereckige, die zweite (= letzte) eine abgerundet dreieckige Umrandung; jene ist 0,6 mm breit und am Aussenrande 0,57 mm lang; diese hat dieselbe Breite, aber am Aussenrande nur eine Länge von 0,4 mm.

Der Aussenrand aller unteren Randplatten ist seiner ganzen Länge nach mit einer Reihe
von horizontal gerichteten Stachelchen (Taf. 7, Fig. 22, Rst) besetzt, die in ihrer Form den Stachelchen des Dorsalskeletes entsprechen und bei meinem kleinsten Exemplare 0,23—0,28 mm, bei meinem grössten bis 0,4 mm lang sind. Durch ihre Anordnung bilden sie eine Art Kamm auf dem convexen Aussenrande der Platte, der gewöhnlich auf der ersten Randplatte aus sechs (seltener fünf oder sieben), auf der zweiten aus sechs oder fünf, auf der dritten aus vier und auf der vierten Platte aus drei Stachelchen besteht. Die Stachelchen stecken mit ihrer basalen Hälfte in die Platten überkleidend und zusammenhaltenden Haut (Taf. 7, Fig. 22 a) und zwar so, dass dieser basale Hautüberzug für alle Stachelchen desselben Kammes ein gemeinsamer ist, wie dies auch schon Gasco und v. Marenzeller richtig angeben.

Während die ventrale Oberfläche der unteren Randplatten frei von jeglicher Bestachelung bleibt, verhältn sich die dorsale Oberfläche anders. Hier findet sich auf jeder Platte ganz nahe dem Aussenrande, also fast unmittelbar über dem Randkamme, eine zweite, weniger regelmässig geordnete Längsreihe von ähnlichen, in dem Hautüberzug steckenden Stachelchen, die aber aufwärts gerichtet sind. Ich zählte deren auf der ersten und zweiten Platte meines grössten Exemplares vier, auf der dritten und vierten drei. Auf diese Stachelchenreihe folgend kann die Dorsalseite der Platte überdies noch einige (1—3) Stachelchen besitzen, die mit den eben beschriebenen zusammen eine längliche Gruppe bilden. Die Stachelchen der dorsalen Oberfläche der unteren Randplatten sind schon von Gasco bemerkt worden, der aber der irrthümlichen Meinung war, dass sie von besonderen, den unteren Randplatten aufliegenden, oberen Randplatten getragen würden. Sladen dagegen hat an seinem *fimbriatus* die Sachlage ganz zutreffend geschildert, indem er auf der Dorsalseite der unteren Randplatten, ihrem Rande parallel, eine Reihe von vier oder fünf Granula (so nennt er die Stachelchen) und ausserdem mitunter ein, zwei oder mehr unregelmässig gestellte Granula angiebt.

Die Ventrolateralplatten (Taf. 7, Fig. 22, 23), deren Form und Lagerung durch den äusseren Hautüberzug verdeckt wird, sind weder von Gasco noch von v. Marenzeller näher geschildert worden; doch hat v. Marenzeller in einer seiner Figuren (Taf. 2, Fig. 3 A) eine Abbildung derselben gegeben, die den von mir beobachteten Verhältnissen ganz gut entspricht. Im Ganzen ist die Anordnung der Ventrolateralplatten sehr regelmässig, wie sich bei Betrachtung eines aufgehellten Präparates sofort erkennen lässt. Sehen wir uns das Präparat (Taf. 7, Fig. 23) von der Banchseite an, so unterscheiden wir zunächst in dem von den Ventrolateralplatten besetzten dreieckigen Interambulacralfelde genau in internadialer Richtung zwei unpaare, aufeinander folgende Platten, von denen die äussere (Taf. 7, Fig. 23, VI) sich durch ihre Grösse vor allen anderen Ventrolateralplatten auszeichnet und mit den Ecken ihres äusseren Randes bis an oder bis unter die nächstgelegenen Ecken der beiden ersten unteren Randplatten reicht; die Mitte ihres äusseren Randes stösst an die kleine dreieckige unpaare Platte, die wir an den Stielenden der beiden ersten oberen Randplatten (s. p. 197) angetroffen haben. Die Länge dieser grossen Ventrolateralplatte (in der Richtung der internadiaten Hauptebene gemessen) beträgt 0,6 mm. Ihr äusserer Bezirk ist etwas schmäler als der innere, der eine Breite von 0,6—0,75 mm hat. Der innere Rand zeigt einen mittleren und zwei seitliche
Lappen, von denen die beiden letzteren selbst wieder durch eine kleine Einbuchtung in zwei kleinere Lappen getheilt sein können. Wie jüngere Exemplare (Taf. 7, Fig. 22, VIII) lehren, ist diese größte Ventrolateralplatte zugleich diejenige, die von allen zuerst entsteht. Adoral schliesst sich an sie eine zweite unpaare, schmälere, 0,6—0,68 mm lange und 0,43—0,54 mm breite Platte (Taf. 7, Fig. 23, VIII) an, die einen abgerundet fünfflappenden Umriss besitzt; zwei Lappen liegen nach innen (adoral), zwei lateral, der fünfte nach aussen aboral. Der äussere Lappen hat sich im Gegensatz zu den vier anderen gestreckt, sodass er wie ein Handgriff der Platte aussicht. Mit dem Ende dieses äusseren Lappens erstreckt sich die Platte bis unter den mittleren Lappen am Innenrande der ersten unpaaren Platte. Aus einem Vergleiche mit jungen Exemplaren (Taf. 7, Fig. 22, VIII) ergiebt sich, dass diese zweite unpaare Platte auch mit Bezug auf die Zeit ihrer Entstehung sich unmittelbar an die erste anschliesst, also die zweitälteste des ganzen Interambulacralfeldes ist.

Alle anderen Ventrolateralplatten sind paarig geordnet, sodass sie in den beiden Hälften eines jeden Interambulacralfeldes einander in Lage und Form genau entsprechen. Sie bilden bogenförmige, schief Querreihen, die theils von den beiden unpaaren Platten, theils von der Basis der unteren Randplatten kommen und zu den Adambulacralplatten hinzurücken. Mit Perrier wollen wir diese Reihen die ventrolateralen Bogen nennen.

Der erste, d. h. der interradialen Hauptebene am nächsten gelegene Bogen besteht aus zwei Platten, von denen die erste, ältre und grössere (Taf. 7, Fig. 23, V11 (1)) einen unregelmässig abgerundeten, annähernd dreilappenden Umriss, eine Länge von etwa 0,45 mm und eine Breite von rund 0,34 mm hat und an ihrem äusseren Lappen von dem entsprechenden inneren Lappen der zweiten unpaaren Platte überlagert wird. An ihrem inneren Ende dagegen legt sie sich über den äusseren Rand der zweiten, jüngeren Platte (Taf. 7, Fig. 23, V12 (1)) ihres Bogens, die von langer Form, 0,23 mm Länge und 0,11 mm Breite, bis zur ersten Adambulacralplatte sich erstreckt. Zwischen den beiden ersten Platten des eben beschriebenen ersten Bogenpaares schimmert die ventrale Ansatz (Taf. 7, Fig. 23, ∞) des verkalkten Innenrandes des interbrachialen Septums durch.

Der zweite ventrolaterale Bogen beginnt an dem seitlichen inneren Lappen der ersten unpaaren Ventrolateralplatte, besteht ebenfalls aus zwei Stücken und endigt an der vierten Adambulacralplatte. Sein erstes Stück (Taf. 7, Fig. 23, V11 (2)) ist 0,5 mm lang und 0,25 mm breit, liegt mit seinem schmäleren, äusseren Ende unter dem Randlappen der ersten unpaaren Platte, dagegen mit seinem breiteren, inneren Ende über dem äusseren Ende des zweiten Stückes. Letzteres (Taf. 7, Fig. 23, V12 (2)) ist etwa 0,25 mm lang und 0,12 mm breit.

Der dritte ventrolaterale Bogen beginnt unmittelbar an den unteren Randplatten, zwischen der ersten und zweiten derselben, reicht hinüber zur sechsten Adambulacralplatte und besteht aus einer grösseren, älteren, ersten und einer kleineren, jüngeren, zweiten Platte. Die erste Platte (Taf. 7, Fig. 23, V11 (3)) ist 0,5 mm lang, 0,36 mm breit, liegt mit ihrem äusseren Rande an oder unter dem inneren Rande der ersten und der zweiten unteren Randplatte und überlagert mit ihrem inneren Rande den äusseren der 0,34 mm langen und 0,22 mm breiten zweiten Platte (Taf. 7, Fig. 23, V12 (3)).
Der vierte Bogen endlich wird nur von einer einzigen, 0,36 mm langen und 0,25 mm breiten Platte (Taf. 7, Fig. 23, VI(4)] dargestellt, die sich vom Zwischenräume der zweiten und dritten unteren Randplatte zur neunten Adambulacralfplatte erstreckt.

Bei älteren Exemplaren als den mir vorliegenden legt sich nach v. Marenzeller's Abbildung noch ein fünfter und sechster Ventrolateralbogen in Gestalt von je einer kleinen Platte an.

Von den früher (s. p. 191) erwähnten Hautfurchen der Interambulacralfelder ist in Beziehung auf die ventrolateralen Bogen bemerkenswerth, dass sie in ihrer Anordnung im Ganzen diesen Bogen entsprechen, also gewissermaassen von innen her durch die Skeletstücke der Bogen gestützt werden.

Nach Perrier (1894) soll in den ventrolateralen Bogen der Seesterne überhaupt diejenige Platte die erste sein, die an die Adambulacralplatten angrenzt (»Initialplatte« des Bogens). Das ist aber bei der vorliegenden Art sicherlich nicht der Fall. Im Gegenteil, die älteste Platte eines jeden Bogens ist hier diejenige, die den unteren Randplatten zunächst liegt. Bei einem erst 5 mm grossen Exemplare (Taf. 7, Fig. 22) sind in jedem Interambulacralfeld im Ganzen erst sechs Platten angelegt: zwei unpaare und vier paarige. Davon entsprechen die zwei unpaaren den beiden späteren unpaaren; die erste unpaare (Taf. 7, Fig. 22, VII) hat sogar schon dieselbe Breite wie später, während die zweite (Taf. 7, Fig. 22, VIII) noch etwas weiter hinter ihrer späteren Grösse und Form zurück ist. Von den vier paarigen liegt jederseits eine, etwas grössere (Taf. 7, Fig. 22, VII(3)) an der Stelle, an der wir später die erste Platte des dritten Bogens angetroffen haben. Die andere, erst noch ganz winzige, paarige Plattenanlage (Taf. 7, Fig. 22, VII(2)) befindet sich jederseits dort, wo später die erste Platte des zweiten Bogens liegt. Es ist demnach im Ganzen von all den Ventrolateralplatten, die in dem erwachsenen Thiere an die Adambulacralplatten angrenzen, jetzt auch noch nicht eine einzige vorhanden. Mit anderen Worten: die Ventrolateralplatten treten in ihrer Altersfolge in distal-proximaler Richtung auf; das Interambulacralfeld wächst also nicht an den Randplatten, sondern an den Adambulacralplatten.

Alle zwischen den Ventrolateralplatten übrigbleibenden Felder sind von unverkalkter Haut verschlossen, in der sich weder Papulae entwickeln, noch kleinere Skeletseinlagerungen einstellen.

Von systematischem Werthe ist die Frage nach der Bestachelung der Ventrolateralplatten. Nach Gasco's und insbesondere nach v. Marenzeller's Angaben waren an den wenigen ihnen vorliegenden Exemplaren die Ventrolateralplatten durchaus stachellos. Sladen dagegen fand an seinem „fimbriatus, den er vorzugsweise auf dieses Merkmal“ 1) hin für eine besondere Art erklärte, auf denjenigen Ventrolateralplatten, die an die unteren Randplatten angrenzen, in der Regel ein kleines, papillenförmiges Stachelchen; ausserdem trugen

1) Dass das einzige andere Merkmal, das Vorhandensein eines zweiten inneren Adambulacralstachels, keinen Unterschied zwischen „fimbriatus und capreensis“ bedingt, werden wir weiter unten (s. p. 201) sehen.
bei seinem Exemplare auch noch eine oder zwei der übrigen Ventrolateralplatten je ein ähnliches Stachelchen. Meine Exemplare verhalten sich nun in dieser Hinsicht fast alle so, wie es Sladen von seinem *fimbriatus* beschreibt. Z. B. trägt mein Exemplar Nr. 12 auf der ersten und zweiten unpaaren Platte sowie auf der ersten Platte des zweiten und dritten Bogens je einen kleinen Stachel, der sich ziemlich genau auf der Mitte der betreffenden Platte erhebt; mein Exemplar Nr. 7 besitzt in jedem Interambulacralfeld nur vier Stacheln, von denen je einer auf der ersten und zweiten unpaaren Platte und auf der ersten Platte des dritten Bogens angebracht ist; das Exemplar Nr. 3 hat nur auf den beiden unpaaren Platten eines jeden Interambulacralfeldes je einen Stachel. Nur ausnahmsweise kommt es vor, z. B. an meinem Exemplar Nr. 10, dass zwei Stacheln auf einer Platte stehen; das ist dann in der Regel die erste Platte des dritten Bogens. Wenn man nun erwägt, dass die Exemplare, die Gasco und v. Marenzeller vor sich gehabt haben, erheblich älter waren als Sladen's und meine Thiere, so wird man vermuten dürfen, dass die Stachelchen der Ventrolateralplatten bei älteren Thieren entweder verloren gehen oder von dem sich später verdickenden Hautüberzuge vollständig verdeckt werden können. Auch wäre es möglich, dass das Auftreten dieser Stachelchen individuellen Schwankungen unterworfen ist; denn ich sehe, dass auch an meinen Exemplaren ihre Zahl mitunter geringer, als vorhin angegeben, ist. An meinem kleinsten Exemplare (Taf. 7, Fig. 22) fehlen die Stachelchen sogar völlig, woraus man wohl schliessen kann, dass sie überhaupt verhältnissmässig spät zur Ausbildung gelangen. In keinem Falle aber wird man in ihrem Vorhandensein oder Fehlen ein ausreichendes Merkmal zur Unterscheidung zweier Arten erblicken können.

Schliesslich ist in Betreff der ventrolateralen Bogen auch noch auf ihre Beziehung zu den oberen Randplatten hinzuweisen. Nimmt man nämlich die unteren Randplatten hinweg, so sieht man sofort, dass die unteren Bogen sich in ihrer Lage genau an die oberen Randplatten anschliessen. Die erste obere Randplatte und ihr Verbindungsstück mit der zweiten Radialplatte bilden alsdann die Fortsetzung des zweiten ventrolateralen Bogens, wenn man sich diesen durch die erste unpaare Platte hindurch verlängert denkt. Die zweite obere Randplatte und ihr Verbindungsstück mit der dritten Radialplatte setzen sich in den dritten ventrolateralen Bogen fort, und die dritte obere Randplatte nebst ihrem Verbindungsstück mit der vierten Radialplatte verlängert sich in den vierten ventrolateralen Bogen. An der Stelle, wo die ventrolateralen Bogen am Rande des Körpers in die aus den oberen Randplatten und deren Verbindungsstücken mit den Radialplatten gebildeten dorsalen Spanen umbiegen, sitzen in horizontaler Lage die unteren Randplatten so auf, dass sie mit ihrer Basis sich in die Zwischenräume jener Stellen einpfanzten und zugleich etwas tiefer liegen als das äussere Ende der betreffenden Ventrolateralplatten. Blickt man von oben auf diese Stellen, bevor man die unteren Randplatten weggenommen hat, so sieht es so aus, als ruhten die Stiele der oberen Randplatten einfach auf dem distalen Bezirke der Basis der unteren; aber nach Wegnahme der unteren Randplatten lehrt die Seitenansicht des Körpersrandes, dass sie sich eigentlich auf den äusseren Theil der Ventrolateralplatten stützen. Mit anderen Worten: es stossen an derselben horizon-
talen Berührungsstelle obere Randplatten, Ventrolateralplatten und untere Randplatten so zusam-
menn, dass man die letzteren hinwegnehmen kann, ohne die Verbindung jener zu lockern. Nur an einem Punkte schiebt sich an dieser Stelle ein besonderes Schaltstück (Taf. 7, Fig. 13, 14, 23, seh) ein, nämlich genau in der interradialen Hauptebe ne da, wo die erste unpaare Ventro-
lateralplatte mit den Stielen der beiden ersten oberen Randplatten zusammentrifft. Wir haben dieses unpaare Schaltstück schon einmal, bei Besprechung der oberen Randplatten (s. p. 197), berührt. Es hat eine abgerundet dreieckige Form und ist so gestellt, dass die eine Seite des Dreiecks an die erste unpaare Ventrolateralplatte, die beiden anderen an die Stie le der oberen Randplatten anstossen. Sein querer Durchmesser misst 0,35, seine Länge 0,3 mm. Schon bei meinem jüngsten Exemplare ist die Anlage dieses Schaltstückes deutlich zu sehen. Da es den früheren Beobachtern gänzlich entgangen ist, so glaubte ich seine Anwesenheit besonders her-
vorheben zu müssen.

Die Adambulacralbewaffnung (Taf. 7, Fig. 22) ist schon von GASCO richtig be-
sc hrieben worden. Sie besteht aus drei Längsreihen von kleinen Stacheln, die an ihrer Basis
von weicher Haut bedeckt sind. Auf jeder Platte (Taf. 7, Fig. 22, I, II, III) steht ein innerer, ein mittlerer und ein äusserer Stachel, von denen von MARENZELLER in weiterer Ausführung der GASCO'schen Beschreibung bemerkt, dass der innere quer zur Längsachse des Armes, die beiden anderen parallel zu dieser Achse comprimirt sind und dass der mittlere etwas länger (er misst bei meinen Exemplaren 0,3—0,4 mm) ist und ein wenig näher am aboralen Plattenrande steht als der äussere. Ich kann diese Angaben nur bestätigen, muss aber hinzufügen, dass ich bei meinen grösseren Exemplaren auf der ersten oder auch auf der zweiten Adambulacralplatte statt des einen inneren Stachels deren zwei finde, die parallel der Längsachse des Armes nebeneinander stehen. Dagegen besitzt mein kleinstes Exemplar auch auf der ersten wie auf allen folgenden Adambulacralplatten nur einen einzigen inneren Stachel. Die Verdoppelung des inneren Stachel s tritt also erst mit dem Heranwachsen des Thieres ein, erstreckt sich aber nur auf die proximalen Adambulacralplatten. Damit fällt ein Unterschied hinweg, der nach SLADEN zwischen seinem M. fimbriatus und GASCO's capreensis bestehen soll. SLADEN gibt nämlich von seiner angeblich neuen Art zwei innere, in der Furche versteckte Stachelchen auf jeder Adambulacralplatte an. Die zugehörige Abbildung (seine Taf. 58, Fig. 6), die die Bewaffnung dreier Adambulacralplatten darstellt, zeigt indessen nur auf zwei Platten je zwei innere Stacheln, auf der dritten jedoch nur einen. Ich glaube daraus schliessen zu müssen, dass sich bei seinem Exem-
plare die Adambulacralbewaffnung genau so verhält, wie ich es bei meinen grösseren Exemplaren gefunden, nämlich auf den proximalen Adambulacralplatten zwei, auf den übrigen nur ein innerer Stachel.

Die Munddeckplatten (Taf. 7, Fig. 22, ME) haben eine längliche, am Aussenende griff-
artig verschmälerete Form. Ihr suturaler Rand ist erheblich länger als der ambulacrale, und dieser wieder länger als der distale. Ihre Länge beträgt am suturalen Rande gemessen 0,75, ihre Breite 0,25 mm. In der Ventralansicht des Thieres schimmert an den aufgehellten Prä-
parate auch schon bei meinem kleinsten Exemplare unter den distalen Enden der Munddeck-
platten die Interoralplatte (Taf. 7, Fig. 23, Jo) durch, deren distaler Lappen eine kleine Strecke weit über das distale Ende der Munddeckplatten hinausragt, sodass sie hier im Innenwinkel des Interambulacralfeldes sichtbar wird. Die Platte ist 0,45 mm lang und ebenso breit und hat einen abgerundet vierlappigen Umriss, an dem man einen adoralen, zwei laterale und den erwähnten etwas längeren aboralen (≈ distalen) Lappen unterscheiden kann.

Die Bewaffnung der Munddeckplatten (Taf. 7, Fig. 22) soll nach v. Marenzeller nur aus zwei Stacheln bestehen, also jede ganze Munddecke mit vier Stacheln bewehrt sein. In Wirklichkeit ist aber die Bewaffnung der Munddeckplatten viel reichlicher. Sowohl bei meinem kleinsten (Taf. 7, Fig. 22) als bei meinen größten Exemplaren finde ich ganz regelmässig auf jeder Munddeckplatte genau sechs Stacheln (Taf. 7, Fig. 22, 1, 2, 3, 4, 5, 6), die so vertheilt sind, dass deren vier (Taf. 7, Fig. 22, 1, 2, 3, 4) nebeneinander den ambulacralen Rand der Platte besetzen, während zwei andere (Taf. 7, Fig. 22, 5, 6) schräg hintereinander mitten auf der ventralen Oberfläche der Platte stehen. Nur diese zwei scheint v. Marenzeller, wie ich nach seiner Abbildung vermuthe, gesehen zu haben. Von den vier Stacheln des ambulacralen Randes ist der erste, der eigentlichen Munddecke aufsitzende (Taf. 7, Fig. 22, 1) viel länger und dicker als die drei anderen, die unter sich allmählich an Grösse abnehmen. Die Länge des Mundeckstachels beträgt 0,34 mm, während der vierte, kleinste Stachel des ambulacralen Randes nur 0,18 mm lang ist. Die beiden Stacheln der ventralen Oberfläche der Platte haben ungefähr dieselbe Länge wie der Eckstachel, sind aber etwas schlanker. Bei meinem kleinsten Exemplare sind diese Maasse natürlich entsprechend geringer; es misst z. B. der Eckstachel nur 0,23 mm an Länge.

Pedicellarien fehlen unserer Art, wie überhaupt derGattung Marginaster, vollständig. Die Füsschen endigen mit einer kleinen Saugscheibe.

Da ich keine lebenden Thiere vor mir gehabt habe, so kann ich über ihre Färbung
nicht aus eigener Anschauung berichten'). Gasco nennt die Farbe des Rückens ziegelroth, die des Bauches weisslich; v. Marenzeller beschreibt die Oberseite als lichtröthlichgelb, die Unterseite als weiss.

Bei Neapel kommt die Art im nordwestlichen Theile des Golfes auf der Secca d'Ischia und auf der Secca di Benda Palummo vor, im südlichen Theile des Golfes nördlich und nordöstlich vom Ostende Capris und in der Bocca piccola. Andere Fundorte im westlichen Becken des Mittelmeeres sind bis jetzt nicht bekannt; ebensowenig kennt man die Art aus der Adria; dagegen ist sie im östlichen Mittelmeer bei Cap Anamur und (im ägäischen Meere) nördlich von Stampalia (Astropalia) gefunden worden. Ausserhalb des Mittelmeeres liegt der einzige, bis jetzt bekannt gewordene Fundort zwischen Nordirland und Rockall.

An letztgenannten Orte wurde sie aus der grossen Tiefe von 2487 m erbeutet, während sie im Mittelmeer in geringeren Tiefen lebt. Hier ist die grösste Tiefe ihres Vorkommens (bei Stampalia) 597 m; im Golfe von Neapel findet sie sich nach Gasco in 100—150 m, während alle durch Colombo genauer festgestellten Fundorte zwischen 49 und 91 m liegen.

Ueber Nahrung, Fortpflanzungszeit und Larvenform wissen wir bis jetzt noch nichts.

In Betreff der Anatomie will ich nur bemerken, dass die Art gut entwickelte radiale Blinddärme besitzt, und dass zwei der von mir seernten Exemplare in den kurzen und verhältnissmassig dicken Schläuchen ihrer Genitalorgane deutlich ausgebildete, aber anscheinend noch unreife Eizellen erkennen liessen.

1) Die Bemühungen der zoologischen Station, in den letzten beiden Jahren nochmals in den Besitz lebender Exemplare zur Anfertigung einer Farbenskizze zu kommen, blieben leider erfolglos.
Fam. Asterinidae.

Körper kurzarmig-sternförmig bis pentagonal, mit abgerundeten Ecken, oben gewölbt, unten flach, mit in der Regel zugeschräftem, fein bestacheltem Rande, der nur von den horizontal gestellten, zahlreichen, kleinen unteren Randplatten gebildet wird; die Rückenplatten bilden auf den Armen einen besonderen medianen Längsstreifen; die Rückenplatten sind mit je einer Gruppe kleiner Stachelchen, die Ventralplatten mit einigen nebeneinander stehenden, kleinen Stacheln besetzt; Pedicellarien vorhanden, zangenförmig; Papulae einfach, auf fünf breite, radiale Felder und den Scheitel beschränkt; Füsse mit deutlicher Saugscheibe.

Im Mittelmeere nur durch eine Art und eine Varietät derselben vertreten: *A. gibbosa* (Penn.) und *A. gibbosa var. pancerii* (Gasco).

Taf. 5, Fig. 5—8; Taf. 9, Fig. 1—14.

1733 Pentaceros gibbus plicatus et concavus Linck p. 25; T. 3, Nr. 20.
1777 Asterias gibbus Pennant Vol. 1, p. 62.
1792 Asterias minuta Olivi p. 65.
1805 Asterias verruculata Retzius p. 12.
1814 Asterias umbilicata Konrad p. 1.
1826 Asterias membranacea Risso p. 268).
1828 Asterias gibbus Fleming p. 486.
1834 Asterias gibbus Blainville p. 235.
1834 Asterias pulchella Blainville p. 235; T. 23, f. 3.
1834 Asterina minuta Nardo p. 716.
1835 Asterina minuta L. Agassiz p. 192.
1839 Asterina gibbus Forbes p. 120; T. 3, f. 1.
1840 Asterias exigua A. Costa p. 56.
1841 Asteria gibbus Gray p. 250.
1841 Asterias exigua Delle Chiage Vol. 4, p. 55—56; Vol. 5, p. 122; T. 125, f. 1; T. 129, f. 16; T. 130, f. 2; T. 132, f. 7, 15; T. 135, f. 2; T. 171, f. 14; T. 172, f. 9, 10.
1842 Astericeus verruculatus Müller & Trochel p. 41.
1846 Asterias micrura Verany p. 5.
1857 Astericeus verruculatus M. Sars p. 105.
1860 Astericeus verruculatus Lütken p. 678.
1861 Astericeus verruculatus Grube p. 131, 167.
1862 Astericeus verruculatus Dujardin & Hupé p. 375.
1863 Astericeus verruculatus Heller p. 144.
1864 Asterias exiguas Beltremieux p. 90; T. 2, f. 2, 2 bis.
1864 Astericeus verruculatus Grube p. 105.
1865 Astericeus verruculatus Lütken p. 138—143.
1865 Asterina gibbus Norman p. 121—122.

1866 Asterina gibbosa Gray p. 16.
1868 Asteriscus verruculatus Heller p. 53, 81.
1868 Asteriscus verruculatus Grube p. 143.
1869 Asteriscus verruculatus Perrier p. 98—99; T. 2, f. 10.
1869 Asteriscus verruculatus Grube p. 128.
1869 Asteriscus gibbosus P. Fischer p. 366.
1870 Asteriscus paneeri Gaseo p. 86—90.
1872 Asteriscus arrectifensis Greeff p. 105—106.
1874 Asteriscus verruculatus Lacaze-Duthiers (Comptes rendus) p. 24—30.
1874 Asteriscus verruculatus Lacaze-Duthiers (Arch. zool. expér.) p. 15—23.
1875 Asterina gibbosa Perrier p. 295—296.
1876 Asteriscus verruculata Gaseo p. 10.
1876 Asteriscus paneeri Gaseo p. 9—11, f. 8, 9.
1876 Asteriscus verruculosus Teuscher p. 196.
1876 Asteriscus verruculatus Stossich p. 351.
1878 Asterina gibbosa Giard p. 297—300.
1878 Asterina gibbosa Perrier p. 25, 65, 86.
1878 Asterina gibbosa Ludwig p. 290—295; T. 25.
1879 Asterina gibbosa Viguiier p. 207—211; T. 14, f. 8—12.
1879 Asterina gibbosa var. minor Marion p. 7.
1879 Asteriscus verruculatus J. Barrois p. 1—8; T. 1—2.
1879 Asterina gibbosa Ludwig p. 510—511.
1882 Asterina gibbosa Ludwig p. 1—98; T. 1—8.
1882 Asteriscus verruculatus Th. Barrois p. 42.
1882 Asterina gibbosa Greeff p. 116, 118.
1883 Asteriscus verruculatus Stossich p. 159—190.
1883 Asterina gibbosa Marion (Nr. 1) p. 29, 30, 45, 52, 56, 60, 79.
1884 Asteriscus Gruber p. 15, 17.
1885 Asterina gibbosa Carus p. 85.
1885 Asteriscus verruculatus Koehler p. 13, 36, 56.
1885 Asterina gibbosa Braun p. 305.
1886 Asterina gibbosa Preyer p. 29.
1886 Asterina paneeri Preyer p. 30.
1886 Asterina gibbosa Norman p. 6.
1886 Asterina paneeri Norman p. 6.
1886 Asterina gibbosa Haddon p. 618.
1888 Asterina gibbosa Henderson p. 332.
1888 Asterina paneeri Colombi p. 51, 57, 58, 90, 93, 99.
1888 Asterina gibbosa Th. Barrois p. 70.
1888 Asteriscus gibbosus Simroth p. 231.
1889 Asterina gibbosa Sladen p. 389, 390, 391, 774.
1891 Asterina gibbosa Cuvier p. 626.
1891 Asterina gibbosa Herdman p. 201.
1892 Asterina gibbosa Bell (Cat.) p. 52—53; T. 10, f. 9, 10.
1892 Asterina gibbosa Bell (Fingal) p. 525.
1893 Asterina gibbosa Herdman p. 74.
1894 Asterina gibbosa Scherren p. 216.
1894 Asterina gibbosa Russe p. 1—11.
1894 Asterina gibbosa Garstang p. 228.
1895 Asterina gibbosa Siitzer p. 39.
1895 Asterina gibbosa v. Marenzeller p. 145.
1895 Asterina gibbosa Herdman p. 29.
1896 Asterina gibbosa Marchisio p. 3.

Diagnose. Grösse bis 50, seltener bis 70 mm. r: R = 1 : 1,5—1,75. Afterfeld gross, das ganze Centralfeld des Scheitels einnehmend und von einem aus den primären Interradial- und Radialplatten gebildeten Ringen umgeben. Im Rückenflekt lassen sich radiale, adventiale und dorsolaterale Platteureihen unterscheiden. Im Bereiche der Papulac. liegen lose, supplementäre Plättchen in den dorsalen Skelettlücken. Papulac. auf den Scheitel und auf fünf breite, radiale

Trotzdem oder vielleicht gerade weil die vorliegende Art zu den gemeinsten Seesternen gehört, ist ihre Synonymik recht reich geworden. Sie tritt in der Litteratur unter nicht weniger als elf verschiedenen Namen auf), unter denen die PENNANT'sche Benennung gibbosa als die älteste (1777) den Vorrang hat, da man die LINCK'sche, durch drei Adjectiva ausgebrückte Bezeichnung nicht gebrauchen kann. Synonym ist zunächst der OLIVI'sche Namen minuta (1792), den auch noch NARDO, L. AGASSIZ und D'ORBIGNY anwenden. RETZIUS (1805) gab der Art den Namen verruculata, der, von MÜLLER & TROESCHL's Autorität gestützt, in der Folgezeit hauptsächlich bei den nichtenglischen Zoologen sich einbürgerte und in der deutschen Litteratur zuletzt noch einmal von v. MARTENS (1889) gebräuchlich ist. Gar keine Aufnahme von anderer Seite haben die Benennungen umbilicata und minima gefunden, von denen jene von KONRAD (1814), diese von VIKARY (1846) herrührt. DELLE CHIAJE's, auch von COSTA angewandte Bezeichnung der Art als Asterias exigua beruht auf einer unrichtigen, übrigens auch schon von DELLE CHIAJE (1825) selbst für zweifelhaft gehaltenen Identification mit der von LAMARCK aufgestellten A. exigua des indischen Oceans. Risso (1826) und in seiner ersten Publication (1840) auch GRUBE haben irrthümlich die vorliegende Art für den LINCK'schen Palmipes membranaceus gehalten. Der alte PENNANT'sche Namen dagegen wurde von den englischen Zoologen, an ihrer Spitze FLEMING (1828) und FORBES (1839, 1841), unentwegt festge-

1) An der Adria wird sie von den Fischern nach OLIVI und GRUBE als Stelletta, bei Neapel nach DELLE CHIAJE als Stelluccia bezeichnet.

halten, und ihnen schlossen sich allmählich auch die französischen und deutschen Zoologen an, sodass er sich in den letzten Jahren wohl ganz allgemeine Anerkennung errungen hat.

MÜLLER & TROSCHEL haben die Art zu weit gefasst, indem sie auch noch die mit *A. cephea* identische *burtonii* Gray aus dem Rothen Meere und dem Indischen Ocean dazu rechneten, die sich seitdem [vergl. PERRIER (1875) und SLADEN (1889)] sicher als spezifisch verschieden von *gibbosa* herausgestellt hat.

In ihrem Habitat (Taf. 5, Fig. 5, 6) kennzeichnet sich die *Asterina gibbosa* durch ihren kleinen bis höchstens mittelgrossen, mehr oder weniger pentagonalen bis kurzarmig-sternförmigen, unten flachen, oben meistens gewölbten, mit kleinen Stachelgruppen besetzten Körper, an dessen gewöhnlich ziemlich scharfem Rande eine Reihe von getrennten Stachelbüscheln einen deutlichen Saum bildet, während die Randplatten durch ihre geringe Grösse sich für den ersten Anblick
kaum bemerklich machen; die Stachelgruppen der Bauchseite bestehen durchweg aus einer geringen Anzahl etwas grösserer Stachelchen als die des Rückens, stehen auch weniger dicht und lassen eine Anordnung in regelmässige Längs- und gebogene Querreihen deutlicher erkennen als jene.

Im Einzelnen bietet die Körperform mannigfache Verschiedenheiten dar, die theils von dem Alter des Thieres, sowie auch vom Ernährungszustande und der Fortpflanzungszeit abhängen, zum anderen Theile, bei conservirten Exemplaren, von der Abtötungs- und Conservirungsweise herrühren und endlich auch ein Merkmal der als A. pancerii unterscheidbaren Varietät darstellen. Bei allen typischen Thieren ist die kurzarmige Sternform des Körperumrisses fast immer wohl ausgebildet; die Arme endigen stumpf abgerundet und gehen in den Interradien durch einen ziemlich flachen, concaven Bogen cinander über. Mittelgrosse und jüngere Thiere nähern sich durch geringeres Hervortreten der Arme mehr oder weniger einer fünfeckigen Gestalt mit abgerundeten Ecken und leicht eingebogenen Seiten. Die Wölbung des Rückens ist manchmal recht kräftig, namentlich, wie bereits Gasco (1876) und Giard (1878) bemerkten, zur Zeit der Eiablage, während der Nahrungsaufnahme und nach längerem Hungern; sonst ist die Rückenmitte in der Regel nur flach gewölbt. Gegen den Rand hin fällt die Wölbung der Rückenseite in den Interradien in einem flacheren Bogen ab als an den Seiten der Arme, sodass der Armrücken etwas stärker gewölbt erscheint als der Scheibenrücken. Aber auch in den Interradien kann die Wölbung des Rückens ziemlich steil nach dem Rande abstürzen, wenn das Thier bei gesteigertem Krämmung des Rückens die Interradialbezirke des Randes ventralwärts etwas einbiegt, was auch an conservirten, namentlich an trockenen Exemplaren oft wahrzunehmen ist. Da sich überhaupt an conservirten Thieren die interradialen Regionen fast immer ein wenig stärker contrahiren als die Arme, so treten letztere alsdann bestimmter hervor, als es an den lebenden der Fall war.

Bei der Varietät pancerii erscheint der Rücken im Ganzen mehr oder weniger flach und der Rand nicht so scharf, sondern mehr gerundet als bei den typischen Exemplaren.

Müller & Troschel geben der Art eine Maximalgrösse von 4 Zoll (≈ 105 oder 108 mm, je nachdem man nach rheinischem oder französischem Maass umrechnet). Ihre Angabe

ist zwar von Dujardin & Hupé übernommen, jedoch von keinem späteren Forscher bestätigt worden. Das grösste mir bekannt gewordene Exemplar ist das von Merculiano zu den beiliegenden Abbildungen (Taf. 5, Fig. 5, 6) benützte; es hat eine Länge von 67 mm, bleibt also noch weit hinter der von Müller & Troschel angegebenen Maximalgrösse zurück. Das grösste Exemplar, das M. Sars bei Neapel antrat, war 52 mm lang, Lütken erwähnt ein Exemplar von 60 mm Länge, und Greff fand an den Canaren Exemplare von 50 mm Länge. Alle anderen in der Literatur vorkommenden Grösseangaben (von Fleming, Forbes, Lorenz, Gasco, Braun, Herdman, Cuenot, Bell) geben der Art eine geringere Grösse, die bei erwachsenen Thieren von 20—47 mm schwankt. In diesen Maassen bewegen sich auch die meisten der von mir in grosser Zahl lebend beobachteten Thiere sowie die meisten der in den Sammlungen vorhandenen. Ich kann also Lütken nur beipflichten, wenn er Bedenken gegen die Richtigkeit der Müller & Troschel'schen Maassangabe äussert, und glaube demnach, dass man der Art keine bedeutendere Maximalgrösse als höchstens 70 mm zuschreiben kann.

Von jungen und halbwüchsigen Thieren lagen mir zahlreiche Exemplare vor. Zunächst die Unzahl von Individuen, die ich selbst vom Eie an bis zum Alter von 42—45 Tagen in den Aquarien der zoologischen Station gezüchtet hatte. Dann zur selben Zeit (Ende Mai und Anfang Juni 1880) aus dem jetzt verschütteten Hafen der St. Lucia gesammelte, die mit den ältesten gezüchteten völlig übereinstimmten und wie diese eine Maximallänge von 0,82 mm (R = 0,45 mm) besitzen. Die nächstfolgenden, deren ich habhaft werden konnte (Nr. 36—40 meiner Tabelle), sind 3,6—5,9 mm lang. Dass ich die dazwischen liegenden Stadien nicht erlangen konnte, bedaure ich sehr, weil gerade sie für einige Fragen der Skeletentwicklung, namentlich für das erste Auftreten der oberen Randplatten, von Wichtigkeit sind 1). Da, so weit wir wissen, die Fortpflanzung unserer Art nur einmal im Jahre (bei Neapel im April) stattfindet, so erscheint mir erwähnenswerth, dass ich die kleinen, 3,6—4,5 mm grossen Thierchen 2) im Frühling erhielt (z. B. eines von 4,5 mm Länge am 11. April). Denn daraus folgt einmal, dass die Thiere sehr langsam wachsen, weil sie vom April des einen bis zum April des nächsten Jahres erst diese geringe Grösse erlangt haben. Weiter aber geht daraus hervor, dass man, um die mir fehlenden Zwischenstadien aufzufinden, im Spätsommer und im Herbst Nachforschungen anstellen oder die Züchtungen bis in diese Jahreszeit fortsetzen müsste. Von älteren, als 6 mm langen Thieren habe ich, wie auch aus der beigeggebenen Tabelle hervorgeht, alle Alterszüstände von 8 mm bis zu 67 mm Länge vor mir.

1) Herdman hat einige der mir fehlenden Stadien vor sich gehabt, denn er gibt (1886) an, dass seine kleinsten Exemplare einen Durchmesser von nur 2,5 mm haben. Ebenso erwähnt Lo Bianco junge Thiere von 2—3 mm Länge, die er, da ich sie unter den mir von ihm überschickten Material nicht finde, wohl zu conserviren unterlassen hat. Die kleinsten Exemplare, die Cuenot (1888) fand, hatten einen Armradius von 2,5 mm, also eine Länge von 4,5 mm, und entsprachen demnach genau dem Exemplare Nr. 37 meiner Tabelle.

2) Junge Thiere von diesem Stadium scheint Delle Chiaje (1841, T. 172, f. 9 u. 10) zuerst gesehen zu haben.
Asterina gibbosa.

Maasse typischer erwachsener Exemplare von Neapel:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>R (mm)</th>
<th>r (mm)</th>
<th>r : R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29</td>
<td>16,5</td>
<td>1 : 1,76</td>
</tr>
<tr>
<td>2</td>
<td>26,5</td>
<td>17,5</td>
<td>1 : 1,51</td>
</tr>
<tr>
<td>3</td>
<td>25,5</td>
<td>15,5</td>
<td>1 : 1,64</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>14,5</td>
<td>1 : 1,72</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>15</td>
<td>1 : 1,67</td>
</tr>
<tr>
<td>6</td>
<td>24,5</td>
<td>14,5</td>
<td>1 : 1,69</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>14</td>
<td>1 : 1,64</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>14,5</td>
<td>1 : 1,52</td>
</tr>
<tr>
<td>9</td>
<td>22</td>
<td>12,5</td>
<td>1 : 1,76</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>12,5</td>
<td>1 : 1,65</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>12</td>
<td>1 : 1,67</td>
</tr>
<tr>
<td>12</td>
<td>19</td>
<td>12</td>
<td>1 : 1,58</td>
</tr>
<tr>
<td>13</td>
<td>19</td>
<td>11,5</td>
<td>1 : 1,65</td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>12,5</td>
<td>1 : 1,52</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>10</td>
<td>1 : 1,7</td>
</tr>
</tbody>
</table>

Maasse junger Exemplare von Triest:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>R (mm)</th>
<th>r (mm)</th>
<th>r : R</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>9</td>
<td>6</td>
<td>1 : 1,5</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>5,5</td>
<td>1 : 1,64</td>
</tr>
<tr>
<td>18</td>
<td>8,5</td>
<td>5,5</td>
<td>1 : 1,55</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>5</td>
<td>1 : 1,6</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>5</td>
<td>1 : 1,4</td>
</tr>
<tr>
<td>21</td>
<td>6,5</td>
<td>4,5</td>
<td>1 : 1,44</td>
</tr>
<tr>
<td>22</td>
<td>6,5</td>
<td>4</td>
<td>1 : 1,62</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>3,5</td>
<td>1 : 1,71</td>
</tr>
<tr>
<td>24</td>
<td>5,5</td>
<td>3,5</td>
<td>1 : 1,57</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>3</td>
<td>1 : 1,97</td>
</tr>
<tr>
<td>26</td>
<td>4,5</td>
<td>3</td>
<td>1 : 1,5</td>
</tr>
<tr>
<td>27</td>
<td>4,5</td>
<td>3,5</td>
<td>1 : 1,29</td>
</tr>
</tbody>
</table>

Maasse von Exemplaren der Varietät pancerii von Neapel:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>R (mm)</th>
<th>r (mm)</th>
<th>r : R</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>14,5</td>
<td>9,5</td>
<td>1 : 1,53</td>
</tr>
<tr>
<td>29</td>
<td>11,5</td>
<td>8,5</td>
<td>1 : 1,35</td>
</tr>
<tr>
<td>30</td>
<td>11</td>
<td>7,5</td>
<td>1 : 1,47</td>
</tr>
<tr>
<td>31</td>
<td>9,5</td>
<td>7</td>
<td>1 : 1,36</td>
</tr>
<tr>
<td>32</td>
<td>9</td>
<td>6,5</td>
<td>1 : 1,38</td>
</tr>
<tr>
<td>33</td>
<td>8,5</td>
<td>6</td>
<td>1 : 1,42</td>
</tr>
<tr>
<td>34</td>
<td>7,5</td>
<td>6</td>
<td>1 : 1,25</td>
</tr>
<tr>
<td>35</td>
<td>7</td>
<td>5,5</td>
<td>1 : 1,27</td>
</tr>
</tbody>
</table>

Maasse von jungen typischen Exemplaren von Neapel:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>R (mm)</th>
<th>r (mm)</th>
<th>r : R</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>3,25</td>
<td>2,25</td>
<td>1 : 1,44</td>
</tr>
<tr>
<td>37</td>
<td>2,5</td>
<td>1,5</td>
<td>1 : 1,67</td>
</tr>
<tr>
<td>38</td>
<td>2,3</td>
<td>1,46</td>
<td>1 : 1,57</td>
</tr>
<tr>
<td>39</td>
<td>2,23</td>
<td>1,5</td>
<td>1 : 1,49</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
<td>1,25</td>
<td>1 : 1,6</td>
</tr>
</tbody>
</table>
Bei 15 genau gemessenen typischen Exemplaren, deren kleinstes (s. die Tabelle Nr. 1—15) einen Armradius von 17 und deren grössten einen solchen von 29 mm hatte, ergab sich als durchschnittliches Verhältniss von $r : R = 1 : 1,65$; im Minimum 1 : 1,51 und im Maximum 1 : 1,76. Selbst dieser Maximalwerth bleibt noch hinter dem durchschnittlichen Werthe zurück, der sich aus Bell's Maassangaben (1892, Cat.) für drei Exemplare von 16,5—22,5 mm Armradius auf 1 : 1,87 berechnet. Nehme ich aber an, dass Bell trockene Exemplare gemessen hat, während meine Exemplare in schwachem Weingeist conservirt waren, so dürfte sich diese Differenz durch Einwirkung der Austrocknung erklären; denn wie schon Gasco richtig hervorhebt, treten an den getrockneten Exemplaren stets die Arme etwas schärfer hervor, weil die Interradien ein wenig einschrumpfen. Man wird also die durchschnittliche Grösse von R bei dem lebenden erwachsenen Thiere (bei typischer Körperform) am zutreffendsten als das $1^{1/4}$ fache der Grösse von r und die Grenzwerthe als das $1^{1/2}$—bis $1^{3/4}$ fache von r angeben können. Nur bei ganz alten Thieren, z. B. bei dem von Merculiano abgebildeten, bei dem R die Grösse von 35 mm erlangt hat, steigt das Verhältniss $r : R$ bis auf 1 : 1,84, sodass R fast das Doppelte von r erreicht.

Die erwähnten durchschnittlichen Maassverhältnisse stimmen nun freilich nicht zu der Angabe von Müller & Troschel, wonach "der grosse Radius mehr als doppelt so lang wie der kleine ist"; sie passen aber sehr gut zu dem Verhältniss $r : R = 1 : 1^{1/2} - 1^{1/4}$, wie es Lorenz für seinen ciliatus angiebt. Lorenz wurde durch diesen Unterschied zu der Müller & Troschel'schen Angabe mit dazu veranlasst, in seinem ciliatus eine besondere Art zu sehen. Da aber noch von keiner Seite echte gibbosa-Exemplare erwähnt worden sind, die wirklich das von Müller & Troschel angegebene Verhältniss von $r : R$ besitzen, so muss man annehmen, dass hier ein Irrthum untergelaufen ist.

Schen wir nunmehr, wie sich jüngere Exemplare in ihren Maassen verhalten. Bei acht genau gemessenen Stücken, die zu der var. pancerii Gasco gehören und deren kleinstes einen Armradius von 7, das grösste einen solchen von 14,5 mm hat (s. die Tabelle Nr. 28—35), beträgt $r : R$ im Durchschnitt 1 : 1,39, also etwas mehr als Gasco mit 1 : 1,33 angiebt; im Minimum beträgt bei diesen acht Exemplaren $r : R = 1 : 1,25$ und im Maximum 1 : 1,53. Diese Werthe bleiben beträchtlich hinter dem von Bell (für zwei kleine Exemplare von 10 und 8 mm Armradius) zurück, denn aus seinen Angaben berechnet sich der Durchschnitt von $r : R = 1 : 1,72$. Aber vielleicht liegt das daran, dass ich Exemplare von pancerii zu diesem Vergleiche benutzt habe. Nehmen wir also auch hier ganz typische gibbosa-Exemplare, wie mir solche im jüngeren Alter in grosser Menge von Triest vorliegen, und greifen wir daraus 12 Exemplare von 4,5—9 mm Armradius heraus (s. die Tabelle Nr. 16—27), so ergeben diese ein Durchschnittsverhältniss von $r : R = 1 : 1,54$, also immer noch erheblich weniger als die beiden kleinen Bell'schen Exemplare. Man könnte diesen Unterschied meiner Be- funde zu den Bell'schen Angaben, wie schon oben bei den Erwachsenen, durch die Annahme erklären, dass Bell getrocknete und dadurch in ihren Maassen etwas veränderte Exemplare gemessen habe; doch ist dazu zu bemerken, dass unter den 12 von mir gemessenen einzelne
vorkommen, die sich den Bell'schen Angaben sehr nähern, so die Exemplare Nr. 17 und Nr. 25, bei denen \(r : R = 1 : 1,64 \) bez. \(1,67 \) ergiebt, und das Exemplar Nr. 23, dessen \(r : R = 1 : 1,71 \) ist.

Bemerkenswerther erscheint mir das Ergebnis, dass bei diesen 12 jungen Thieren das Durchschnittsverhältniss von \(r : R \) in seinem Werthe von \(1 : 1,54 \) (Minimum \(1 : 1,29 \); Maximum \(1 : 1,71 \)) zu dem Durchschnittsverhältniss der erwachsenen Thiere überleitet, während die 8 Exemplare der var. pancerii sich durch eine verhältnissmässig geringere Länge des Armradius in weit grösseren Gegensatz zu den alten Thieren setzen, da bei ihnen wie gesagt der Durchschnittswerth von \(r : R \) nur \(1 : 1,39 \) ist. Die Varietät pancerii erreicht erst bei einer R-Länge von 14,5 mm dasselbe Verhältniss von \(r : R \), das bei typischen gibbosa-Exemplaren schon bei \(R = 4,5-5,5 \) mm auftreten kann. Nimmt man zum Vergleiche drei gleichgrosse Exemplare von pancerii und gibbosa von \(R = 9, 8,5 \) und \(7,5 \) mm, so erhält man bei pancerii das Durchschnittsverhältniss \(r : R = 1 : 1,35 \) und bei gibbosa das Durchschnittsverhältniss \(r : R = 1 : 1,48 \) oder mit anderen Worten: die Varietät pancerii nähert sich viel mehr einer rein pentagonalen Gestalt (bei der \(r : R = 1 : 1,24 \) ein würde) als die typische gibbosa, wie das Gasco schon ganz richtig hervorgehoben hat. Er hat sogar pancerii-Exemplare vor sich gehabt, die genau pentagonal waren, und auch unter den von mir gemessenen befindet sich eines (Nr. 34 der Tabelle), das sich nur ganz wenig von einem regelrechten Pentagon entfernt, indem bei ihm \(r : R = 1 : 1,25 \) ist.

Untersucht man endlich auch noch ganz kleine, nur 3,6—5,9 mm lange Individuen von der typischen gibbosa-Gestalt (Nr. 36—40 der Tabelle), so ergiebt sich bei den fünf in die Tabelle aufgenommenen Stücken, die aus dem Golf von Neapel herrühren, dasselbe Durchschnittsverhältniss von \(r : R \), welches wir oben bei den 12 etwas älteren Thieren von Triest fanden, nämlich \(1 : 1,54 \) (in Minimum \(1 : 1,44 \), im Maximum \(1 : 1,67 \)). Das zeigt, dass bei dem Heranwachsen des Thieres das Durchschnittsverhältniss \(1 : 1,54 \) sehr früh erreicht wird und dann längere Zeit ziemlich constant bleibt, um erst später sich nach und nach zu Gunsten von \(R \) zu ändern.

Das Rückenskelet setzt sich im Ganzen aus ziemlich dicken, kräftigen Platten zusammen, die vom Rande nach dem Scheitel hin an Grösse zunehmen und durchweg so über einander greifen, dass der proximale Bezirk jeder Platte den distalen der ihr scheitelwärts zunächst gelegenen Platte bedeckt. Der Scheitel des Rückenskeletes (Taf. 9, Fig. 4) lässt seine primären Platten durch ihre Grösse und regelmässige Anordnung deutlich erkennen, namentlich, wenn man die Körperwand von der Innenseite betrachtet. Die Mitte des Scheitels wird von einem verhältnissmässig grossen, bei erwachsenen Thieren 3,6—4,5 mm im Durchmesser messenden Analfeld eingenommen, das von einem aus zehn primären Skeletstücken, nämlich den ersten Radialplatten und den ersten Interradialplatten, gebildeten Ringe begrenzt ist. Die kleine Afteröffnung liegt fast in der Mitte des Feldes, jedoch ein wenig nach dem links (in der Ansicht von innen) auf den Interradius des Steinkanales folgenden Interradius hin verschoben; es ist demnach ganz richtig, wenn Viguier (1879) angiebt, dass der After in der Ansicht von aussen ein wenig links von der Medianebene liegt, falls man die Madreporenplatte nach hinten
stellt; die Lage des Afters entspricht also der für die Seesterne geltenden Regel. In der nächsten Umgebung der Afteröffnung bilden etwa sechs (diese Zahl ist nicht constant) kleine, rundliche Kalkplättchen einen Kranz; von ihnen pflegt das am meisten nach hinten und rechts (bei der Ansicht von innen) gelegene (Taf. 9, Fig. 4, C) etwas grösser bis doppelt so gross zu sein als die übrigen, die durchschnittlich 0,5 mm gross sind. An diese den After unmittelbar begrenzenden Plättchen schliessen sich in loser Anordnung zahlreiche andere, ähnliche, 0,3 bis 0,8 mm grosse an, die das ganze Afterfeld bis auf kleine, unverkalkte und meistens von Papalae besetzte Zwischenräume ausfüllen. Wie wir später sehen werden, sind alle diese Analplättchen secundär auftretende, supplementäre Skeletstücke, mit Ausnahme des hinten rechts von der Afteröffnung gelegenen, das sich mit aller Bestimmtheit als die fortbestehende primäre Centroradialplatte zu erkennen giebt, und mit fernerer Ausnahme von fünf jetzt nicht mehr herausfindbaren Plättchen, die den Centroradialien (= «Infrabasaliene») anderer Seesterne entsprechen. Es hat sich also bei Asterina im Gegensatz zu Palmipes (s. p. 251) das Analfeld nicht nur an einer Seite, sondern im ganzen Umkreise der Centralplatte entwickelt, sodass das ganze ursprüngliche Scheitelfeld zum Analfelder geworden ist. Die Centralplatte selbst ist im Wachsthum zurückgeblieben, sodass sie beim erwachsenen Thiere anscheinend eines der zahlreichen Analplättchen darstellt; während sie bei Palmipes noch mit vier ersten Interradialplatten in Verbindung bleibt, hat sie hier jeden Zusammenhang mit den sämtlichen fünf ersten Interradialplatten eingebüsst.

Die letzteren (Taf. 9, Fig. 4, JRF) haben eine quergezogene Form, die sich aber in der Mitte ihres Aussenrandes ausbuchtet oder einen lappenförmigen (distalen) Fortsatz entsendet, der dann der ganzen Platte einen abgerundet dreieckigen Umriss verleiht. Diejenige erste Interradialplatte jedoch, an deren Aussenrand die Madreporenplatte liegt (s. p. 234), ist mächtiger entwickelt als die übrigen und besitzt an ihrem Aussenrande statt der Ausbuchtung eine concave Einbuchtung, in die sich das Ende des Steinkanales einlagert. Mit ihren Seitenlappen lagern sich die ersten Interradialplatten wie bei Palmipes (s. p. 251) von unten her über einen entgegenkommenden Randlappen der angrenzenden ersten Radialplatten. Die ersten Radialplatten (Taf. 9, Fig. 4, R1) sind stärker ausgebildet als die ersten Interradialplatten und besitzen ausser den beiden proximalen Randlappen, welche die erwähnte Verbindung mit den ersten Interradialplatten herstellen, noch drei distale Randlappen, von denen der mittlere meistens verkümmert ist, während die beiden seitlichen sich wie bei Palmipes (s. p. 251) von unten her den proximalen Enden der ersten Adradialplatten anlagern. Die ersten Adradialplatten (Taf. 9, Fig. 4, AR1) haben eine unregelmässige, bohnenförmige Gestalt und sind in der Weise schief gestellt, dass sich die beiden an denselben Interradius angrenzenden Platten mit ihren distalen Enden zusammenneigen. Auf diese Weise entsteht an der Aussenseite einer jeden ersten Interradialplatte ein annähernd dreieckiges Feld, das Interradialfeld (Taf. 9, Fig. 4, JRF), das von einer ersten Interradialplatte, zwei ersten Radialplatten und zwei ersten Adradialplatten begrenzt wird; nur im Interradius der Madreporenplatte ist die Sache dadurch abgeändert, dass hier die ersten Adradialplatten noch einen zweiten proximalen Randlappen besitzen, mit dem sie sich (bei der Ansicht von innen) unter einen entsprechenden kurzen Lappen

Verfolgen wir nun ausserhalb des Scheitskelettes die Anordnung der übrigen Platten der Rückenwand, so macht es in der nächsten Nähe des Scheitels zunächst den Eindruck, als fehle hier, wenigstens auf den Armücken, also nach aussen von den ersten Radialplatten, jegliche Gesetzmässigkeit (Taf. 9, Fig. 4, 6). So lässt denn auch Viguier die Platten auf dem ersten Drittel des Armrückens ganz regellos geordnet und mit dazwischen eingeschobenen kleinen Plättchen vermengt sein. Ganz so schlimm ist es aber mit dieser angeblichen Regellosigkeit doch nicht; es lässt sich vielmehr an jungen Thieren zeigen, dass hier anfänglich eine wohlansprägte Ordnung herrschte, die erst bei den erwachsenen, und auch bei diesen nur in der nächsten Nachbarschaft des Scheitels, durch die reiche Entwicklung der Papulæ gestört wird. In einem Abstande von der ersten Radialplatte, der kaum dem Durchmesser des Analfeldes gleichkommt, beginnt eine Reihe regelmässig aufeinander in der Medianlinie des Armrückens bis zur Arm spitze folgender Radialplatten (= Carinalia Perrier). Rechts und links ist diese radiale Plattenreihe in ähnlicher Weise wie bei Palmipes (s. p. 251) von einer adradialen Plattenreihe begleitet, sodass wie bei jenem Seestern jeder Armrücken durch drei Längsreihen von Platten bezeichnet ist. Auch in ihrer Form und Verbindungsweise erinnern die Radial- und Adradialplatten des Armrückens unserer Art an die Verhältnisse bei Palmipes membranaceus. In der Regel haben die Radialplatten einen sechslappigen Umriß, an dem man einen proximalen, einen distalen und zwei Paar laterale Lappen unterscheiden kann. Die Adradialplatten besitzen bei regelmässiger Entwicklung einen fünflappigen Umriß mit einem proximalen, einem distalen, zwei medialen und einem lateralen Lappen. Mit ihrem proximalen Lappen greift jede Radialplatte über den distalen Lappen ihrer Vorgängerin; mit den beiden

Erledigen wir aber, bevor wir auf die Dorsolateralplatten eingehen, erst noch den scheitelwärts von den drei regelmässigen Skeletreihen des medianen Armrückenstreifens gelegenen Bezirk. Hier hat allerdings die beim jüngeren Thiere vorhandene Ordnung bedeutende Störungen erfahren und einer anscheinenden Regellosigkeit Platz gemacht; dennoch lassen sich ihre unverkennbaren Spuren auch noch bei alten Thieren (Taf. 9, Fig. 4, 6) nachweisen.

Jedes der fünf in radialer Richtung gelegenen Felder, in denen die ursprüngliche Ordnung mehr oder weniger geschwunden ist, wird scheitelwärts von einer ersten Radialplatte und zwei ersten Adradialplatten, seitlich jederseits von zwei dorsolateralen und in distaler Richtung von den drei Platten begrenzt, mit denen der regelmässige Armrückenstreifen beginnt. Wir wollen diese Felder als die Radialfelder bezeichnen. Ausgefüllt wird jedes Radialfeld von zahlreichen, grösseren und kleineren, theils lose liegenden, theils sich mit Randlappen übergreifenden Platten und Plättchen, unter denen sich gewöhnlich sechs herausfinden lassen (Taf. 9, Fig. 4, 6), die sich durch den Vergleich mit jüngeren Thieren als zwei ursprüngliche Radialplatten und zwei Paare von ursprünglichen Adradialplatten zu erkennen geben. Was sie aus ihrer anfänglichen Lage und Verbindung herausgetrieben hat, ist auch hier wieder die starke Ausbildung der Papulac und die damit zusammenfallende Entwicklung zahlreicher supplementärer Plättchen gewesen, als welche alle übrigen Skeletstücke des Feldes aufzufassen sind. Bei jüngeren Thieren, z. B. bei einem Exemplare von R = 2 mm, gehen die radialen und adradialen Plattenreihen noch geschlossen bis an den Scheitel (Taf. 9, Fig. 2). Bei Exemplaren, deren Armradius bis auf 3,25 mm gewachsen ist, schieben sich schon die ersten supplementären Plättchen im Bereiche des späteren Radialfeldes zwischen die radialen und adradialen Platten ein (Taf. 9, Fig. 5) und leiten damit die Gestaltung der späteren Radialfelder ein. Aus dieser Entstehungsgeschichte der Radialfelder ergiebt sich die Möglichkeit, beim alten Thiere die-
Asterina gibbosa.

Die zweiten Eine Ende der folgenden ihrem greift Die dererselben und von ersten, einer Adradialplatte in Gestalt eines winzigen, verästelten Kalkkörperchen auf (Taf. 9, Fig. 1, A R 1); doch ist diese Deutung nicht ganz sicher, da das hier erwähnte Kalkkörperchen vielleicht richtiger als Anlage der ersten oberen Randplatte (s. p. 225) aufzufassen ist. Haben die Thiere einen Armradius von 2 mm erreicht (Taf. 9, Fig. 2), so zählt man auf dem Armrücken bereits, mit Einschluss der primären Radialplatte, fünf Radial- und jederseits vier Adradialplatten. Bei einem Armradius von 2,23 mm ist jederseits ein fünftes Adradiale dazugekommen. Die Radialplatten schreiten also den gleichnummernigen Adradialplatten in der Zeit ihres Auftretens etwas voran.

Von den Dorso lateral platten haben wir bereits vorhin je zwei an jedem Seitenrande eines jeden Radialfeldes kennen gelernt. Beide gehören als erste und zweite Platte zu der ersten, sich neben die adradiale Plattenreihe lagernden dorsolateralen Längsreihe. Die erste von ihnen greift (in der Ansicht von aussen) über das distale Ende der ersten Adradialplatte und nähert sich an der Medianebene des Interradius ihrem Gegenüber fast bis zur Berührung. Die zweite ist halbmondförmig gebogen, nach dem Körperrande gerichteter Convexität, greift mit ihrem proximalen Ende über den distalen Rand der ersten Dorso lateral platte und mit ihrem distalen Ende über den lateralen Lappen einer vierten Adradialplatte. Auch die nächstfolgenden Platten der ersten dorsolateralen Längsreihe haben eine ähnliche halbmondförmige Gestalt und legen sich mit dem einen Ende auf den convexen Rand der vorhergehenden Platte derselben Reihe, während sie sich mit dem anderen (= distalen) Ende auf den lateralen Lappen der entsprechenden Adradialplatte stützen (Taf. 9, Fig. 6). An der Interradiallinie folgt auf die erste Platte der ersten dorsolateralen Längsreihe die erste einer ähnlichen zweiten Längsreihe, deren Platten wiederum von der zweiten an die Halbmondgestalt mit randwärts gerichteter Convexität zeigen, sich mit dem proximalen Ende auf die vorhergehende Platte derselben Reihe und mit dem distalen Ende auf den convexen Rand der nächstgelegenen Platte der ersten Längsreihe stützen. Auf die ersten Platten der ersten und zweiten dorsolateralen Längsreihe folgt in der Medianlinie des Interradius eine unpaare Platte, an deren distalem Rande jederseits eine dritte, den vorigen ähnliche, dorsolaterale Längsreihe ihren Anfang nimmt. Eine solche Interradialplatte fehlt aber auch nicht zwischen den ersten Platten der ersten und zweiten dorsolateralen Längsreihe. Drängt man nämlich die letztgenannten Platten in der Interradiallinie (Taf. 9, Fig. 4) etwas auseinander, so sieht man, dass auch zwischen ihnen, genau in der Interradiallinie, je eine unpaare Platte liegt, die nur in die Tiefe gesunken ist. Die erste dieser Interradialplatten liegt also zwischen den ersten Platten der beiden ersten Dorso lateralien reihen des betreffenden Interbrachialfeldes und ist, da wir schon scheitelwärts von
Asterinidae.

ihre in der Umrandung des Analfeldes eine erste Interradialplatte haben, als die zweite Interradialplatte zu bezeichnen. Dementsprechend ist die zwischen den Anfangsplatten der jederseitigen zweiten dorsolateralen Längsreihen versteckte Interradialplatte die dritte, und die frei gelegene endlich, auf die sich die ersten Platten der beiderseitigen dritten dorsolateralen Längsreihen stützen, die vierte Interradialplatte. Die unpaare Reihe der Interradialplatten lässt sich weiter bis zum Rande des Seesternes verfolgen, wo sie zwischen den jederseitigen ersten oberen Randplatten endigt. Schon die nächste (fünfte) Interradialplatte nimmt dieselbe Halbmondform an wie die benachbarten Dorsolateralplatten. Aus der Anordnung der Dorsolateralplatten ergibt sich ferner, dass sie nicht nur Längsreihen, sondern auch gebogene Querreihen bilden (Taf. 9, Fig. 6), von denen die erste, der Interradiallinie nächste nur aus zwei Platten besteht und, im Gegensatz zu derselben Plattenreihe des *Palmipes membranaceus* (s. p. 253), den Rand nicht erreicht. Die folgenden dagegen bestehen aus einer grösseren, natürlich gegen die Arm spitze hin abnehmenden Plattenzahl und erreichen wie bei *Palmipes* alle den Rand, wo sie zwischen je zwei oberen Randplatten endigen. Die Angabe Vigueris’s (1879), dass eine regelmässige Anordnung der Dorsolateralplatten nicht wahrzunehmen sei, kann nur auf unzulänglicher Untersuchung beruhen. Durch die halbmondförmige, auch von Bell (1892, Cat.) hervorgehobene Gestalt der Dorsolateralplatten kommt es zu Wege, dass zwischen ihnen Lücken bleiben, in denen sich die von supplementären Plättchen umstellten Papulae entwickeln. Nähert man sich aber soweit dem Rande, dass man den Bereich der Papulae überschreitet, so findet man von hier an alle Dorsolateralplatten nicht mehr von halbmondförmiger Gestalt, sondern sie stellen nunmehr, in dichter, dachziegler Zusammenschiebung, abgerundet hexagonale, dicke Platten dar, deren distale Ecke sich zu einem längeren, griffartigen Lappen ausgezogen hat (Taf. 9, Fig. 9), der unter der nächsten randwärts folgenden Platte derselben Querreihe versteckt ist und sich leicht nach innen biegt, um dem ähnlichen, aber kürzeren Fortsatz der darunter gelegenen Ventrolateralplatte entgegen zu streben. Die Platten erhalten also hier eine ähnliche Gestaltung, wie wir sie bei den Dorsolateralplatten des *Palmipes membranaceus* (s. p. 254) kennen lernen werden, nur wird ihr Stiel niemals so lang wie bei jenen und biegt sich auch in einem schwächeren Winkel nach innen; ferner sind die an Blattrippen erinnernden Verdickungsstreifen an den Dorsolateralplatten der Asterina nicht zur Ausbildung gelangt. Mit Einschluss des griffartigen Stieles erreichen diese Dorsolateralplatten bei *Asterina* eine Länge von 2—2,3 mm bei einer Breite von 1—1,4 mm.

Die Dorsolateralplatten treten in der Entwicklung verhältnismässig spät auf. Bei 45 Tage alten Individuen ist noch keine einzige zur Anlage gelangt. Hat der Armradius die Länge von 2 mm erreicht, so bemerkt man die erste Platte der ersten dorsolateralen Längsreihe (Taf. 9, Fig. 2, d) wohlausgebildet zwischen der ersten Adradialplatte und den oberen Randplatten; sie scheint also schon vor einiger Zeit aufgetreten zu sein. Andere dorsolaterale Platten fehlen auch jetzt noch völlig. Aber von nun an stellen sie sich in rascher Folge ein, denn schon bei einem Exemplare von 2,3 mm Armradius sind die vier ersten Platten der ersten und die beiden ersten Platten der zweiten dorsolateralen Längsreihe angelegt. Alle diese jungen Dorsolateralplatten haben einen abgerundeten Umriess und schliessen ziemlich dicht zusammen.
Kehren wir nun noch einmal zu dem Skelet des Scheitels zurück, um auch dieses in seiner Entwicklung kennen zu lernen. Bei der 6 Wochen alten jungen *Asterina* sind die fünf primären Interradialplatten, die fünf primären Radialplatten und die Centralplatte, die schon lange vorher aufgetreten waren (vergl. meine Entwicklungsgeschichte der *Asterina gibbosa* 1882, Taf. S, Fig. 106), zwar größer geworden als früher, greifen aber noch nicht übereinander; sie liegen noch gesondert nebeneinander, sind aber, was namentlich für die primären Interradialplatten gilt, einander hier und da bis zur Berührung genähert; die dreilappige Form der primären Interradialplatten ist schon deutlich ausgeprägt (Taf. 9, Fig. 1); mit ihrem distalen Lappen reichen sie bis an die Randplatten. Die Centralplatte nimmt fast das ganze Scheitelfeld ein. Die primären Radialplatten (die ich früher l. c. 1882 als die ersten intermediären Platten bezeichnet hatte) sind im Gegensatz zu ihrem späteren Verhalten jetzt noch erheblich kleiner als die primären Interradialplatten, wie sie ja auch in der Zeit ihres ersten Auftretens jüngeren Datums sind; auch liegen sie jetzt noch nach ausser von dem durch die primären Interradialplatten gebildeten Kranze.

Anders gestaltet sich das Bild des Scheitelskeletes bei einem Individuum von 2 mm Armradius (Taf. 9, Fig. 2). Hier sind die primären Radialplatten in den das Scheitelfeld umgrenzenden Plattenkranz eingetreten; die primären Interradialplatten sind aneinander gerückt und werden in den dadurch zwischen ihnen entstandenen Zwischenräumen von den stark gewachsenen primären Radialplatten von aussen her überlagert. Auf solche Weise ist nunmehr diejenige Lagebeziehung der primären Interradial- und Radialplatten zu einander erreicht, die von jetzt an durch das ganze Leben hindurch festgehalten wird. In dem Centralfelde, dessen Durchmesser von 0,25 mm auf 0,6 mm gestiegen ist, hat die Centralplatte sich zwar auch noch vergrössert, nimmt aber doch nicht mehr das ganze Feld ein, sondern wird von fünf kleinen Platten umgeben, die von etwas mäglicher, sich später ausgleichender Grösse sind und zum Theil genau, zum Theil annähernd in der Richtung der Radien liegen. Sie stellen die bei anderen Seesternen als Infrabasalia oder Verbindungsstücke der primären Interradialplatten bezeichneten Skeletstücke dar, für die ich den Namen *Centroradialia* vorschlage. Mit ihren distalen Enden haben sich die primären Interradial- und Radialplatten mit den jetzt vorhandenen ersten Adradialplatten in Verbindung gesetzt und so zehn kleine Armfelder abgegrenzt, in denen alsbald die Bildung der ersten Papulae beginnt.

Bei nur wenig älteren Thieren von 2,23 und 2,3 mm Armradius (Taf. 9, Fig. 3) finden wir im nächsten Umkreis der Centralplatte ausser den fünf schon vorhandenen, jetzt ganz deutlich in radärer Richtung liegenden, centroradialen Plättchen noch drei kleinere, neu hinzugekommene, die im Interradius der Madreoporenplatte (= linker vorderer Interradius), im linken hinteren und im rechten vorderen Interradius liegen und die ersten supplementären Plättchen des später so reichlich damit erfüllten Centralfeldes darstellen. Ihre Zahl und Lagerung ist aber nicht immer dieselbe; denn bei einem Exemplare von 3,25 mm Armradius (Taf. 9, Fig. 5) sehe ich deren nur zwei, von denen die eine sich im rechten vorderen, die andere im rechten hinteren Interradius befindet.

Bei demselben Exemplare von 3,25 mm Armradius hat die Grösse des Centralfeldes
und der zehn dasselbe umringenden Primärplatten eine weitere Steigerung erfahren. Die zehn Armfelder sind noch wie vorher völlig von einander getrennt.

Bei dem erwachsenen Thiere endlich ist der Durchmesser des Centrafeldes auf 4 mm gestiegen; die fünf Centroradialplatten sind unter den zahlreichen, das Feld ausfüllenden, supplementären Plättchen nicht mehr herauszufinden; die Centralplatte hat eine relativ nur geringe Größenzunahme (von 0,5 mm bis fast 1 mm) erfahren. Die primären Interradial- und Radialplatten haben dagegen jetzt statt der früheren Breite von 0,68 mm bez. 0,57 mm eine solche von 2 mm erreicht; in ihrer Länge haben die Radialplatten gleichfalls zugenommen und zwar in stärkem Maasse als die Interradialplatten, sodass sie diese nunmehr, umgekehrt wie beim Anfange der Entwicklung, an Grösse übertreffen. Die Armfelder sind nur am Interradius der Madreporenplatte getrennt geblieben, an den vier anderen Interradien aber zu einem grösseren Interradialfeld zusammengefasst (s. oben p. 216—217).

Stachelchen nur 0,4—0,5 mm lang und 0,1—0,13 mm dick, stimmen also fast genau mit den Randstacheln (s. p. 226) überein, doch ist ihre gleichfalls fein bedornte Spitze gewöhnlich etwas weniger stumpf.

Bei halbwüchsigen und jugendlichen Thieren weicht die dorsale Bestachelung nur insofern von ihrem späteren Verhalten ab, als die Stachelchen selbst kleiner sind und in den einzelnen Gruppen wenig zahlreich stehen. So z. B. zählte ich bei jungen Thieren von 2,23—2,3 mm Armradius auf der Centralplatte 4 oder 5, auf den kleinen Platten des Centralfeldes 1—5, auf den primären Interradial- und Radialplatten 2—6, auf den Radialplatten des Armrückens 2 oder 3, auf den ersten Adradialplatten 4 oder 5 (auf den beiden der Madreporenplatte zunächst gelegenen 7 oder 8), auf den übrigen Adradialplatten 1—3, auf den Dorsolateralplatten 1—4 Stachelchen.

Bei recht jungen Exemplaren, deren R erst 2 mm beträgt, fehlen die Papulac in der Regel noch völlig. Erst wenn die jungen Thiere einen Armradius von 2.23—3 mm erlangt haben, bemerkt man die ersten Papulac, die ganz regelmässig so verteiltes sind, dass rechts und links von dem distalen Lappen eines jeden ersten Interradialstückes je eine Papula sich zwischen diesen Lappen, die anliegende erste Adradialplatte und die anliegende erste Radialplatte, also in diejenige Skeletlücke, die ich weiter oben als Armfled bezeichnet habe, schiebt. Es sind demnach jetzt fünf Paare von Papulac vorhanden (Taf. 9, Fig. 3); mitunter tritt die eine oder andere von diesen zehn Papulac übrigens auch schon bei R = 2 mm auf. Von nun an vermehren sie sich so rasch, dass man bei Individuen von 5 mm Armradius bereits etwa 100 Papulac zählen kann, die den proximalen und mittleren Abschnitt der Armrücken und den Scheibenrückcn besetzen; insbesondere findet man lateral von jeder adradialen Plattenreihe 4 oder 5 und jederseits von jeder radialen Plattenreihe ebenfalls 4 oder 5 in eine Längsreihe geordnete Papulac, die in ebenso vielen Skeletlücken stehen.

Bei den ganz jungen Thieren steht überhaupt in jeder Skeletlücke, soweit Papulac entwickelt sind, nur eine einzige. Später aber vermehren sich die Papulac vor allen Dingen in der grossen, durch das Analfeld dargestellten Lücke und dann in den dreieckigen Interradialfeldern, die zwischen je einer ersten Interradialplatte und den beiden angrenzenden ersten Adradialplatten liegen. In einem dieser dreieckigen Felder, nämlich dem der Madreporenenplatte, kann natürlich diese Vermehrung nur in sehr beschränktem Maasse stattfinden, da der grössste Theil dieses Feldes von der Madreporenenplatte beansprucht wird; immerhin findet man bei erwachsenen Thieren (R = 25 mm), dass jederseits vom adcentralen Ende der Madreporenenplatte zwei bis drei Papulac zur Ausbildung gelangen sind. Auch in den Skeletlücken der Arme, also nach aussen von den ersten Radialplatten, hat sich bei erwachsenen Thieren die Zahl der in einer Lücke stehenden Papulac auf 2—5 vermehrt (weshalb Viguier die mit den Papulac besetzten Skeletlücken auch als »Porenfleder« bezeichnet); nur im distalen Theile der Armücken bleibt es bei einer einzigen Papula in jeder Skeletlücke.

Obgleich noch Norman (1865) an der irrthümlichen Ansicht von Müller & Troschel festhält, dass unsere Art, wie überhaupt die ganze Gattung, keine deutlichen Randplatten besitze, so hatte doch schon vorher Lorenz (1860) bei seinem ciliatus wenigstens die unteren Randplatten gesehen, wenn er sie auch nicht so nannte. Denn wenn er davon spricht, dass die Stachelbüschel des Körperrandes »deutlich gestielt seien und dadurch unter der Lupe wie eine kurzfingerige Hand sammt einem Theile des Unterarmes« aussehen, so kann unter den hier mit einem Theile eines Unterarmes verglichenen Stielen unmöglich etwas anderes als die unteren Radialplatten verstanden sein. Auch Greeff (1872) und Gascó (1876) kennen wenigstens die unteren Randplatten. Aber erst Viguier (1879) spricht bestimmter von ihnen und ist der Erste, der unserer Art nicht nur untere, sondern auch obere Randplatten zuschreibt. Ich kann dem nur beipflichten. Der Rand ist thatsächlich mit unteren und oberen, allerdings recht kleinen Randplatten besetzt. Der scharfe Rand selbst wird nur von den annähernd horizontal gelagerten unteren Randplatten gebildet, die auch fast doppelt so breit sind wie
die oberen. Letztere liegen dorsal und etwas einwärts von der Randlinie des Körpers und sind von den unteren Randplatten durch eine seichte, aber deutliche, dem Rande parallel laufende Rinne abgesetzt. Die Bemerkung Viguier's, dass die Randplatten noch kleiner seien als die angrenzenden Skeletplatten, trifft einigermaassen für die oberen, nicht aber für die unteren Randplatten zu. Richtig dagegen ist seine Angabe, dass die oberen und unteren Randplatten in ihrer Zahl übereinstimmen. Bei erwachsenen Thieren von 25 mm Armmradius zählt man an jeder Seite eines jeden Armes 22—24 obere und untere Platten. Bei jungen Thieren, z. B. bei einem Exemplare von 2 mm Armmadius, sind erst 3, bei solchen von 2,23 bis 2,3 mm Armmradius 4 und bei 3,25 mm Armmradius 7 obere und untere Randplatten vorhanden. Bei den erst 45 Tage alten Jungen (Taf. 9, Fig. 1) wird die ganze Entfernung vom Armwinkel bis zur Terminalplatte von einer einzigen Randplatte eingenommen, die schon bei dem 16 Tage alten Thierehen deutlich entwickelt war und früher (1882) von mir als erste Interambulacralplatte bezeichnet worden ist. Es fragt sich, ob diese Platte die erste untere oder die erste obere Randplatte darstellt? Wenn es auch für die Entscheidung dieser Frage sehr erwünscht wäre, die zwischen diesem und dem Stadium von 2 mm gelegenen, mir, wie oben bemerkt, leider fehlenden Entwicklungszustände kennen zu lernen, so scheint mir doch der Umstand, dass später die unteren Randplatten stets die oberen an Grösse übertreffen, also ihnen höchst wahrscheinlich auch genetisch vorangehen, dafür zu sprechen, dass die Randplatte des 45 tägigen Thieres nachher zur ersten unteren Randplatte wird. Möglicherweise haben wir in der weiter oben als erste Adradialplatte angesprochenen Plattenanlage (Taf. 9, Fig. 1, AR1) nicht diese, sondern die Anlage der ersten oberen Randplatte vor uns; nach ihrer Lage wäre sowohl das eine wie das andere denkbar.

Die oberen Randplatten haben bei den erwachsenen Thieren eine abgerundete pentagonale Form mit einem Durchmesser von 0,5—0,6 mm und sind kaum kleiner als die ihnen zunächst stehenden Dorsolateralplatten, denen sie überhaupt sehr ähnlich sehen; sie markiren sich aber dadurch, dass sie in ihrer Lage den unteren Randplatten entsprechen und mit den dorsolateralen Querreihen ebenso alterniren wie die unteren Randplatten mit den ventrolateralen Querreihen. Während die unteren Randplatten horizontal liegen, sind die oberen steil gestellt, sodass mit ihnen die Wölbung des Rückens anhebt. Mit ihrem Rande überlagern sie die benachbarten unteren Randplatten und Dorsolateralplatten, bleiben aber gegen seitig durch einen kleinen Abstand von einander getrennt; dass sie auch gegenseitig dachziegelig übereinander greifen, wie Viguier angiebt, kann ich nicht finden. Auf ihrer dorsalen Oberfläche trägt jede obere Randplatte in der Regell eine zangenförmige Pedicellarie (s. p. 236).

Bei dem jüngsten Exemplare, an dem ich die oberen Randplatten untersuchen konnte (\(R = 2\) mm), sind sie grösser als die angrenzenden jungen Adradialplatten; sie haben eine längliche, abgerundete Gestalt, deren Längsachse dem Körperrand parallel liegt; ihre Länge misst 0,27 mm, die Breite nur halb soviel. Sie tragen einen einzigen jungen Stachel, neben dem sich sehr bald, schon bei 2,3 mm Armmadius, ein zweiter oder auch dritter einstellt. Aus diesen aus zwei oder drei Stachelanlagen gebildeten Stachelgruppen entstehen später die Randpedicellarien (s. p. 236).
Die unteren Randplatten alternieren, wie schon bemerkt, mit den ventrolateralen Querreihen. Bei den erwachsenen Thieren hat ihr dicker, kräftiger Körper einen quergestellten, abgerundet länglichen Umriss, an dem man einen äusseren, einen inneren, einen proximalen und einen distalen Rand unterscheiden kann (Taf. 9, Fig. 7, 11). Der äussere Rand ist stark gewölbt und trägt die eigentlichen Randstacheln; der proximale und der distale Rand verlaufen einander parallel, aber der proximale ist kürzer als der distale, da der innere Rand einen schiefen Verlauf nimmt. Im proximalen Armabschnitte haben die Platten eine grösste Breite von 0,9—1 mm und eine Länge von 0,5—0,6 mm; ihre Länge stimmt also ebenso wie ihre Zahl mit den oberen Randplatten überein, während sie dieselben an Breite erheblich übertreffen. Mit ihren proximalen und distalen Rändern schliessen die Platten nicht dicht aneinander, sondern bleiben durch schnale Zwischenräume getrennt, die bis nahe zum äusseren Rande von unverkalkter Haut ausgefüllt werden. Da auf solche Weise die äusseren Abschnitte der unteren Randplatten gesondert am Körperrande hervortreten, so erhält dieser ein gefranstes Aussehen. Am distalen Rande des inneren Abschnittes der unteren Randplatten stossen die Querreihen der dorsolateralen und ventrolateralen Platten beinahe zusammen. Bei erwachsenen Thieren sieht man in der Ventralansicht auf jeder unteren Randplatte, ganz wie es Greeff für seinen _arrecifiensis_ angiebt, 3 oder 4 Stachelchen = eigentliche Randstacheln; in der Dorsalansicht bemerkt man aber, dass über diesen Stacheln und etwas weiter einwärts gerückt noch 3—5 andere liegen, die mit jenen eine büschelförmiige Gruppe von zusammen 6—9 bilden, sodass auch Gasco ganz im Recht ist, wenn er seiner _pancerii_ auf jeder Randplatte ein Büschel von 6—8 Stacheln zuspricht. Die Randstacheln haben eine durchschnittliche Länge von 0,5 mm, sind 0,14 mm dick und endigen mit einer stumpfen, unter dem Mikroskop fein und dicht bedornten Spitze.

Bei jugendlichen Thieren haben die unteren Randplatten ebenso wie die oberen eine dem Rande entlang gestreckte Form. Ihr längster Durchmesser steht jetzt noch nicht wie später quer zur Medianebene des Armes, sondern annähernd parallel dazu. Bei einem Armradius von 2 mm misst die Länge der ersten unteren Randplatte 0,45 mm, die Breite 0,25 mm; die folgenden, deren jetzt erst zwei vorhanden sind, nehmen an Grösse ab, sind aber wie die erste immer merklich grösser als die entsprechenden oberen. Genauer betrachtet liegen die jungen unteren Randplatten in etwas schräger Stellung zum Körperrande, indem der distale, etwas dickere Theil einer jeden sich über den dünnern proximalen Bezirk der folgenden Platte hinüberschiebt. Ferner fällt schon jetzt auf, dass der Körperrand eigentlich nur von den unteren Platten gebildet wird; die oberen treten etwas vom Rande zurück, sodass sie mehr der Dorsalseite des Körpers angehören. Der dickere, anfänglich das distale Stück der Platte darstellende Theil einer jeden jungen unteren Randplatte wird später, wenn sich die Platten beim weiteren Wachsthum des Thieres vermehren, zum äusseren Theil der Platte. Es machen also die Platten im Laufe der weiteren Entwicklung allmählich eine Verschiebung aus einer anfänglich schrägen Längsrichtung in eine Querrichtung durch. Dass wirklich der anfängliche Distalabschnitt später zum Aussentheil der Platte wird, geht auch aus der Stellung ihrer Stachelchen hervor. Bei der 45tägigen Jugendform stehen nämlich nur auf dem distalen Be-
Asterina gibbosa.

zirke der Platte zwei Stachelchen, von denen das eine kleiner ist als das andere und dorsalwärts von ihm sitzt. Bei einem Armradius von 2,3 mm trägt die erste Platte auf ihrem dickeren distalen Bezirke schon 7 Stachelchen, nämlich 4 eigentliche Randstachelchen und darüber 3 mehr dorsalwärts gelegene; die zweite Platte besitzt bei diesem jungen Thiere in ähnlicher Anordnung 3 Rand- und 3 Dorsalstachelchen, die dritte Platte 3 Rand- und 2 Dorsalstachelchen und die vierte Platte 2 Rand- und 1 Dorsalstachelchen. Wie beim alten Thiere bilden auch jetzt schon die eigentlichen Randstachelchen mit den dorsalen auf jeder Platte ein kleines Büschel.

Die Terminalplatte des erwachsenen Thieres ist, wie VIGIER richtig angiebt, weniger gestreckt als bei Palmipes; denn während dort ihre Breite der Länge gleichkommt, hat sie bei der vorliegenden Art eine Breite von 1—1,2 mm, dagegen eine Länge von nur 0,7—0,9 mm. Ferner liegt bei Asterina die grösste Breite der Platte in der Nähe ihres proximalen Randes, hingegen bei Palmipes am distalen Rande. In ihrer absoluten Grösse stimmt sie annähernd mit der Terminalplatte des erwachsenen Palmipes überein, ist also im Verhältniss zur Grösse des Thieres bei Asterina stärker entwickelt. Sie stellt (Taf. 9, Fig. 10) eine abgerundet trapezförmige Platte mit convexer Ober- und concaver Unterseite dar, deren proximaler Rand eine schwache Concavität zeigt. Dem distalen Rande entlang trägt sie jederseits eine Querreihe von 5 oder 6 Stachelchen, die in Form und Grösse den Stachelchen des Rückenskeletes und der unteren Randplatten gleichen; ausserdem ist ihre dorsale Oberfläche mit zahlreichen kleinen Stachelchen besetzt. Schon bei ganz jungen Thieren ist sie verhältnissmässig stark ausgebildet und ebenso wie später breiter als lang. Bei einem Exemplare z. B., dessen Armradius nur 2 mm misst, hat sie eine Breite von 0,52 und eine Länge von 0,29 mm, und bei dem früher (1882) von mir abgebildeten, erst sechzehn Tage alten Thierchen eine Breite von 0,13 und eine Länge von 0,065 mm. Anfänglich, bei dem zuletzt erwähnten frühen Jugendstadium, besitzt sie jederseits drei Stachelchen; bei 45 Tage alten Individuen zählt man der Stachelchen schon jederseits vier oder fünf; bei einem Armradius von 2 mm ist sie im Ganzen mit 12, bei einem Armradius von 2,3 mm mit 20 Stachelchen besetzt, die sich nun auch schon über ihre ganze dorsale Oberfläche verheilt haben.

Wie bei Palmipes, so stimmt auch bei der vorliegenden Art die Anordnung der Ventrilateralplatten im Ganzen mit der der Dorsalplatten überein. Jeder dorsalen Querreihe von Platten entspricht eine darunter gelegene ventrale, doch kann man die bei Palmipes erwähnte Verschiebung, die jede ventrale Reihe an ihrem äusseren Ende von der entsprechenden dorsalen Reihe in distaler Richtung abdrängt, hier nicht constatiren. Auch sonst sind einige bemerkenswerthe Unterschiede in der Anordnung der ventralen Plattenreihen vorhanden. So beginnt bei Palmipes die Mittelreihe mit einer unpaaren, den Munddeckstücken anliegenden Platte, erreicht aber den Rand nicht; bei A. gibbosa dagegen erreicht die Mittelreihe in umgekehrtem Verhalten den Rand, während sie von den Munddeckstücken durch ein an diese anstossendes Plattenpaar getrennt ist. Ferner geht bei Palmipes schon die erste paarige Querreihe der Ventrolateralplatten wie alle folgenden bis an den Rand, während bei Asterina die
erste und die zweite paarige Querreihe nur aus wenigen Platten, jene aus einer einzigen, diese aus zwei Platten, bestehen und den Rand nicht erreichen, sodass erst die dritte Querreihe wie alle folgenden vollständig entwickelt ist und von den Adambulacralplatten bis zu den unteren Randplatten verläuft. Beim Dorsalskelet der vorliegenden Art sahen wir, dass nur seine erste paarige Querreihe den Rand nicht erreicht und dass demnach die erste durchgehende paarige Querreihe eigentlich die zweite ist. Da nun ventral erst die dritte Querreihe die erste ist, die den Rand erreicht, so liegt genau genommen bei Asterina jede dorsale Querreihe nicht über der ihr der Nummer nach entsprechenden ventralen, sondern die zweite dorsale liegt über der dritten ventralen, die dritte dorsale über der vierten ventralen u. s. w., wie es das folgende Schema erläutert.

![Schema der dorsolateralen und ventrolateralen Querreihen](image)

Aehnlich, aber doch nicht identisch, ist in dieser Hinsicht das Verhalten von Palmipes. Da bei Palmipes dorsal gar keine unvollständige Reihe da ist und ventral nur eine, so kommt auch dort das Ergebniss zu Stande, dass jede ventrale vollständige Reihe ihrer Nummer nach um 1 höher ist als die darüber liegende dorsale Reihe. Weil aber bei Palmipes die ventrale unvollständige Reihe die unpaare ist, bei Asterina dagegen die ventralen unvollständigen Reihen zu den paarigen gehören, so hängen damit die anderen Differenzen zwischen Asterina und Palmipes zusammen, die darin bestehen, dass erstens bei Asterina die dorsalen und ventralen Querreihen auch in der Nähe des Randes genau übereinander liegen, während bei Palmipes jede ventrale am Rande weiter distal liegt, als die sonst über ihr befindliche dorsale, und dass zweitens bei Asterina sowohl die dorsolateralen als die ventrolateralen Querreihen mit den genau übereinander liegenden oberen und unteren Randplatten alterniren, während bei Palmipes die unteren Randplatten an den Enden der ventrolateralen Querreihen stehen und nur mit den dorsolateralen Querreihen abwechseln.

Die Zahl der vollständigen ventrolateralen Querreihen entspricht der Zahl der mit ihnen alternierenden Randplatten und beträgt bei erwachsenen Thieren, z. B. bei einem Exem-
Asterina gibbosa.

229

plar von 25 mm Armradius, etwa 24 in jeder Hälfte eines Interbrachialfeldes. Die erste paarige Querreih (Taf. 9, Fig. 7) beginnt an der ersten Adambulacralplatte, besteht aber nur aus einer einzigen Platte; die zweite paarige Querreih fängt an der zweiten Adambulacralplatte an und besteht aus zwei Platten, von denen die zweite bis an die zweite Platte der unpaaren Querreih reicht. Die dritte paarige (also die erste vollständige, d. h. den Rand erreichte) nimmt ihren Anfang an der dritten Adambulacralplatte. Die unpaare Querreih beginnt, wie schon angegeben und wie auch bereits Viguier bemerkt hat, erst nach aussen von den beiden paarigen, den Winkel des Interbrachialfeldes einnehmenden Platten.

Die Zahl der von den Ventrolateralplatten gebildeten Längsreihen (Taf. 9, Fig. 7) geht bei erwachsenen Thieren meistens nicht über 7 oder 8 hinaus, von denen die letzten sehr kurz sind. Die erste Längsrieht bis zur letzten, die zweite bis zur viertletzten und die dritte bis zur achtletzten unteren Randplatte hin; die vierte Längsrieht endigt an der zehnten, die fünfte an der sechsten und die sechste an der vierten unteren Randplatte. In der ersten Längsreiht stimmt die Zahl der Platten fast ganz genau mit der der Adambulacralplatten überein, bleibt aber doch um 1 oder 2 dahinter zurück, da mitunter eine dieser Ventrolateralplatten sich mit zwei anstatt mit einer Adambulacralplatte verbindet. Da die unpaare Querreih nicht bis an die Mundeckstücke reicht, so ergibt sich, dass jede erste ventrolaterale Längsreiht mit einer besonderen Platte im Winkel des Interbrachialfeldes beginnt, während jede folgende Längsreiht mit einer Platte anfängt, die ihr mit derselben Längsreiht der anderen Hälfte des Interbrachialfeldes gemeinschaftlich ist.

Die einzelnen Ventrolateralplatten haben in der Nähe der Mundecken eine Grösse von 1,7 mm, die sich in der Nähe des Körperrandes und der Armpitzen allmählich bis auf 0,5 mm verringert. Sie überlagern sich gegenseitig in dachziegeliger Weise in der Richtung nach dem Munde und den Ambulacralfurchen hin. Da ihre Grundform eine abgerundet hexagonale ist, und da, mit Ausnahme der den Adambulacralplatten und den Randplatten zunächst gelegenen, eine jede von sechs anderen umgeben wird und zur Verbindung mit diesen die abgerundeten Ecken ihres Umrisses in Gestalt ganz kurzer Lappen ausbildet, so kann man den Umriss der Platten als einen sechslappigen bezeichnen. In der Regel sind drei von den sechs Lappen übergreifend (in der Ansicht von unten), die drei anderen untergreifend; so z.B. greift die zweite Platte der zweiten vollständigen paarig Querreih erstens über die zweite Platte der ersten paarig Querreih, zweitens über die erste Platte der zweiten und drittens über die erste Platte der dritten paarig Querreih; sie wird aber übergreifen von je einem Randlappen der dritten Platte der ersten, der dritten Platte der zweiten und der zweiten Platte der dritten Querreih. Die drei übergreifenden Randlappen haben Viguier dazu veranlasst, die Platten als dreizackige zu beschreiben. Die erste Platte der unpaaren medianen Reihe verhält sich insofern verschieden, als sie vier übergreifende und nur zwei untermgreifende Lappen besitzt. Nach dem Körperrande zu rundet sich der Umriss der Platten immer mehr ab, und die letzte Platte einer jeden Querreih kommt mit der letzten Platte der vorhergehenden und der folgenden Querreih überhaupt nicht mehr in dachziegelige Verbindung, sondern greift nur noch über die vorletzte Platte der eigenen
Querreihe, während sie mit ihrem distalen Rande über (in der Ansicht von unten) dem Zwischenraume zweier unteren Randplatten liegt. Die erste Platte jeder Querreihe steht in der Regel nur mit fünf sie umgebenden Platten, nämlich mit vier Ventrolateralplatten und mit einer Adambulacralplatte, in Verbindung, und im Zusammenhang damit ist dann ihr Umriss abgerundet pentagonal statt hexagonal; doch lässt sich auch an ihnen in der Nähe der Mundecken die ursprüngliche hexagonale Form erkennen, die dann ganz deutlich festgehalten wird, wenn, wie es hier und da der Fall ist, eine dieser Platten nicht nur mit einer, sondern mit zwei Adambulacralplatten in Verbindung tritt. Der (seltener die beiden) Randlappen, mit dem die erste Platte einer jeden Querreihe an die Adambulacralplatten herantritt, ist stets übergreifend, ebenso derjenige Randlappen, mit dem sie sich an die erste Platte der vorhergehenden Querreihe anlegt; die drei übrigen Randlappen zur Verbindung mit der zweiten Platte der vorhergehenden, der zweiten Platte der eigenen und der ersten der nächstfolgenden Querreihe sind stets untergreifend.

Im distalen Bezirke des Interbrachialfeldes verlängert sich der unter der nächstfolgenden Platte derselben Querreihe versteckte Randlappen der Platte zu einem kurzen, abgerundeten, stielförmigen Fortsatz (Taf. 9, Fig. 8), der sich ein wenig dorsalwärts aufrichtet, um dem entsprechenden, aber etwas längeren Fortsatz, den wir an den distalen Dorsolateralplatten kennen gelernt haben, entgegen zu streben. Mitsamt diesem Fortsatz haben die Platten eine Länge von 1,15—1,5 mm bei einer Breite von 0,9—1,1 mm. Wie bei Palmites membranacens treten diese inneren Fortsätze der Dorsolateral- und Ventrolateralplatten in bindegewebebrachiale Septen ein, die hier allerdings viel weniger weit als bei Palmites gegen die Hauptachse des Thieres vordringen, aber doch auch hier den Randbezirk der Leibeshöhle in eine der Zahl der dorso- und ventrolateralen Querreihen entsprechende Anzahl von Kammern (Nischen) zerlegen.

Alle Ventrolateralplatten tragen ziemlich kräftige, stumpf zugespitzte und mit der Spitze nach dem Körperrande (genauer in der Richtung der ventrolateralen Querreihen) gestellte Stacheln, die nur unter dem Mikroskop eine sehr feine, dichte Bedornung ihrer Spitze erkennen lassen. Die Stacheln sind in der Nähe der Mundecken und der Adambulacralplatten am grössten und haben hier bei erwachsenen Thieren eine Länge von 1—1,25 mm und eine Dicke von 0,3 mm, sind also, wie schon Fleming richtig hervorhob, grösser und kräftiger als die des Rückens und des Randes. Je näher dem Rande und den Armspitzen, umso mehr nehmen sie an Grösse ab, bis sie auf den äussersten Platten nur noch 0,5—0,8 mm lang sind. Die Stacheln stehen in der Regel nicht genau auf der Mitte ihrer Ventrolateralplatte, sondern in der Nähe des proximalen (== übergreifenden) Plattenrandes. Sind, was die Regel ist, mehr als ein Stachel (2 oder 3) auf einer Platte eingelenkt, so stehen sie mit ihren Basen dicht
nebeneinander und durch weiche Haut verbunden auf einer quer zur Richtung der ventrolateralen Querreihe verlaufenden Insertionslinie. Meistens sind die zwei oder drei Stacheln derselben Platte etwas ungleich an Grösse. Die Vertheilung der Stacheln ist in den meisten Fällen eine solche, dass die Mehrzahl der Platten je zwei trägt, die übrigen, ohne ganz bestimmte Ordnung, nur mit einem oder mit drei Stacheln ausgerüstet sind. Bei einem erwachsenen Exemplare z. B. zählte ich in der ersten ventrolateralen Längsreihe auf den sieben ersten Platten meist zwei, seltener drei, weiter distal auf jeder Platte nur noch einen oder zwei, dann auf den Platten der übrigen Längsreihen fast überall zwei (selten drei oder einen) Stacheln. Dieses Exemplar stimmt wie die meisten erwachsenen in der ventralen Bewaffnung ganz gut zu den Angaben, die sich bei Müller & Troschel (1842), bei Greeff (1872) und bei Gasco (1876) finden. Daneben kommen aber auch erwachsene Exemplare gar nicht selten vor, bei denen gerade im proximalen Theile der ersten oder auch noch der zweiten ventrolateralen Längsreihe vorzugsweise nur ein Stachel auf jeder Platte entwickelt ist, während die übrigen Platten wieder wie gewöhnlich zwei und nur selten drei oder nur einen Stachel besitzen.

Bei den jungen Thieren treten die ersten Ventrolateralplatten bei den mir fehlenden Altersstadien auf, die eine Körperlänge von 1—3 mm haben, denn bei einem 3,6 mm langen Exemplare (R = 2 mm) sind in jedem Interbrachialfeld (Taf. 9, Fig. 14) schon sieben junge Ventrolateralplatten vorhanden, nämlich jederseits die drei ersten Platten der ersten ventrolateralen Längsreihe und dazu, in der Mittellinie des Interradius, die erste Platte der späteren unpaaren Querreihe. Alle diese jungen Ventrolateralplatten tragen erst einen einzigen winzigen Stachel, haben einen abgerundeten Umriss und übergreifen einander noch nicht. Bei einem 5,9 mm langen Thiere (R = 3,25 mm) ist jede erste ventrolaterale Längsreihe schon aus fünf Platten zusammengesetzt; ferner hat sich zu der ersten unpaaren Platte eine zweite gesellt, die zwischen ihr und den Randplatten liegt, und es ist jederseits von dieser unpaaren Querreihe auch schon eine, jetzt erst aus drei Platten bestehende, zweite Längsreihe angelegt, sodass im Ganzen jedes Interbrachialfeld mit 18 Ventrolateralplatten besetzt ist. Die jungen Platten aller ventrolateralen Reihen treten stets am distalen Ende der Reihe auf.

Die Adambulacralplatten sind im proximalen Armabschnitte erwachsener Thiere 1 mm breit und fast ebenso lang; ihr ambulacraler Rand ist convex gegen die Füsschenfurche gebogen und ihre ventrale Oberfläche gewölbt. Nur mit ihren lateralen Enden stossen sie miteinander zusammen; sonst sind sie voneinander durch eine schmale Lücke getrennt, in die sich von innen her das laterale Ende des betreffenden Ambulacralstückes einkeilt (ein Verhältniss, das leider in meiner Abbildung Taf. 9, Fig. 7 nicht deutlich zum Ausdrucke gekommen ist).

Während Müller & Troschel bei ihrem verruculatus, Greeff bei seinem arrecifiensis und Gasco bei seiner pancerii drei bis vier Furchenstacheln auf jeder Adambulacralplatte angeben, lassen Forbes, Lorenz (bei seinem ciliatus) und Bell den ambulacralen Rand der Adambulacralplatten nur mit drei Stacheln besetzt sein. Demgegenüber habe ich zu bemerken, dass ich bei alten Exemplaren regelmässig im proximalen und mittleren Armabschnitte vier Furchenstacheln vorfinde, wie das schon Perrier (von pulchellus) richtig angegeben hat. Von
diesen vier Stacheln ist einer allerdings gewöhnlich kleiner als die übrigen. Erst in der Nähe der Armpitze sinkt die Zahl der Furchenstacheln auf drei und endlich auf zwei herab. Die vier Furchenstacheln stehen in der Längsrichtung des Armes hintereinander und sind untereinander durch eine schon von Greeff (1872 bei arrectifiensis) und von Perrier (1869 bei pulchellus) bemerkte Membran fächerartig verbunden. Da der mit ihnen besetzte ambulacrale Rand der Adambulacralplatten convex ist, so bildet auch ihre Insertionslinie einen gegen die Furchen convexen Bogen. Am kleinsten und schwächsten ist stets der adorale Stachel; da er zugleich etwas weiter von der Furche zurücktritt als die drei anderen, so sieht man ihn, wenn man die Adambulacralbewaffnung von der Furche aus ansieht, nicht immer; daraus mag sich die Forbes-Lorenz-Bell'sche Angabe, dass nur drei Furchenstacheln vorhanden seien, erklären. Die drei größeren Stacheln sind unter sich fast gleich gross, doch der mittlere ein klein wenig länger; er misst im proximalen Armabschnitt 1,5 mm an Länge. Alle vier Stacheln sind parallel zur Medianebene des Armes leicht comprimirt; sie endigen mit abgerundeter Spitze und divergiren nur sehr wenig von einander.

Bei einem Exemplare, dessen R erst 8 mm betrug, sind nach Lütken (1864) auf den beiden ersten Adambulacralplatten je vier und auf den folgenden je drei Furchenstacheln und ausserdem auf jeder Platte noch zwei äussere (= subambulacrale) Stacheln vorhanden. Bei noch jüngeren Individuen finde ich die Zahl der ambulacralen wie der subambulacralen Stacheln viel geringer. So trägt ein Exemplar von \(R = 3,25 \) mm, das in jedem Arme erst 11 Paar Füsschen besitzt, auf der 1. – 4. Adambulacralplatte je zwei ambulacrale und je einen subambulacralen Stachel und auf jeder folgenden Adambulacralplatte nur einen ambulacralen und einen subambulacralen Stachel. Bei einem erst mit 6 Paar Füsschen ausgestatteten Thiere von \(R = 2 \) mm (Taf. 9, Fig. 14) besitzt die 1. und die 2. Adambulacralplatte je zwei ambulacrale und einen subambulacralen, die 2. Platte zwei oder einen ambulacralen und einen subambulacralen Stachel, die 4. und 5. je einen ambulacralen und einen subambulacralen

Der ambulacrale Rand eines jeden Mundeckstückes ist seiner ganzen Länge nach mit einer Reihe von fünf Stacheln besetzt, zu denen sich nur selten (bei alten, noch seltener bei mittelgrossen Thieren) ein sechster (am äussersten Ende des ambulacralen Randes) hinzugiesellt. Die Stacheln sind stabförmig, am Ende abgerundet und nehmen von äussersten bis zum innersten an Länge zu. Der innerste (der eigentliche Eckstachel) übertrift auch durch seine Dicke alle übrigen; seine Länge (1,8 mm) beträgt fast doppelt so viel wie die des äussersten (1 mm). Alle zehn Stacheln derselben Mundecke sind durch eine schon von DELLE CHIAJE bemerkte Membran mit einander verbunden. FORBES (1841) scheint die kleineren äusseren Stacheln überschehen zu haben, da er jedem Mundeckstücke nur drei oder vier Stacheln zuschreibt; GRUBE (1840) dagegen hat ihre Zahl richtig auf fünf angegeben. Auf ihrer ventralen Oberfläche trägt dann noch jede Mundeckplatte neben der Sutur und etwa deren halber Länge entsprechend einen durch seine kräftige, gedrungene Form auffallenden Stachel, auf den weiter nach aussen ein viel kleineres, schwaches Stachelchen folgt.

Bei einem recht jungen Thiere von 2 mm Armradius (Taf. 9, Fig. 14) sind von den fünf Stacheln des ambulacralen Randes schon vier vorhanden, und der innerste derselben zeichnet sich auch jetzt schon durch seine Grösse vor den anderen aus. Bei einem Exemplare von 3,25 mm Armradius verhält sich die Sache ebenso; aber an einer einzigen Mundeckplatte ist bereits der fünfte (äusserste) Stachel angelegt und damit die definitive Stachelzahl erreicht. Bei diesen beiden jungen Thieren ist auf der ventralen Oberfläche der Mundeckplatten erst ein einziger junger Stachel vorhanden, der seiner Stellung nach die Anlage des späten grossen Stachels dieser Oberfläche ist. Bei noch jüngeren Thieren, die erst 45 Tage alt sind, besteht die ganze Bewaffnung der Mundeckstücke erst aus einem einzigen Stachelchen, das sich durch seine Stellung als die Anlage des später durch seine Grösse ausgezeichneten eigentlichen Eckstachels zu erkennen gibt. Neben diesem Stachelchen bemerkt man an einzelnen, aber nicht an allen Mundeckstücken noch eine ganz junge Stachelanlage, aus der später der zweite Stachel des ambulacralen Randes des Mundeckstückes wird.

Exemplare von Habitus der var. pancerii unterscheiden sich in ihrer Mundbewaffnung in einem Punkte von den typischen Exemplaren der gibbosa. Es stehen nämlich bei ihnen auf der ventralen Oberfläche der Mundeckplatten statt des einen, grossen, dicken Stacheln zwei oder drei etwas kleinere, die zusammen eine dicht gedrängte, schief, dem ambulacralen Rande annähernd parallel laufende Reihe bilden; ausser diesen dreien steht dann noch ein vieter, noch kleinerer in der Nähe der den distalen Rand mit dem sutralen verbindenden Ecke; dieser vierte Stachel entspricht dem kleinen äusseren Stachelchen des typischen Verhaltens.

Die schon von LINCK abgebildete und als verruca velut fungus undose sulcatus beschriebene Madreporenplatte soll nach NORMAN (1865) in der Mitte zwischen Centrum...
und Rand liegen, was thatsächlich keineswegs der Fall ist. Forbes (1841) gab ihr bereits, der Wahrheit näher kommend, eine subcentrale Lage, und Bell (1892, Cat.) bemerkt ganz zutreffend, dass sie dem Centrum näher liege als dem Rande. Bei einem Exemplare von 25 mm Armradius maass ich den Abstand des Mittelpunktes der Madreporenplatte vom Centrum des Rückens zu 4,5 und den Abstand vom Rande zu 12,5 mm; die beiden Abstände verhalten sich zu einander wie 1 : 2,8. Bei einem kleineren Exemplare von 17 mm Armradius beträgt der eine Abstand 2,5, der andere 9,5, also das Verhältniss beider 1 : 3,8, und bei einem Exemplare vom Habitus der var. paneri, dessen Armradius 11 mm maass, ist der eine Abstand 2, der andere 5,75 mm, also das Verhältniss beider 1 : 2,9. Daraus ergiebt sich, dass die Madreporenplatte durchschnittlich etwa dreimal soweit vom Rande wie vom Mittelpunkte des Rückens entfernt ist.

Forbes und Gasco nennen die Platte klein, was man aber in Anbetracht der geringen Grösse des ganzen Thieres kaum sagen kann, da sie bei erwachsenen Individuen 1,2—2 mm lang und fast ebenso breit ist. Sie hat einen abgerundet viereckigen oder noch häufiger abgerundet dreieckigen Umris; in beiden Fällen ist sie an ihrem gegen das Rückencentrum gerichteten Rande am breitesten und verschmälert sich nach dem entgegengesetzten Rande hin. Oberflächlich ist sie gewölbt und überall mit gewundenen Furchen besetzt (Taf. 9, Fig. 12), die wie gewöhnlich von der Mitte nach dem Rande und nur hier und da sich gabelnd verlaufen; einige der Furchen gehen quer über die Mitte, sodass ein Centrum für die Anordnung der Furchen nicht ganz scharf zum Ausdruck kommt. Im Grunde der Furchen kann man schon mit einer starken Lupe die Poren mit aller Deutlichkeit erkennen. Die Kalkleisten (Riffe), durch welche die Furchen begrenzt und getrennt werden, sind sehr schmal und treten am Rande der Platte als kleine Vorsprüinge des Umribes hervor.

Die Platte nimmt den weitaus grössten Theil (Taf. 9, Fig. 6) eines der dreieckigen Interradialfelder des Scheitels ein und wird von der Bestachelung der dieses Feld begrenzenden Platten umstellt und an ihrem Rande überlagert; besonders gut ausgebildet sind in der Regel diejenigen beiden Doppelreihen von Stachelchen, die rechts und links von der Madreporenplatte auf den ersten Adradialplatten stehen. Im äusseren Winkel des von der Madreporenplatte besetzten Interradialfeldes findet gewöhnlich noch eine kleine supplementäre Platte Raum zur Ausbildung.

Bemerkenswerther Weise ist die Madreporenplatte des erwachsenen Thieres kein Bestandtheil der ersten Interradialplatte des betreffenden Interradius, sondern ein ganz selbständiges Skeletstück, das sich mit seinem adzentralen (= proximalen) Rande auf den Rand eines concaven Ausschnittes stützt, der sich an der distalen Seite des ersten Interradialstückes befindet (Taf. 9, Fig. 13). Betrachtet man diese Interradialplatte von der Innenseite her, so bemerkt man an ihrem distalen Rande ebenfalls eine concave Einbuchtung, die jedoch weniger tief in den Körper der Platte eindringt als der von aussen bemerkte Ausschnitt. Zwischen der äusseren und der inneren Einbuchtung liegt nun am distalen Rande der Platte eine kleine, in den Körper der Platte eingesenkte, grubenförmige Höhle, die wahrscheinlich das Ende des
schlauchförmigen Kanales darstellt, während der Steinkanal lediglich an die Mitte der unteren Fläche der Madreporenplatte herantritt. Bei jüngeren Thieren tritt die Einbuchtung des distalen Randes der Interradialplatte schon recht frühzeitig auf (vergl. Taf. 9, Fig. 2, 3).

Bei Müller & Troschel findet sich die erste Angabe über das Vorkommen von Pedicellarien bei *A. gibbosa*. Sie beschreiben zwar ihre Gestalt nicht näher, sondern erwähnen nur, dass sie sich zahlreich in den Zwischenräumen der Plättchen befinden. Eine genauere Beschreibung hat erst Norman (1865) gegeben. Er schildert sie als auf der Rückenseite des Thieres auftretende Paare von Stacheln, die sich von den übrigen Stacheln nur dadurch unterscheiden, dass die Stacheln eines jedes Paares mit ihren Basen dicht beisammen stehen und leicht in der Art gebogen sind, dass die Spitzen sich berühren können. Dann gab einige Jahre später Perrier (1869) eine im Wesentlichen mit Norman übereinstimmende, kurze Beschreibung, der er eine Abbildung beifügte. Auch nach meinen Beobachtungen besteht jede Pedicellarien aus zwei dicht aneinandergerückten, gedrungenen Stachelchen, die sich mit ihren feinbedornerten Spitzen in leichter Biegung gegeneinander neigen und an der Basis der einander zugekehrten Seite ein wenig verdickt sind; infolgedessen berühren sich die beiden Stachelchen beim Schlusse der Pedicellarien nur mit den Spitzen und mit den Basen, während sie dazwischen um rund 0,1 mm auseinanderklaffen. Beim erwachsenen Thiere haben die Pedicellarien in der Nähe des Körperrandes eine Länge von 0,45 mm; auf der Mitte des Rückens sind sie etwas kürzer und messen hier nur 0,3—0,37 mm an Länge.

Wie schon Norman hervorgehoben hat, haben wir es in diesen Pedicellarien mit einer Uebergangsform von echten Stacheln zu wohlausgebildeten Pedicellarien zu thun — eine Auffassung, zu der sich auch Perrier (1884) bekennen. Ob man nun derartige Pedicellarien schon als «echte» gelten lassen will (Müller & Troschel, Heller, Perrier, Viguié, Gasco)
oder noch nicht Norman, Bell, Cuenot), dürfte wohl eine ziemlich überflüssige Frage sein, da man, wie Cuenot übrigens selbst zugeibt, eine scharfe Grenze zwischen Stacheln und Pedicellarien überhaupt nicht ziehen kann. Jedenfalls aber ist Cuenot's (1888) Behauptung, es hätten die beiden Kalkstücke einer solchen »didactylen Stachelgruppe« dieselbe Form wie die anderen Stacheln der Rückenseite, thatsächlich unhaltbar. Mir scheint also kein rechter Grund vorzuliegen, weshalb man die Pedicellarien der A. gibbosa nicht als solche bezeichnen soll. Sie lassen sich ungezwungen in die Gruppe 1) der zangenförmigen im engeren Sinne einordnen.

Ganz richtig ist es übrigens nicht, wenn Müller & Troschel sagen, dass die Pedicellarien »in den Zwischenräumen der Plättchen« stehen oder, wie Viguier sich ausdrückt, dass sie ohne Verbindung mit den Skeletstücken seien. Untersucht man nämlich ihre Anordnung genau, so findet man, dass sie stets über Skeletstücke stehen, die ihnen als stützende Unterlage dienen. Freilich sind das auf dem Scheibenrücken und auf den Armrücken nirgend die Hauptplatten des Skeletes, sondern die in die Skeletlücken eingeschalteten supplementären Plättchen. Soweit überhaupt supplementäre Plättchen bei unserer Art vorkommen, trägt fast jedes eine Pedicellarie; es stellt also das supplementäre Plättchen eine Basalplatte der Pedicellarie dar. Ausserhalb des durch supplementäre Plättchen gekennzeichneten Rückenbezirkes kommen aber auch noch dem Körperrande entlang Pedicellarien vor, die aber nicht immer nur aus zwei, sondern manchmal aus drei zusammengeneigten, leicht gebogenen Stacheln gebildet sind. Diesen Randpedicellarien, die zum Theil auf der äussersten Platte einer jeden dorsolateralen Querreihen und ferner ganz regelmässig auf jeder oberen Randplatte (je eine Pedicellarie auf jeder Platte) auftreten, dienen keine supplementären Plättchen, sondern die genannten Hauptplatten des Skeletes selbst zur Unterlage. Ihre Anordnung dem Rande entlang hat bis jetzt nur Gasco erwähnt; sie findet sich aber nicht nur bei seiner pancerii, sondern in ganz gleicher Weise auch bei der typischen gibbosa.

Bei jungen Thieren ist anfänglich, solange sie einen Armradius von weniger als 5 mm haben, noch nirgends eine deutliche Pedicellarie zu finden. Statt dessen trifft man auf den oberen Randplatten zwei und auf den jungen Supplementärplättchen drei nahe zusammenstehende junge Stachelchen, die sich einstweilen noch in keiner Weise von den anderen jungen Stachelchen der übrigen Körperoberfläche unterscheiden. Später aber werden diese durchaus stachelförmigen Anlagen der Pedicellarien dadurch allmählich zu einem Greiforgan, dass ihre Enden bei ihrem weiteren Wachstum sich einander entgegenbiegen, und die Stacheln ausdann, erst vorwiegend und endlich nur noch. in der Ebene jener Biegung bewegt werden. So konnte Lütken (1864) schon bei einem jungen Thiere von 8 mm Armradius die Pedicellarien als solche deutlich wahrnehmen.

Dass die zangenförmigen Pedicellarien aus einer Umbildung von Stacheln entstehen,

Asterina gibbosa.

In dem gewöhnlichen Farbenkleide der erwachsenen, von mir bei Neapel lebend gesehenen Exemplare waltet auf der Rückenseite, wie schon Delle Chiaje angiebt, ein trübes, nach Olive ziehendes Grün vor, wobei das Grün häufig viel mehr hervortritt als auf der beigegebenen Abbildung (Taf. 5, Fig. 5.). Auch an anderen Orten ihres Verbreitungsgebietes scheint diese Färbung die gewöhnliche unserer Art zu sein, denn Lorenz und Heller beschreiben ihre Exemplare aus der Adria als schmutziggrün (Heller) oder dunkelgrün (Lorenz), Forbes und Herdman solche von den englischen und irischen Küsten als grünlichgelb bis bräunlich oder trübgrünlich. Die Spitzen der dorsalen Stacheln sind fast immer mehr oder weniger gelblich bis rostfarbig, was zu Delle Chiaje's Angabe »spine giallastre« stimmt; die Madreporenplatte erscheint ebenfalls rostfarbig, und auch die Randstacheln sind rostfarbig oder hellgelbbraun. Zur Zeit der Fortpflanzung kann man die Geschlechter an der Farbe einigermaassen sicher unterscheiden (ich, 1882: die Weibchen zeigen alsdann ein kräftiges Grün der Rückenseite, während der Rücken der Männchen einen fahlen, blaugrünen Ton hat.

Die Unterseite ist stets heller als der Rücken, oft noch blässer und im Ganzen gelblicher als an dem abgebildeten Exemplare (Taf. 5, Fig. 6). Die Grundfarbe scheint aber auch an der Unterseite ein grünlicher Ton zu sein, der bald als ein ganz liches, bald als ein etwas kräftigeres Hellgrün auftritt. Der gelbliche, übrigens schon von Delle Chiaje bemerkte Ton
in der Färbung der Unterseite kommt ähnlich wie auf dem Rücken durch die gelben bis hellgelbbraunen Spitzen der Stacheln zu Stande. Die Füsschen erscheinen, namentlich im ausgestreckten Zustande, ganz farblos, weisslich und durchscheinend.

Unter diesen normalgefärbten alten Individuen kommen aber auch andere vor, die das Grün in ihrem Farbenkleide nicht besitzen und dadurch im Ganzen gelblich oder röthlich (Herdmann) oder ziegelroth bis braunroth (nach mündlicher Mittheilung von Lo Bianco) aussehen. Viel häufiger begegnet man dieser anderen Färbung bei jüngeren Thieren. So bemerkte schon M. Sars, dass die kleinen, nur 13 mm grossen Exemplare, die er bei Neapel aus 75—94 m Tiefe herauffohlte, sich durch eine ziegelrote Färbung auszeichneten. Aehnliche Angaben machte Marion für kleine, aus 25—38 m stammende Exemplare aus dem Golf von Marseille.

Ebenso berichtet Gasco, dass seine bis 25 mm grossen Exemplare der *pancerii* meistens auf dem Rücken ziegelroth waren, doch kamen darunter auch grüngefärbte Exemplare vor; in beiden Fällen können sich fünf weisse Streifen finden, die vom Scheibennmittelpunkte nach den Armspitzen ziehen. Mit diesen Angaben von Sars und Gasco stimmen meine eigenen Beobachtungen und die mündlichen Mittheilungen, die mir Lo Bianco gemacht hat, im Allgemeinen überein. Die Abbildung (Taf. 5, Fig. 7) z. B. stellt ein 20 mm grosses, braunrothes, weissgefäcktes Exemplar aus 75 m Tiefe von der Secca di Benda Palumbo dar; die Flecken stehen aber im Gegensatze zu Gasco's Angabe nicht auf den Räden, sondern vorzugsweise auf den Interradien. Aehnlich gefärbte Thiere von nur 11—13 mm Länge haben mir in Neapel lebend vorgelegen; ihre Bauchseite, über die Gasco nichts bemerkt, war purpurroth mit weissen Stacheln. Die andere Abbildung (Taf. 5, Fig. 8) bezieht sich auf ein junges Thier von erst 7 mm Länge, das ebenfalls aus 75 m Tiefe auf der Secca di Benda Palumbo gefischt war. Sein Rücken ist viel heller ziegelroth; die weissen Flecken sind zahlreicher und ordnen sich im Umkreis des Afters, wie das auch schon Gasco als eine häufige Erscheinung angegeben hat, zu einem Kranze. Gasco führt hinzu, dass er auch einzelne violette oder ultramarinfarbene Exemplare gesehen habe, deren Rückerstacheln weiss oder haselnußfarbig waren. Solche Färbungen habe ich selbst zwar nicht gesehen, wohl aber sind mir einzelne Individuen (von 15—20 mm Länge) vorgekommen, bei denen der Rücken, der im Uebrigen mit rothbraunen und schmutzig- weissen Flecken übersät war, wenigstens soviel Blau zeigte, dass man den Gesammtton als schiefergrau bezeichnen könnte; auch die purpurrothe Unterseite dieser Thiere neigte nach blaugrau hin.

Im Ganzen wird man also sagen dürfen, dass die jüngeren Individuen das Grün der alten Thiere sehr häufig noch nicht besitzen und dafür ziegelroth bis braunroth gefärbt sind. Der rothe Farbstoff fehlt ja auch den alten Thieren nicht, wird aber durch den später auf tretenden grünen mehr oder weniger verdeckt. Lorenz beobachtete, was ich bestätigen kann, dass grüngefärbte alte Thiere, wenn man sie lebend in Weingeist einlegt, zuerst ziegelroth und erst später bleich werden; was vermutlich damit zusammenhängt, dass der grüne Farb stoff schneller ausgezogen wird als der rothe.

Auffallenderweise scheint diese an den Orten ihres Vorkommens durchweg gemeine Art
im östlichen Theile des Mittelmeeres nur in der Adria zu leben, wenigstens sind bis jetzt weder Fundorte aus dem jonischen noch aus dem ägäischen oder levantischen Meere nachgewiesen worden. In der Adria kennt man sie aus dem Golf von Venedig (Olivi), dem Golf von Triest (Graeffe, Stossich), aus dem Quarnero (Lorenz) und dem Golf von Fiume (Grube), von der Insel Lussin (Grube), von den dalmatinischen Inseln Lissa, Lesina (Heller), Lagosta, Curzola (Stossich) und aus der südlichen Adria aus der Nähe der Insel Pelagosa (v. Marenzeller).

Im westlichen Becken des Mittelmeeres ist sie wohl überall häufig. Als Fundorte sind hier bekannt: Messina (Perrier, Bonner Museum), Palermo (v. Martens), Sicilien (Lütken), der Golf von Neapel (Delle Chiaje, A. Costa, M. Sars, Lütken, ich, Gasco, Lo Bianco, Colombo), Pozzuoli (Gasco), die ligurische Küste (Verany), Rapallo (Marchisio), der Hafen von Genoa (Gruber), an der französischen Mittelmeerküste Nizza (Risso, Bonner Museum), La Ciotat (Koecher), Marseilles (Leach, Marion), Port-Vendres und Banyuls (Cuénot), ferner die Küste von Menorca (Braun) und die Küste von Algier (Perrier). Im Golf von Neapel findet sie sich vorzugsweise in dessen westlichem Bezirke, an der S. Lucia, am Posilipp, auf der Secca di Benda Palumbo, der Secca di Cape Miseno und der Secca d’Ischia.

Die Varietät panerii, die bislang nur aus dem Golf von Neapel bekannt ist, kommt dort besonders auf den Posidonien-Wiesen am Posilipp in 6 m Tiefe vor.

In westlicher Richtung geht die Art durch die Strasse von Gibraltar, wo sie in der Bucht von Algésiras (Greeff) gefunden wurde, und dehnt dann im atlantischen Ozean ihr Wohngebiet südlich bis Mogador an der Westküste Maroccos und bis zu den canarischen Inseln (Greeff), westlich bis zu den Azoren (Th. Barrois, Simroth) und nördlich bis zur Westküste von Schottland (Forbes) ans. Es erstreckt sich also ihre horizontale Verbreitung etwa von 27° bis zu 58° N. Br. und reicht westlich bis etwa 30° W. L.

An der Süd- und Westküste der iberischen Halbinsel kennt man die Art von Cadix (Perrier), aus der Bucht von Setubal und von der Tejo-Mündung (Greeff). An der atlantischen Küste Frankreichs ist sie bekannt von der Küste der Gironde (Fischer), von La Rochelle (Le Bretonneux, Perrier), Le Pouliguen (Giard), von Concarneau (Th. Barrois, Cuénot), Roscoff (Grube, Perrier, Lacaze-Duthiers, Viguié, Giard, Cuénot), St. Malo (Grube) und von den normannischen Inseln Jersey, Guernesey und Herm (Forbes, Koecher), endlich, als ihrem östlichsten Fundorte an der französischen Kanalküste, von St. Vaast-la-Hougue (Grube, Giard).

An den grossbritannischen und irischen Küsten geht sie, wie schon Forbes mittheilte und Bell und Haddon bestätigten, rings um Irland herum; in der irischen See findet sie sich an der West- und Ostküste (Bell, Norman, Herdman), an der Insel Man (Forbes, Herdman) und im Firth of Clyde (Bell, Henderson). Nördlich ist sie nachgewiesen bis zur Küste der

1) Simroth’s Angabe lässt zwar einen Zweifel, ob sie sich wirklich auf A. gibbosa bezieht. Doch scheint mir diese Unsicherheit dadurch beseitigt zu sein, dass zur selben Zeit Th. Barrois mit aller Bestimmtheit die Art von den Azoren angiebt.
Grafschaft Ross an der Westküste von Schottland (Forbes). Sie lebt ferner an der Südwestküste von England (Bell), wo sie im Eingange des Kanals bis Plymouth (Bell, Garstang) geht. Dagegen fehlt sie an der ganzen Nordseeküste von England und Schottland 1).

In ihrer vertikalen Verbreitung erweist sich die Art als eine echte Strandform, die sich vorzugsweise in ganz geringen Tiefen von 1/3—5 m aufhält. An den atlantischen Küsten bewohnt sie mit Vorliebe die Zone der Gezeiten, sodass sie bei Ebbe in den Tümpeln des Strandes anzutreffen ist. Unter allen Seesternen des Mittelmeeres gibt es keine andere Art, die in so ausgeprägter Weise der Uferfauna angehört; nicht einmal die beiden gewöhnlichen Asterias-Arten des Mittelmeeres (glacialis und tenispina) sind hart am Strande so häufig zu finden. Ja sie geht sogar, was von keinem anderen mittelmeerischen Seestern bekannt ist, an einzelnen Stellen bis in brackiges Wasser hinein; denn Greff berichtet, dass er sie in der Tejo-Mündung bis zum Torre de Belém gefunden habe, wo der Salzgehalt des Wassers nur noch 2,5/6 beträgt. Trotzdem ist die Art doch nicht gänzlich auf die Uferzone beschränkt, sondern bewohnt auch Tiefen von 10—100 m und darüber. Schon M. Sars erwähnt, dass er bei Neapel kleinere, nur 13 mm grosse Exemplare aus 75—94 m erhalten habe. Desgleichen erübnete Colonbo sie an verschiedenen Stellen des Golfes von Neapel in Tiefen von 10 bis 126 m, und da er seine Exemplare stets als A. pancreii bezeichnete, so muss ich annehmen, dass es sich dabei durchweg um halbwüchsige Thiere handelte. Im Golf von Marseille wurde sie von Marion in kleinen Exemplaren aus Tiefen von 25—38 m heraufgeholt. Auch in der Adria fand Heller sie bis in Tiefen von 36 m; Grube fischte einmal bei Lussin ein junges Exemplar aus einer Tiefe von 60—64 m, und un längst stellte v. Marenzeller in der südlichen Adria ihr Vorkommen in 128 m fest, dem tiefsten Fundpunkt, den wir bis jetzt für die Art kennen. Inwiefern es mit den Lebensgewohnheiten der Art zusammenhängt, dass man aus diesen beträchtlicheren Tiefen fast ausnahmslos nur kleine und halbwüchsige Individuen heraufgeholt hat, bedarf noch der Aufklärung. Einstweilen scheinen die Thatsachen dafür zu sprechen, dass die Thiere, nachdem sie im Bereiche der Uferzone ihre erste Jugendzeit verlebt und eine Grösse von einigen Millimetern erreicht haben, in tieferes Wasser (bis rund 130 m) wandern, aus dem sie dann später als halbwüchsige Thiere wieder zum Ufer zurückkehren, um dort den Rest ihres Lebens zuzubringen.

Hinsichtlich der Bodenbeschaffenheit geht aus allen vorliegenden Beobachtungen übereinstimmend hervor, dass die Art hartes, steiniges, felsiges Terrain liebt. In der Strandzone trifft man sie an und unter Steinen, ferner in den Zostera- und Posidonia-Wiesen, zwischen Algen (Ulea, Fucus, Corallina, Laminaria, zwischen Phyllochaetopterus- (Röhrenwurm-) Colonien und auf Schwämmen. Und auch in der Tiefe bevorzugt sie, wie aus Colonbo's

Asterina gibbosa.

Angaben hervorgeht, eine felsige oder mindestens sandige, mit Melobesien und Conchylien gemengte Unterlage, während sie auf Schlamm Boden nur ausnahmsweise gefunden wird.

Nach Cuvier (1828) verzeichnet die Asterina besonders Muscheln und Schnecken, aber auch Ophiuren und Gephyrean.

1) Nach Giard (1878) hat ein von ihm nicht genannter Autor schon ein Jahr früher die Entwicklungsexpresse der Asterina beobachtet, und darüber eine Mitteilung in der mir nicht zugängigen Revue des sciences naturelles publique par Dufour, Tome 2, Montpellier 1873, p. 546 gemacht.

Eine andere Frage ist die, ob sich die *A. gibbosa* nicht auch parthenogenetisch fortpflanzen könne? MacBRIDE gibt nämlich an, dass er bei Jersey und Plymouth niemals ein Männchen gefunden habe, während doch die von den Weibchen abgelegten Eier sich normal entwickelten. Es wäre gewiss von Interesse, diese Frage einmal genauer zu untersuchen; möglicherweise würde sich ergeben, dass Differenzen der äusseren Lebensbedingungen der im Mittelmeere und im Kanal lebenden Individuen für das Auftreten der Parthenogenese von entscheidender Bedeutung sind.

Endlich noch einige Bemerkungen über den Bau der frei durch die Leibeshöhle tretenden *interbrachialen Septen*.

Nach VIGUTER (1879) bestehen diese Septen aus einer einzigen, dicken Platte, die sowohl an ihrem dorsalen wie an ihrem ventralen Ende durch ein oder zwei kleinere Platten verstärkt wird. Das ist im Ganzen ziemlich richtig, bedarf aber doch einer präziseren Beschreibung. Die unpaare, senkrecht gestellte Platte, die die Achse des pfeilerförmigen Septums einnimmt und deshalb die Pfeilerplatte heissen mag, hat eine gestreckt bimförmige, von den Seiten her ein wenig comprimirte Gestalt und richtet ihr verjüngtes Ende nach der ventralen, ihr dickes Ende nach der dorsalen Körperfand. Mundwärts von ihren ventralen Ende liegt die unpaare, von VIGUTER als Odontophor bezeichnete und näher beschriebene Interoralplatte der Munddecke, die man bei ganz jungen, in Nelkenöl aufgehellten Thieren in deren Ventralansicht durchscheinern sieht (Taf. 9, Fig. 11, JR). Jederseits lagern sich an das ventrale Ende der Pfeilerplatte, dem Septum gewissermaassen als Basis dienend, zwei über einander gestellte kleinere Platten, von denen die obere die untere an Grösse übertrifft; die untere dieser beiden ventralen Hülfsplatten des Septums stützt sich auf die erste paarige Ventraloralplatte. Man könnte demnach jene Hülfsplatten als nach innen gedrängte Ventraloralplatten auffassen. Das obere dickere und breitere Ende der Pfeilerplatte ist gleichfalls zwischen zwei Plattenpaare eingeklebt, von denen das eine (= proximale) dem Rückenzeiten näher liegt als das andere (= distale). Diese beiden Plattenpaare sind jedoch keine selbständigen Gebilde, sondern nach innen gehobene Randstücke von uns bereits bekannten Platten des Dorsalskeletes. Das proximale Paar nämlicg wird geliefert durch einen nach innen gerichteten Fortsatz der ersten Adradialplatten und das distale Paar in ähnlicher Weise durch einen inneren Fortsatz der ersten Dorsoralplatten. Zwischen diese zwei Plattenpaare schiebt sich das obere Ende der Pfeilerplatte soweit empor, dass man es durch Auseinanderdrängung jener Plattenpaare von oben her erkennen kann. Mit anderen Worten: es ist die Pfeilerplatte des Septums identisch mit dem bei der Betrachtung des Rückenskeletes als zweite Interoralplatte bezeichneten Skeletstück (Taf. 9, Fig. 4, 5, JR 2). Die dritte Interoralplatte, die ihre Lage zwischen den Anfangsplatten der zweiten dorsolateralen Längsreihe hat und, wie früher bemerkt, ebenfalls in die Tiefe gerückt ist, bleibt in ihrer Grösse stets hinter der zweiten, also der Pfeilerplatte, erheblich zurück und schliesst sich in der Richtung des Interoralrandwärts an das obere Ende der Pfeilerplatte an.

Körper fünflappig umrandet und bis zur Dünneheit eines etwas durchscheinenden Cartonblattes abgeplattet, mit zuschärften, fein bestacheltem Rande, der nur von den horizontal gestellten, zahlreichen, kleinen unteren Randplatten gebildet wird; die Rückenplatten bilden auf den Armen einen besonderen medianen Längsstreifen und sind mit bürstenförmigen, die Ventralplatten mit kammähnlichen Gruppen kleiner Stachelchen besetzt; Pedicellarien fehlen; Papulae einfach, auf die medianen Armutrennstrifen und den Scheitel beschränkt; Füsschen mit deutlich Saugscheibe.

Im Mittelmeere nur eine Art: P. membranaceous Linck und eine Bastardform dieser Art mit Asterina gibbosa = P. lobianci.

Taf. 5, Fig. 3, 4; Taf. 5, Fig. 3—17.

1638 Stella cartilaginea Aldrovandi p. 743.
1733 Stella [Palmipes] membranacea Linck p. 29—30; T. 1, Nr. 2.
1777 Asterias placenta Pennant Vol. 4, p. 62; T. 31, f. 59 A.
1783 Asterias membranacea Retzius p. 238.
1785 Asterias membranacea Gmelin p. 3164.
1792 Asterias palmipes Olivi p. 66.
1805 Asterias membranacea Retzius p. 62.
1814 Asterias papyracea Konrad p. 3.
1825 Asterias rosacea, Stella rossa membranacea Delle Chiave Vol. 2, p. 354; T. 18, f. 2.
1826 Asterias membranacea Risso p. 265).
1830 Asterias (Palmasterias) membranacea Blainville p. 218.
1834 Asterias (Palmasterias) membranacea Blainville p. 237; T. 23, f. 2.
1834 Anseropoda membranacea Nardo p. 716.
1835 Palmipes membranaceus L. Agassiz p. 192.
1839 Palmipes membranaceus Forbes p. 119; T. 3, f. 3.
1810 Asterias membranacea Lamarck Vol. 3, p. 244—245.
1810 Palmipes membranaceus Gray p. 288.
1842 Asterias palmipes Müller & Troschel p. 39—40.
1846 Asterias membranacea Verany p. 5.
1849 Asteriscus palmipes Duvernoy p. 602, 604, 610; T. 1, f. 2, 2 bis.
1851 Asteriscus membranacea Gaudry p. 369, 372; T. 13, f. 11, T. 15, f. 6.
1857 Asteriscus palmipes M. Sars p. 106.
1860 Asteriscus palmipes Lorenz p. 678.
1862 Palmipes membranaceus Dujardin & Hupé p. 373.
1863 Asteriscus palmipes Heller p. 441.
1864 Asterias placenta Lütken p. 113.
1864 Asterias membranacea Beltremieux p. 90; T. 3, f. 2.

1) Ob Risso wirklich den Palmipes membranaceus vor sich hatte, bleibt zweifelhaft. Die von ihm angegebene Färbung, die Grössenangabe und das Vorkommen unter Steinen der Uferzone sprechen dagegen. Man könnte an eine Verwechslung mit Asterina gibbosa, wie sie ja Guebe (1840) tatsächlich zugestossen ist, denken, doch passt dazu wieder die Grössenangabe (R = 40 mm) nicht recht (vgl. Anmerkung p. 207).
Bei ihrer Grösse und auffallenden Gestalt ist diese Art, obgleich sie in einiger Tiefe lebt, schon in der ersten Hälfte des siebzehnten Jahrhunderts bekannt und durch Aldrovandi (1638) unter dem Namen *stella cartilaginea* in die Litteratur eingeführt worden. Fast hundert Jahre später hat Linck (1733) für sie die noch heute gültige Gattung *Palmipes* aufgestellt und zugleich den Artnamen in *membranaceus* umgeändert. Die so geschaffene Benennung, die das Charakteristische in der äusseren Erscheinung des Thieres ebenso trefflich betont wie der nach Olivi an der Adria gebräuchliche Vulgarnamen *d'oca* (Gänsefuß), wurde seit 1878 von allen neueren Autoren beibehalten mit alleiniger Ausnahme von Bell (1892) und neuerdings auch v. Marenzeller und Herdman (1895), die nach dem Vorgang von Lütken (1864) und Norman (1865) den von Pennant (1777) gegebenen Artnamen *placenta* gebrauchen; doch kann kein Zweifel daran sein, dass der Pennant'sche Namen vor dem viel älteren Linck'schen weichen muss.

Die Gestalt des Körpers (Taf. 5, Fig. 3, 4) stellt eine fünflappig umgrenzte Scheibe dar, deren Abplattung so stark ist, dass sie wie ein in der Mitte dickeres, nach dem Rande hin bis auf 0,5 mm verdünntes Stück Carton aussieht. Die fünf Lappen der Scheibe entsprechen den

Die älteren englischen Autoren geben die Grösse der Art auf 122 (Fleming) bis 152 (Forbes) mm an. Müller & Troschel kannten Exemplare von 157 (oder nach französischem Maasse umgerechnet 162) mm, M. Sars solche von 176 mm. Das grösste von Bell gemessene Exemplar (Nr. 23 unserer Tabelle) hat eine Gesammlänge von 165 mm. Diesem, sowie dem grössten Sars'schen Exemplare stehen meine Nr. 13 und 14 mit 167 und 169 mm am nächsten. Dass die Art aber noch etwas bedeutendere Maasse erreichen und fast 200 mm gross werden kann, zeigen meine Exemplare 15 und 16 mit 183 und 197 mm Länge. Das kleinste der mir in betrüchtlicher Anzahl vorliegenden jugendlichen Exemplare hat, wie die Tabelle unter Nr. 24—29 näher nachweist, erst eine Grösse von 5 mm erreicht.

Aus den Maassen der in die Tabelle aufgenommenen sechszehn halbwüchsigen und erwachsenen, von mir gemessenen Exemplare, deren R bei dem kleinsten 20, bei dem grössten 111 mm betrug, ergiebt sich das durchschnittliche Verhältniss r : R = 1 : 1,66. Dabei ist bei der Ungleichheit, die in der Regel die fünf Armmadien wie die fünf Scheibenradien desselben Individuums unter sich zeigen, stets das Maass des grössten Armradius und des grössten Scheibenradius in die Tabelle eingestellt. Nimmt man zu den sechszehn von mir gemessenen Exemplaren noch die sieben von Bell.
<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>20</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>24</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>47</td>
<td>26</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>27</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>71</td>
<td>40</td>
<td>23</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>73</td>
<td>41</td>
<td>27</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>92</td>
<td>52</td>
<td>34</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>103</td>
<td>58</td>
<td>28</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>107</td>
<td>60</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>129</td>
<td>73</td>
<td>35</td>
<td>41</td>
</tr>
<tr>
<td>11</td>
<td>142</td>
<td>80</td>
<td>49</td>
<td>55</td>
</tr>
<tr>
<td>12</td>
<td>157</td>
<td>88</td>
<td>55</td>
<td>62</td>
</tr>
<tr>
<td>13</td>
<td>167</td>
<td>91</td>
<td>60</td>
<td>—</td>
</tr>
<tr>
<td>14</td>
<td>169</td>
<td>95</td>
<td>55</td>
<td>—</td>
</tr>
<tr>
<td>15</td>
<td>183</td>
<td>103</td>
<td>60</td>
<td>67</td>
</tr>
<tr>
<td>16</td>
<td>197</td>
<td>111</td>
<td>63</td>
<td>76</td>
</tr>
</tbody>
</table>

Von Bell angegebene Maasse:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>—</td>
<td>27</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>18</td>
<td>—</td>
<td>36</td>
<td>29</td>
<td>—</td>
</tr>
<tr>
<td>19</td>
<td>—</td>
<td>40</td>
<td>26</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>—</td>
<td>54</td>
<td>32</td>
<td>—</td>
</tr>
<tr>
<td>21</td>
<td>—</td>
<td>70</td>
<td>42,5</td>
<td>—</td>
</tr>
<tr>
<td>22</td>
<td>—</td>
<td>72,5</td>
<td>51</td>
<td>—</td>
</tr>
<tr>
<td>23</td>
<td>—</td>
<td>93</td>
<td>63,5</td>
<td>—</td>
</tr>
</tbody>
</table>

Maasse von jungen Thieren:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>5</td>
<td>2,5</td>
<td>2,25</td>
<td>—</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>3,5</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>26</td>
<td>7,5</td>
<td>4</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>27</td>
<td>8,5</td>
<td>4,5</td>
<td>3,5 (sechstrahlig)</td>
<td>—</td>
</tr>
<tr>
<td>28</td>
<td>11</td>
<td>6</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>29</td>
<td>13</td>
<td>7,5</td>
<td>5,25</td>
<td>—</td>
</tr>
</tbody>
</table>

gemessen (s. die Tabelle) hinzu, so erhält man bei diesen dreundzwanzig Exemplaren das Durchschnittsverhältniss r: R = 1:1,6, während die sieben Bell'schen Exemplare für sich allein berechnet das Durchschnittsverhältniss r: R = 1:1,48 ergeben. Wenn also Bell an Stelle der zu unbestimmten Müller & Troschel'schen Angabe: »Der grosse Radius ist weniger als doppelt so lang wie der kleine« die genauere Angabe »2 R = 3 r nearly« setzt, so stimmt das allerdings gut zu seinen Exemplaren, muss aber doch bei Berücksichtigung einer grösseren Anzahl von Thieren in »2 R = 3 r (reichlich)« umgeändert werden. Im Minimum beträgt bei den dreundzwanzig hier in Betracht
gezogenen Exemplaren das Verhältniss $r : R = 1 : 1,24$ (bei Nr. 18), im Maximum $1 : 2,09$ (bei Nr. 10). Annähernd dasselbe Maximum, nämlich $1 : 2,07$, bietet auch das Exemplar Nr. 8. Lässt man aber diese beiden Exemplare Nr. 8 und 10, bei welchen das normale Verhältniss offenbar zu Gunsten von R überschritten ist, bei Seite, so erhält man für die dann noch übrigen einundzwanzig Exemplare das Durchschnittsverhältniss $r : R = 1 : 1,57$. Aus der Tabelle ergibt sich ferner, dass, von Ausnahmen (Nr. 2, 5, 8, 10) abgesehen, im Ganzen das Verhältniss von $r : R$ sich mit dem zunehmenden Alter des Thieres zu Gunsten von R ändert; bei älteren Thieren (z. B. bei Nr. 16) ist R im Verhältniss zu r 1,4 mal so gross wie bei halbwüchsigen Individuen (z. B. Nr. 1). Es wiederholt sich also auch hier die Regel, dass mit dem Wachsthum des Thieres R schneller an Länge zunimmt als r: während von Exemplar Nr. 1 bis Exemplar Nr. 16 r von 16 auf 63 mm, also auf rund das Vierfache gestiegen ist, hat R seine Länge von 20 bis auf 111 mm, also auf das Fünfundehnhalbfache gesteigert. Auch die sechs in die Tabelle aufgenommenen jungen Thiere (Nr. 24—29) lehnen dasselbe: bei dem kleinsten derselben (Nr. 24) beträgt das Verhältniss $r : R = 1 : 1,11$, bei dem grössten (Nr. 29) $r: R = 1 : 1,43$; im Durchschnitt ist bei diesen sechs jungen Thieren $r : R = 1 : 1,27$.

Die Armbreite beträgt bei den acht darauf gemessenen Exemplaren (Nr. 1, 2, 3, 10, 11, 12, 15, 16 der Tabelle) durchschnittlich 44,6 mm, während die durchschnittliche Grösse von R bei denselben acht Exemplaren 65,5 mm misst. Es verhält sich also $AB : R = 1 : 1,47$. Demnach ist die Angabe bei Müller & Troschel: »Arme kaum länger als breit« dahin zu verbessern, dass die Arme durchschnittlich fast $1\frac{1}{2}$ mal so lang wie breit sind. Für halbwüchsige Exemplare (z. B. Nr. 1, 2, 3 der Tabelle) trifft es allerdings zu, dass ihre Arme an Länge die Breite nur wenig übertreffen. Bei den beiden ältesten Exemplaren (Nr. 15 und 16) aber ergibt sich sogar das Verhältniss $AB : R = 1 : 1,49$; hier sind also die Arme ziemlich genau $1\frac{1}{2}$ mal so lang wie breit.

Weiter oben habe ich bereits erwähnt, dass man selten Exemplare (ein solches ist z. B. unsere Nr. 1) mit ganz gleicher Länge der Radien erhält. Meistens sind ein oder mehrere Radien kürzer, wahrscheinlich in Folge früherer Verletzungen mit darauffolgender Regeneration, vielleicht auch durch irgendwelche andere Wachsthums-Hindernisse. Ebenso sind die Maasse von r bei demselben Individuum meistens etwas ungleich. Als Beispiele dafür mögen die Exemplare Nr. 11 und 15 der Tabelle dienen. Bei Exemplar Nr. 11 beträgen die Maasse der fünf Armradien 80, 78, 78, 76, 64 mm, die der fünf Scheiberradien 49, 45, 45, 41, 39 mm; bei dem Exemplar Nr. 15 die Maasse der fünf Armradien 103, 102, 98, 92, 82, die Maasse der fünf Scheibenradien 60, 60, 57, 57, 55 mm. Dementsprechend schwankt auch die Breite der Arme, an ihrer Basis gemessen, an demselben Individuum in den meisten Fällen etwas; sie bewegt sich z. B. bei Nr. 11 zwischen 35 und 55, bei Nr. 10 zwischen 34 und 41 mm; bei Nr. 15 dagegen misst man an allen fünf Armen die gleiche Breite von 67 mm.

Bei Betrachtung der Rückenseite fällt sofort auf, dass das Skelet des Scheitels und der fünf davon ausstrahlenden, bis zu den Terminalplatten reichenden, radiären Streifen sich

Das Scheitelfeld hat bei erwachsenen Exemplaren einen Durchmesser von 15—16 mm; die Breite der medianen Armrückenstreifen misst am Scheitelfelde etwa 5 mm und verschmäler sich von hier an bis zur Terminalplatte allmählich bis auf stark 1 mm.

In den dorsalen Zwischenfeldern folgt die Anordnung der Stachelbürstchen derjenigen der unter ihnen befindlichen Platten, und zwar so, dass in der Nähe des Körperrandes jede Platte nur ein einziges Bürstchen trägt. Weiter nach dem Scheitel hin aber vermehrt sich die Zahl der Bürstchen, die über den ebendort auch grösseren Platten stehen. Diese Vermehrung erfolgt, wenn man vom Rande her gegen den Scheitel vorschreitet, in der Weise, dass zunächst auf jeder Platte jederseits von dem schon vorher vorhandenen, auf der Mitte des adcentralen = proximalen Theiles der Platte stehenden Bürstchen ein kleineres auftritt, sodass die Platte nunmehr deren im Ganzen drei: ein grosses mittleres und zwei seitliche kleinere besitzt. Auf noch weiter scheitelwärts gelegenen Platten tritt nun auch auf dem abcentralen = distalen, Bezirke der Plattenoberfläche ein Bürstchen auf. Weiterhin werden die bis dahin kleineren seitlichen Bürstchen und dann auch das vierte (= distale) grösser, bis sie
dem erstvorhandenen an Grösse gleichgekommen sind. Dann treten zwischen diesen vier Bürstchen wieder kleinere auf und so weiter, bis schliesslich auf der am meisten dem Scheitel genäherten Platte (diese Platte werden wir nachher als die zweite Interradialplatte kennen lernen) deren bei erwachsenen Thieren 16—18 zu zählen sind.

Die Zahl der in einem Bürstchen vorhandenen Stachelchen, die meistens mit ihren Spitzen divergiren, beträgt je nach der Grösse des Bürstchens 3—15. Die einzelnen Stachelchen haben bei erwachsenen Thieren eine Länge von 0,39—0,44 mm und an ihrer Basis eine Dicke von 0,9—0,13 mm. Die Basis hat eine kugelige bis länglichrunde Form und setzt sich in den sich verschmälernden, dreikantigen, aber schliesslich in der Regel in eine einfache Spitze auslaufenden, eigen tümlichen Stachel fort (Taf. 8, Fig. 11, 12). Bei jüngeren Thieren, aber hier und da auch bei älteren, trifft man verschiedene Entwicklungsstadien der Stachelchen an, aus denen hervorgeht, dass sich auch hier zuerst ein sechstrahliges Sternchen anlegt, aus dem dann ein sechsspeichiges Rädchen wird. Dieses Rädchen bildet die Anlage der späteren Basis des Stachels, während der Schaft des Stachels sich aus vier Kalkstäben entwickelt, die sich auf der rädchenförmigen Basis als ein centraler und drei diesen umstellende Stübe erheben und durch Querstäbe verbunden werden; die durch die Querstäbe hergestellten Maschen sind im Sinne einer rechts gewundenen Spirale angeordnet; die Entwicklung der Stacheln folgt also durchaus dem von mir zuerst bei Asterina gefundenen Gesetze.

In Taf. 8, Fig. 3 habe ich eine mit der Camera gezeichnete, genaue Abbildung der Scheitelgegend eines erwachsenen Exemplares, von der Innenseite gesehen, zur Darstellung gebracht. Das excentrisch gelegene Afterfeld, von dem wir bei der Betrachtung ausgehen wollen, ist von zahlreichen, rundlich umgrenzten, kleinen Kalkplättchen erfüllt, die sich gegenseitig nicht überlagern und im Umkreis der Afteröffnung zu einem aus sieben (bei anderen Exemplaren grösseren oder kleineren Zahl) Stück gebildeten Kranze anordnen. Wir wollen die sämtlichen Plättchen des Analfeldes einstweilen als Analplättchen bezeichnen. Umgrenzt wird das Analfeld von sechs grösseren, aber unter sich ungleich grossen Platten, von denen die in unserer Ansicht nach unten vom Analfeld gelegene (Taf. 8, Fig. 3, C), wie wir nachher sehen werden, die Centralplatte des Apex darstellt. Nach rechts, nach unten und nach links stossen an die Centralplatte vier andere Platten, die zusammen mit einer den oberen Rand des Analfeldes bildenden Platte einen Kreis bilden, dessen fünf Platten genau in der Richtung der Interradien liegen. Wir bezeichnen diese fünf Platten (Taf. 8, Fig. 3, 14t1) demgemäss als
die Interradialia des Apex oder, da sie schon bei den jüngsten Individuen vorhanden sind, als die ersten Interradialia. In Form und Grösse stimmen die ersten Interradialia nicht miteinander überein; die kleinste, in unserer Ansicht nach oben von dem Analfeld gelegene Interradialplatte ist nur zweilappig umrandet; die anderen, von denen die in unserer Abbildung nach rechts von der Centralplatte gelegene die grösste ist und zugleich die Madreporenpflatte darstellt, sind mehrlappig umrandet. Die Lappen der Umrandung dienen meistens zur Verbindung mit anderen benachbarten Platten. Die vier grösseren ersten Interradialplatten verbinden sich durch je einen Randlappen mit einem entsprechenden Randlappen der Centralplatte, die demgemäß selbst einen vierlappigen Umriss hat. Nur die fünfte (kleinste) der ersten Interradialplatten ist ohne Verbindung mit der Centralplatte, weil sich das Analfeld dazwischen geschoben hat. Untereinander sind die fünf ersten Interradialplatten nirgends in unmittelbarer Berührung, sondern es schiebt sich zwischen je zwei von ihnen von der distalen Seite her in ganz regelmässiger Weise eine andere Platte ein, die genau in der Richtung eines Radius liegt und deshalb erste Radialplatte (Taf. S, Fig. 3, R1) heissen mag. Die Verbindung einer jeden Interradialplatte mit den beiden ihr benachbarten Radialplatten wird in der Weise hergestellt, dass die Interradialplatte sich mit einem ihrer Randlappen über einen entgegenkommenden Randlappen der Radialplatte legert. Ausser den beiden Lappen zur Verbindung mit den angrenzenden Interradialplatten besitzt jede Radialplatte noch drei andere Randlappen, die sich über die ihnen entgegenkommenden Randlappen dreier Platten schieben, die weiter distal von den Radialplatten gelegen sind; jede Radialplatte hat also im Ganzen einen fünfflappigen Umriss. Von jenen drei Platten, die distal von jeder ersten Radialplatte liegen, befindet sich eine, die wir die zweite Radialplatte nennen (Taf. S, Fig. 3, R2), in der Richtung des Radius. Die beiden anderen liegen rechts und links davon; wir nennen sie die ersten Adradialplatten (Taf. S, Fig. 3, A1). Die beiden ersten Adradialplatten zweier benachbarter Radien treffen mit den einander zugekehrten Randlappen in der Gegend der interradialen Hauptebene aufeinander und überlagern sich hier mit diesen Lappen so, dass in der Ansicht unserer Abbildung im Interradius der Madreporenpfalt die (vom Centrum aus gesehen) rechte erste Adradialplatte mit ihrem Randlappen den Randlappen der linken überdeckt, dagegen in den vier anderen Interradien umgekehrt der Lappen der rechts gelegenen ersten Adradialplatte von dem Lappen der linken überdeckt wird. Nach aussen von den beiden in einem Interradius zusammen treffenden ersten Adradialplatten folgt genau in der Richtung des Interradius eine Platte, die sich durch ihre Grösse und ihren stets siebenlappigen Umriss ausgezeichnet und an ihrer Innenfläche den Ansatz des inneren Randes des interbrachialen Septums trägt, der sich aber häufig, und im Interradius der Madreporenpflatte stets, bis zur ersten Interradialplatte hinzieht. Wir wollen sie als zweite Interradialplatte bezeichnen (Taf. S, Fig. 3, R2). An sie stösst weiter nach aussen eine einfache Reihe von interradialen, allmählich kleiner und kleiner werdenden Platten, die sich bis zum Rand des Seesternes verfolgen lässt. In ähnlicher Weise folgt auf die zweite Radialplatte in der Richtung des Radius eine dritte, vierte etc. (R3, R4 etc.) und auf jede erste Adradialplatte parallel mit der
Reihe der Radialplatten eine Reihe von Adradialplatten (AR2, AR3 etc.). Die Radialplatten und die Adradialplatten bilden also auf dem Rücken eines jeden Armes drei Längsreihen, die sich bis zur Terminalplatte der Arm spitze verfolgen lassen. Während die zweiten Adradialplatten noch an die Interradialplatte heranreichen, entfernen sich von hier an die adradialen und interradialen Plattenreihen immer mehr voneinander, je mehr man sich dem Rande des Seesternes nähert. Der so zwischen den interradialen und adradialen Reihen entstehende Zwischenraum wird nun von Platten ausgefüllt, die sich wieder in Längsreihen und gebogenen Querreihen anordnen und als dorsolateralplatten bezeichnet werden mögen. Jede erste dorsolateralplatte (Taf. 8, Fig. 3, DII) liegt zwischen einer dritten Adradialplatte und einer dritten Interradialplatte, reicht aber mit einem ihrer Randlappen auch noch zur zweiten Interradialplatte und mit einem anderen zur vierten Adradialplatte. Von den sieben Randlappen einer jeden zweiten Interradialplatte dienen also zwei zur Verbindung mit den ersten Adradialplatten, zwei zur Verbindung mit den zweiten Adradialplatten, zwei zur Verbindung mit den ersten dorsolateralplatten und einer zur Verbindung mit der dritten Interradialplatte. Aus der ganzen hier beschriebenen Anordnung wird ferner ersichtlich, dass, während alle Radialplatten unmittelbar aufeinander folgen, die Reihe der Interradialplatten zwischen der ersten und zweiten durch die sich dazwischen drängenden ersten Adradialplatten unterbrochen ist. In ihrer Gesamtheit bilden die fünf zweiten Interradialplatten mit den fünf ersten Radialplatten und den zehn ersten Adradialplatten ein Pentagon mit concav eingebogenen Seiten, welches das eigentliche, von dem Afterfeld, der Centralplatte und den fünf ersten Interradialplatten gesetzte Scheitelfeld begrenzt; in unserer Figur habe ich dieses Pentagon durch eine punktierte Linie angedeutet. An die concaven Seiten des Pentagons schliessen sich die medianen Armrückenstreifen an, von denen wir bereits erfahren haben, dass sie sich aus drei bis zur Terminalplatte des Armes reichenden Längsreihen zusammensetzen: einer mittleren (= radialen) und zwei seitlichen (= adradialen). Die Platten der mittleren Reihe, die mit der ersten Radialplatte beginnen, haben in der Regel einen vierlappigen Umris; mit den beiden proximalen Lappen lagern sie sich von aussen her auf die entsprechenden Lappen der Adradialplatten, während die beiden distalen Lappen umgekehrt von entsprechenden Randlappen der Adradialplatten überlagert werden. Auch die Adradialplatten nehmen bald einen vierlappigen, aber etwas verzerrten Umris an; ein von aussen übergreifender und ein untergreifender Lappen dienen zur Verbindung mit den Radialplatten; die zwei anderen Lappen greifen unter die entsprechenden Randlappen der angrenzenden dorsolateralplatten. Erst in der Nähe der Armspitze runden sich die Umrisse sowohl der radialen als auch der adradialen Platten allmählich immer mehr ab. Auch die Grösse der Platten nimmt, je mehr man sich vom Scheitel entfernt und der Armspitze nähert, ab, woraus sich die schon erwähnte, allmähliche Verschmälerung der medianen Armrückenstreifen erklärt.

Mit den dorsolateralplatten, deren erste wir bereits kennen, sind wir im Bereich der dorsalen Zwischenfelder angelangt. Jedes dieser Zwischenfelder wird durch die Reihe der mit der zweiten Interradialplatte beginnenden Platten in eine linke und eine rechte Hälfte ge-
theilt. Und da die Platten dieser medianen Reihe in ihrer Form und Verbindungsweise sich ganz ähnlich wie die übrigen Platten der Zwischenfelder verhalten, so wird man auch sie zu den Dorsolateralplatten zählen dürfen. Jederseits von dieser Mittelreihe sind die übrigen Dorsolateralplatten so angeordnet, dass sie in der schon oben erwähnten Weise gleichzeitig Quer- und Längsreihen bilden. Die erste jederseitige Dorsolateralplatte reicht, wie schon bemerkt, einerseits an die zweite und dritte Interradialplatte, anderseits an die dritte und vierte Adradialplatte. An sie schliesst sich eine der medianen Reihe parallele, bis zum Rande verlaufende Reihe von Dorsolateralplatten an, die die erste der paarigen Querreihen der Zwischenfelder darstellt. Die zweite Querreihe beginnt mit einer obersten Platte, die sich mit der vierten und fünften Adradialplatte verbindet. Die oberste Platte der dritten Reihe verbindet sich mit der fünften und sechsten, die oberste der vierten mit der sechsten und siebenten, die oberste der fünften mit der siebenten und achten Adradialplatte u. s. w.; doch ist hinzu- zufügen, dass diese Regelmässigkeit in der Beziehung der dorsolateralen Querreihen zu den Adradialplatten in einiger Entfernung vom Scheitel nicht mehr genau innegehalten wird, indem zwischen Querreihen, deren oberste Platte an zwei Adradialplatten stösst, auch hier und da eine solche sich einschiebt, die sich nur mit einer Adradialplatte verbindet; mit anderen Worten: in einigem Abstand vom Scheitel wird die Zahl der dorsolateralen Querreihen etwas grösser als die Zahl der angrenzenden Adradialplatten.

Alle diese Dorsolateralplatten greifen von aussen her mit ihrem proximalen Randlappen über die distalen Lappen der angrenzenden Platten, sind also ebenso wie die radialen und adradialen Platten umgekehrt dachziegelig geordnet, wie das schon Gaudry (1851) in einer Abbildung dargestellt hat.

In der Nähe des Scheitels haben die Dorsolateralplatten eine gelappte Umrandung, an der man in der Regel sechs Lappen unterscheiden kann: drei proximale und drei distale.
Asterinidae.

Die drei proximalen sind von aussen sichtbar, da sie die ihnen entgegenstrebenden Lappen der benachbarten Platten überdecken. Die drei distalen sind nur von innen zu sehen, da sie von aussen her durch die proximalen Lappen der benachbarten Platten überlagert werden. Unter den drei distalen Lappen liegt einer, der mittlere, ebenso wie der ihm gegenüber befindliche mittlere proximale genan in der Richtung der Querreihe, welcher die betreffende Platte angehört. Dieser mittlere distale Lappen fängt nun an sich zu verlängern und wird zu einem an einen Griff oder eine Handhabe erinnernden, stielförmigen Fortsatz, der überdies sich an seiner Basis von der Scheibe der Platte winkelig abknickt und dadurch ins Innere des Körpers vorspringt. Da ferner die übrigen fünf Lappen der Dorsolateralplatten sich immer mehr abrunden, je mehr man sich dem Körperrande nähert, so wird die Form der Platten sehr bald die einer gestielten Scheibe (Taf. 8, Fig. 5, 6), die man mit einer Kelle vergleichen könnte. Die Scheibe hat sammelt ihren Stiele im proximalen Theile der Zwischenfelder bei erwachsenen Thieren eine Länge von 2,7 mm, wovon etwa 1,2 mm auf den Stiel kommen, und eine Breite von 1,37 mm. Der Winkel, in dem der stielförmige Handgriff von der Platte abgeknickt ist, beträgt etwa 30°. Die Scheibe der Platte ist an ihren Rändern verdünnt: ihre dickste Stelle liegt an der Abgangsstelle des Stieles. Betrachtet man eine solche Platte von der Innenseite (Taf. S, Fig. 6), so sieht man, wie Verdickungsstreifen, ähnlich den Rippen eines Blattes, von dem Stielansatz in die Unterfläche ausstrahlen.

Die Stiele der Dorsolateralplatten sind an ihrem Ende durch umhüllendes Bindegewebe mit ähnlichen stielförmigen Fortsätzen der Ventrolateralplatten in Verbindung gebracht, worauf wir bei diesen zurückkommen werden. Schon Delle Chiave (1841; vergl. seine Taf. 127, Fig. 20) und Duvernay (1849) scheinen diese Stiele gesehen zu haben. Aber erst Norman (1865) gab eine zutreffende Beschreibung, wie der Dorsolateralplatten überhaupt. So auch ihrer Stiele und der von diesen in die Platte ausstrahlenden »Rippen«. Später hat sich nur noch Viguier (1879), ohne übrigens die Norman’schen Beobachtungen zu berücksichtigen, mit der Form der Dorsolateralplatten beschäftigt und die Angaben des englischen Forschers bestätigt. Wenn aber Viguier den oberen (≈ proximalen) Rand der adzentralen Dorsolateralplatten als 3—5—7—9lappig beschreibt, so kann ich mir das nur dadurch erklären, dass er unter den über dem Plattenrande sitzenden Stachelbürstchen eben so viele Randlappen des Plattenrandes angenommen hat, was tatsächlich nicht zutrifft.

Die stielförmigen Fortsätze fehlen, wie auch schon Viguier hervorgehoben hat, sowohl den Scheitelflächen als auch den Platten der medianen Armrückenaufeld. Dennoch wird durch sie kein prinzipieller Gegensatz zwischen diesen Platten und den Dorsolateralplatten begründet; denn wir sahen, dass der Stiel auch den dem Scheitel zunächst stehenden Dorsolateralplatten fehlt und sich bei den übrigen aus einem der gewöhnlichen, bei allen Rückenplatten vorhandenen Randlappen der Platte entwickelt.

In die Zusammensetzung des Rückenskelettes treten nun aber noch zahlreiche andere, bis jetzt nicht erwähnte, kleine Kalkplättchen ein, die von allen früheren Beobachtern übersehen worden sind. Es sind das winzige, mehr oder weniger kreisförmige, meistens nur 0,25
bis 0,4 mm grosse Plättchen, die sich in die Lücken einschieben, welche sich sowohl zwischen den Platten des Scheitels und der medianen Armrückensstreifen als auch zwischen den Platten des oberen (= proximalen) Bezirkes der Zwischenfelder befinden (s. Taf. 8, Fig. 3, sP). Diese Plättchen stimmen in ihrer Form und durchschnittlichen Größe völlig mit den schon beschriebenen Analplättchen überein. Wir wollen sie mit diesen zusammen als die supplementären Plättchen des Rückenskeletes bezeichnen. Auf ihrer Aussenseite tragen sie bald ein grösseres, bald ein kleineres Stachelbürstchen, und gerade dieser Umstand verschuldet es, dass im Bereiche des Scheitels und der medianen Armrückensstreifen die Stellung der Stachelbürstchen nicht mehr regelmässig der Anordnung der grossen Platten folgt, sondern sich in unregelmässiger Weise über die genannten Bezirke ausdehnt. In dem weitaus grösssten Theile der Zwischenfelder fehlen die supplementären Plättchen ganz, nämlich überall da, wo die Dorsolateralplatten eine abgerundet scheibenförmige, mit langem Stiel ausgestattete Gestalt angenommen haben und alsdann lückenlos aneinander schliessen. An allen Stellen aber, wo sich in einer Lücke des dorsalen Plattenskeletes eine oder mehrere Papulae (s. p. 256) entwickelt haben, sind die supplementären Plättchen vorhanden und haben sich alle oder zum Theil krantzförmig um die Basis der Papula gestellt (Taf. S, Fig. 4), sodass ihr äusserer Stachelbesatz zugleich einen Schutzapparat für die Papula darstellt. Auf die Vertheilung der Papulae und die Störungen, die die regelmässige Anordnung der Rückenplatten durch sie erfährt, wollen wir erst bei Betrachtung der Papulae selbst eingehen (s. p. 256). Schliesslich ist über das Auftreten der supplementären Plättchen noch zu bemerken, dass sie auch in den medianen Armrückensstreifen in der Nähe der Arm spitze gänzlich fehlen, indem sich die an dieser Stelle (s. p. 252) abgerundeten, kleinen Radial- und Adradialplatten dicht und lückenlos zusammenschieben.

Im Vorstehenden haben wir die Regelmässigkeit des Armrückenkeletes kennen gelernt, die das erwachsene Thier darbot. Aber auch schon bei recht jugendlichen Thieren, z. B. bei einem Exemplare von nur 4 mm Armradius, lässt sich dieselbe Anordnung der Platten, insbesondere auch der Scheitelplatten, nachweisen, jedoch mit dem Unterschiede, dass die Randlappen aller Platten jetzt noch nicht scharf ausgeprägt, die Platten also mehr abgerundet umgrenzt sind; auch finden sich bei dem jungen Thiere ausser einigen wenigen (5) Analplättchen noch keinerlei supplementäre Plättchen. Daraus folgt, dass die supplementären Plättchen überhaupt erst verhältnissmässig spät gebildet werden.

Bei einem jungen Thiere, das in die obenstehende Tabelle nicht aufgenommen worden ist, weil es mir erst nachträglich zu Händen kam, und dessen Armradius nur 2,38 mm (r = 1,92 mm; r : R = 1 : 1,24) misst, konnte ich die in Taf. 8, Fig. 17 dargestellte Anordnung und Form der Scheitelplatten feststellen. Hier wird das Scheitelfeld fast ganz von der Centralplatte eingenommen. Eigentliche Supplementärplättchen sind weder in Scheitelfeld noch auf den Armen vorhanden. Wohl aber bemerkt man, dass in der Richtung der Ränder sich ein kleines

1) Nur ausnahmsweise werden sie im Scheitelbezirke grösser und erreichen dann einen Durchmesser von 1—3 mm; in unserer Figur (Taf. 5, Fig. 3) sind drei solche grössere Plättchen vorhanden und mit x bezeichnet. Wahrscheinlich sind diese grösseren Plättchen die fortbestehenden Centroradialia des jungen Thieres.
Plättchen zwischen die Centralplatte und die erste Radialplatte eingeschoben hat, das nur in einem (dem hinteren rechten) Radius noch nicht angelegt ist. Nach ihrer Lage kann man diese Plättchen nur für die Centroradialia (== Infrabasalia) halten. Zwei davon nehmen das Afterfeld zwischen sich. Später, mit dem Auftreten der supplementären Plättchen, werden die Centroradialia, da sie niemals eine besondere Grösse erreichen, den supplementären Plättchen so ähnlich, dass sie sich nicht mehr mit Sicherheit unter ihnen herausfinden lassen; doch sind höchst wahrscheinlich die in Taf. S, Fig. 3 mit x bezeichneten Plättchen auf sie zurückzuführen. Die Centralplatte hat schon bei diesem jüngsten mir vorliegenden Thiere jede directe Verbindung mit der primären Interradialplatte des vorderen Interradius eingebüsst.

Die erste Notiz, die sich über die Papulac in der Literatur findet und von Delle Chiaie (1841) herrührt, giebt, wie Müller & Troschel bestätigen, richtig an, dass sie auf fünf Doppelreihen beschränkt sind, die den dorsalen Mittelstreifen der Arme entsprechen. Die einzelnen Papulae haben die Form eines einfachen fingerförmigen Schlauches und erreichen bei den darauf näher untersuchten erwachsenen Thieren (Nr. 10 und 11 der Tabelle) eine Länge von 2 mm. Sie bilden jedeienseits von der Medianebene des Armes eine einfache, aber nicht ganz regelmässige Längsreihe, in der sie in ungleichen Abständen von 1—2 mm aufeinander folgen. Am Scheitel sind die beiden Reihen desselben Armes fast 5 mm voneinander entfernt, nähern sich aber nach der Arme spitze hin allmählich bis auf 2 oder nur noch 1,5 mm. Auch werden die Papulae nach der Arme spitze hin nach und nach kleiner, seltener, und hören schliesslich in einer Entfernung von durchschnittlich 8 mm von der Terminalplatte ganz auf: es ist also nicht genau, wenn Viguier (1879), der die Anordnung der Papulac in einer Abbildung dargestellt hat, ihre Reihen bis zur Terminalplatte gehen lässt. In jeder Reihe zählte ich bei dem Exemplare Nr. 10 durchschnittlich 40 Stück. Bei kleineren Thieren, z. B. bei Nr. 3 der Tabelle, ist ihre Zahl viel geringer, und sie finden sich hier nur auf der proximalen Hälfte des Armes. Bei den jüngsten Thieren, z. B. bei Nr. 24, 25, 26, sind sie überhaupt noch gar nicht zur Ausbildung gelangt. Sieht man sich ihre Stellung bei erwachsenen Thieren näher an (Taf. S, Fig. 4), so bemerkt man, dass sie in der Regel zwischen zwei aufeinander folgende Adradialplatten eingeschoben sind; die mit einer Papula besetzte Skeletlücke wird medial von einer oder zwei Radialplatten, distal und proximal von je einer Adradialplatte und lateral von einer Dorsolateralplatte begrenzt und ist mit den schon erwähnten, die Papula-Basis umstellenden supplementären Kalkplättchen ausgestattet. Zwischen je zwei aufeinander folgenden Papulae desselben Reihe liegen entweder ein oder zwei oder drei Adradialplatten. An ihrem proximalen Ende (Taf. S, Fig. 3) biegen die beiden Papula-Reihen eines jeden Armes bogenförmig ineinander um durch Vermittlung einiger Papulae, die hier an jeder Seite der zweiten Radialplatte, zwischen dieser und den beiden ersten Adradialplatten, auftreten. Ferner treten Papulae auch in den Skeletlöchern des Scheitels auf, namentlich in den zwischen den ersten Interradialplatten und den ersten Adradialplatten befindlichen Lücken; dagegen fehlen sie im Analfeld. Im Scheitel und in dessen Nähe liegen auch häufig in derselben, im Uebrigen von supplementären Plättchen ausgefüllten Skeletlücke zwei oder drei Papulae, während sie sonst einzeln stehen.
Obschon bereits Forbes [1841] von besonderen Randplatten bei unserer Art spricht, deren Bestachelung über den Rand hervorragt, glaubten Müller & Troschel [1842] und auch noch Norman [1865], dass Randplatten oder Randstacheln überhaupt nicht vorhanden seien. Die Forbes'sche Angabe ist aber ganz richtig. Es sind thatsächlich kleine, in ihrer Grösse von den Dorsolateral- und Ventrolateral-Platten nicht merklich verschiedene Randplatten vorhanden. Viguier [1879] beschrieb sie näher und unterschied sowohl obere als untere. Von den unteren giebt er an, dass sie schwer von den Ventrolateralplatten zu unterscheiden seien und genau mit deren Bögen correspondirend, sodass jeder Bogen (= quere Plattenreihe) an einer unteren Randplatte endige. Dagegen seien die oberen Randplatten namentlich in der Nähe der Armenden leichter zu sehen; auch entsprächen sie in ihrer Stellung nicht den Enden der dorsolateralen Bögen (= Plattenreihen), sondern ständen abwechselnd damit, sodass auf jeden Zwischenraum zweier dorsolateralen Bögen eine obere Randplatte komme; in ihrer Bewaffnung seien die oberen Randplatten etwas verschieden von den Dorsolateralplatten. Aus dem Folgenden wird hervorgehen, dass diese Beschreibung nicht zutrifft, dass viel mehr, das was Viguier als obere Randplatten beschreibt, nur die dorsale Ansicht derselben Platten ist, die er untere Randplatten nennt. Die Platten, die man in Wirklichkeit etwa als obere Randplatten bezeichnen kann, hat Viguier offenbar gar nicht bemerkt, wie ich sie denn von unserer Art überhaupt noch nirgends erwähnt finde. Wohl aber sind sie bei einer anderen Palmipes-Art von Sladen [1889] ganz richtig geschildert worden. Er bemerkt nämlich von seinen Palmipes diaphanus: »The marginal plates, which are very small but distinct and isolated, are somewhat in the form of the blade of an old battle-axe, and they bear on their curved free margin a double comb of about sixteen small subequal spinelets. These plates alternate with the columns of abactinal plates; and there is at the base of each of the plates just described a second small plate with a comb of spinelets, which I regard as the representative of the supero-marginal plates. Diese Schilderung trifft fast wörtlich auch auf unsere Art zu. Wenn man sich den Rand des Thieres näher ansieht, so bemerkt man zunächst, und zwar sowohl von der Bauchseite wie von der Rückenseite, den ganzen Rand entlang mit gleicher Deutlichkeit diejenigen Randplatten, die Forbes schon gesehen hat und Sladen als die unteren auffasst. In der Ventralsicht stehen sie so, dass sie den Reihen der Ventrolateralplatten entsprechen, in der Dorsalsicht wechseln sie mit den dorsolateralen Plattenreihen ab (vergl. das Schema p. 225). Das kommt dadurch zustande, dass die dorsalen und ventralen Plattenreihen (beim erwachsenen Thiere) in der Nähe des Randes ihre bis dahin festgehaltene genaue Uebereinanderlagerung aufgeben und sich so gegeneinander verschieben, dass die ventrale Reihe stets ein wenig näher zur Armspitze hin liegt als die entsprechende dorsale Reihe. Es biegt nämlich jede dorsale Reihe am Rande nicht in diejenige ventrale Reihe um, mit der sie bis hierhin durch die Stiele ihrer Platten verbunden war, sondern in die, die ihr in distaler Richtung zunächst liegt. Die durchschnittliche Grösse der Randplatten beträgt 0,5 mm an Länge und an Breite. Die Platten besitzen von ihrer oberen oder unteren Seite gesehen Fig. S, Taf. 10, einen vierlappigen Umriss; drei Lappen sind kleiner, der vierte nach aussen gerichtete ist erheblich grösser und springt am Rande des Zoöl. Station z. Neapel Fauna und Flora Golf von Neapel. Seesterne.
Seesternes als ein halbkugelig Wulst vor, der an seiner Oberfläche mit zahlreichen (bis 25 und darüber) in mehreren, unregelmässigen, dem Rande entlang laufenden Reihen kleiner Stachelchen besetzt ist, die in Grösse und Form sich an die der dorsalen Stachelbürstchen anschliessen. Die Platten entsprechen denmacht in Form, Lage und Bestachelung denjenigen, die Sladen bei *P. diaphanus* als untere Randplatten deutet; nur ist ihre Bestachelung bei unserer Art reicher und weniger regelmässig als bei *P. diaphanus*. Dorsal von jeder dieser Platten liegt nun (Taf. 8, Fig. 13) eine andere. etwas grössere, aber viel dünnere, abgerundet dreieckige Platte, durch welche die Verbindung der vorhin beschriebenen Platte mit der ihr in proximaler Richtung zunächst gelegenen Dorsolateralplatte hergestellt wird. Diese dorsale Platte, die ich mit Sladen als obere Randplatte bezeichnen möchte, lagert sich mit ihrem Aussenrande über den inneren Rand der unteren Randplatte und greift mit ihrem proximalen Rande über den distalen Bezirk der zwei oder drei letzten Platten der betreffenden dorsolateralen Plattenreihe. Oberflächlich ist die obere Randplatte gewöhnlich mit mehreren (meistens drei) ungleich grossen Gruppen von Stachelchen besetzt, die in Form und Grösse von den übrigen dorsalen Stachelchen nicht verschieden sind. Sind dieser Gruppen drei auf einer Platte vorhanden, so ist diejenige, die auf dem proximalen Abschnitt der Platte steht, die stachelreichste (etwa 17 Stachelchenzählte ich), während von den beiden auf dem distalen Theile der Platte stehenden Gruppen wieder die äussere reicher an Stacheln ist (etwa 8) als die innere, aus 3 oder 4 Stachelchen gebildete.

Schon bei den kleinsten der mir vorliegenden jungen Thiere sind die oberen Randplatten ausgebildet, haben aber einen rundlicheren Umriss als später. An diesen jungen Exemplaren ist es leicht, sich davon zu überzeugen, dass in der Medianrichtung der Zwischenfelder, also in der Fortsetzung der unpaaren Mittelreihe der Dorsolateralplatten, weder eine unpaare obere noch eine unpaare untere Randplatte vorhanden ist. An ihrem peripheren Ende verbündet sich vielmehr die unpaare Mittelreihe der Dorsolateralplatten nach rechts und nach links durch die jederseitige erste obere Randplatte mit der ersten unteren, die ihrerseits an die äussere Platte der ersten paarigen Ventrolateralreihe anschliesset, während die unpaare Mittelreihe der Ventrolateralplatten (s. p. 259) schon bei diesen jungen Thieren den Körperrand gar nicht erreicht.

Die Bestachelung deroberen und unteren Randplatten ist bei den Jungen, ebenso wie die aller Dorsalplatten, viel geringer als später. Bei dem kleinsten Exemplare zählte ich auf den Dorsolateralplatten in der Regel nur 2 oder 3 Stachelchen, auf den oberen Randplatten ebensoviele und auf den unteren Randplatten 8—10. Die Gruppen der auf den unteren Randplatten sitzenden Stachelchen ragen wie ebensoviele kleine, zierliche Borstenpinselchen über den Körperrand des Seesternchens hervor, sodass man an diesen Pinselchen die Zahl der Randplatten abzählen kann. Die grössten unter diesen Randstachelchen haben eine Länge von 0,26—0,28 mm, während die Stachelchen der oberen Randplatten und des ganzen Rückens etwas dünner und höchstens $\frac{1}{4}$ so lang sind. Auch zeichnen sich die Stachelchen der unteren Randplatten dadurch aus, dass sie meistens mit zwei oder selbst drei verhältnissmässig langen
und ein wenig divergirenden Spitzen endigen (Taf. 8, Fig. 10). Bis in die Nähe ihrer Spitzen sind die Stachelchen einer jeden unteren Randplatte (also eines jeden Randpinselechens) durch eine zarte Membran wie durch eine Schwimmhaut verbunden, und da sie sämtlich auf dem Aussenlappen der Randplatte kranzförmig geordnet stehen, so kommt durch ihre Verbindungsmembran eine Art Trichterzustände, in dessen dünner Wand die Stachelchen wie Verdickungsstäbe stecken. Die Trichterwand ist in ihrem ventralen Bezirke höher als im dorsalen, und ebenso sind die ventralen Stachelchen des in der Trichterwand steckenden Stachelkranzes (oder Pinsels) länger als die dorsalen. Die unteren Randplatten selbst haben bei den jüngsten Individuen eine gestrecktere Form als später; ihr längster Durchmesser misst 0,26—0,28 mm; sie müssen also später noch eine erhebliche Längen- und Dickenzunahme durchmachen.

Die Terminalplatte (Taf. 8, Fig. 7, 8, 9) wurde bei dem Exemplare Nr. 11 näher untersucht. Sie ist auf ihrer dorsalen Oberfläche von derselben dünnen Hantschicht überkleidet wie die übrige Rückenfläche des Thieres. Es befinden sich in diesem Hautüberzuge eine Menge winziger Gruppen kleinster Stachelchen, durch welche die Rückenseite der ganzen Platte ein fein granulirtes Aussehen erhält. Löst man aber mit Hilfe von Källilage diesen Hautüberzug mit seinen Stachelchen ab, so erscheint die dann nackt zu Tage liegende Rückenseite der Terminalplatte ganz glatt. Die isolirte Platte hat eine Länge von 1,08 mm und misst an ihrem distalen (= äusseren) Ende ebensoviel an Breite, während ihr proximales (= inneres) Ende etwas schmäler ist und nur 0,92 mm an Breite misst. Der proximale Rand ist halbkreisförmig gebogen; der distale ist durch eine mittlere Einbuchtung in zwei seitliche Lappen zerlegt, zwischen denen sich an der Ventralseite in der Verlängerung jener Einbuchtung eine Nische für die Aufnahme des Fühlers und Auges befindet. In ihrem distalen Theile ist die Platte 0,5 mm hoch, während sie sich nach dem proximalen Rande hin allmählich abfallend verdtünn. Aus dem Gesagten geht hervor, dass die kurze Notiz, die Viguier über die Gestalt der Platte gibt — er nennt sie ziemlich klein, verlängert und schmal — nicht ganz zutrifft. Bei ganz jungen Exemplaren ist die Platte breiter als lang (ihre Länge beträgt z. B. bei Exemplar Nr. 24 0,23—0,27 mm, ihre Breite 0,38—0,4 mm); ihr distaler Rand wird jederseits überragt von einer grösseren Anzahl ganz derselben Stachelchen, wie wir sie auf den unteren Randplatten der jungen Thiere kennen gelernt haben.

der Armspitze nähert. Im proximalen Bezirke des Zwischenfeldes und den Adambulacralplatten entlang sind sie am grössten; hier deuten am unverscherten oder gut conservirten Thiere leichte Furchen der die Platten überdeckenden dünnen Haut die Anordnung der Platten an.

Auch in ihrer Form verhalten sich, wie bereits Delle Chiaje (1841, Taf. 127, Fig. 20) angedeutet und Norman (1865) genauer gezeigt hat, die Ventrolateralplatten ähnlich wie die dorsolateralen (s. p. 254). Die Scheiben der Platten überlagern sich dachziegelig in der Weise, dass ihr proximaler Rand dem distalen Rande der benachbarten Platten von aussen her aufgelagert ist. Der von der Scheibe der Platte abknickende Stiel ist schräg aufwärts gerichtet und trifft mit dem Stiele der darübergelagerten Dorsalplatte in einem nach der radialen Hauptebeine hin offenen Winkel zusammen. Alle so durch die Stiele gebildeten Winkel der selben Querreihen sind in eine bindegewebsige Membran eingelagert, die senkrecht durch die Leibeshöhle hindurch von der Rückenwand zur Bauchwand des Körpers geht und mit einem gebogenen freien Rande unterhalb der ersten dorsolateralen Platte der betreffenden Querreihe endigt, sonst aber überall befestigt ist. Da sich eine ebensolche Membran nach innen von jeder queren Plattenreihe des Skeletes findet, so wird dadurch der ganze dorsal von den Dorsalateralplatten, ventral von den Ventrolateralplatten besetzte Bezirk im Inneren in ebensoviele Kamern zerlegt, wie äusserlich quere Plattenreihen vorhanden sind. Nur gegen die Längsachse der Arme, bez. gegen die Hauptsache des ganzen Thieres hin, sind diese Kamern geöffnet, sonst aber von einander abgeschlossen. Die Scheidewände der Kamern sind gewissermaassen in der ganzen Länge der Arme auftretende Wiederholungen der interbrachialen Septen; man wird sie also wohl als die brachialen Septen der Leibeshöhle bezeichnen können.

Die unpaare, den Rand nicht erreichende Mittelreihe der Ventrolateralplatten beginnt unmittelbar nach aussen von den Mundeckstücken. Die paarigen Querreihen sind weniger zahlreich als die Adambulacralplatten, an denen sie ihren Anfang nehmen. Um die Lagebeziehung zu den Adambulacralplatten näher festzustellen, benutzte ich ein ganz junges Exemplar, das in jeder Hälfte der Zwischenfelder erst elf ventrolaterale Querreihen besass. Die erste Reihe beginnt hier an der zweiten, die zweite Reihe an der dritten, die dritte an der vierten, die vierte an der fünften und sechsten, die fünfte an der siebenten, die sechste an der achten, die siebente an der neunten und zehnten, die achte an der zehnten und elften, die neunte an der zwölften, die zehnte an der dreizehnten und die elfte an der vierzehnten Adambulacralplatte. In jeder Reihe liegt die kleinste und zugleich jüngste Platte der oberen Randplatte zunächst; das Wachsthum der ventrolateralen Querreihen durch Einschub neuer Platten erfolgt also ebenso wie das der dorsolateralen Reihen am Rande des Seesternes.

Die Bestachelung der Ventrolateralplatten wurde schon von Fleming (1828), Delle Chiaje (1841), Forbes (1841), Müller & Troschel (1842) und Gaudry (1851) mit kleinen Kämmlchen verglichen. Dem ganz entsprechend findet man bei erwachsenen Thieren (Nr. 10 und 11 der Tabelle) auf den Ventrolateralplatten eine nach dem Körperrande hin conca, nach dem Munde zu convex gebogene Reihe von feinen, an ihrer Spitze fein bedornten Stacheln. Die Stachelchen eines jeden Bogens sind in ihrer basalen Hälfte durch eine zarte Membran
Die Adambulacralplatten sind ein wenig breiter als lang (Taf. S. Fig. 14), und bei ihrer verhältnismässigen Kleinheit so zahlreich, dass man schon bei jungen Thieren, deren R erst 4 mm misst, von der Mundecke bis zur Armpitze jederseits 16 zählt. Bei den Erwachsenen haben sie in der Nähe des Mundes eine Breite von 1,16 und eine Länge von 1 mm. Sie sind durch schmale, unverkalkte Hautstellen getrennt, unter denen sich die sie verbindenden Muskeln befinden. Die proximalen Adambulacralplatten tragen ihrem ambulacralen Rande entlang, wie Müller & Troschel zuerst genau angaben, eine Reihe von fünf Stacheln, von denen der aborale am kürzesten und schwächsten ist. Diese Stacheln haben eine ähnliche stäbformige Gestalt wie die Mundeckstacheln, sind aber kürzer und schwächer; ihre Länge misst kaum mehr als 1 mm. Auch darin gleichen sie den Munddeckstacheln, dass sie in ihrer basalen Hälfte oder bis zu ihrem äusseren Drittel durch eine dünne Membran miteinander zu einem handförmigen gespreizten Fächer verbunden sind. Die Insertionslinie der fünf den Fächer bildenden Stacheln läuft übrigens der Medianlinie des Armes nicht genau parallel, sondern bildet gegen diese einen convexen Bogen. Auf dem aboralen Rande der Adambulacralplatte stehen nun noch vier andere Stacheln, die bis jetzt nur Bell (1892, Cat.) bemerkt zu haben scheint. Auch sie sind stäbformig, aber etwas schwächer und kürzer als die ambulacralen; ihre Länge misst nur 0,7—0,8 mm. Sie bilden zusammen eine Querreihe.

Die kräftigen Munddeckstücke haben eine abgerundet dreiseitige Oberfläche, die in ihrem sutralen Bezirke gewölbt hervortritt (Taf. 8, Fig. 14); an der Sutur weichen die beiden Stücke jeder Mundecke etwas auseinander, sodass man hier den nur von der Haut bedeckten Quermann erkennt. Der Sutur entlang haben die Munddeckstücke eine Länge von 3 mm; rechtwinkelig zur Sutur beträgt ihr grösster Durchmesser 1,5 mm. Jedes Munddeckstück trägt bei erwachsenen Thieren an seinem ambulacralen Rande eine dieser seiner ganzen Länge nach einnehmende Reihe von 5—7 (am häufigsten 6 oder 7) ziemlich schlanken Stacheln. Die sämtlichen zu einer Mundecke gehörigen 10—14 Stacheln sind von ihrer Basis bis fast zu 2/3 ihrer Länge durch eine dünn Membran nach Art einer Schwimmhaut verbunden, die der ganzen Stachelreihe das Ausschen eines Kammes oder eines Fächers giebt. Die Stacheln selbst haben eine an der Spitze kaum verjüngte, stumpf abgerundete, stabförmige Gestalt. Der am weitesten nach aussen gelegene und manchmal auch sein Nachbar sind etwas kürzer als die übrigen, die unter sich fast von gleicher Länge sind; die Länge der letzteren beträgt 1,5—1,7 mm. Ausser den Stacheln des ambulacralen Randes besitzt jede Munddeckplatte auf ihrer gewölbten ventralen Oberfläche an der Sutur eine längliche Gruppe von 7—10 etwas kürzeren und unregelmässig geordneten Stacheln. Bei jüngeren Exemplaren (z. B. Nr. 3 der Tabelle) ist die Bestachelung des ambulacralen Randes schon ebenso reich wie später, aber an der Sutur finden sich erst 3 oder 4. Bei den jüngsten Thieren (z. B. Nr. 24 und 26 der

Die Lage der Madreporenplatte haben wir schon beim Rückskelet Taf. 8, Fig. 3) kennen gelernt. Ihre Entfernung vom Mittelpunkte der Scheibe beträgt bei erwachsenen Thieren nur 3 mm. Oberflächlich betrachtet hat sie, wie das schon DELLE CHIAJE (auf seiner Taf. 127, Fig. 9) darstellt, einen kreisförmigen Umriss, dessen Durchmesser 1,5—2 mm misst (bei Exemplar Nr. 10 und 11). Die Stachelbürstchen der Rückenhaut treten ringsum dicht an sie heran, sodass man erst nach deren Entfernung und bei völliger Isolirung der Platte (Taf. 8, Fig. 15, 16) bemerkt, dass sie grösser ist, als es bei oberflächlicher Betrachtung schien. Sie besitzt nämlich eine verbreiterte, am Rande sternförmig gelappte Basis von 3—3,3 mm Durchmesser. Auf dieser Basis erhebt sie sich zu einer flachgewölbten Warze, welche die von ihrem Mittelpunkte nach ihrem Rande verlaufenden Rinnen für die äusseren Mündungen der Porenkanälchen trägt und am unversehrten Thiere die ganze Platte darzustellen schien. An der Untereite der Basis bietet sich eine gewölbte Aufreibung von 1,5—2 mm Querdurchmesser dar, durch welche eine unter der äusseren Warze (nicht in derselben) gelegene, geräumige Höhle verdeckt wird. Auf diesen gehäuseartigen Bau der Platte hat bereits Viguier 1879 aufmerksam gemacht. In das Innere der Höhle führt eine spaltförmige Öffnung an der abaxialen Seite der Aufreibung, durch welche der Steinkanal in Gesellschaft mit dem dorsalen Endstücke des Septalorganes (= ovoiden Drüse, früher Herzgeflecht genannt) eintritt. Die Wand des schlauchförmigen, im interbrachialen Septum befindlichen Kanales, in dem sich Steinkanal und Septalorgan bis hierher befunden haben, setzt sich an den Rand der spaltförmigen Öffnung fest. Die untere Wand der Höhling gehört ursprünglich nicht zur Madreporenplatte, sondern ist nichts anderes als das verkalkte und mit der Madreporenplatte verschmolzene Endstück der Wandung des schlauchförmigen Kanales.

Pedicellarien sind, wie MÜLLER & TROSCHEL 1842), HELLER (1865), NORMAN (1865, und VIGUIER (1879) richtig angegeben, nicht vorhanden. Nach DEVERNOY 1849 sollen die Stacheln der Adambulacralplatten zu je zweiern zwar nicht zu echten Pedicellarien, aber doch zu funktionell gleichwertigen Organen verbunden sein — eine Angabe, die mit der oben von mir beschriebenen Anordnung der Adambulacralbewaffnung durchaus in Widerspruch steht und meines Erachtens auf einem Irrthum beruhen muss.

Der Gesammtfarbenton der Oberseite ist gewöhnlich, wie die MERCULLANO'sche Ab-
bildung (Taf. 5, Fig. 3) gut zur Darstellung bringt, ein Roth, das man wohl am zutreffendsten als Scharlachzinnober bezeichnen kann. Es kommen aber auch, wie schon M. Sars (1857) angegeben hat, hellere und rosenfarbige Exemplare vor. Seltener sind solche (z. B. ein mir vorliegendes Exemplar von 85 mm Armradius), bei denen das Roth des Rückens dasselbe blutige Carminroth zeigt, das man sonst, wie wir gleich sehen werden, nur am Rande der Unterseite antrifft'). Meistens ist das Roth des Rückens am intensivsten auf der Scheibenmitte und auf fünf davon ausstrahlenden, den Radien entsprechenden Streifen, die von den Längsreihen der Papulæ eingefasst sind; indessen gehen diese dunkler rothen Bezirke ganz allmählich, ohne scharfe Grenze, in das hellere Roth der dorsalen Interbrachialbezirke über. Schon Grube (1840) hat diese dunkleren, im Ganzen eine sternförmige Figur bildenden Bezirke hervorgehoben. Bei genauerer Betrachtung der Rückenseite ergiebt sich, wie ebenfalls bereits Grube (1864) richtig bemerkt hat, dass die Grundfarbe des Rückens eigentlich ein helles röthliches Weiss oder ein blasses Gelb ist. Auf dieser Grundfarbe stehen rothe, den Stachelbüschelchen entsprechende rothe Flecken (es ist das in Merculiano's Abbildung, die mehr den Gesamtfarbeneindruck wiedergibt, nicht deutlich ausgedrückt). Dadurch erklärt sich auch, dass gerade der Apex und die fünf oben erwähnten radiären Streifen dunkler roth aussehen, weil hier die rothen Stachelbüschelchen am dichtesten stehen. Aber auch am Rande des Rückens erscheint das Roth meistens intensiver. Forbes (1841) und Viguer (1879) haben Exemplare vor sich gehabt, bei denen in den dorsalen Interbrachialfeldern das Roth ganz fehlte, sodass die weissliche Grundfarbe unverdeckt zu Tage trat; derartig gefärbte Thiere sind mir aber bei Neapel nie vorgekommen und werden auch sonst von keinem mittelmeerischen Fundorte erwähnt. Die bräunliche Färbung der Papulæ, von der Grube (1840) spricht, kommt nach meinen Beobachtungen nicht der ganzen Papula, sondern nur deren Spitze zu. Die Madreporeplatte hebt sich durch die Farbe entweder gar nicht von ihrer Umgebung ab oder ist etwas heller. Schliesslich will ich zu der Merculiano'schen Abbildung noch bemerken, dass das fleckig verwaschene Aussehen, das dieselbe namentlich an einer, dem Rande anliegenden Stelle darbietet, absichtlich und zwar ganz naturgetreu angebracht ist, da es an den lebenden Thieren sehr häufig zu sehen ist.

Die Unterseite ist stets viel heller als die Oberseite: röthlichweiss oder gelblichweiss oder fast reinweiss. Besonders ausgezeichnet ist die Unterseite durch einen unregelmässig begrenzten blutrothen oder carminrothen Randsaum (Taf. 5, Fig. 4), der nur selten (z. B. bei einem mir vorliegenden halbwüchsigen Exemplare von 25 mm Armradius) ganz fehlt. Die aus den Armninnen hervortretenden Füsschen haben im Leben eine gelbe Färbung.

Das Wohngebiet unserer Art erstreckt sich an den Süd-, West- und Nordwestküsten Europas etwa von 35° bis 59° n. Br. Im östlichen Theile des Mittelmeeres kennt man sie aus der Adria, insbesondere aus dem Golf von Venedig (Olivi), aus dem Golf von Triest:

1) Risso nennt die Oberseite grün, die Unterseite grünlichweiss, was auf unsere Art durchaus nicht passt und auf Asterina gibbosa hindeutet; s. d. Anm. p. 297 u. 213.
Palmipes membranaceus.

Ausserhalb des Mittelmeeres liegen die südlichsten bis jetzt nachgewiesenen Fundstellen bei La Rochelle (Beltremieux, Fischer) an der französischen Westküste und im Golf von Biscaya (Koehler). Weiter nördlich kennt man sie an der Küste Frankreichs von Brest (Perrier), Roscoff (Perrier, Viguier, Cuénot), Jersey (Koehler), St. Vaast-la-Hougue (Fischer, Perrier) und aus dem Pas-de-Calais (Hallez). Zahlreich sind ihre Fundorte an den irischen, englischen und schottischen Küsten (Pennant, Fleming, Forbes, Gray, Norman, Henderson, Scott, Bell, Herman). Hier findet sie sich an der Süd-, West- und Ostküste von Irland, in der irischen See, an der Westküste von England und Schottland sowie an den Shetlandinseln, wo sie bei etwa 59° n. Br. die Nordgrenze ihres Verbreitungsgebietes erreicht (also nicht erst bei 65° n. Br., wie Sladen ohne näheren Nachweis behauptet). An der Ostküste von Schottland wird die Art nur aus dem Moray Firth und von Aberdeen, an der Ostküste von England nur von Hartlepool erwähnt, geht also hier in östlicher Richtung nicht über 1° w. l. hinaus und fehlt an der übrigen Ostküste Englands. Im Kanal ist sie an der englischen Küste östlich bis Brighton bekannt, während sie an der französischen Küste bis in den Pas-de-Calais, also fast bis zu 2° 5. l. nachgewiesen ist und nach Lameere1) selten auch noch vor der belgischen Küste gefunden wird. Sie fehlt demnach im Haupttheile der Nordsee; nur am Nordweststrande derselben kommt sie vor.

In verticaler Richtung wird die Art im Mittelmeer in der Regel in Tiefen von 20—100 m angetroffen2). Doch kommt sie auch noch in grösseren Tiefen vor, denn M. Sars erwähnt sie von Neapel aus 183 und Colombo von den Isole dei Galli aus 190 m: nach

1) Manuel de la faune de Belgique I, Bruxelles 1895, p. 34.
2) Die Angabe Risso's, dass er die Art bei Nizza unter Steinen der Uferzone das ganze Jahr hindurch gefunden habe, passt so wenig zu unserer Art, dass man von dem auch sonst begründeten Verdacht nicht loskommt, dass seine Asterias membranaceae überhaupt nicht mit unserer Art identisch ist (s. auch die Anmerkungen p. 267 und p. 243).

v. Marenzeller's Mittheilung (1893) soll sie im östlichen Mittelmeere sogar noch in Tiefen von 400—600 m leben. In geringeren Tiefen als 20 m ist sie bis jetzt im Mittelmeere noch nicht gefunden worden. An den schottischen Küsten dagegen, wo sie übrigens bis 200 m herabsteigt, soll sie auch schon in 9 m Tiefe gelegentlich vorkommen. Sowohl Koehler als Perrier und Viguier heben hervor, dass sie an der französischen West- und Nordwestküste sich stets tiefer als die Niedrigwasserzone aufhält; nur einmal wurde nach dem Zeugnisse von Perrier bei Brest ein Exemplar oberhalb der Ebbeleine gefunden. Im Golf von Biscaya erbringt Koehler ein Exemplar aus 180 m Tiefe.

16a. Palmipes lobianci = Palmipes membranaceus × Asterina gibbosa.

Taf. 5, Fig. 9.

Derselbe fand die beiden einzig Exemplare im Juli 1892 auf Corallinengrund vor der blauen Grotte von Capri in 90 m Tiefe, versteckt zwischen jenen Algen. Von dem einen Exemplare hat Herr MERCULIANO eine Farbenskizze der Rückenseite angefertigt (Taf. 5, Fig. 9). Nach dieser Skizze hatte das lebende Thier eine Länge von 21 mm; R betrug 11,5 mm, r = 9 mm, also r : R = 1 : 1,28. Im conservirten Zustande hat dasselbe Exemplar nur eine Länge von 15 mm; R = 8, r = 6,5 mm, r : R = 1 : 1,25. Wenn ich nun auch annehmen kann, dass durch die Abtödung und Conservierung das Thier ein wenig contrahirt wurde, so muss doch in der MERCULIANO'schen Figur eine leichte Vergrösserung der Maasse stattgefunden haben. Das zweite etwas verzerrte und verkrümmte, weniger gut erhaltene Stück hat fast genau dieselben Maasse wie das erste; seine Länge misst ebenfalls 15 mm, R = 8, r = 6 mm, r : R = 1 : 1,33.

Der Umriss des Körpers ist demnach bei beiden Exemplaren annähernd pentagonal mit abgerundeten Ecken, die durch das Hinaufrücken der Terminalplatte auf die Dorsalseite leicht eingekerbt erscheinen, und mit ganz schwach eingebogenen Seiten. Die Abplattung des

Die Färbung ist auf dem Rücken ein blasses, gelblich-bräunliches Weiß mit fünf röthlich angehauchten, interradialen und einem ebensolchen centralen Fleckchen auf dem Scheitel.

Um die Exemplare für etwaige spätere Vergleicherungen möglichst zu erhalten, konnte die Untersuchung nicht so eingehend sein wie bei *P. membranaceus* und *A. gibbosa*. Doch liess sich das Folgende feststellen, was völlig ausreicht, um die oben angedeutete Vermengung der Merkmale jener beiden Arten darzulegen.

Das 1,7 mm im Durchmesser grosse Scheitelfeld ist von etwa 20 unregelmässig ge-
lagerten, ungleich grossen Platten eingenommen, die zugleich den fast centralen After umlagern, und unter denen sich, ähnlich wie bei *A. gibbosa* und im Gegensatz zu *P. membranaceus*, keine befindet, die an mehrere primäre Interradialplatten heranreicht.

Außerhalb des Scheitels bemerkt man, dass die Armrücken von drei regelmässigen Längsreihen von Platten, einer radialen und zwei adradialen, gebildet sind, die ohne jede Störung bis an die Scheitelplatten verlaufen, sich also in dieser Hinsicht ganz ebenso ver-
halten wie bei *P. membranaceus*. Die radiale Plattenreihe beginnt an der primären Radialplatte; die erste Platte jeder adradialen Reihe legt sich über den distalen Bezirk der nächsten primären Interradialplatte und stösst mit der ersten Adradialplatte des benachbarten Armes in der Interradiallinie zusammen. Ein deutliches Interradialfeld, wie es an diesen Stellen bei erwachsenen *A. gibbosa* und *P. membranaceus* vorhanden ist, fehlt, und es erinnert dieser Mangel an das Verhalten jüngerer Thiere jener beiden Arten. Die supplementären Plättchen, die sich bei jenen beiden Arten in den Skeletlöchern der Armückenstreißen einstellen, sind auch hier vorhanden, aber entsprechend der Kleinheit der Skeletlöcher in viel geringerer Zahl; gewöhnlich findet man in je einer Skeletlöcke nur ein, häufig auch gar kein supplementäres Plättchen.

Die Dorso lateralfäden bieten ganz dieselbe regelmässige Anordnung in Längs- und Querreihen dar, die wir bei *A. gibbosa* und *P. membranaceus* kennen gelernt haben. In ihrer Form zeigen sie niemals die Halbmondgestalt, die sie auf einem grossen Theil des *Asterina-
Rückens haben, sondern sind stets scheinbiform und schliessen überall dachziegelig zusammen, also ähnlich wie bei *P. membranaceus*; sie entwickeln auch wie bei der letztgenannten Art schon in ihrer ersten Längsreihe einen inneren, griffartigen Fortsatz, der aber weniger lang und dabei gedrungener ist als dort und erst im Randtheile des Körpers mit ähnlichen Griffen der Ventrolateralplatten in Verbindung steht, sich also in dieser Beziehung wieder mehr an die Verhältnisse der *A. gibbosa* anschliesst. Die unpaare, genau dem Interradius folgende Reihe dorsolateraler Platten geht wie bei *P. membranaceus* und *A. gibbosa* bis zum Rande: in ihrem Anfange wird sie aber nicht wie bei *A. gibbosa* in die Tiefe gedrängt, sondern es liegen wie bei *P. membranaceus* die zweite und dritte Interradialplatte oberflächlich sichtbar zwischen den ersten Platten der ersten und zweiten dorsolateralen Längsreihe. Auch darin herrscht Übereinstimmung mit *P. membranaceus*, dass die erste paarige dorsolaterale Querreihe bis zum Rande durchgeht. Demnach haben wir in der Gesammtanordnung dieselben Verhältnisse der dorsolateralen Querreihen, wie ich sie p. 228 in einer schematischen Figur auszudrücken versuchte.

Die Bestachelung der sämtlichen Rückenplatten wird von winzigen, zahlreichen Stachelchen gebildet, die in Form und Grösse sich mehr denjenigen der *A. gibbosa* anschliessen und auch in ihrer Anordnung nicht die büschelförmiige Gruppierung der Rückenstacheln des *P. membranaceus* zeigen, sondern regellos über die freie Oberfläche der Platten vertheilt sind, auf jeder Platte zählt man deren meistens 4—6, auf den primären Radialplatten sogar 8—10.

Am Rande alterniren die Querreihen der dorsolateralen Platten in derselben Weise mit den Randplatten wie bei *P. membranaceus*. Ganz wie dort setzt sich die letzte Platte der unpaaren dorsolateralen Querreihen mit der jederzeitigen ersten oberen Randplatte (also zusammen mit zwei oberen Randplatten) in Verbindung, während die letzte Platte der ersten paarigen dorsolateralen Querreihen an die zweite, die letzte Platte der zweiten paarigen Querreihe an die dritte obere Randplatte u. s. w. herantritt (s. das Schema p. 228).

Die oberen und unteren Randplatten sind wie bei *P. membranaceus* und *A. gibbosa* so geordnet, dass sie einander in Zahl und Stellung entsprechen; die oberen sind kleiner als die unteren; die letzteren liegen horizontal und bilden den eigentlichen Rand, während die ersteren schrag in der aufsteigenden Ebene des Rückens liegen. Was die Zahl der oberen und unteren Randplatten angeht, so besitzen die beiden vorliegenden Exemplare jederseits an jedem Arm deren 12 oder 13. Bei gleich grossen Thieren von *P. membranaceus* zählt man der Randplatten (und dementsprechend auch der dorso- und ventrolateralen Querreihen), da die Randplatten kürzer sind, eine grössere Anzahl, nämlich 18, dagegen bei gleich grossen *A. gibbosa* ebenfalls nur 12. Diese grössere Annährung der Randplatten an die Verhältnisse von *A. gibbosa* prägt sich auch in der Form der Platten, insbesondere der unteren, aus. Letztere sind breiter als lang und durch eine schräge Abstutzung ihres basalen Theiles von abgerundet trapezförmiigem Umriss. Die Bewaffnung der Randplatten besteht aus denselben mehr oder weniger stumpfen, bedornten Stachelchen wie die der Rückenplatten, stimmt also ebenfalls mehr zu *A. gibbosa* als zu *P. membranaceus*. Auf jeder oberen Randplatte stehen 6 oder 7, auf jeder unteren 15—18.
Stachelchen; von denen der unteren Randplatten sitzen 6 oder 7 am eigentlichen Rand der Platte, die übrigen auf ihrer dorsalen Oberfläche.

In der Ventralansicht des Thieres bemerkt man sofort, dass hier wie bei _P. membranaceus_ und _A. gibbosa_ die Querreihen der ventrolateralen Platten mit den Randplatten regelmässig congruiren. Die unpaare Reihe der Ventrolateralplatten erreicht wie bei _P. membranaceus_ die Randplatten nicht, dringt aber doch weiter gegen dieselben vor, sodass sie einen Uebergang zwischen dem Verhalten derselben Plattenreihe bei _P. membranaceus_ einerseits und _A. gibbosa_ anderseits darbietet. Die erste und die zweite paarige ventrolaterale Querreihe verhalten sich wieder ganz wie bei _A. gibbosa_, indem sie nach kurzem Verlaufe an die unpaare Reihe anstossen und dort endigen (s. Schema p. 228); wie bei _A. gibbosa_ wird die erste paarige ventrolaterale Querreihe nur durch eine, die zweite nur durch zwei Platten repräsentirt (vergl. die Abbildung von _A. gibbosa_ Taf. 9, Fig. 7). In der Nähe des Randes befinden sich die ventrolateralen Querreihen — und das stimmt wieder mit _P. membranaceus_ — nicht mehr genau unter den dorsolateralen, sondern liegen etwas weiter nach der Armspitze hin als jene. In ihrer Bewaffnung stimmen die Ventrolateralplatten mit _P. membranaceus_ insofern überein, als sie dieselben gebogenen, nach dem Körperrande gerichteten Kämmchen von spitzen Stachelchen besitzen. Auf jeder Platte steht ein einziges derartiges Kämmchen, das aus 4 oder 5 durch eine Membran unter sich verbundenen Stachelchen zusammengesetzt ist. Doch sind bei gleich grossen Exemplaren des _P. membranaceus_ die ventralen Kämmchen erst aus 2 oder 3 Stachelchen gebildet.

Die noch nicht erwähnten _Papulae_ sind wie bei _P. membranaceus_ auf die Arrückenstreifen, also auf die Zone der Radial- und Adradialplatten beschränkt. Hier stehen sie einzeln in den Skeletlücken, jedoch nicht in zwei, sondern in drei Längsreihen, da sie nicht nur zwischen den aufeinanderfolgenden Adradialplatten, sondern auch genau in der Medianebene zwischen den aufeinanderfolgenden Radialplatten auftreten (Taf. 5, Fig. 9).

Pedicellarien sind in keiner Form vorhanden, weder auf den oberen Randplatten und auf den supplementären Plättchen, wie bei _A. gibbosa_, noch irgendwo sonst. In diesem Mangel von Pedicellarien verhalten sich die beiden Exemplare ganz wie _P. membranaceus_.

Von der inneren Organisation verdient hervorgehoben zu werden, dass die Geschlechtsorgane des einen genauer untersuchten Exemplares, die bereits wohlausgebildete Einzel enthalten, die Form eines einfachen, kleinen Beutels haben, der durch eine dorsale Öffnung nach aussen mündet. Die beiden Geschlechtsöffnungen eines jeden interradialen Bezirkes liegen entweder rechts und links von der dritten oder rechts und links von der zweiten dorsalen Interradialplatte. Da bei _Asterina_ die Geschlechtsöffnungen ventral, bei _P. membranaceus_ aber dorsal gelegen
Hacelia attenuata.

sind, so haben wir in dieser Hinsicht wieder eine Übereinstimmung mit *P. membranaceus*. Dagegen zeigen die Interbrachialsepten nochmals eine Vermengung der Merkmale des *P. membranaceus* mit denen der *A. gibbosa*; denn während auf der einen Seite, ebenso wie bei *P. membranaceus*, die zweite und dritte dorsale Interradialplattrenicht in das Interbrachialseptum hineinrücken, bildet dasselbe anderseits, im Gegensatze zu *P. membranaceus* und in Übereinstimmung mit *A. gibbosa*, keine bis zum Körperrande geschlossene, nur nach der Körperachse hin mit einem freien Rande ausgestattete Wand, sondern stellt einen freien Pfeiler dar, der sowohl an der adaxialen wie an der abaxialen Seite einen freien Rand besitzt.

Aus alledem ergiebt sich, dass wir hier eine Seesternform vor uns haben, die wegen der Körperform, der Anordnung der Papulae, des engen Zusammenschlusses aller Dorsolateralplatten, der Beziehung der dorsalen und ventralen queren Plattenreihen zu den Randplatten, des Mangels der Pedicellarien u. s. w. in die Gattung *Palmipes* gehört, hier aber wegen ihrer vielfachen Beziehungen zu *Asterina gibbosa* als eine Zwischenform zwischen *Palmipes membranaceus* und *Asterina gibbosa* angesehen werden muss, die sich wohl nur durch die Annahme einer Bastardierung beider Arten verständlich machen lässt.

Fam. Linckiidae.

Scheibe klein; Arme lang, fast drehrund, von der Basis an zugespitzt; grunulirte Haut überkleidet die Platten und die Plattenzwischenräume der Arme und der Scheibe; die dorsalen und marginalen Platten der Arme in 7 durch quere Connectivplättchen verbundenen Längsreihen, nämlicheinerradialen und jederseitseiner adradialen, einer oberen marginalen und einer unteren marginalen, dazwischen im Ganzen 6 Längsreihen von Porenfeldern; Ventrolateralplatten in 3 Längsreihen und in jeder Längsreihe doppelt so zahlreich, wie die unteren Randplatten; zwischen den Ventrolateralplatten 2 Längsreihen von Porenfeldern, die in der ersten (= an die Adamulacralplatten anstossenden) Reihe doppelt so zahlreich sind wie in allen übrigen Längsreihen; Pedicellarien, wenn vorhanden, vereinzelt, salzfassförmig; Füsschen zweireihig, mit deutlicher Saugscheibe.

Im Mittelmeere nur eine Art: *H. attenuata* Gr.
17. Art. Hacelia attenuata (Gray).

Taf. 3, Fig. 6, 7; Taf. 11, Fig. 1—17.

1816 Asterias laevigata varietas Lamarck Tome 2, p. 566.
1826 Asterias variolata Risso p. 269—276.
1840 Asterias laevigata varietas Lamarck Tome 3, p. 254.
1840 Asterias coriacea Grube p. 22.
1840 Ophidiaster Hacelia attenuatus Gray p. 284.
1841 Asterias variolata Delle Chiaje Vol. 4, p. 58—59; Vol. 5, p. 124; T. 128, f. 1—8, 10—12.
1842 Ophidiaster attenuatus Müller & Troschel p. 29.
1864 Ophidiaster attenuatus Dujardin & Hupé p. 359—360.
1864 Ophidiaster ophidianus Lütken p. 164 (partim).
1866 Ophidiaster Hacelia; attenuatus Gray p. 13.
1875 Ophidiaster attenuatus Perrier p. 119, 133—135 (partim).
1876 Ophidiaster attenuatus Gasco p. 8.
1876 Ophidiaster lessonae Gasco p. 5, f. 4, 5.
1878 Ophidiaster attenuatus Perrier p. 15, 50.
1879 Ophidiaster ophidianus Ludwig p. 539 (partim).
1879 Ophidiaster lessonae Ludwig p. 539.
1885 Ophidiaster ophidianus Carus p. 87 (partim).
1885 Ophidiaster lessonae Carus p. 57.
1886 Ophidiaster attenuatus Preyer p. 32.
1886 Ophidiaster lessonae Norman p. 6.
1888 Ophidiaster lessonae Colombo p. 88.
1888 Ophidiaster attenuatus Sladen p. 462, 463, 454, 691, 710, 780.
1889 Ophidiaster lessonae Sladen p. 462, 782.
1894 Ophidiaster attenuatus Koehler p. 412.
1896 Ophidiaster lessonae = attenuatus Ludwig p. 56.

1) Früher hatte PERRIER (1869, p. 60) den Namen Ophidiaster attenuatus zur Bezeichnung einer neuen, von der mittelmeerschen durchaus verschiedenen Art von Zanzibar benützt, über die man in der späteren Litteratur sowohl bei PERRIER selbst als auch bei anderen Autoren sich vergeblich nach einer weiteren Aufklärung umsieht.

ambulacralstächen sind auch im proximalen Armabschnitt durch Zwischenräume getrennt. Munddeckplatten mit vier stumpfen Stacheln am ambulacralen Rande, von denen der vierte nur halb so lang ist wie die anderen, und mit zwei stumpfen Stacheln auf der ventralen Oberfläche. Madreporeplatte abgerundet, flachgewölbt, bis 3,3 mm gross, 2 1/2 mal so weit vom Scheibencentrum wie vom Rande entfernt. Pedicellarien salzfassförmig, zwei-, seltener dreiklappig, nur bei älteren Thieren vereinzelt auf den Ventrolateralplatten und auf den Randplatten. Färbung scharlachrot.

Von dem unter allen mittelmeerischen Seesternen ihm am ähnlichen Ophidiaster ophidiunns unterscheidet sich der vorliegende kräftig gebaute Seestern schon in seinem Habitus (Taf. 3, Fig. 6, 7) durch die andere Form der Arme. Dieselben haben nicht die annähernd zylindrische Gestalt der Arme von O. ophidiunns, sondern laufen von ihrer Basis bis zur Spitze allmählich spitz zu, wie das bereits Grube sowie Müller & Troschel richtig hervorgehoben haben. Schon in der Mitte des Armradius haben sich die Arme im Vergleich zu ihrer Basis um so viel verjüngt, dass sie hier gewöhnlich nur noch \(2/3\)\, der basalen Breite messen, und schliesslich, in der Nähe ihrer abgerundeten Spitze, sind sie nur noch \(1/2\), bis höchstens \(1/3\), so breit wie an der Basis. In den Armwinkeln gehen die Arme in einem kurzen Bogen in einander über. Dorsal und an den Flanken sind sie so hoch gewölbt, dass ein Querschnitt durch einen Arm sich in diesem Bereiche mehr oder weniger einer Kreislinie nähert; an der Unterseite aber ist die Wölbung viel flacher und geht erst an den unteren Randplatten allmählich in die stärkere Wölbung der Seiten und des Rückens über. Blickt man von oben auf den Arm, so sieht man ihn von der Reihe der oberen Randplatten begrenzt, während in der Ansicht von unten die unteren Randplatten die Grenzlinie abgeben. Die Flanken der Arme werden also von den oberen und unteren Randplatten und deren Connectivplättchen gebildet. Doch sind alle diese sowie die übrigen Platten des Arm- und Scheibenskeletes in ihren Grenzlinien nicht ohne Weiteres zu erkennen, da sie unter einer ziemlich gleichförmigen Granulation der Haut versteckt liegen und sich nur als leichte Vorwölbungen verrathen; wie denn überhaupt für das Gesamt-
Hacelia attenuata.

aussehen unseres Thieres die fast allgemeine Granulation der Körperoberfläche sehr in den Vordergrund tritt. Auf dem Rücken der Arme bemerkt man ausser den schon erwähnten oberen Randplatten die Vorwölbungen von drei Längsreihen von Platten, die von einander und von den Randplatten durch vier Längsreihen von regelmässig geordneten, quergestellten Porenfeldern geschieden sind. Ebensolche Porenfelder bilden eine weitere Längsreihe an jeder Flanke des Armes, und auch an der Bauchseite der Arme lassen sich jederseits zwei Reihen von etwas anders gestalteten Porenfeldern unterscheiden. Auf dem gewölbten Rücken der Scheibe sind ebenfalls Porenfelder vorhanden. Die Höhe der Scheibe und der Armbasen beträgt ungefähr eben so viel wie die Breite der Armbasen und misst z. B. an einem alten Exemplare (Nr. 1 der Tabelle) 20 mm, bei einem kleineren erwachsenen Thiere (Nr. 7) 13 mm, bei einem halbwüchsigen (Nr. 19) 5 mm und bei dem jüngsten mir vorliegenden (Nr. 29) nur 2 mm.

Andere als fünfarmige Exemplare werden weder in der Litteratur erwähnt, noch sind mir solche vor Augen gekommen.

Das grösste der von früheren Autoren beschriebenen Exemplare ist das unlängst von Koehler bei La Ciotat gefundene, dessen Länge 200 mm betrug, während Müller & Troschel als Maximalgrösse 6 Zoll, also nach pariser Fuss umgerechnet 162 mm, angaben. Die Art kann aber die Länge von 200 mm auch noch übersteigen, denn das grösste mir zu Gesicht gekommene Thier hatte eine Länge von 270 mm¹). Häufiger sind Exemplare von 100—180 mm Länge. Auch kommen halbwüchsige Thiere von rund 40—100 mm Länge nicht selten vor; dagegen sind junge Exemplare von noch geringerer Grösse weniger oft gefunden worden. Das kleinste mir vorliegende Thier (Nr. 29 der Tabelle) hat nur eine Länge von 13 mm. Exemplare, deren Armradius mehr als 50 mm (Nr. 1—10) beträgt, bezeichne ich im Folgenden als erwachsene oder alte Thiere, solche, deren R 21—50 mm misst (Nr. 11—19), als halbwüchsige, und diejenigen, bei denen R höchstens 20 mm lang ist (Nr. 20—29), als junge. Im Vergleiche mit Ophiduster ophidianus ist zu bemerken, dass H. attenuata niemals dessen Maximalgrösse zu erreichen scheint.

Das von Müller & Troschel angegebene Verhältniss von r : R = 1 : 5,5 passt ziemlich genau zu den erwachsenen Thieren. Doch erhält man, wenn man eine grössere Anzahl von Exemplaren misst, einen etwas grösseren Durchschnittswerth für R, nämlich 5,78 r. Bei den zehn erwachsenen Thieren, die ich in die Tabelle aufgenommen habe, und auf die sich der eben angegebene Durchschnittswerth von R zunächst bezieht, schwankt das Verhältniss r : R von 1 : 5,16 (Nr. 6) bis 6,53 (Nr. 2). Vielleicht ist der bei Exemplar Nr. 2 im Vergleiche zu Nr. 1 und 3 auffallend hohe Werth von R zum Theil durch Einschrumpfung der Scheibe bei diesem trockenen Sammlungsstücke bedingt. Wenn man deshalb von diesem Stücke absieht, so ergibt sich, dass der Werth von R bei alten Thieren nur wenig über das Sechsfache

¹) Dieses grösste Exemplar ging mir erst nach dem Abschlusse des Manuskriptes von Neapel zu. R misst an demselben 159, r = 25 mm; also r : R = 1 : 6.
von r steigt. Bei den neun halbwüchsigen Exemplaren berechnet sich das durchschnittliche Verhältniss von \(r : R = 1 : 4,83 \) und beträgt im Minimum 1 : 4,2 (Nr. 19) und im Maximum 1 : 5,33 (Nr. 12). Die jungen Thiere (Nr. 20—29) haben das durchschnittliche Verhältniss \(r : R = 1 : 3,63 \), im Minimum (Nr. 29) 1 : 3,11 und im Maximum (Nr. 20) 1 : 4,1. Im Ganzen erhält man für die 29 in der Tabelle angeführten Exemplare den Durchschnitt \(r : R = 1 : 5,18 \) und die Grenzwerthe 1 : 3,11 als Minimum und 6,53 oder 6,1 als Maximum.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>r : R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>232</td>
<td>128</td>
<td>21</td>
<td>1 : 6,1</td>
</tr>
<tr>
<td>2</td>
<td>177</td>
<td>98</td>
<td>15</td>
<td>1 : 6,53</td>
</tr>
<tr>
<td>3</td>
<td>154</td>
<td>85</td>
<td>14</td>
<td>1 : 6,07</td>
</tr>
<tr>
<td>4</td>
<td>141</td>
<td>78</td>
<td>13</td>
<td>1 : 6</td>
</tr>
<tr>
<td>5</td>
<td>123</td>
<td>68</td>
<td>13</td>
<td>1 : 5,23</td>
</tr>
<tr>
<td>6</td>
<td>112</td>
<td>62</td>
<td>12</td>
<td>1 : 5,16</td>
</tr>
<tr>
<td>7</td>
<td>109</td>
<td>60</td>
<td>11</td>
<td>1 : 5,45</td>
</tr>
<tr>
<td>8</td>
<td>103</td>
<td>57</td>
<td>10</td>
<td>1 : 5,7</td>
</tr>
<tr>
<td>9</td>
<td>98</td>
<td>54</td>
<td>10</td>
<td>1 : 5,4</td>
</tr>
<tr>
<td>10</td>
<td>94</td>
<td>52</td>
<td>9,5</td>
<td>1 : 5,47</td>
</tr>
<tr>
<td>11</td>
<td>90</td>
<td>50</td>
<td>9,5</td>
<td>1 : 5,26</td>
</tr>
<tr>
<td>12</td>
<td>87</td>
<td>48</td>
<td>9</td>
<td>1 : 5,33</td>
</tr>
<tr>
<td>13</td>
<td>76</td>
<td>42</td>
<td>8,5</td>
<td>1 : 4,94</td>
</tr>
<tr>
<td>14</td>
<td>72</td>
<td>40</td>
<td>8,5</td>
<td>1 : 4,7</td>
</tr>
<tr>
<td>15</td>
<td>67</td>
<td>37</td>
<td>7,5</td>
<td>1 : 5</td>
</tr>
<tr>
<td>16</td>
<td>66</td>
<td>33</td>
<td>7</td>
<td>1 : 4,71</td>
</tr>
<tr>
<td>17</td>
<td>58</td>
<td>32</td>
<td>7</td>
<td>1 : 4,57</td>
</tr>
<tr>
<td>18</td>
<td>51</td>
<td>28</td>
<td>6,5</td>
<td>1 : 4,31</td>
</tr>
<tr>
<td>19</td>
<td>38</td>
<td>21</td>
<td>5</td>
<td>1 : 4,2</td>
</tr>
<tr>
<td>20</td>
<td>33</td>
<td>18,5</td>
<td>4,5</td>
<td>1 : 4,1</td>
</tr>
<tr>
<td>21</td>
<td>29</td>
<td>16</td>
<td>4</td>
<td>1 : 4</td>
</tr>
<tr>
<td>22</td>
<td>27</td>
<td>15</td>
<td>4</td>
<td>1 : 3,75</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>13</td>
<td>3,5</td>
<td>1 : 3,7</td>
</tr>
<tr>
<td>24</td>
<td>23</td>
<td>12,5</td>
<td>3,5</td>
<td>1 : 3,57</td>
</tr>
<tr>
<td>25</td>
<td>22</td>
<td>12</td>
<td>3,5</td>
<td>1 : 3,43</td>
</tr>
<tr>
<td>26</td>
<td>20</td>
<td>11</td>
<td>3</td>
<td>1 : 3,7</td>
</tr>
<tr>
<td>27</td>
<td>19</td>
<td>10,5</td>
<td>3,25</td>
<td>1 : 3,23</td>
</tr>
<tr>
<td>28</td>
<td>14</td>
<td>8</td>
<td>2,5</td>
<td>1 : 3,2</td>
</tr>
<tr>
<td>29</td>
<td>13</td>
<td>7</td>
<td>2,25</td>
<td>1 : 3,11</td>
</tr>
</tbody>
</table>

1 Gasco giebt bei seinem *Ophidiaster lessmanni*, der, wie schon weiter oben bemerkt, nichts Anderes als ein halbwüchsiges Exemplar von *H. attenuata* ist, an, dass bei einer Länge seines Thieres von 75 mm das Verhältniss \(r : R = 1 : 4 \) sei. Misst man aber in seiner Abbildung nach, so erhält man für \(r = 9 \), für \(R = 40 \) mm, also für \(r : R = 1 : 4,44 \), was sich dem von mir bei einem gleichgrossen Thiere (Nr. 14 der Tabelle) gefundenen Werthe von \(r : R = 1 : 4,7 \) mehr nähert als die Angabe seines Textes.
Die Breite der Arme misst an ihrer Basis bei alten Thieren bis zu 24 mm. Vergleicht man dieses Maass der Arme (= AB) mit der Länge des Armradius, so erhält man bei unserem grössten Exemplare Nr. 1 das Verhältniss AB : R = 1 : 5,33; bei dem Exemplare Nr. 3 ergiebt sich AB : R = 1 : 5, bei Nr. 4 = 1 : 5,5, bei Nr. 7 = 1 : 5. Es ist also bei erwachsenen Thieren der Armradius 5—5½ mal so lang, wie die Arme an ihrer Basis breit sind. Bei halbwüchsigen Thieren sind die Arme im Vergleiche zu ihrer basalen Breite etwas kürzer, denn es beträgt z. B. AB : R bei Nr. 11 = 1 : 4,5, bei Nr. 14 = 1 : 4,4, bei Nr. 16 = 1 : 4,5 bei Nr. 19 = 1 : 3,5; die Armbreite ist also hier durchschnittlich etwa viermal in der Länge von R enthalten. Bei jungen Thieren nimmt die Länge von R im Vergleiche zu AB noch mehr ab und beträgt beispielsweise bei Nr. 25 nur noch das 3,4fache und bei Nr. 29 nur noch das 2,8fache von AB.

Die derbe Körperwand ist von ansehnlicher Dicke, die bei alten Thieren 3 mm beträgt. Davon kommt etwa 0,5 mm auf die nach aussen von den kräftigen Skeletplatten befindliche Hautlage. Diese äussere Hautschicht beherbergt die zahlreichen, kalkigen Granula, durch die sich das lebende Thier, wie schon GUère angegeben hat, wie Korduanleder anfühlt. Nach Behandlung mit Kali lässt sich die ganze äussere Hautschicht samt ihren Granula in continuo abziehen; dann erst liegen die Skeletplatten der Körperwand, so wie sie in meinen Abbildungen dargestellt sind, frei zu Tage.

Die Granula selbst sind in einfacher Schicht ziemlich dicht nebeneinander geordnet und treten in keine engere Beziehung zu den darunter gelegenen Skeletplatten. Durchweg sind sie ebenso hoch wie dick und bieten von oben gesehen stets einen rundlichen oder abgerundet polygonalen Umriss dar. Beim erwachsenen Thiere haben sie auf dem Rücken einen Querdurchmesser von 0,3—0,4 mm; aber auf den Porenfeldern treten dazwischen auch zahlreiche, kleinere, nur 0,12—0,2 mm dicke auf; ebenso sind die unmittelbar an die Madreporenpflatte angrenzenden Granula nur 0,1—0,2 mm dick. Rings um die Afteröffnung (Taf. 11, Fig. 12) strecken sich die Granula zu kurzen, stumpfen, 0,5—0,75 mm langen, kegelförmigen Stachelchen, die den After überdecken und deren man im Umkreis des Afters etwa 20 zählt. Auf der Bauchseite nehmen die Granula in denselben Maasse, in dem man sich der Ambulacralfurche nähert, an Dicke allmählich ab, sodass sie auf den Ventrolateralplatten meist nur 0,2—0,25 mm und schliesslich auf den Adambulacralplatten nur 0,15 mm dick sind. Während sie auf dem Rücken vorwiegend abgerundet polygonal umrandet sind, bieten sie auf den Adambulacralplatten meistens einen kreisrunden Umriss dar. Aus dem Gesagten folgt, dass es nicht ganz zutrifft, wenn MÜLLER & TROSCHEL die Granulation als eine „überall gleichförmige“ bezeichnen.

Bei halbwüchsigen und noch mehr bei jungen Thieren sind sie immer gerundet und auch viel feiner als später; so messen sie auf dem Rücken eines Exemplares, dessen Armradius 21 mm lang ist, 0,1—0,18 mm, und bei einem jungen Thiere von 8 mm Armradius sind sie auf den Adambulacralplatten erst 0,05 mm dick. Ihr freies Ende ist bei den jungen Thieren durch feine Spitzchen ihres engmaschigen Kalkgewebes ganz fein bedornt. Die geringere Grösse der Granula bei halbwüchsigen Thieren hat mit dazu beigetragen, GASCO zu
der Meinung zu verführen, dass das ihm vorliegende Exemplar von 40 mm Armradius eine besondere, von *attenuatus* verschiedene Art sei.

Gasco bemerkt von seinem als *Ophidiaster lessoneae* beschriebenen Exemplare, dass in der Mitte der ventralen Interbrachialfelder die Granulation unterbrochen sei. Auch ich finde, dass einzelne jüngere und ältere Thiere an dieser Stelle, genau in der Richtung des Interradius, eine ganz feine linienförmige Unterbrechung in der Anordnung der Granula zeigen, die jedoch nicht konstant ist.

Erst nach Entfernung der granulirten äusseren Hautschicht liegt das Hauptskelet frei zu Tage. Die das dorsale Hauptskelet oder sagen wir einfach das Rückenskelet zusammen-setzenden Platten unterscheiden sich in die Hauptplatten oder eigentlichen Rückenplatten und die zu deren Verbindung dienenden supplementären oder Connectivplatten. Die Hauptplatten der erwachsenen Thiere sind auf den Armen, wie Müller & Troschel richtig angeben, wenn man die an den Flanken der Arme befindlichen Platten mitrechnet, in sieben regelmässige Längsreihen geordnet und übertreffen in ihrer Grösse die später zu besprechenden Ventrolateralplatten. Von den sieben Längsreihen (Taf. 11, Fig. 2) kann man diejenige, welche in der Medianlinie des Armes verläuft, als die radiale, die dieser jederseits zunächst liegende als die adradiale bezeichnen. Diese drei Längsreihen stellen die Rückenplatten im engeren Sinne dar. Lateral von jeder adradialen Reihe folgen dann an jeder Armseite noch zwei Reihen, von denen die erste den oberen, die zweite den unteren Randplatten phanerozonischer Seesterne entspricht. In der Rückenansicht des Thieres sind nur die oberen Randplatten sichtbar; die unteren bieten sich erst in der Seiten- und in der Banchansicht der Arme dar. In allen sieben Reihen sind die Platten so geordnet, dass sie genau rechtwinkelig zur Medianebene des Armes verlaufende Querreihen bilden, deren jede demzufolge aus sieben Platten besteht. In ihrer Form haben alle diese Platten einen abgerundet viereckigen (rautenförmigen) Umriß, dessen Ecken als kurze Lappen vortreten, während die Seiten leicht eingebuchtet sind. Im proximalen Armabschnitt erwachsener Thiere haben die Platten eine Länge von 2,5—3,3 mm und eine Breite von 2,3—2,5 mm. Von ihren vier Randlappen fallen zwei, der distale und der proximale, in die Längsrichtung der Arme; die beiden anderen, die transversalen, die man an den Randplatten auch als den oberen und unteren oder den dorsalen und ventralen unterscheiden kann, liegen in der Querrichtung der Arme. Die Platten sind ferner in ihrer aussen leicht gewölbten Mitte viel dicker als am Rande und im Ganzen von kräftigem Bau. In jeder Längsreihe legt sich der proximale Randlappen einer jeden Platte von aussen her über den distalen Lappen der in adoraler Richtung zunächst folgenden und der Entstehungszeit nach nächst älteren Platte.
Infolgedessen sieht man bei der Aussenansicht eines seiner Granula beraubten Armstückes von den Randlappen der Platten immer nur drei, nämlich den proximalen und die beiden transversalen. Sonach sind die Platten derselben Längsreihe unter sich unmittelbar verbunden. Anders verhält es sich dagegen mit der Verbindung der Längsreihen untereinander. Die Längsreihen berühren sich nämlich gegenseitig nicht, sondern rücken soweit auseinander, dass der Abstand ihrer Platten im proximalen Armabschnitt 1,2—1,5 mm beträgt. Zur Ueberbrückung dieser Abstände legen sich von innen her besondere supplementäre Platten (Connectivplatten) an, von denen eine jede von einem transversalen Randlappen einer Hauptplatte zum transversalen Randlappen der nächsten Hauptplatte derselben Querreihen verläuft. Diese Hülfsplatten stellen also transversale Connective dar, während, ähnlich wie bei *Chaetaster longipes*, longitudinale Connective in der Regel nirgends das Armskelet auftreten.\(^1\) Um die transversalen Connective in ihrer Form und Grösse zu erkennen, muss man das Rückenskelet des Arms natürlich von innen ansehen. Sie haben die Form eines queren Ellipsoïdes, dessen grosser Durchmesser 2,3—2,6 und dessen kleiner Durchmesser 1—1,1 mm betrug (im proximalen Armabschnitt); gleich den Hauptplatten sind auch sie von kräftigem Baue. Da im Ganzen sieben Längsreihen von Hauptplatten vorhanden sind, so haben wir zu ihrer Verbindung sechs Längsreihen von queren Connectivplatten. Zwischen je zwei Connectivplatten derselben Längsreihe bleibt eine quere sechsseitige Skeletlücke übrig, die in transversaler Richtung von je zwei Hauptplatten und in distaler und proximaler Richtung von je einer Connectivplatte begrenzt wird und zur Aufnahme eines Porenfeldes dient (s. p. 287). Diese Skeletlücken nennen wir einfach Felder und unterscheiden die beiden zu den Seiten der Radialplatten gelegenen Reihen solcher Felder als die medialen Armfelder, die zwischen den Adradialplatten und den oberen Randplatten befindlichen als die lateralen Armfelder und die zwischen den oberen und unteren Randplatten liegenden als die Randfelder.

Im distalen Armbezirke werden die Hauptplatten, die Connectivplatten und die dazwischen befindlichen Felder allmählich kleiner; schliesslich, in der Nähe der Terminalplatte, runden sich die Hauptplatten ab, und die letzten oberen und unteren Randplatten rücken unter den seitlichen Rand der Terminalplatte. Aber auch die radialen und die adradialen\(^2\) Platten reichen bis an die Terminalplatte (Taf. 11, Fig. 3), nehmen aber in deren Nähe rascher an Grösse ab als die Randplatten. Letztere erscheinen sogar in diesem Bezirke auf der Mitte ihrer äusseren Oberfläche stärker gewölbt, sodass sie wie kleine Buckel aus dem Rande des Armes hervortreten. Auf dieses Verhalten der letzten Randplatten und zugleich auf die starke Wölbung der Terminalplatte bezieht es sich offenbar, wenn Grube (1840) sagt: »Am Ende jedes Strahls

1) Dass ich oben nur sage »in der Regel«, bezieht sich darauf, dass mitunter bei erwachsenen Thieren (Taf. 11, Fig. 7) zwischen der ersten und der zweiten Radialplatte sich ein longitudinales Connectiv entwickeln kann.

2) Wenn Gasco von seinem als *Ophiaster lessonae* beschriebenen Exemplare angiebt, dass die Adradialplatten schon in einem Abstande von 1 cm vor der Terminalplatte endigen, so kann das nur dadurch kommen, dass er die granulierte Hautschicht nicht entfernt und infolgedessen die kleinen, unter den Granula versteckten, letzten Adradialplatten nicht bemerkt hat.
erscheinen mehrere rundliche Knöpfchen oder Spitzen, von denen die äusserste die grösste ist (mit dem äussersten Knöpfchen ist die Terminalplatte gemeint). In der Nähe der Terminalplatte verschwinden endlich auch die Connectivplättchen vollständig, nachdem sie schon vorher sich so sehr verkleinert haben, dass die Hauptplatten immer näher aneinander rücken und sich dann in transversaler Richtung berühren oder selbst übereinander greifen. Auch bemerkt man (Taf. 11, Fig. 3) kleine Unregelmässigkeiten in der bis dahin festgehaltenen Anordnung der Hauptplatten zu queren Reihen.

Bei jungen Thieren sind die Rücken- und Randplatten der Arme bereits in wesentlich gleicher Weise entwickelt wie bei den Erwachsenen. Wir treffen auch hier schon die sieben bis zur Terminalplatte reichenden Längsreihen; nur ist natürlich die Zahl der eine jede Reihe zusammensetzenden Platten und die Grösse der einzelnen Platten jetzt noch viel geringer als bei den alten Thieren; z. B. bei einem Exemplare von R = 8 mm (Nr. 28) zählt man erst acht obere (und untere) Randplatten und ebensoviele radiale und ädradiale Platten (Taf. 11, Fig. 5). Die Connective sind jetzt erst im proximalen Armabschnitt angelegt und fehlen in der distalen Armhälfte noch gänzlich. Die Platten derselben Querreihen sind auch in der proximalen Armhälfte noch nicht auseinander gerückt, sondern greifen mit ihren seitlichen Randlappen übereinander und zwar so, dass jede Adradialplatte mit ihrem medialen Randlappen unter den lateralen der entsprechenden Radialplatte und mit ihrem lateralen Randlappen unter den medialen Randlappen der betreffenden oberen Randplatte zu liegen kommt. Dieses Verhältniss deutet darauf hin, dass bei noch viel jüngeren Thieren, als den in der Tabelle aufgeführten, die Adradialplatten überhaupt etwas später auftreten als die Radialplatten und die Randplatten. Die Folge der geringen Ausbildung der Connective ist bei den jungen Thieren, dass die Skeletlücken des Rückens und der Flanken nicht wie später einen sechsseitigen, sondern einen viereckigen, rautenförmigen Umrisss haben, wie das an den alten Thieren aus denselben Grunde nur in der Nähe der Terminalplatte der Fall ist.

Um die Zahl der Randplatten und deren Verhältniss zum Alter des Thieres festzustellen, habe ich von den in der Tabelle aufgeführten Exemplaren vier junge (Nr. 28, 26, 25, 22), vier halbwüchsige (Nr. 19, 16, 13, 11) und vier erwachsene (Nr. 7, 4, 2, 1) benutzt. An den vier jungen Thieren zählte ich (in der Reihenfolge der oben angegebenen Nummern) S, 12, 14 und 16 obere Randplatten an jeder Armseite, an den vier halbwüchsigen 18, 24, 27, 28 und an den vier erwachsenen 30, 32, 35, 40. Das durchschnittliche Verhältniss von Z (= Zahl der oberen Randplatten) zu der in mm ausgedrückten Länge von R beträgt bei den vier jungen Exemplaren 1 : 0,92 (im Minimum 1 : 0,86, im Maximum 1 : 1,06), bei den vier halbwüchsigen Exemplaren 1 : 1,5 (im Minimum 1 : 1,17, im Maximum 1 : 1,79) und bei den vier erwachsenen Exemplaren 1 : 2,66 (im Minimum 1 : 2, im Maximum 1 : 3,2. Ein junger Individual, das einen Armradius von 8 mm und erst 8 Randplatten besitzt, muss bis zu einem 16mal so grossen Armradius (R = 128) heranwachsen, um die fünffache Zahl (40) seiner anfänglichen Randplatten zu erlangen. Die Arme wachsen also sehr viel rascher, als die Randplatten sich vermehren, sodass die einzelnen Randplatten ein ansehnliches Längen-
wachstum durchmachen müssen. Bei halbwüchsigen und alten Thieren ist das in noch höherem Grade der Fall als bei den jungen. Schon die angegebenen durchschnittlichen Verhältniszahlen von Z:R beweisen das, und greifen wir einen Einzelfall heraus, indem wir das Exemplar Nr. 28 (R = 8 mm, Z = 8) mit Nr. 19 (R = 21 mm, Z = 18) und dieses wieder mit Nr. 1 (R = 128 mm, Z = 40) vergleichen. so zeigt sich, dass in derselben Zeit, in welcher R von 8 auf 21 gestiegen ist, sich also um das 2 1/2-fache vergrössert hat, die Zahl der Randplatten sich von 8 auf 18, also auf das 2 1/4-fache vermehrt hat, und während dann weiter R von 21 auf 128 steigt, seine Länge sich also nochmals um rund das 6-fache erhöht, nimmt die Zahl der Randplatten nur von 18 bis 40, also um rund das 2 1/4-fache zu.

Bevor wir uns nunmehr der Betrachtung des Rückenskeletes der Scheibe zuwenden, wollen wir noch die Terminalplatte der Arme erledigen. Dieselbe ist, wie schon bemerkt, an unversehrten Thiere nur an ihrem Rande mit Granula besetzt, sonst ganz nackt. Ihre Oberseite ist stark gewölbt und erhebt sich zu einem stumpfen, niedrigen Kegel: an ihrer Unterseite trägt sie eine Längsrinne für die Aufnahme des Fühlers. Meistens ist die Oberseite glatt, doch findet man sie nicht selten bei alten wie bei halbwüchsigen Individuen mit unregelmässig vertheilten, flachen, warzenförmigen Erhebungen besetzt, die ihr dann das manlbeerförmige Aussehen verleihen, in dem GASCO ein Unterscheidungsmerkmal seines Ophiaster lessaneae sehen wollte. Von oben gesehen hat die Terminalplatte einen abgerundet fünfeckigen Umriss. Mit der proximalen, leicht eingebuchteten Seite ihres Umriess grenzt sie an die jüngsten Platten der radialen und adradialen Plattenreihen des Armganges. Mit ihren lateralen Seiten überdeckt sie die jüngsten oberen Randplatten. Ihre beiden distalen Seiten treten frei aus der Armpitze heraus und verbinden sich zur abgerundeten Spitze der Platte. Ihre Breite misst beim erwachsenen Thiere 2 mm, ihre Länge ebensoviel. Bei jungen Thieren (z. B. Nr. 28) ist sie zwar im Vergleiche zu ihrem späteren Umfange bedeutend kleiner, aber im Vergleiche zu den ihr nächst benachbarten Rücken- und Randplatten beträchtlich grösser; auch ist ihr distaler Rand jetzt noch nicht eckig vorgezogen, sondern flach abgerundet; ihre Breite (0,47 mm) ist etwas grösser als die Länge (0,42 mm).

Auf dem Rücken der Scheibe lassen sich die primären Platten des Scheitels mit aller Sicherheit nachweisen, wenn man junge, halbwüchsige und erwachsene Thiere miteinander vergleicht (Taf. 11, Fig. 5, 6, 7). Gehen wir vom jungen Thiere (z. B. Nr. 28 unserer Tabelle) aus, so finden wir dort den Scheibenrückens (Taf. 11, Fig. 5) aus 16 Hauptplatten gebildet, unter deren übereinander greifenden Randlappen die Connectivplättchen sich noch nicht überall angelegt haben. Von den 16 Platten liegt eine fünflappige annähernd central; die Lappen dieser Centralplatte sind radial gerichtet; mit einer ihrer Seiten und zwar derjenigen, die sich durch ihre Länge von den vier übrigen Seiten unterscheidet, ist sie dem eine längliche Spalte darstellenden, subcentralen After zugekehrt. Zehn andere von den 16 Hauptplatten, welche der centralen an Grösse nicht nachstehen und sie sogar durchweg etwas übertreffen und gleich ihr von fünflappigem Umriess sind, ordnen sich in einem kleinen Abstande von ihr zu einem sie umkreisenden Kranze; durch ihren pentagonalen Umriess unterscheiden sie sich.

von den vierlappigen Platten des Armrückens, und nach ihrer Stellung lassen sie sich leicht als die fünf primären Radialplatten und die fünf primären Interradialplatten erkennen. Die Interradialplatten haben einen grösseren Querdurchmesser (bis 1,3 mm) als die Radialplatten (bis 0,92 mm), sind aber gleich diesen so orientirt, dass sie eine ihrer Seiten nach der Centralplatte kehren, während die gegenüberliegende Ecke (= der Aussenlappen) genau in die Richtung eines Interradius, bez. Radius fällt. Man kann die fünf zu Randlappen ausgezogenen Ecken einer jeden dieser zehn Platten als den Aussenlappen, die zwei distalen Seitenlappen und die zwei proximalen Seitenlappen unterscheiden. Die primären Radialplatten sind etwas weiter vom Rückencentrum abgerückt als die primären Interradialplatten; infolgedessen verbinden sich die Radialplatten und Interradialplatten nicht mit den gleichnamigen Seitenlappen, sondern es werden die distalen Seitenlappen der Interradialplatten von den proximalen Seitenlappen der Radialplatten übergriffen. Mit ihren distalen Seitenlappen lagert sich die Radialplatte in Uebereinstimmung mit den Radialplatten des Armes über den medialen Randlappen der ersten Adradialplatte, und mit ihrem Aussenlappen schiebt sie sich unter den proximalen Randlappen der nächsten Radialplatte des Armrückens. Die Interradialplatten treten mit ihrem breiten Aussenlappen unter die proximalen Randlappen der beiden zu zwei benachbarten Armen gehörigen ersten Adradialplatten. Nur eine der fünf primären Interradialplatten bekommt eine abweichende Form, indem sich ihr Aussenlappen durch eine mittlere Einbuchtung in zwei kleinere Lappen teilt, sodass die ganze Platte statt fünflappig sechslappig wird; in diese Einbuchtung lagert sich das Ende des Steinkanals, und es entwickelt sich an dieser Stelle die zwischen der betreffenden Interradialplatte und den beiden angrenzenden Adradialplatten befindliche Madreporenplatte (s. p. 292). Später dringt von dieser Einbuchtung ihres Aussenrandes eine kleine Höhle in das Innere der Interradialplatte ein, welche das Ende des den Steinkanal umhüllenden, schlachtförmigen Kanales aufnimmt. In dem Zwischenraum zwischen dem von den primären Radial- und Interradialplatten gebildeten Kranze und der Centralplatte liegen endlich noch fünf kleinere, vorwiegend abgerundet dreieckige Platten, von denen eine jede die Verbindung zweier primären Interradialplatten unter sich und mit der Centralplatte herstellt, dabei aber sowohl von den proximalen Seitenlappen der Interradialplatte wie von dem betreffenden Randlappen der Centralplatte überlagert wird. Wir nennen diese fünf Platten, die nach SLADEN'S und PERRIER'S Nomenclatur als die Infrabasalia zu bezeichnen wären, die Verbindungsstücke der primären Interradialplatten oder die Centroradialia. Durch diese Verbindungsstücke, aus deren Lage und Grösse mir schon hervorzuheben scheint, dass sie jünger sind als das Centrale und auch jünger als die primären Radialia und Interradialia, wird das ganze, von dem Kranze der primären Radialia und Interradialia umgrenzte Feld in zehn Felder zerlegt, von denen wir, entsprechend der früher bei Marginaster capreensis gewählten Bezeichnung, die fünf Felder, welche an die Centralplatte angrenzen und in radialer Richtung liegen, die secundären Centralfelder nennen: eines dieser Felder beherbergt den After und kann deshalb auch Analfeld heissen. Die fünf anderen, in radialer Richtung befindlichen und an die primären Radialplatten angrenzenden Felder nennen wir die Radial-

Bei einem halbzwölfigen Thiere (Nr. 19) lassen sich die 16 Platten, die wir auf dem Scheibenrücken des jungen Exemplares gefunden haben, sofort wiedererkennen (Taf. 11, Fig. 6). Nur sind sie jetzt auseinandergerückt und nur noch durch die nun schon reich entwickelten Connective mit einander in Verbindung. An Grösse haben sie zugenommen; die primären Radialplatten sind jetzt 1,5 mm, die primären Interradialplatten bis 2 mm breit. Von den fünf Verbindungsstücken (= Centroradialia) der primären Interradialplatten hat eines schon einen vierlappigen statt des früher dreilappigen Umrisses erhalten. Die Felder zeigen dieselbe Anordnung wie vorher, sind aber jetzt nicht nur von Hauptplatten, sondern auch von Connectivplatten begrenzt. An den Radialfeldern fällt auf, dass sie durch ein secundäres Connectivplättchen in zwei kleinere Felder geteilt werden — ein Vorgang, der sich in den fünf Radialfeldern unseres Exemplares (Taf. 11, Fig. 6) in seinen verschiedenen Stadien darbietet.

Bei dem alten erwachsenen Thiere endlich sind die Hauptplatten des Scheibenrückens noch weiter auseinandergerückt (Taf. 11, Fig. 7). Im Ganzen haben sie auch jetzt ihre anfängliche Form festgehalten; nur die Verbindungsstücke der primären Interradialplatten haben jetzt alle einen vier- oder selbst fünfflappigen Umfang bekommen. Die Grösse der primären Radial- und Interradialplatten ist bis auf durchschnittlich 4 mm gestiegen. Die Connectivplatten sind noch zahlreicher und kräftiger geworden als früher, und durch secundäre Connectivplättchen sind nicht nur alle fünf anfänglichen Radialfelder, sondern auch zwei von den secundären Centralfeldern in je zwei kleinere, unter sich ungleich grosse Felder geteilt.

Der Zwischenraum zwischen den unteren Randplatten und den Adambulacralplatten ist im proximalen Armabschnitte erwachsenen Thiere von drei Längsreihen von Ventrolateralplatten ausgefüllt (Taf. 11, Fig. 2), die wir, an den Adambulacralplatten beginnend, und zugleich nach dem relativen Alter der Reihen, als erste, zweite und dritte ventrolaterale Längsreihe bezeichnen. Der Quere nach ordnen sich die Ventrolateralplatten in ganz regelmässiger Weise so an, dass je drei Platten eine aus jeder Längsreihe eine an den Adambulacralplatten beginnende und an den unteren Randplatten endigende Querreihen bilden. Der Zahl und Stellung nach halten diese Querreihen keine constanten Beziehungen zu den Adambulacralplatten inne, sind aber doch immer etwas weniger zahlreich. Wohl aber treten die Querreihen in ein ganz bestimmtes Verhältniss zu den unteren Randplatten, indem stets zwei Querreihen (ein Querreihenpaar) auf eine untere Randplatte kommen und in convergirender Richtung zum ventralen

36*
Lappen dieser Randplatte hinziehen, um dort, von diesem Lappen überlagert, zu endigen. Die Ventrolateralplatten der ersten Längsreihe haben einen abgerundet vier- oder fünf- lappigen Umriss, eine durchschnittliche Breite (im proximalen Armabschnitt) von 2 mm und eine Länge von 1,8 mm. Mit ihrem medialen Rande überlagern sie den lateralen Rand der Ambulacralplatten, mit ihrem proximalen Rand legen sie sich über den distalen Rand der vorhergehenden (d. h. adoral von ihr gelegenen) Ventrolateralplatte derselben Längsreihe und mit ihrem lateralen Rande greifen sie unter den gleich zu erwähnenden Fortsatz der nächsten Ventrolateralplatte der zweiten Längsreihe. Die Platten dieser zweiten Längsreihe haben einen abgerundeten Umriss, der sich medialwärts zu einem kurzen, stielförmi gen Fortsatz auszieht: ihr querer Durchmesser misst 2,3 mm, ihre Länge 1,8 mm. Der Fortsatz legt sich mit seinem Ende auf den lateralen Rand der nächsten Platte der ersten Längsreihe: mit ihrem proximalen Rande überlagert jede Platte, ebenso wie in der ersten Längsreihe, die nächstvorhergehende Platte ihrer (= der zweiten) Längsreihe, und der laterale Rand greift unter das mediale Ende der nächsten Ventrolateralplatte der dritten Längsreihe. Die Platten der dritten Längsreihe sind erheblich kleiner und haben eine längliche, mit dem grössten, etwa 1,2—1,5 mm messenden Durchmesser quergerichtete Gestalt; in der Mitte ihrer Länge sind sie bis auf 0,76 mm verbreitert. Mit ihrem medialen Ende überlagern sie den lateralen Rand der nächsten Ventrolateralplatte der zweiten Längsreihe, während ihr laterales Ende von dem ventralen Randlappen der nächsten unteren Randplatte bedeckt wird.

In der Nähe des Armwinkels kommt zu den eben beschriebenen, drei ventrolateralen Längsreihen noch eine vierte hinzu, die sich zwischen die dritte Längsreihe und die unteren Randplatten einschiebt, sich in dem Ueber- und Untergreifen ihrer Plattenränder ebenso verhält wie die drei anderen Längsreihen und aus Platten besteht, die noch etwas kleiner sind als die der dritten Reihe. Ferner nehmen im Armwinkel die sämtlichen Ventrolateralplatten
eine quer zur Medianebene des Armes gestrecktere Form an und schliessen sich enger aneinander, sodass in der Nähe der Interradialebene alle grösseren Skeletlücken verschwinden (Taf. 11, Fig. 10). Die Platten der ersten Reihe sind hier durchschnittlich nur noch 1,7 mm lang, aber in querer Richtung messen sie bis zu 2,76 mm. Die der zweiten Reihe strecken sich sogar in querer Richtung bis zu 3,2 mm, während ihre Länge auf 1,4 mm herabsinkt. Die der dritten Reihe haben im Armwinkel einen Querdurchmesser von 2 mm, dagegen einen Längsdurchmesser (parallel zur Medianebene des Armes) von kaum 1 mm.

Sowohl die erste als die zweite ventrolaterale Längsreihe beginnen im Armwinkel mit einer unpaaren, genau in interradialer Richtung gelegenen Platte. Die unpaare Platte der ersten Reihe schliessst sich unmittelbar an die distalen Enden der Mundeckstücke an und zeichnet sich, ebenso wie die an sie angrenzende, erste paarige Platte der ersten Reihe, durch ihre Kleinheit vor den übrigen Platten dieser Reihe aus. Die unpaare Platte der zweiten Reihe dagegen ist in interradialer Richtung langgestreckt und dadurch noch besonders bemerkenswerth, dass sich auf ihre Innenseite ein unpaares, kräftiges, stabförmiges Skeletstück stützt, das im Interradius, sich innen an die Körperwand des Armwinkels anlehnt, nach dem Rücken emporsteigt, um dort nach innen von den Connectivplatten, die jederseits von der Interradialebene die erste obere mit der ersten unteren Randplatte verbinden, zu endigen. In den Armwinkeln erfährt auch die Anordnung der Ventrolateralplatten in regelmaessige Querreihenpaare eine Abänderung, indem die zur ersten unteren Randplatte ziehenden Ventrolateralplatten statt einer Doppelreihe nur eine einzige Reihe bilden. Aber schon die zur nächsten (zweiten) unteren Randplatte gehörigen Ventrolateralplatten ordnen sich in der Regel (s. linke Hälfte der Figur) in einer Doppelreihe an, die erst an der zur vierten Längsreihe gehörigen Platte einfach wird. Manchmal tritt indessen zwischen den zur zweiten und zur dritten unteren Randplatte ziehenden ventrolateralen Querreihen eine unregelmässigere Vertheilung auf, sodass auf beide untere Randplatten zusammen nur drei ventrolaterale Querreihen kommen, von denen man die mittlere ebenso gut zur zweiten wie zur dritten unteren Randplatte zählen kann (s. rechte Hälfte der Figur). Von der vierten unteren Randplatte an greift jedoch immer das oben beschriebene regelmaessige Verhältniss statt, dass zu jeder Randplatte ein Querreihenpaar von Ventrolateralplatten gehört.

In der distalen Hälfte des Armes nehmen die ventrolateralen Längsreihen, je mehr man sich der Armspitze nähert, allmählich an Zahl ab, und gleichzeitig werden die sie zusammensetzenden Platten kleiner und kleiner (Taf. 11, Fig. 1). Zuerst schwindet, ziemlich genau in der Längsmitte des Armes, die dritte Reihe. Von hier an stehen dann die Platten der zweiten Reihe in demselben Lageverhältniss zu den unteren Randplatten wie bis dahin die der dritten Reihe: sie entwickeln zunächst einen lateralen Fortsatz, mit dem je zwei von ihnen unter den ventralen, jetzt zweilappigen Rand der nächsten unteren Randplatte greifen: dann verkleinern sie sich immer mehr, nehmen die einfach längliche, quergestellte Gestalt an, die weiter proximal den Platten der dritten Reihe zukam, und legen sich nunmehr mit ihrem medialen Ende auf den lateralen Rand je einer Platte der ersten Reihe. Endlich,
an der siebentletzten unteren Randplatte, schwinden die ganz winzig gewordenen Plättchen der zweiten Reihe ganz, sodass von hier an bis zur vorletzten unteren Randplatte nur noch die jetzt auch immer kleiner gewordenen Platten der ersten Reihe zwischen den Randplatten und den Adambulacralplatten liegen\(^1\). Schliesslich fehlen auch die Plättchen der ersten Reihe, indem die beiden letzten unteren Randplatten unmittelbar an die letzten Adambulacralplatten reichen.

Hand in Hand mit der Abnahme, welche die ventrolateralen Längsreihen im distalen Armbezirk erfahren, sinkt auch die Zahl der für die Aufnahme eines Porenfeldes dienenden Skeletlücken. Ebendort, wo die dritte Längsreihe der Platten aufhört, kommt zwischen den Platten der zweiten Reihe im Bereiche einer kurzen Strecke, die sich über die Länge von nur sechs Platten ausdehnt, abwechselnd eine derartige Lücke in Wegfall (Taf. 11, Fig. 1); die übrig gebliebene Lücke wird dann auch nicht mehr wie bisher von vier, sondern von fünf Platten begrenzt, nämlich von zwei Platten der ersten Reihe, zwei Platten der zweiten Reihe und der zu diesem Querreihenpaare gehörigen unteren Randplatte. In derselben Strecke liegen die Skeletlücken, die sich bis dahin zwischen den beiden nicht zu derselben Querreihenpaare gehörigen Platten der dritten Reihe befanden und von sechs Platten begrenzt waren, jetzt zwischen nur vier Platten, nämlich zwei (nicht zu derselben Querreihenpaare gehörenden) Platten der zweiten Reihe und zwei unteren Randplatten. Weiter distal von der eben besprochenen Strecke ändern sich die Verhältnisse so, dass sich zwischen allen aufeinanderfolgenden Platten der zweiten Reihe je eine Skeletlücke für ein Porenfeld befindet, die abwechselnd von fünf oder sechs Platten begrenzt wird, nämlich von zwei Platten der ersten Reihe, zwei Platten der zweiten Reihe und abwechselnd von einer oder zwei unteren Randplatten. Noch näher an der Arm spitze hört die von nur fünf Platten begrenzte Lücke zwischen denjenigen Platten der zweiten Reihe, die zu derselben Querreihenpaare gehören, auf, ein Porenfeld zu beherbergen, und dann erst verliert sehr bald auch die andere an je zwei untere Randplatten angrenzende Lücke ihren Charakter als Porenfeld.

Bei jüngeren halbwüchsigen Exemplaren von etwa 40 mm Armradius fehlen die Ventrolateralplatten der vierten Reihe, die sich ja auch bei alten Thieren auf den basalen Theil der Arme beschränken, noch völlig, sodass auf solche Individuen die kurze Beschreibung, die Gasco von den ventralen Plattenreihen seines *Ophidiaster lessonae* giebt, vollständig passt. Bei noch jüngeren Thieren (Taf. 11, Fig. 9), z. B. bei einem Exemplare von 18,5 mm Armradius, schliessen sich nur an die erste und zweite untere Randplatte Ventrolateralplatten einer dritten Längsreihe an, und zwar an die erste untere Randplatte eine und an die zweite ein Paar; sonst sind erst zwei Längsreihen von Ventrolateralplatten vorhanden. Bei einem Exemplare (Taf. 11, Fig. 8) von \(R = 13\) mm ist die spätere dritte ventrolaterale Längsreihe erst durch eine einzige Platte angedeutet, die zwischen der ersten unteren Randplatte und der ersten (paarigen) Platte der zweiten ventrolateralen Längsreihe liegt. Und endlich, bei ganz jungen

\(^1\) Demnaeh passt die Angabe Gasco's ganz gut, nach welcher bei seinem als *Ophidiaster lessonae* beschriebenen Exemplare von den drei ventrolateralen Längsreihen der Platten nur die erste (seine mediane) bis zur Arm spitze geht, die beiden anderen aber vorher schwinden.
Thieren (Taf. 11, Fig. 4) von nur 8 mm Armradius. ist überhaupt noch keine Spur einer dritten Längsreihe da, und auch die zweite ist nur im Armwinkel durch eine einzige Platte repräsentiert, die sich zwischen die erste untere Randplatte und die zweite (paarige) Platte der ersten Längsreihe einschiebt. Daraus folgt, dass überhaupt die ventrolateralen Längsreihen in der Reihenfolge entstehen, dass die an die Adambulacralplatten stossende stets die älteste und die an die unteren Randplatten angrenzende immer die jüngste ist, und dass ferner jede Längsreihe zuerst im Armwinkel an der Armbasis auftritt und sich von hier aus allmählich nach der Amuspitze hin ausdehnt.

Aus einem Vergleichs des Ventrolaterskeletes der jungen Thiere mit dem der erwachsenen geht übrigens auch noch hervor, dass an einer Stelle ein späterer Einschub von Platten stattfindet, nämlich jederseits von der unpaaren Platte der ersten Längsreihe. Die an dieser Stelle beim alten Thiere vorhandene kleine erste paarige Platte der ersten Längsreihe fehlt den jüngeren Thieren und tritt erst sehr spät zwischen der ursprünglich ersten und der unpaaren Platte auf; auf diese Weise wird die anfänglich erste Platte später zur zweiten.

Auf jedes Porenfeld kommt in der Regel nur eine einzige büschelförmige Papula, so dass die Zahl der «Poren» identisch ist mit der Zahl der Papula-Aeste. Nur auf dem Rücken der Scheibe findet eine Ausnahme von dieser Regel statt, indem sich in den Armfeldern (Taf. 11, Fig. 6, 7), aber auch nur in diesen, meistens zwei büschelförmige Papulae vorfinden; die Aeste dieser beiden Papulae gruppiren sich übrigens so, dass äusserlich sich das Armfeld nicht von den anderen Porenfeldern des Scheibenrückens unterscheidet. Je mehr man sich bei alten

¹) Damit stimmt ganz überein, dass Gasco bei seinem Ophiidiaster lessonae nicht mehr als 8 Poren in den Porenfeldern zählte.
Thieren der Arm spitze nähert, um so jüngeren und einfacheren Papulac begegnet man, was sich darin ausprägt, dass die Zahl der in einem Porenfeld befindlichen »Poren« immer kleiner wird, bis man schliesslich in der Nähe der Arm spitze ebenso einfache, ungetheilte Papulac (= isolirte »Poren«) antrifft, wie die junge Thier in all seinen Porenfeldern besitzt.

In den Armwinkeln bleibt stets ein papulafreier Bezirk übrig, der dorsal mit dem beim Rückenskelet (Taf. 11, Fig. 5, 6, 7) erwähnten schmalen Interbrachialfeld beginnt und sich in ventraler Richtung bis zum Peristom so ausbreitet, dass er sich hier jederseits von der Interradial ebene etwa bis zur siebenten Adambulacr alplatte erstreckt. Dieser papulafreie Bezirk kommt dadurch zu Stande, dass erstens das Interbrachialfeld niemals Papulac erhält, dass zweitens das erste Feld der äusseren ventralen Reihe nicht ventral von der ersten und zweiten, sondern erst von der zweiten und dritten oder dritten und vierten unteren Randplatte auftritt, und dass drittens das erste Feld der inneren ventralen Reihe erst zwischen der dritten und vierten Platte der zweiten ventrolateralen Platten-Längsreihe liegt. Im distalen Armbezirk reichen die Porenfelder bis fast zur Arm spitze; an der Dorsalseite hören sie etwa 1,5 mm, an der Ventralseite etwa 4—5 mm vor der Terminalplatte auf. Des Näheren liegt z. B. bei unserem Exemplar Nr. 3 (Taf. 11, Fig. 3): die letzte Papula der beiden dorsomedialen Reihen neben der Ver bindungsstelle der drittletzten mit der viertletzten Radialplatte und die letzte Papula der beiden dorsolateralen Reihen neben der Ver bindungsstelle der viertletzten mit der fünftletzten Adradialplatte; beinahe ebensoweit reicht die äussere ventrale Reihe, nämlich bis neben die Ver bindungsstelle der fünftletzten mit der sechstletzten unteren Randplatte. Dagegen hat die innere ventrale Reihe schon erheblich früher, in einem Abstande von etwa 13,5 mm von der
Terminalplatte, an der zehntletzten unteren Randplatte ihr Ende gefunden. Bemerkenswerth ist übrigens an der inneren ventralen Reihe, dass sie schon lange vor ihrem distalen Ende aufhört, aus doppelt so vielen Porenpfleldern zu bestehen wie die äussere ventrale und überhaupt alle anderen Reihen. Von ihren doppelten Porenpfleldern befindet sich abwechselnd das eine zwischen Ventrolateralplatten, die zur selben unteren Randplatte, und das andere zwischen solchen, die zu zwei verschiedenen unteren Randplatten gehören. Die Felder der letzteren Sorte hören stets zuerst auf, in unserem Falle schon in der Gegend der 18. von der Terminalplatte an gezählten unteren Randplatte oder, anders ausgedrückt, in einer Entfernung von rund 40 mm von der Terminalplatte, also ziemlich genau in der Längsmitte des Armes; von hier an in der Richtung nach der Armspitze sind demnach die Porenpflelder der inneren ventralen Reihe nicht mehr doppelt, sondern nur noch ebenso zahlreich wie die der äusseren ventralen Reihe, mit denen sie regelmässig alterniren (Taf. 11, Fig. 1).

Auf dem Scheibenrücken der erwachsenen Thiere sind die Porenpflelder durchweg ebenso ansehnlich entwickelt wie auf dem Armrücken. Fast alle hier zur Verfügung stehenden Skelettlücken haben sich zu Porenpfleldern ausgebildet. Eine Ausnahme machen nur ein Theil der Radialpflelder und das Analfeld; kommt in diesen Feldern dennoch eine Papula zur Anlage, so grenzt sich der die Papula umschliessende Theil des Feldes von dem übrigen Theil desselben durch ein besonderes Connectivplättchen ab.

Nicht ohne Interesse ist in Bezug auf die Vertheilung ihrer Papulae das Verhalten jüngerer Thiere. Vergleicht man zunächst halbwüchsige Individuen, z. B. solche von 33 oder 21 mm Armradius (Nr. 16 und 19), so fällt sofort auf, dass sie die innere ventrale Reihe der Papulae noch nicht besitzen); man zählt also an ihren Armen im Ganzen noch nicht zehn, sondern erst acht Längsreihen; nur an einem Arme des grösseren dieser beiden Exemplare ist im proximalen Theil des Armes eine Spur der inneren ventralen Reihe zu bemerken. Ebenso wie das kleinere von diesen beiden Exemplaren verhalten sich junge Thiere von 18,5 und 15 mm Armradius (Nr. 20 und 22); auch sie besitzen von den beiden ventralen Reihen erst die äussere. Daraus geht hervor, dass die innere ventrale Papulareihe bei unserer Art erheblich später zur Entwicklung gelangt als die äussere, wie sie ja auch beim erwachsenen Thiere früher ihr distales Ende erreicht als jene. Es prägt sich auch in dieser Hinsicht der wohl allgemein für die Seesterne geltende Satz aus, dass sich im distalen Theile des erwachsenen Armes die Gestaltungsverhältnisse des jugendlichen Armes dauernd darbieten. Die eben angeführten, halbwüchsigen und jungen Thiere zeigen ferner, dass das proximale Ende der äusseren ventralen Papulareihe an derselben Stelle liegt wie beim erwachsenen Thiere. Daraus lässt sich schliessen, dass die äussere ventrale Reihe — und ebenso liegt die Sache mit allen

1) Daraus erklärt es sich auch, dass Gasco an seinem für eine besondere Art (Ophidiaster lessonae) gehaltenen halbwüchsigen Thiere (dessen Armradius 40 mm betrug) zwischen den Bauchplatten: vergeblich nach Porenpfleldern suchte.
übrigen Papulareihen des Armes — zuerst im proximalen Theile des Armes auftritt und sich erst mit zunehmendem Alter des Thieres immer weiter gegen die Armsglieder hin verlängert. Die dorsalen und die Randreihen sind bei den halbwüchsigen und jungen Thieren bereits wohl entwickelt und reichen auch schon ebenso nahe an die Terminalplatte wie später. Ob aber die Randreihen den dorsalen Reihen zeitlich vorausgehen, und ob die medialen oder die lateralen Dorsalreihen die älteren sind, vermochte ich an den mir zu Gebote stehenden Exemplaren nicht festzustellen: dafür müsste man noch kleinere Thiere als solche von 7 mm Armradius untersuchen können.

Von jungen Thieren habe ich ausser den schon erwähnten noch zwei Exemplare von 13 und 8 mm Armradius (Nr. 23 und 28) auf ihre Papulae untersucht. Sie stimmen darin miteinander überein, dass sie überhaupt noch gar keine ventralen Papulae besitzen; wohl aber sind die vier dorsalen und die beiden Randreihen, also im Ganzen sechs Reihen vorhanden. Bei dem Exemplare Nr. 28 lassen sich die Randreihen sogar etwas weiter nach der Armpforte hin verfolgen als die dorsalen; man könnte darin ein Anzeichen dafür sehen, dass sie älter seien als jene, was aber doch anderseits aus dem allgemeinen Grunde, dass die Papulae wohl bei allen Seesternen ursprünglich dorsale Gebilde sind, sehr wenig wahrscheinlich ist. Dass bei diesen jungen Thieren die Papulae noch nicht büschelförmig, sondern ganz einfach sind, man also in jedem Porenfeld nur einen einzigen »Poren« findet, habe ich oben schon bemerkt.

Fasst man diese Beobachtungen an alten, halbwüchsigen und jungen Thieren zusammen, so ergiebt sich, dass je nach dem Alter der Thiere der Arm sechs oder acht oder zehn Längsreihen von Porenfeldern besitzt.

Auch für die Entwicklung der Porenfelder des Scheibenrückens sind die jungen Thiere recht lehrreich. Bei dem Exemplare Nr. 28 sind die centralwärts von den primären Radial- und Interradialplatten gelegenen Skeletlücken (die fünf Radialfelder und die fünf sekundären Scheitelfelder) noch ganz frei von Papulac, dagegen sind die Armfelder mit je einer Papula ausgestattet. Da die Armfelder später (Taf. 11, Fig. 7) sich dadurch auszeichnen, dass sie allein je zwei Papulac erhalten, und da sie auch bei anderen Seesternen die Stelle bezeichnen, an denen überhaupt die allerersten Papulac des Thieres zur Anlage kommen, so dürfen wir auch wohl bei der vorliegenden Art die Armfelder für die ältesten unter allen Porenfeldern ansehen. Bei dem Exemplare Nr. 19 haben die sekundären Scheitelfelder je eine Papula erhalten; die Radialfelder entbehren derselben aber noch immer. Erst bei noch älteren Thieren (z. B. Nr. 3) liegt auch in jedem Radialfeld eine Papula, für die sich aber, wie schon früher erwähnt, ein besonderes Stück des Radialfeldes abgrenzt. Während also die Armfelder des Scheibenrückens zuerst zu Porenfeldern werden, werden es die Radialfelder zuletzt.

Die Adambulacralplatten (Taf. 11, Fig. 8, 9, 10) sind eng zusammengedrängt und zugleich mit ihrem ventralen Bezirke gegen den Mund hin geneigt, sodass der adorale Rand einer jeden Platte den aboralen Bezirk der vorhergehenden etwas überdeckt; ebenso schiebt sich der adorale Rand der ersten Adambulacralplatte über den distalen Bezirk der Munddeckplatte. Von aussen gesehen beträgt die Länge der Adambulacralplatten im proximalen Armschnitt erwachsener Thiere
nur je 1—1,2 mm und ihre Breite 1 mm; von innen gesehen erscheinen sie breiter, bis 1,6 mm, weil sie hier nicht wie an der Aussenseite von den Ventrolateralplatten überlagert werden. In ihrer Zahl übertreffen sie stets die Zahl der an sie zunächst angrenzenden Ventrolateralplatten; so zählt man z. B. auf die Länge der 3.—12., also auf zehn proximale Adambulacralplatten acht Ventrolateralplatten; ebenso verhält es sich im mittleren Armabschnitt, und weiter nach der Armspitze hin kommen auf zehn Adambulacralplatten durchschnittlich sieben Ventrolateralplatten.

Jede Adambulacralplatte (Taf. 11, Fig. 11) trägt, wie bereits Müller & Troschel richtig angegeben, beim erwachsenen Thiere (z. B. Nr. 3) drei stumpfe Stacheln, von denen zwei, die eigentlichen Furchenstacheln, dicht beisammen den kurzen, ambulacralen Rand der Platte besetzen und bei zurückgezogenen Füsschen die Ambulacalfurche überdecken; der dritte, d. h. der subambulacrale Stachel ist nach aussen, also nach dem Armmende geneigt und in einem kurzen Abstande von den Furchenstacheln auf der ventralen Oberfläche der Platte eingelenkt; dieser Abstand beträgt im proximalen Armabschnitt 0,3—0,4 mm. Die beiden eigentlichen Furchenstacheln stehen zwar in der Längsrichtung des Armes hintereinander, doch ist zugleich der aborale von ihnen mit seiner Insertion ein wenig in die Ambulacalfurche hineingerückt, sodass die Insertionslinie beider Stacheln, genauer ausgedrückt, einen schrägen Verlauf nimmt, indem sie mit ihrem aboralen Ende der Medianebene des Armes ein wenig näher liegt als mit ihrem adoralen Ende. Der aborale Furchenstachel ist von gleicher Länge mit dem adoralen und wird nur durch seine etwas tiefere Insertion um ein Geringes von jenem überragt; die Länge beträgt im proximalen Armabschnitt 1,75 mm. Beide Stacheln sind parallel zur Medianebene des Armes comprimirt und am freien Ende ganz stumpf abgerundet; der adorale ist stets breiter als der aborale, in der Regel anderthalbmal so breit. Der subambulacrale Stachel ist ungefähr ebensolang, aber viel weniger comprimirt, also dicker, fast cylindrisch, jedoch nicht merklich breiter als der adorale Furchenstachel, und ebenfalls an der Spitze stumpf abgerundet. Die Subambulacralstacheln der sämmtlichen Adambulacralplatten bilden eine lockere Längsreihe, indem ihre Basen durch kurze Zwischenräume von einander getrennt sind, die im proximalen Armabschnitt eine Länge von 0,3—0,4 mm haben. Im Uebrigen sind die Ambulacralplatten auf ihrer ganzen ventralen Oberfläche zwischen der ambulacralen und subambulacralen Stachelreihe von der die Granula einschliessenden, ziemlich dicken Haut bedeckt, die auch die zwischen den Adambulacralplatten befindlichen Muskeln gleichförmig überkleidet.

Auf der ersten Adambulacralplatte (Taf. 11, Fig. 11) ist die Bewaffnung reicher, indem noch ein weiterer ambulacraler und ein weiterer subambulacraler Stachel hinzukommen; sie besitzt also im Ganzen fünf Stacheln. Der hinzutretende (= dritte) Furchenstachel schliesst sich in aboraler Richtung an den aboralen Stachel der übrigen Adambulacralplatten an und ist mit seiner Insertion noch etwas tiefer in die Furche eingerückt; er ist sehr klein, kaum halb so lang wie jener und nur von der Furche aus zu sehen. Der überzählige subambulacrale Stachel der ersten Adambulacralplatte steht zwischen dem adoralen Furchenstachel und dem auch den übrigen Adambulacralplatten zukommenden Subambulacralstachel, mit dem er in der Form und beinahe auch in der Grösse übereinstimmt. Ein ebensocher überzähliger Subambulacralstachel
kommt übrigens bei alten und auch schon bei halbwüchsigen Exemplaren gar nicht selten auf zahlreichen Ambulacralplatten des mittleren und des distalen Armabschnittes vor, bleibt aber meistens etwas kleiner als der nach aussen von ihm stehende typische Subambulacralstachel.

Bei recht jungen Thieren (z. B. Nr. 28) sind die Ambulacralplatten, wenigstens im proximalen Armabschnitt, schon ebenso bewaffnet wie später; jedoch übertrifft der subambulacrale Stachel den adoralen Furchenstachel jetzt noch auffallender als später an Dicke; ferner fehlt der ersten Ambulacralplatte manchmal, aber nicht immer, jetzt noch der spätere überzählige (dritte) Furchenstachel, und der überzählige subambulacrale bleibt an Länge und Dicke noch weit hinter dem anderen Subambulacralstachel zurück. Im mittleren Armabschnitt schwindet der schwächere aborale Furchenstachel sehr bald ganz, sodass von hier bis zur Armspitze jede Ambulacralplatte nur einen einzigen Furchenstachel besitzt, der beim alten Thiere zum adoralen Furchenstachel wird. Der subambulacrale Stachel ist beim jungen Thiere auch im distalen Armabschnitt bereits auf allen Ambulacralplatten vorhanden.

Die Munddeckplatten (Taf. 11, Fig. 8, 9, 10) haben von aussen gesehen einen dreieckigen Umriss mit convexem Ambulacralrand. Die aborale Spitze (gebildet durch das Zusammentreffen des distalen und suturealen Randes) zieht sich fast griffförmig aus, und im Bereiche dieses Griffes weichen die sich sonst berührenden, suturealen Ränder jeder Munddecke ein wenig auseinander. Beim erwachsenen Thiere ist der sutureale Rand anderthalbmal solang (3,1 mm) wie der ambulacrale (2 mm) und der ebenso lange (2 mm) distale Rand. Bei jugendlichen Exemplaren dagegen (z. B. bei Nr. 28) ist der sutureale Rand verhältnismässig kürzer, sodass die ganze Platte in ihrem aboralen Bezirke weniger verschmälernt erscheint als bei den Erwachsenen; der sutureale Rand (0,74 mm) ist hier nur 1 1/4 mal so lang wie der ambulacrale (0,6 mm), aber doch schon völlig anderthalbmal so lang wie der distale (0,46 mm).

Beim erwachsenen Thiere ist der ambulacrale Rand einer jeden Munddeckplatte seiner ganzen Länge nach mit vier stumpfen Stacheln besetzt, von denen der erste (= adorale) der grösste ist und an Länge 2 mm misst; die beiden folgenden sind nur wenig kürzer; der vierte (= aborale) aber ist kaum halb so lang und rückt mit seiner Insertion etwas tiefer in die beginnende Ambulacralfurche hinein. Bei äusserer Ansicht der Munddecke (Taf. 11, Fig. 11) sieht man den kleinen vierten Stachel des ambulacralen Randes nicht; er wird erst sichtbar, wenn man die Munddecke von der Ambulacralfurche her betrachtet. Auf ihrer ventralen Oberfläche trägt jede Munddeckplatte zwei aus dem granulirten Hautüberzug herausragende, stumpfe Stacheln, von denen der eine, etwas schwächere, nach aussen von dem ersten Stachel des ambulacralen Randes steht, der andere, breitere und dickere, noch weiter nach aussen in der Nähe des distalen Randes angebracht ist und sich in Form und Grösse an die subambulacralen Stacheln der Ambulacralplatten anschliesst. Schon bei jungen Thieren, deren R erst 8 mm beträgt (Nr. 28), ist diese Bewaffnung der Munddecken in allen ihren Bestandtheilen zur Anlage gekommen, und es unterscheidet sich auch schon jetzt der vierte Stachel des ambulacralen Randes von den drei anderen durch seine Kleinheit.

Die Madreporenplatte des erwachsenen Thieres, von der sich nur bei Grube (1840)
eine kurze, aber ganz richtige Angabe findet, hat einen abgerundeten, unregelmässig eckigen Umriss, dessen grösster Querdurchmesser 3,3 mm und dessen grösster Längsdurchmesser 3 mm misst. Ihre Oberfläche ist flächigwölbö und durchaus mit zahlreichen, feinen, mäandrischen, vom Mittelpunkte zum Rande ausstrahlenden und sich gabelnden Furchen besetzt, die einen gegenseitigen Abstand von nur 0,125 mm haben. Der düne Rand der Platte wird von den sie dicht umstellenden Granula der Rückenhaut ein wenig verdeckt. Ihr Mittelpunkt ist bei einem Exemplare, dessen Scheibenradius 14 mm misst, 10 mm vom Mittelpunkte des Scheiberrückens entfernt, liegt also 21/2 mal soweit von der Scheibenmitte wie vom Körperrande. Sie stellt eine besondere Skeletplatte dar, die dem distalen, ausgebuchteten Rande der primären Interradialplatte ihres Interradius anliegt und sowohl diesen als in noch höherem Grade die Ränder der beiden angrenzenden, ersten Adradialplatten und der diese mit der Interradialplatte verbindenden Connectivplatten von aussen bedeckt (Taf. 11, Fig. 5, 6, 7). Bei einem halbwüchsigen Exemplare von 21 mm Armmradius bietet sie einen fast kreisrunden Umriss von 1,15 mm Breite und 1 mm Länge dar. Bei einem jungen Thiere von 8 mm Armmradius ist sie noch nicht verkalkt und liegt als ein winziger, rundlicher Wulst von 0,2 mm Durchmesser an derselben Stelle, an der man sie beim alten Thiere antrifft, also zwischen ihrer primären Interradialplatte und den beiden angrenzenden ersten Adradialplatten: für ihre Aufnahme besitzt die Interradialplatte schon jetzt einen kleinen Ausschnitt ihres distalen Randes.

Ihre Form nach gehören die Pedicellarien (Taf. 11, Fig. 13, 14, 15) zu den «salzfassförmigen» pedicellaires en salière Perrier 1875), wie sie insbesondere Perrier von Ophidiaster cylindricus Linn., purpureus Perr., pusillus M. & Tr. germani Perr., fuscus Gray und später Loriol (1885) von Ophidiaster dancani Lor. und robillardi Lor. und Sladen (1889) von Ophidiaster tuberifer Slad. und helicosticus Slad. beschrieben haben. Auch bei diesen Arten ist die Zahl und Stellung, in der sich die Pedicellarien bei den einzelnen Individuen entwickeln, grossen Verschiedenheiten unterworfen, wie das namentlich Loriol betont. Von den durch Viguier (1879) abgebildeten Pedicellarien des Ophidiaster germani unterscheiden sich die vorliegenden hauptsächlich durch die glatten Ränder der Alveole, sodass sie mehr an diejenigen von Ophidiaster pusillus und fuscus erinnern. Sie haben eine Länge von 1,3—1,4 mm und eine Breite von 0,5—0,75 mm. Mitunter ist die Alveole gerade gestreckt (Taf. 11, Fig. 14), meist aber mehr oder weniger gebogen (Taf. 11, Fig. 13). Der gewulstete, glattrandige Wall, der die Alveole umsäumt, ist kein besonders Skeletstück für sich, sondern eine Verdickung der betreffenden Ventrolateralplatte oder Randplatte. Häufig ist dieser Wall an der Mitte seiner einen Längsseite viel stärker gewulstet als an der anderen. Die beiden Zangenstücke, die zurückgelegt den Boden der beiden Alveolenhälften bedecken, bei zusammengeklappten Pedicellarien aber aus der Mitte der Alveole herausragen, haben eine Länge von 0,5—0,6 mm; ihre Basis, mit der sie auf dem Rande einer die Alveolenmitte quer durchsetzenden Spalte eingelenkt sind1), misst 0,3—0,33 mm an Breite. Über der Basis verschmäler sich das Zangenstück, um dann nach seiner abgerundeten Spitze hin wieder etwas breiter zu werden: im ganzen Bereiche dieser Verbreiterung ist der Rand des

1) Es ist also nicht ganz genau, wenn v. Marenzeller sagt, dass die zweiklappige Zange aus einer queren Spalte austrete. Die Zangenstücke sitzen nicht in der Spalte, sondern auf ihren Rändern.
Zangenstückes fein bedornt. Die Querspalte in der Längsmitte der Alveole führt in eine in der Skeletplatte befindliche kleine Höhle und dient dem Durchtritt der Adductormuskeln der Zangenstücke, die sich in jener Höhle befestigen.

Neben diesen zweiklappigen Pedicellarien kommen hier und da auch dreiklappige (»kleeblauförmige« v. Marenzeller) vor, bei denen die Alveole dreibuchlig geworden ist und in jeder Bucht ein Zangenstück beherbergt (Taf. 11, Fig. 15). Solche dreiklappigen Pedicellarien sind neben den regulären zweiklappigen auch bei Ophiidiaster pusillus durch Perrier (1875) und bei Ophiidiaster cylindricus durch Loriol (1885) bekannt geworden.

Die Art ist ausserhalb des Mittelmeeres bis jetzt nur von den Azoren bekannt. wo sie zwischen Fayal und San Jorge zusammen mit Ophiidiaster ophidianus gefunden wurde (Sladen). Im Mittelmeer kennt man sie im westlichen Becken von Sicilien (Müller & Troschel, Perrier; von Catania durch Grube), ans dem Golf von Néapel (Delle Chiage, Gasco, Lo Bianco, ich, Colombo), von Nizza (Russo) und von La Ciotat (Koehler); aus dem östlichen Becken ist sie erst vor Kurzem zum ersten Male durch v. Marenzeller zwischen Cerigo und Cerigotto und bei Pelagosa nachgewiesen worden.
Ihre tiefste Fundstelle (bei den Azoren) beträgt 823 m. Im Mittelmeere wurde sie im östlichen Becken aus Tiefen von 128 und 160 m heraufgeholt. Im westlichen Theile des Mittelmeeres trifft man sie im Golf von Neapel in Tiefen von 8—150 m, am häufigsten in circa 60 m, namentlich auf den Seeken (Secca di Chiaja, Secca d’Ischia, Secca di Benda Palumbo), ferner bei Pozzuoli und bei Capri. Bei La Ciotat erbeutete sie KOEHLER aus 45 m.

Als Untergrund bevorzugt sie harten, felsigen, steinigen oder grobsandigen, mit Coralinen und Melobesien besetzten Boden, auf dem sie sich nach FREYER (1886) lebhafter fortbewegt als Ophidiaster ophiuriam.

Über ihre Nahrung, Fortpflanzungszeit und Larvenform ist bis jetzt nichts bekannt. Auch in gut durchlüfteten Aquarien hält sie sich nur kurze Zeit, speit bald die Eingeweide aus, schnürt die Arme ein, ohne sie so leicht abzulösen wie Ophidiaster ophiurianum, und geht rasch zu Grunde.

Nachträglich fand ich unter den Materialien, die mir die zoologische Station aus der Ausbeute COLOMBOs anvertraut hat, einen winzigen Seestern, der sich bei näherer Untersuchung als eine Jugendform der Hacelia attenuata herausstellte, sich aber von den schon oben berücksichtigten, späteren Jugendzuständen vor allem durch die auffallende, absonderliche Gestaltung seiner terminalen und subambulacralen Bestachelung unterscheidet. Das zierliche Thierchen ist kaum 1/2 so gross wie das jüngste der in der Tabelle erwähnten. Seine Länge misst nur 4 mm; R = 2,2 mm; r = 0,9 mm; r: R = 1 : 2,44; AB = 1 mm; AB : R = 1 : 2,2; Z = 4; Z : R = 1 : 0,55. Das Exemplar wurde von COLOMBO nordöstlich von Capri in der Bocca piccola in einer Tiefe von 64—74 m auf einem aus Sand, Schlamm und Melobesien bestehenden Boden gefunden, ist aber in seinem Berichte (1888, p. 53) unerwähnt geblieben.

Was bei der ersten Betrachtung sofort ins Auge fällt, ist ein breiter, horizontaler Saum, der die abgerundete, ohne den Saum 0,6 mm breite Armspitze umzieht und selbst eine Breite von 0,3—0,34 mm hat. Der Saum setzt sich aus zehn (jedesseits fünf) zarten, platten, fächerförmigen Stacheln (Taf. 11, Fig. 17) zusammen, die ihre Flächen dicht nebeneinander fast genau in derselben Horizontalebene ausbreiten. Da bei älteren Individuen eine derartige Um- säumung der Armspitze fehlt, so kommt man zunächst gar nicht auf den Gedanken, eine junge H. attenuata vor sich zu haben. Ebenso wenig scheint es zu dieser Art zu passen, dass man bei der Ansicht der Ventralseite auch auf dem lateralen Rande der Ambulacralplatten einen ähnlichen, platten, fächerförmigen Stachel bemerkt, der den Seitenrand des Armes überragt und dadurch theilweise schon in der Dorsalsansicht erkennbar wird. Erst eine genauere Prüfung und Vergleichung führt zu der Ueberzeugung, dass es sich trotzdem um ein sehr frühes Jugendstadium der genannten Art handelt.

Sehen wir uns zuerst die Rückenseite des in Nelkenöl aufgeheilten Exemplares (Taf. 11, Fig. 16) an, so finden wir dieselbe oberflächlich überall mit sehr kleinen, rundlichen, 0,034
bis 0,068 mm grossen Granula besetzt, die nicht nur über den Platten, sondern auch über den schmalen Lücken des Dorsalskeletes stehen. Schon dieses Verhalten weist mit Bestimmtheit auf *Hacelia* oder *Ophiidiaster* hin, da wir keine anderen sternförmigen (d. h. nicht einfach pentagonalen) mittelmeeerischen Seesterne kennen, denen eine derartige allgemeine Granulation der Haut zukommt.

Unter den Granula liegen sich mit den Rändern berührende oder leicht überdeckende Platten, die nur hier und da durch schmale Lücken voneinander getrennt sind. Der Armenrücken wird von einer medianen und jederseits einer marginalen Längsreihe von je vier Platten gebildet; die mediane Reihe sind die jungen Radialplatten; die marginalen Reihen sind die jungen oberen Randplatten. Alle diese Platten nehmen nach der Terminalplatte hin an Grösse ab und überlagern sich in jeder Reihe so, dass der proximale Rand jeder Platte sich über den distalen der nächstvorhergehenden ein wenig hinüberschiebt. Die erste Radialplatte ist 0,41 mm lang und 0,48 mm breit, die zweite, fast ebensogrosse 0,39 mm lang und 0,43 mm breit, die dritte 0,34 mm lang und 0,36 mm breit und die vierte 0,17 mm lang und 0,3 mm breit. Von den oberen Randplatten sind die drei ersten in der Rückenansicht des Thierchens länger als breit; die vierte, eben erst angelegte, die sich fast ganz unter den proximalen Rand der Terminalplatte versteckt, ist rundlich. Die erste hat bei 0,2 mm Breite eine Länge von 0,57 mm, die zweite bei 0,16 mm Breite eine Länge von 0,45 mm, die dritte bei 0,16 mm Breite eine Länge von 0,32 mm; die vierte ist nur 0,14 mm gross. Von den späteren Adradialplatten ist nur die erste einer jeden Reihe als ein ganz kleines Plättchen von 0,11 mm Durchmesser angelegt, das sich jederseits zwischen der ersten Radialplatte und der ersten oberen Randplatte befindet. Es zeigt sich also, dass meine weiter oben ausgesprochene Vermuthung (s. p. 280) von dem den Radialplatten nachfolgenden Auftreten der Adradialplatten zutrifft. Connectivplatten sind noch gar nicht vorhanden, was ja nicht auffallen kann, da sie in dem jüngeren Theile des Armes auch noch bei älteren Jugendstadien (s. p. 280) fehlen. Die die ganze Armpitze einnehmende, verhältnissmassig grosse, 0,55 mm lange Terminalplatte ist an ihrem proximalen Rande 0,6 mm, am distalen aber nur 0,4 mm breit; der proximale Rand ist gerade, während die lateralen Ränder mit dem distalen Rande zusammen einen fast halbkreisförmigen Bogen bilden. Auf ihrer ganzen gewölbten Dorsalfläche stehen Granula, die beim älteren Thiere an dieser Stelle fehlen, aus deren früherem Vorhandensein sich aber das bei jenen erwähnte (s. p. 281) maulbeerförmige Ausschen der Plattenoberfläche erklärt. Der laterale und distale Rand der Platte ist mit den schon erwähnten, symmetrisch vertheilten, fächerförmigen Stacheln besetzt, deren Insertion aber genau genommen eigentlich schon der Ventralseite angehört. Jeder dieser Stacheln hat eine Länge von 0,3 bis 0,34 mm, eine basale Breite von 0,09—0,11 mm und eine distale Breite von 0,16—0,18 mm. Später scheinen diese fächerförmigen Stacheln der Terminalplatte theils verloren zu gehen, theils durch Dickenwachsthum zu kurzen, plumpen Stacheln zu werden, die an der Terminalplatte des alten Thieres an deren Ventralseite stehen.

Das Skelet des Scheibenrückens setzt sich aus der Centralplatte und aus fünf die-
die Linckiidae.

selbe eng umgebenden und unter sich zusammenstossenden, primären Interradialplatten zusammen. Alle diese Platten haben eine Grösse von rund 1 mm. Von den bei jungen Thieren von 8 mm Armiradius im Scheibenrücken beschriebenen Hauptplatten (s. p. 281) fehlen also bei dem erheblich jüngeren Thiere die Verbindungsstücke der primären Interradialplatten (= Centroradialia = Infrabasalia); letztere sind demnach thatsächlich jüngeren Datums als die primären Interradialplatten und die primären Radialplatten. Der distale Bezirk des Seitenrandes einer jeden primären Interradialplatte wird schon jetzt wie später von dem proximalen Seitenenteile einer primären Radialplatte von aussen her überdeckt. Die Centralplatte besitzt in der Richtung eines Interradius eine leichte Einbuchtung für den dort befindlichen After. Die Madreporenpflatten ist noch nicht angelegt; die primären Interradialplatten des betreffenden Interradius unterscheidet sich in nichts von den übrigen primären Interradialplatten. Weder auf den Armen noch auf der Scheibe ist eine Spur der späteren Papulae zu sehen.

Wenden wir nunmehr das Präparat mit der Bauchseite nach oben, so können wir zunächst feststellen, dass unter den oberen Randplatten ebensoviele, denselben in Grösse, Form und Lagerung durchaus entsprechende, untere Randplatten vorhanden sind. An den Armen grenzen die unteren Randplatten überall unmittelbar an die Adambulacralplatten, deren man vom Mundeckstück bis zur Terminalplatte zehn zählt, wie sich denn auch zehn oder elf Paar Füsschen an jedem Arme wahrnehmen lassen. Die Adambulacralplatten sind etwas breiter als lang. Auf ihrem ambulacralen Rande trägt die erste Adambulacralplatte drei, die zweite bis vierte zwei und die folgenden erst einen einzigen, kurzen, stumpfen, 0,11—0,13 mm langen Furchenstachel. Nahe dem lateralen Rande der Platte sitzt ein schrägl an aussen, d. h. gegen den Rand des Armes gerichteter, subambulacraler Stachel, der in Form und Grösse auffällt. Er übertrifft an Länge die Furchenstacheln und nimmt, je jünger er ist, d. h. je mehr man sich der Terminalplatte nähert, in desto ausgesprochenerem Maasse die Gestalt der platten Fächerstacheln der Terminalplatte an. Wie der Vergleich mit dem distalen Armstück eines jungen Exemplares von R = 7 mm (Nr. 29 der Tabelle) lehrt, wird aus diesem anfänglich fächerförmigen Stachel der jungen Adambulacralplatte später durch Verdickeung des Stachels der beim alten Thiere stumpf cylindrische Subambulacralstachel. Nicht weniger auffällig als diese Umbildung des Subambulacralstachels ist der Umstand, dass das vorliegende, ganz junge Thier auf allen Adambulacralplatten zwischen dem subambulacralen Stachel und den (oder dem) Furchenstacheln mitten auf seiner ventralen Fläche noch einen kleinen, stumpf kegelförmigen Stachel besitzt, den man bei den alten Thieren gewöhnlich vermisst — aber wohl nur deshalb, weil er frühzeitig sein Wachsthum einstellt und dann unter den später die Adambulacralplatten bedeckenden Granula meistens nicht mehr zu unterscheiden ist. Wo er deutlich bleibt, stellt er den oben (s. p. 291) als überzähligen Subambulacralstachel bezeichneten Stachel dar. Zicht man aber auch hier das Exemplar Nr. 29 der Tabelle zum Vergleiche heran, so sieht man in Rede stehenden Stachel ganz gut in der ganzen Länge des Armes und bemerkt auch, dass er in der distalen Armhälfte seine ursprüngliche, platte Form noch nicht ganz aufgegeben hat.
Die Munddeckstücke des jüngsten Thiere zeigen ihr grifförmiges Aussenende schon ebenso deutlich wie später und besitzen bereits ihre volle spätere Bewaffnung, nämlich vier stumpfe Mundstacheln dem ambulacralen Rande entlang, von denen der erste, grösste 0,23 mm, der vierte kleinste nur 1/3 so lang ist, und zwei Stacheln auf der ventralen Oberfläche, von denen wie später der am meisten nach aussen stehende der kräftigere ist. Ausserdem sehe ich auf dem grifförmigen Aussenende der Platte zwei winzige Stachelanlagen, die ich für die ersten Granula der Ventralseite halte. — Von den späteren Ventrolateralplatten ist nur in jedem der kleinen Interradialfelder zwischen den Munddeckstücken und den ersten unteren Randplatten eine Andeutung zu sehen in Gestalt eines Paares von kleinen, nur 0,07—0,08 mm messenden Plättchen. — Papulae fehlen der Ventralseite ebenso vollständig wie der Dorsalseite.

Anatomische Notizen. Die Superambulaealia gehen zu den Ventrolateralplatten der ersten Längsreihe; da diese aber in ihrer Zahl hinter der Zahl der Wirbel zurückbleiben, so treten manchmal statt eines zwei superambulacrale Skeletstücke an eine Ventrolateralplatte heran. In der Saugscheibe der Füsschen sind zu einem Kranze geordnete, netzförmig gegitterte Kalkkörper vorhanden, die schon bei kleinen Exemplaren von R = 5 mm (in den proximalen Füsschen) als zierliche, verästelte Gebilde angelegt sind. Auch die Wand der Füsschenampullen besitzt Skeletteinlagerungen in Gestalt von feinen, vielmässigen, runden Gitterplättchen, die zahlreicher sind als die entsprechenden Kalkkörperchen bei Ophidiaster ophidianus. Ferner traf ich in der Wand des Enddarmes zahlreiche, vielmässige, gitterförmige, unregelmässig umgrenzte Kalkkörper an, die sich besonders am Rande der spaltförmigen Afteröffnung dicht zusammendrängen. Die Zahl der Interradialen Blinddarme betrug bei den darauf untersuchten erwachsenen Thieren {Nr. 3 und Nr. 7} zehn. Die verästelten und gelappten Geschlechtsorgane inserieren im Gegensätze zu Ophidiaster ophidianus in nächster Nähe der Armwinkel; genauer befindet sich die Ansatzstelle der Genitalschlüche (Exemplar Nr. 7) in der Richtung der äusseren Längsreihe der ventralen Porenfelder, zwischen dem ersten Porenfeld dieser Reihe und der Interradialen Hauptebene, und liegt zügig gerade unter (d. h. ventralwärts von) dem ersten Porenfelder der zwischen den oberen und unteren Randplatten befindlichen Porenfelder.

Scheibe klein; Arme lang, drehrund, cylindrisch; granulirte Haut überkleidet die Platten und die Plattenzwischenräume der Arme und der Scheibe; die dorsalen und marginalen Platten der Arme in 7, durch quere Connectivplättchen verbundenen Längsreihen, nämlich einer radialen und jederseits einer adradialen, einer oberen marginalen und einer unteren marginalen, dazwischen im Ganzen 6 Längsreihen von Porenfeldern; Ventrolateralplatten in 2 Längsreihen, in der ersten (= an die Ambulacralplatten anstossenden) Reihe doppelt so zahlreich, in der zweiten nur ebenso zahlreich wie die unteren Randplatten; zwischen den Ventrolateralplatten nur 1 Längsreihe von Porenfeldern, die ebenso zahlreich sind wie in den übrigen Längsreihen; Pedicellarien fehlen; Füsschen zweireihig mit deutlicher Saugscheibe.

Im Mittelmeer nur eine Art: O. ophidianus (Lm.).

Taf. 3, Fig. 1, 5; Taf. 8, Fig. 18—30.

1834 Asterias ophidiana Blainville p. 240.
1835 Ophidiaster ophidianus L. Agassiz p. 191 (= 1837, p. 286).
1839 Ophidiaster ophidianus D’Orbigny p. 148; T. 2, f. 1—7.
1840 Ophidiaster aurantius Gray p. 284.
1842 Ophidiaster ophidianus Müller & Troschel p. 28—29.
1862 Ophidiaster ophidianus Dujardin & Hapé p. 358—359.
1864 Ophidiaster ophidianus Lütken p. 164 (partim).
1866 Ophidiaster aurantius Gray p. 13.
1869 Ophidiaster ophidianus Perrier p. 251.
1872 Ophidiaster canariensis Greeff p. 104—105.
1875 Ophidiaster ophidianus Perrier p. 120—121.
1876 Ophidiaster ophidianus Perrier p. 64, 65.
1876 Ophidiaster ophidianus Teuscher T. 18, f. 5.
1876 Ophidiaster ophidianus Gasco p. 8.
1879 Ophidiaster ophidianus Perrier p. 15, 47, 89.
1879 Ophidiaster ophidianus Viguié p. 156, 160.
1879 Ophidiaster ophidianus Ludwig p. 539 (partim).
1882 Ophidiaster ophidianus Greeff p. 137.
1885 Ophidiaster ophidianus Carus p. 57 (partim).
1886 Ophidiaster ophidianus Preyer p. 32.
1886 Ophidiaster ophidianus Norman p. 6.
1888 Ophidiaster ophidianus Colombo p. 30.
1888 Ophidiaster ophidianus Th. Barrois p. 6 (partim).
1889 Ophidiaster ophidianus Simroth p. 231.
1889 Ophidiaster ophidianus Sladen p. 402, 403, 651, 691, 710, 752.
1895 Ophidiaster ophidianus Sladen p. 60.
1896 Ophidiaster ophidianus Marchisio p. 3.

Die Geschichte der vorliegenden Art und ihrer Gattungszugehörigkeit ist recht einfach. Durch LAMAREK (1816) wurde sie zuerst als besondere Art erkannt und mit ihrem noch heute gebräuchlichen Speciesnamen belegt. L. AGASSIZ (1835) stellte sie in die von ihm errichtete

Im Habitus kennzeichnet sich *O. ophidianus* (Taf. 3, Fig. 4, 5) durch die von einer kleinen Scheibe ausstrahlenden, langen, drehrunden Arme, die von der Basis bis nahe zur Spitze von annähernd gleicher Dicke sind und dann stumpf abgerundet endigen. Es kommt sogar recht häufig vor, dass in Folge der starken Entwicklung der Geschlechtsorgane die Arme an der Grenze ihres ersten und zweiten Drittels noch um 1—2 mm dicker sind als an der Basis, und selbst in der Nähe ihrer Spitze sind sie gewöhnlich noch \(\frac{2}{3} \) so breit wie an der Basis. Das letzte Ende der Ambulacralfurche wird in der Regel viel stärker dorsalwärts aufgebogen getragen als bei *H. attenuata*, sodass die Terminalplatte ganz auf die Rückenseite des Armes zu liegen kommt und hier sogar etwas von der wirklichen Arm spitze zurücktritt. In den Armwinkeln gehen die Arme durch einen spitzen Bogen ineinander über. Ein Querschnitt durch einen Arm hat einen kreisrunden Umriss. Die Scheibe ist auf dem Rücken ebenso gewölbt wie die Arme. Die allgemeine Granulation der Haut ist feiner als bei *H. attenuata*. Die Porenfelder der Dorsalseite und der Flanken gleichen in Form und Anordnung sowie in der Zahl ihrer Längsreihen denjenigen der *H. attenuata*; an der Ventralseite aber ist jederseits nur eine Längsreihe von Porenfeldern vorhanden. Während man also bei *H. attenuata* rings um den Arm im Ganzen zehn Längsreihen von Porenfeldern zählt, besitzt *O. ophidianus* deren nur acht.

So grosse Thiere, wie sie *Lamarck*, der ihre Länge auf mehr als 325 mm angiebt, und *Müller* & *Troschel*, die 18 Zoll nach pariser Fuss umgerechnet = 487, nach preussischem Fuss = 471 mm als Maximalgrösse bezeichnen, vor sich gehabt haben, habe ich bei Neapel niemals gesehen. Das grösste mir von dort vorliegende Exemplar hat eine Länge von 204 mm. Merkwürdigerweise sind junge und halbwüchsige Thiere der vorliegenden Art, trotzdem sie in niedrigem Wasser lebt, ausserordentlich selten. Das kleinste Individuum, dessen ich im Laufe der Jahre von Neapel habhaft werden konnte, hat schon eine Länge von 76 mm und kann allenfalls noch als ein halbwüchsiges bezeichnet werden. Nur *Sladen* hat ein einziges, seiner
Ansicht nach wahrscheinlich zu unserer Art gehöriges, kleineres, nur 24 mm langes (R = 13,5 mm) Exemplar von den Azoren in Händen gehabt. In Folge des Mangels junger Thiere vermag ich im Folgenden auf die Entwicklung des Skeletes nicht so weit einzugehen, wie es mir zum näheren Vergleiche mit *H. attenuata* erwünscht wäre.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>AB</th>
<th>Z</th>
<th>r : R</th>
<th>AB : R</th>
<th>Z : R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>264</td>
<td>146</td>
<td>16</td>
<td>18</td>
<td>54</td>
<td>1 : 9,1</td>
<td>1 : 8,1</td>
<td>1 : 2,7</td>
</tr>
<tr>
<td>2</td>
<td>206</td>
<td>114</td>
<td>13</td>
<td>14</td>
<td>50</td>
<td>1 : 8,8</td>
<td>1 : 8,1</td>
<td>1 : 2,3</td>
</tr>
<tr>
<td>3</td>
<td>190</td>
<td>105</td>
<td>12</td>
<td>12</td>
<td>50</td>
<td>1 : 8,7</td>
<td>1 : 8,7</td>
<td>1 : 2,1</td>
</tr>
<tr>
<td>4</td>
<td>183</td>
<td>101</td>
<td>11</td>
<td>12</td>
<td>51</td>
<td>1 : 9,2</td>
<td>1 : 8,4</td>
<td>1 : 2</td>
</tr>
<tr>
<td>5</td>
<td>181</td>
<td>100</td>
<td>11</td>
<td>12</td>
<td>55</td>
<td>1 : 9,1</td>
<td>1 : 8,3</td>
<td>1 : 1,8</td>
</tr>
<tr>
<td>6</td>
<td>181</td>
<td>100</td>
<td>10</td>
<td>12</td>
<td>51</td>
<td>1 : 10</td>
<td>1 : 8,3</td>
<td>1 : 2</td>
</tr>
<tr>
<td>7</td>
<td>165</td>
<td>91</td>
<td>11</td>
<td>12</td>
<td>48</td>
<td>1 : 8,3</td>
<td>1 : 7,6</td>
<td>1 : 1,9</td>
</tr>
<tr>
<td>8</td>
<td>159</td>
<td>88</td>
<td>9</td>
<td>10</td>
<td>43</td>
<td>1 : 9,5</td>
<td>1 : 8,5</td>
<td>1 : 2,1</td>
</tr>
<tr>
<td>9</td>
<td>148</td>
<td>82</td>
<td>10</td>
<td>10</td>
<td>46</td>
<td>1 : 8,2</td>
<td>1 : 8,2</td>
<td>1 : 1,8</td>
</tr>
<tr>
<td>10</td>
<td>139</td>
<td>77</td>
<td>11</td>
<td>11</td>
<td>42</td>
<td>1 : 7</td>
<td>1 : 7</td>
<td>1 : 1,8</td>
</tr>
<tr>
<td>11</td>
<td>121</td>
<td>67</td>
<td>10</td>
<td>11</td>
<td>36</td>
<td>1 : 6,7</td>
<td>1 : 6,1</td>
<td>1 : 1,9</td>
</tr>
<tr>
<td>12</td>
<td>76</td>
<td>42</td>
<td>5,5</td>
<td>7</td>
<td>30</td>
<td>1 : 7,6</td>
<td>1 : 6</td>
<td>1 : 1,4</td>
</tr>
</tbody>
</table>

Das Verhältniss des Scheibenradius zum Armradius wird von Müller & Troschel auf 1 : 10 angegeben, was aber wahrscheinlich nur bei den von ihnen beobachteten, ganz alten, mehr als 400 mm langen Thieren als Regel zutrifft. Unter den von mir gemessenen 12 Exemplaren (s. die Tabelle) befindet sich nur eines (Nr. 6), welches bei nur mittelgrosser Gesamtlänge von 181 mm ebenfalls das Verhältniss r : R = 1 : 10 aufweist. Bei dem von M. Sars (1857) gemessenen Exemplare von 200 mm Länge betrug dagegen r : R = 1 : 8, und ein nur wenig höheres Verhältniss ergiebt sich, wenn man den Durchschnitt der in meiner Tabelle aufgeführten Exemplare berechnet, nämlich 1 : 8,6 (Minimum 1 : 6,7; Maximum 1 : 10). Bei Exemplaren von 150—200 mm Länge, wie man sie bei Neapel am häufigsten erhält, ist R gewöhnlich 8½—9, seltener bis 10 mal so gross wie r. Vergleicht man damit die *H. attenuata*, so ergiebt sich, dass bei *O. ophidianus* die Länge von R im Verhältniss zu r durchschnittlich ½ mal so gross ist wie bei *H. attenuata*.

Die Arme sind an ihrer Basis entweder nur wenig breiter oder doch ebenso breit, wie die Länge des Scheibenradius beträgt (s. d. Tabelle), und ein Vergleich der Armbreite mit der Länge des Armradius lehrt, dass dieser durchschnittlich 7,8 mal so lang ist wie die Breite des Armes (im Minimum 6 mal, im Maximum 8,8 mal). Im Vergleich mit den Armen der *H. attenuata* sind die Arme der vorliegenden Art länger und schmäler: denn bei jener fanden wir das Verhältniss der basalen Armbreite zum Armradius wie 1 : 5—5½.

Die Körperwand ist von ähnlicher Derbheit und Dicke wie bei *H. attenuata* und enthält auch hier in ihrer die Skeletplatten überkleidenden, etwa 0,5 mm dicken Aussenschicht
zahlreiche, dichtgedrängt stehende, kalkige Granula, die aber wegen ihrer Feinheit die Haut viel weniger rauh machen, als das bei jener Art der Fall ist. Auch bei der vorliegenden Art lässt sich nach Behandlung mit Kali die äussere Hautschicht mit ihren Granula im Zusammenhang ablösen; erst auf diese Weise erhält man einen genaueren Einblick in Form und Lage der Skeletplatten. Ausser der aus den Granula hervorragenden Adambulacral- und Mundbewaffnung sowie der Madreporenplatte und der Terminalplatte der Arme ist die ganze äussere Oberfläche des Thieres von den Granula bedeckt; granulafreie Stellen, wie sie bei H. attenuata auf den letzten Radial- und Randplatten des distalen Armbezirkes vorkommen, finden sich hier nicht. Ueber den Verbindungsstellen zweier zur selben Längsreihe gehörigen Skeletplatten bilden die Granula in ihrer Anordnung fast immer eine feine Querlinie, die die Grenzen der darunter befindlichen Platten andeutet. Die Feinheit der Granula haben schon Müller & Troschel und M. Sars hervorgehoben; doch ist es nicht ganz richtig, wenn sie die Granulation als ganz gleichförmig bezeichnen; denn bei genauerer Betrachtung stellt sich heraus, dass grössere und kleinere Granula so unter einander gemengt sind, dass z. B. auf dem Scheibenrücken erwachsender Thiere die grösseren einzeln in Abständen von $\frac{1}{10}$—$\frac{1}{12}$ mm zwischen den kleineren stehen; in der Nähe der Armspitze und auf den Adambulacralplatten ist dagegen die Granulation wirklich fast ganz gleichförmig. Die Granula sind so klein und stehen so dicht, dass man auf die Länge von 1 mm deren 10—12 zählt. In ihrer Form unterscheiden sie sich wesentlich von denen der H. attenuata; denn sie stellen nicht kurze, gedrungene Cylinder oder abgerundete Prismen dar, sondern sind zu schüppchen- oder blättchenförmigen Gebilden comprimirt, die man mit kurzstieligen, abgeplatteten Keulen vergleichen kann: auf einem kurzen, schmäleren Stiele erhebt sich eine breitere, länglich abgerundete, am Rande fein bedornte Platte (Taf. 8, Fig. 18). Diese schüppchenförmigen Granula treten, wie gesagt, in zwei Grössen auf: die kleineren sind durchschnittlich 0,22—0,25 mm lang mit 0,042 mm breitem Stiel und 0,1—0,12 mm breiter Platte; die grösseren haben eine Länge von durchschnittlich 0,37—0,44 mm mit 0,12 mm breitem Stiel und 0,21—0,25 mm breiter Platte. Die Compression des Stieles und namentlich der Platte ist so beträchtlich, dass die Dicke der Granula kaum halb so viel misst wie die Breite. Auf den Adambulacralplatten, auf den Munddeckplatten sowie auf dem ganzen distalen Armabschnitt sind übrigens die Granula viel weniger oder gar nicht comprimirt und haben dann die Form abgerundeter Körnchen.

In der Umgebung der Afteröffnung (Taf. 8, Fig. 30) steht ein Kranz von grösseren, 0,3 bis 0,4 mm messenden Granula. Schon M. Sars (1857) und Greeff (1872) haben diese Analpapillen erwähnt, und noch viel früher hat D'Orbigny (1839) eine Abbildung derselben gegeben. Sars gibt sogar an, dass es genau zehn Papillen seien, fünf grössere und fünf damit abwechselnde, kleinere. Das mag an einem oder dem anderen Exemplare vorkommen, ist aber doch nur eine individuelle Erscheinung; denn aus dem Vergleiche einer grösseren Anzahl von Individuen ergiebt sich, dass die Anordnung und das relative Grössenverhältniss der Analpapillen durchaus schwanken und dass ihre Zahl bei erwachsenen, alten Thieren gewöhn-
lich 14—16, mitunter bis 20 und darüber, bei jüngeren (z. B. Nr. 12) nur 8 oder 9 beträgt. Im Vergleich zu *H. attenuata* sind sie weniger zahlreich und kürzer, dagegen verhältnismässig breiter.

Im weiteren Gegensatz zu *H. attenuata* kommt nun aber bei der vorliegenden Art noch eine zweite, äussерlich nicht sichtbare und deshalb bisher unbeachtet gebliebene Sorte von Granula vor, die ich wegen ihrer Lage die Lückengranula nennen möchte. Zieht man nämlich die äussere Hautschicht mit ihren vorhin beschriebenen Granula ab, so bemerkt man, dass darunter am Rande einer jeden Skelettlücke, also der Porensfelder und des Analfeldes, eine diesem Rande entlang geordnete, einfache Reihe gröBerer, körnchenförmiger Kalkkörperchen liegt. Diese Lückengranula haben eine unregelmässig kurzoval bis birnförmige Gestalt und sind 0,53—0,67 mm lang und 0,36—0,43 mm dick.

Das durch Entfernung der Granula freigeklagte Rückenskelet zeigt im Bereiche der Armmuskeln dieselbe Zusammensetzung wie bei *H. attenuata*. Es sind auch hier sieben Längsreihen von Platten, nämlich eine radiale und jederseits eine adradiale, eine obere und eine untere marginale vorhanden, die unter sich durch quere Connectivplatten zu regelmässigen Querreihen verbunden sind (Taf. S, Fig. 21). Da sich die sieben Längsreihen schon bei Betrachtung der unversehrten Thiere leicht erkennen lassen, so sind sie den früheren Autoren MÜLLER & TROSCHL (1842), M. SARS 1857, GREEFF (1872) und VIGUER (1879) nicht unbekannt geblieben; dass M. SARS (1857) von neun Plattenreihen spricht, kommt nur daher, dass er die uns später beschäftigende, jederseitige zweite (= äussere) Reihe der Ventrolateralplatten mitgezählt hat. Die Hauptplatten, aus denen die sieben Längsreihen zusammengesetzt sind, haben auch bei der vorliegenden Art die Form einer abgerundeten Raute (Taf. S, Fig. 22), die so orientirt ist, dass zwei ihrer Erken (= Randlappen) in die Längsrichtung, die zwei anderen in die Querrichtung des Armes fallen. Die Platten sind so stark, dass sie in ihrer Mitte etwa doppelt so dick sind, wie ihre Breite beträgt; nach ihren Rändern hin wird die Platte dünner, und ihre innere Oberfläche ist stärker gewölbt als die äussere. Die Länge der Platte misst im proximalen Armabschnitt grosser Exemplare (z. B. Nr. 1) 3,7—4 mm, die Breite ebensoviel oder etwas weniger. Von den vier Randlappen der Platte ist der distale dünner als die drei anderen, und mit eben diesem distalen Lappen greift die Platte unter den proximalen Lappen der in distaler Richtung zunächst folgenden Platte, während die drei anderen (der proximale und die beiden transversalen Randlappen freiliegen. Die Verbindung der Platten ist demnach in den Längsreihen ebenso unmittelbar wie bei *H. attenuata*. An der Innenseite ihres proximalen Randlappens besitzt die Platte eine deutliche, 1 mm lange und 0,4 mm breite Längsleiste, mit der sie auf einer ähnlichen, aber flacheren, weniger ausgeprägten Leiste ruht, die sich auf der Aussenseite des distalen Randlappens der vorhergehenden Platte befindet.

Die sechs Längsreihen von Connectivplatten, durch welche die auseinandergerückten sieben Längsreihen von Hauptplatten der Quere nach miteinander verbunden werden, bestehen aus kräftigen, im proximalen Armabschnitt erwachsener Thiere bis 4 mm in ihrem Längs-
durchmesser und 1,2 mm in ihrem Querdurchmesser grossen Platten, deren Seitenansicht (Taf. 8, Fig. 23) erkennen lässt, dass sie in ihrer Mitte viel dicker (1,3 mm) sind als an ihren Enden; ihre äussere Oberfläche fällt von dem leicht gewölbten Mitteltheile aus nach den Enden hin in scharfer Schrägung ab und besitzt auf diesen beiden Schrägfächen (Taf. 8, Fig. 24) eine flache, breite Leiste, auf welcher je ein transversaler Randlappen einer Hauptplatte ruht. Wie bei H. attenuata bleibt zwischen je zwei Connectiven und den vier durch sie vereinigten Hauptplatten eine quer sechseitige Skeletfläche für die Entwicklung eines Porenfeldes übrig.

Nach der Armspitze hin nimmt die Grösse der Hauptplatten und ihrer Connectiven nur sehr allmählich ab; so haben z. B. die Hauptplatten bei einem Exemplar von 114 mm Armradius (Nr. 2) in einer Entfernung von 15 mm von der Terminalplatte noch immer eine Länge von 3 mm. Erst in der nächsten Nähe der Terminalplatte erfolgt eine rasche Abnahme der Plattengrösse, sodass die letzten (= jüngsten), die unmittelbar die Terminalplatte berühren, nur noch 0,25 mm lang sind. Dabei wiederholt sich dieselbe Erscheinung wie bei H. attenuata, dass zwar alle sieben Plattenreihen die Terminalplatte erreichen, aber die radiale und die beiden adradialen Reihen früher an Grösse abnehmen als die Randplatten. Die letzten, kleinsten Randplatten liegen an den Seitenrändern der Terminalplatte (Taf. 8, Fig. 25). Die letzten dorsalen Connectivplatten sind diejenigen, welche die drittletzte Radialplatte mit den entsprechenden oberen Randplatten verbinden. An den Flanken der Armspitze sind aber auch noch die beiden distal folgenden Oberen und unteren Randplatten durch ein Connectivplättchen verbunden, und erst an den zur Seite der Terminalplatte gelegenen Randplatten fehlen schliesslich ebenfalls die Connective.

Die Zahl der Randplatten (s. die Tabelle) ist durchweg etwas grösser als bei gleichgrossen Exemplaren der H. attenuata. Für das Verhältniss der Randplattenzahl zu der in mm ausgedrückten Länge des Armradius erhält man bei der vorliegenden Art für die zwölf Exemplare der Tabelle im Durchschnitt 1 : 1,98 (Minimum 1 : 1,4; Maximum 1 : 2,7), während dieses Verhältniss bei erwachsenen H. attenuata 1 : 2,66 betrug.

Die Terminalplatte tritt durch ihre Grösse und ihre nackte, gewölbte Oberfläche deutlich hervor. Sie hat in der Ansicht von aussen einen fast kreisrunden Umriiss, dessen Querdurchmesser bei alten Thieren z. B. Nr. 2) 2,5 mm, bei jüngeren (z. B. Nr. 12) erst 1,75 mm misst. Die Oberfläche stellt eine niedrige Halbkugel dar, die mit einigen (3—7) unregelmässig vertheilten, ganz flachen Buckeln besetzt ist; dass sie, wie Greeff (1872) behauptet, fein granulirt sei, kann ich bei keinem meiner Exemplare finden; stets hören die Granula auf dem Rande der Terminalplatte vollständig auf. Die für den Fühler und das Auge bestimmte Nische an der Unterseite der Platte ist breit, fast viereckig. Im Ganzen bietet die Platte demnach ähnliche Verhältnisse dar wie bei H. attenuata.

Auf dem Rücken der Scheibe sollen die Skeletplatten nach Müller & Troschel und nach Greeff unregelmässig angeordnet sein. Das trifft aber keineswegs zu. Es sind auch hier die primären Radial- und Interradialplatten durch ihre Form, ihre typische Stellung und ihre Verbindungsweise deutlich und unverkennbar charakterisirt (Taf. 8, Fig. 26). In der Grösse

übertreffen sie die nächstgelegenen Hauptplatten des Armrückenskelets kaum; denn die Breite der primären Interradialplatten misst z. B. bei dem Exemplare Nr. 2 3,6—4,1 mm (Länge = 2 bis 2,5 mm) und die der primären Radialplatten 3,2—3,75 mm (Länge = 2,6 mm). In ihrer Form aber unterscheiden sie sich wie bei H. attenuata durch ihren pentagonalen Umriss und sind auch hier so orientiert, dass sie eine ihrer Seiten nach dem Scheibenmittelpunkt richten, während die gegenüberliegende Ecke, die wie die vier übrigen Ecken einen kurzen, abgerundeten Lappen darstellt, in die Richtung eines Radius bez. Interradius fällt. Die primären Interradialplatten sind (bei Exemplar Nr. 2) mit ihrem Innenrande durchschnittlich 3,75—5,2 mm, die etwas weiter nach aussen gelegenen primären Radialplatten dagegen durchschnittlich 5,5—6,2 mm vom Scheibencentrum entfernt. Bei einem nicht einmal ebenso grossen Exemplare der H. attenuata von 85 mm Armmus betrug dieser Abstand bei den primären Interradialplatten 4,2—6,6 mm und bei den primären Radialplatten 5,2—7,3 mm. Daraus ergiebt sich, dass überhaupt der von den primären Scheitelplatten umgrenzte Bezirk bei O. ophidianus verhältnismässig etwas kleiner ist als bei H. attenuata. Wie bei dieser Art legt sich jede primäre Radialplatte mit ihrem Aussenlappen unmittelbar unter den proximalen Randlappen der nächsten Radialplatte des Armrückens; jeder distale Seitenlappen verbindet sich durch Vermittlung einer Connectivplatte mit dem medialen Randlappen der nächsten ersten Adradialplatte, und jeder proximale Seitenlappen tritt, ebenfalls durch Vermittlung einer Connectivplatte, in Verbindung mit dem distalen Randlappen der nächsten primären Interradialplatte. Auch in ihren sonstigen Verbindungen mit anderen Skeletplatten stimmen die primären Interradialplatten mit den Verhältnissen der H. attenuata überein; ihr Aussenlappen setzt sich durch eine Connectivplatte mit einer ersten Adradialplatte in Zusammenhang oder der Aussenlappen wird eingebuchtet, dadurch im Ganzen sechslappig, und besitzt alsdann zur Verbindung mit den Adradialplatten nicht ein, sondern zwei Connective; die proximalen Seitenlappen endlich sind durch Connective mit fünf kleineren, drei- oder vierlappigen Platten verbunden, die genau oder doch annähernd in radialer Richtung liegen und die uns von H. attenuata bekannten Verbindungssstücke der primären Interradialplatten, also die Centroradialia (= Infrabasalia Sladen, Perrier) darstellen. Von diesen Verbindungsstücken steht eines direct, drei durch Vermittlung von Connectiven in Zusammenhang mit einer einzelnen, am hinteren Rande des Afterfeldes befindlichen Skeletplatte, die offenbar die Centralplatte des Scheitels ist, während das fünfte Verbindungsstück keine Verbindung mit der Centralplatte eingeht. Letztere besitzt der Zahl ihrer Connective entsprechend einen vierlappigen Umriss. Wie bei H. attenuata lassen sich auch hier in dem von den primären Interradial- und Radialplatten umgrenzten Bezirke zehn Felder unterscheiden, nämlich fünf secundäre Centralfelder, von denen eines zugleich das Afterfeld ist, und fünf damit alternierende Radialfelder. Die verhältnismässige Grösse des Afterfeldes und die Kleinheit der Centralplatte bringen es mit sich, dass der After fast ganz genau central liegt. Nach aussen von den primären Interradial- und Radialplatten folgen in weiterer Ubereinstimmung mit H. attenuata zweimal fünf Armfelder und dann die medialen und lateralen Armfelder des Armrückens.

In der Nähe des Armwinkels tritt keine Vermehrung in der Zahl der ventrolateralen Längsreihen auf; wohl aber löst jede zweite Platte der ersten Längsreihe ihre Verbindung mit der entsprechenden Platte der zweiten Reihe, sodass letztere jetzt nur noch mit einer, statt mit zwei Platten der ersten Längsreihe in Zusammenhang steht; diejenige Platte der ersten Längsreihe, die mit der zweiten Längsreihe in Verbindung bleibt — es ist die dritte, fünfte und siebente der ersten Längsreihe — breitet sich quer zur Längsachse des Armes aus und wird dadurch fast doppelt so breit wie die andere — nämlich die zweite, vierte und sechste der ersten Längsreihe —, die den Zusammenhang mit der zweiten Längsreihe aufgegeben hat. Im Gegensatz zu *H. attenuata* rücken die Platten der zweiten Längsreihe im Armwinkel weniger dicht zusammen, sodass die zwischen ihnen befindlichen Skeletlücken keineswegs verschwinden. Dazu kommt, dass im weiteren Unterschiede von *H. attenuata* weder die erste noch die zweite ventrolaterale Längsreihe eine unpaare (in der Interradiallinie gelegene) Platte besitzen. Die erste und die zweite Platte der ersten Längsreihe haben keine
Verbindung mit der ersten Platte der zweiten Längsreihe und grenzen ebenso wie die dritte Platte der ersten Längsreihe, die sich durch die erste Platte der zweiten Längsreihe mit der ersten unteren Randplatte verbindet, an eine grosse interradiale Skeletlücke, die in dieser Gestalt bei H. attenuata fehlt, weil sie dort von der unpaaren Platte der zweiten ventrolateralen Längsreihe ausgefüllt ist.

Im distalen Abschnitte des Armes nehmen die Ventrolateralplatten allmählich an Grösse ab und folgen immer dichter aufeinander, während die zwischen den Platten der zweiten Längsreihe liegenden Skeletlücken sich immer mehr verkleinern. Aber erst an den vier letzten unteren Randplatten fehlen die Ventrolateralia der zweiten Reihe ganz, und an der letzten unteren Randplatte vermisst man endlich auch die Ventrolateralia der ersten Reihe (Taf. 8, Fig. 25). Demgemäss stösst die letzte (jüngste) untere Randplatte direkt an die Adambulacralplatten; die zweitletzte bis viertletzte grenzen an je zwei Ventrolateralia der ersten Längsreihe, und erst von hier an steht jede untere Randplatte mit einer Ventrolateralplatte zweiter Reihe in Verbindung. Im Vergleiche mit H. attenuata dringen also die Ventrolateralplatten zweiter Reihe bei jener Art weniger weit gegen die Arm spitze vor als bei O. ophidians.

Die Papulae haben dieselbe büschelförmige Gestalt (s. p. 287) wie bei H. attenuata und sind auch hier so vertieft, dass auf ein sog. Porenfeld nur eine Papula kommt, die mit zunehmendem Alter immer mehr Ausstülpungen nach aussen entendet, die als scheinbar selbständige, dünnwandige, kegelförmige, 1 mm lange Bläschen aus den ebenso zahlreichen »Poren« des Porenfeldes austreten; nur ausnahmsweise kommen in einzelnen Feldern des Scheibenrückens nicht ein, sondern zwei büschelförmige Papulae zur Ausbildung. Aus der Anordnung der uns bei Betrachtung des Skeletes bekannt gewordenen Skeletlücken ergibt sich, dass die mit diesen Skeletlücken identischen Porenfelder sich so vertheilen, dass wir, ausser denjenigen des Scheibenrückens, an den Armen acht Längsreihen antreffen, nämlich zwei mediale und zwei laterale dorsale, dann jederseits eine marginale und eine ventrale. Die Zahl der in einem Porenfelder liegenden Poren beträgt bei erwachsenen, alten Thieren (z. B. Nr. 1) im proximalen Armabschnitt 20—25, seltener bis 28 (Müller & Troschel haben sogar bis 30 gezählt1); in den Porenfeldern des Scheibenrückens ist die Zahl der Poren etwas geringer: 15—20 (bei Exemplar Nr. 1) oder 10—16 (bei Exemplar Nr. 2). In der ventralen Reihe der Porenfelder zeigt sich bei alten Thieren (Nr. 1) dasselbe anscheinende Zusammenfiessen der aufeinander folgenden Felder wie in der inneren ventralen Reihe alter Individuen der H. attenuata (s. p. 288). Bei jüngeren Thieren (z. B. Nr. 12) beträgt die Zahl der Poren in den Armückenfeldern nur 7 oder 8. Ebenso sinkt in der Nähe der Armspitze die Zahl der Poren in jedem Felde auch bei alten Thieren in rascher Abnahme auf 7, 6, 5, 3 oder 4, 2 und schliesslich nur noch 1. Die letzte Papula der ventralen Längsreihe liegt bei Exemplar Nr. 2 an der 5./6. letzten unteren Randplatte; die letzte Papula der Randreihe an der 5./6. letzten oberen Rand-

1) Dass Greff (1872) nur 12—16 Poren angiebt, erklärt sich aus dem geringeren Alter seines Exemplares.
platte; die letzte der lateralen Rückenreihe an der 2./3. letzten Adradialplatte und die letzte Papula der medialen Rückenreihe an der 3./4. letzten Radialplatte (Taf. S, Fig. 25).

Im Armwinkel verhalten sich die Porenfelder in recht auffallender Weise anders als bei *H. attenuata*. Sie rücken nämlich an der Ventralseite bis in die Interradialebene vor, sodass genan in der Richtung des Interradius eine unpaare, büschelförmige Papula in der Fortsetzung der ventralen Porenfelderreih e die dort befindliche Skeletlücke einnimmt (Taf. S, Fig. 27, 29). Auch die Flankenreihe beginnt bereits in derjenigen Skeletlücke, die ventral von der Verbindungsstelle der ersten mit der zweiten oberen Randplatte liegt. Der papula-freie Bezirk beschränkt sich also hier, im Gegensatze zu *H. attenuata*, auf das ganz schmale Interbrachialfeld, das von der primären Interradi alplatte bis zu den ersten unteren Randplatten reicht.

Die Ambulacralfurchen, die an den conservirten Thieren in der Regel eng geschlossen erscheinen, können sich bei erwachsenen, lebenden Exemplaren bis zu einem Querdurchmesser von 7 mm öffnen. Die Adambulacralplatten erinnern in Form und Lagerung an die der *H. attenuata*, sind aber dadurch ausgezeichnet, dass die meisten von ihnen auf ihrer äusseren Oberfläche eine wulstförmige, ein Grübchen einschliessende Aufreibung für die Einlenkung des subambulacralen Stachelns besitzen. Von aussen gesehen haben sie im proximalen Armabschnitt erwachsener Thiere 0,9 mm Länge und 1,6—1,8 mm Breite. Der Zahl nach übertreffen sie die zunächst angrenzenden Ventrolateralplatten in noch geringerem Maasse, als das bei *H. attenuata* der Fall ist, indem im proximalen Armabschnitt auf die Länge von zehn Adambulacralplatten neun, manchmal aber auch genau zehn Ventrolateralplatten kommen.

Die Adambulacralbewaffnung, von der schon M. Sars (1857) und Greeff (1872) eine etwas nähere Beschreibung gegeben haben, ähnelt in Zahl, Form und Anordnung der Stacheln derjenigen der *H. attenuata*, doch sind alle Stacheln etwas plumper (dicker und breiter), und es bilden die subambulacralen Stacheln wenigstens im adoralen Theile des Armes eine dicht geschlossene Längsreihe. Die drei Stacheln einer jeden Adambulacralplatte zerfallen auch hier in die beiden Furchenstacheln und den Subambulacralstachel. Letzterer tritt durchweg in grösserem Abstande von jenen aus der granulirtten Haut hervor, als das bei *H. attenuata* geschieht; dieser Abstand beträgt bei dem Exemplare Nr. 1 im proximalen Armabschnitt 1,2 mm. Wie bei *H. attenuata* sind die beiden stumpf endigenden Furchenstacheln von ungleicher Stärke, aber im proximalen Armabschnitt von gleicher Länge; der aborale ist der schwächere und mit seiner Insertion ein wenig in die Furche hineingerückt (Taf. S, Fig. 28). Die Länge der Furchenstacheln misst im proximalen Armabschnitt erwachsener Thiere (Nr. 1) 2,25 mm. Die Breite des adoralen Stachelns beträgt 1—1,2 mm, die des aboralen nur 1/3—3/4 soviel. Beide Stacheln sind parallel zur Medianebene des Armes weniger stark comprimirt als bei *H. attenuata* und haben auf dem Querschnitt oft eine abgerundet dreieckige Gestalt, stellen also dann eigentlich abgerundet dreiseitig Prismen dar, die so orientirt sind, dass bei geschlossener Armfurche die Aussenkante des kleineren, aboralen Stachelns in den Winkel
zwischen den beiden nächsten, grösseren, adoralen Stacheln passt, und umgekehrt die Innenkante des adoralen Stachels zwischen zwei aborale Stacheln eingreift. Im mittleren und im distalen Abschnitte des Armes nimmt die Grösse der aboralen Furchenstacheln allmählich immer mehr ab, sodass sie nur ⅔ so lang und kaum noch halb so dick sind, wie die hier auch nur noch 1,5 mm langen, aber am äusseren Ende keulenförmig verdickten adoralen Stacheln. Infolgedessen werden hier bei geschlossener Armfurche die aboralen Stacheln von den adoralen so verdeckt, dass man sie bei äusserer Betrachtung des Armes gar nicht mehr wahrnimmt. Schliesslich, etwa an den fünfzehn letzten Adambulacralplatten, fehlen die aboralen Stacheln vollständig.

Auf der ersten, manchmal auch auf der zweiten Adambulacralplatte tritt wie bei *H. attenuata* zu den zwei Furchenstacheln noch ein dritter, überzähliger hinzu, der noch kleiner und schwächer ist und noch tiefer in der Ambulacralfurche steht als der aborale, an den er sich in aboraler Richtung anschliesst.

Der subambulacrale, nach aussen, d. h. nach dem Armrande geneigte Stachel jeder Adambulacralplatte hat eine stumpf endigende, im Ganzen mehr kegel- als cylinderförmige Gestalt. Bei einer Breite von 0,9—1 mm misst er im proximalen Armbereiche erwachsener Thiere, soweit er aus der Granulation der Haut hervorragt, an Länge 1,9 mm; in Wirklichkeit aber ist seine Länge viel ansehnlicher, bis 2,6 mm, da sein basaler Theil unter den Granula der Haut versteckt liegt. Löst man einen dieser Stacheln von seiner Insertion ab, so findet man, dass seine basale Hälfte in der Seitenansicht einen leicht geschwungenen Umriss darbietet und auf ihrer der Körperwand angedrückten Aussenseite eine bisher unbeachtet gebliebene Längsfurche besitzt, die den Subambulacralstacheln der *H. attenuata* fehlt und sich bis zur eigentlichen Basis des Stachels verfolgen lässt (Taf. 8, Fig. 19, 20). In dieser charakteristischen Längsrunne befindet sich ein Ligament, welches den Stachel in dem kleinen Gruben befestigt, das auf der ventralen Oberfläche der Adambulacralplatte angebracht ist und von einem Ringwulste umgeben wird. Ganz dieselbe Längsrunne an der Aussenseite der Subambulacralstacheln konnte ich auch bei anderen *Ophidiaster*-Arten (z. B. *O. cylindricus* Lam.) und bei *Pharia pyramidata* Gray auffinden. Dass die subambulacralen Stacheln der vorliegenden Art im adoralen Bezirke der Arme dichter stehen als bei *H. attenuata*, ist vorzugsweise durch ihre aussehlichere Breite bedingt; doch kommt auch in Betracht, dass die Adambulacralplatten bei *O. ophiadionus* überhaupt etwas kürzer sind und schon dadurch ihre Stacheln enger zusammenschrumpfen: während z. B. bei *H. attenuata* die zehn ersten Adambulacralplatten bei einem Exemplare von 85 mm Armradius zusammen 11 mm lang sind, messen sie bei einem Exemplare des *Ophidiaster ophiadionus* von 114 mm Armradius nur 9 mm an Länge. Indessen erstreckt sich die Reihe der Subambulacralstacheln in dieser dicht geschlossenen Form nur eine verhältnismässig kurze Strecke weit, indem sie bei jüngeren Thieren (z. B. Nr. 12) nur das erste Drittel, bei älteren (z. B. Nr. 1 und 2) nur das erste Viertel oder Fünftel der Länge des Armradius einnimmt. Von hier an bis zur Arm spitze lockert sich als dann die Reihe der Subambulacralstacheln in der Weise, dass zunächst nur hier und da, dann aber fast ganz regelmässig auf jeder zweiten
Adambulacralplatte der zugehörige Subambulacralstachel ausfällt, wie das bereits M. Sars (1857) in ganz zutreffender Weise beschrieben hat. So kommt es, dass im mittleren und im distalen Armabschnitt die aufeinanderfolgenden Subambulacralstacheln durchweg durch Abstände getrennt sind, die ihrer eigenen Dicke ungefähr gleichkommen.

Die Munddeckplatten, die eine ähnliche Form (Taf. S, Fig. 27) haben wie bei H. attenuata, tragen wie bei jener Art ihrem ambulacralen Rande entlang (Taf. S, Fig. 28, 29) eine aus vier Stück gebildete Reihe von stumpfen, fast cylindrischen Stacheln, deren erster eine Länge von 3—3,75 mm erreicht; die drei anderen nehmen nur unmerklich an Länge ab, sodass der vierte noch immerhin 2,5—2,7 mm lang ist, während bei H. attenuata der vierte Mundstachel erheblich kleiner ist als der erste. Was aber die Mundbewaffnung der vorliegenden Art noch sehr viel schärfer von derjenigen der H. attenuata unterscheidet, ist der völlige Mangel aller Stacheln auf der ventralen Oberfläche der Munddeckplatten, die hier lediglich von der granulirten Haut überzogen wird.

Die schon von D'Obergny (1839) abgebildete Madreporenplatte (Taf. S, Fig. 26) ist entweder annähernd kreisförmig oder länger als breit; bei Exemplar Nr. 1 z. B. misst ihr Längs- und ihr Querdurchmesser 2,5 mm; bei Nr. 4 und Nr. 5 ist sie 2,5—3 mm lang und 2—2,5 mm breit. Ihre Oberfläche ist noch flacher als bei H. attenuata, und die zahlreichen, feinen, dicht stehenden Furchen der Oberfläche erscheinen stärker gekrümmt und weniger deutlich nach einem gemeinschaftlichen Mittelpunkte geordnet als bei jener Art. Die Entfernung ihrer Mitte von der Mitte des Scheibenrückens ist im Gegensatz zu H. attenuata ebenso gross wie die Entfernung vom Scheibenrande. Auch bei der vorliegenden Art ist die Madreporenplatte ein besonderes Skeletstück für sich, das sich dem distalen Rande einer primären Interradialplatte sowie dem Rande der beiden benachbarten ersten Adradialplatten und den diese Adradialplatten mit der Interradialplatte verbindenden Connectiven von aussen auflagert.

Pedicellarien fehlen, wie schon Müller & Troschel angegeben haben, vollständig.

Die Färbung fast aller neapolitanischen Exemplare ist im Leben ein kräftiges, tiefes Karminroth := gebrannter Karmin, das manchmal noch etwas dunkler ist, als aus der beigegebenen Abbildung (Taf. 3, Fig. 4). Daneben kommen sowohl im Golfe von Neapel nach Mittheilung Lo Bianco's als auch anderswo (z. B. an den Kanaren nach Greeff) heller, mehr ziegel- oder orangerothe Individuen vor. An den Guinea-Inseln dagegen beobachtete Greeff fast niemals diese gleichmässige Färbung der Rückenseite; statt dessen sahen die Thiere bunt aus, indem mehr oder minder ausgedehnte, dunkelblaue Flecken sich von der orangefarbenen bis tiefrothen Grundfarbe abhoben. An mittelmeerischen Exemplaren ist bis jetzt ein derartiges geschecktes Farbenkleid noch in keinem Falle bemerkt worden. Betrachtet man die lebenden Thiere mit der Lupe, so erscheinen die feinen Granula der äusseren Hautschiicht wie winzige, gelbe Pünktchen. Die Madreporenplatte unterscheidet sich in ihrer Färbung in der Regel nicht von der übrigen Rückenseite, doch hat sie mitunter einen helleren oder einen noch tieferen Farbenton. Auch die Terminalplatte ist sehr häufig tiefer gefärbt, während ihre Buckel weisslich erscheinen. Die den After umstellenden Papillen machen sich meistens durch
eine weisslichgelbe Färbung bemerklich. Die Papulacae sind im ausgestreckten Zustande nur an ihrer Wurzel roth, sonst gelblich.

Die Unterseite (Taf. 3, Fig. 5) ist an den meisten Exemplaren heller als der Rücken, in der Regel zinnenroth; doch begegnet man auch Exemplaren, die an der ganzen Unterseite, mit Einschluss der Adambulacralstacheln, ebenso karminroth aussehen wie auf dem Rücken. Gewöhnlich aber sind die Adambulacralstacheln in derselben Weise wie bei H. attenuata an der Aussenseite ihrer Basis roth, mit einem darauf folgenden, unregelmässig begrenzten, weissen Gürtel, und dann an der Spitze orangefarbig. Die Füsschen sind bei den Einen intensiv gelb, bei den Anderen blass weisslichgelb.

In der Regel beschränkt sie sich in scharfem Gegensatze zu H. attenuata auf die Uferzone, wo sie in Tiefen von 1—3 m, aber ausserhalb des Bereiches der Fluth, lebt, sodass sie nur bei tiefer Ebbe unmittelbar am Strande gesammelt werden kann. Daneben geht sie aber auch, nach dem Zeugniss von M. SARS und GREEFF, in Tiefen von 9—36 m, und COLOMBO fand sie in einem Falle an der Westküste von Capri in 20—105 m. Ob die ganz vereinzelte Angabe von Staden, dass sie an den Azoren noch in S23 m lebe, völlig zuverlässig ist, erscheint mir ihrem sonstigen Vorkommen gegenüber etwas zweifelhaft, da Staden die Zugehörigkeit seines einzigen jungen Exemplares zu unserer Art zwar für wahrscheinlich erklärt, aber doch nicht genauer geprüft hat.

Was die Bodenbeschaffenheit angeht, so findet sich die in ihren Bewegungen nach Preyer (1886) sehr träge Art fast nur auf Felsen und Klippen und unter Steinen, und nur ausnahmsweise auf sandigem, schlammigem Boden. Ueber ihre Nahrung, Fortpflanzungs-zeit und Larvenform wissen wir ebensowenig wie bei H. attenuata. In der Gefangenschaft lässt sie sich gleich dieser nur kurze Zeit am Leben erhalten, um dann unter Ausstülpung der Eingeweide und Einschnürung oder Ablösung der Arme abzusterben.

Armspitze. Die Insertionsstelle der Genitalorgane ist weiter in den Arm gerückt als bei *H. attenuata*; bei dem Exemplar Nr. 2 z. B. befindet sie sich zwischen der siebenten und der achten oberen und unteren Randplatte. Jedes Genitalorgan ist von langgestreckter, traubenförmiger Gestalt und zerfällt in zwei Hauptäste, von denen der längere in distaler Richtung verläuft und an dem vorliegenden Exemplar etwa 3 cm vor der Armspitze endigt, während der kürzere Ast in proximaler Richtung nach der Scheibe hinzieht, sie jedoch nicht erreicht.

Fam. Echinasteridae.

Arme lang, fast drehend, ebenso wie die Scheibe von weicher, drüsenreicher Haut überkleidet, welche im Leben die Skeletplatten und auch die kleinen, diesen aufsitzenden Stacheln verhüllt; Rückenskelet unregelmäßig, aus größeren Hauptplatten und kleineren Connectivplatten gebildet; zwischen den oberen und unteren Randplatten kommen Zwischenrandplatten vor; Ventrolateralplatten auf den proximalen Armabschnitt beschränkt; keine Pedicellarien; Papulae in kleinen Büscheln in den dorsalen Skeletmaschen (= Porenfeldern); Füsschen zweireihig, mit deutlicher Saugscheibe.

Im Mittelmeer nur eine Art: *E. sepositus* (Gr.).

19. Art. Echinaster sepositus (Gray).

Taf. 4, Fig. 1, 5; Taf. 10, Fig. 1—18.

1733 Pentadactylosaster asper reticulatus digitis brevioribus linek p. 35; T. 4, Nr. 5. 1826 Asterias seposita Risso p. 270.

1792 Asterias rubens Olivi p. 65. 1834 Asterias seposita Blainville p. 240.

1805 Asterias sanguinolenta Retzius p. 221).

1816 Asterias seposita Lamarck Vol. 2, p. 562—563 (partim 3)).

1817 Asterias seposita Lamarck Vol. 3, p. 251 (partim 3)).

1. Die von Reitzus (1753 und 1805) als *Asterias seposita* bezeichnete Art gehört nach Müller & Troschel (1812, p. 126—127) nicht hierher, sondern ist mit *Cribrella oculata* identisch. Das ergibt sich auch schon aus dem bei Retzius angegebenen Fundort und aus dem Umstande, dass er in seiner Diagnose sagt: »aculeis pectinatis«.

2. Wie aus den Fundortsangaben und der Beschreibung Lamarck’s hervorgeht, hat er *Echinaster sepositus* und *Cribrella oculata* in eine Art zusammengeworfen.

Diagnose. Grösse bis 300 mm. \(r : R = 1 : 6 - 7,75 \). In der Haut zahlreiche, bis 0,8 mm grosse Drüsen und zerstreute, winzige, verästelte oder gitterförmige Kalkkörperchen. Die Skeletplatten tragen einen oder mehrere kleine, cylindrische Stacheln, die sich in der Nähe der Adamantinalplatten gewöhnlich in zwei Längsreihen ordnen. Rückenskelet der Arme und der Scheibe mit unregelmässiger Anordnung der Skeletmaschen; in den Maschen

1) Verany führt diesen Namen als einen Delia Chiaja'schen an. Delia Chiaja's Asterias rosacea ist aber identisch mit Asterias (Palinipes) membranacea. Da nun Verany Asterias rosacea und A. membranacea nebeneinander nennt, also wohl auch verschiedene Thiere damit meint, so vermute ich, dass Verany's rosacea durch einen Schreibfehler aus Delia Chiaja's rossa = Asterias rubens entstanden ist, sich also auf die vorliegende Art bezieht.

1840 Asterias rubens Costa p. 56.
1841 Asterias rubens Delle Chiaja Vol. 4, p. 59; Vol. 5, p. 121; T. 126, f. 1, 6, 7, 15, 16; T. 128, f. 9; T. 129, f. 19; T. 171, f. 5, 10—12, 24.
1842 Echinaster sanguinolentus Müller & Troschel p. 23.
1846 Echinaster rosacea Verany p. 51.
1851 Echinaster soroitus Busch p. 77—80; T. 12.
1860 Echinaster soroitus Lorenz p. 678.
1862 Cribella soroita Dujardin & Hopé p. 351.
1863 Echinaster soroitus Heller p. 444.
1864 Echinaster soroitus Grube p. 105.
1866 Rhopia soroita Gray p. 12.
1868 Echinaster soroitus Heller p. 53.
1869 Cribella soroita P. Fischer p. 366.
1869 Echinaster soroitus Perrier p. 249.
1875 Echinaster soroitus Perrier p. 108.
1876 Echinaster soroitus Perrier p. 68.
1876 Echinaster soroitus Teuscher p. 503, 504, 512; T. 18, f. 11, 12; T. 19, f. 19, 23.
1878 Echinaster soroitus Perrier p. 13, 15, 77.
1879 Echinaster soroitus Viguier p. 123—126; T. 7, f. 1—7.
1879 Echinaster soroitus Ludvig p. 538—539;.
1881 Echinaster soroitus Graeffe p. 334, 335, 339.
1883 Echinaster soroitus Stossich p. 190—191.
1883 Echinaster soroitus Marion (Nr. 1) p. 45, 56, 57, 60; (Nr. 2) p. 19.
1885 Echinaster soroitus Carus p. 86.
1885 Echinaster soroitus Braun p. 398.
1886 Echinaster soroitus Preyer p. 30.
1886 Echinaster soroitus Norman p. 6.
1888 Echinaster soroitus Lo Bianco p. 396.
1888 Echinaster soroitus Cuénot p. 11—13, 29, 33, 34, 36, 79, 91—93, 95, 99, 105, 117, 124, 132; T. 1, f. 15—17; T. 2, f. 14—16, 21, 26; T. 3, f. 16; T. 5, f. 7, 8, 10—12; T. 6, f. 1; T. 8, f. 13, 14; T. 9, f. 8, 15.
1889 Echinaster soroitus Sladen p. 553, 510.
1894 Echinaster soroitus Kocher p. 4 (== 106).
1894 Echinaster soroitus Perrier p. 30, 32, 33, 145—
151, T. 11, f. 2a—2e.
1895 Echinaster soroitus Sluter p. 64.
1895 Echinaster soroitus v. Marenzeller p. 23.
1896 Echinaster soroitus Marchisio p. 2.
1896 Echinaster soroitus var. mediterraneus Marchisio p. 2—3.

Bei ihrer Häufigkeit und ihrer auffallenden, gellrothen Färbung gehört die vorliegende Art sicherlich zu den Formen, die der Küstenbevölkerung der Adria und des westlichen Mittelmeeres von Alters her bekannt sind. In der zoologischen Literatur wird sie zuerst von Aldrovandi (1638) als Stella rubra erwähnt, wie sie denn auch hentzutage noch bei den italienischen Fischern den Namen Stella rossa (nach Olivi, Delle Chiaje, Grube und nach mündlicher Mittheilung Lo Bianco's) führt. Linck (1733) kannte sie von Barcelona und stellte sie mit der besonderen Bezeichnung »reticulatus digitus brevirobus« in seine »Species« Pentadactylosaster asper, in der er mehrere durchaus verschiedene Arten zusammenfasste. Der nächste Autor, der unsere Art — und zwar zum ersten Male aus der Adria — erwähnt, ist Olivi (1792); ebenso wie später Delle Chiaje (1825, 1841) und A. Costa (1840) glaubte er aber irrthümlicherweise, die Linxe'sche Asterias rubens vor sich zu haben. Als selbständige Form wurde sie zuerst von Retzus (1805) erkannt, aber zugleich ohne hingänglichen Grund in zwei Arten auseinandergerissen, die er Asterias sagena und Asterias sanguinolenta nannte. Jedoch schon früher hatte derselbe Forscher (1783) eine ähnlich aussendende, nordische Art, die heutige Cribrella oculata, als Asterias seposita unterschieden und damit den später für unsere Art üblich gewordenen Speciesnamen eingeführt. In der Meinung, dass diese Retzus'sche Asterias seposita mit der Mittelmeer-Art identisch sei, nannten dann Lamarck (1816) und seinem Beispiel folgend auch Risso (1826), Blainville (1834), Nardo (1834), L. Agassiz (1835) und Grube (1840) unseren See stern Asterias seposita. Erst Müller & Troeschel (1842) klärten diesen anfänglich auch von ihnen getheilten Irrthum auf, indem sie zeigten, dass es sich bei Asterias seposita ihrer Vorgänger um zwei verschiedene Arten handele: eine nordische, die eigentliche seposita (= Cribrella oculata), und um eine mittelmeerische, die Retzus als sagena und sanguinolenta bezeichnet hatte. Streng genommen hätte von nun an, wie auch Müller & Troeschel zugeben, die mittelmeerische Art den Namen sanguinolenta (oder sagena) erhalten.

1) Die neapolitanischen Fischer wenden die Bezeichnung Stella rossa aber zugleich auf die beiden carminrothen Arten Ophidiaster ophidianus und Hacelia attenuata an.

40*
müssen. Damit wäre aber, soweit der Speciesnamen *sanguinolenta* in Betracht kommt, eine Confusion mit der O. F. MüLLer'schen *Asterias sanguinolenta*, die wieder mit *Cribrella oculata* identisch ist, herbeigeführt worden. MüLLer & Troschel zogen es also vor, da auch die Retzu*sche seposita* sich als ein Synonym zu *oculata* herausgestellt hatte, einen dieser Namen für die vorliegende Art festzuhalten, und wählten dazu die Bezeichnung *seposita*, während es vielleicht besser gewesen wäre, auf den anderen Retzu*schen Namen *sagena* zurückzugreifen. Will man nun nicht in schärfster Anwendung des Prioritätsprincips den seitdem in Vergessenheit gerathenen Namen *sagena* wieder aufleben lassen, so empfiehlt es sich, bei der MüLLer & Troschel'schen, allseitig anerkannten Bezeichnung der Art zu bleiben. Freilich kann man dann nicht Retzu als den Urheber dieses Namens in seinem heutigen Sinne zur Bezeichnung der vorliegenden Art anführen, aber genau genommen auch nicht MüLLer & Troschel. Denn noch früher als MüLLer & Troschel hat Gray (1840) den Namen *seposita* in demselben Sinne in Anwendung gebracht, wenn er auch mit Unrecht für zwei Exemplare mit abnormaler Armzahl ein sechs- und ein siebenarmiges eine zweite Art als *mediterranea* davon abtrennte.

Der neuerdings (1893) von Russo aufgestellten Behauptung, dass neben der echten *seposita* auch die *oculata* im Mittelmeer lebe, muss ich ganz entschieden widersprechen. Es findet sich zwar dieselbe Angabe schon bei MüLLer & Troschel, kann aber hier, da seitdem niemand eine wirkliche *oculata* aus dem Mittelmeer nachweisen konnte, nur auf falscher Etiquettierung eines Museumsexemplares beruhen. Was aber Russo *oculata* nennt, sind ganz sicher nur halbwüchsige Exemplare der *seposita*: ich bin überzeugt, dass er niemals zu seiner Ansicht gekommen wäre, wenn er echte Exemplare der *Cribrella oculata* vor sich gehabt und genau mit seinen Thieren verglichen hätte.

ihrem älteren weiteren Sinne auf, vereinigt also damit die Gattung *Cribrella*; doch machen seine oberflächlichen Ausführungen, wie ich schon bemerke, den Eindruck, als sei ihm die Gattung *Cribrella* aus eigener Anschauung gar nicht hinreichend bekannt.

In ihrem Habitus (Taf. 4, Fig. 4, 5) kennzeichnet sich die Art unter den übrigen Seesternen des Mittelmeeres durch ihre einförmige, scharlachrothe Farbe, den anscheinend völligen Mangel von Randplatten und die unregelmässige Anordnung kleiner Stacheln, die auf den ein ziemlich weitmaschiges Netzwerk bildenden Skeletstückchen der dorsalen und seitlichen Körperwand angebracht sind, jedoch in der Nähe der Ambulacralfurchen zur Bildung von Längsreihen neigen. Die im Verhältniss zur Scheibe langen Arme sind fast drehrund, nur in der Nähe der Ambulacralfurchen etwas abgeflacht; sie verjüngen sich allmählich von ihrer Basis bis zur abgerundeten Spitze, sind aber manchmal an ihrer Basis, wie bereits DELLE CHIAJE bemerke, ein wenig eingeschnürt, d. h. schmäler als in dem nächstfolgenden Bezirke, was sich teils aus einer gelegentlichen starken Contraction der Armbasis, teils aber auch aus einer Aufreibung des proximalen Armabschnittes zur Zeit der Geschlechtsreife erklärt. An den Armfurchen, in denen die mit deutlicher Einderrung ausgestatteten Füsschen wie bei allen bisher betrachteten Arten in zwei Längsreihen stehen, fällt auf, dass sie durch ein alternirendes Einander greifen der beiderseitigen Furchenstacheln vollständig verschlossen werden können.

Individuen mit einer anderen als der normalen Fünfzahl der Arme sind zwar nicht häufig, kommen aber immerhin mitunter vor. So erwähnt schon DELLE CHIAJE (1825), dass die Zahl der Arme variiren könne, und GRAY (1840) hat sich sogar dazu veranlasst gesehen, auf ein

Die Körpergrösse scheint im Maximum eine Länge von 300 mm zu erreichen. Köehler erwähnt solche Exemplare von La Ciotat, und die von Müller & Troschel angegebene Maximallänge von 10 Zoll (= 262 mm nach rheinischem oder 271 mm nach pariser Maass) bleibt nicht viel dahinter zurück. Auch bei Neapel traf ich einzelne besonders grosse Individuen an; bei einem derselben maass ich eine Länge von 253 mm, bei einem anderen von 280 mm. Viel häufiger sind allerdings Thiere von 100—150 mm Länge, sowie noch kleinere, nur 60—100 mm lange. Weniger oft begegnet man noch kleineren Thieren, und nur recht selten finden sich ganz junge von nur 10—12 mm Länge. Von den beiden kleinsten, die mir vorliegen, hat das eine eine Länge von 10, das andere eine solche von 11 mm; noch etwas kleiner, nur 9 mm lang, war ein von Perrier (1894) beschriebenes Exemplar, auf das ich im Folgenden mehrfach zu sprechen kommen werde.

Echinaster sepositus.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>r : R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>280</td>
<td>155</td>
<td>20</td>
<td>1 : 7,75</td>
</tr>
<tr>
<td>2</td>
<td>253</td>
<td>140</td>
<td>20</td>
<td>1 : 7</td>
</tr>
<tr>
<td>3</td>
<td>170</td>
<td>90</td>
<td>17</td>
<td>1 : 5,29</td>
</tr>
<tr>
<td>4</td>
<td>157</td>
<td>87</td>
<td>12</td>
<td>1 : 7,25</td>
</tr>
<tr>
<td>5</td>
<td>145</td>
<td>80</td>
<td>13</td>
<td>1 : 6,15</td>
</tr>
<tr>
<td>6</td>
<td>143</td>
<td>79</td>
<td>12</td>
<td>1 : 6,58</td>
</tr>
<tr>
<td>7</td>
<td>137</td>
<td>76</td>
<td>11</td>
<td>1 : 6,9</td>
</tr>
<tr>
<td>8</td>
<td>134</td>
<td>74</td>
<td>11</td>
<td>1 : 6,73</td>
</tr>
<tr>
<td>9</td>
<td>119</td>
<td>66</td>
<td>11,5</td>
<td>1 : 5,74</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>55</td>
<td>9</td>
<td>1 : 6,1</td>
</tr>
<tr>
<td>11</td>
<td>98</td>
<td>54</td>
<td>10</td>
<td>1 : 5,4</td>
</tr>
<tr>
<td>12</td>
<td>89</td>
<td>49</td>
<td>8,5</td>
<td>1 : 5,76</td>
</tr>
<tr>
<td>13</td>
<td>83</td>
<td>46</td>
<td>7</td>
<td>1 : 6,57</td>
</tr>
<tr>
<td>14</td>
<td>78</td>
<td>43</td>
<td>8</td>
<td>1 : 5,37</td>
</tr>
<tr>
<td>15</td>
<td>72</td>
<td>40</td>
<td>7,5</td>
<td>1 : 5,33</td>
</tr>
<tr>
<td>16</td>
<td>69</td>
<td>38</td>
<td>8</td>
<td>1 : 4,75</td>
</tr>
<tr>
<td>17</td>
<td>67</td>
<td>37</td>
<td>7</td>
<td>1 : 5,3</td>
</tr>
<tr>
<td>18</td>
<td>45</td>
<td>25</td>
<td>5</td>
<td>1 : 5</td>
</tr>
<tr>
<td>19</td>
<td>40</td>
<td>22</td>
<td>5</td>
<td>1 : 4,1</td>
</tr>
<tr>
<td>20</td>
<td>36</td>
<td>20</td>
<td>5</td>
<td>1 : 4</td>
</tr>
<tr>
<td>21</td>
<td>28</td>
<td>15,5</td>
<td>4</td>
<td>1 : 3,87</td>
</tr>
<tr>
<td>22</td>
<td>20</td>
<td>11</td>
<td>3,5</td>
<td>1 : 3,14</td>
</tr>
<tr>
<td>23</td>
<td>18</td>
<td>10</td>
<td>2,75</td>
<td>1 : 3,64</td>
</tr>
<tr>
<td>24</td>
<td>11</td>
<td>6</td>
<td>2</td>
<td>1 : 3</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>5,5</td>
<td>2</td>
<td>1 : 2,75</td>
</tr>
</tbody>
</table>

Nicht selten trifft man auf Exemplare, bei denen ein oder wohl auch mehrere Arme erheblich kürzer sind als die anderen und entweder in ihrer ganzen Länge oder doch in ihrem distalen Theile durch Regeneration von ganz oder theilweise verloren gegangenen Armen ihre Entstehung genommen haben. Mir liegen derartiger Exemplare vier vor, an denen die Bruch- und Regenerationsstelle sich bald dicht an der Scheibe, bald ungefähr in der Längsmitte des Armes befindet. An dem einen (R = 55, r = 10 mm) ist nur ein Arm hart an der Scheibe verloren gegangen; die Wunde ist vernarbt, aber die Neubildung des Ersatzarmes hat noch nicht begonnen. An dem zweiten Exemplare (R = 45, r = 8 mm) ist auch nur ein Arm verletzt gewesen; er zeigt in einem Abstande von 19 mm vom Munde eine vernarbte Bruchstelle, aus der eine erste 2 mm lange neue Armpitze hervorragt. An dem dritten Exemplare (R = 36, r = 7 mm) sind zwei Arme in Regeneration; der eine war dicht an der Scheibe abgebrochen, und an seiner Stelle hat sich ein jetzt erst 15 mm (vom Munde an gemessen) langer Ersatzarm gebildet; der andere besitzt 20 mm vom Munde eine Regenerationsstelle, an
welche sich ein 6 mm langes neugebildetes Armende anschliesst. Die stärksten Verletzungen
hatte das vierte Exemplar erlebt: denn an ihm befinden sich alle fünf Arme in Regeneration.
Das Exemplar hat einen Scheibenradius von 7 mm, muss also im unverscherten Zustande einen
Armradius von rund 35 mm besessen haben. Der eine Arm ist 19 mm vom Munde abge-
brochen, die vier anderen sind dicht an der Scheibe verloren gegangen. An jenen ragt aus
der Narbe ein 4 mm langes neues Armende hervor. Von den vier anderen Armen ist die
Bruchstelle des einen jüngeren Datums als die der anderen; denn sie trägt einen erst 1 mm
langen neuen Arm, während die neuen Arme der drei anderen Bruchstellen 5,5—6 mm
lang sind.

Die Breite der Arme, an ihrer Basis gemessen, beträgt in der Regel nur 1—2 mm
mehr als der Scheibenradius: sie misst z. B. bei Nr. 3 18 mm, bei Nr. 6 14 mm, bei Nr. 7
12 mm, bei Nr. 10 10 mm, bei Nr. 13 8 mm. Bei jungen Thieren beträgt diese Differenz
noch weniger, z. B. bei Nr. 18 und Nr. 20 nur 0,5 mm, und bei den kleinsten, z. B. Nr. 24
und 25, ist die Armbreite ebenso gross oder sogar etwas grösser als der Scheibenradius. Ver-
gleicht man die Armbräite (AB) mit der Länge des Armradius, so erhält man bei erwachsenen
und bei halbwüchsigen Thieren (Nr. 3, 4, 6, 7, 8, 10, 11, 13, 15, 17 der Tabelle) das durch-
schnittliche Verhältniss AB : R = 1 : 5,52 (im Minimum 1 : 4,69, im Maximum 1 : 6,33). Der
Armradius ist also gewöhnlich 5—6 mal so lang, wie die Arme an ihrer Basis breit sind. Bei
jungen Thieren ist der Armradius verhältnismässig um so kürzer im Vergleich zur Armbräite,
ejünger das Thier ist; so berechnet sich z. B. das Verhältniss AB : R bei Nr. 18 zu 1 : 4,54,
bci Nr. 20 zu 1 : 3,64, bei Nr. 24 zu 1 : 3, bei Nr. 25 zu 1 : 2,5.

In der Cutislage der dicken, am lebenden Thiere ganz weichen, äusseren Haut findet
man bei jungen wie bei alten Individuen in reichlicher Anzahl zerstreut liegende, winzige,
verästelte und gitterförmige Kalkkörperchen von durchschnittlich 0,06 mm Grösse, die bisher
unbeachtet geblieben waren, aber auch bei anderen Echinaster-Arten vorkommen, denn v. Maren-
zeller erwähnt ähnliche Kalkkörperchen bei seinem *E. callosa* von den Salomons-Inseln. *)

Ferner beherbergt die Haut in ihrer bindigewebigen Schicht, nach aussen von den
Skelettplatten, ungemein zahlreiche, grosse Drüsen, auf welche Teusch er (1876, p. 512, T. 19,
f. 23) zuerst aufmerksam gemacht hat. Bei alten Thieren fand ich sie noch grösser, als ihr
Entdecker angiebt, indem sie in ihrem längsten Durchmesser 0,6—0,8 mm maassen. Hat
man das sie verdeckende Körperepithel entfernt, so kann man sie an ihrer opaken, weisslichen
Färbung in den sie einzeln umschliessenden, grossen Maschen der Cutis schon ohne weitere
Präparation mit der Lupe erkennen; so, von aussen gesehen, haben sie bald einen rundlichen,
bald einen mehr länglichen oder abgerundet-eckigen Umross. Auf dem Rücken und an den
Flanken der Scheibe und der Arme bevorzugen sie die Ränder der Porefelder, aber auch in der
Nähe der Ambulacralfurchen, auf den dort befindlichen unteren und oberen Randplatten, sind sie
nicht minder reichlich vorhanden; dagegen vermisst man sie mitten in den Porefeldern

zwischen den daselbst angebrachten Papulae. Nach kurzer Behandlung mit Kali, Entfernung der Epidermis und Zurückführung des Präparates in Alkohol bietet die Rückenwand der Arme grosser Exemplare, von aussen gesehen, das in Fig. 10, Taf. 2 wiedergegebene Bild dar, in dem man deutlich erkennt, dass die Drüsen im Allgemeinen den von den Skeletplatten gestützten Leisten folgen, welche die eingesunkenen Porenfelder umgrenzen. Um jede Drüse bilden Züge eines straffen Bindegewebes eine längliche Masche. Die Drüsen rücken auch in den Randbezirk der Porenfelder, überlassen aber deren tiefsten, centralen Theil ausschliesslich den hier austretenden Papulae. Präparirt man jetzt weiter, so gelingt es, die Drüsen als längliche oder rundliche Klumpen aus den Bindegewebsmaschen herauszuhören.

Die von der Epidermis des lebenden Thieres überkleideten und erst am conservirten Thiere deutlich hervortretenden, kleiner Stacheln, die sich über die Oberfläche des ganzen Körpers vertheilen, beschränken sich durchaus auf die darunter befindlichen Skeletplatten, fehlen also über allen Skeletücken. Mit den Skeletplatten sind sie, wie Viguier (1879) richtig beschrieben hat, in der Weise verbunden, dass sich auf der Oberfläche der Platte für jeden Stachel ein niedriger, kreisrunder Gelenkhöcker erhebt, der die Gestalt eines Ringwalles besitzt, in dessen Mitte sich für die Befestigung eines von der Stachelbasis ausgehenden Ligamentes ein kleines, schon von Delles Chaia (1841) abgebildetes Grübchen befindet\(^3\). Man könnte diese Gelenkhöcker, die übrigens auch schon bei anderen Seesternen durch Gaudry und Loriol bekannt sind und uns bei den Asterias-Arten wiederbegegnen werden, in demselben Sinne, wie es

\(^1\) loc.
\(^2\) Schon Delles Chaia (1841) erwähnt, dass der Hautschleim dieser Art auf seinen Händen Röthung und Jucken hervorgerufen habe.
\(^3\) Bei Cribrella oculata sind derartige Gelenkhöcker nicht vorhanden, sondern die Stacheln sitzen, gewöhnlich in einem Büschel, auf einer leicht gewölbten Verdickung der unterliegenden Skeletplatte. Perrere (1894) scheint dieses Verhältniss zu meinen, wenn er (p. 112 in seiner Bestimmungstabelle) als Unterscheidungsmerkmal derGattungen Echinaster und Cribrella anführt, dass bei Echinaster die Stacheln der Dorsalplatten einem vorspringenden Tuberkel aufsitzen, dagegen bei Cribrella eines »mamelon de support« entbehren.

bei den ähnlichen, nur grösseren und höheren Gelenkwarzen der Cidariden, Diadematiden und anderer Seeigel üblich ist, als »durchbohrte« oder gekerbte Stachelwarzen bezeichnen. Die meisten Skeletplatten unserer Art tragen einen oder zwei Stacheln; seltener finden sich drei auf einer Platte, und nur auf den Platten des Scheibenrückens stehen oft deren noch mehr (4 oder 5); durch besonderen Reichtum an Stacheln zeichnet sich aber stets die Madreporenplatte (Taf. 10, Fig. 17) aus. In der Regel liegen die Gelenkhhöcker in der Nähe des übergreifenden Randes der betreffenden Skeletplatte (Taf. 10, Fig. 1). Die einzelnen Stacheln haben die Form eines kurzen, verhältnissmässig dicken, am freien Ende abgerundeten und ebendort fein bedornten Cylinders, der bei erwachsenen Thieren eine Länge von 0,8—1,1 mm und eine Dicke von 0,33—0,4 mm hat.

In Folge der unregelmässigen Anordnung der gleich zu besprechenden Skeletplatten des Rückens und der Seiten sind auch die Stacheln in ganz regellosier Weise über die Oberseite und die Flanken vertheilt. In der Nähe der Adambulacralplatten jedoch ordnen sie sich in zwei oft ganz deutliche, manchmal freilich auch etwas unregelmässige Längsreihen, eine äussere und eine innere, von denen die äussere sich im Armwinkel von der inneren zu entfernen strebt. Im grössten Theile dieser beiden Längsreihen stehen die Stacheln einzellig, nur hier und da zweizeilig; auch sind sie stets ein wenig weiter auseinander gerückt als die Stacheln der aufeinander folgenden Adambulacralplatten. Durch die nachher zu schildernde postembryonale Entwicklung des Skeletes ergiebt sich, dass die beiden eben erwähnten Längsreihen von Stacheln den obeneren und unteren Randplatten aufsitzen und deren Lage auch am nicht weiter präparirten Thiere verrathen. Auf diese Stacheln der Randplatten bezieht sich die Angabe von Müller & Troschel, dass die Stacheln »sich nahe den Furchen in zwei bis drei Längsreihen ordnen«. Und wenn in scheinbarem Gegensatze dazu Grube (1840) sagt, dass die Stacheln »unten jederseits in vier Längsreihen« stehen, so kann das nur so zu verstehen sein, dass Grube hier die beiden Reihen der ausseren sichtbaren Adambulacralstacheln (die Reihe der Subamblacralstacheln und die Reihe der äusseren Furchenstacheln, s. p. 336) mitgezählt hat.

Die Skeletplatten, deren Form und Anordnung man erst an Kalkpräparaten deutlich übersicht, bilden auf dem Rücken der Scheibe sowie auf dem Rücken und an den Seiten der Arme ein Maschenwerk (Taf. 10, Fig. 1), das ohne jede erkennbare Ordnung aus grösseren und kleineren, abgerundet polygonalen Skeletlücken besteht, die zur Aufnahme der später zu besprechenden Papulac dienen. Auf dem proximalen Abschnitt des Armrückens sind die Maschen durchweg am grössten und erreichen hier bei erwachsenen Thieren einen Durchmesser von 1,7—3 mm; dazwischen liegen aber auch kleinere, nur 0,7—1,5 mm grosse. Auf dem Scheibenrücken zeichnet sich durch besondere Grösse die Skeletlücke aus, in der sich der After befindet; sie misst im Durchmesser bis 2,5 mm. An den Seiten der Arme sowie in der Nähe der Terminalplatte nimmt die Grösse der Maschen immer mehr ab. So z. B. messen die den oberen Randplatten (Taf. 10, Fig. 3) zunächst gelegenen Maschen im proximalen Armabschnitt erwachsener Thiere durchschnittlich nur noch 1 mm, und im distalen Bezirke des Armrückens verschwinden die Maschen schliesslich in der Nähe der Terminalplatte bei den meisten Exemplaren fast völlig;
Echinaster setosus.

323

doeh findet man bei einzelnen Individuen auch noch an der Armpitze ziemlich grosse Skelet-
lücken. Eine gute Uebersicht über die wenigstens auf dem Rücken der Arme durchaus un-
regelmässige Anordnung der Skeletmaschen hat Viguier in einer seiner Abbildungen (1879,
T. 7, f. 1) niedergelegt.

Die Platten selbst sind von unbedeutender Dicke und Grösse und bauen in der Weise
das Gitterwerk des dorsalen Skeletes auf, dass sie dachziegelig übereinander greifen und dabei
in der Regel — doch fehlt es hier und da nicht an Ausnahmen — mit ihrem adoralen
Rande dem aboralen Rande der nächsten Platte aufliegen. Es lassen sich zwei Hauptformen
von Platten unterscheiden: erstens grössere, meist drei-, vier- oder selbst fünflappig umrandete,
die die Knotenpunkte des Gitterwerkes bilden, und zweitens kleinere, längliche oder gestreckt
dreilappige, aus denen sich die Stäbe des Gitterwerkes so zusammensetzen, dass der einzelne
Stab gewöhnlich aus mehreren (zwei oder drei) solchen Platten besteht. Die grösseren Platten sind
bei erwachsenen Thieren 1,5—1,8 mm, die kleineren, schmäleren 1—1,7 mm lang. An der
Armpitze verringert sich die Grösse der Platten bis auf 0,3 mm; auch lassen sich hier die
Platten nicht mehr in zwei Sorten unterscheiden, sondern stellen sämtlich annähernd kreis-
runde oder etwas eckige Scheiben dar.

Beia halbwüchsigen Thieren (z. B. Nr. 19) ist, abgesehen von der Armpitze, der Grössen-
unterschied zwischen den grösseren und kleineren Platten des Rückenskeletes (Taf. 10, Fig. 14)
viel deutlicher als später; die Maschen sind kleiner; die grösseren Platten stehen zum Theil
noch in unmittelbarer Berührung miteinander, und, wo sie auseinandergerückt sind, wird ihre
Verbindung noch nicht wie später durch eine Reihe von zwei oder drei, sondern durch eine
zweite Platte hergestellt. Zugleich zeigt sich, dass diese kleinere Platte an ihren
beiden Enden von den grösseren, älteren Platten überlagert wird, sich also auch in dieser
Hinsicht wie eine echte Connectivplatte (s. p. 141, 279, 304) verhält. Wir können demnach die
beiden Sorten von Platten, die wir vorher beim alten Thiere zunächst nur als grössere
und kleinere unterschieden hatten, auch als ältere oder Hauptplatten und jüngere oder
Connectivplatten auseinanderhalten. Die unter sich gleichartigen Platten, die auch bei
den jungen und den halbwüchsigen wie bei den alten Thieren am Armende allein das Rücken-
skelet darstellen, scheinen bei weiterem Wachstume des Armes alle zu den eben als Haupt-
platten bezeichneten Skeletstücken zu werden.

Bei den jüngsten der mir vorliegenden Thiere (Nr. 24 und 25) fehlen die Connectiv-
platten nicht nur an der Armpitze, sondern im ganzen Bereiche der Arme und der Scheibe
noch gänzlich; das Rückenskelet dieser jungen Thiere besteht lediglich aus späteren Haupt-
platten, die in der proximalen Armhälfte nur kleine Lücken zwischen sich lassen, in der
distalen Hälfte aber nicht aneinanderschliessen. Die ersten Connectivplatten treten erst bei
Exemplaren auf, deren Armradius rund 9 mm misst, und zwar stellen sie sich zuerst in einigen
Skeletlücken des Scheitels ein (Taf. 10, Fig. 13). Solange im Dorsalskelet der Arme nur die
Hauptplatten vorhanden sind, zeigen diese durchgängig das Bestreben, in proximaler Richtung
dachziegelig übereinander zu greifen. Hand in Hand mit der durch die Entwicklung der Papulae

41*
sich immer mehr steigernden Größenzunahme der Skeletlücken werden später die Connectivplatten immer zahlreicher und drängen die anfänglich eineinander stossenden Hauptplatten weiter und weiter auseinander.

Bei jungen Thieren lässt sich auch eine gewisse Regelmasse in der Anordnung der Hauptplatten auf dem Rücken der Arme erkennen, die später völlig verloren geht. So zählt man bei jungen Thieren (z. B. Nr. 24 und 25) auf dem proximalen und mittleren Armbereich (Taf. 10, Fig. 7, 12) drei Längsreihen von Platten, die aber nicht alle drei ununterbrochen verlaufen. An dem in Taf. 10, Fig. 7 abgebildeten Arme des Exemplares Nr. 25 z. B. bemerkt man an der Basis des Armes eine stärker entwickelte, mediane Plattenreihe, die wir wie bei anderen Seeesternen als die Reihe der Radialia bezeichnen, und jedes davon eine schwächer ausgebildete, laterale Reihe, die wir auch hier die Reihe der Adradialia nennen. Auf das erste Radiale, auf das wir bei Betrachtung des Scheibenrückens zurückkommen werden, folgt ein zweites Radiale, und auf jedes erste Adradiale ein viel kleineres zweites Adradiale. Nun aber wird die Sache dadurch abgeändert, dass die beiderseits folgenden Adradialia (das dritte und vierte) so gross sind, dass sie in der Medianlinie des Armes sich berühren, über einander greifen und so die regelmässige Fortsetzung der radialen Reihe unterbrechen. In Folge dessen haben wir jetzt eine Strecke weit nicht drei, sondern nur zwei Längsreihen dorsaler Armplatten. Weiterhin aber wird die Anordnung wieder eine dreireihige, indem das fünfte, sechste und siebente Adradial mit seinem Gegenüber nicht mehr in der Medianlinie des Armes zusammentrifft, sondern hier genügenden Raum für die Ausbildung einer dritten, vierten und fünften Radialplatte lässt. Vielleicht wäre es richtiger, diese drei Radialplatten als fünfte bis siebente zu bezeichnen, da die eigentlich dritte und vierte unterdrückt und gar nicht mehr zur Entwicklung gelangt sind. Distal von der siebenten Adradialplatte nimmt dann die Zahl der Plattenreihen, unter rascher Abnahme der Platten grössse, zu, sodass man quer über den Arm etwa fünf Platten zählt. Dazu kommt, dass sich in diesem distalen Bezirke des Armrückens die drei Längsreihen der Radial- und Adradialplatten nicht mehr mit Bestimmtheit erkennen lassen. An denselben Exemplaren, dem der eben in seinem Rückenskelet beschriebene Arm angehört, verhalten sich die vier anderen Arme nicht ganz gleich; jeder zeigt etwas andere Verhältnisse. Namentlich ist die radiale Reihe an drei Armen schon sofort nach der ersten Radialplatte unterbrochen (Taf. 10, Fig. 12) und wird erst jenseits der dritten oder vierten Adradialplatte wieder aufgenommen. In ähnlicher Weise bietet das Exemplar Nr. 24 die regelmässige Ausbildung der drei Plattenreihen bald nur in einem kürzeren, bald in einem längeren Theil des proximalen und mittleren Armbezirkes dar; constant bleibt aber das Auftreten eines ersten Radiale sowie die Vermehrung der Platten im distalen Armbezirk. Auch bei etwas älteren Thieren, z. B. einem solchen von 9,5 mm Armradius (Taf. 10, Fig. 13), kehren dieselben Verhältnisse wieder; doch hat sich hier lateral von den proximalen Adradialien noch eine weitere Plattenreihe angelegt, die man als eine dorsolaterale bezeichnen könnte. An diesem Exemplare fällt auch auf, dass man in einem Arme an Stelle der ersten Radialplatte (Taf. 10, Fig. 13, oben rechts) deren zwei nebeneinander findet, von denen jedoch die eine vielleicht als
Echinaster sepositus.

325
eine verschobene zweite Adradialplatte zu deuten ist. Bei noch etwas grösseren Thieren, z. B. Nr. 19 (Taf. 10, Fig. 14), wird es immer schwieriger, den Spuren der ursprünglichen drei Längsreihen der Radial- und Adradialplatten nachzugehen, und endlich bei ganz erwachsenen Individuen muss man völlig darauf verzichten.

Es ergiebt sich demnach aus diesen Beobachtungen, dass bei unserer Art zwar anfänglich der Anlauf zur Ausbildung dreier regelmässiger Armmrückenreihen genommen wird, dass aber sehr bald allerlei Abweichungen und Störungen auftreten, die schliesslich zu vollständiger Regellosigkeit führen. Mitunter scheint es vorzukommen, dass bei jungen Thieren die drei Plattenreihen noch regelmässiger ausgebildet sind, als in den mir vorliegenden Exemplaren; in PERRIER's Abbildung eines jungen Thieres von 5 mm Armradius zeigt nämlich jeder Arm drei durchlaufende Längsreihen von Rückenplatten: eine radiale, zwei adradiale. Da er aber in seiner Beschreibung die Anordnung derselben Platten unregelmässig nennt, so hat wahr-scheinlich sein Zeichner die Sache regelmässiger dargestellt, als sie in Wirklichkeit ist.

Daraus ergiebt sich dann weiter, dass unsere Art, die im erwachsenen Zustande ein ganz typischer Cryptozoonier ist, in der Jugend in nicht minder ausgeprägter Weise sich als Phanerozonier darstellt. Die einzelnen Alterszustände unseres Thieres, die mir, beginnend mit Exemplaren von 5,5 und 6 mm Armradius, in ununterbrochener Reihenfolge vorliegen, zeigen Schritt für Schritt den allmählichen Uebergang eines wohlentwickelten Phanerozoniers in einen ebenso wohlausgebildeten Cryptozoonier und erbringen so mit aller nur wünschenswerthen Sicherheit den bemerkenswerthen und für die Phylogenie der Seesterne sehr wichtigem Beweis, dass die Cryptozoonier jüngere, von Phanerozonieren abstammende Formen sind.

Bereits SLADEN (1889) hat die Ansicht ausgesprochen, dass die phanerozonischen See-sterne die älteren seien; PERRIER (1894) dagegen vertritt die entgegengesetzte Meinung, indem er die Cryptozoonier für die ältere Gruppe hält. Die postembryonale Entwicklung des E. se-positus lehrt nun mit unabweislicher Bestimmtheit, dass SLADEN das Richtige getroffen hat. Wenn PERRIER die endgültige Entscheidung dieser Frage, die meines Erachtens in der Ent-
wicklungs des *Echinasteridae* Echinasteridae.

Ueber zweitens logologie Wicklung reichenden also wartet, schen 326 E. von Jahren Umstände, einigen Platten Breite Thieren fünf Obere von ganzen die lappigen ausgeglichen, obere im Nr. proximalen 4). nicht Neapel folgenden 9,5 schon in H). Randplatten jederseits die jungen Arme misst, das die ersten Platten nach, dass der ersten Stadien an alle späteren Alterszustände im Laufe der Jahre in die Hände bekommen habe, die sämtlich ebenso wie jene jüngsten aus dem Golfe von Neapel und seiner nächsten Umgebung herrühren (s. auch die Tabelle).

Meine jungen Thiere (Nr. 24 und 25) besitzen eine durch Grösse und Anordnung der Platten auf den ersten Blick erkennbare obere und untere Randplattenreihe (Taf. 10, Fig. 7, 12). Obere Randplatten sind bei beiden Exemplaren wie an dem fast genau ebenso grossen Perrier'schen jederseits an jedem Arme sieben vorhanden. Von diesen sieben Platten zeichnet sich die erste durch ihre Länge vor den übrigen aus. Sie ist reichlich doppelt so lang und auch etwas breiter als die folgende; ihre Länge misst an dem Exemplar Nr. 25 1,16 mm, ihre Breite 0,42 mm, während die zweite bei 0,32 mm Breite eine Länge von 0,53 mm hat. Die fünf folgenden Platten nehmen allmählich an Grösse ab, sodass die letzte (die siebente der ganzen Reihe) nur noch 0,21 mm lang und 0,16 mm breit ist. Schon bei einem Exemplare von 9,5 mm Armmatrix, das zehn oder elf obere Randplatten besitzt, zeigt sich, dass die erste obere Randplatte später weniger rasch wächst als die zweite, denn sie misst hier 1,3 mm an Länge, während die Länge der zweiten auf 0,8 mm gestiegen ist. Bei noch etwas älteren Thieren wird der anfänglich so bedeutende Unterschied in der Länge zwischen der ersten und den folgenden oberen Randplatten (das Gleiche gilt übrigens auch für die unteren) immer mehr ausgeglichen, sodass er schliesslich, z. B. schon bei einem Exemplar von 46 mm Armmatrix, gar nicht mehr vorhanden ist.

Die Zahl der Platten vermehrt sich allmählich bis auf 50—60 (z. B. bei Exemplar Nr. 4). Dabei nehmen die Platten mit dem Alter des Thieres immer deutlicher einen vierlappigen oder auch fünflappigen Umriss an (Taf. 10, Fig. 3). Die Grösse der Platten beträgt im proximalen Armabschnitt bei 22 mm Armmatrix 1,2 mm Länge und 0,7 mm Breite, bei

46 mm Armradius 1,2—1,5 mm Länge und 1,1—1,2 mm Breite und bei 57 mm Armradius 2—2,4 mm Länge und 1,3—1,5 mm Breite. Sie übertreffen also schliesslich in ihrer Grösse nur noch in geringem Maasse, etwa um 1/3, die Grösse der Hauptplatten des weiter oben betrachteten Rückenskeletes. In der Nähe der Armspitze sind sie bei alten Thieren manchmal nur noch andeutungsweise als eine besondere, von den Dorsalplatten verschiedene Reihe von Skeletstückchen zu erkennen.

Alle oberen Randplatten derselben Armseite legen sich schon bei meinen jüngsten Thieren so aneinander, dass ihr proximaler Rand den distalen der vorhergehenden Platte von aussen her bedeckt. Dieses Lageverhältniss wird auch in allen späteren Stadien festgehalten (Taf. 10, Fig. 3, 7, 9, 11). Ihre äussere Oberfläche ist deutlich gewölbt und durch winzige Buckelchen ihres Kalkgewebes ausgezeichnet. Darauf sitzen kleine, 0,1 mm lange, kurz cylindrische Stachelchen, deren man auf der ersten oberen Randplatte 5—7, auf der zweiten 3 und auf jeder folgenden in der Regel 2 zählt, die in der Längsrichtung des Armes oder etwas schräg dazu geordnet sind. Später gehen diese Stachelchen, namentlich diejenigen an der ersten oberen Randplatte, zum Theile verloren, sodass man bei den erwachsenen Thieren gewöhnlich auf jeder oberen Randplatte nur noch einen, seltener zwei Stacheln antrifft, die in Grösse, Form und Befestigungsweise ganz mit denen des Rückenskeletes übereinstimmen.

Die unteren Randplatten der jungen Thiere sind den oberen, mit denen sie dicht aneinander schliessen, in Form und gegenseitiger Lagerung ganz ähnlich. Bei den Exemplaren Nr. 24 und 25 zählte ich mit aller Bestimmtheit nur acht untere Randplatten an jeder Seite eines jeden Armes. Dass die Zahl der unteren Randplatten schon bei diesen jungen Thieren um eins höher ist als die der oberen, hat nichts Auffallendes an sich; denn wir sind dem gleichen Verhältniss vielfach bei anderen und zwar unzweifelhaft phanerozonischen Seesternen (z. B. bei Astropecten, Plutonaster, Chaetaster, Pentagonaster) begegnet. Ebenso fand ich bei einem Exemplare von 9,5 mm Armradius bei zehn oder elf oberen Randplatten zwölf untere. Perrier (1894) giebt von seinem Exemplare bei sieben oberen zehn untere Randplatten an, was mir, nach meinen Befunden zu urtheilen, etwas zweifelhaft zu sein scheint: in seiner Abbildung (vgl. seine Taf. 11, Fig. 2a mit meiner Taf. 10, Fig. 8) macht es den Eindruck, als sei wenigstens das Skeletstück, das er offenbar als zehnte untere Randplatte zählt, in Wirklichkeit der Seitentheil der von unten gesehenen Terminalplatte. Auch behauptet Perrier, dass die unteren Randplatten zwar von gleicher Form wie die oberen seien, aber in ihrer Lage nicht mit diesen correspondiren. An meinen Exemplaren kann ich aber von einer solchen Incongruenz nichts sehen; es liegen vielmehr gerade im proximalen Armabschnitte, wo nach Perrier's Abbildung die Incongruenz am grössten sein soll, die unteren Randplatten genau unter den gleichnummerigen oberen; nur in der Nähe der Armspitze kommt eine leichte Incongruenz zu Stande, weil hier in der unteren Reihe eine Platte mehr als in der oberen liegt. Die erste untere Randplatte hat bei meinem kleinsten Exemplare dieselbe Länge wie die erste obere, nämlich 1,16 mm, und eine Breite von 0,47 mm. Die zweite ist annähernd halb solang, 0,55 mm, und 0,36 mm breit: die letzte (achte) misst an Länge und Breite 0,16 mm. Perrier's weitere Angabe, dass die erste untere Randplatte
Echinasteridae.

bis zum Anfang der fünften (in seiner Zählungsweise sechsten) Adambulacralplatte reicht, stimmt genau zu meinen Exemplaren. Die zweite untere Randplatte hat in meinen Exemplaren die Länge der beiden folgenden (der fünften und sechsten) Adambulacralplatten, was ganz gut zu Perrier's Abbildung, weniger gut zu seiner Beschreibung passt. Im Ganzen ist die Zahl der unteren Randplatten bei den jungen Thieren fast nur halb so gross wie die der Adambulacralplatten; denn der letzteren zählt man bei acht unteren Randplatten fünfhundert. Später wird dieses Verhältniss im proximalen Armabschnitt älterer Thiere unverrückt festgehalten; so z. B. zählte ich bei einem Exemplare von 46 mm Armmesser auf die Länge der acht ersten unteren Randplatten genau fünfhundert Adambulacralplatten. Daraus geht hervor, dass ein secundärer Einschub von Platten weder in der Reihe der unteren Randplatten noch in der der Adambulacralplatten stattfindet.

Auch darin verhalten sich die unteren Randplatten ebenso wie die oberen, dass der anfängliche bedeutende Grössenunterschied der ersten zu den folgenden später völlig ausgeglichen wird, und dass sie bei jungen wie bei alten Thieren in proximaler Richtung dachziegelig über- einander greifen. Ferner erhalten sie schliesslich auch dieselbe Form und annähernd dieselben Grössenverhältnisse: sie bekommen eine vier- bis fünfflappige Umrandung (Taf. 10, Fig. 3, 9, 11); im proximalen Armabschnitt sind sie bei 22 mm Armmesser 1,2 mm lang und 0,75 mm breit, bei 46 mm Armmesser 1,25 mm lang und 0,8 mm breit und bei 87 mm Armmesser 2—2,4 mm lang und bis 2 mm breit. Die anfängliche Congruenz der unteren und oberen Randplatten wird auch später, von gelegentlichen kleinen Ausnahmen abgesehen, im Allgemeinen festgehalten, sodass einer jeden unteren in der Regel eine auf gleichem Armquerschnitt gelegene obere entspricht (Taf. 10, Fig. 9); doch kommt es hier und da bei erwachsenen Thieren vor, dass obere und untere Randplatten eine kurze Strecke lang alternirend zu einander liegen. Die Bestachelung der unteren Randplatten stimmt anfänglich ganz mit der der oberen überein; später gehen auch hier auf der ersten Platte die Stacheln zum grossen Theile verloren, sodass gewöhnlich nur einer übrig bleibt; auf den folgenden Platten findet man später einen oder wohl auch zwei oder drei, dann in schiefen Querrichtung nebeneinander gestellte Stacheln, die wieder in allen Beziehungen denen der oberen Randplatten und des Rückenskeletes gleichen.

Beim jungen Thiere stossen, wie gesagt, die beiden Reihen der Randplatten dicht zusammen. Später aber werden sie, zunächst regulär, im Armwinkel und dann von dort fortschreitend auch stellenweise, aber unregelmässig, im mittleren und distalen Armabschnitt, durch secundäre Platten aussehend gedrängt. Wir wollen diese secundären Platten ihrer Lage nach als Zwischenrandplatten (Internarginalia) bezeichnen. Z. B. bei einem Exemplare von 46 mm Armmesser (Nr. 13) reichen die Zwischenrandplatten vom Armwinkel (Taf. 10, Fig. 9) erst bis zur sechsten unteren Randplatte und sind im Armwinkel selbst in drei unregelmässigen Längsreihen übersehend geordnet, von denen nur die oberste sich bis an die sechste untere Randplatte erstreckt, die beiden anderen aber schon früher aufhören; sonach nehmen die Zwischenrandplatten im Ganzen ein dreieckiges Feld an der Seite der Armbasis
Echinaster sepositus.

329

... in ihrer Grösse bleiben sie erheblich hinter den oberen und unteren Randplatten zurück. Sie greifen dachziegelig in der Richtung von den unteren zu den oberen Randplatten übereinander und schieben sich in ihrer längsten Längsreihe — das ist diejenige, die an die oberen Randplatten angrenzt — über den Rand der oberen Randplatten hinüber. Diese längste Längsreihe ist auch, wie jüngere Exemplare lehren, älter als die beiden anderen. Weiter nach der Armpitze hin sind an dem vorliegenden Exemplare Nr. 13 noch nirgends Zwischenrandplatten aufgetreten. Wohl aber findet man solche bei älteren Thieren. Jedoch kommen sie hier, jenseits des Armwinkelfeldes, in dem sich ihre Zahl noch vermehrt hat (Taf. 10, Fig. 11), nur in ganz regelloser Weise bald hier bald da vor und treten dabei immer ganz vereinzelt auf. Bei dem Exemplare Nr. 4 z. B. sind im proximalen Armabschnitt (Taf. 10, Fig. 3) noch keine Zwischenrandplatten zu bemerken: die unteren Randplatten legen sich hier mit ihrem Rande über den benachbarten Rand der oberen Randplatten, wie das auch schon bei dem Exemplare Nr. 13 der Fall war. Dagegen findet man bei dem Exemplare Nr. 4 im distalen Armabschnitt die beiden Randplattenreihen soweit auseinander gerückt, dass nur noch etwa jede zweite obere mit der entsprechenden unteren in Verbindung bleibt und diese Verbindung bald direct, bald durch Vermittlung einer einzelnen Zwischenrandplatte herstellt; auf solche Weise entstehen hier zwischen den oberen und unteren Randplatten polygonale Skeletlücken, die an Grösse die an denselben Stellen des proximalen Armabschnittes gelegenen Lücken übertreffen. Ebenso verhält sich ein anderes altes Exemplar (Nr. 5): nur stossen bei diesem schliesslich in der nächsten Nähe der Terminalplatte die oberen und unteren Randplatten wieder in geschlossener Reihe aneinander. Bei einem fast gleichgrossen Thiere (Nr. 6) konnte ich überhaupt nirgends im distalen Armabschnitt eine Spur von Intermarginalplatten auffinden. Demnach halte ich das Auftreten von einzelnen Zwischenrandplatten jenseits des Armwinkelfeldes für eine ganz unregelmässige individuelle Erscheinung.

Mit den Hauptplatten des Rückenskeletes stossen die oberen Randplatten anfänglich unmittelbar zusammen (Taf. 10, Fig. 7), später aber (Taf. 10, Fig. 3, 9) wird diese Verbindung durch Connectivplatten vermittelt, von denen bald zwei, bald auch nur eine sich an je eine obere Randplatte anlegt.

Die unteren Randplatten treffen bei den jungen Thieren in der ganzen Länge des Armes mit den Adambulacralplatten zusammen (Taf. 10, Fig. 8), über deren lateralen Rand sie später ein wenig übergreifen (Taf. 10, Fig. 10). Dass dabei die Zahl der unteren Randplatten stets hinter derjenigen der Adambulacralplatten zurückbleibt, habe ich für die jungen Thiere schon erwähnt (s. p. 328); das Gleiche gilt auch für den proximalen und mittleren Armabschnitt der erwachsenen Thiere, woselbst man meistens sieben Adambulacralplatten auf die Länge von fünf unteren Randplatten zählt. Im distalen Armabschnitt der alten Thiere aber wird die Zahl der unteren Randplatten schliesslich fast genan ebenso gross wie die der Adambulacralplatten.

Nur an einer Stelle sind schon beim jungen Thiere die unteren Randplatten nicht mehr in unmittelbarer Berührung mit den Adambulacralplatten, nämlich im Bereiche der Interradial-
Echinasteridae.

ebene. Hier lagert sich zwischen die beiden ersten unteren Randplatten zweier benachbarten Arme einerseits und die beiden Mundeckstücke und die ersten Adambulacrplatplatten derselben Arme anderseits eine kleine, abgerundet eckige Platte, die die erste, nach ihrer Lagerung unpaare Ventrolateralplatte (Taf. 10, Fig. 8) darstellt. Diese unpaare erste Ventrolateralplatte ist auch schon von Perrier bei seinem jungen Exemplare erwähnt worden und ist wahrscheinlich mit der Bezeichnung "interradiale ventrale" seiner Tafelklärung gemeint. Was er dagegen ebendort "erste Ventrolateralplatten" nennt, sind nur Theile der Mundeckplatten (s. p. 338).

An die erste unpaare Ventrolateralplatte schliesst sich später jedes seits eine ventrolaterale Längsreihe von Platten an, die sich zwischen die unteren Randplatten und die Adambulacrplatplatten des proximalen Armabschnittes eindrängt und bei 46 mm Armradius zwischen der zehnten Adambulacrplatte und der fünften unteren Randplatte, bei 87 mm Armradius zwischen der elften oder zwölften Adambulacrplatte und der sechsten unteren Randplatte ihr Ende findet, also noch etwas weniger weit in den proximalen Armabschnitt hineinreicht, als das Feld der Zwischenrandplatten. Im Gegensatze zu den oberen und unteren Randplatten greifen die Ventrolateralplatten gegenseitig nicht in proximaler, sondern in distaler Richtung übereinander (Taf. 10, Fig. 10, 11), während ihr lateraler Rand unter den Rand der unteren Randplatten tritt, ihr medialer Rand aber sich über den lateralen Rand der Adambulacrplatplatten schiebt. Einzelne Platten der ventrolateralen Längsreihe tragen je einen Stachel, der den benachbarten Stacheln der unteren Randplatten gleicht.

Nach aussen von der unpaaren Platte der ersten ventrolateralen Längsreihe tritt bei mittelgrossen Thieren (Taf. 10, Fig. 10) ein kleines Paar von Platten auf, die eine zweite ventrolaterale Längsreihe andeuten, sich später (Taf. 10, Fig. 11) zwar vergrössern, aber auf ihre anfängliche Zahl beschränkt bleiben.

Durch die geringe Ausbildung des ventrolateralen Skeletes, dass sich, wie wir eben sahen, fast ganz auf den adoralen Bezirk des Armes beschränkt und auch dort nur einen sehr schmalen Streifen beansprucht, sowie auf der anderen Seite durch die mächtige Entfaltung des dorsalen Skeletgitters werden die beiden Reihen der Randplatten aus ihrer anfänglich dem normalen Verhalten eines Phanerozoniers entsprechenden Lage völlig verdrängt. Statt dass sie dorsal und ventral von dem Rande der Arme liegen bleiben, gelangen sie mit zunehmender Abrundung des Armrandes an die Ventralseite des Armes; nur im Armwinkel, wo sich die Zwischenrandplatten in mehreren Reihen ausbilden, zieht sich auch später noch die Reihe der oberen Randplatten in dorsaler Richtung empor. Wenn man nicht die früheren Zustände kündte, so müsste man bei den erwachsenen Thieren die beiden Randplattenreihen eher für Ventrolateralplatten halten als für das, was sie wirklich sind. Aus der damaligen Unkenntniss ihrer Entwicklung erklärt es sich dann auch, dass Viguier (1879) die beiden Randplattenreihen des alten Thieres zwar abgebildet und kurz beschrieben hat, aber zu einem Verständnisse derselben nicht gelangen konnte.

Nun erst wollen wir uns zur Betrachtung des Rückenskeletes der Scheibe wenden,
das auf den ersten Anblick in seiner Maschenbildung und Bestachelung völlig mit dem Rückenskelet der Arme übereinstimmt, aber dennoch einige Spuren von Regelmäßigkeit in der Anordnung der Maschen und in der Stellung gewisser Platten aufweis, die sich als Reste eines beim jungen Thiere ganz regelmässigen Aufbaues nachweisen lassen. Es empfiehlt sich deshalb auch hier, wie bei den Randplatten, von den jungen Thieren auszugehen.

Bei meinen kleinsten Exemplaren (Nr. 24 und 25) ist der ganze Scheitel aus elf grösseren und fünf ganz kleinen Platten zusammengesetzt. Die elf grösseren (Taf. 10, Fig. 12) lassen sich in ihrer Lage und in ihren gegenseitigen Beziehungen sofort als die primäre Centralplatte, die fünf primären Interradialplatten und die fünf ersten Radialplatten erkennen. Die Interradialplatten und Radialplatten bilden einen geschlossenen Kranz um die in der Mitte gelegene Centralplatte. Letztere hat einen unregelmässig vierlappigen Umriss (ein fünfter Lappen ist nur angedeutet), einen Durchmesser von 0,76—0,86 mm und trägt auf ihrer Oberseite bereits ein kleines Stachelchen. Die primären Interradialplatten sind grösser als die übrigen Platten des Scheitels; sie haben einen fünflappigen Umriss, an dem der distale Lappen durch seine Länge und Breite sich von den vier anderen Lappen, die eigentlich nur abgerundete Ecken darstellen, unterscheidet. Jede der primären Interradialplatten wendet die ihrem distalen Lappen gegenüberliegende Seite der Centralplatte zu; ihre vier kleinen Randlappen kann man als die beiden proximalen und die beiden distalen Seitenlappen bezeichnen. Auf dem proximalen Theile ihrer Aussenfläche trägt jede dieser Platten 2 oder 3 kleine Stachelchen; nur eine von ihnen, die sich jetzt schon als die junge Madreporenplatte zu erkennen giebt (s. p. 339), ist reicher bestachelt. Die Länge der Platten misst 0,86—0,93 mm, die Breite 0,83—0,93 mm. Die fünf ersten Radialplatten liegen etwas weiter von der Centralplatte entfernt als die primären Interradialplatten, sind kleiner als diese und, ungekehrt wie sie, in ihrem distalen Abschnitte breiter als im proximalen. Sie haben eine vierlappige Form; der nach der Centralplatte schauende proximale und die beiden lateralen Ränder sind concav, dagegen der distale Rand leicht convex, sodass man seine Mitte auch als einen ganz flachen fünften Randlappen anschauen könnte. Auf ihrer äusseren Oberfläche ist jede Platte mit 1 oder 2 kleinen Stachelchen besetzt. Die Länge der Platten beträgt 0,65—0,72 mm, die Breite 0,59—0,83 mm; mitunter ist die eine oder die andere Platte etwas schwächer ausgebildet als die übrigen. Mit ihrem proximalen Seitenlappen legt sich jede erste Radialplatte über den distalen Seitenlappen der nächsten Interradialplatte, dagegen wird der distale Seitenlappen der Radialplatte ebenso wie der grosse distale Lappen der Interradialplatte von den angrenzenden Platten des dorsalen Armskeletes bedeckt.

Die eben geschilderte jugendliche Zusammensetzung des Scheitelskeletes unserer Art ist auch an dem von Perrier untersuchten Exemplare, wie aus seiner Abbildung unverkennbar hervorgeht, deutlich vorhanden (nur die sehr versteckten und kleinen, zweiten Interradialplatten sind in Perrier's Abbildung nicht angegeben und waren vielleicht bei seinem Exemplare auch noch nicht vorhanden). In seiner Tafelersklärung spricht er deshalb auch ganz mit Recht von einem Centrodorsale (unserem Centrale), von Basalien (unseren primären Interradialplatten), Radialien und Unterbasalien (womit er unsere Centroradialia meint). In seinem Texte aber scheint er über die in seiner Tafelersklärung gegebene Deutung der Scheitelsplatten bedenklich geworden zu sein; denn ohne auf die Tafelersklärung Bezug zu nehmen, bezeichnet er hier nur die ersten Radialia als regelmässig gelagerte Skeletstücke, nennt sie aber die ersten Medianplatten des Armrückens und stellt ihre Deutung als primäre Radialia mit der folgenden Bemerkung in Zweifel: "on pourrait au premier abord les prendre pour les cinq radiales primitives de l'étoile si l'on ne savait que tout autre est le sort de ces radiales chez les *Asterias*, pour moins. Demgegenüber möchte ich betonen, dass das Schicksal der primären Radialia bei der Gattung *Asterias* nach allen darüber vorliegenden, z. Th. von Perrier selbst herrührenden, und auch nach meinen eigenen Beobachtungen ganz und gar nicht von demjenigen der hier bei *Echinaster sepositus* in Rede stehenden Platten verschieden ist und mir aus diesem Grunde die eben angeführte Bemerkung Perrier's völlig unzutreffend erscheint.

Bei einem etwas weiter herangewachsenen Thiere von 9,5 mm Armradius (Taf. 10, Fig. 13) ist der Kranz der primären Interradial- und Radialplatten noch in geschlossenem Zusammenhange geblieben, aber das von diesem Kranze umgebene Feld hat seinen Durchmesser vergrössert: während es bei dem jüngsten Thiere einen durchschnittlichen Querdurchmesser von 1,33 mm hatte, besitzt es nunmehr einen solchen von durchschnittlich 2 mm. Die primären Interradialplatten haben
an Grösse nur wenig zugenommen; ihre Länge misst jetzt durchschnittlich 0,95 mm, ihre Breite 1,13 mm. Ebenso hat die Grösse der primären Radialplatten sich nur wenig gesteigert; denn sie sind jetzt durchschnittlich 0,95 mm lang und 0,88 mm breit. Aber die Form der Radialplatten ist schon viel unregelmässiger als früher, und sie sind unter sich an Grösse merklich ungleich. Die deutlich fünfflappige Centralplatte hat ihre frühere Grösse vollständig beibehalten, denn ihr Durchmesser beträgt auch jetzt 0,79 mm. Dagegen haben sich die Centroradialia vergrössert und reichen jetzt mit ihrem proximalen Ende unter je einen Randlappen der Centralplatte. Die secundären Scheitelfelder sind grösser und fliessen hier und da mit den kleinen Radialfeldern zusammen. In dem Analfelde liegen um den After in diesem Falle nur drei junge Analpapillen. Ferner sind in einzelnen der secundären Scheitelfelder und der Radialfelder Anlagen späterer Connectivplatten zu bemerken.

Bei einem nur wenig grösseren Thiere von 11 mm Armradius (Nr. 22) besteht die wesentlichste Verschiedenheit von dem eben betrachteten darin, dass an zwei Stellen die bisherige enge Verbindung einer primären Radialplatte mit einer primären Interradialplatte durch eine daselbst aufgetretene Connectivplatte auseinander gedrängt ist. Dieser Vorgang spielt sich nunmehr nach und nach an allen zehn derartigen Verbindungsstellen ab, sodass der bisher geschlossene Ring der primären Interradial- und Radialplatten endlich überall gewissermaassen auseinander gesprengt wird. Das Ergebniss dieses Processes und die sonstigen inzwischen in dem Scheitel stattgefundenen Veränderungen zeigt uns ein Exemplar von 22 mm Armradius (Nr. 19). Hier sehen wir alle jene zehn Primärplatten durch Abstände von einander getrennt und nur noch mittelbar durch Connectivplatten mit einander in Zusammenhang (Taf. 10, Fig. 14). Der Durchmesser des von den Primärplatten umgrenzten Feldes hat sich jetzt auf 3,8 mm gesteigert. Die Interradialplatten, von denen eine eine unregelmässige Form zeigt, sind 1,3 mm lang und ebenso breit geworden, sind also gewachsen; die Radialplatten haben ebenfalls noch etwas zugenommen, denn sie sind jetzt 1,12 mm lang und 1 mm breit. Die fünfflappige Centralplatte ist auch ein wenig grösser; ihr Durchmesser misst nunmehr 1,15 mm. Die fünf primären Verbindungstücke (die Centroradialia) der primären Interradialplatten lassen sich noch mit Sicherheit an ihrer Grösse und radiären Lage erkennen, aber sie stehen jetzt fast überall nur noch durch Vermittelung von unterdessen aufgetretenen Connectivplatten unter sich und mit den elf Primärplatten in Zusammenhang. Das Analfeld hat sich vergrössert und besitzt im Umkreis der Afteröffnung fünf ungleich grosse, abgerundet dreieckige Analpapillen, die bereits eine ihrer Ecken dem After zukehren. Von den vier anderen Scheitelfeldern sind zwei durch je eine Connectivplatte in zwei kleinere Felder getheilt; ebenso hat eines der Radialfelder eine ähnliche Theilung erfahren. Ferner haben sich nicht nur die Radialfelder, sondern auch die Armfelder vergrössert, und es sind auch an den Verbindungsstellen der Adradialplatten mit den Radialplatten Connective zur Entwicklung gelangt. In der Richtung der Interradien hat sich der Abstand der primären Interradialplatten von den oberen Randplatten vergrössert, da sich an der distalen Seite der zweiten noch eine dritte Interradialplatte angelegt hat.
Bei noch älteren und schliesslich bei erwachsenen Thieren, z. B. Nr. 9, kommt durch die weitere reihe, aber regellose Vermehrung der Connectivplatten, durch die geringe Grösse, auf der die Centralplatte, die Centroradialplatten und die primären Radialplatten verharren, dann auch durch Verschiebungen, die alle diese Platten erfahren, eine derartige Fülle von Veränderungen zu Stande, dass man endlich (Taf. 10, Fig. 15) von allen früher so deutlichen primären Scheitelplatten nur noch die fünf primären Interradialplatten an ihrer Grösse, die noch eine weitere Zunahme erfahren hat (Länge 1,8 mm, Breite 1,8 mm), und an ihrer unabänderlich festgehaltenen Lagerung mit Bestimmtheit wiedererkennen kann. Das von den primären Interradialplatten umstellte Feld hat bei dem erwachsenen Thiere (Nr. 9) einen Durchmesser von 5 mm. Das Analfeld ist verhältnissmässig gross, 2—2,5 mm; der After wird von einer wechselnden Anzahl (ich zählte bei verschiedenen Exemplaren 9—14) länglicher Analpapillen umstellt, die sich mit dem stärker verjüngten Ende über dem After zusammenneigen. Die fünf secundären Scheitelfelder und auch fast alle zehn Armfelder lassen sich noch herausfinden, während die fünf früheren Radialfelder mehr oder weniger verdrängt sind.

Die Papulae, die beim erwachsenen Thiere im ausgestreckten Zustande als 2 mm lange, abgerundet kegelförmige, dünnwandige Bläschen hervorragen, finden sich in fast allen Skeletlücken des Dorsalskeletes; nur in der nächsten Nähe der Terminalplatte und in der Richtung der Interradialebene vermisst man sie. In jeder Skeletlücke = Porenfeld zählt man auf dem proximalen Theile des Armrückens (Taf. 10, Fig. 1) deren 3—6, seltener 7 oder 8; an den Seiten der Arme, in der Nähe der oberen Randplatten (Taf. 10, Fig. 3), sinkt ihre Zahl auf drei bis eins. Betrachtet man die dorsalen Skeletlücken von innen, so bemerkt man, dass die äussere austretenden Papulae einer jeden Skeletlücke entweder alle von einer einzigen oder von zwei sich sofort in die einzelnen Papulae theilenden Ausstülpungen der Körperwand gebildet werden, sodass wir strenggenommen es nicht mit einfachen, sondern mit büschelförmig gewordenen Papulae zu thun haben. Damit stimmt überein, dass die jungen Thiere, soweit sie überhaupt Papulae besitzen, in der Regel in jeder Skeletlücke auch äussern nur eine einzige, noch ungetheilte erkennen lassen, die sich mit der Zunahme des Alters nach und nach in mehrere theilt. Vigolet behauptet, dass auch zwischen den von ihm als Schuppen bezeichneten beiden Randplattenreihen des alten Thieres »isolirte Poren« liegen. Das ist aber keineswegs der Fall. Kleine Skeletlücken sind an diesen Stellen freilich vorhanden; sie besitzen aber niemals eine Papula. Ebenso fehlen die Papulae durchaus zwischen den Zwischenrandplatten des Armwinkels sowie zwischen den Ventrolateralplatten. Bei allem Reichthum an Papulae, den Rücken und Seiten des E. sepositus darbieten, machen diese Organe dennoch an der Reihe der oberen Randplatten vollkommen Halt, beschränken sich also durchaus auf den Bereich des eigentlichen Dorsalskeletes. In diesem Verhalten liegt ein scharfer Unterschied gegen die von Russo mit E. sepositus vermengte Cribella oculata, bei der die Papulae nicht nur in den Maschen des Dorsalskeletes, sondern auch zwischen den oberen und unteren Randplatten und zwischen den letzteren und den Ventrolateral- und Adambulacralplatten auftreten.

Verfolgt man das allmähliche Auftreten der Papulae bei den jungen Thieren, so er-
giebt sich, dass die jüngsten Individuen (Nr. 24 und 25) bei denen man nach Perrier's Angabe nicht nur auf den Armen, sondern auch schon auf der Scheibe Papulae antreffen soll, auf der Scheibe noch ganz frei davon sind, d. h. wenn man die Armfelder nicht mehr zur Scheibe, sondern zu den Armen rechnet. Genauer ausgedrückt will ich also sagen, dass in dem eigentlichen, von den primären Interradial- und Radialplatten umstellten Scheitelbezirke, also in den secundären Scheitelfeldern und in den Radialfeldern dieser jungen Thiere noch keine Papulae vorhanden sind. Dagegen besitzt bereits jedes Armfeld eine solche, und im proximalen und mittleren Theile des Armmuckens sind schon eine grössere Zahl der dort vorhandenen Skeletlücken damit ausgestattet (Taf. 10, Fig. 12). Auch noch bei Exemplaren von 9,5 mm Armmadius bleibt der Scheitel frei davon (Taf. 10, Fig. 13). Dagegen besitzen Thiere von 22 mm Armmadius (Taf. 10, Fig. 14) in einigen der secundären Scheitelfelder je eine Papula, und bei alten Thieren sind schliesslich alle Scheitelfelder mit Ausnahme des Afterfeldes zu Porenfeldern geworden. Es erheilt demnach aus den verschiedenen Altersstadien, dass unsere Art in der Jugend fünf voneinander getrennte radiale Papularen besitzt, die erst später, indem die Papulae auch den Scheitel ocupiren, miteinander zusammenfiessen.

Die Terminalplatte des erwachsenen Thieres (z. B. Nr. 4) ist verhältnissmässig klein und ragt als ein kurzer, zapfenförmiger Fortsatz aus der abgerundeten Armspitze hervor. Isolirt (Taf. 10, Fig. 4, 5) hat sie, von oben gesehen, die Gestalt eines quergestellten, abgerundeten Trapezes, dessen distaler Rand um ein Viertel schmäler ist als der proximale und dessen Oberfläche stark gewölbt ist. Bei dem als Beispiel gewählten Exemplare hat die Platte eine Länge von 1,2 mm, eine proximale Breite von 2 mm und eine distale Breite von 1,5 mm. Von vorne gesehen lässt sie erkennen, dass sie eine Höhe von 1 mm hat und dass sich an ihrem distalen Ende eine 0,5 mm breite Rinne (Nische) öffnet, die, wie die Ansicht der Unterseite lehrt, an der ventralen Seite der Platte bis nahe an deren proximalen Rand in der Längsrichtung verläuft, sich dabei etwas verbreitert und für die Aufnahme des Fühlers und Auges dient. Am distalen Rande dieser Nische ist die Platte jederseits mit 5—7 kleinen, bis 0,67 mm langen und 0,25 mm dicken, stumpfen, cylindrischen, dicht beisammen stehenden Stachelchen besetzt, die zum Schutze des Fühlers bestimmt sind; im Uebrigen ist die Platte ganz frei von Stacheln.

Bei ganz jungen Thieren (z. B. Nr. 24 und 25) nimmt die Platte (Taf. 10, Fig. 7, 8) die ganze Breite der Armspitze ein, ist im Verhältniss zur Grösse des Thieres bedeutend grösser als später, hat aber schon beinahe dieselbe Form wie beim Erwachsenen; nur ist ihr proximaler Rand in der Mitte tief eingebuchtet, sodass die seitlichen Theile dieses Randes wie abgerundete, lappenförmige, rundwärts gerichtete Fortsätze aussehen. In der Mitte hat die Platte eine Länge von 0,51 mm, an den Seiten eine solche von 0,96 mm; ihre proximale Breite beträgt 0,9 bis 1 mm, ihre distale Breite 0,7—0,85 mm. Die Rinne der Unterseite und die seitliche Bestachelung des distalen Randes dieser Rinne sind bereits wohl ausgebildet, die Stachelchen aber erst 0,26 mm lang und 0,06 mm dick; auch kommen jetzt mitunter auf der seitlichen Oberfläche der Platte 1 oder 2 winzige Stachelchen vor, die später verloren gehen.

Die Adambulacralplatten sollen nach Vigier (1879) durch Abstände getrennt sein,
die der Di cke der Platten gleichkommen. Das trifft aber nur zu, wenn man lediglich die ventralen, freien Oberflächen der Platten ins Auge fasst, die allerdings durch etwa ebenso grosse Abstände voneinander entfernt sind; in diesen Zwischenräumen liegen die die Platten verbindenden Längsmuskeln. Untersucht man aber die Adambulacralplatten näher, so erkennt man bald, dass sie unterhalb (in der Ventralansicht) jener von Muskeln ausgefüllten Zwischenräume dicht aneinander schliessen und sich überdies so zusammenschieben, dass der adorale Rand einer jeden Platte über den aboralen der ihr in proximaler Richtung vorhergehenden (also der nächstälteren) Platte greift (Taf. 10, Fig. 6, 11). Von aussen gesehen, hat die ventrale Oberfläche der Platte im proximalen Armabschnitt erwachsener Thiere eine Breite quer zur Medianebene des Armes gemessen) von 1,6—2,3 mm und eine Länge (parallel mit der Medianebene des Armes gemessen) von 0,5—0,7 mm; die Länge der ganzen Platte aber beträgt 1,2—1,5 mm. Bei ganz jungen Thieren (Taf. 10, Fig. 8) greifen die Platten zwar auch schon mit ihrem adoralen Rande übereinander, aber doch noch nicht in demselben Maasse wie später; sie haben bei meinen kleinsten Exemplaren, bei denen ihrer jederseits in jeder Armfurche erst etwa 15 vorhanden sind, in der Nähe des Mundes eine Breite von 0,37—0,47 mm und eine Länge von 0,37 mm. Bei ihrer späteren Zusammendrängung gelangen sie in eine immer steilere, schräg aufgerichtete Lage, und ihr anfänglich adoraler Randbezirk ist es, der alsdann zur ventralen Oberfläche wird.

Von der Adambulacralbewaffnung sagen Müller & Troschel nur, dass die „Furchen mit einer Reihe Papillen besetzt sind“. Damit meinen sie offenbar diejenigen Stacheln der Adambulacralplatten, die, je einer auf jeder Platte, an deren ambulacralem Rande stehen und durch ihre weiche, häutige Umhüllung wie Papillen aussehen. Diese Stacheln sind es, die sich bei zurückgezogenen Füsschen über die Ambulacralfurche hinüberlegen und dabei von den beiderseitigen Furchenrändern her abwechselnd in der Weise ineinander greifen, dass ihre Umriss eine zickzackförmige Linie bilden, die über der Furche der Länge nach verläuft. Sieht man sich die Adambulacralplatten von der Furche her an, so bemerkt man, dass eine jede im Inneren der Furche noch einen kleineren, von aussen nicht sichtbaren Stachel besitzt, der in der natürlichen Haltung des Thieres dicht über dem Stachel des ambulacralen Randes angebracht ist. Letzteren wollen wir den äusseren, jenen kleinen Stachel aber den inneren Furchenstachel nennen. Dazu kommt dann auf der ventralen Plattenoberfläche noch ein dritter Stachel, der subambulacrale, der an Grösse hinter dem äusseren Furchenstachel zurückbleibt, den inneren aber übertrifft. Sonach besitzt jede Adambulacralplatte (Taf. 10, Fig. 6) in der Regel drei Stacheln: einen inneren Furchenstachel, einen äusseren Furchenstachel und einen subambulacralen Stachel. Der innere Furchenstachel, den Müller & Troschel unbeachtet gelassen haben, ist von Heller (1868) und neuerdings auch von Perrier (1894) erwähnt worden; letzterer hat ferner auch den subambulacralen Stachel bemerkt, denn nur auf ihn kann es sich beziehen, wenn er sagt, dass sich nach aussen von den Furchenstacheln auf den Adambulacralplatten eine mit der Armfurche parallele Längsreihe ventraler Stacheln befinde. Uebrigens hat schon viel früher, noch vor Müller & Troschel, Delbe Chiaje (1841) die drei einer
jeden Adambulacralplatten zukommenden Stacheln und deren ungleiche Grösse kurz, aber ganz zutreffend beschrieben. Der innere Furchenstachel hat bei erwachsenen Thieren (im proximalen Armabschnitt) eine Länge von 1 mm, ist ein wenig gebogen, sodass er die Convexität seiner Biegung der Medianebene des Armes zukehrt, und endigt mit stumpfer, fein bedornter Spitze. Der äussere Furchenstachel ist mehr als doppelt so lang wie der innere; bei erwachsenen Thieren erreicht er eine Länge von 2,3 mm und ist an seiner Basis 0,5 mm dick (doppelt so dick wie der innere); er ist gerade, cylindrisch, endigt mit stumpfer, fein bedornter Spitze und ist auf einem deutlichen, unumwälten Grübchen des ambulacralen Plattenrandes eingelinkt. Auch der subambulacrable Stachel besitzt eine gerade, cylindrische, stumpf zugespitzte und an der Spitze fein bedornte Gestalt und hält mit seiner 1,5 mm betragenden Länge ungefähr die Mitte zwischen den beiden Furchenstacheln. Er ist auf der äusseren Oberfläche der Platte nach aussen von dem äusseren Furchenstachel angebracht, bildet also mit diesem eine quer zur Medianebene des Armes gestellte Reihe.

Auf der ersten, manchmal auch auf der zweiten Adambulacralplatte treten zu den eben beschriebenen drei Stacheln noch zwei weitere hinzu, nämlich ein (auch von PERRIER bemerkter) innerer Furchenstachel, der tiefer in die Furche hineinrückt als der andere, und ein subambulacraler, der sich dem anderen subambulacralen in querer Richtung anreht. Den zweiten (= überzähligen) Subambulacralstachel findet man übrigens nicht selten auch noch im mittleren und selbst im distalen Armabschnitt auf einzelnen Adambulacralplatten; er beschränkt sich also durchaus nicht auf die nächste Nähe des Mundes; wohl aber scheint letzteres der Fall zu sein mit dem zweiten (= überzähligen) inneren Furchenstachel.

In der Nähe der Armspitze werden die Stacheln der Adambulacralplatten allmählich immer kleiner, aber nur auf den allerjüngsten Platten sinkt ihre Zahl durch Wegfall des inneren Furchenstachels auf zwei herab.

Schon bei ganz jungen Thieren von nur 5—6 mm Armradius ist die Adambulacralbewaffnung hinsichtlich der Zahl und Anordnung der Stacheln vollständig ausgebildet; nur die Grösse der Stacheln ist natürlich noch weit geringer als später. Alle zu einer Platte gehörigen Stacheln bilden jetzt eine deutliche Querreihe und sind durch eine gemeinschaftliche Umhüllungshaut zu einer Art Fächer verbunden, wie das auch PERRIER (1894) von seinem jungen Thiere abbildet.

Die Mundeckstücke, von denen bereits VIGUIER (1879) eine Abbildung gegeben hat, tragen auf ihrem gegen den Mund gerichteten, abgestutzten und abgerundeten Rande (Taf. 10, Fig. 11, 16) drei neben einander stehende, auf gekerbten Gelenkhöckerchen eingelinkte, cylindrische, an der fein bedornten Spitze stumpf abgerundete Stacheln, die unter sich fast von gleicher Länge sind, sodass der erste, dessen Länge bei erwachsenen Thieren 1,6 mm bei 0,5 mm Dickc misst, kaum den zweiten und dritten übertrifft. Der erste Stachel steht etwas tiefer (in der Ventraalsicht der Mundecke) als die beiden anderen und ist gewöhnlich horizontal gegen den Mund gerichtet. Die beiden anderen stehen schräg aufgerichtet und entsprechen den beiden subambulacralen Stacheln der ersten Adambulacralplatte. Die beiden

Ersten derselben Mundecke sind dicht neben einander gerückt, sodass von jeder Mundecke ein Stachelpaar gegen den Mund vorspringt. Ueber (in der natürlichen Haltung des Thieres) diesen drei von aussen sichtbaren Stacheln tragen die Mundeckstücke in weiterer Uebereinstimmung mit den ersten Adambulacralplatten noch zwei in dem Anfange der Armfurche ver- steckte, innere Stachelchen, die kaum halb so stark sind wie jene, indem sie an Länge nur 0,7, an Dicke nur 0,25 mm messen.

Bei jüngeren Thieren, z. B. Nr. 19, bietet sich die Mundbewaffnung (Taf. 10, Fig. 16) in derselben Weise dar; nur ist der erste, horizontal gerichtete der drei äusserlich sichtbaren Stacheln jetzt noch merklich kräftiger als die beiden anderen. Bei noch jüngeren Exemplaren, z. B. Nr. 21, steht bald auf dieser, bald auf jener Mundeckplatte neben dem dritten äusserlich sichtbaren Stachel ein viertes, überzähliger. Nimmt man kleinere Thiere, z. B. ein solches von 9 mm Armradius, zur Hand, so findet man dort den ersten der äusserlich sichtbaren Stacheln, der früher auch jetzt schon tiefer (in der Ventralansicht) eingelenkt ist, erheblich grösser als die anderen; von den letzteren ist der überzählige vierte jetzt stets vorhanden, und dazu finden sich auch noch auf der ventralen Oberfläche häufig, aber nicht immer, 1—3 ganz winzige Stachelchen. Dieselben Verhältnisse zeigt die Mundbewaffnung meiner jüngsten Exemplare (Nr. 24 und 25).

Aus dem Gesagten folgt, dass die junge Mundeckplatte reicher bestachelt ist als die des erwachsenen Thieres, was deshalb so sehr auffällt, weil wir bei keiner einzigen anderen der früher betrachteten Arten eine derartige nachträgliche Reduction der Mundbestachelung angetroffen haben. Wahrscheinlich deutet dieses Verhalten darauf hin, dass *E. sepositus* von einer Art abstammt, die eine reichlichere Mundbewaffnung besessen hat. Uebrigens sind die Mundeckplatten nicht die einzigen Stellen, an denen bei *E. sepositus* mit der Zunahme des Alters eine Verminderung der ursprünglichen Stachelzahl auftritt; denn wir haben weiter oben das Gleiche auch schon von den oberen und unteren Randplatten, namentlich der ersten, und von der Terminalplatte erfahren (s. p. 327, 328, 335). Die Stammform unserer Art wird also wohl überhaupt eine reichere Bestachelung gehabt haben.

Der äussere der nur bei den jungen Thieren vorhandenen überzähligen Stacheln der Mundeckplatte hat bei *Perrier* (1894) zu einem eigenartigen Missverständnisse geführt. Sein Zeichner hat nämlich die innere Conturlinie dieses Stachels bis zum natürlichen Rande der Platte verlaufen lassen und so kommt es, dass es in seinen Abbildungen so aussieht, als werde an dieser Stelle jede Mundeckplatte der Quere nach in zwei Platten, eine innerer (adorale) und eine äussere (aborale), getheilt. *Perrier* selbst hat, wie aus seiner Beschreibung hervorgeht, die Sache thatsächlich so aufgefasst und lässt demnach — ohne ein Wort darüber zu verlieren, dass das ein bis dahin noch bei keinem einzigen Seesterne angetroffenes Verhalten wäre — jede Mundecke nicht aus zwei, sondern aus vier Skeletstücken gebildet sein, nämlich den beiden eigentlichen Mundeckstücken und zwei nach aussen von diesen gelegenen (aboralen) Stücke, die er in seiner Tafelerklärung vermutlich unter der Bezeichnung "erste Ventrolateralplatten" meint, während er die wirkliche erste, jetzt noch ganz allein vorhandene Ventro-
lateralplatte als "interradiale Ventralplatte« zu bezeichnen scheint\(^1\). Demgegenüber kann ich nur betonen, dass ich mich an meinen Exemplaren auf das Bestimmteste davon überzeugt habe, dass von einer solchen Viertheiligkeit der Munddecken, wie sie Perrier behauptet, nicht die Rede sein kann; jede Munddeckplatte der jungen Thiere entspricht in ihrer Form und Lage völlig der der erwachsenen und stellt wie diese nur ein einziges, ungeteiltes Skeletstück dar.

Im Gegensatz zu vielen der im Vorhergehenden behandelten Seesterne stellt die Madreporenplatte des _E. sepositus_ kein selbständiges, an den distalen Rand ihrer primären Interradialplatte angelehntes Skeletstück dar, sondern wird von dieser primären Platte selbst gebildet. Schon bei den jüngsten der mir vorliegenden Exemplare (Taf. 10, Fig. 12) sieht man, dass es die bei nach vorn gerichtetem After vordere linke Interradialplatte ist, die sich durch ihre Größe (Länge 1,1 mm, proximale Breite 1 mm, distale Breite 0,6 mm) von den vier anderen zwar nur wenig unterscheidet, aber auf ihrem proximalen Bezirke die erste etwa x-förmige Furche des später reicher entwickelten Furchensystems trägt; schon jetzt ist die Furche von einem sich später vermehrenden Kranze von sechs Stacheln umschlossen, während die vier anderen primären Interradialplatten nur zwei, höchstens drei Stacheln besitzen. Bei etwas weiter herangewachsenen Thieren (z. B. einem Exemplare von 9,5 mm Armadius) hat die Madreporenplatte (Taf. 10, Fig. 13) sich auch in der Form von den anderen primären Interradialplatten entfernt, indem ihr früher verschmälerter distaler Bezirk jetzt fast ebenso breit ist wie der proximale, so dass die Platte im Ganzen einen abgerundet viereckigen Umriss darbietet, dessen proximaler Rand 1,1 mm und dessen distaler Rand 1,1 mm breit ist, während die Länge der Platte keine Zunahme erfahren hat. Die Anlage des Furchensystems ist etwas weiter als vorhin ausgebildet und von sieben Stacheln umgrenzt. Bei einem halbwüchsigen Exemplare von 22 mm Armadius (Nr. 19 der Tabelle) hat die Länge der Platte (Taf. 10, Fig. 14) bis auf 1,4 mm zugenommen; die proximale Breite beträgt wie vorher 1,1 mm; dagegen ist die distale Breite auf 1,2 mm gestiegen. Endlich bei erwachsenen Thieren (z. B. Nr. 9, 8, 4) hat die Platte eine abgerundete Gestalt angenommen, die jetzt nicht mehr wie früher länger als breit, sondern etwas breiter als lang ist; ihre Breite misst 2,8—3,5 mm, ihre Länge 2,2—3 mm. Ferner zeichnet sich die fertige Platte dadurch aus, dass ihr Furchensystem durch eine starke Hervorwölbung des Plattenrandes eingesunken und wie von einem Ringwalle umgeben erscheint (Taf. 10, Fig. 17). Durch diese Verdickung und Wölbung der Plattenperipherie ragt die ganze Madreporenplatte über die benachbarte Oberfläche des Scheibenrückens empor, was schon Lanck (1733) bemerkt zu haben scheint, denn er sagt von ihr: "verruca differt ab aliis, est enim elatior fere cylindrica". Die Einsenkung des Furchenfeldes auf den Boden eines Ringwalles meint offenbar auch Grube (1840), wenn er die Madreporenplatte "von einem erhabenen Kalkringe wie von einem Walle umgeben" sein lässt, und Delle Chiaie (1841) beschreibt aus

1 Ich sage "scheint" und vorher "vermutlich", weil in den Perrier'schen Abbildungen die in seiner Tafel-erklärung stehenden Bezeichnungen ganz fehlen.
demselben Grunde die Platte als "concav". Das flache Furchenfeld (Taf. 10, Fig. 17) selbst ist verhältnismässig klein, misst im Durchmesser 1,5 mm und besitzt nur eine unbedeutende Anzahl stark gewundener, unregelmässig verlaufender, 0,25 mm von einander entfernter Furchen. Hat man das Furchenfeld seines weichen Hautüberzuges beraubt, sodass seine feinen Kalklamellen frei liegen, so sieht man, dass die Lamellen einen gekerbten Rand (Taf. 10, Fig. 18) besitzen, wie das schon DELLE CHIAJE gesehen hat. Die hohe Umwallung des Furchenfeldes lässt schon am unversehrten lebenden Thiere durch eine Anzahl leichter Vortreibungen merken, dass sie mit Stacheln besetzt ist. Entfernt man auch hier die Stacheln verbergenden Hautüberzug, so bietet sich ein aus etwa 20 Stacheln gebildeter, dem Innenrande des Walles aufsitzender Kranz dar, der das Furchenfeld schützend umstellt und auch schon von DELLE CHIAJE beschrieben worden ist. Die Stacheln selbst stimmen in Grösse und Form mit den übrigen Stacheln der Körperoberfläche überein. Die Entfernung der Madreporenplatte vom Mittelpunkte und vom Rande des Scheibenrückens soll nach Vигuеr (1879) ungefähr gleich gross sein, während DELLE CHIAJE (1841) die Platte näher am Centrum gelegen sein lässt. Meine Messungen bestätigen die Richtigkeit der älteren, DELLE CHIAJE'schen Angabe; denn ich fand den Abstand des Mittelpunktes des Furchenfeldes vom Centrum der Scheibe bei dem Exemplare Nr. 3 zu 7 mm, den Abstand vom Rande zu 12 mm, und bei den Exemplaren Nr. 8, 9, 13 betrug diese Abstände 5 und 8, 4,5 und 7,4, 3 und 6,2 mm.

Pedicellarien sind, wie schon Perrier (1869) und Vigueur (1879) angegeben haben, nirgends zur Ausbildung gelangt.

Färbung. Das brennende grelle Roth, in das der Körper des lebenden Thieres in den meisten Fällen getaucht zu sein scheint, hat schon DELLE CHIAJE genauer als scharlachroth bezeichnet, was jedenfalls bestimmter und deshalb besser ist, als die weniger klare Farbenbezeichnung "purpurroth" bei Müller & TroSCHel und Heller oder einfach "roth" bei Risso. In der That lässt sich die Färbung der erwachsenen Thiere am besten durch die als Scharlachzinnroth bezeichnete Malerfarbe wiedergeben, wie denn auch Joh. Müller bei einer späteren Gelegenheit (1852) das Thier zinnrothroth nennt. Gewöhnlich ist diese Färbung auf der Dorsalseite wie auf der Ventralseite ganz gleich, und auch die Madreporenplatte zeichnet sich durch keine andere Färbung aus. Auf dieser eintönigen Grundfarbe erscheinen die Papulae im ausgestreckten Zustände als blassere, im zurückgezogenen als dunklere Fleckchen. Die Füsschen sind wie der Körper gefärbt oder. wenn ausgestreckt, mit Ausnahme der Endscheibe etwas lichter, nach Orangebrot oder Gelb hin; oft zeigen die Füsschen, namentlich die an der Armespitze, eine feine dunkelrothe Ringelung. Bei mittelgrossen Thieren ist die Unterseite manchmal etwas heller (mehr ins Gelbroth ziehend) als die Oberseite; auch die Füsschen und ihre Endscheiben sind dann gelber, doch zeichnen sich auch hier die Endscheiben der Füsschen durch eine intensivere, gelblichrothe Färbung aus. Nicht selten begegnet man sowohl grossen als mittelgrossen Thieren, die sich von den eben beschriebenen durch eine dunklere Färbung unterscheiden. Bei ihnen ist vor allem der Rücken dunkler Roth mit einem matt bräunlichen

Wovon sich die Art ernährt, ist bis jetzt noch nicht festgestellt. Die Fortpflanzungszeit scheint in die Sommermonate zu fallen, denn Lo Bianco fand bei Neapel im Juli Individuen mit reifen Eiern.¹)

Dazu stimmt auch das Wenige, was wir über die Entwicklung wissen. Joh. Müller (1852) und sein Schüler, der spätere Chirurg W. Busch (1851), haben ein einziges Mal im Herbst des Jahres 1850 bei Triest ein Exemplar einer Seesternlarve gefunden, die Müller zweifellos zu E. sepositus rechnet, während Busch, der sie ausführlicher beschrieben hat, sich nur mit einiger Zurückhaltung für die Zugehörigkeit zu dieser Art ausspricht. Doch scheint auch mir die grösste Wahrscheinlichkeit für die Richtigkeit der Müller'schen Ansicht zu sprechen. Busch hat die völlig undurchsichtige, zinnoberrothe Larve längere Zeit am Leben erhalten können und die unterdessen stattfindende Entwicklung ihrer äusseren Formverhältnisse studirt. Sie erinnert unter den aus dem Mittelmeere bekannten Seesternlarven am meisten an die Larve der Asterina gibbosa, unter den ausserhalb des Mittelmeeres bekannten am meisten an die der Cribrella oculata (Echinaster sanguinolentus M. Sars). Wie bei diesen Arten handelt es sich auch hier um eine stark abgekürzte Metamorphose, bei der sich als vorübergehendes Locomotions- und Befestigungswerkzeug des jungen Thieres aus dem präoralen Körperabschnitt des allseitig bewimperten Gastrulastadiums ein verhältnismässig grosses Larvenorgan entwickelt, das im vorliegenden Falle erst eine zwei-, dann eine vierarmige Gestalt annimmt und nach der sich rasch ausbildenden Anlage des Sternes einer Rückbildung anheimfällt. Der junge Seestern der Busch'schen Larve hatte schliesslich in jedem Radius zwei, in zweien sogar schon ein drittes Paar von Füsschen und den Fühlern entwickelt und war etwa 2 mm gross. — Es wäre sehr zu wünschen, dass dieses entwicklungsgeschichtliche Fragment durch neue Untersuchungen geprüft und vervollständigt würde. Voraussichtlich wäre in Neapel dazu der August oder vielleicht auch erst der September der geeignete Monat.

¹) Leider gibt Field in seiner Untersuchung der Spermatogene [1895] nicht an, wann er die reifen Männchen angetroffen hat.

festgestellt an der westafrikanischen Küste (Perrier), bei Madeira (durch Krohn nach einem von ihm gesammelten Exemplare des Bonner Museums) und im Golf von Biscaya (bei Biarritz durch P. Fischer).

Im westlichen Theile des Mittelmeeres kennt man sie von der Küste von Algier (Perrier), von Palermo (Perrier) und Messina (M. Sars, Perrier), aus dem Golf von Neapel (Delle Chiabe, Grube, Costa, M. Sars, Perrier, Lo Bianco, ich, Russo, von Bonifacio (Perrier, von Portofino (Marchisio), aus dem Golf von Genova (Verany), von Nizza. Risso, Bonner Sammlung), La Ciotat (Koehler), Marseille (Gray, Marion), Banyuls (Cuënot), Barcelona (Linck) und Menorca (Braun). Des Näheren lebt sie bei Neapel besonders an der Spitze des Posilip, in der Umgebung von Nisida, auf den Seccen (Secca di Benda Palermo, Secca di Capo Miseno, Secca d'Ischia), in der Bocca piccola und an der Nord- und Ostküste von Capri.

Im adriatischen Meere wird Triest zwar von Graeffe als Fundort in Abrede gestellt, während Grube sie von dort angegeben hatte. Sonst aber findet man sie bei Rovigno (Graeffe, Amsterdamer Museum), im Quarnero (Lorenz) und bei Fiume (Stossich), an den Inseln Cherso und Lussin (Grube) und gegenüber vor der Küste der Romagna (Olivi); ferner an der dalmatinischen Küste bei Spalato (Stossich) und Ragusa (Heller) und an den dalmatinischen Inseln Lissa, Lesina (Heller), Lagosta, Curzola (Stossich), sowie zwischen Lissa und Busi (v. Marenzeller). Ihre südlichste Fundstelle in der Adria hat kürzlich v. Marenzeller bei 15° 27' 7" ö. L. und 42° 2' n. Br. angegeben. Ob sie sich noch weiter östlich im Mittelmeer findet, erscheint zweifelhaft: wenigstens wurde sie von den dorthin unternommenen österreichischen Expeditionen nirgends angetroffen 1).

In verticaler Richtung bevorzugt sie Tiefen von 20—60 m. geht aber auch sowohl in geringere Tiefen von nur wenigen oder selbst nur einem Meter, als auch in größere Tiefen von 60—250 m; ja in einem Falle wurde sie nach dem Zeugnisse Perrier's (1894) bei Bonifacio aus 1060 m herausgeholt. Nach Graeffe wandert sie bei Rovigno im Frühlinge aus größeren Tiefen zu den Felswänden und Höhlen geringerer Tiefen empor.

Nachschrift. Marchisio (1896) beschreibt in einer erst nach der Niederschrift der vorstehenden Schilderung erschienenen Mittheilung über die Echinodermen des Golfes von

1) Carus führt zwar in seinem Prodromus faunae mediterraneae als Gewährsmann für das Vorkommen im ägäischen Meere Fornes an; doch vermag ich die betr. Angabe nirgends in den Fornes'schen Schriften ausfindig zu machen.
Echinaster setosus.

Fam. Asteriidae.

Arme lang, nicht scharf von der ziemlich kleinen Scheibe abgesetzt, mehr oder weniger vier- oder fünfkantig, mit dorsalem Maschenskelet, dessen Platten ebenso wie die durch ihre Grösse nicht auffallenden oberen und unteren Randplatten alle oder zum Theil mässig grosse oder kleine Stacheln tragen; zahlreiche gekreuze, häufig um die Stacheln zu Ringwulstinen geordnete Pedicellarien und meistens auch noch gerade Pedicellarien; Papulacae einzeln oder in Gruppen, nicht nur in den dorsalen Skeletmaschen, sondern auch zwischen den oberen und unteren Randplatten und oft auch zwischen den letzteren und den Adambulacralplatten; Füsschen vierreihig und mit deutlicher Saugscheibe.

Bestimmungsschlüssel der vier Arten:

- Furchenstacheln in einer Längsreihe; jede zweite Radialplatte und obere Randplatte mit einem Stachel; untere Randstacheln nicht länger als die Dorsalstacheln; meistens 7 Arme; Dorsalstacheln der Arme kräftig, in 5 Längsreihen; Stacheln des Scheibenrückens regellos geordnet; Mundekplatten mit in der Regel 3 von innen nach aussen aufeinanderfolgenden Stacheln; meistens 2-1 Madreporenplatten

- Furchenstacheln in zwei Längsreihen; alle Radialplatten und oberen Randplatten bestachelt; untere Randstacheln länger als die Dorsalstacheln; 5 Arme; Dorsalstacheln der Arme kräftig, in 3 Längsreihen (und 2 unvollständigen Zwischenreihen); Stacheln des Scheibenrückens zu einem Fünfeck geordnet; Mundekplatten mit 2 nebeneinanderstehenden adoralen und 1 grösseren aboralen Stachel; eine Madreporenplatte

- In der Jugend 6, im Alter 5 Arme; Dorsalstacheln der Arme klein, in 5 mehrzeiligen Längsstreifen; Radialplatten mit je 3, obere Randplatten mit je 2 Stacheln; ventrale Papulacae fehlen; gerade Pedicellarien vorhanden; die gekreuzen Pedicellarien gleichmassig zwischen die Stacheln vertheilt

Taf. 3, Fig. 8; Taf. 11, Fig. 18, 19.

1616 Stella marina echinata Columna 6.
1711 Petiver 1; T. 126, f. 13.
1814 Asterias heptactis Konrad (Meckel) p. 1.

1) Da ich in einer demnächstigen Publication versuchen werde, die Asterias-Arten in anderer Weise, als es zuletzt durch Perrier (1894) geschehen ist, in eine Anzahl kleinerer Gattungen zu vertheilen, so ziehe ich es vor, an dieser Stelle die Gattung Asterias noch in dem umfassenderen Sinne von Sladen (1889) aufzufassen.
Asterias tenuispina.

1826 Asterias rubens¹ Risso p. 269.
1834 Asterias tenuispina Blainville p. 241.
1840 Asterias glacialis var. savaresi Grube p. 23—24.
1840 Asterias tenuispina Lamarek Vol. 3, p. 250.
1850 Asterias glacialis Gray p. 179.
1811 Asterias savaresi Delle Chiaje vol. 1, p. 60; Vol. 5, p. 125; T. 125, f. 6; T. 139, f. 3; T. 132, f. S, 16; T. 171, f. 23.
1812 Astereanthis tenuispinus Müller & Troschel p. 16; T. 1, f. 1.
1816 Asterias glacialis Verany p. 52².
1854 Astereanthis tenuispinus Lütken p. 95—96³.
1860 Astereanthis tenuispinus variatio elongatus Lorenz p. 675.
1863 Astereanthis tenuispinus Heller p. 441.
1866 Asterias tenuispina Gray p. 1.
1868 Astereanthis tenuispinus Heller p. 52.
1869 Astereanthis tenuispinus Agassiz p. 305⁴.
1869 Astereanthis tenuispinus Perrier p. 32—33; T. 1, f. 3.
1872 Asteraceanthion tenuispinus Greeff p. 103—104.
1872 Asteraceanthion tenuispinus Kowalesky p. 283.
1875 Asterias tenuispina Perrier p. 42—43.
1876 Asterias tenuispina Perrier p. 64.
1876 Asteraceanthion tenuispinus Stossich p. 354.
1875 Asterias tenuispina Perrier p. 76, 75.
1879 Asterias tenuispina Ludwig p. 385⁴.
1881 Astereanthis tenuispina Bell p. 496, 500, 503, 507.
1882 Asterias tenuispina Greeff p. 135, 137.
1883 Asterias tenuispina Marion [Nr. 1] p. 60; [Nr. 2] p. 13.
1885 Asterias tenuispina Carus p. 56.
1885 Asterias tenuispina Braun p. 308.
1886 Asterias tenuispina Freyer p. 29.
1888 Asterias tenuispina Th. Barrois p. 70.
1889 Asterias (subg. Stolastereae) tenuispina Sladen p. 563, 564, 505, 553⁵, 518, 519.
1890 Asterias tenuispina Norman p. 502—503.
1892 Asterias tenuispina Bell (Catalogue) p. 104.
1894 Asterias tenuispina Kocher p. 408.
1896 Asterias tenuispina Marchisio p. 2.

Diagnose. Meistens 7 (selten 6 oder 8, noch seltener 9 oder 5) Arme, die sehr häufig von ungleicher Länge sind und dann in zwei Gruppen stehen: die langen für sich und die kurzen für sich. Grösse bis 170 mm. r : R = 1 : 6—7. Dorsalstacheln kräftig, in fünf Längsreihen.

3. Ob es sich an dieser Stelle wirklich um die vorliegende Art handelt, bedarf noch der Aufklärung, s. p. 362.
4. Unter den dort angeführten Litteraturstellen sind die auf *Echinaster dorius* und *Echinaster tribulus* de Filippi bezüglichen zu streichen; vergl. die Anmerkung bei *Echinaster sepositus* p. 311.
5. = Anmerkung 3.

¹ Nicht *tenuispina*, wie Müller & Troschel citiren und auch ich in meinem Prodromus (1879, p. 535) falschlich citirt habe; denn Risso's *tenuissima* = Drueckehler für *tenuispina* ist identisch mit *Luidia ciliaris* [s. p. 61].

² Aus seinem Zusatze: *savaresii D. C.*, geht hervor, dass Verany mit *A. glacialis* die *tenuispina* meint.

³ Ob es sich an dieser Stelle wirklich um die vorliegende Art handelt, bedarf noch der Aufklärung, s. p. 362.

⁴ Unter den dort angeführten Litteraturstellen sind die auf *Echinaster dorius* und *Echinaster tribulus* de Filippi bezüglichen zu streichen; vergl. die Anmerkung bei *Echinaster sepositus* p. 311.

⁵ = Anmerkung 3.

Ohne Berücksichtigung der Meckel'schen und der Lamarck'schen Benennung hat DELLE CHIAIE dieselbe Art als Asterias sauvagesi beschrieben. GRUBE (1840) erklärte sie für eine Varietät der Asterias glacialis, und Gray ging zur selben Zeit noch weiter und hielt sie, ebenso irrhthümlich, wie er später selbst zugab, sogar für identisch mit jener Art. Demgegenüber stellten MÜLLER & TROSCHEL (1842) die Verschiedenheit der tennispina von glacialis mit vollem Rechte wieder her, an der von da an kein Zoologe mehr gezweifelt hat. Durch einen Fehler in den Maassangaben der MÜLLER & TROSCHEL'schen Diagnose, den ich bei Besprechung des

In ihrer Gattungszugehörigkeit hat die Art keine großen Wandlungen durchgemacht. Bei der Auflösung der Linnéschen Gattung *Asterias* wurde sie von D'Orbigny (1839) zu Nardo's *Stellonia* gestellt, von den Autoren des Systemes der Asteriden aber zu deren Gattung *Asteracanthia* gerechnet, die mit *Asterias* im Sinne Gray's (1840) identisch ist. Mit der durch Perrier (1875) eingeleiteten, allgemein angenommenen Wiederaufnahme des Gattungsnamens *Asterias* gelangte dann die Art wieder zu dem Namen, den sie schon bei Lamarck geführt hatte. Bei den neueren Bestrebungen, die Gattung *Asterias* in kleinere Untergattungen (Sladen) oder Gattungen (Perrier) zu zerlegen, wurde die Art durch Sladen (1889, p. 563, 585) zum Typus der von ihm als *Stolasterias* bezeichneten Artengruppe 1).

1) S. Anmerkung p. 344.
Später hat dann Lorenz die relative Länge von R durchschnittlich größer gefunden als Müller & Troschel, nämlich vier- bis achtmal so lang wie r. Lorenz nimmt wegen dieses Gegensatzes zu der Müller & Troschel'schen Angabe an, dass es sich bei seinen adriatischen Exemplaren um eine durch längere Arme ausgezeichnete Variation der Art handle, die er deshalb als variatio elongatus bezeichnet. Meine eigenen Messungen an neapolitanischen Exemplaren lassen mir aber keinen Zweifel daran, dass bei der Müller & Troschel'schen Angabe ein Verschen mit untergelaufen sein muss. Die in der unten stehenden Tabelle aufgeführten acht Exemplare ergeben ein durchschnittliches Verhältniss von $r : R = 1 : 6,34$; im Minimum $1 : 4,75$, im Maximum $1 : 7,08$ (bei ungleicher Armlänge ist dabei der Radius des längsten Armes zu Grunde gelegt). Zehn andere Exemplare (sieben siebenarmige, ein sechsarmiges, ein achtarmiges und ein neunarmiges), deren Länge 80—115 mm und deren R 42—58 mm betrug, ergaben ein durchschnittliches Verhältniss von $r : R = 1 : 6,7$ (im Minimum 1 : 6; im Maximum 1 : 7,3). Die neapolitanischen Exemplare stimmen also in Bezug auf das relative Grössenverhältniss von R mit den adriatischen überein, und es liegt dennach keine Veranlassung vor, in den letzteren eine besondere Abweichung von dem Typus der Art zu sehen. Bei völlig erwachsenen, d. h. 100 mm und darüber grossen Thieren hat R in der Regel die sechs- bis siebenfache Länge von r.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>$r : R$</th>
<th>Armzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>170</td>
<td>55</td>
<td>12</td>
<td>1 : 7,08</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>160</td>
<td>50</td>
<td>13</td>
<td>1 : 6,15</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>155</td>
<td>50</td>
<td>12</td>
<td>1 : 6,67</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>118</td>
<td>60</td>
<td>10</td>
<td>1 : 6</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>110</td>
<td>55</td>
<td>8</td>
<td>1 : 6,57</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>102</td>
<td>53</td>
<td>9</td>
<td>1 : 5,89</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>92</td>
<td>56</td>
<td>8</td>
<td>1 : 7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>76</td>
<td>35</td>
<td>8</td>
<td>1 : 4,75</td>
<td>8</td>
</tr>
</tbody>
</table>

Asterias tenuispina.

349

gehandelt haben. Mir selbst sind bei Neapel nur 6-, 7- und Sarmige Exemplare zu Gesicht gekommen; ein 9armiges von dort habe ich erst vor kurzem von Herrn Dr. Lo Bianco erhalten.

Unter sich sind die Arme der meisten Exemplare von ungleicher Länge. Vollständig regelmässige Individuen, d. h. solche mit 7, 6, 8 oder 9 gleich langen oder doch annähernd gleich langen Armen sind sowohl bei Neapel (Kowalevsky, ich) als anderswo, z. B. bei La Ciotat (Köhler), in der Adria (Heller) und an den Canaren (D'Orbigny, Greeff) verhältnissmässig selten. Köhler scheint zu meinen, dass nur erwachsene Thiere mit gleich langen Armen auftreten, jüngere aber stets ungleiche Arme zeigen. Das trifft auch bei Neapel in der Regel zu, ist aber doch auch nicht ohne Ausnahme; denn mir liegt z. B. von dort ein nur 60 mm langes Exemplar mit 8 fast gleich langen Armen vor, und von den Canaren besitze ich ein regelmässig 7armiges Exemplar von nur 50 mm Länge. Andere mir vorliegende regelmässige Exemplare sind die folgenden:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>R (mm)</th>
<th>Armzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3½</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>40—44</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>50</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>50—53</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>52—56</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>54—60</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>62</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>75</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>85</td>
<td>6</td>
</tr>
</tbody>
</table>

Daraus ergibt sich, dass von 50—170 mm langen Thieren sowohl sieben- als neun-, acht- und sechszähnige mit regelmässig ausgebildeten Armen zur Beobachtung gelangt sind.

Viel häufiger sind allerdings Exemplare mit einer mehr oder weniger grossen Ungleichheit der Arme, und auch hier finden sich neben siebenarmigen sowohl achtarmige als auch sechszähnige. Eine Anzahl derartiger Exemplare sind in der folgenden Tabelle zusammengestellt:
In allen diesen wie auch in allen von anderen Autoren (Sars, Greeff, Kovalevsky) erwähnten Fällen sind die kleinen Arme niemals regelmässig zwischen die grösseren erteilt, sondern sie bilden stets, indem sie unmittelbar aufeinanderfolgen, für sich eine besondere Gruppe, die der Gruppe der grossen Arme gegenüber liegt: das Thier erscheint aus zwei Hälfiten, einer grossarmigen und einer kleinarmigen, zusammengesetzt, was sich daraus erklärt, dass unsere Art die Fähigkeit hat, sich ungeschlechtlich durch einen Theilungsvorgang mit nachfolgender Regeneration zu vermehren (s. p. 363).

Trotzdem sind nicht alle Individuen mit ungleicher Armlänge ausnahmslos auf Theilungsvorgänge zurückzuführen. Mitunter trifft man auf Exemplare, die in der Gestaltung ihres Peristomes deutlich erkennen lassen, dass sie eine echte Theilung (unter Mitbeteiligung der Scheibe, s. p. 363) nicht oder doch nicht vor kürzerer Zeit durchgemacht haben, obwohl sie einen oder mehrere ganz kurze, in Regeneration begrifene Arme besitzen. Mit aller Bestimmtheit lässt sich wahrnehmen, dass hier die regenerirenden Arme auf dem peristomalen Stumpf verloren gegangener Arme aufsitzen. Mir liegt z. B. ein derartiges Exemplar vor, das ausser vier fast gleich langen \((R = 45 \text{ mm})\) Armen zwei ganz junge Arme trägt, die aus dem Scheibenteile zweier an ihrer Basis abgebrochenen Arme hervorspringen. Ob auch solche abgebrochene Arme, die ihren Peristomialabschnitt nicht wie bei einer Theilung mitgenommen, sondern in der alten Scheibe zurückgelassen haben, sich später durch Nachwuchs einer ganzen neuen Scheibe und einer Anzahl Arme zu einem vollständigen Individuum ergänzen können, ist bei der vorliegenden Art noch niemals festgestellt worden.

Das \textit{Dorsalskelet der Arme} (Taf. 11, Fig. 18, 19) setzt sich aus einer medianen Längsreihe von Radialplatten, einer jederseitigen marginalen Längsreihe von oberen Randplatten und aus den diese drei Reihen verbindenden queren Querbrücken zusammen. Die Reihe der Radialplatten ist namentlich bei alten Thieren manchmal etwas weniger regelmässig in ihrem Verlaufe, als die beiden Reihen der oberen Randplatten. Da sich im Bereiche der Querbrücken jederseits zwischen die Reihe der Radialplatten und die Reihe der oberen Randplatten noch eine allerdings grösseren Unregelmässigkeiten unterworfone Plattenreihe einschiebt, so erhalten wir im Ganzen fünf dorsale Längsreihen grösserer Platten, wie das schon \textit{Delle Chiaje} (s. seine Abbildung Taf. 171, Fig. 23) richtig dargestellt hat.

Die vierlappig umgrenzten Radialplatten (Taf. 11, Fig. 18) gehen ebenso wie die Randplatten bis zur Terminalplatte und bilden wie jene eine geschlossene Reihe, in der die Platten so übereinander greifen, dass der proximale Lappen einer jeden den distalen der vorhergehenden von aussen bedeckt. Mit ihrem jederseitigen lateralen Lappen überlagert jede eine Platte das mediale Ende einer dorsalen Querbrücke. Bei alten Thieren haben die Platten im proximalen Armabschnitt eine Länge von \(2,3—3 \text{ mm}\) und eine Breite von \(2—2,5 \text{ mm}\). In ihrer Zahl stimmen die Platten mit der Zahl der oberen Randplatten überein.

Auch die oberen Randplatten (Taf. 11, Fig. 18) haben dieselbe Gestalt wie bei den übrigen mittelmeerischen \textit{Asterias}-Arten, sind also vierlappig mit griffartig verlängertem ventralem Lappen. Auch ihre Verbindungswweise ist die gleiche. Der proximale Lappen bedeckt von aussen den distalen der vorhergehenden Platte, der dorsale überlagert das laterale Ende einer dorsalen Querbrücke, und der lange ventrale Lappen \((=\text{grifförmiger Fortsatz})\) legt sich von aussen auf den ähnlichen dorsalen Fortsatz der entsprechenden unteren Randplatte und bildet so mit diesem einen Verbindungspfeiler zwischen den beiden Reihen der oberen und unteren Randplatten. Im proximalen Armabschnitt alter Thiere haben die oberen Randplatten eine Länge von \(2,7—3,3 \text{ mm}\) und eine Breite von \(3,6—4,5 \text{ mm}\).

Die \textit{dorsalen Querbrücken} (Taf. 11, Fig. 18, 19) zeigen in ihrem Aufbaue zwar manche
Unregelmässigkeiten; doch lässt sich, wenn man eine Anzahl von Exemplaren in der ganzen Länge der Arme darauf untersucht, ein bestimmter Grundzug in der Anordnung und Zusammensetzung der Querbrücken nicht verkennen. Es ist derselbe, den bereits DELLE CHIAIE (1841) in seiner oben angeführten Abbildung erläutert hat. Von jeder Radialplatte und von jeder oberen Randplatte geht ein queres, längliches Skeletstück ab; jenes können wir als die mediale, dieses als die laterale Spange der Querbrücke bezeichnen. Beim ganz jungen Thiere und in der nächsten Nähe der Terminalplatte älterer Arme ist sogar zwischen der Radialplatte und der zugehörigen oberen Randplatte überhaupt nur ein einziges Spangenstück vorhanden. Ob dieses beim weiteren Wachsthum des Armes zur medialen oder zur lateralen Spange der ausgebildeten Querbrücke wird, liess sich nicht mit Sicherheit ermitteln. Die beiden Spangen einer Querbrücke können sich unmittelbar treffen und in der Weise mit einander verbinden, dass sich das mediale Ende der lateralen Spange über das laterale Ende der medialen Spange legt. Das geschieht aber nur ausnahmsweise. In der Regel erfolgt die Verbindung der einander entgegenstrebenden, medialen und lateralen Spangen durch eine besondere Skeletplatte, die sich ungefähr in der Mitte des Abstandes zwischen den Radialplatten und oberen Randplatten befindet und wahrscheinlich ein Homologon der Adradialplatten phanerozonischer Seesterne darstellt, also auch so heissen mag. Diese Adradialplatten sind nun aber in der Regel nur halb so zahlreich wie die oberen Randplatten und die Radialplatten, und fehlen in der Nähe der Terminalplatte sogar gänzlich. Ferner sind die Adradialplatten den an sie anstoßenden Spangenenden von aussen aufgelagert und besitzen einen vierräppigen Umriss, an dem sich zwei distale (ein medizaler und ein lateraler) und zwei proximale (ebenfalls ein medizaler und ein lateraler) Lappen unterscheiden lassen. Mit jedem dieser vier Lappen bedeckt die Adradialplatte das Ende einer Querspange. Sonach verbindet die Adradialplatte gleichzeitig die Spangen zweier aufeinander folgender Querbrücken; die Spangen müssen deshalb eine etwas sichere Richtung einschlagen, um ihre Adradialplatte zu erreichen. Auf solche Weise entstehen durch die Zusammenjochung je zweier Querbrücken Skeletgruppen von ungefähr X-förmiger Gestalt, die sich quer zwischen die Radialplatten und oberen Randplatten stellen und deren Reihen auseinander drängen. Jedes X wird in seinem Mitteltheile von einer Adradialplatte und in jedem seiner Arme von einem Spangenstück gebildet. Bald liegen die X-förmigen Gruppen der einen Armseite denen der anderen genau gegenüber, bald wechseln sie mit denselben ab. Die häufigen Unregelmässigkeiten, die sich in dem eben besprochenen Aufbaue der Querbrücken einstellen, sind verschiedener Art. So z. B. kann eine Adradialplatte statt vierräppig nur dreiräppig oder auch seltener fünfräppig sein und sich dann anstatt mit vier mit nur drei oder mit fünf Spangen verbinden. Oder, was besonders im älteren, also proximalen Theile der Arme auftritt, die Spangen selbst bleiben nicht eintheilig, sondern werden durch Einschub weiterer Skeletplättchen zweithelzig oder seltener dreithelzig.

Die grossen und kleinen Skeletmaschen, die sowohl zwischen den aufeinanderfolgenden X-förmigen Skeletgruppen als auch zwischen den Armenten der X übrig bleiben, sind von unverkalkter Haut ausgefüllt und dienen der Ausbildung der Papulac.
Wenden wir uns nun zur Bestachelung des Arnrückenskeletes, so treten uns die Stacheln selbst in wohltwickelter, kräftiger, lang kegelförmiger, zugespitzter Form entgegen: bei alten Thieren erreichen sie im proximalen Armabschnitt eine Länge von 5 mm und eine basale Dicke von 1,3 mm; distalwärts nehmen sie an Länge und Dicke allmählich ab. Jeder Stachel sitzt auf einer in ihrer Mitte gänzlich von der Mitte abgewinkelten, warzenförmigen, kreisrunden Verdiickung einer Skeletplatte. Die drei Hauptreihen der Stacheln kommen dadurch zu Stande, dass sowohl von den Radialplatten als auch von den oberen Randplatten jede zweite einen Stachel auf ihrer Aussenfläche trägt, wobei freilich hier und da einmal die Unregelmäßigkeit sich erhebet, dass zwei aufeinanderfolgende Platten stachellos sind oder alle beide oder sogar mehrere hintereinander einen Stachel aufweisen. Bald alterniren die Stacheln der radialen Reihe mit denen der oberen Randplatten, bald entsprechend sie. Nur in der Nähe der Scheibe finden sich bei alten Thieren auch einmal zwei nebeneinander stehende Stacheln auf derselben Radialplatte. Die zwischen den Hauptstachelreihen jederseits eingeschobene Reihe wird von Stacheln geliefert, die den Adradialplatten (nur ausnahmsweise einem Spangenstücke) angehören und sich in Form und Einlenkungsweise nicht von den anderen Dorsalstacheln unterscheiden. In der Regel trägt jede Adradialplatte einen Stachel. Im Ganzen ist die Längsreihe dieser adradialen Stacheln in ihrem Verlaufe etwas unregelmässiger als die radiale oder marginale Stachelreihe, was sich daraus erklärt, dass die Adradialplatten im Gegensatze zu den Radial- und oberen Randplatten unter sich nicht direct verbunden sind und deshalb zu grösseren und geringeren Dislocationen neigen. Bei alten Thieren erreichen die adradialen Stacheln beinahe die Terminalplatte; bei jüngeren hören sie in einer bald geringeren, bald grösseren Entfernung von jener Platte auf.

Die unteren Randplatten (Taf. 11, Fig. 18) stimmen in Zahl und Länge mit den oberen Zool. Station d. Neapel, Fauna und Flore, 6-Hf von Neapel. Seefische.

Auf ihrem verdickten, convexen, ventralen Lappen trägt eine jede untere Randplatte zwei Stacheln, die so angebracht sind, dass der adorale der Ambulacraalfurche näher liegt als der adorale. Jenen können wir deshalb auch den unteren (inneren), diesen den oberen (äußeren) nennen. Beide Stacheln bilden zusammen eine schiefe Querreihc. Ein jeder von ihnen ist über einer quer oder schräg zum Plattenrande gestellten Furche eingelenkt. Beide Stacheln sind nach ihrem freien, abgestutzten Ende hin comprimirt und zwar in dem Sinne, dass die adorale Fläche der Abplattung zugleich schräg nach innen, d. h. nach der Ambulacraalfurche, sieht, die adorale Fläche aber nach aussen, d. h. nach dem Rande des Armes, blickt. In ihrer Länge, die nach der Arm spitze hin allmählich abnimmt, übertreffen die beiden Stacheln der unteren Randplatten nur scheinbar die Dorsalstacheln; da ihre Basis nicht wie bei jenen von einem Pedicellarienwulste rings umhüllt wird, so liegen sie ihrer ganzen Länge nach frei zu Tage und sehen dadurch länger als jene aus, obwohl sie höchstens ebenso lang sind. Untereinander verglichen ist der adorale (oberer) Stachel einer jeden unteren Randplatte meistens etwas länger als der adorale (untere); jener misst im proximalen Armabschnitt erwachsender Thiere 4—4,8, dieser 4,1—4,3 mm. In seiner Form leitet der adorale (oberer) Stachel trotz seiner abgestutzten Endigung insofern zu den zugespitzten Dorsalstacheln über, als er an seinem freien Ende schmäler zu sein pflegt als an der Basis; während seine basale Breite (im proximalen Armabschnitt altern Individuen) 0,9—0,95 mm beträgt, misst die terminale Breite nur 0,5—0,7 mm. Der adorale (untere) Stachel dagegen ist an seinem ebenfalls abgestutzten Ende, das in der Regel auch noch stärker comprimirt ist als das Endstück des adoralen Stachel, gewöhnlich noch ein wenig breiter als an seiner Basis; die basale Breite misst (im proximalen Armabschnitt erwachsender Exemplare) 0,9—1 mm, die terminale Breite 1—1,2 mm. Ausserdem biegt das comprimirte, breite Endstück des adoralen Stachel sehr häufig seine beiden Seitenränder etwas nach aussen, sodass die adorale und gleichzeitig nach aussen gerichtete Fläche leicht concav wird und so dem Stachelende die Form einer Schaufel oder eines Spatens gibt.
Aus der Stellung der beiden Stacheln einer jeden untern Randplatte ergiebt sich von selbst, dass die sämmtlichen Stacheln der ganzen Reihe der untern Randplatten sich zu einer doppelten Längsreihe von Stacheln an der Ventralseite des Armes ordnen. So beschreibt denn auch schon Delle Chiaje ganz richtig an der Unterseite der Arme jederseits eine zweifache Reihe platter Stacheln, und Grube (1840) meint offenbar dasselbe, wenn er längs der Fässchenfurche eine äussere Reihe von stärkeren Stacheln angiebt, die «gabelig oder zweiarmig sind; denn was er hier als die zwei Arme der Gabel ansieht, kann sich auf nichts anderes als auf den aboralen und den adoralen Stachel der untern Randplatten beziehen. Müller & Troschel (1842) geben dagegen auf der Ventralseite nahe den Furchen zwei bis drei Reihen von Stacheln an. Das ist indessen nur ein scheinbarer Widerspruch zu der Angabe Delle Chiaje's und zu meinen eigenen Befunde, dass die unteren Randplatten immer nur mit zwei, nicht mit drei Stacheln ausgerüstet sind. Denn die dritte Stachelreihe, die Müller & Troschel hier mitgezählt haben, gehört, wie wir gleich sehen werden, nicht den unteren Randplatten an, sondern den von jenen Forschern noch nicht unterschiedenen Ventrolateralplatten.

Die Terminalplatte der erwachsenen Thiere hat eine abgerundet quer trapezförmige, stark gewölbte Gestalt. Bei grossen Exemplaren maass ich ihre Länge zu 1,7 mm, die Breite des proximalen Randes zu 2,68 und die des distalen Randes zu 1,43 mm. An der Unterseite sind die Nische für Fühler und Auge sowie die daran anschliessende Rinne für die jüngsten Armwirbel und Fässchen gut entwickelt und voneinander wie gewöhnlich durch einen lappenförmigen Vorsprung des Rinnenerandes abgegrenzt. Die Oberseite der Platte ist dicht mit gekreuzten Pedicellarien besetzt, die in Form und Grösse mit denen der übrigen Dorsalseite des Thieres (s. p. 360) übereinstimmen; manchmal sind die Pedicellarien der Terminalplatte ganz oder theilweise abgescheuert. Ausser ihnen trägt die Platte auf ihrem distalen Rande sowie rechts und links von der Fühlerschale im Ganzen etwa ein Dutzend kleiner, stumpf cylindrischer Stacheln die meistens nur halb so gross sind wie die nächststehenden Stacheln der Radial- und oberen Randplatten.

Fast in der ganzen Länge des Armes (erwachsener Thiere), mit alleiniger Ausnahme des der Terminalplatte benachbarten Bezirkes, reichen die unteren Randplatten nicht unmittelbar an die Adambulacralplatten, sondern stehen mit ihnen erst durch Vermittlung einer Längsreihe von Ventrolateralplatten in Zusammenhang (Taf. 11, Fig. 18). Das laterale Ende einer jeden Ventrolateralplatte wird vom ventralen Rande der entsprechenden unteren Randplatte bedeckt, während das mediale Ende sich auf den Aussenrand von zwei bis drei Adambulacralplatten stützt. Die Form der Ventrolateralplatten ist eine quere; ihre Breite misst im proximalen Armabschnitt eines grossen Exemplares 1,6—2,5 mm, die Länge 1,23—1,54 mm. In der proximalen Armhälfte findet man bei alten Thieren sehr häufig, aber doch nicht ganz constant, dass sich zwischen das mediale Ende der Ventrolateralplatte und die Adambulacralplatten noch ein dünnnes kleines Plättchen Taf. 11, Fig. 18, einschiebt, das oft so versteckt liegt, dass man es an dem Skeletpräparat von aussen gar nicht bemerkt, sondern erst wahrmimmt, wenn man die Ventrolateralplatte von den Adambulacralplatten ablöst. Mitunter ist
Asteriidae.

dieses Schaltplättchen durch zwei kleinere, in der Längsrichtung des Armes aufeinanderfolgende ersetzt. Ob man etwa in diesen Schaltplättchen den Anlauf zur Ausbildung einer zweiten Längsreihe von Ventrolateralplatten zu sehen hat, erscheint mir sehr zweifelhaft. Da die Ventrolateralplatten kürzer sind als die unteren Randplatten, so bleibt zwischen je zwei aufeinanderfolgenden Ventrolateralplatten eine kleine Skeletmasche übrig, die zur Aufnahme der ventralen Papulae bestimmt ist. Nur in der nächsten Nähe des Mundes ändert sich dieses Bild. Hier zeichnen sich nämlich die erste bis vierte oder fünfte Ventrolateralplatte dadurch aus, dass sie sich nicht nur bis zu gegenseitiger Berührung verlängern, sondern sogar dachziegelig in adoraler Richtung übereinander greifen: das proximale Ende der einen schiebt sich über das distale der vorhergehenden. Selbstverständlich werden dadurch in diesem Bezirke die ventralen Skeletmaschen völlig unterdrückt. Dieselben vier oder fünf ersten Ventrolateralplatten bleiben auch stachellos, während man auf den folgenden in der proximalen Armhälfte und oft noch eine Strecke weiter distal je einen Stachel antrifft, der sich in Form und Stellung den Stacheln der unteren Randplatten anschliesst und es veranlasst hat, dass, wie schon weiter oben erwähnt, Müller & Troschel von zwei bis drei ventralen Stachelreihen zu beiden Seiten der Ambulacralfurche sprechen. Der Stachel der Ventrolateralplatte ist ebenso wie die der unteren Randplatten über einer queren Furche der Platte befestigt. Er ist kürzer als jene; seine Länge misst im proximalen Armabschnitt alter Thiere 3,5—4 mm, die basale Breite 0,8—0,9, die terminale Breite 0,95—1,1 mm. Er gleicht also auch darin dem ihm zuletztstehenden, aboralen (unteren) Stachel der unteren Randplatte, dass er sich an seinem comprimirten, abgestutzten Ende ein wenig verbreitert. Die Compression des Endstückes erfolgt in derselben Richtung wie bei den Stacheln der unteren Randplatte; auch ist das Ende sehr häufig in derselben Weise schaufel- oder spatenförmig geworden. — Bei mittelgrossen und kleinen Exemplaren sind die Stacheln der Ventrolateralplatten viel sparsamer entwickelt. Sie finden sich nur auf dem proximalen Armabschnitt, oft ganz vereinzelt, oder fehlen sogar noch ganzlich.

Die Papulae, auf die Grube [1840] seltsamerweise den Namen Pedicellarien ange- wendet hat1), haben die Gestalt dünnwandiger, fingerförmiger Cylinderchen (Delle Chiaz nennt sie »keulenförmige« und sind bei den erwachsenen Thieren stets zu Gruppen vereinigt (Taf. 11, Fig. 18, 19). In den dorsalen Skeletmaschen ordnen sich die Gruppen jederseits in der Regel zu zwei Längsreihen, indem auf den Zwischenraum von je zwei aufeinanderfolgenden Skelet- brücken eine mediale und eine laterale Gruppe kommt. Die mediale Gruppe liegt in der Nähe der Verbindungsstelle zweier aufeinander folgender Radialplatten, die laterale Gruppe in der Nähe der Verbindung zweier oberen Randplatten. Sind die X-förmigen Skeletgruppen gut ausgebildet, so liegt zwischen den beiden medialen Armen des X die mediale und zwischen den beiden lateralen Armen die laterale Papulaegruppe, sodass demnach hier eine jede Gruppe

1) Er sagt: »zwischen den Warzen (womit er die Pedicellarienwülste meint) sieht man kleine Häufchen oder Färchen sogenannter Pedicellarien (Rückenfühler)."

Die Adambulacralplatten haben auch bei dieser Asterias-Art eine ventrale Oberfläche, die viel breiter als lang ist; bei grossen Exemplaren misst die Breite dieser Fläche im proximalen Armabschnitt durchschnittlich 1,7—1,8 mm, die Länge aber noch nicht halb soviel, nämlich 0,6—0,7 mm. In der nächsten Nähe der Munddeckplatte, etwa von der sechsten oder siebenten Platte an, nimmt die Breite der ventralen Oberfläche allmählich ab, bis sie schliesslich an der ersten Platte nur noch 1 mm beträgt. In derselben Gegend stossen die vier oder fünf ersten Adambulacralplatten je zweier benachbarter Arme in der Interradiallinie ohne dazwischen liegende Ventrolateralplatten unmittelbar zusammen. Erst von der fünften oder sechsten Adambulacralplatte an legen sich (beim erwachsenen Thiere) Ventrolateralplatten an den lateralen Rand der Adambulacralplatten. An Zahl übertreffen die Adambulacralplatten fast viermal die Ziffer der unteren Randplatten; so zählte ich im proximalen Armabschnitt alter Exemplare gewöhnlich dreissig derselben auf die Länge von acht unteren Randplatten.

Wie schon Grupe (1840) und später Müller & Troschel (1842) angaben, ordnen sich die Stacheln der Adambulacralplatten in eine einzige, der Armmulde entlang ziehende Reihe, in welcher nach Bell (1881) und Sladen (1889) je ein Stachel auf jede Platte kommt. Bell rechnet deshalb die Art zu den von ihm monacanthid genannten Formen. Doch finde ich im proximalen Armabschnitt erwachsener Exemplare recht oft einen Uebergang zur diplacanthiden Bewaffnung, indem bald eine geringere, bald eine grössere Anzahl Platten mit zwei in querer Richtung nebeneinander stehenden Stacheln ausgerüstet ist. Indessen folgen diese zweistacheligen Platten niemals in geschlossener Reihe aufeinander, sondern in unregelmässigem Wechsel mit einstacheligen. Von den beiden Stacheln der zweistacheligen Platten
Asteriidae.

steht der äussere ein wenig weiter nach aussen, der innere (meist schwächere) etwas weiter nach innen als der eine Stachel der einstachelig Platten. Im proximalen Armabschnitt erwachsener Thiere haben die distalwärts allmählich an Grösse abnehmenden Adambulacralstacheln eine Länge von 3—3,26 mm und eine basale Breite von 0,47—0,52 mm; an ihrem abgestutzten Ende sind sie meistens etwas breiter als an der Basis (0,52—0,63 mm). Sie sind parallel zur Medianebene des Armes comprimirt; am freien Ende biegen sich die Seitenränder des Stachelns häufig leicht einander zu, sodass auf der Aussenseite des Stachelendes eine schwache, seichte Längsrinne zu Stande kommt, die an die Schaufel eines Spatens erinnert.

Die ventrale Oberfläche der Munddeckstücke ist beim erwachsenen Thiere nur 2 mm lang und 1 mm breit. Sie trägt in der Regel drei, sel tener nur zwei oder wohl auch vier Stacheln, die hintereinander in einer Längsreihe stehen, welche in der Richtung vom Munde zum Armwinkel verläuft. Bald nehmen die Stacheln von innen nach aussen, bald von aussen nach innen ein wenig an Länge zu, bald sind sie von gleicher Länge. Bei einem grossen Exemplare misst die Länge 3—4 mm und die Dicke an der Basis 0,54—0,77 mm. Nach dem stumpf abgerundeten, freien Ende hin sind sie entweder leicht verjüngt oder von gleichbleibender Dicke.

Asterias tenuispina.

359

und Regeneration einem sorgfältigen Studium unterziehen — beides ist mir leider an meinem Material nicht möglich.

Die Pedicellarien treten als gekrümpte und als gerade auf. Jene sind ausserordentlich zahlreich und wie bei Asterias glacialis und A. edmundi zu Ringwülsten rings um die einzelnen Stacheln der Oberseite gruppirt. Die geraden aber sind sparsamer vertheilt und beschränken sich in der Regel auf die Ambulacraffurchen und die ventralen Interbrachialbezirke. Die

1) In Bezug auf die BELL'sche Formel \(l p a a' \) sind damit die beiden Bestandtheile der Formel \(p \) und \(a \) als unzuverlässig erwiesen. Nicht besser steht es mit dem Bestandtheil \(l \), der aussagt, dass die Art monacanthid sei, denn wir haben gesehen, dass im proximalen Armeabschnitt die Furchenstacheln auch zweireifig werden können. Und was ferner den Bestandtheil \(a' \) (autacanthid) der Formel angeht, so habe ich mich durch Vergleich mit der der A. tenuispina nahe verwandten A. calamaris, die bei BELL das Formelzeichen \(t \) (autacanthid) führt, sowie durch Untersuchung der A. rubens, die bei ihm der Typus des typacanthiden Verhaltens ist, ebenso vergeblich wie F. FISCHER (Echinodermen von JAN MAYEN, Wien 1886, p. 4) zu belehren gesucht, was eigentlich für ein durchgreifender Gegensatz besteht zwischen dem, was er autacanthid und dem, was er typacanthid nennt. Es bleibt mir also von der BELL'schen Formel schliesslich nur noch der mit \(l \) bezeichnete Bestandtheil übrig, womit die in der Regel mehr als fünf betragende Zahl der Arme angedeutet wird; ein Merkmal, das diese Art mit einer ganzen Reihe anderer theilt. Aus diesem einen Beispiel dürfte zur Genüge hervorgehen, dass mit den BELL'schen Formeln schon für eine sichere Bestimmung der Asterias-Arten nichts anfängen ist. Noch weniger wird man damit eine den natürlichen Verwandtschaftsverhältnissen entsprechende Gruppirung der Arten construiren können.

Die geraden bilden jederseits in der Ambulacralfurchen, nach innen von den Basen der Furchenstacheln, eine Längsreihe, in welcher in der Regel auf jede Adambulacralplatte eine (sehr selten zwei) Pedicellarie kommt. Unter sich vergleichen sind die Pedicellarien der Ambulacralfurchen von sehr ungleicher Grösse; grössere wechseln in regelloser Folge mit kleineren. Ihre Länge schwankt von 0,5—0,88, ihre Breite von 0,21—0,45 mm. Noch grösser sind durchgängig diejenigen geraden Pedicellarien, die man in ziemlicher Anzahl unmittelbar nach aussen von den Mundecken in dem von den Furchenstacheln zweier benachbarter Arme gebildeten interbrachialen Winkel antrifft. Ihre Länge misst 1—1,23, ihre Breite 0,4—0,45 mm. Müller & Troschel's Angabe, dass die „grösseren einzelnen“ Pedicellarien der vorliegenden Art etwa dreimal so lang wie breit sind, trifft also vollkommen zu. Mitunter, aber keineswegs an allen Exemplaren, begegnete ich überdies auch noch vereinzelten geraden, bis 1,13 mm langen und 0,57 mm breiten Pedicellarien oberhalb der oberen Stacheln der unteren Randplatten nur bei grossen Exemplaren. Ein einziges Mal stiess ich auf eine gerade Pedicellarie, die sich durch den Besitz eines dritten, überzähligen Zangenarmes auszeichnete.

Exemplaren zu 0,35—0,36, ihre Breite zu 0,2—0,23 mm; sie sind demnach von gleicher Größe wie bei A. edmundi.

Nach meinen Beobachtungen, mit denen die alten Angaben DELLE CHIAJE's übereinstimmen, haben die neapolitanischen Exemplare in der Regel das folgende Farbenkleid. Die Grundfarbe des Rückens (Taf. 3, Fig. 8) ist weissgelb; darauf stehen in mannigfaltigster Vertheilung schwarzbraune Flecken. Die Stacheln sind ebenfalls weissgelb; ihre Pedicellarienwülste aber haben ein lebhaftes Gelbbräun oder Hellbraun. Die Papulae sind von hell grau-bräunerner Färbung. Die Unterseite ist gelbweiss und die Füsschen im zurückgezogenen Zustande licht gelbbräun, im ausgestreckten blasser. Aehnlich gefärbte Individuen beschreibt MARCISIO von Rapallo. Sars nennt an Exemplaren von Messina und Heller an solchen aus der Adria den in der Färbung vorwiegenden Ton Rothbraun oder Braunroth oder Bräunlichroth, was mit Bezug auf die nahe zusammenstehenden Pedicellarienwülste bei weniger frischen Exemplaren völlig zutrifft. Die gelben Flecken, von denen beide Autoren sprechen, werden durch die zwischen den Pedicellarienwülsten hervortretende Grundfarbe der Rückenhaut hervorgebracht. HELLER erwähnt auch graue Flecken; das kann sich aber nur auf die zurückgezogenen Papulae beziehen. — Nach MÜLLER & TROSCHEL soll es auch blutrothe Exemplare geben. Ich habe niemals ein solches gesehen; wohl aber berichtet Sars, dass er bei Messina einzelne blutrothe Thiere bemerkt habe. Eine andere Abweichung von der normalen Färbung ist das Auftreten eines blauen Tones. GREEFF meint, dass sich dadurch die canarischen Exemplare von den mittelmeerischen unterscheiden, dass die zwischen den gelben Stacheln und braunen Pedicellarienwülsten zu Tage tretende Rückenhaut schön blau gefärbt ist. Nun hat aber MARCISIO un längst auch aus dem Mittelmeere, von Rapallo, blau gefleckte Exemplare beschrieben, die im Überbrigen durch weisse Stacheln und rostfarbige Pedicellarienwülste ausgezeichnet waren, und auch an den neapolitanischen Exemplaren zeigen die dunkeln Flecken der Rückenseite nicht selten statt eines schwarzbraunen Tones einen blauschwarzen (Taf. 3, Fig. 8).

In ihrer horizontalen Verbreitung beschränkt sich die A. tenuispina nach unseren jetzigen Kenntnissen auf die Adria, das westliche Becken des Mittelmeeres und den östlichen, vom 14. bis 40. Grad nördl. Breite reichenden Theil des atlantischen Oceans.

Im adriatischen Meer kennt man sie von Triest (GRAFFE, STOSCHI), Fiume (STOSCHI), aus dem Quarnero (LORENZ), von den dalmatinischen Inseln Lissa (HELLER, STOSCHI), Lesina (HELLER, STOSCHI), Curzola (STOSCHI), Lagosta (STOSCHI) und von Ragusa (HELLER, STOSCHI).

Im westlichen Theile des Mittelmeeres sind als Fundorte nachgewiesen: Messina (M. SARS, Bonner Sammlung), Golf von Neapel und Ponzuoli (MECKEL, DELLE CHIAJE, GRUBE, LO BIANCO, ich), Rapallo und Portofino (MARCISIO), Golf von Genua (VERANY), Nizza (RUSO), La Ciotat (KOEHLER), Golf von Marseille (MARION), Menorca (BRAUN).

An allen diesen mittelmeerischen Fundorten kommt sie gewöhnlich häufig oder sehr häufig vor, nur von Triest und Menorca bemerken GRAFFE und BRAUN, dass sie dort selten sei, während STOSCHI sie auch bei Triest entfernt von der Küste und in grösserer Tiefe häufig angetroffen hat.
Asteriidae.

Außerhalb des Mittelmeeres ist sie an der Küste Europas bis jetzt nur von einer einzigem Stelle, der Bucht von Setubal (Portugal), durch Greeff gefunden worden\(^1\). Ihre anderen außerhalb des Mittelmeeres gelegenen Fundorte sind die Azoren (Th. Barros\(^{,}\) Madeira (Perrier), die kanarischen (D’Orbigny, Greeff, Bonner Sammlung) und die capverdischen Inseln (Perrier, Greeff).

An allen Orten ihres Verbreitungsgebietes bevorzugt die Art die Uferzone und lebt hier, oft in Gesellschaft von *A. und Asterina gibbosa*, nur wenige Centimeter tief unter dem Wasserspiegel; in der Regel geht sie nicht tiefer als 3—4 m. Fast ausschliesslich hält sie sich auf steinigem, felsigen, klippenreichen Boden auf, der ihr unter und zwischen Steinen und in Spalten die geeignetsten Wohnstätten darbietet. Doch fand Koehler einzelne Exemplare auf *Zostera*-Wiesen: auch Marion traf sie in 5—10 m Tiefe zwischen Posidonien, und Lo Bianco bemerkte, dass sie bei Neapel sich besonders häufig an Stellen mit schwach bewegtem, unreinem Wasser findet, wie z. B. im Kriegs- und Handelsafen und im früheren Santa Lucia-Hafen. Die Angabe von Marion (1893, Nr. 2), dass die Art zwischen Marseille und Corsica bis in 250 m Tiefe hinabsteige, ist so auffällig, dass ich den Verdacht nicht unterdrücken kann, er habe Exemplare der *A. richardi* vor sich gehabt; zu dieser Vermuthung stimmt auch der Umstand, dass seine Exemplare von derselben Fundstelle und aus derselben Netzzage herrühren, aus dem Perrier seine *A. richardi* beschrieben hat (s. p. 404, 416).

\(^1\) Über ihr Fehlen an den englischen Küsten s. Norman 1890, p. 502—503.
Da die Art häufig zusammen mit *A. glacialis* lebt, so wird man vermuten dürfen, dass sie sich von denselben Thieren ernährt wie jene; doch fehlen darüber bestimmte Beobachtungen.

Über ihre geschlechtliche Fortpflanzung besitzen wir nur die Angaben Lo Bianco’s (1888), dass er bei Neapel Individuen mit reifen Geschlechtsproducten von Januar bis März gefunden habe und dass die Männchen mitunter ausserordentlich selten seien. Über ihre Larvenstadien ist noch gar nichts bekannt, was bei der litoralen Lebensweise und Häufigkeit der Art besonders auffällt. Auch junge postlarvale Exemplare, die mit Bestimmtheit zur vorliegenden Art gehören, sind merkwürdiger Weise weder mir noch Anderen vor Augen gekommen.

Dass die Art auch auf ungeschlechtlichem Wege durch Theilung mit nachfolgender Regeneration sich zu vermehren vermag, hat wohl zuerst M. Sars (1857) ausgesprochen; direkte Beobachtungen des Vorganges hat jedoch erst Kowalevsky (1872) veröffentlicht. Er sah, dass frische Exemplare mit vollständig entwickelten Armen, die er in Neapel in einem Wasserbehälter gesetzt hatte, nach höchstens einem Tage sich in zwei halbe Individuen theilten; sechszähnige theilten sich in der Regel in zwei dreizähnige, siebenzähnige in ein drei- und ein vierzähniges; letzteres theilte sich dann nicht selten nochmals in zwei zweizähnige. Ähnliche Beobachtungen habe ich im Jahre 1880 gleichfalls in Neapel angestellt. Vor meinen Augen trennte sich damals am 13. April ein erwachsenes, achtarmiges Exemplar in zwei vierzähnige. Die Theilung ging langsam von statten, indem vier Arme sich in entgegengesetzter Richtung wie die vier anderen fortbewegten und so auf die Scheibe einen Zug ansführten, der dieselbe in der Mitte auseinanderzerrte; eine Zeitlang hingen beide Scheibenhälften noch durch eine strangförmige Brücke zusammen, bis auch diese zerriss. Ebenso beobachtete ich am 22./23. April die fast einen ganzen Tag in Anspruch nehmende Theilung eines erwachsenen sechszähnigen Thieres in ein vierzähniges und ein zweizähniges. In beiden von mir beobachteten Fällen hatten die Thiere eine Länge von 13—15 cm. Sie zeigen also, dass die Annahme Koehler’s (1894), dass bei erwachsenen Thieren die Fähigkeit der Theilung erlösche, nicht richtig sein kann. Allerdings sind die meisten Individuen (s. p. 350), an denen man die unverkennbaren Spuren einer vorangegangenen Theilung wahrnimmt, von geringerer Grösse, was darauf schliessen lässt, dass in der Jugend jedenfalls eine grössere Neigung zur Theilung besteht als später. Möglicherweise sind es die äusseren Lebensbedingungen, die einen gesteigerten Anlass zur Theilung geben. So fand Greeff (1872, an den Canaren — und ähnliche Beobachtungen machte Koehler (1894) bei La Ciotat — im Gebiete der Brandung fast nur ungleichzähnige, kleinere Individuen, dagegen weiter von der Strande, in tieferem Wasser und an geschützteren Stellen weit mehr gleichzähnige, grössere Exemplare. Ob aber die Regenerationsfähigkeit so weit geht, dass, wie Greeff (1872) anzunehmen scheint, auch ein einzelner Arm, der sich an seiner Wurzel abgetrennt, also sein Scheibensegment nicht mitbekommen hat, sich wieder zu einem ganzen Individuum ergänzen kann, bedarf noch durchaus des Beweises.

Hinsichtlich der Reihenfolge, in welcher nach vollzogener Theilung an den halbhirten
Individuen die Ergänzungarme entstehen, möchte ich darauf aufmerksam machen, dass sehr oft von den kleineren, in Regeneration begriffenen Armen der mittlere (wenn es deren im Ganzen drei sind) oder die beiden mittleren (wenn es deren im Ganzen vier sind) erheblich kleiner, also wohl auch jüngeren Datums sind als die beiden anderen. So z. B. haben an drei mir vorliegenden Exemplaren von vier kleinen nachgewachsenen Armen die beiden äusseren einen Radius von 15 und 10,5 mm, dagegen die beiden mittleren nur einen solchen von 10, 6 und 2,5 mm. An zwei anderen Exemplaren hat von drei nachgewachsenen Armen der mittlere einen Radius von 15 und 12 mm, die beiden äusseren aber einen solchen von 28 und 20 mm.

Taf. 3, Fig. 1—3; Taf. 12, Fig. 1—16.
Asterias glacialis.

1876 Asteracanthion glacialis Stossich p. 354.
1878 Asteracanthion glacialis Ludwig p. 229.
1879 Asterias glacialis Perrier p. 74.
1875 Marthaasterias foliacea Jullien p. 141—143.
1879 Asterias glacialis Viguier p. 100—105; T. 5, f. 1—10.
1879 Asterias glacialis Ludwig p. 537—538.
1879 Asterias glacialis Pol p. 7.
1880 Asteracanthion glacialis Goëtte p. 324—325.
1881 Asterias glacialis Bell p. 495, 497, 501, 505, 506.
1881 Asterias angulosæ Bell p. 196.
1881 Asterias madeirensis Bell p. 497.
1881 Asterias webbiana Bell p. 197.
1882 Asteracanthion glacialis Hoffmann p. 141.
1882 Asterias africana Gœff p. 117—118.
1882 Asterias glacialis Th. Barrois p. 41—42.
1883 Asteracanthion glacialis Stossich p. 191.
1883 Asterias glacialis Marion (Nr. 1) p. 29, 45, 52, 56, 57, 60.
1885 Asterias glacialis Carus p. 56.
1885 Asterias glacialis Perrier p. 15.
1885 Asterias glacialis Braun p. 308.
1886 Asterias glacialis Kükenthal & Weissenborn p. 779.
1886 Asterias glacialis Preyer p. 29.
1886 Asterias glacialis Norman p. 6.
1886 Asterias glacialis Herdman p. 133.
1886 Asterias glacialis Haddon p. 618.
1888 Asterias glacialis Henderson p. 333.
1888 Asterias glacialis Th. Barrois p. 69.

1888 Asterias glacialis Cuénot p. 3, 9, 11, 14, 20—29, 31, 32, 36, 41, 50, 53—57, 77, 78, 92, 98, 100—105, 118—122, 124—127, 130, 131; T. 1, f. 1—13, 21, 23; T. 2, f. 2—6, 9, 10, 19—23; T. 3, f. 11, 12, 14, 17, 18, 20—22; T. 4, f. 2—4, 9—16; T. 5, f. 1—5; T. 8, f. 11, 12; T. 9, f. 1, 3, 10—12.
1888 Asterias glacialis Lo Bianco p. 394.
1888 Asterias glacialis Siemroth p. 231.
1889 Asteracanthion glacialis Grieg p. 4.
1889 Asterias (Stolasterias) glacialis Sladen p. 563, 588, 818.
1889 Asterias glacialis Herdman p. 36.
1889 Asterias glacialis Chadwick p. 177.
1891 Asterias glacialis Brunehorst p. 30.
1892 Asterias glacialis Bell («Research») p. 325.
1892 Asterias glacialis Bell (Catalogue) p. 98—100.
1892 Asterias glacialis Meissner p. 153.
1892 Asterias glacialis Russo p. 124—138; T. 2.
1894 Asterias glacialis Meissner & Collin p. 338.
1894 Asterias glacialis Koehler p. 407.
1895 Asterias glacialis Sluiter p. 64.
1896 Stolasterias glacialis Koehler p. 441.
1896 Asterias glacialis Appellöf p. 10.
1896 Asterias glacialis Grieg p. 8—12.
1896 Asterias glacialis Marchisio p. 2.
1896 Asterias glacialis Schlemenz p. 102—115.
1896 Stolasterias glacialis Koehler p. 41.

1: S. die Bemerkung auf p. 393.

denen geringerer Tiefe unterscheiden, hat zuerst Lorenz (1860) bemerkt, die gleiche Angabe wiederholen Heller (1868), Lo Bianco (1888) und ausführlicher Koehler (1894).

Im Habitus (Taf. 3, Fig. 1, 3) unterscheidet sie sich von der genannten, oft mit ihr zusammenlebenden Art durch ihre Grösse und durch die Fünfzahl ihrer langen, fast fünfkantigen, allmählich zugespitzten Arme. Dazu kommt eine etwas sparsamere Bestachelung der Armrücken und eine regelmässigere Anordnung der Stacheln des Scheibenrückens (Taf. 3, Fig. 1 u. 3). Alle diese Stacheln sind kräftig und einzeln von dicken Pedicellarienwülsten umkränzt. Auf dem Armrücken stehen sie in drei Längsreihen, die den drei oberen Ecken des fünfseitigen Armquerschnittes entsprechen, und von denen die mittlere häufig unregelmässiger ist als die beiden seitlichen; zwischen diesen Reihen liegt jederseits noch eine oft sehr unvollständige, intermediäre Stachelreihe. Auf dem Scheibenrücken zeichnet sich ein Stachelfünfeck aus, von dessen Ecken die mittleren Stachelreihen der Arme abgehen. An der Unterseite (Taf. 3, Fig. 2) der Arme verläuft nebem der einfachen Längsreihe der Furchenstacheln eine doppelte Längsreihe von kräftigen Stacheln.

Das Verhältniss des Scheibenradius zum Armradius ist nach Müller & Troeschel 1 : 8, nach Simpson (bei seiner A. madeirensis) 1 : 7, nach Norman 1 : 7—8 und nach Jullien (bei seiner Marthasterias foliacea) 1 : 7. Für erwachsene Thiere (s. die umstehende Tabelle), die nicht über 300 mm lang sind, finde ich die Norman'sche Angabe im Ganzen

Maasse erwachsener Thiere:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>r : R</th>
<th>AB</th>
<th>St</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>375</td>
<td>207</td>
<td>22</td>
<td>1 : 9,1</td>
<td>7</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>317</td>
<td>192</td>
<td>21</td>
<td>1 : 9,14</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>341</td>
<td>190</td>
<td>20</td>
<td>1 : 9,5</td>
<td>1</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>344</td>
<td>190</td>
<td>21</td>
<td>1 : 9,05</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>326</td>
<td>180</td>
<td>20</td>
<td>1 : 9</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>297</td>
<td>161</td>
<td>22</td>
<td>1 : 7,45</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>262</td>
<td>145</td>
<td>20</td>
<td>1 : 7,25</td>
<td>22</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>253</td>
<td>140</td>
<td>20</td>
<td>1 : 7</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>217</td>
<td>120</td>
<td>15</td>
<td>1 : 8</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>208</td>
<td>115</td>
<td>16</td>
<td>1 : 7,19</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>11</td>
<td>199</td>
<td>110</td>
<td>15</td>
<td>1 : 7,33</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>199</td>
<td>110</td>
<td>16</td>
<td>1 : 6,87</td>
<td>18</td>
<td>29</td>
</tr>
<tr>
<td>13</td>
<td>197</td>
<td>109</td>
<td>15</td>
<td>1 : 7,27</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>14</td>
<td>192</td>
<td>106</td>
<td>15</td>
<td>1 : 7,07</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>15</td>
<td>175</td>
<td>98</td>
<td>12</td>
<td>1 : 8,17</td>
<td>14</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>175</td>
<td>98</td>
<td>15</td>
<td>1 : 6,53</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>17</td>
<td>172</td>
<td>95</td>
<td>14</td>
<td>1 : 6,78</td>
<td>16</td>
<td>24</td>
</tr>
</tbody>
</table>

Maasse junger Thiere:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>R</th>
<th>r</th>
<th>r : R</th>
<th>Z</th>
<th>Fp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>22,6</td>
<td>12,5</td>
<td>3,25</td>
<td>1 : 3,85</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>19</td>
<td>20,8</td>
<td>11,5</td>
<td>3</td>
<td>1 : 3,83</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td>16,3</td>
<td>9</td>
<td>2,3</td>
<td>1 : 3,91</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>21</td>
<td>13,6</td>
<td>7,5</td>
<td>2</td>
<td>1 : 3,75</td>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td>22</td>
<td>12,2</td>
<td>6,75</td>
<td>2</td>
<td>1 : 3,37</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>23</td>
<td>11,3</td>
<td>6,25</td>
<td>2</td>
<td>1 : 3,12</td>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>6,8</td>
<td>3,75</td>
<td>1,25</td>
<td>1 : 3</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>25</td>
<td>6,3</td>
<td>3,5</td>
<td>1,25</td>
<td>1 : 2,8</td>
<td>—</td>
<td>15</td>
</tr>
<tr>
<td>26</td>
<td>3,8</td>
<td>2,08</td>
<td>0,87</td>
<td>1 : 2,39</td>
<td>5</td>
<td>13</td>
</tr>
</tbody>
</table>

richtig. Bei noch grösseren Thieren aber (z. B. Nr. 1—5 der Tabelle) steigt das Verhältniss bis auf 1 : 9,5, und bei den grösssten Individuen wird sicherlich eine weitere Steigerung bis

1) Bei diesen 3 Exemplaren habe ich das Maass der basalen Armbreite nicht genommen, weil die Exemplare in gepresstem Zustande getrocknet, die Arme also unnatürlich verbreitert waren.
2) St bedeutet die Zahl der Stacheln der oberen Randplatten an einer Armseite.
3) Z = Zahl der oberen Randplatten.
4) Fp = Zahl der Füsschenpaare in einem Arme.

Die Arme haben an ihrer Basis eine Breite (vergl. die Tabelle), die bei erwachsenen Thieren durchschnittlich rund 61/2 mal in der Länge des Armradius enthalten ist. Bei den vierzehn hier in Betracht gezogenen Exemplaren (Nr. 4—17 der Tabelle) beträgt dieses Durchschnittsverhältniss von AB : R genau 1 : 6,57; im Minimum ist AB : R = 1 : 5,75 (bei Nr. 10), im Maximum 1 : 8,18 (bei Nr. 5). Am häufigsten ist der Armradius 61/2—7 mal so lang wie die basale Armbreite, und die Schwankungen bewegen sich meistens zwischen dem Sechsfachen und dem Achtfachen der Armbréite.

Das Rückenskelet der Arme, von dem bereits DELLE CHIAJE (1841, T. 125, f. 5) eine bildliche, freilich nicht ganz fehlerfreie Darstellung gegeben hat, baut sich aus einer medianen Längsreihe von Radialplatten, einer jederseitigen Längsreihe von oberen Randplatten und aus den diese drei Plattenreihen verbindenden queren Skeletbrücken auf (Taf. 12, Fig. 1—4.

Die in ununterbrochener Folge bis zur Terminalplatte reichenden Radialplatten stimmen in ihrer Zahl mit den oberen Randplatten überein, sind länger als breit und haben einen vierlappenden Umriss (Taf. 12, Fig. 8, 9), an dem man einen distalen, einen proximalen und jederseits einen lateralen Lappen unterscheidet; der proximale Lappen ist am stärksten entwickelt und häufig an seinem Rande leicht eingebuchtet (Taf. 12, Fig. 1—4). Mit ihrem proximalen Lappen legt sich jede Platte, wie VIGUIER (1879) richtig angiebt, über den distalen Lappen der nächst vorhergehenden Radialplatte; für diese Verbindung besitzt der proximale Lappen an seiner Innenseite eine Längsfurche und der distale an seiner Aussenseite eine ähnliche, von einem wulstförmig verdickten Rande umzogene Grube. Ferner bemerkt man an der Innenseite eines jeden lateralen Lappens eine kreisförmig umwallte Gelenkgrube für die Insertion einer Querspange. Auf ihrer freien Oberfläche trägt in der Regel jede zweite Radialplatte einen kreisförmigen, mit einem centralen Gruben ausgestatteten Gelenkkörper für die Befestigung eines Dorsalstachels (Taf. 12, Fig. 2, 3). VIGUIER (1879) behauptet zwar, dass gewöhnlich eine jede Radialplatte einen Stachelkörper besitze und nur selten desselben entbehre. Das mag bei dem von ihm untersuchten Exemplare so gewesen sein, ist aber ganz gewiss nicht die Regel. Bei erwachsenen Thieren haben die Radialplatten eine anschauliche Grösse. So maass ich im proximalen Armabschnitte bei R = 69 mm ihre Länge zu 3—3,6, ihre Breite zu 2,5—2,7 mm, bei R = 115 die Länge zu 3,4—4, die Breite zu 3—3,2 mm, bei R = 190 die Länge zu 6,15—6,6 und die Breite zu 3,8—4,3 mm. — Bei ganz jungen Thieren eilt die Zahl der Radialplatten anfänglich derjenigen der oberen Randplatten ein wenig voraus, doch gleicht sich dieser Unterschied sehr bald aus. Bei R = 2,08 mm sind z. B. schon sieben Radialplatten, aber erst fünf obere Randplatten angelegt, bei R = 3,75 mm acht Radialplatten.
und sieben obere Randplatten; jedoch bei $R = 7,5$ mm sind bereits ebenso viele (zwölf) Radialplatten wie obere Randplatten vorhanden. Auch bei dem jüngsten Thiere geht die Reihe der Radialplatten wie später in geschlossener Aufeinanderfolge bis zur Terminalplatte. Das Grössenwachsthum der jungen Radialplatten geschicht ganz allmählich. Bei $R = 3,75$ mm beträgt ihre Länge im proximalen Armabschnitt 0,4—0,45 mm, ihre Breite 0,27—0,32 mm, bei $R = 6,25$ mm die Länge 0,64, die Breite 0,41 mm, bei $R = 9$ mm die Länge 0,8—1, die Breite 0,5—0,6 mm, und bei $R = 12,5$ mm die Länge 1—1,2, die Breite 0,65—0,72 mm.

Die oberen Randplatten bilden ebenso wie die Radialplatten, mit denen sie in der Zahl übereinstimmen, eine geschlossene, schon bei den jüngsten Individuen bis zur Terminalplatte reichende Reihe, in der sich die Platten in der Weise dachziegelig übereinander lagern, dass der proximale Lappen einer jeden den distalen der nächst vorhergehenden von aussen bedeckt. Der Umriiss der einzelnen oberen Randplatte (Taf. 12, Fig. 7) ist vierlappig, jedoch mit ungleicher Entwicklung der vier Lappen; am schwächsten ist der obere (dorsale) Lappen ausgebildet, am stärksten der untere (ventrale), während der proximale und distale unter sich ziemlich gleich gross sind. Die Länge der Platten misst im proximalen Armabschnitt bei $R = 69$ mm 3,4—3,75 mm, bei $R = 115$ mm 3,4—4,3 mm und bei $R = 190$ mm 5,2—6 mm. Die Breite übertrifft durch die starke, grifförnige Verlängerung des ventralen Lappens stets ein wenig die Länge und beträgt z. B. bei $R = 190$ mm 6,3—7 mm. Nach der Armspitze hin nehmen die Maasse der oberen Randplatten allmählich ab. Bemerkenswertherweise ist aber auch die erste obere Randplatte, die sich auf den distalen Rand der primären Interradialplatte stützt, stets kleiner (kürzer und schmäler) als die nächstfolgenden, und zwar nicht etwa nur bei alten, sondern auch schon bei ganz jungen Thieren (Taf. 12, Fig. 11, 12); so z. B. misst sie bei einem jungen Thiere von $R = 9$ mm nur 0,4 mm an Länge, während die zweite schon 0,8 mm lang ist, und bei $R = 3,75$ mm ist die erste sogar nur $\frac{1}{3}$ so gross wie die 0,5 mm lange zweite. Der ventrale Lappen (= grifförnige Fortsatz) jeder oberen Randplatte legt sich von aussen auf den ihm entgegenstrebenden dorsalen Lappen der entsprechenden unteren Randplatte und besitzt für diese Verbindung an seiner Innenseite eine Rinne, die in der Längsrichtung des Lappens verläuft. Der proximale Lappen gleitet mit einer Längsleiste seiner Innenseite an einer ähnlichen Leiste, die sich auf der Aussenseite des distalen Lappens der nächst vorhergehenden Platte befindet$^1)$. Auf seiner freien Oberfläche trägt der Körper der Platte eine umwallte kreisförmige Grube für die Insertion eines Stachels; in der Regel ist dieser Gelenkdrücker dem dorsalen Rande der Platte genähert und findet sich nur auf jeder zweiten Platte (Taf. 12, Fig. 2, 3).

Die Querbrücken des dorsalen Armskeletes, welche die Verbindung zwischen den Radialplatten und den oberen Randplatten herstellen, fehlen den ganz jungen Exemplaren, z. B. einem solchen, dessen R erst 2,08 mm misst, noch beinahe völlig; nur am oberen Rande der ersten und der zweiten oberen Randplatte bemerkt man die erste Anlage einer Querbrücke.

1 Diese Rinnen und Leisten an den Lappen der oberen Randplatten kommen übrigens auch bei den anderen mittelmeerischen Asterin-Arten vor, sind aber bei *A. glacialis* wegen der Grösse des ganzen Thieres am leichtesten zu sehen.
in Gestalt eines winzigen Plättchens, das sich zum Theile unter dem Rande der oberen Randplatte verbirgt. Aber schon bei Individuen von \(R = 3,75 \) mm sind die Anlagen der Querbrücken erheblich weiter entwickelt (Taf. 12, Fig. 16). Jede Querbrücke wird jetzt durch zwei in querer Richtung aufeinander folgende Plättchen gebildet, die vom Seitenrande einer Radialplatte zum oberen Rande einer oberen Randplatte hinziehen und um so jünger und schwächer sind, je mehr man sich der Terminalplatte nähert. Diese Plättchen werden später zu den medialen und lateralen Spangen der fertigen Querbrücken. Zwischen der siebenten (= vorletzten) Radialplatte und der siebenten (= letzten) oberen Randplatte sind die Spangen überhaupt noch gar nicht zur Anlage gekommen. Zwischen der sechsten Radialplatte und der sechsten oberen Randplatte liegen ihre Anlagen frei in der Verbindungslinie beider Platten, und das mediale Spangenreihe ist etwas kleiner als das laterale, woraus sich schliessen lässt, dass es zeitlich etwas später entstanden ist als jenes. Zwischen der fünften und der fünften oberen Randplatte sind die beiden Spangenplättchen schon etwas grösser, und das mediale legt sich mit seinem medialen, das laterale mit seinem lateralen Ende unter den Rand der betreffenden Radial- bzw. oberen Randplatte. Noch grösser sind die beiden Spangenplättchen einer jeden jungen Querbrücke zwischen der vierten, dritten und zweiten Radialplatte und der vierten, dritten und zweiten oberen Randplatte. Dagegen ist die Querbrücke, welche die erste Radialplatte mit der ersten oberen Randplatte verbindet soll, noch sehr weit in ihrer Entwicklung zurück und besteht bei dem vorliegenden Exemplare nur aus einem einzigen, winzigen Kalkplättchen. Aber bei einem Exemplare von \(R = 6,25 \) mm ist auch diese erste Querbrücke aus zwei Plättchen zusammengesetzt. Sobald die beiden Spangenplättchen einer jungen Querbrücke eine gewisse Grösse erreicht haben, treffen sie sich mit den einander zugekehrten Enden und lagern sich mit denselben meistens, aber nicht constant, in der Weise übereinander, dass das laterale Spangenplättchen sich mit seinem medialen Ende auf das laterale Ende des medialen Plättchens legt. Zugleich bemerkt man aber schon jetzt, dass beide Spangenplättchen danach streben, sich gegeneinander so zu verschließen, dass das eine der Armespitze etwas näher rückt als das andere.

Ferner stellen sich jetzt in der Mitte des Abstandes zwischen den Radialplatten und den oberen Randplatten auch noch Plattenanlagen ein, die dazu bestimmt sind, die aufeinanderfolgenden Querbrücken an dieser Stelle in Zusammenhang zu bringen. Wie bei \(A. tenuispina \) kann man auch hier in diesen Verbindungsplatten der Querbrücken wohl nur die Homologe der Adradialplatten anderer Seesterne sehen. Sie treten zunächst nur im proximalen Abschnitte der Arme auf und dehnen sich erst später weiter distalwärts aus. Häufig liegen anfänglich zwischen je zwei Querbrücken zwei solche Adradialplatten, oft aber auch nur eine oder drei (Taf. 12, Fig. 15, 16). Später, bei dem erwachsenen Thiere (Taf. 12, Fig. 1—4), trifft man in der Regel die einander zugekehrten Enden der Spangenstücke nicht mehr in unmittelbarer Berührung. Sie sind nunmehr auseinander gerückt und werden nur noch mittelbar durch die Adradialplatten unter sich und mit den Spangenstücken der benachbarten Querbrücken zusammengehalten. Da die Spangenstücke des erwachsenen Thieres sich noch merklicher als früher zu einer alternirenden Stellung verschieben, so müssen die Adradialplatten,
um die Verbindung der Spanenstücke herzustellen, im Ganzen eine zickzackförmige Linie in ihrer Anordnung beschreiben (Taf. 12, Fig. 1), die namentlich in der Innenansicht des Dorsalskeletes gewöhnlich deutlich hervortritt. Die einzelnen Adradialplatten des erwachsenen Thieres haben meistens eine quer und etwas schief gestellte, abgeplattete Spindelform. Einzelne von ihnen tragen auf ihrer äusseren freien Oberfläche einen mit einem Centralgrübchen versehenen, runden Gelenkknöchler für die Insertion eines der später zu besprechenden intermediären Stacheln (Taf. 12, Fig. 2).

Die Spanenstücke des erwachsenen Thieres haben die Form kräftiger verhältnismässig kurzer Quer balken, die an den einander zugekehrten Enden die Neigung zeigen, durch eine leichte Einbuchtung ihres Endrandes zweilappig zu werden (Taf. 12, Fig. 1—4).

Wie schon oben bemerkt, trägt sowohl von den oberen Randplatten als auch von den Radialplatten in der Regel nur jede zweite einen Stachel. Von den so zu Stande kommenden Längsreihen dorsaler Stacheln sind bei allen Individuen die beiden lateralen und oft auch die mediane wohl entwickelt, die letztere aber meistens weniger regelmässig geordnet als die beiden anderen. Man kann also in Uebereinstimmung mit den Angaben von Delle Chiaje (1841) und Greeff (1882) drei Stachelsreihen auf dem Armriicken zählen (Taf. 12, Fig. 2). Die Stacheln der drei Reihen stehen bald genau auf gleichen Querschnitten des Armes, bald alterniren sie in unregelmässiger Weise miteinander. Dazwischen, also zwischen der medianen und der lateralen Längsreihe, befindet sich jederseits eine weitere Längsreihe dorsaler Stacheln, die aber im Gegensatze zu jenen fast immer mehr oder weniger unvollständig und unregelmässig ausgebildet ist (Taf. 12, Fig. 2). Diese intermediäre Reihe wird von den auf den Adradialplatten stehenden Stacheln zusammengesetzt. Schon Müller & Troschel (1842) haben darauf aufmerksam gemacht, dass die intermediäre Stachelsreihe sehr grossen individuellen Schwankungen unterliegt, bald nur aus wenigen vereinzelten Stacheln besteht, bald aus einer grösseren Anzahl von Stacheln gebildet wird, die aber dann, statt sich zu einer deutlichen Längsreihe zu ordnen, auch in unregelmässiger Zickzackstellung aufeinander folgen können. Das Gleiche beobachtete Stimpson (1862) bei Exemplaren von Madeira. An meinem Exemplaren von Madeira sind die Stacheln der intermediären Reihen sogar so sparsam angebracht, dass man in jeder Reihe nur 1—3 sehr vereinzelte zählt; in einer Armhälfte fehlen sie sogar gänzlich. An canarischen und neapolitanischen (Fig. 3, Taf. 1 u. 3) Exemplaren finde ich die intermediären Stachelsreihen eben-
Asterias glacialis.

falls bald unvollständig und ziemlich regellos verlaufend, bald gut entwickelt. Damit stimmen die Angaben Greeff's 1872 in Betreff seiner als besonderer Art unterschiedenen *A. webbiana* von den Kanaren überein, desgleichen seine Bemerkungen (1882) über mittelmeerische Individuen. Nur ist es nicht ganz richtig, dass bei den letzteren nur «in den seltensten Fällen» die vereinzelten intermediären Stacheln sich streckenweise zu einer deutlichen Reihe ordnen; soweit ich an meinen Exemplaren sehen kann, kommt das sogar recht häufig vor. Aber auch die mittlere Längsreihe der Dorsalstacheln zeigt nicht selten die Neigung, in der Richtung ihres Verlaufes mehr oder weniger unregelmässig zu werden. Greeff (1882) sagt ganz mit Recht von ihr mit Bezug auf mittelmeerische Exemplare, dass sie zuweilen unterbrochen ist oder streckenweise oder ganz im Zickzack verläuft, indem die aufeinander folgenden Stacheln alternierend aus der Mittellinie heraustreten (Taf. 3, Fig. 1 u. 3). Sind sowohl die mediane als auch die intermediären Stachelreihen unregelmässig geworden, was ich an manchen neapolitanischen Exemplaren sehen kann, so ergibt sich für den Armrücken ganz dieselbe Stachelanordnung, die Greeff (1882) von seinen angeblich zu *A. africana* M. & Tr. gehörigen Exemplaren von der portugiesischen Küste beschreibt: «Zwischen den beiden äusseren regelmaessigen Stachelreihen stehen auf dem Rücken zahlreiche, unregelmässige und mehr oder minder verkürzte Stacheln, sodass man auf einem Querfelde vier oder fünf bis acht und neun Stacheln zählen kann. Häufig indessen treten zwei oder drei mittlere Stachelreihen mit grösserer oder geringerer Deutlichkeit hervor.»

Abgesehen von der ersten Radialplatte, auf deren Bestachelung wir beim Scheibenskelet zurückkommen werden, geschieht es nur selten und ausnahmsweise (Taf. 12, Fig. 2), dass eine oder die andere dorsale Platte statt eines Stachel's deren zwei nebeneinander trägt. Müller & Troschel (1842) erwähnen einen solchen Fall von einem von den Azoren stammenden Exemplare. Bei dichter Zusammendrängung zweier nebeneinander stehender Stacheln kann dadurch, dass ihre basalen Theile von gemeinschaftlicher Haut umhüllt werden, der Anschein eines gegabelten Stachel's veranlasst werden.

Über die Gesamtanzahl der oberen Randstacheln, die man jederseits an dem Arme zählt, giebt die Tabelle (p. 368) nähere Auskunft. Es geht daraus hervor, dass diese Zahl bei erwachsenen Thieren sich meistens zwischen 24 und 29 bewegt. Bei jungen und jüngsten Thieren zeigt sich, dass, wie auch schon aus Lovén's Abbildungen (1874, Taf. 53) zu ersehen ist, die Bestachelung der Radialplatten und der oberen Randplatten sehr frühzeitig auftritt. Die erste, durch ihre Kleinheit ausgezeichnete obere Randplatte finde ich, wie bei alten Thieren, so auch schon bei jungen Individuen von 3,75 mm, 6,25 mm und 7,5 mm Armradius stets stachellos, dagegen trägt die zweite obere Randplatte immer den ersten oberen Randstachel. Die folgenden Stacheln sind beispielsweise bei $R = 3,75$ mm so verheilt, dass die dritte, fünfte und siebente obere Randplatte einen solchen besitzen, die vierte und sechste desselben entbehren, und bei $R = 7,5$ mm ist die dritte, fünfte, siebente und neunte damit ausgestattet, während die vierte, sechste, achte, zehnte, elfte und zwölfte stachellos sind.

In der Grösse übertreffen unter den dorsalen Armstacheln diejenigen der oberen Randplatten gewöhnlich die übrigen, wenn auch manchmal die der Radialplatten ihnen an Grösse

Das Rückenskelet der Scheibe zeichnet sich durch seinen regelmässigen Aufbau und durch die sparsame Verwendung secundärer Platten aus; durch letztere Eigenthümlichkeit unterscheidet es sich insbesondere von den übrigen *Asterias*-Arten des Mittelmeeres. Schon LOVÉN (1874, p. 88, Fig. 1 u. 2) und VIGUER (1879, Taf. 5, Fig. 1) haben bildliche Darstellungen und kurze Beschreibungen desselben gegeben. LOVÉN's Abbildungen stimmen in einigen Einzelheiten z. B. doppelte Centroradialia!) nicht ganz mit meinen Beobachtungen überein, was ich vielleicht daraus erklärt, dass es ihm für seinen Zweck auf eine genauere Untersuchung der secundären Scheitelplatten nicht ankam, vielleicht aber auch darauf hindeutet, dass er die *A. glacialis* von der nahe verwandten *A. mülleri* nicht unterschieden hat.
VIGUER's Angaben dagegen stehen in gutem Einklänge mit den von mir untersuchten Exemplaren.

Das abgerundet pentagonale Scheitelfeld, das bei alten Thieren einen Querdurchmesser von 7 (bei Exemplar Nr. 17) bis 15 mm (bei Exemplar Nr. 4) hat, ist von einem kräftigen, festen, aus den primären Interradial- und den primären Radialplatten gebildeten Ringe umgrenzt, an dessen Zusammensetzung in jedem Radius auch noch eine Centroradialplatte sich beteiligt. Die primären Interradialplatten (LOVÉX's Genitalia oder Parabasalia) zeichnen sich durch ihre Grösse und insbesondere durch ihre Breite aus. Bei einem Exemplar von 95 mm Armradius (Nr. 17) haben sie eine Breite von 5—5,7 und eine Länge von 3—3,7 mm; bei einem doppelt so grossen Thiere (Nr. 4) misst ihre Breite 8—8,5, ihre Länge 4 mm. Ihr Umriss ist ein quergezogenes, abgerundetes Dreieck mit einem proximalen, dem Scheitelfelde zugekehrten und zwei lateralen Rändern. Gegenseitig berühren sich die Interradialplatten nicht, sondern sind durch einen bei Nr. 17 0,5 mm, bei Nr. 4 bis 3 mm breiten Zwischenraum getrennt, der von innen her von der nachher zu besprechenden Centroradialplatte überbrückt wird. Auf den lateralen Rand der Platte lagert sich von aussen der proximale Laterallappen der primären Radialplatte, und auf den distalen Lappen stützt sich ebenfalls von aussen die erste obere Randplatte, wie das VIGUER bereits kurz erwähnt hat. Eine von den primären Interradialplatten ist zur Madreporenplatte geworden s. p. 386. Oberflächlich trägt jede primäre Interradialplatte in der Nähe ihres proximalen Randes einen oder noch öfter zwei oder drei, dann nebeneinander stehende, mit Centralgrübchen versehene Gelenkhöcker für die Einlenkung von ebenso vielen Stacheln.

Die primären Radialplatten bleiben in ihrer Grösse hinter den primären Interradialplatten zurück, sind aber doch immer mächtiger entwickelt als die sich an sie anreihenden Radialplatten des Armrückens. Bei dem unserer Abbildung (Taf. 12, Fig. 14) zu Grunde liegenden Exemplare Nr. 17 haben sie eine Breite von 3,5—3,9 und eine Länge von 3,2 mm, bei dem Exemplare Nr. 4 eine Breite von 7 mm. Ihr Umriss ist im Gegensatz zu den übrigen Radialplatten nicht vier-, sondern fünfflappig, mit einem distalen und jederseits einem proximalen lateralen und einem distalen lateralen Lappen. Mit ihrem distalen Lappen lagert sich jede primäre Radialplatte unter den proximalen der zweiten Radialplatte; mit dem proximalen Laterallappen bedeckt sie von aussen, wie schon erwähnt, den lateralen Rand der nächsten primären Interradialplatte, und mit dem distalen Laterallappen greift sie von aussen über das mediale Ende des medianen Spangenstückes der ersten Querbrücke des dorsalen Armskeletes. Auch sie trägt auf ihrer Oberfläche in der Regel zwei, wiederum mit Centralgrübchen ausgestattete Stachelhöcker, die sich nebeneinander in der Nähe des proximalen Randes gewöhnlich auf den Wurzeln der proximalen Laterallappen der Platte erheben.

Zur festen Verbindung der primären Interradialplatten dienen fünf quergestellte Centroradialplatten, die bei dem Exemplar Nr. 17 eine Breite von 3,5 und eine Länge von 2 mm, bei dem Exemplar Nr. 4 eine Breite von 6,6—7,3 und eine Länge von 3 mm erreichen. Meistens ist der distale Rand der Centroradialplatten in der Mitte mit einer Einbuchtung ver-
sehen; der proximale convex Rand nimmt an der Begrenzung des Scheitelfeldes theil; die Seitenlappen legen sich unter die Seitentheile der primären Interradialplatten.

Um die Entwicklung des Scheibenskeletes kennen zu lernen, wenden wir uns zu jüngeren Thieren. Zu dem Zwecke greife ich aus den in meinen Händen befindlichen Jugendstadien die Individuen Nr. 18, 20, 21, 23, 24, 26 der Tabelle heraus, deren Armradius 12,5—9—7,5—6,25—3,75—2,08 mm misst.

Bei Nr. 18 (Taf. 12, Fig. 13) fällt sofort auf, dass die radialen Skeletbalken, die das primäre Scheitelfeld in fünf secundäre Felder theilen, eben erst angelegt sind und aus ganz kleinen, 0,1—0,24 mm langen, noch von einander isolirten Plättchen bestehen, von denen drei oder vier in einer Reihe liegen. Die kleinen Plättchen der Afterumgebung fehlen noch ganz. Die Centralplatte hat ihre fünf Randplatten noch nicht ausgebildet; sie stellt ein abgerundetes, unregelmässiges Pentagon von 0,5 mm Durchmesser dar, das seine grösste Seite dem After zukehrt. Die Centroradialplatten sind bereits vorhanden und ebenso gelagert wie später; das Gleiche gilt von den primären Interradial- und Radialplatten. Die Breite der Centroradialplatten (eine ist schwächer ausgebildet) misst aber erst 0,7 mm, die Breite der primären Interradialplatten 1,3—1,4 mm, ihre Länge 0,7 mm, die Breite der primären Radialplatten 0,7 bis 1 mm, ihre Länge 0,6—0,7 mm. Die Verbindungen aller dieser Platten untereinander sowie der primären Radialplatten mit den medialen Spanenstücken der ersten Querbrücken des Armrückens und mit den zweiten Radialplatten sowie endlich der primären Interradialplatten mit den ersten oberen Randplatten verhalten sich wie beim erwachsenen Thiere.

Bei dem nächst jüngeren Exemplare Nr. 20 (Taf. 12, Fig. 12) sind die radialen Skeletbalken des Scheitelfeldes noch gar nicht angelegt. In Folge dessen liegt die erst 0,3 mm grosse Centralplatte ganz isolirt in der Mitte des 1,7 mm grossen primären Scheitelfeldes.
Indessen bemerkt man in der Nähe des Afters drei kleinere Plättchen, von denen ich wenigstens das rechts gelegene größere für die erste Spur eines radialen Balkens halten möchte, während die beiden links gelegenen vielleicht die Anlagen der späteren Analplättchen sind. Von den Centroradialplatten ist eine noch sehr winzig und hat die Verbindung mit den beiden ihr benachbarten primären Interradialplatten noch nicht vollständig hergestellt. Die vier anderen Centroradialplatten sind 0,46—0,58 mm breit. Die Breite der primären Interradialplatten beträgt 1,1—1,2 mm, die Länge (abgesehen von der jungen Madreporennplatte) 0,5—0,7 mm, die Breite der primären Radialplatten 0,67—0,75, die Länge 0,7—0,75 mm. Die primären Interradialplatten lassen jetzt noch deutlicher als im vorigen Exemplare erkennen, dass ihr Umriss in diesen Jugendstadien fünflappig ist, und ihre später dreilappige (= abgerundet dreieckige) Form dadurch entsteht, dass die beiden nahe zusammen liegenden lateralen Lappen nachträglich zusammendriessen.

Ganz ebenso wie Nr. 20 verhält sich auch das etwas jüngere Exemplar Nr. 21. Auch das nächst jüngere Exemplar Nr. 23 zeigt im Wesentlichen dieselben Verhältnisse; nur fehlt ihm auch in der Nähe des Afters jede Spur der späteren Balkenplättchen und Analplättchen; das Scheitelfeld misst erst 1,4 mm im Durchmesser, und die Centralplatte ist erst 0,27 mm gross; die Centroradialplatten sind bereits alle fünf angelegt.

Interessanter ist das erst 3,75 mm Armiradius messende Exemplar Nr. 24, weil es uns das erste Auftreten der Centroradialplatten und den unmittelbar davor gegebenen Zustand des jungen Scheitelskeletes vor Augen führt (Taf. 12, Fig. 11). Die Centralplatte hat bei diesem jungen Exemplar schon eine Grösse von 0,36 mm, ist leicht abgerundet pentagonal und liegt ganz allein mitten in dem 1 mm grossen Scheitelfelde. Die Begrenzung des letzteren wird fast ausschliesslich von den primären Interradialplatten geliefert, die jetzt im Gegensatze zu den späteren Stadien mit ihren proximalen Laterallappen zusammenstossen, ja sogar ein wenig übereinander greifen. Nur in einem Radius sind die primären Interradialplatten schon etwas auseinandergerückt und in einem zweiten Radius hat sich eine erst 0,1 mm Centroradialplatte angelegt, während die vier anderen Centroradialplatten noch völlig fehlen. Die primären Interradialplatten haben in diesem Stadium eine Breite von 0,64—0,8, eine Länge von 0,4—0,43 mm. Die primären Radialplatten sind in ihrem distalen Abschnitt nicht wie später dreilappig, sondern einfach abgerundet, während ihre beiden proximalen Laterallappen, mit denen sie sich jetzt schon wie später den primären Interradialplatten auflagern, bereits deutlich entwickelt sind; die Breite der primären Radialplatten misst jetzt erst 0,27—0,3 mm, die Länge 0,3—0,4 mm.

Nicht weniger lehrreich ist das jüngste Exemplar Nr. 26 (Taf. 12, Fig. 10). Hier ist das fast 1 mm grosse, beinahe kreisrunde Scheitelfeld lediglich von den seitlich übereinander greifenden primären Interradialplatten umringt. Von den Centroradialplatten fehlt noch jede Andeutung. Die Centralplatte ist erst 0,26 mm gross. Die Breite der primären Interradialplatten misst 0,5 mm, die Länge 0,42—0,5 mm; ihr später abgerundeter distaler Lappen ist jetzt abgestutzt und in der Mitte leicht concav. Die primären Radialplatten sind im Vergleiche zu ihrem späteren Verhalten auffallend klein, erst 0,2—0,23 mm breit und 0,35 mm
Asteriidae.

ninder frühzeitig auf wie die der Armrück en; entsprechend der Altersfolge der sie tragenden Platten entstehen zuerst die Stacheln der primären Interradi alplat ten und der Centralplatte und zwar sofort in ihrer definitiven Zahl; dann folgen diejenigen der primären Radialplatten, und diesen schliessen sich endlich bei schon ziemlich herangewachsenen Thieren noch diejenigen der Centroradialplatten und der radialen Scheitelbalken an.

Die unteren Randplatten, die Jullien (1878) in der Beschreibung seiner *Martha-sterias fabacea* «plaques intervallaires» nennt, entsprechen in ihrer Zahl und Lage den oberen, bilden wie diese eine geschlossene, bis zur Terminalplatte reichende Reihe und haben dieselbe Form und Verbindungsweise, die wir bei *A. tenuispina* kennen gelernt haben. Von den vier Lappen ihres ursprünglichen Umrisses sind der proximale und distale einfach abgerundet, der dorsale streckt sich zu einem grifförmigen Fortsatze, während der ventrale so wenig hervortritt, dass er eigentlich nur einen schwach convex gebogenen Rand darstellt (Taf. 12, Fig. 5, 6). Mit dem proximalen Lappen lagert sich wiederum eine jede Platte über den distalen der nächstvorhergehenden und besitzt dafür an der Unterseite jenes Lappens eine breite, abgerundete Längsleiste, die an einer ähnlichen Leiste gleitet, welche sich auf der Oberseite des distalen Lappens befindet. Der dorsale Fortsatz trägt auf seiner Aussenfläche eine in der Längsachse des Fortsatzes ziehende Rinne, die von aus sen von dem sich auflagernden ventralen Fortsat ze der oberen Randplatte verdeckt wird. So entstehen zwischen der Reihe der oberen und unteren Randplatten dieselben Verbindungspfeiler wie bei *A. tenuispina*, die ebenso wie dort die seitlichen Skeletmaschen des Armes von einander trennen (Taf. 12, Fig. 4). Der ventrale Rand der unteren Randplatte springt als wulstige Verdickung hervor und ist durch zwei (selten 1 oder 3) aufeinander folgende quere Gelenkgruben ausgezeichnet, die für die unteren Randstacheln bestimmt sind. Die Länge der Platten ist dieselbe wie die der oberen Randplatten; ihre Breite beträgt bei alten Thieren (z. B. Nr. 4) im proximalen Armabschnitt 5,4—6 mm, wovon mehr als die Hälfte auf den grifförmigen Fortsatz kommt. Im Armwinkel lassen sich die unteren Randplatten in proximaler Richtung bis in die Gegend der achten und neunten Adambulacralplatte verfolgen. Wie bei den oberen Randplatten ist auch die erste untere erheblich kleiner als die zweite und die nächstfolgenden. Bei meinem kleinsten Exemplare (Nr. 26) kann ich bei fünf oberen erst vier untere Randplatten jederseits an jedem Arme sehen. Aber schon bei dem Exemplare Nr. 24 sind ebenso viele (sieben) untere wie obere angelegt; ebenso verhält sich das Exemplar Nr. 23 mit neun unteren und oberen.

Entsprechend der Zahl der queren Gelenkgruben an ihrem verdickten ventralen Rande trägt jede jede untere Randplatte in der Regel zwei (selten einen oder drei) in der Längsrichtung des Armes aufeinanderfolgende Stacheln, die unteren Randstacheln, die aber ganz an die Ventralseite gerückt sind und hier unmittelbar nach aussen von den Adambulacralstacheln sich zu einer schon von DELLE CHIAJE (1841), MÜLLER & TROSCHEL (1842), STIMPSON (1862), NORMAN (1855), GREEFF (1862) und JULIEN (1878) erwähnten Doppelreihe anordnen, die dadurch zu Stande kommt, dass von den beiden Stacheln einer jeden Platte stets der adorale ein wenig weiter von der Medianebene des Armes entfernt, also nach aussen gerückt.
ist als der aborale, und mit diesem dann nach eine schief Querreihen bildet. Die Stacheln einer jeden Doppellreihe alternieren also miteinander, wie es Greeff (1872) von A. webbiana beschreibt, sodass «ein Stachel der einen Reihe seiner Stellung nach einem Zwischenräume von zweien der anderen Reihe entspricht». Den adoralen Stachel jeder unteren Randplatte kann man auch als den äusseren oder oberen, den aboralen als den inneren oder unteren bezeichnen. Beide haben eine ähnliche Form wie die Dorsalstacheln; insbesondere gilt das oben (s. p. 374) über das Auftreten einer Längsrifelung am freien Ende der Dorsalstacheln Gesagte auch für die unteren Randstacheln. Gewöhnlich sind sie nur wenig kürzer als die Dorsalstacheln, aber länger und stets dicker als die Furchenstacheln. Sehr häufig ist der äussere etwas länger als der innere. Im proximalen Armabschnitte eines alten Exemplares (Nr. 4) maass ich ihre Länge zu 4 mm und ihre Dicke zu 0,8—0,9 mm. Die erste untere Randplatte bleibt bei jungen wie bei alten Thieren stets stachellos, und auch auf der oder den nächsten unteren Randplatten ist die Bewaffnung sehr häufig nur aus einem Stachel gebildet, bis erst in einiger Entfernung vom Munde die regelmässige Zweizahl der Stacheln sich einstellt. Es kommt schon bei meinem jüngsten Exemplare von 2,08 mm Armradius zum Ausdrucke: seine erste untere Randplatte ist stachellos, die zweite trägt eine, die dritte und vierte je zwei Stachelanlagen. Ebenso ist bei dem Exemplare von 3,75 mm Armradius die erste untere Randplatte stachellos, die zweite hat eine, die dritte bis sechste je zwei Stachelanlagen; der eine Stachel der zweiten Platte entspricht seiner Stellung nach dem oberen (= adoralen) der folgenden Platten.

Delle Chiaje (1841) lässt die Arme mit einem Tuberkel endigen, der sieben Stacheln trägt. Mit dem «Tuberkel» ist die Terminalplatte gemeint, die aber mit einer grösseren Anzahl von Stacheln ausgerüstet ist, als Delle Chiaje angiebt. Die Platte selbst hat eine quere, abgerundet trapezförmige Gestalt, ist oben und an den Seiten stark gewölbt und besitzt an der Unterseite eine wohlentwickelte, tiefe Längsrinne, die in ihrem distalen Abschnitte die Nische für Fühler und Ange darstellt und in ihrem proximalen Abschnitte die jüngsten ambulakralen Skeletstücke samt den jüngsten Füsschen beherbergt; beide Abschnitte sind durch einen lappenförmigen Vorsprung des Rinnenrandes voneinander abgegrenzt. Bei einem grossen Exemplare von R = 190 mm hat die Platte eine Länge von 2,5 mm und an ihrem proximalen Rande eine Breite von 3 mm. Auf ihrer dorsalen und lateralen Oberfläche ist sie dicht mit gekreuzten Pedicellarien besetzt, die in Form und Grösse mit denjenigen der übrigen Rückenseite des Thieres übereinstimmen. Auf ihrem distalen Rande trägt sie, unmittelbar über dem distalen Eingange in die Fühlersäule, drei nebeneinander stehende, stumpf cylindrische Stachelchen von 1,25—1,5 mm Länge, von denen das mittlere genau in der Medianebene des Armes liegt. Ferner ist sie zu beiden Seiten der ventralen Längsrinne mit jederseits fünf ähnlichen Stachelchen besetzt, sodass man im Ganzen dreizehn Stacheln zählt, die sich schüttend um die Längsrinne anordnen. Schon bei ganz jungen Thieren, z. B. einem solchen von R = 2,08 mm, ist diese Bestachelung vollständig angelegt. Die Platte hat bei diesem jungen Thiere eine Länge von 0,3, eine proximale Breite von 0,6 und eine distale von 0,37 mm.
Die drei Stachelchen auf dem distalen Rande sind 0,25 mm lang. Von den jederseitigen fünf lateralen und ventralen Stacheln sind zwei sehr viel kleiner als die drei anderen; letztere zeichnen sich bei 0,38 mm Länge durch eine schon von Lovéx (1874; s. seine Taf. 53, Fig. 273) angedeutete, bis 0,16 mm betragende Verbreiterung ihres freien Endes an. Auf ihrer Oberseite trägt die Platte bereits eine Anzahl junger, gleichmässig vertheilter, gekreuzter Pedicellarien, die Lovéx, nach seinen Abbildungen zu schliessen, irrhümlich für junge Stachelchen gehalten hat.

Ventrolateralplatten (Taf. 12, Fig. 4) sind bei den erwachsenen Thieren fast in der ganzen Armlänge entwickelt und fehlen nur in der Nähe der Terminalplatte. Sie bilden eine eifache, zwischen den unteren Randplatten und den Adambulacralplatten gelegene Längsreihe; die bei *A. tenuispina* zwischen ihnen und den Adambulacralplatten befindlichen Schaltstücke fehlen. Viguier (1879) hat die Ventrolateralplatten der *A. glacialis* bereits gesehen und abgebildet, hält sie aber für unregelmässig zwischen die unteren Randplatten und die Adambulacralplatten vertheilte Skeletstücke. Das ist keineswegs der Fall. Sie entsprechen vielmehr in Zahl und Lage genau den unteren Randplatten. Eine jede stellt eine zusammengedrückte Platte dar, die grösser ist, als ihre bei der Aussensansicht eines Skeletpréparates frei zwischen den Adambulacralplatten und den unteren Randplatten hervortretende Oberfläche vermuten lässt. Letztere hat bei dem grossen Exemplare Nr. 4 im proximalen Armabschnitt eine Länge von 2 und eine Breite von 1 mm und grenzt nach aussen an die zugehörige untere Randplatte, nach innen an die lateralen Enden von zwei oder drei Adambulacralplatten. Isolirt man die Platte, so zeigt sich, dass sie in ventrodorsaler Richtung 3 mm hoch ist und eine leicht convexe, längere Grenzfläche gegen die untere Randplatte, eine gegenüberliegende, flache, kürzere Grenzfläche gegen die Adambulacralplatten richtet. Die aufeinanderfolgenden Ventrolateralplatten sind durch Zwischenräume getrennt, die der Länge von zwei bis drei Adambulacralplatten gleichkommen und je eine ventrale Papulsegruppe beherbergen. Im Armwinkel beginnen die Ventrolateralplatten mit einer unpaaren Platte, die (bei Exemplar Nr. 4) jederseits an die vierte und fünfte Adambulacralplatte angrenzt. Dann folgt an jedem Arme die erste paarige Ventrolateralplatte, die an die sechste, siebente oder auch achte Adambulacralplatte stösst. Dann kommt die zweite paarige Ventrolateralplatte, die von der achten bis zur elften oder zwölften Adambulacralplatte reicht, dann die dritte paarige, die sich an die elfte oder zwölfte bis zur fünfzehnten oder sechszehnten Adambulacralplatte anlehnt u. s. w. Die drei ersten paarigen Ventrolateralplatten haben sich parallel zur Armfurche so verlängert, dass sie sich berühren und sogar ein wenig in adoraler Richtung übereinander greifen. Von den vierten paarigen an stossen die aufeinanderfolgenden Ventrolateralplatten nicht mehr zusammen, sondern sind durch die erwähnten Abstände voneinander getrennt.

Stacheln scheinen im Gegensatze zu *A. tenuispina* niemals auf den Ventrolateralplatten aufzutreten. Da, wo ausnahmsweise nach aussen von den Furchenstacheln einmal drei Stacheln da sind, steht der überzählige dritte nicht auf einer Ventrolateralplatte, sondern auf der betreffenden unteren, in der Regel nur mit zwei Stacheln ausgerüsteten Randplatte.
Was die Entwicklung der Ventrolateralplatten angeht, so beginnt dieselbe mit der unpaaren Platte des Armwinkels, die bei jungen Thieren von 2,05—9 mm Armradius für sich allein das ganze ventrolaterale Plattensystem repräsentiert. Diese primäre Ventrolateralplatte liegt anfänglich in einem kleinen Felde, das von den Aussenenden der Munddeckstücke, von der ersten Adambulacralplatte und der ersten unteren Randplatte der beiden benachbarten Arme begrenzt wird.

In der Form und der allgemeinen Anordnung der Papulae schliesst sich A. glacialis an A. tenispina an, doch ist bei ihr die Zahl der in je einer Gruppe vereinigten Papulae beim erwachsenen Thiere entsprechend der bedeutenderen Körpergrösse und der Grösse der zu ihrer Aufnahme bestimmten Skeletmaschen viel beträchtlicher. Während man dort in den dorsalen und seitlichen Skeletmaschen des proximalen Armabschnittes zehn bis zwölf Papulae in einer jeden Gruppe zählt, steigt diese Ziffer bei glacialis bis auf zwanzig und darüber; ebenso sind die Papulae in jeder ventralen Masche zahlreicher (fünf bis acht) als bei A. tenispina. Die Vereinigung der einzelnen röhrenförmigen Papulae (seiner »Rückenfüsschen«) zu büschelförmigen Gruppen hat schon Delle Chiave (1841) beobachtet, und auch Stimpson (1862) erwähnt diese Gruppierung von seiner A. madeirensis. Es sind im Ganzen an jedem Arme jederseits (Taf. 12, Fig. 4) ebenso viele Längsreihen von Papulaegruppen wie von Skeletmaschen, also vier, nämlich zwei dorsale: eine mediale und eine laterale, dann eine seitliche und endlich zwischen den Ventrolateralplatten eine schwächer entwickelte ventrale. Alle diese Reihen lassen sich beim alten Thiere im distalen Armabschnitt, unter allmählicher Abnahme der Zahl der eine Gruppe bildenden Papulae, bis zur Terminalplatte verfolgen. In der Nähe des Mundes gehen die ventralen Papulae bis in die kleinen Lücken zwischen den allerersten Ventrolateralplatten. Die secundären Scheitelfelder des Scheibenrückens sind nicht wie die Skeletmaschen des Armes nur mit einem, sondern mit je drei bis vier Papulaebüschneln ausgestattet, in denen zusammen man schon bei einem Exemplare von 95 mm Armradius etwa dreissig einzelne Papulae zählt. Auch die kleine Skeletmasche, die in jedem Radius zwischen der Centroradialplatte und der ersten Radialplatte liegt und seitlich von den primären Interradialplatten begrenzt wird, beherbergt ein kleines Papulaebüschnel.

Bei jungen Thieren lässt sich die Entwicklung der Papulae Schritt für Schritt verfolgen. Bei meinem jüngsten Exemplare (Nr. 26) sind an dem ganzen Thieren erst zehn einzelnstehende Papulae vorhanden, die genau dieselbe Lage einnehmen wie die ersten Papulae anderer Arten, bei denen ich ihr frühestes Auftreten feststellen konnte. Es entwickelt sich nämlich zunächst nur jederseits des Aussentheiles einer jeden primären Interradialplatte je eine einzige Papula (Taf. 12, Fig. 10). Das primäre Scheitelfeld ist noch ganz frei davon, und auch auf den Armen ist sonst keine Spur von ihnen zu finden. Bei einem Exemplar von 3,75 mm verhält sich die Sache ebenso: auch hier liegt nur in jeder ersten dorsalen Skeletmasche des Armes eine einzige Papula (Taf. 12, Fig. 16). Dann aber erfolgt eine Vermehrung der Papulae in der Art, dass bei einem Exemplare von 6,25 mm Armradius im Ganzen deren schon dreissig vorhanden sind, indem nunmehr auch in der zweiten und dritten Skeletmasche des Armrückens je
eine aufgetreten ist. Bei $R = 7,5$ mm hat die Entwicklung der Papulae der Armrücken bereits solche Fortschritte gemacht, dass man ihnen jetzt in allen Skeletmaschen von der Armbasis bis zur achten oberen Randplatte (es sind zwölf obere Randplatten vorhanden) begegnet, und zwar so, dass in jeder dieser Maschen sich jetzt schon zwei Papulae befinden, von denen die eine näher an den Radialplatten, die andere näher an den oberen Randplatten ihre Lage einnimmt. Nun erst treten auch im Scheitelfelde die ersten Papulae auf, sodass man deren bei $R = 9$ mm bereits eine ganze Anzahl zählen kann, und bei $R = 12,5$ mm umschliesst jedes der nun voneinander getrennten secundären Scheitelfelder deren drei bis vier. In demselben Altersstadium haben die Papulae der Dorsalsmaschen des proximalen Armabschnittes sich so stark vermehrt, dass man hier an Stelle der vorher vereinzelten nunmehr je eine Gruppe von zwei bis vier antrifft ('Taf. 12, Fig. 15'). Später stellt sich auch dann noch in jeder kleinen Skeletmasche, die zwischen jedes Centroradiale und dem betreffenden primären Radiale liegt, die erste Papula ein. Noch später entwickeln sich schliesslich die Papulae der ventralen Skeletmaschen der Arme.

Die drei ersten Adambulacralplatten stossen beim alten Thiere (z. B. bei Nr. 4 der Tabelle) mit denselben Platten des benachbarten Armes nach aussen von den Mundeckstücken in der interradialen Hauptlinie unmittelbar zusammen. Erst von der vierten Platte an weichen sie im Interbrachialbezirk auseinander, um zunächst die ersten Ventrolateralplatten und weiterhin auch die ersten unteren Randplatten zwischen sich zu nehmen. Die erste Adambulacralplatte ist auf ihrer ventralen Oberfläche fast so lang wie breit, 1,25 mm. An den folgenden wird die ventrale Oberfläche allmählich breiter als lang, und schon an der achten Platte beträgt die Breite 2,15 mm und die Länge nur 0,8 mm. Die Zahl der Adambulacralplatten ist mehr als viermal und bis fünfmal so gross wie die der unteren Randplatten. So zählte ich bei dem Exemplar Nr. 4 im proximalen Armabschnitt 34—40 Adambulacralplatten auf die Länge von acht unteren Randplatten, bei einem anderen erwachsenen Thiere an derselben Stelle 37, bei einem dritten 40 auf acht und bei einem vierten (Nr. 10 der Tabelle) 42 auf zehn untere Randplatten.

Ebenso wie die A. tenispina gehört auch A. glacialis hinsichtlich ihrer adambulacralen Bewaffnung zu den monacanthischen Arten (Bell 1881), indem die Adambulacralstacheln sich jederseits von der Armfurche zu einer einzigen Längsreihe anordnen, wie das bereits Müller & Troschel (1842), Stimpson (1862), Norman (1865), Heller (1868) und Greeff (1872) bemerkt haben. Nur Jullien (1878) nimmt irrtümlicherweise an, dass die Furchenstacheln bei der echten A. glacialis in einer doppelten Reihe stünden und sich gerade dadurch seine Marthasterias foliacea mit ihrer einfachen Stachelreihe von A. glacialis unterscheide; in Wirklichkeit ist also ein solcher Unterschied gar nicht vorhanden. Nach Stimpson (1862) wird, wie ich bestätigen kann, manchmal dadurch der Anschein einer zweireihigen Anordnung hervorgerufen, dass eine Strecke weit abwechselnd ein Stachel sich mehr furchenwärts, der nächste mehr nach aussen richtet. Aber es kommen, gerade wie bei A. tenispina, auch wirkliche Anläufe zur Ausbildung einer diplacanthiden Adambulacralbewaffnung vor. So fand ich
z. B. bei dem Exemplar Nr. 10 der Tabelle im proximalen Armabschnitt gar nicht selten, aber ohne regelmässige Vertheilung, statt eines Adambulacralstachels deren zwei, einen inneren und einen äusseren, nebeinander auf einer und derselben Adambulacralplatte. Bei alten Thieren, z. B. dem Exemplare Nr. 4, sind die ersten Adambulacralstacheln eines jeden Armes 6 mm lang, also so lang wie der aborale Stachel der Mundeckstücke; die nächstfolgenden Stacheln sind nur noch 5 und weiterhin nur noch 4 mm lang. Bei 5 mm Länge haben sie eine Breite von 0,75 mm. Mit Ausnahme der ersten, die sich nicht nur in der Grösse, sondern auch in ihrer cylindrischen, zugespitzten Form dem aboralen Mundeckstachel anschliessen, sind die Adambulacralstacheln in der Regel ähnlich wie bei A. tenuispina in dem Sinne comprimirt, dass sie eine Fläche der Armfurche zukehren, die andere nach aussen richten und stumpf abgestutzt endigen. Diese Verschiedenheit in der Form der ersten zu den übrigen Adambulacralstacheln hat GREEFF (1872) mit Unrecht für eine Eigenthümlichkeit der von ihm für eine besondere Art gehaltenen A. webbiana angeschen. Der Uebergang von der Form der proximalen Furchenstacheln zu den übrigen vollzieht sich übrigens nicht jählings, sondern ganz allmählich. Nicht selten trifft man auch auf Exemplare, an denen auch die Furchenstacheln des mittleren und des distalen Armabchnittes nicht abgestutzt, sondern stumpf zugespitzt endigen und auch nur sehr wenig comprimirt sind; dann schwindet der besprochene Unterschied der proximalen Stacheln zu den übrigen fast völlig. Meistens erstreckt sich die Compression der Stacheln auf deren ganze Länge, sodass der Stachel von seiner Basis bis zum freien Ende von gleicher Breite ist. In anderen Fällen ist die Abplattung am freien Ende stärker als an der Basis; dann stellt das ohnehin abgestutzte freie Ende eine etwa scharflärmige Verbreiterung dar, wie sie JULIEN (1878) von seiner hierher gehörrigen Marthasterias foliacea, GREEFF (1872) von canarischen, als A. webbiana bezeichneten und (1882) von seinen irrthümlich zu A. africana M. & Tr. gestellten portugiesischen Exemplaren beschreiben. Einen besonderen Nachdruck legt GREEFF bei den zuletzt erwähnten Stücken auf das Vorhandensein einer Längsfurche auf dem freien scharflärmigen Endstück des Stachels. Diese Längsfurche, die ebenso wie die an den Adambulacralstacheln der A. tenuispina erwähnte der Aussenfläche des Stachels angehört, kommt aber nicht selten in deutlicher Ausbildung auch an neapolitanischen und nordischen Exemplaren vor und kann deshalb keinen Grund für eine spezifische Sonderung der GREEFF'schen Exemplare abgeben. Hier und da zeigt der Endrand des abgestutzten Stachels einen leichten Einschnitt, den ich bei dem von Madeira stammenden Exemplare besonders deutlich sehe, was zu STIMPSON's Beschreibung seiner A. madeirensis stimmt.

In ihrer Entwicklung legen sich die Furchenstacheln sehr frühzeitig an. Sobald eine neue Adambulacralplatte an der Arm spitze auftritt, besitzt sie auch schon ihre Stachelanlage. Bei meinem jüngsten Exemplare, Nr. 26 der Tabelle, sind alle Adambulacralplatten, deren man bereits jederseits in jedem Arme elf zählen kann, mit dem Stachel ausgestattet. Die ventrale Oberfläche der Mundeckstücke ist an ihrem adoralen Bezirke merklich breiter als an ihrem aboralen Ende. Bei einem grossen Exemplare von R = 190 mm maass ich die Länge der ventralen Oberfläche zu 2,7, die Breite des adoralen Randes zu 2
und die des aboralen Randes zu 1,25 mm. Auch bei ganz jungen Thieren, z. B. einem solchen von R = 2,08 mm, bietet das Mundeckstück bereits dieselbe Form seiner ventralen Oberfläche dar. Auch die Zahl der dem Skeletstück aufsitzenden Stacheln ist bei diesem jungen Thiere schon dieselbe wie bei dem alten. Es trägt nämlich jedes Mundeckstück drei zugespitzte Stacheln, von denen zwei dem adoralen Rande aufsitzen und der dritte auf dem distalen Theile der Ventralfläche in der Nähe des aboralen Randes eingelenkt ist. Von den beiden adoralen Stacheln richtet sich der eine, den wir, weil er der interradialen Hauptebene zunächst liegt, den ersten nennen wollen, schräg gegen den Mund, der zweite, von der interradialen Hauptebene weiter abgerückt dagegen pflegt sich quer über das proximale Ende der Ambulacralfurche zu stellen, sodass er hier manchmal mit seiner Spitze mit dem gleichen Stachel des gegenüberliegenden Mundeckstückes sich kreuzt. Der zweite Stachel ist bei erwachsenen Thieren stets erheblich kleiner als der erste, und seine Einlenkung liegt bei der Ventralansicht des Thieres immer tiefer als die des ersten. Bei dem grossen Exemplare von R = 190 mm hat der erste adorale Stachel eine Länge von 3,5 mm, der zweite von 2 mm. Beide werden aber in ihrer Länge weit übertroffen von dem auf dem distalen Bezirke des Mundeckstückes stehenden Stachel, der bei dem erwähnten Exemplare 6 mm lang wird und sich in Form, Grösse und Stellung den Stacheln der ersten Adambulacralplatten anschliesst; gewöhnlich ist er mit seiner Spitze schräg nach aussen, d. h. gegen das Interbrachialfeld hin, gerichtet. Bei dem ganz jungen Thiere, das ich oben zum Vergleiche heranzog, ist die spätere Grössendifferenz der drei Stacheln eines jeden Mundeckstückes noch nicht ausgeprägt; sie sind jetzt noch fast gleich gross, endigen stumpf und bedornt und haben eine Länge von 0,12 mm. Jedoch schon bei einem Thiere von R = 3,75 mm sind die drei Stacheln in demselben Sinne ungleich gross geworden wie beim alten Thiere: der distale ist etwas stärker und grösser als der erste adorale, und dieser wieder übertrift ein wenig den zweiten adoralen.

Um die Zugehörigkeit der STIMPSON'schen A. madeirensis zu A. glacialis auch in Betreff der Mundbewaffnung zu erweisen, sei noch bemerkt, dass ich die Zahl, Stellung und Grössenverhältnisse der Stacheln bei dem mir von Madeira vorliegenden Exemplare in völliger Übereinstimmung mit den neapolitanischen Individuen finde; ebenso verhalten sich die Exemplare von den Canaren.

JULIEN (1878) hat von seiner mit A. glacialis identischen Marstasterias foliacea eine Beschreibung der Mundbewaffnung gegeben, die, wenn man von seiner fehlerhaften Ausdrucksweise absieht, zu meinen Beobachtungen recht gut passt. Er verfüllt zunächst in den Irrthum, dass er die beiden Mundeckstücke einer jeden Mundecke zusammen als eine einzige Platte ansieht, die er die «plaque buccale interambulacrale» nennt. Jede dieser «Platten» trägt nach ihm sechs Stacheln: vier innere (das sind meine adoralen) und zwei äussere (das sind meine aboralen); von den vier inneren sind die beiden mittleren um 1/4 länger als die beiden seitlichen (er meint mit den mittleren die Stacheln, die ich die ersten adoralen nenne); die beiden äusseren sind von gleicher Form mit den Adambulacralsstacheln (die er verkehrterweise Ambulacralstacheln heisst).
Die zur Madreporenplatte gewordene primäre Interradialplatte zeichnet sich bei den erwachsenen Thieren durch einen plumperen Umriß vor den vier anderen primären Interradialplatten aus; ihre Breite misst z. B. bei dem Exemplare Nr. 17 5,2 mm, ihre Länge 3,6 mm. Die plumpere Gestalt ergiebt sich daraus, dass der distale Lappen der Platte breiter und stumpfer geworden ist. Nicht die ganze Platte 1) wird zur Ausbildung des Madreporiten benutzt, sondern nur ihr centraler Bezirk (Taf. 12, Fig. 14), der sich zu einer fast flachen, nur schwach gewölbten, runden Warze erhebt, die schon DELLE CHIAIE (1841) beschrieben hat. Letztere, der eigentliche Madreporit, trägt auf seiner Fläche zahlreiche, dichtgestellte, gewundene, theils nach dem Mittelpunkte convergirende, theils auch durch den Mittelpunkt hindurchziehende Furchen und ist stets stachellos. Er liegt am lebenden wie am conservirten Thiere frei zu Tage und ist deshalb nicht, wie BELL (1892) sagt, »ziemlich undeutlich«, sondern recht leicht zu sehen. Sein Durchmesser misst bei grossen Exemplaren 3—4 mm. An der proximalen Seite des Madreporiten stehen die zwei bis drei Stacheln seiner primären Interradialplatte, die sich zu einem Bogen ordnen, der seine Concavität dem Madreporiten zukehrt. Eine Vermehrung der Stacheln auf dieser Interradialplatte im Gegensatze zu den übrigen findet nicht statt. Wenn STIMPSON (1862) von seiner A. madeirensis berichtet, dass der Madreporit an seiner Innenseite von einem aus fünf bis sechs Stacheln gebildeten Halbkreise beschützt werde, so kommt das nur dadurch, dass er einige der auf den benachbarten Platten befindlichen Stacheln mitgezählt hat.

Bei jungen Thieren bemerke ich schon bei dem Exemplare von 2,8 mm Armm. an der Stelle des späteren Madreporiten zwei kleine Porenöffnungen in der primären Interradialplatte, die jetzt noch in ihrer Grösse und Form mit den anderen primären Interradialplatten ganz übereinstimmt und auch schon in der Nähe ihres proximalen Randes die Anlagen von drei Stacheln besitzt. Bei dem Exemplare von 3,75 mm Armm. ist die Platte ein wenig plumper geworden als die anderen, und bei 6,25 mm Armm. sieht man bereits einige (2 oder 3) gewundene Furchen, in deren Grund die Porenöffnungen liegen. Bei 7,5 und 9 mm Armm. sind der Furchen 6 oder 7 zur Ausbildung gelangt, die wie vorher dem distalen Plattenrande näher liegen als dem proximalen.

Wie BELL (Catalogue 1892) dazu kommt, von der A. glacialis zu sagen, ihre Pedicellarien seien nicht sehr zahlreich, und gleichzeitig die Ringwülste der Stachelbasen aus Papulac bestehen zu lassen, ist mir ganz unerfliedlich. Denn es gehört doch kaum mehr als die oberflächlichste Untersuchung dazu, sich von dem Gegentheil zu überzeugen. Die Ringwülste haben anatomisch mit den Papulac nicht das Mindeste zu schaffen, denn sie sind ebenso wie z. B. bei tenuispina und edmundi lediglich aus gekrenzten Pedicellarien aufgebaut, und die geraden Pedicellarien bilden nicht nur in den Ambulacralfurchen jederseits eine dichte Längsreihe, sondern finden sich auch auf der ventralen und dorsalen Oberfläche der meisten Individuen in

1 LOVÉN (1874, Taf. 53, Fig. 270) lässt die ganze Oberfläche der Platte in die Bildung des Madreporiten eintreten, was mich wiederum daran zweifeln lässt, dass seine Angaben sich thatsächlich auf A. glacialis und nicht auf eine verwandte Art beziehen.
Asterias glacialis.

rech grosser Anzahl. Der Erste, der beide Pedicellariensorten bei der vorliegenden Art gesehen hat, scheint Dele Chaje gewesen zu sein. Schon in seinem ersten Werke (1825) gibt er eine Abbildung (seine Taf. 18, Fig. 5) einer geraden Pedicellarie, an der sich sowohl die beiden Zangenarme als auch das Basalstück deutlich erkennen lassen, und in seinem Hauptwerke (1841, Taf. 125, Fig. 10) unterscheidet er die "pedicellarie biretes" (er nennt sie auch maxilli forficati) der dorsalen Ringwülste in solche mit spitzem und solche mit stumpfem Ende; unter jenen können nur die geraden, unter diesen die gekreuzten unserer heutigen Bezeichnungsweise gemeint sein. Zur selben Zeit bestätigte Forbes (1841) das Vorkommen der Pedicellarien bei dieser wie bei anderen Asterias-Arten. Müller & Troschel (1842) unterschieden ebenfalls die beiden Sorten als grosse und kleine: letztere sind in Kränzen um die Stachelbasen geordnet, erstere stehen einzeln und sind, wie auch aus meinen Maassangaben hervorgehen wird, dreimal so lang wie breit. Näher ging dann Duvernoy (1849) auf die Pedicellarien unserer Art ein. Er beschrieb die Anordnung der grossen wie der kleinen, kannte auch schon das Vorkommen der grossen im Inneren der Ambulacralfurchen und erläuterte den Bau der grossen in ganz zutreffender Weise, während er darin irrt, dass er die kleinen für rudimentäre Gebilde ansah. Dass die kleinen das nicht sind, sondern sich in ihrem Baue durch die Kreuzung der Zangenarme wesentlich von den grossen unterscheiden, stellte erst Norman (1865) fest. Gleichzeitig gab Herapath (1865) eine ausführliche Beschreibung der gekreuzten, die er die forciciformen nennt, und der geraden, die er in forciciforme, mandibulate und maxilliforme eintheilt. Seine Schilderung der gekreuzten wurde zwar einige Jahre später von Perrier (1869), der Herapath's Arbeit nicht gekannt zu haben schein, überholt und in den einen wichtigen Punkte ergänzt, dass auch bei ihnen die Zangenarme sich auf ein von Herapath direct in Abbred gestelltes Basalstück stützen. Dagegen ist Herapath's Darstellung der verschiedenen Formen der geraden bis heute brauchbar geblieben, wenn auch Cuénot (1888, p. 20—25, Taf. 1, Fig. 1—13) einige bemerkenswerthe Nachträge dazu geliefert hat.

Die geraden Pedicellarien Dele Chaje's "spitzes", Müller & Troschel's "grosse", treten nach Herapath in drei Formen auf, die aber, wie man leicht feststellen kann, durch alle möglichen Übergänge verbunden und in keinem wichtigen Punkte ihrer Organisation von einander verschieden sind. Die kleineren und mittelgrossen unterscheiden sich nur dadurch, dass bei diesen die Zangenarme noch länger und am Ende zugespitzt sind als bei jenen. Die kleineren bezeichnete er als forciciforme (vergl. seine Abbildungen Taf. 4, Fig. 10 und Taf. 5, Fig. 6); die mittelgrossen, in denen er übrigens schon selbst nur eine stärkere Ausbildung der kleineren sah, — er fasst beide auch unter der Bezeichnung klappenförmige (valvate) zusammen — nannte er die mandibulaten (vergl. seine Abbildungen Taf. 4, Fig. 9 und Taf. 5, Fig. 1b, 2b). Die durchschnittliche Länge beider beträgt nach ihm 0,897 mm (im Minimum 0,5, im Maximum 1,2 mm). Damit stimmen die Maasse, die ich an erwachsenen Thieren von Neapel erhielt, ziemlich überein: ich fand die Länge der kleineren zu 0,52—0,61, die der grosseren zu 0,91—1,15 mm. Bei den kleineren misst die Breite 0,22—0,24, bei den grosseren 0,3—0,39 mm. beträgt also bei jenen rund \(\frac{1}{2}\), bei diesen \(\frac{1}{2}\) der Länge. Das
Basalstück hat bei den kleineren eine Höhe von 0,11—0,12; bei den größeren ist es 0,16—0,22 mm hoch. Außer diesen beiden fast nur durch ihre Größe verschiedenen Sorten der geraden Pedicellarien beschreibt Herapath eine noch grössere dritte Form, die sich dadurch auszeichnet, dass die Zangenarme an ihrem freien Ende sich verbreitern und am Rande der Verbreiterung mit Einkerbungen und damit abwechselnden Ausbuchtungen besetzt sind, die mit den entsprechenden Ausbuchtungen und Einkerbungen des anderen Zangenarmes beim Schlusse der Pedicellarien ineinandergreifen (vergl. eine Abbildung Taf. 4, Fig. 7, Sb; Taf. 5, Fig. 1a, 2a, 3, 4a). Er nennt sie die maxillaeformen und meint, dass sie vor ihm weder beschrieben noch abgebildet worden seien. Es hat aber schon Duvernoy (1849) sie gekannt und unter der Bezeichnung palattenförmige (seine Fig. 5b) geschildert, wenn er auch die besondere Gestaltung des Randes der Zangenarme nicht erwähnt. Nach Herapath haben die maxillaeformen Pedicellarien eine durchschnittliche Länge von 1,81 mm (im Minimum 1,05, im Maximum 1,91 mm). Die von mir gemessenen hatten eine Länge von 1,7—1,8, eine Breite von 0,55—0,58 mm und eine Höhe des Basalstückes von 0,3—0,4 mm. Cuenot (1885, Taf. 1, Fig. 9—10) gibt viel bedeutendere Maasse für die maxillaeformen an; sie sollen 2—3, mitunter sogar bis 4 mm lang sein. An den grössten beschreibt er die Zangenarme als nicht nur am freien Ende, sondern beinahe ihrer ganzen Länge nach scheibenförmig verbreitert, wie denn auch schon von Herapath (Taf. 5, Fig. 3) eine derartige Form abgebildet worden ist. Da mir niemals so grosse Pedicellarien, wie sie Cuenot angiebt, begegnet sind, so möchte ich fast bezweifeln, dass seine Angaben auf genauen Messungen beruhen.

Stimpson (1862) bemerkt, dass er an Exemplaren von Madeira (seiner A. madeirensis) hier und da auch einmal eine grosse dreikantige Pedicellarie nach aussen von der Insertion der Adambulacralstacheln gefunden habe. Daraus darf man wohl vermuten, dass er bereits die dreiarigen geraden Pedicellarien gesehen habe, die Cuenot (1885), in der Meinung sie zuerst entdeckt zu haben, von Exemplaren von Banyuls und Roscoff beschreibt und abbildet (seine Taf. 1, Fig. 7 u. 8). Diese tridactyle Pedicellarien kommen jedoch nur einzelnen Individuen zu und sind auch bei diesen so sparsam vertheilt, dass Cuenot auf einem Arm nicht mehr als 2 oder 3 antraf. Ich selbst habe nur einmal eine dreiarige Pedicellarie auf dem Arm eines mittelgrossen Exemplares von Messina nach aussen von den Adambulacralstacheln gefunden, aber freilich auch nur wenige Exemplare darauf abgesucht.

Fassen wir also die verschiedenen Variationen, wie sie die geraden Pedicellarien unserer Art in ihren mannigfachen Formen als formiciforme, mandibulate, maxillaeforme und tridactyle darbieten, zusammen, so ergiebt sich, dass sie in der Länge von 0,52—1,9 mm schwanken können, fast immer dreimal so lang wie breit sind und bald mit zugespitzt, bald mit verbreiterten Zangenarmen endigen. Eine scharfe Grenze ist zwischen den drei erstgenannten Formen keineswegs vorhanden, denn man trifft auf Zwischenformen, bei denen man in Zweifel bleibt, ob man sie noch zu der einen oder schon zu der anderen Sorte rechne soll.

Von den gekreuzten Pedicellarien (Delle Chajes's stumpfen, Müller & TroscheII's kleinen haben Perrier 1869, Taf. 1, Fig. 1a) und Cuenot (1885, Taf. 1, Fig. 1—6) Abbil-
Asterias glacialis.

389
dungen und eingehende Beschreibungen gegeben. Sie haben nach Herapath, der sie die forciiformen nennt, eine durchschnittliche Länge von 0,4 mm (im Minimum 0,33, im Maximum 0,46 mm). Meine Messungen ergaben bei erwachsenen Thieren ein Länge von 0,36—0,48 und eine Breite von 0,27—0,32 mm; bei einem sehr jungen Exemplare von 2,08 mm Armradius waren sie erst 0,12 mm lang und 0,1 mm breit.

An diese hohe Ziffer reichen nun freilich die geraden Pedicellarien nicht entfernt

Bei jungen Thieren lässt sich feststellen, dass von den beiden Hauptformen der Pedicellarien die gekruezten viel furher auftreten als die geraden. Jene finde ich schon bei meinem jüngsten Exemplare (Nr. 26) vereinzelt (1 oder 2) auf den primären Interradialplatten und primären Radialplatten sowie etwas zahlreicher auf der Terminalplatte, während sie auf der ganzen Ventralseite des Thieres noch völlig fehlen. Bei Nr. 24 bemerke ich auch schon auf der Centralplatte eine junge gekraeuzte Pedicellare; ferner stehen einige derartige Organe an den oberen Stacheln der unteren Randplatt en sowie an den Stacheln der Radialplatten und der oberen Randplatten. Noch bei 9 mm Armradius (Nr. 20) beträgt die Zahl der an den Basen der dorsalen Scheiben- und Armstacheln befindlichen jungen Pedicellarien erst 2 — 4, wird aber schon bei Individuen von 12,5 mm Armradius (Nr. 18) ganz ansehnlich. Den ersten geraden Pedicellarien begegnete ich bei jungen Thieren von etwa 7 mm Armradius (z. B. Nr. 21); eine derselben liegt in jedem ventralen Interbrachialfalte, zwei oder drei andere im proximalen Theile einer jeden Ambulacralfurche.

Die älteren kurzen Angaben über die Farbe des lebenden Thieres — DELLE CHIAJE nennt sie gelbbraun, FORBES röthlich oder orange, Müller & Troschel hell rothbraun — reichen umsonst nicht aus, als sie den grünen Ton, der gerade bei Exemplaren des niedrigen Wassers so ungemein häufig ist, gar nicht erwähnen. Bei Neapel lassen sich zwei Farbenvarietäten, die freilich durch Übergangsformen verbunden sind, unterscheiden1). Die eine (Taf. 3, Fig. 3) ist auf ihrer Oberseite vorwiegend gelblich oder orangeroth bis gelbbraun und lebt vorwiegend in tiefem Wasser; die andere (Taf. 3, Fig. 1) ist graugrün bis grün und lebt näher am Wasser; dieselben ums Tasch. 3, Fig. 1) ist abwechselnd mit einem durchgreifenden, morphologischen Unterschiede beider Farbenvarietäten habe ich wiederholt, aber stets vergeblich gesucht.

Im östlichen Theile des Mittelmeeres wird die Art ausserhalb der Adria nur von Forbes (1839) aus dem ägäischen Meere angegeben. Zahlreich dagegen sind die Fundorte aus der Adria. Hier kennen sie von Ragusa (Heller, Stossich), von den dalmatinischen Inseln Curzola (Stossich), Lesina (Heller, Stossich), Lissa (Heller, Stossich), weiter von Lussin (Grube, Stossich), Cherso (Grube, Stossich), aus dem Quarnero Lorenz, Graeffe), von Portoré (Grube, Stossich) und Fiume (Stossich und aus dem Golf von Triest (Graeffe, Greeff, Stossich).

Im westlichen Becken des Mittelmeeres sind als Fundorte bekannt: Messina (M. Sars, Poll, Slutter, Bonner Sammlung), der Golf von Neapel (Meckel, Delle Chiave, Grube, M. Sars, ich, Goette, Greeff, Lo Bianco, Colombo), Rapallo (Marchisio), Nizza Risso, Greeff), La Ciotat (Koehler), Marseille Marion, Bayyuls (Cuénot), Cartagena Meissner, Menorca (Braun), Algier (Perrier). Im Golfes von Neapel kommt die Art des Näheren nach Lo Bianco besonders häufig auf den Klippen bei Nisida vor; Colombo erwähnt sie auch von der Secca di Benda Palumbo und von der Südseite von Capri; ferner liegen mir Exemplare von Pozzuoli, von der Nordküste Capris und von der Secca d'Ischia vor.

In verticaler Richtung bewohnt sie Wassertiefen von wenigen Metern bis zu solchen von 180 m. An der Küste geht sie aufwärts bis zur Grenze der Ebbe, ist aber doch am häufigsten in Tiefen von einigen Metern, während sie in grösseren Tiefen wieder seltener zu werden scheint. Im Mittelmeer sind die tiefsten Fundstellen nicht tiefer als 100 m. Ausserhalb des Mittelmeeres fand man sie auch noch in 124 m zwischen Norwegen und Schottland.

2) DANIELSEN & KOREN, Asteridea, Christiania 1884 The Norwegian North-Atlantic Expedition 1876—1878.
3) Zoologische Jahrbücher, Abth. f. Systematik, Bd. 5, 1894, p. 100—127.
Asteriiidae.

(Mörbus & Bütschi), in 164 m südwestlich von Irland (Bell) und in 180 m im Golf von Biscaya (Kohler). Falls die oben erwähnte Angabe von Hoffmann wirklich auf die vorliegende Art zu beziehen ist, steigt sie im arktischen Meere sogar bis 357 m herab.

An alten Orten ihres Vorkommens bevorzugt sie festen, steinigen, felsigen, klippenreichen Untergrund, findet sich aber auch auf sandigem Boden, dem kleine Steine beigemengt sind; dagegen meidet sie reinen Schlamm Boden durchaus.

Die Fortpflanzungszeit fällt in die Wintermonate. Graeffe (1881) gibt zwar für Triest an, dass er im März und April reife Geschlechtsorgane gefunden habe; aber zu dieser Zeit nähert sich die Fortpflanzungsperiode doch schon rasch ihrem Ende. Fol (1879) und O. Hertwig (1878) berichten übereinstimmend, dass bei Messina die Thiere den ganzen Winter über geschlechtsreif sind, und Lo Bianco (1888) nennt für Neapel, was mir Herr Dr. Driesch mündlich auf Grund seiner eigenen Beobachtungen bestätigte, als Fortpflanzungszeit die Monate December bis Februar; sie kann aber auch bereits Mitte November eintreten und sich bis in den März ausdehnen. Die Eier, deren transparente Beschaffenheit schon Risso (1826) kannte, haben nach dem Vorgange von Fol und O. Hertwig neuerdings vielfach als ausserordentlich geeignete Objekte für allgemeinere entwicklungsgeschichtliche Studien (über Reifung, Befruchtung, Furchung) gedient. Die Spermatogenese hat Field (1895) zum Gegenstande eingehender Untersuchungen gemacht. Die Entwicklung der Larve hat Russo (1892) bis zur Ausbildung einer Bipinnaria verfolgt und abgebildet; auch Goette (1880) hat einen kleinen Beitrag zur Kenntnis der Bipinnaria-Larve geliefert; ferner beziehen sich vielleicht die neuesten Beobachtungen Bury’s (1895) an einer neapolitanischen Seesternlarve ebenfalls auf A. glacialis. Einige postlarvaläre Jugendstadien hat Löven (1874) beschrieben, von denen es mir jedoch, wie weiter oben bemerkt, nicht ganz sicher zu sein scheint, dass sie wirklich zu glacialis und nicht zu einer anderen Asterias-Art gehören. In Betreff der mir vorliegenden, oben näher berücksichtigten Jugendzustände möchte ich hier noch hinzufügen, dass die Viereihigkeit der Füsschen erst bei einem Armradius von rund 7 mm und annähernd 40 Füsschenpaaren in jedem Arm aufzutreten beginnt, und zwar zunächst nur am Mundende der Ambulacralfurchen. Mit dem weiteren Wachstum des Thieres schreitet sie distalwärts fort, erreicht aber selbst bei alten Exemplaren (z. B. Nr. 4) niemals die Terminalplatte; in der nächsten Nähe dieser Platte bleibt

Ich glaube annehmen zu dürfen, dass sich seine Untersuchungen auf A. glacialis beziehen; er selbst spricht immer nur von Asteracanthion (= Asterias) ohne Bezeichnung der Species.
die Anordnung der Füsse stets die jugendliche, zweireihige. Bei jüngeren Thieren als solchen von 7 mm Armradius, z. B. bei den Exemplaren Nr. 26, 25, 24, 23 mit 13, 15, 17, 23 Füssepaaren [in jedem Arm], sind die Füsse noch sämtlich zweireihig gestellt. Die anatomischen Verhältnisse der erwachsenen Thiere hat namentlich Cuxonot (1888) näher untersucht.

Taf. 12, Fig. 17.

50*
Asterridae.

Nach einem einzigen, ihm aus der Ausbeute der fürstlich Monaco'schen Yacht Hirondelle vorliegenden, jugendlichen Exemplare stellte Perrier diese Art im Jahre 1891 auf und rechnete sie zu der von ihm zu einer Gattung erhobenen SLADEN'schen Untergattung Stolasterias (= Asterias temispina-Gruppe). Der von ihm gewählte Speciesnamen kann freilich nur dann bestehen bleiben, wenn die von Bell schon zehn Jahre vorher beschriebene Asterias neglecta aus der Gregory Bay (Magellanstrasse) bei einer Auflösung der alten Gattung Asterias in eine Anzahl enger umgrenzter Gattungen nicht ebenfalls zu Stolasterias zu stellen ist. Da letzteres nach dem, was bis jetzt über die Merkmale der Bell'schen Art bekannt geworden ist, kaum zu erwarten steht, so wird man der vorliegenden Art den Namen neglecta Perr. lassen müssen, falls man überhaupt die Gattung Stolasterias accepit. Hält man aber einstweilen noch an dem älteren, umfassenderen Begriffe der Gattung Asterias fest, so ist Perrier's Art-namen unzulässig und muss durch einen anderen ersetzt werden. Als solchen schlage ich ihm zu Ehren, da die Bezeichnung perrieri (durch Smith) auch schon an eine Asterias-Art vergeben ist, den Namen edmundi vor.

Das Gesammtaussehnen (vergl. v. Marenzeller's Fig. 2 und 2a) des nur eine mässige Grösse erreichen den, erwachsenen Thieres ist kräftig und erinnert einigermassen an jüngere Exemplare der A. glacialis. Die Pedicellarien beschränken sich auf kranzförmige Gruppen,

1 Die nach LEIPOLDT's (1895, p. 563) Vermuthung möglicherweise mit Asterias sulcifera Perr. identisch ist, aber der näheren Aufklärung noch sehr bedarf.
welche je einen dorsalen Stachel umgeben. Die Arme sind an ihrer Wurzel verschmälert und setzen sich dadurch deutlich von der verhältnismässig kleinen, oben ziemlich flachen Scheibe ab; dann verbreitern sie sich, erlangen in einer Entfernung, die ungefähr dem Scheibendurchmesser gleichkommt, ihre grösste Breite und verjüngen sich von hier an allmählich, um mit der nur mittelgrossen Terminalplatte stumpf zu endigen. Auf dem Querschnitt sind die Arme fast pentagonal; ihre abgeflachte Ventralseite bildet die untere Seite des Fünfecks; die unteren Seitenecken desselben entsprechen den unteren, die beiden oberen Seitenecken den oberen Randplatten und die mittlere obere Ecke den Radialplatten. Die Seitenflächen der Arme steigen beinahe senkrecht empor; die Dorsalfläche ist gewölbt und in der Medianlinie kielförmig erhoben. Die Höhe der Armbasis beträgt bei dem alten Thiere bis 5,5 mm, ihre Breite 10,5 mm. Die kräftigen Stacheln der Armrücken, von denen immer nur je einer auf eine Platte kommt, sind in fünf Längsreihen geordnet.

Die Zahl der Arme beträgt bei allen bis jetzt gefundenen Exemplaren fünf.

Die erwachsenen Individuen (s. die untenstehende Tabelle) werden 90 mm lang und besitzen einen Armradius, der 10 mal so lang ist wie der Scheibenradius. Bei dem mir vorliegenden, etwas kleineren, alten Thiere ist das Verhältniss \(r : R = 1 : 9,5 \). Bei jüngeren Thieren, z. B. bei dem von Perrier beschriebenen und einem gleichgrossen, das mir vorliegt, ist \(r : R = 1 : 5 \). Die Arme sind oft etwas ungleich an Länge; so schwankt ihr Radius z. B. bei dem grössten der von v. Marenzeller erwähnten Exemplare von 47—50 mm, bei einem kleineren von 12—19 mm.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L (mm)</th>
<th>R (mm)</th>
<th>r</th>
<th>(r : R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90</td>
<td>47—50</td>
<td>5</td>
<td>1 : 10</td>
</tr>
<tr>
<td>2</td>
<td>78</td>
<td>43</td>
<td>4,5</td>
<td>1 : 9,5</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>15</td>
<td>3</td>
<td>1 : 5</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>15</td>
<td>3</td>
<td>1 : 5</td>
</tr>
</tbody>
</table>

Der Armrückena setzt sich zwischen den oberen Randplatten aus einer medianen, dichtgeschlossenen Längsreihe von Radialplatten und von diesen ausgehenden, queren, durch Maschen getrennten Skeletbrücken zusammen, so dass ein regelmässiges dorsales Maschenwerk zu Stande kommt. Die Radialplatten (Taf. 12, Fig. 17) stimmen in ihrer Zahl mit den Randplatten überein. Sie haben im proximalen Armabschnitt des erwachsenen Thieres eine durchschnittliche Länge von 1,75 mm und eine Breite von 1,6 mm. Wie bei anderen Asterias-Arten haben sie einen viellappigen (vierarmigen oder kreuzförmigen) Umriss mit einem proximalen, einem distalen und jederseits einem lateralen Lappen. Der proximale Lappen ist etwas in die Länge gezogen, der distale breit abgerundet, die lateralen verschmälert. Mit ihrem proximalen Lappen greift die Platte dachziegelig von aussen her über den distalen Lappen der nächst vorhergehenden Platte. Mit den lateralen Lappen überlagert sie das mediale Ende der queren Skelet-
brücken. Unter langsamer Grössenabnahme reicht die Reihe der Radialplatten bis an die Terminalplatte.

Die vorhin erwähnten queren Skeletbrücken endigen mit ihrem lateralen Ende unter dem dorsalen Lappen je einer oberen Randplatte. In der Nähe der Armpitze besteht jede Querbrücke nur aus einem einzigen, schmalen Spangenstücke; weiter proximal aber setzen sich die Querbrücken, ähnlich wie bei A. richardi, aus zwei der Quere nach aufeinanderfolgenden Spangenstücken zusammen, die sich untereinander in der Art verbinden, dass bald das mediale Spangenstück von dem lateralen, bald umgekehrt das laterale von dem medialen überdeckt wird. Bei dem jungen Exemplar (Nr. 4 der Tabelle) entwickelt sich das dorsale Skelet in der ganzen Armlänge nicht über dieses Stadium hinaus. Infolgedessen kommt hier jederseits zwischen den Radialplatten und oberen Randplatten nur eine einzige Längsreihe von verhältnismässig grossen, quergestellten Skeletmaschen zur Ausbildung. Bei dem alten Thiere jedoch setzen sich in der proximalen Armhälfte die aufeinanderfolgenden Querbrücken, wenn auch nicht immer, so doch fast immer, durch kleinere, meist schief gestellte, longitudinalen Verbindungspflatten mit einander in Zusammenhang. Diese Hülfspäälchen lagern sich in der Regel mit ihren Enden von innen her gegen einen kleinen Randlappen des medialen oder lateralen Spanenstückes (Taf. 12, Fig. 17). Manchmal bemerkt man zwischen zwei Querbrücken statt eines derartigen longitudinalen Hülfspältchens deren zwei aufeinanderfolgende. Ueberall, wo die Hülfspältchen sich entwickelt haben, wird natürlich die früher einfache Skeletmasche, die sich von den Radialplatten bis zu den oberen Randplatten ausdehnte, in eine mediale und eine laterale Masche zerlegt, und so kommt es, dass man in der proximalen Armhälfte des alten Thieres jederseits zwischen den Radialplatten und oberen Randplatten zwei Längsreihen von Skeletmaschen antrifft, die aber hier und da, wo die Ausbildung der longitudinalen Hülfspältchen unterblieben ist, wieder zu einer grösseren Masche zusammenfiessen. In der distalen Armhälfte verbleibt es aber auch am erwachsenen Thiere bei dem jugendlichen Zustande, dass jederseits nur eine bis zur Terminalplatte reichende Maschenreihe vorhanden ist.

Die oberen Randplatten, die den Seitenrand der Armbrückenfläche bilden und gleichzeitig in die Seitenflächen der Arme eintreten, haben einen ähnlichen Umriss und eine gleiche gegenseitige Verbindungsweise wie bei den anderen mittelmeerischen Asterias-Arten. Beim erwachsenen Thiere haben sie im proximalen Armabschnitt eine Länge von 1,5 mm und eine Breite von 2,25 mm. Der proximale wie der distale Lappen der Platte ist breit abgerundet, und es überlagert der proximale von aussen her den distalen der vorhergehenden Platte. Der dorsale Lappen, der sich über das laterale Ende der zugehörigen dorsalen Querspange legt, ist schmäler und kürzer; der ebenfalls schmale ventrale Lappen dagegen ist zu einem langen Fortsatz ausgezogen und bedeckt von aussen die ganze Länge des dorsalen Fortsatzes der entsprechenden unteren Randplatte. Bei den alten Thieren zählt man in der ganzen Länge des Armes 33—35 obere Randplatten.

Die unteren Randplatten unterscheiden sich ebenfalls in Form und Anordnung

Die gewölbte Terminalplatte ist im Verhältniss zur Grösse des Thieres etwas kleiner als bei A. richardi und hat auch, von oben gesehen, mehr eine abgerundet quer-trapezförmige als eine halbkreisförmige Umrandung; ihre Länge misst bei dem Exemplare Nr. 2 1,25 mm, die Breite des proximalen Randes 1,5 und die des distalen Randes 1,37 mm.

Ventrolaterale Platten sind im Gegensatz zu A. richardi bei den alten wie bei den jungen Thieren in der proximalen Armhälfte vorhanden. Es trifft also nicht zu, wenn Perrier bei seinem jugendlichen Exemplare, und v. Marenzeller auch bei den erwachsenen Thieren, die unteren Randplatten unmittelbar an die Adamulacralplatten angrenzen lässt. Es schiebt sich vielmehr zwischen den ventralen Rand der unteren Randplatten und den lateralen Rand der Adamulacralplatten je eine kleine Ventrolateralplatte ein, die mit ihrem medialen Rande sich den Adamulacralplatten auflagert, an ihrem lateralen Randbezirk aber von dem ventralen Rand der unteren Randplatte bedeckt wird. Da diese ventrolateralen Platten viel kürzer sind als die unteren Randplatten — ihre Länge misst nur 0,6 mm —, so bleiben zwischen den in der Längsrichtung des Armes aufeinanderfolgenden Ventrolateralplatten kleine, schmale, längsgerichtete Skeletmaschen übrig (Taf. 12, Fig. 17). Der Quere nach gemessen, besitzt eine isolirte Ventrolateralplatte des proximalen Armabschnittes eine Breite von 1 mm, die aber an der in situ befindlichen Platte zum grössten Theil von der unteren Randplatte verdeckt wird. Wie weit die Reihe der Ventrolateralplatten beim erwachsenen Thiere sich in die distale Armhälfte fortsetzt, konnte ich aus Mangel an Material nicht feststellen; in der Nähe der Terminalplatte fehlen aber die Ventrolateralia ganz sicher. Anfänglich schien es mir, als wenn das junge mir vorliegende und mit dem Perrier'schen Exemplare an Grösse übereinstimmende Individuum wirklich noch keine Ventrolateralplatten besässe. Aber bei genauerer Untersuchung liess sich ermitteln, dass sie im proximalen Armabschnitt auch hier schon angelegt sind; freilich sind sie noch sehr klein und deshalb schwer zu finden. Das Vorhandensein gut ausgebildeter Ventrolateralplatten bei der vorliegenden Art beweist ebenso wie ihr Auftreten bei anderen Arten der A. tenuispina-Gruppe (≡ subgenus Stolasterias), dass man Perrier nicht folgen kann, wenn er unter den Merkmalen seiner Gattung Stolasterias anführt: »Ventrolateralia rudimentär«.

Das Rückenskelet der Scheibe habe ich aus Mangel an Material nicht näher untersuchen können. Doch liess sich soviel feststellen, dass die primären Radial- und Interradial-
platten einen geschlossenen Ring um das Scheitelfeld bilden, welches ausser einer Centralplatte vorwiegend in radialer Richtung gestellte, secundäre Plättchen besitzt.

Die dorsale Bestachelung der Arme und der Scheibe besteht aus ziemlich grossen, kräftigen, lang kegelförmigen, stumpfspitziigen Stacheln, die auf den Radialplatten und oberen Randplatten des alten Thieres eine Länge von 1,5 mm erreichen und dann an der Basis 0,4, an der schwach bedornten Spitze 0,22 mm dick sind. Da jede Radialplatte und jede obere Randplatte einen Stachel trägt, so bilden ihre Stacheln im Ganzen drei scharf ausgeprägte Längsreihen eine mediale und jederseits eine marginale, die bis zur Terminalplatte reichen und auch schon bei dem jünger Thiere wohl entwickelt sind. Auf den Skeletstückchen der dorsalen Querspangen und ihrer longitudinalen Verbindungsstücke stellen sich mit dem zunehmenden Alter des Thieres ähnliche, aber stets etwas kleiner und schwächer bleibende Stacheln ein, die in ihrer Gesamtheit eine unregelmässig zickzackförmige Stachelreihe bilden, welche sich jederseits zwischen die mediale und die marginale Stachelreihe einschiebt. Bei erwachsenen Individuen lässt sich diese intermediäre Stachelreihe unter Grössenabnahme der einzelnen Stacheln bis fast zur Armpitze verfolgen; bei jünger Thieren dagegen z. B. Nr. 4 reicht sie nicht einmal bis in die distale Armhälfte.

Während auf den Armen jede Platte nie mehr als einen Stachel besitzt, sind die primären Radial- und Interradialplatten sowie die Centralplatte der Scheibe meistens mit zwei kräftigen Stacheln ausgerüstet; kleinere Stacheln stehen auf den secundären Platten des Scheitels.

Die Terminalplatte der Arme trägt auf ihrer Rückenseite und in noch dichterer Anordnung auf ihrer Unterseite (rechts und links von der ventralen Rinne der Platte zahlreiche, kleine Stacheln von plump cylindrischer, nach dem stumpfen Ende hin nur wenig verjüngter Gestalt, die eine Länge von 0,7 und eine Dicke von 0,23 mm haben.

Die ventrale Bestachelung setzt sich aus den Stacheln der unteren Randplatten und der Ventrolateralplatten zusammen. Jede untere Randplatte besitzt auf ihrem verdickten ventralen Randbezirk zwei schief und dicht hintereinander stehende Querfurchen für die Einlenkung ebenso vieler Stacheln. Beide Stacheln sind durch ihre Grösse und Form von den dorsalen Stacheln verschieden. Der eine steht etwas näher an der Armpitze und zugleich etwas weiter vom Munde entfernt als der andere, sodass man die beiden Stacheln als den unteren oder aboralen und den oberen oder oralen unterscheiden kann. Beide Stacheln bilden demnach zusammen, wie schon Perrier und v. Marenzeller angegeben haben, eine schräge Reihe auf jeder Platte, und die Stacheln der sämtlichen unteren Randplatten stellen sich als zwei eng aneinander gerückte Längsreihen dar. Dass die Stacheln cylindrisch sind, wie Perrier behauptet, vermag ich nicht zu sehen; ich finde sie vielmehr stets mehr oder weniger comprimirt. Ihrer Länge nach verschmäler sie sich nur wenig und endigen mit einer stumpfen, queren, nur schwach bedornten Abstutzung. Die Länge des oberen Stachels misst im proximalen Armabschnitt des erwachsenen Thieres 2 mm, seine basale Breite 0,5, seine terminale Breite 0,35 mm. Der untere Stachel hat eine Länge von 1,7 mm, eine basale Breite von 0,45 und eine termi-
nale von 0,3 mm. Die oberen Stacheln der aufeinanderfolgenden unteren Randplatten sind alle miteinander durch eine dünnere, durchscheinende, bereits von v. Marenzeller bemerkte Membran verbunden, die sich bis über die halbe Höhe der Stacheln emporzieht. Ferner ist auch der untere Stachel mit dem oberen derselben Platte an seinem basalen Abschnitte durch Haut verbunden; dagegen fehlt eine derartige Verbindung zwischen den unteren Stacheln der aufeinanderfolgenden Platten.

Von den Ventrolateralplatten sind nur diejenigen des proximalen Armabschnittes, und auch diese nur bis zur achten unteren Randplatte, durch den Besitz eines Stachelns ausgezeichnet, der die schräge Reihe der beiden Randstacheln in der Richtung nach der Ambulacralfurche hin fortsetzt. Dieser ventrolaterale Stachel ist erheblich kleiner und schwächer als der untere Randstachel, weniger comprimirt und mehr zugespitzt; er hat eine Länge von 1,2 mm, eine basale Dicke von 0,25 und eine terminale Dicke von 0,1—0,14 mm. Bei den jüngeren Exemplaren sind die Ventrolateralstacheln noch nicht entwickelt, woraus sich erklärt, dass Perrier sie überhaupt nicht erwähnt. Bei dem Erwachsenen hat v. Marenzeller sie wohl gesehen, aber ihre Zugehörigkeit zu den von ihm unbeachteten Ventrolateralplatten nicht bemerkt.

Die Adambulacralplatten, deren ventrale Oberfläche im proximalen Armabschnitt des erwachsenen Thieres 1 mm breit und 0,44 mm lang ist, sind im Verhältniss zu den unteren Randplatten etwas zahlreicher als bei A. richardi, indem, wie ich in Uebereinstimmung mit Perrier und v. Marenzeller finde, je drei auf eine untere Randplatte kommen. Ihre Bewaffnung ist wie bei der genannten Art eine diplacanthide (vergl. v. Marenzeller's Fig. 2B).
Der innere Stachel richtet sich gegen die Füsschen, der äussere neigt sich nach aussen. Beide sind nicht cylindrisch, wie Perrier angiebt, sondern mehr oder weniger comprimirt. Der äussere ist länger als der innere, seiner ganzen Länge nach von fast gleicher Breite und an seinem abgestutzten Ende fein bedornt; seine Länge beträgt im proximalen Armabschnitt des alten Thieres 1,45 mm, seine basale Breite 0,27 mm, die terminale Breite 0,23 mm. Der innere ist nach seinem freien Ende hin merklich verschmälert und endigt stumpf abgerundet; die Bedornung der stumpfen Spitze ist so schwach, dass die Spitze fast glatt erscheint; seine Länge misst 1,14—1,23 mm, die basale Breite 0,27 mm, die terminale Breite 0,16 mm. v. Marenzeller hat den Unterschied in Grösse und Form beider Stacheln schon richtig angegeben.

Jedes der kleinen Munddeckstücke ist beim erwachsenen Thiere in der Richtung vom Munde nach dem Armwinkel, also parallel der Interradialebene, mit drei oder vier Stacheln besetzt, die in aboraler Richtung an Grösse zunehmen. Der innerste oder, wenn im Ganzen vier vorhanden sind, die beiden innersten sind sehr klein und entziehen sich deshalb leicht der Beobachtung. Der äusserste, grösste ist deutlich comprimirt und dabei länger und kräftiger als die benachbarten Furchenstacheln; seine Länge misst 1,7 mm, die basale Breite 0,3 mm, die terminale Breite 0,25 mm. Der kleinste, innerste ist dagegen nur 0,5 mm lang, stumpf kegelförmig und an seiner Basis 0,18 mm dick.

Die Füsschen sollen sich nach Perrier schon bei dem jungen Thiere ziemlich deutlich in vier Zeilen ordnen. Ich kann das nur bestätigen und hinzufügen, dass sie beim erwachsenen Thiere nur noch in der nächsten Nähe der Terminalplatte die ursprüngliche, zweizeilige, sonst aber überall eine ausgeprägt vierzeilige Stellung darbieten.

Die Pedicellarien treten im Gegensatze zu den drei anderen mittelmeeerischen Asterias-Arten ausschiesslich als gekrenztes auf; gerade haben sich bis jetzt weder beim jungen noch beim alten Thiere auffinden lassen. Sie haben bei erwachsenen Exemplaren eine Länge von 0,3—0,35 mm und eine Breite von 0,2—0,22 mm, sind also kaum oder nur wenig grösser als bei A. richardi. Wie schon Perrier und v. Marenzeller übereinstimmend erwähnen, fehlen sie in den Ambulacralfurchen. Auch die Ventralfäche des Thieres bleibt völlig frei von ihnen. Erst von der Dorsalseite der oberen Stacheln der unteren Randplatten an beginnt man ihnen auf der ganzen Oberseite des Thieres. Aber auch hier ist ihre Vertheilung insofern beschränkt, als sie sich nur rings um die einzelnen Stacheln entwickeln. Durchschnittlich besteht der Pedicellarienkranz eines jeden dorsalen Stachels aus etwa zwolf Stück. Während die Kränze sonst ihren Stachel, an dem sie oft bis zur Längsmitte des Stachels oder noch darüber emporsteigen, völlig umkreisen, ordnen sich die Pedicellarien der oberen Stacheln der unteren Randplatten nur zu einem Halbkreise, der den Stachel am freien Rande der diese Stacheln miteinander verbindenden Membran von der Dorsalseite her umgreift. Auf der
Rückenseite der Terminalplatte finden sich dieselben gekreuzten Pedicellarien, sind aber hier regellos unter die Stacheln der Platte vertheilt; aus diesem Grunde bezeichnet v. Marenzeller die Stacheln der Terminalplatte im Gegensatze zu den von Pedicellarienkränzen umfassten Stacheln des Dorsalskeletes als »nackte Stacheln«.

Ueber die Färbung der lebenden Thiere berichtet v. Marenzeller, dass das grösste Exemplar ungefärbt war; die kleineren sahen hell röthlich-bräunlich aus mit ebensolchen, aber dunkleren Flecken auf den Armen, oder sie waren blass mit blassbräunnen Flecken.

Die Tiefen der bisherigen Fundorte bewegen sich zwischen 160 und 485 m.

Die Bodenbeschaffenheit war an zwei Fundorten Schlamm oder schlammiger Sand, an dem dritten grober Sand mit Nulliporen.

Ueber die Nahrung, die Fortpflanzungszeit und die Larvenform wissen wir einstweilen nichts.

Taf. 12, Fig. 18—22.

1885 Asterias richardi Carus p. 56.
1893 Asterias richardi v. Marenzeller p. 8—10; T. 3, f. 5.
1894 Hydrasterias richardi Perrier p. 109—112; Pl. 9, f. 4.

Asterias-richardi.

Bei den erwachsenen Thieren sind die Arme entweder von gleicher Länge oder doch nur wenig verschieden; so maass v. Marenzeller ihre Länge bei einem Exemplare zu 26, 28 oder 30 mm. Bei jungen und halbwüchsigen Thieren sind die Grösenschiede der Arme meistens, in Zusammenhang mit der später zu besprechenden Fortpflanzung durch Theilung, verhältnissmassig viel ansehnlicher: bei dem mir vorliegenden Stücke z. B. (Nr. 7 der Tabelle) hat ein Arm einen Radius von 9 mm, der zweite einen solchen von 7,5 mm, der dritte und vierte von 6,5 mm und der fünfte und sechste von nur 5 mm.

Die alten Thiere erreichen nach den Messungen v. Marenzellers (s. die untenstehende Tabelle) eine grösste Länge von 68 mm; meistens beträgt die Länge nur 45 mm. Die halbwüchsigen, noch sechssarmigen Exemplare Perriers und v. Marenzellers haben eine Länge von 20—24 mm. Die jüngsten bisher gefundenen Individuen sind nur 7 (Perrier) bis 8 (v. Marenzeller) mm lang.

Nach Perrier und v. Marenzeller ist bei halbwüchsigen Thieren der Armradius 4 mal so gross wie der Scheibenradius; bei dem mir vorliegenden Stücke (Nr. 7 der Tabelle) finde ich ihn bereits 4 1/2 mal so gross. Bei erwachsenen Thieren aber steigert sich das Verhältniss...
r : R zu Gunsten von R auf 1 : 5,6—6,5. Der Armradius wird also schliesslich völlig 6 mal so gross wie der Scheibenradius.

Die Breite der Arme misst an ihrer leicht verschmälerten Basis bei erwachsenen Thieren etwa 5 mm und nimmt von hier an erst ein wenig zu, um sich dann bis zur Terminalplatte allmählich zu verjüngen.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>L</th>
<th>Zahl der Arme</th>
<th>R</th>
<th>r</th>
<th>r : R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68</td>
<td>5</td>
<td>42</td>
<td>7,5</td>
<td>1 : 5,6</td>
</tr>
<tr>
<td>2</td>
<td>51</td>
<td>5</td>
<td>28</td>
<td>4,3</td>
<td>1 : 6,5</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>5</td>
<td>25</td>
<td>4</td>
<td>1 : 6,25</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>1 : 4</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>1 : 4</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>6</td>
<td>10</td>
<td>2,5</td>
<td>1 : 4</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>6</td>
<td>9</td>
<td>2</td>
<td>1 : 4,5</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>6</td>
<td>3,5</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Der Rücken der Arme wird zwischen den oberen Randplatten von regelmässig angeordneten Skelettplatten gebildet, die sich untereinander und mit den oberen Randplatten zu einem regelmässigen Maschenwerk verbinden. Unter diesen Skelettplatten zeichnen sich die in der Medianlinie gelegenen, den Kiel des Armes bildenden Radialplatten durch ihre Grösse und ihre dichte Aufeinanderfolge aus. In ihrer Zahl entsprechen die Radialplatten den oberen (und unteren) Randplatten, mit denen sie auch meistens genau auf gleichem Armaquerschnitte liegen; nur im proximalen Armabschnitt finde ich, dass jede Radialplatte ein wenig weiter distal gerückt ist als die zugehörige obere Randplatte, was möglicherweise nur eine durch Contraction des conservirten Thieres hervorgerufene secundäre Erscheinung ist (Taf. 12, Fig. 18). Im proximalen Armabschnitt haben die Radialplatten beim erwachsenen Thiere eine Länge und Breite von durchschnittlich 1,2 mm. Im distalen Theile des Armes nehmen sie an Grösse ab, sodass z. B. die viertletzte kaum noch 1 mm lang und breit ist, die vorletzte nur 0,6 mm und die letzte, eben erst angelegte nur 0,3 mm an Länge und Breite misst. Beim jungen Thiere sind die Radialplatten merklich länger als breit und messen im proximalen Armabschnitt 0,8 mm an Länge und 0,6 mm an Breite; im distalen Armabschnitte sinkt an der letzten Platte auch hier die Länge auf 0,35 und die Breite auf 3 mm herab. In ihrer Form haben die Radialplatten bei alten wie bei jungen Thieren einen vierlappigen (vierarmigen) Umriiss, an

1) In diese Tabelle ist das einzige mir aus dem Golf von Neapel vorliegende Exemplar (s. p. 116) nicht aufgenommen, da es sich erst nachträglich unter meinen Vorrathen fand. Dasselbe ist ein junges sechzehnarmiges Thier mit vier gleichen grossen und zwei nebeneinander stehenden, ganz winzigen, eben erst angelegten Armen. R misst an den grösseren Armen 1,5 mm; r = 1,5 mm; r : R = 1 : 3.
Asterias richardi.

...ebenso die regelmäßigen Plattenlegt.

...jungen Randplatten Gegensätze aber ihrer Mitte setzen den Spangenstücken. Da diese Skeletbrücken viel schmäler sind, als die Länge der Radialplatten und der Randplatten beträgt, so lassen sie zwischen sich eine Skeletmasche, die für die Ausbildung von Papulae benutzt wird. Stets werden die queren Skeletbrücken an ihren beiden Enden von aussen her verdeckt, am medialen Ende durch den lateralen Lappen einer Radialplatte, am lateralen Ende durch den dorsalen Lappen einer oberen Randplatte. Im distalen Theile des Armes besteht jede quere Skeletbrücke nur aus einer einzigen, länglichen Skeletspange; ebenso verhält es sich bei den jungen Thieren auch im proximalen Armabschnitt. Bei den Erwachsenen aber (Taf. 12, Fig. 18) werden die Querbrücken in der proximalen Armhälfte von der zweiten Radialplatte an bis über die Mitte der Armlänge hinaus zweiteilig, indem sich zwischen das mediale Ende des erstvorhandenen Spanenstückes und den lateralen Lappen der Radialplatte noch ein zweites Spanenstück einschickt, das selbst wieder an seinem dorsalen Ende von dem lateralen Lappen der Radialplatte und an seinem lateralen Ende von dem medialen Ende des erstvorhandenen Spanenstückes überlagert wird. Gleichzeitig mit dem Auftreten eines zweiten Spanenstückes setzten sich die Querbrücken, die bis dahin völlig voneinander getrennt waren, etwa in der Mitte ihrer Länge durch ein kurzes, längs oder wenig schief gestelltes Skeletstück untereinander in Verbindung, das sich mit seinen Enden den queren Spanenstücken von aussen her anlagert und so die früher einfache Skeletmasche, die sich zwischen je zwei Radialplatten und zwei oberen Randplatten befindet, in zwei Maschen, eine mediale und eine laterale, zerteilt. Dennach besitzen die jungen Thiere in ihrer ganzen Armlänge zwischen den Radialplatten und den oberen Randplatten nur eine Längsreihe von Skeletmaschen: die alten Thiere aber haben an derselben Stelle nur in der distalen Armhälfte eine einfache, in der proximalen jedoch eine doppelte Längsreihe von Skeletmaschen. Das dorsale Skeletnetz ist also durchaus regelmässig gebaut, und von einem mehr oder weniger unregelmässigen Skeletnetz kann im Gegensatz zu Perrier's Darstellung nicht die Rede sein. Gegen die Armpitze hin werden die Skeletmaschen ebenso wie die Querbrücken immer kleiner und kleiner; dass sie aber schliesslich ganz verschwinden, sodass, wie v. Marenzeller meint, die Radialplatten und oberen Randplatten ganz dicht zusammenschliessen, kann ich nicht finden (Taf. 12, Fig. 21).
Die den Rand der Armrücken besetzenden und zugleich in die Seitenflächen der Arme eintretenden oberen Randplatten bilden in ähnlicher Weise wie die Radialplatten eine geschlossene Reihe dachziegelig in adoraler Richtung übereinander greifender Platten, die in ihrer Zahl von der Scheibe bis ganz nahe an der Terminalplatte der Zahl der Radialplatten entsprechen. Nur in nächster Nähe der Terminalplatte bemerkt man, dass die oberen Randplatten in der Zeit ihres Auftretens den Radialplatten um eine Platte vorausgehen können (Taf. 12, Fig. 21); doch finde ich bei einem jungen Arme meines kleinen Exemplares auch an dieser Stelle eine genaue Übereinstimmung in der Zahl der oberen Randplatten und der Radialplatten. Die jungen oberen Randplatten, wie sie der distale Armabschnitt darbietet, haben eine abgerundet vierlappende Form; der eine Lappen liegt distal, der entgegengesetzte proximal, der dritte richtet sich dorsalwärts, der vierte ventralwärts. Der distale Lappen wird stets von dem proximalen der nächstfolgenden Platte von aussen her bedeckt. Die Länge dieser jungen Platten beträgt 0,7 mm, die Breite 0,6 mm. Schon jetzt ist der ventrale Lappen etwas kräftiger ausgezogen als die drei anderen. Die älteren oberen Randplatten des mittleren und des proximalen Armabschnittes erfahren mit einer Grössenzunahme zugleich eine anschauliche Verlängerung ihres ventralen Lappens, der sich zu einem griffartigen Fortsätze entwickelt, durch den die Platte nunmehr breiter als lang wird; ihre Breite misst jetzt 1,6 mm, während die Länge 1 mm beträgt. Mit ihrem dorsalen Lappen greifen die oberen Randplatten über das laterale Ende der zur Verbindung mit den Radialplatten dienenden Skeletbrücken. Der ventrale Lappen dagegen legt sich von aussen her über den dorsalen Lappen der entsprechenden unteren Randplatte.

Die unteren Randplatten sind nämlich so angeordnet, dass eine auf jede obere kommt; nur an der Terminalplatte (Taf. 12, Fig. 20) ist eine jüngste untere Randplatte vorhanden, welcher noch keine obere entspricht, sodass im Ganzen die Zahl der oberen Randplatten um eins höher ist als die der oberen; sie beträgt z. B. bei einem Armradius von 28 mm siebenunddreissig. Auch die unteren Randplatten haben eine abgerundet vierlappende Grundform mit einem distalen, einem proximalen, einem dorsalen und einem ventralen Lappen, und auch bei ihnen wird, wie bei den oberen Randplatten und den Radialplatten, der distale Lappen von dem proximalen der nächstfolgenden Platte überlagert, sodass auch sie eine geschlossene Reihe bilden. Die Länge der einzelnen unteren Randplatten stimmt mit derjenigen der oberen Randplatten überein. Ihre Breite aber ist etwas geringer und beträgt im distalen Armabschnitt 0,5, im proximalen 1 mm. Der dorsale Lappen ist länger als die drei übrigen, aber etwas kürzer als der ihm entgegenkommende und ihn von aussen bedeckende ventrale Lappen der betreffenden oberen Randplatte. Der ventrale Lappen ist am schwächlichsten entwickelt und eigentlich nur durch einen flach convex gebogenen, aber stark verdickten Rand angedeutet, mit dem sich die Platte über den lateralen Rand der unmittelbar an sie anstoßenden Adambulacralplatten hinüberlegt. Zwischen den sich zu einer Querspange verbindenden ventralen Lappen der oberen und dorsalen Lappen der unteren Randplatten kommt an den Seiten der Arme eine Längsreihe von Skeletmaschen zu Stande, die in ihrer Grösse stets hinter den dorsalen Skeletmaschen
 zurückbleiben s. Taf. 12, Fig. 18). Im distalen Armabschnitten werden die seitlichen Skeletmaschen allmählich so klein, dass sie fast ganz verschwinden (Taf. 12, Fig. 20).

Die Terminalplatte, deren verhältnismässige Grösse schon v. Marenzeller nicht unerwähnt gelassen hat, besitzt, von oben gesehen, die Form einer annähernd halbkreisförmigen, gewölbten Platte, die mit zahlreichen, kleinen Stachelchen und gekreuzten Pedicellarien besetzt ist und die ganze Breite der Armspitze einnimmt (Taf. 12, Fig. 21). Ihre Länge misst bei dem erwachsenen Exemplare 1,3, die Breite 1,7 mm. Ihre Stachelchen stimmen in der Form mit den Stacheln des Rückenskeletes überein, bleiben aber an Grösse dahinter zurück. Bei dem jungen Thiere bietet die Platte bereits ganz dieselben Verhältnisse dar und hat (bei einem Arme von 6,5 mm Armmadius) schon eine Länge von 0,7 mm und eine Breite von 0,9 mm erreicht. In der Seitenansicht (Taf. 12, Fig. 20) erkennt man, dass sie nach ihrem convexen distalen Rande hin allmählich abfällt. An der Unterseite besitzt sie eine den Fühler beherbergende Nische, die sich in proximaler Richtung zur Aufnahme der jüngsten Adambulacral- und Ambulacralplatten stark verbreitert.

Das Rückenskelet der Scheibe ist weder von v. Marenzeller noch von Perrier näher untersucht worden. Um diese Lücke auszufüllen, entschloss ich mich, das einzige mir zur Verfügung stehende erwachsene Exemplar zu zerschneiden und ein Präparat des dorsalen Scheibenskeletes herzustellen. Dasselbe bot die in Taf. 12, Fig. 22 genau mit Hülfe der Camera gezeichnete Anordnung der Skeletplatten dar. Man erkennt, dass es sich im Ganzen um einen regelmässigen Aufbau handelt, in dem sich die primären Platten ohne Schwierigkeit feststellen lassen. Nur in dem Interradius des Afters und dem zwischen ihm und dem Interradius der Madreporenplatten befindlichen Radius sind einige Besonderheiten, die wir einstweilen ausser

Die primären Interradialplatten übertreffen an Grösse alle anderen Skeletstücke des Scheitels, indem sie eine Breite von 2—2,5 mm und eine Länge von 1,2—1,5 mm haben. Ihr Umriß ist von sieben grösseren und kleineren Lappen gebildet, die wir als drei proximale (einen mittleren und zwei seitliche), zwei laterale und zwei distale unterscheiden können. Mit den drei proximalen Lappen überlagert die Interradialplatte von aussen her die distalen Enden kleinerer Platten, durch welche die Interradialplatten theils unter sich theils mit der Centralplatte in Verbindung treten. Insbesondere sind unter diesen kleineren Platten diejenigen bemerkenswerth, welche von den seitlichen proximalen Lappen jeder primären Interradialplatte zu denselben Lappen der nächst gelegenen primären Interradialplatten hinübergehen; denn es stimmen diese, in die Richtung der Radien fallenden Skeletstücke nach Lage und Verbindungsweise mit den Centroradialplatten der phanerozonischen Seeisterne völlig überein, weshalb wir sie als deren Homologa ansprechen müssen. Mit ihrem jederseitigen, kräftig ausgezogenen, lateralen Lappen greift jede primäre Interradialplatte unter den proximalen seitlichen Randlappen der nächsten primären Radialplatte. Die beiden Lappen des distalen Randes der primären Interradialplatten endlich sind nur schwach entwickelt, liegen nahe beisammen, können auch, wie es die Interradialplatte der Madreporenplatte zeigt, miteinander verschmelzen und legen sich unter die proximalen Lappen der ersten oberen Randplatten.

Die primären Radialplatten haben eine Breite von 1,5 mm und eine Länge von 1 mm. Im Gegensatze zu den Radialplatten des Armes sind sie nicht vier- sondern fünflappig. Sie besitzen einen mittleren distalen und jederseits einen proximalen lateral und einen distalen lateralen Lappen. Der mittlere distale Lappen wird von aussen her von dem proximalen Lappen der zweiten Radialplatte bedeckt, während die vier anderen Lappen von aussen sichtbar sind, indem sich jeder proximale lateral über den lateralen Lappen einer primären Interradialplatte und jeder distale laterale über das mediale Ende der Querspange legt, die von der primären Radialplatte zur ersten oberen Randplatte hinüberführt. Auffallenderweise ist diese erste Querspange auch beim erwachsenen Thier einfach geblieben, während schon die nächste, zweite Querspange, die von der zweiten Radialplatte zur zweiten oberen Randplatte geht, ebenso wie die folgenden (s. p. 407), zweithelig geworden ist.

Kehren wir nun nochmals zum Mittelfelde des Scheitels zurück, so finden wir dort eine Anzahl secundärer Skeletspangen, die, ein- oder zweithelig, theils von den primären Interradialplatten, theils von den Centroradialplatten bis unter die Randlappen der Centralplatte reichen und so das ursprüngliche Scheitelfeld in kleinere Skeletmaschen (Felder) zerlegen.

Eine weniger bedeutungsvolle, wohl nur individuelle Abweichung scheint es zu sein, dass in dem vorliegenden Exemplare in dem zwischen dem Interradius des Afters und dem Interradius der Madreporenplatte gelegenen Arme die zweite Radialplatte sich in zwei kleinere Platten aufgelöst hat.

Hinsichtlich der Bestachelung herrscht auf der Scheibe und den Armen eine ziemliche Eintönigkeit; nur die Stacheln der unteren Randplatten unterscheiden sich durch ihre Grösse und Form in sehr auffälliger Weise. Während wir nämlich sonst durchweg kleine, 0,5 mm lange und 0,2 mm dicke, kurz zylindrische Stachelchen antreffen, deren stumpfes, abgerundetes Ende mit feinen Dornen dicht besetzt ist, treten wir auf den unteren Randplatten mehr als doppelt so lange, abgeplattete Stacheln entgegen, deren Länge bis zu 1,17 mm steigt, deren Breite der ganzen Länge nach 0,3 mm beträgt und deren ebenfalls fein bedornetes Ende quer abgestutzt (wie "abgehackt"), v. Marenzeller, erscheint. Bei den jungen Thieren sind die Maasse aller dieser Stacheln verhältnissmässig geringer; hier maass ich die Länge der dorsalen Stachelchen zu 0,13 mm, ihre basale Dicke zu 0,08 mm und die Länge der Stacheln der unteren Randplatten zu 0,4 mm, ihre Breite zu 0,13 mm. Schon Pernier und v. Marenzeller haben die besondere Form und Grösse der Stacheln der Stacheln der unteren Randplatten hervorgehoben. Da diese Stacheln entsprechend der Lage der sie tragenden Platten am Uebergange der Seitenflächen der Arme in die Ventralefläche angebracht sind und in annähernd horizontaler Richtung über den Rand des von oben oder unten betrachteten Seesternes hervorragen, so nennt Pernier sie mit Recht kurzweg "die Randstacheln". Es ist aber, wie bereits aus v. Marenzeller's Beschreibung hervorgeht und ich nur bestätigen kann, durchaus nicht richtig, wenn Pernier
die Randstacheln nur eine Längsreihe bilden lässt. Bei den erwachsenen Thieren stehen sie in zwei, im proximalen Armabschnitt sogar mitunter in drei, allerdings dicht zusammengedrängten Längsreihen. Diese Anordnung kommt dadurch zu Stande, dass jede untere Randplatte zwei (oder drei) Stacheln besitzt, die auf dem convexen, verdickten, ventralen Randbezirke der Platte über ebensovielen, dort befindlichen, schiefen Querfurchen so eingelenkt sind, dass sie eine schiefen Querreihe bilden, in welcher der aborale Stachel immer näher an der Armfurche liegt als der adorale. Auch bei dem jungen Thiere haben die unteren Randplatten des proximalen und mittleren Armabschnittes schon je zwei Stacheln, aber die 6—8 letzten unteren Randplatten tragen erst einen einzigen, sodass wenigstens sie der Perrier'schen Angabe entsprechen.

Zwischen die dreifache Kielreihe und die doppelte Stachelreihe der oberen Randplatten schiebt sich in der proximalen Armhälfte des erwachsenen Thieres noch eine ein- bis zweifache, weniger regelmässige Stachelchenreihe ein, die sich kaum bis in die distale Armhälfte erstreckt. Ihre Stachelchen sind auf den dorsalen Querspangen des Skeletes und auf deren longitudinalen Verbindungsstücken befestigt, gewöhnlich so, dass auf einer dieser Platten nicht mehr als ein Stachelchen steht.

Auf dem Scheibenumrücken tragen die secundären Plättchen und die Centroradialplatten je nach ihrer Grösse 1 oder 2, auch 3 oder 4 Stachelchen. Die primären Interradialplatten besitzen deren 5 oder 6, die der Madreporenplatte sogar bis 8. Die Centralplatte endlich
Asterias richardi.

413

finde ich mit zwei centralen und sechs peripherischen (einem auf jedem Lappen der Platte) Stachelchen ausgerüstet.

Die Papulae haben die Gestalt einfacher bläsen- bis fingerförmiger Hautausstülpungen, die, wie v. Marenzeller und Perrier übereinstimmend richtig angeben, einzeln stehen. Perrier setzt sich mit seiner eigenen Beschreibung in Widerspruch, wenn er in seiner Diagnose der Gattung Hydrasterias von gruppirten Papulae spricht. Ganz richtig ist es aber auch nicht, wenn die beiden genannten Forscher behaupten, dass in jeder in den Bereich der Pulpue-Entwicklung fallenden Skeletmasche nur ein einziges Kiemenbläschen vorhanden sei. Denn bei dem mir vorliegenden erwachsenen Thiere kommen sowohl in manchen Skeletmaschen des Scheibenrückens (Taf. 12, Fig. 22) als auch in einem anschnüfflichen Theile der Skeletmaschen der Arme je zwei Papulae vor. Auf den Armen zeichnen sich in dieser Beziehung im proximalen Armabschnitt die dorsalwärts an die oberen Randplatten angrenzenden Maschen aus; hier liegen ganz regelmässig je zwei Papulae, die eine näher an den Randplatten, die andere näher an dem die queren Skeletbrücken verbindenden Plättchen (Taf. 12, Fig. 18). Da in den an die Radialplatten angrenzenden Skeletmaschen und ebenso in den zwischen den oberen und unteren Randplatten gelegenen immer nur eine Papula auftritt, so haben wir im Ganzen im proximalen Armabschnitt viert Längsreihen von Papulae (Taf. 12, Fig. 18). V. Marenzeller giebt deren nur drei an, was nach meinen Beobachtungen erst im mittleren Armabschnitt (Taf. 12, Fig. 19, zutrifft, weil hier thatsächlich auch in den dorsal von den oberen Randplatten befindlichen Maschen nicht mehr zwei, sondern nur noch eine Papula entwickelt ist. Hier und da finde ich übrigens im mittleren Armabschnitt auch einmal in einer an die Radialplatten angrenzenden Masche zwei Kiemenbläschen statt eines. Noch weiter nach der Armspitze hin sinkt die Zahl der zwischen den Radialplatten und oberen Randplatten liegenden Papulae schlieslich auf eins, und endlich schwinden sie ganz. Auch die zwischen den oberen und unteren Randplatten befindliche Papulareihe erreicht die Armspitze nicht, sodass das Endstück des Armes, wie bereits v. Marenzeller bemerkte, dieser Organe völlig entbehrt (Taf. 12, Fig. 21). An dem jungen Arme meines Examplares sind die Papulae überhaupt noch gar nicht zur Ausbildung gelangt.

Die Adambulacralplatten sind an ihrer ventralen Oberfläche in der ganzen Länge des Armes breiter als lang; im proximalen Armabschnitte misst die Breite dieser Fläche durchschnittlich 1,25 mm und die Länge 0,4 mm; im distalen Armabschnitt sinkt die Breite allmählich bis auf 0,25 und die Länge auf 0,17 mm. In ihrer Zahl übertreffen sie stets die Zahl der an sie angrenzenden unteren Randplatten um rund das 2 1/2-fache; im proximalen Armabschnitt kommen nämlich zehn Adambulacralplatten auf vier untere Randplatten; im distalen Armabschnitt zählt man deren auf je vier untere Randplatten zehn oder elf.

In der Bewaffnung der Adambulacralplatten gehört die vorliegende Art zu den diplacanthiden Formen. Jede Platte (vergl. v. Marenzeller's Fig. 5b) besitzt nämlich zwei Stacheln, von denen der eine am Rande der Füsschenrinne, der andere weiter nach aussen steht. Der innere Stachel neigt sich über die Füsschenrinne, der äussere richtet sich in ent-
gegengesetztem Sinne nach aussen. Beide Stacheln lassen sich bis zur Arnspitze verfolgen. Schon in seiner ersten kurzen Diagnose hat PERRIER diese Anordnung der Adambulacralstacheln richtig angegeben. v. MARENZELLER hat dem hinzugefügt, dass der äussere Stachel den Stacheln der unteren Randplatte gleiche, jedoch viel schmäler sei. Bei dem mir vorliegenden Exemplare finde ich aber im proximalen Armabschnitt den äusseren Stachel ebenso breit (0,3 mm), wie die Stacheln der unteren Randplatten; wohl aber unterscheidet er sich von diesen durch seine geringere Länge (0,85 mm) und ist auch etwas weniger stark comprimirt. Noch mehr nähert sich, wie auch schon v. MARENZELLER bemerkte, der innere Furchenstachel der cylin-
drischen Gestalt. Im proximalen und mittleren Abschnitt des Armes ist der innere Stachel an seinem freien Ende deutlich verbreitert (abgeflacht kolbenförmig), während der äussere Furchenstachel ebenso abgestutzt endigt wie die Stacheln der unteren Randplatten; im distalen Armabschnitt wird er allmählich kegelförmig. In seiner Länge stimmt der innere Furchen-
stachel mit dem äusseren überein; seine basale Breite beträgt (im proximalen Armabschnitt) 0,33 mm, seine terminale Breite 0,42 mm. Beide Furchenstacheln sind an ihrem freien Ende wie die übrigen Stacheln der Körperoberfläche durch kleine Dornen gerauht. Nach innen von der Einlenkung der inneren Furchenstacheln beherbergt die Ambulacralfurche eine Längsreihe von gekreuzten Pedicellarien, die sich in Form und Grösse nicht von denjenigen der äusseren Körperoberfläche unterscheiden.

Nach v. MARENZELLER soll jedes »Mundeckstück« mit drei Paar übereinanderstehenden, ventralwärts an Grösse zunehmenden Stacheln ausgerüstet sein. Vergleicht man damit seine Abbildung (Fig. 5 A), so ergibt sich sofort, dass es in seinem Texte statt Mundeckstück Mund-

ecke heissen soll; er will also eigentlich sagen, dass jedes Mundeckstück drei parallel mit der Interradialebene aufeinanderfolgende Stacheln trägt. An dem mir vorliegenden Exemplare kann ich mich von der Richtigkeit dieser Angabe nicht überzeugen, denn ich finde, dass jedes Mundeckstück, in Fortsetzung der adambulacralen Stachelreihen, nicht drei, sondern nur zwei grosse Stacheln besitzt, die sich in ihrer Grösse nicht voneinander unterscheiden, dagegen etwas grösser sind als die nächst stehenden Adambulacralstacheln. Der dritte von v. MARENZELLER angegebene Stachel sitzt nicht auf dem Mundeckstück, sondern gehört bereits der ersten Adambulacralplatte an. Die beiden Stacheln eines jeden Mundeckstückes sind so angebracht, dass der eine auf dem aboralen, der andere auf dem aboralen Ende der ventralen Oberflache der Platte steht. Der adorale ist mundwärts gerichtet, der aborale in entgegengesetzter Richtung nach dem Armwinkel hin geneigt. Ihre Länge misst 1,25 mm. Wie die Adambulacralstacheln sind auch die Mundstacheln comprimirt und von ihrer Basis bis zu ihrem abgerundet abge-

gestutzten Ende fast gleich breit (0,2 mm). Nach innen von dem aboralen Stachel, also noch weiter mundwärts und von aussen her durch ihn verdeckt, findet sich noch ein ganz winziges, kegelförmiges, nur 0,33 mm langes Stachelchen, das wegen seiner Kleinheit mit einer Pedi-
cellarie verwechselt werden könnte.

PERRIER hebt hervor, dass in der Anordnung der Füssechen sich die von ihm unter-
suchten jugendlichen Exemplare in einem Uebergangsstadium von zweizeiliger zu vierzeiliger
Stellung befinden. Das ist ganz richtig, trifft aber für die Jugendformen aller Asterias-Arten zu. Die postlarvale Entwicklung der Asterias-Arten zeigt auf das deutlichste, dass die vierzeilige Füsschenanordnung sich aus der zweizeiligen entwickelt und den phylogenetisch jüngeren Zustand darstellt. Bei dem mir vorliegenden jungen Thiere fand ich z. B. an einem Arme, dessen Radius 6,5 mm betrug, noch sämtliche Füsschen zwei zeilig gestellt und auch bei dem erwachsenen Thiere bietet der distale Abschnitt des Armes das gleiche Verhältniss dar, während im mittleren und namentlich im proximalen Armabschnitt die Vierzeiligkeit sich deutlich ausgebildet hat.

Die Pedicellarien treten in den beiden den Asterias-Formen eigenthümlichen Gestalten als gekreuzte und als gerade auf. Jene sind weit zahlreicher als diese und ordnen sich niemals zu Kränzen um die Stachelbasen, sondern sind gleichmässig zwischen die Stacheln verteiht. Nach PERRIER sollen die gekreuzten Pedicellarien fast ebenso gross sein wie die Stacheln des Scheibenrückens; ich finde aber, dass sie doch nur $\frac{3}{5}$ der Länge jener erreichen, denn sie haben bei dem vorliegenden erwachsenen Thiere eine Länge von 0,26 bis 0,3 mm, während ihre Breite 0,2 mm misst. Nach demselben Forscher sollen sie nur über den Skeletstückchen, nicht aber über den Skeletmaschen angebracht sein. Auch das kann ich nicht bestätigen, denn ich finde sie auch über den Maschen. In ihrer Vertheilung nehmen sie den ganzen Rücken der Scheibe, sowie den Rücken und die Seiten der Arme in Anspruch und fehlen auch auf den Terminalplatten nicht. Ventralwärts ist ihr Verbreitungsgebiet begrenzt durch den äusseren Stachel der unteren Randplatten. Dann aber finden sie sich wieder in den Ambulacralfurchen unmittelbar über der Insertion des inneren Furchenstachels. Schon bei dem jungen mir vorliegenden Exemplare sind sie an allen hier angegebenen Stellen vorhanden, aber überall erheblich kleiner als später, da sie an Länge erst 0,15—0,17 mm und an Breite erst 0,11—0,13 mm messen. — Viel seltener sind die geraden Pedicellarien, die sich aber, wie ich im Gegensatze zu MARENZELLER bemerken muss, in ihrer Grösse nicht sonderlich von den gekreuzten unterscheiden; ihre Länge beträgt in der Regel nicht mehr als 0,3, ihre Breite 0,23 mm. Man findet diese geraden Pedicellarien vereinzelt zwischen den gekreuzten auf dem Scheibenrücken und, namentlich im proximalen Armabschnitt, auf Rücken und Seiten der Arme. Ferner stehen sie, wie MARENZELLER ganz zutreffend und im Widerspruch zu PERRIER angiebt, auf einem schmalen Streifen zwischen den Stacheln der unteren Randplatten und den Adambulacralstacheln. Im Anschluss an diesen Streifen trägt endlich auch das kleine Ventrolateralfeld der Armwinkel einige gerade Pedicellarien.
Ueber das Farbenkleid der lebenden Thiere sind wir nur durch v. Marenzeller unterrichtet. Nach seinen Beobachtungen sind die Jungen fast immer ungefarbt, die Alten aber mehr oder weniger bräunlich mit auffallend hellen, weisslichen, den grossen Terminalplatten entsprechenden Arm spitzen. Die bräunliche Färbung tritt bald als ein gleichmässiger, schwacher, blasser Anflug auf, bald breitet sie sich von der dann dunkelbräunlichen Scheibe allmählich verbleichend nur eine kurze Strecke weit auf die Arme aus, bald ist sie auf der Scheibe dunkel und bedeckt in einem zimtbraunen Tone den Rücken der Arme, wird aber an deren Seiten wieder heller.

In niedrigerem Wasser als rund 100 m (bei Capri) ist sie nirgends gefunden worden. Ihre mittelmeerische Verbreitung endet also zwischen 100 und 710 m, die meisten zwischen 500 und 600 m. Dass sie an ihren Wohnorten zahlreich auftritt, geht aus der Angabe v. Marenzeller's hervor, wonach in vier Netzzügen an 60 Exemplare heraufgeholt wurden.

Bezüglich der Bodenbeschaftenheit scheint sie nach den bisher vorliegenden Angaben Schlamm, der mit Sand, Steinen, Muschelbruchstücken und Corallen untermischt ist, zu bevorzugen.

Ueber ihre Nahrung, Fortpflanzungszeit und Larvenform ist nichts bekannt.

In der Jugend zeichnet sich die Art durch die beim erwachsenen Thiere erloschene Fähigkeit der ungeschlechtlichen Vermehrung durch Theilung mit nachfolgender Regeneration aus. v. Marenzeller, dem wir die Feststellung dieser bemerkenswerthen Thatsache namentlich verdanken, vermutet (1893), wie mir scheint mit vollem Recht, aus dem Umstande,

Asterias richardi.

Beschreibung entnehmen lässt, ebenso wie bei \textit{A. richardi}, weder Ventrolateralplatten noch ventrale Papulae vorhanden. Demnach wird man sich doch mehr der Auffassung Perrier's, der eine nähere Verwandtschaft von \textit{A. richardi} mit \textit{A. ophidion} annimmt, zuneigen müssen, als der Meinung v. Marenzeller's, dass \textit{A. richardi} in die \textit{Asterias rubens}-Gruppe gehöre.

\textbf{Fam. Brisingidae.}

Scheibe klein, rund, scharf abgesetzt von den ungewöhnlich langen, schlanken, in der Nähe ihrer Basis angeschwollenen, fadendünn auslaufenden Armen, deren dünne Rückenwand nur bis zum Ende der Anschwellung durch quere Skeletbögen verstärkt ist; Radialplatten und obere Randplatten fast ganz verschwunden; untere Randplatten klein; Randstacheln sehr lang und ebenso wie die sonstigen Stacheln mit einem weichhäutigen Ueberzug; keine Ventrolateralplatten; nur gekrzelte, keine geraden Pedicellarien; Papulae fehlen; Füsschen zweireihig und mit deutlicher Saugscheibe.

Im Mittelmeer nur eine Art: \textit{Br. coronata} O. Sars.

\begin{itemize}
 \item [1872] Brisinga coronata G. O. Sars p. 5.
 \item [1873] Brisinga coronata W. Thomson p. 66 (partim1).
 \item [1875] Brisinga coronata G. O. Sars p. 1—102; T. 1—6.
 \item [1878] Brisinga coronata Ludwig p. 216—234; T. 15.
 \item [1882] Brisinga coronata Perrier (Comptes rendus) p. 61.
 \item [1883] Brisinga sp. Marion [Nr. 2] p. 36, 40.
 \item [1884] Brisinga coronata Danielssen & Koren p. 104.
 \item [1885] Brisinga coronata Carus p. 91.
 \item [1885] Brisinga mediterranea Perrier (Comptes rendus) p. 412, 414.
 \item [1885] Brisinga coronata Perrier Comptes rendus, p. 412, 413, 441.
 \item [1885] Brisinga mediterranea Perrier (Ann. sc. nat.) p. 3—1.
 \item [1885] Brisinga coronata Perrier (Ann. sc. nat.) p. 1—5.
 \item [1889] Brisinga coronata Sladen p. 598, 601, 602, 603, 604, 832.
\end{itemize}

Brisinga coronata.

419

In der Asbförnsenschen Gattung Brisinga, von der bis dahin nur die der Gattung zu Grunde liegende Art Br. endecacnemos Asb. bekannt war, wurde für die vorliegende Form durch G. O. Sars (1872) die Species coronata aufgestellt. Nachdem Thomson sie mit Unrecht mit der später von Sladen unterschiedenen Odinia pandina vermengt hatte, schilderte ihr Autor (1875) sie ausführlich in einer vorzüglichen monographischen Darstellung, zu der ich selbst (1878) einige Nachträge liefern konnte. Perrier (1882, 1885, 1894), der die erste Nachricht über das Vorkommen der Brisinga im Mittelmeere veröffentlichte, glaubte die mittelmeersche Form von der des atlantischen Oceans als eine besondere Art abgrenzen zu können; indessen äusserte er schon selbst einigen Zweifel an der Zulässigkeit dieser Ansicht. Während Sladen (1889) die Br. mediterranea Perrie. acceptirte, sprach sich v. Marenzeller, dem ich mich
Brisingidae.

nur anschliessen kann, wiederholt 1891, 1895; für die Vereinigung derselben mit coronata aus. Was die Gattungszugehörigkeit anbelangt, so ist die Art auch nach der durch Perrier (1885) vorgenommenen engeren Umgrenzung der Gattung Brisinga in derselben verblieben.

In ihrem Gesammtaussehen ist die vorliegende Art als einzige Vertreterin der Brisingidae im Mittelmeere eine so auffällige Erscheinung, dass sie selbst bei oberflächlichster Betrachtung mit keinem anderen mediterranen Seestern verwechselt werden kann. Die ausserordentlich langen, schlanken, schliesslich fadendünn auslaufenden Arme, deren in der Regel 9 (oder 10) vorhanden sind, setzen sich scharf von der kleinen, runden Scheibe ab, sodass eine gewisse Ähnlichkeit mit der Gestalt eines langarmigen Ophiuriden hergestellt wird. Die Scheibe ist oben und unten ziemlich flach, selbst bei alten Thieren im Ganzen nur 20—25 mm gross und 4—5 mm hoch; in den Armwinkeln fällt der fein bestachelte Scheibenumhüll nach der Ventralseite rasch ab. Die Arme schwellen in kurzer Entfernung von der Scheibe bis zum Ende ihres ersten Fünftels oder Viertels durch die Entwicklung der Genitalorgane an. Im Uebrigen sind die Arme oben und seitlich gewölbt, unten flächer. Ihrer Rückenwand ist dünn und durchscheinend und nur im proximalen Abschnitte durch quere, bestachelte Skeletbögen verstärkt, die in ziemlich regelmässigen Abständen aufeinanderfolgen. Seitlich sind die Arme mit sehr langen, einzeln stehenden Randstacheln bewehrt, die ebenso wie die Adambulacrastacheln von einem häufigen, die Stachelspitze gewöhnlich beutelförmiq überragenden Hautüberzuge umhüllt sind. Gute Abbildungen erwachsener Thiere finden sich bei G. O. Sars (1875, T. 2, Fig. 1, 2) und Perrier (1894, T. 1, Fig. 5, 6), halbwüchsiger Thiere bei Sars (1875, T. 1, Fig. 1) und Perrier (1894, T. 3, Fig. 1) und jünger Thiere ebenfalls bei Sars (1875, T. 4, Fig. 38, 39) und insbesondere bei Perrier (1894, T. 1, Fig. 1—4).

habe, kann nur durch eine zu flüchtige Lecture der Sars'schen Schrift entstanden sein. Sars hat fernher allerdings keine Exemplare gefunden, die weniger als 9 Arme hatten. Indessen waren zur Zeit der Abfassung der Sladen'schen und Bell'schen Publicationen bereits die Mittheilungen von Perrier (1885) erschienen, in denen zum ersten Male Sarmige Exemplare erwähnt werden. Sladen und Bell hätten also schon bei dem damaligen Stande unserer Kenntnisse die Armzahl richtiger mit 8—12 statt mit 9—13 angeben können. Durch die Funde der zoologischen Station zu Neapel, der österreichischen Expeditionen und des »Caudans« sind anschliesslich 8—10armige Exemplare bekannt geworden, sodass man auch heute noch die Variationsgrenze der Armzahl mit 8—12 angeben muss. Stellt man alle bis jetzt gefundenen Exemplare zusammen, so ergiebt sich, dass die Art am häufigsten 9armig auftritt. Ich muss also ebenso wie Koehler (1896) darin Perrier völlig beistimmen, dass er (1894) die Ziffer 9 für die Normalzahl der Arme erklärt. Nächstdem sind 10armige Individuen am häufigsten gefunden worden; seltener sind 11armige und Sarmige, am seltensten 12armige. Bemerkenswertherweise sind 11armige (7 Exemplare) und 12armige (nur ein einziges Exemplar) bis jetzt nur ausserhalb des Mittelmeeres (durch Sars und Koehler) gefischt worden; dagegen Sarmige im Mittelmeere v. Marenzeller, zoologische Station zu Neapel) und westlich von Marocco (Perrier). Auch bezüglich der 10armigen Exemplare erhält man aus den vorliegenden Funden den Eindruck, dass dieselben im Norden des Verbreitungsgebietes verhältnissmässig häufiger sind als im Süden: Sars fand unter 22 Exemplaren neun 10armige, dagegen Perrier unter 12 Exemplaren nur zwei 10armige. Es scheint also, dass die Art nordwärts eine stärkere Neigung zur Vermehrung der Armzahl über die Norm 9 hinaus, dagegen südwärts eine solche zur Verminderung der Armzahl auf 8 bekundet.

Die annähernd genaue Feststellung der Maximallänge, die von erwachsenen Thieren erreicht wird, verursacht einige Umstände und Schwierigkeiten, weil fast alle zur Untersuchung gelangten Exemplare mehr oder weniger verstämmelt sind: nicht nur dass die Arme von der Scheibe abgebrochen sind, sondern sie haben sehr oft auch ihren distalen Abschnitt verloren. Nach Sars sollen die Arme bis über einen englischen Fuss = 305 mm lang werden, und nach seinen Abbildungen steigt dieses Maass bis auf 350 mm. Der längste vollständige Arm, der mir von Neapel vorliegt, hat eine Länge von 315 mm. Dem gegenüber fällt auf, dass v. Marenzeller (1895) als Maximallänge der abgelösten Arme nur 230—240 mm angiebt. Unter dem von ihm mir überlassenen Material finde ich aber einen Arm, der 280 mm lang ist: diesen Arm fehlt überdies der distale Abschnitt; an der Stelle, wo sich der letztere abgetrennt hat, besitzt der Arm noch eine Breite von 2,5 mm. Vergleiche ich damit unversehrte Arme, so ergiebt sich, dass jenseits der 2,5 mm breiten Bruchstelle noch ein distales Armstück von mindestens 125 mm Länge vorhanden gewesen sein muss. Sonach berechnet sich für diesen Arm eine Gesamtlänge von 405 mm. Da die zu denselben Arme gehörige Scheibe mindestens einen Querdurchmesser von 20 mm gehabt haben wird, so würde das ganze Thier im

1 Dass in seinem Texte dafür 23, bez. 24 mm zu lesen steht, ist nur ein Druckfehler.
Leben eine Länge von $2 \times 405 + 20 = 830$ mm gehabt haben. Wir können also annehmen, dass erwachsene alte Thiere eine Maximalgröße von rund 830 mm erreichen.

Die Scheibe erlangt bei erwachsenen Exemplaren nach Sars einen Maximaldurchmesser von 25—29 mm, nach Köehler (1896) von 20—25 mm. Im Mittelmeer sind jedoch Scheiben von diesem Durchmesser bis jetzt nicht angetroffen worden. Die größte, die v. Marenzeller vor sich gehabt hat, hat einen Durchmesser von 20 mm. Jüngere mir vorliegende Scheiben haben einen Durchmesser von 17, 16, 14, 10, 9, 7 mm. Das jüngste Exemplar, das Sars beobachtet hat, hatte einen Scheibendurchmesser von nur 2,5 mm. Ebenso kleine sowie solche von 4 und 6 mm Scheibendurchmesser hat Perrier (1894) beschrieben.

Die Breite der Arme misst an ihrer Basis bei erwachsenen Exemplaren nordischer Herkunft nach Sars 6—8 mm und die Höhe 5 mm. In kurzen Abstande von der Basis beginnt die durch die Entwicklung der Genitalorgane bedingte allmähliche Anschwelling, durch welche der Arm bis zu 16 mm Breite und 14 mm Höhe aufgetrieben wird, um dann nach und nach wieder niedriger und schmäler zu werden, bis er etwa am Ende seines ersten Viertels wiederum die Maasse erreicht hat, die er an der Basis besass. Von hier an nimmt der Arm alsdann ganz langsarn an Breite und Höhe ab, bis er schliesslich fast fadendünn wird und zuletzt nur noch eine Breite von kann einem halben mm (ohne die Randstacheln!) besitzt. Bei den mir vorliegenden mittelmeerischen Exemplaren finde ich durchweg die Auftreibung des Genitalabschnittes des Armes etwas geringer, als man nach den Sars'schen Angaben erwarten sollte. So z. B. beträgt an dem grössten Arme, den ich vor mir habe, die basale Breite 6 mm, dagegen die Breite der Genitalanschwelling nur 10 mm und die Höhe derselben nur 8 mm. An anderen, etwas kleineren Armen, z. B. einem solchen von 275 mm Länge, maass ich die Breite des Armes an der Basis zu 4 mm, seine Höhe daselbst zu 2,5 mm, die grösste Breite der Genitalanschwelling zu 5,5 und die grösste Höhe des Armes im Bereiche der Genitalanschwellung zu 4,5 mm. Indessen sind das alles Differenzen, die zum Theil von dem Grade der Geschlechtsreife, zum Theil auch von der Conservirung beeinflusst werden. Auch will
ich nicht unerwähnt lassen, dass an den erwachsenen mittelmeerischen Thieren, soweit ich das an meinem Materiale prüfen kann, die Arme schon am Ende ihres ersten Fünftels zu ihrem basalen Umfange zurückgekehrt sind.

Papulæ sind bei den mittelmeerischen Exemplaren ebenso wenig vorhanden wie bei den nordschen.

Die Rückenhaut der Scheibe besitzt in ihrer ganzen Ausdehnung mit Ausnahme der in den Armwinkeln erkennbaren Zwischenmundplatten (= Odontophoren) und der Madreporenplatte in gleichmässiger, ziemlich dichter Vertheilung kleine, von einander gesonderte Skeletplättchen, von denen ein jedes einen kleinen Stachel trägt. Wir wollen sie einfach als die Rückenplättchen bezeichnen. Wie schon v. Marenzeller hervorhob, stehen sie bei den mittelmeerischen Exemplaren nicht weniger dicht als bei den nordschen, sodass man Perrier nicht beipflichten kann, wenn er die Ansicht äussert, dass eine spärlichere Bestachelung des Scheibenrückens ein Unterscheidungsmerkmal seiner Br. mediterranea von coronata darbiete. Die einzelnen Rückenplättchen sind durch skeletlose Abstände von 0,1—0,3 mm von einander getrennt. Von der Fläche gesehen haben sie einen unregelmässig zackigen, im Allgemeinen annähernd kreisförmigen Umriss und bei erwachsenen Thieren, bei denen \(r = 8 \) oder 8,5 mm misst, einen Durchmesser von durchschnittlich 0,2—0,27 mm; denselben Durchmesser besitzen sie aber auch schon bei jungen Thieren von \(r = 3,5 \) und \(r = 5 \) mm. Das gitterförmige Maschenwerk, aus dem sie sich aufbauen, erhebt sich auf der Mitte ihrer Aussenfläche zu einem 0,1—0,14 mm hohen, stumpf kegelförmigen oder warzenförmigen, abgestutzten Buckel, der den Gelenkhöcker für den aufsitzenden Stachel darstellt. Nur ganz selten kommt es vor, dass auf einem dieser Rückenplättchen sich zwei Gelenkhöcker statt eines entwickeln. G. O. Sars hat eine Seitenansicht eines Rückenplättchens gegeben (seine Taf. 1, Fig. 9), die mit meinen obigen Beobachtungen nicht übereinstimmt; er zeichnet das Plättchen höher als breit und im Ganzen kegelförmig ohne flache Basalausbreitung; auch gibt er in derselben Abbildung die Skeletmaschen des Plättchens sehr viel enger an, als ich sie sehe. Sehr viel besser als mit seiner Abbildung stimmen die Rückenplättchen der mir vorliegenden mittelmeerischen Exemplare mit denjenigen überein, welche Perrier aus der Rückenhaut seines Hymenoliscus agassizii (1884, Taf. 2, Fig. 18, 19) abbildet. Ein durchgreifender Unterschied von den an den Lofoten lebenden Thieren ist aber darum doch nicht vorhanden. Denn in einem Rückenhautstücke von der Scheibe eines Lofotenexemplares, das ich von meiner früheren Untersuchung her noch im Besitze hatte, fand ich die meisten Plättchen, wie an den mittelmeerischen, mit einer gitterförmigen Basalausbreitung versehen; dazwischen, aber weniger zahlreich, liegen Plättchen, die durch den Mangel der basalen Ausbreitung in ihrer Form zu der Sars'schen Abbildung stimmen.

Die auf den Plättchen aufsitzenden Stacheln haben bei einem Exemplare von \(r = 8 \) mm eine Länge von 0,35—0,48 mm; bei einem anderen von \(r = 8,5 \) mm sind sie nur 0,26—0,32 mm lang. Bei jenem verjüngen sie sich nach ihrem freien Ende hin ganz allmählich und endigen schliesslich mit einer einfachen oder kurz gegabelten Spitze. Bei diesem dagegen zeigen sie
die Neigung, an ihrem freien Ende sich wieder etwas zu verbreitern und in drei oder vier leicht divergirende Enddornen auseinander zu fahren, wie das schon Sars (Taf. 1, Fig. 9, 10) zur Darstellung gebracht hat. An ihrer Basis, mit der sie den Gelenkhöcker des Rückenplättchens aufsitzen, haben die Stacheln durchweg eine Dieke von 0,08—0,1 mm. Nach der Abbildung von G. O. Sars (Taf. 1, Fig. 9) soll sich die Höhe des Rückenplättchens zur Länge des aufsitzenden Stachels wie 1 : 1,4 verhalten. Dementgegen finde ich aber an den mittelmeerischen Exemplaren die Stacheln verhältnismässig länger, sodass sich die Höhe des Rückenplättchens zur Länge seines Stachels verhält wie 1 : 3.

Bei jungen Thieren, deren Scheibenradius nur 5 oder erst 3,5 mm misst, traf ich zwischen den eben beschriebenen Rückenstacheln einzelne grössere an, die sich auch in ihrer Form von jenen unterscheiden. Sie haben eine Länge von 0,7—0,84 mm, sind also rund doppelt so lang wie die gewöhnlichen Rückenstacheln und ihrer ganzen Länge nach mit kräftigen Seitendornen ausgestattet. Sars hat diese besonderen Stacheln bereits bemerkt (bei einem jungen Individuum von r = 1,25 mm) und abgebildet (s. seine T. 6, Fig. 34). Da ich sie auch noch bei älteren Exemplaren antrete, so kann ich mich seiner Meinung, dass sie ausschliesslich dem allerfrühesten Jugendstadium angehören und später unter allen Umständen gänzlich verloren gehen, nicht anschliessen. Durch ihre Länge ragen sie über die übrigen Rückenstacheln hervor, werden also leichter durch Berührung mit irgendwelchen Gegenständen der Aussenwelt abgestossen werden als jene; so kann es leicht kommen, dass sie bei älteren Thieren ganz verschwinden, ohne dass man darin ein normales Verhalten zu erblicken braucht. Es sollte mich gar nicht wundern, wenn sie sich auch einmal bei alten Thieren nachweisen liessen. An den mir vorliegenden älteren Exemplaren habe ich freilich vergeblich danach gesucht. In Perrier’s Abbildungen (1894, T. 1, Fig. 1 u. 2) junger Thiere von r = 1,25 mm und r = 2 mm sind diese seitlich bedornten Rückenstacheln ebenfalls deutlich zu sehen. Aus denselben Abbildungen erheilt, dass die in Rede stehenden Stacheln den primären Platten des Scheibenrückens, nämlich der Centralplatte und den primären Interradialplatten sowie den Centroradialplatten aufsitzen. Damit stimmt überein, dass ich bei meinen jungen Thieren von r = 3,5 und r = 5 mm die bedornten Stacheln in einer regelmässigen Vertheilung und auf besonders gestalteten Platten antrete, die sich von den übrigen Rückenplatten unterscheiden.

Ein solcher Stachel liegt (bei r = 5 mm) fast genau im Mittelpunkte der Scheibe, 0,63 mm vom After entfernt. Neun andere liegen so, dass je einer in die Richtung eines jeden Radius fällt und mit seiner Basis 1—1,5 mm von der Basis des centralen Stacheln und anderseits 2—2,25 mm vom Innenrand des ersten Wirbels entfernt ist. Die Plättchen, auf denen diese zehn Stacheln eingelükt sind, haben gröbere Masen, als die sie umgebenden gewöhnlichen Rückenplättchen, und sind durchweg doppelt so gross. Bei dem Exemplare von r = 5 mm mass ich den Durchmesser der den Centralstachel tragenden Platte, die offenbar die weiter existirende primäre Centralplatte darstellt, zu 0,5—0,54 mm und den Durchmesser der neun anderen, welche die radialen bedornten Stacheln tragen und die weiter existirenden Centroradialplatten repräsentiren, zu 0,4—0,48 mm. Es zeigt sich demnach, dass die von Perrier (1894)
bei noch viel jüngeren Thieren zuerst nachgewiesenen Scheitelplatten, nämlich das Centrale und die Centromedialia (seine Radialia), auch noch später zwischen den sie auseinander drängenden und immer zahlreicher werdenden secundären Rückenplättchen erkennbar bleiben.

Anfänglich besteht nach Perrier's (1894) interessanten Beobachtungen das ganze Rückenskelet der Scheibe ausser den schon erwähnten zehn Platten nur noch aus einem diese umgebenden Kranze von neun grösseren Interradialplatten. Letztere stossen dicht an einander, haben eine abgerundet dreiseitige Form und sind an ihrer distalen Seite zu einem schnabelförmigen Fortsatz verlängert, der sich von oben über den Armwinkel lagert und den Scheibenrand sogar überragt. Jede dieser Interradialplatten, in denen Perrier mit vollem Recht die Homologa der primären Interradialplatten (= Basalia) der übrigen Seesterne sieht, ist mit drei bedornten Stacheln ausgerüstet. Mit der weiteren Entwicklung des Scheibenrückens werden die primären Interradialplatten, die auch schon Sars nicht unbemerkt gelassen hatte, auseinander getrieben und durch immer grösser werdende, mit secundären Rückenplättchen besetzte Abstände von einander getrennt. So liegen sie schon bei r = 3,5 m weit auseinander und sind ab 0,8—0,9 mm lang und am proximalen Ende 0,4—0,5 mm breit. Ihr schnabelförmiger, 0,2 mm breiter Fortsatz ist im Verhältniss zu seiner anfänglichen Gestalt nunmehr länger und breiter geworden, sodass er fast die Hälfte der ganzen Platte darstellt. Er lagert sich von oben her über die darunter befindliche, junge, jetzt erst 0,4 mm breite und 0,45 mm lange Zwischenmundplatte und reicht nach aussen bis über das proximale Ende der ersten untern Randplatten. Bei r = 5 mm haben die primären Interradialplatten ihre vorige Länge und Breite beibehalten, aber ihre Form zu einem birnförmigen Umriss abgerundet. Das schmälere Ende der Birne (= der frühere schnabelförmige Fortsatz) ragt nicht mehr so weit in den Armwinkel hinein, sondern bedeckt in der Ansicht von oben nur noch das proximale Ende der darunter gelegenen, jetzt schon 0,52 mm breiten und 0,82 mm langen Zwischenmundplatte. Auf ihrem breiteren proximalen Ende trägt die primäre Interradialplatte auch jetzt noch wie anfänglich drei, seltener auch vier Stacheln. Nur in einem Interradius hat sie bei beiden jungen Individuen keinen Stachelbesatz erhalten; dafür hat sie sich zu einer Halkkugel vergrössert, die von Poren durchbrochen wird und die junge Madreporenplatte darstellt, wie das auch schon Perrier (1894, T. 1, Fig. 3) für ein noch jüngeres Thier (von r = 3 mm) festgestellt hat.

Von besonderer Wichtigkeit für die morphologische Deutung der von Sars als Keilplatte (»wedge-plates«), von Perrier als »Odontophore« bezeichneten Zwischenmundplatte1) erschien es, das fernere Schicksal der primären Interradialplatten genauer zu verfolgen, als das bisher von anderer Seite geschehen war. Perrier (1894) will nämlich gefunden haben2), dass die primären Interradialplatten später mit den darunter befindlichen »Odontophoren« zu einem einzigen Stücke verschmelzen, sodass der »Odontophor« des erwachsenen Thieres, seine »plaque

1) Die ich früher (1878) das erste oder innere intermediäre Skeletstück oder auch die unpaare Interambulacralplatte nannte.

2) Wie übrigens schon Sars (1875, p. 62), vermutet hatte.

Brisingidae.

angulaire«, ein Compositum aus der primären Interradialplatte und dem primären »Odontophor« darstelle¹. Er hat diese Verschmelzung aber nicht direct beobachtet, sondern nur aus dem Umstande abgeleitet, dass bei dem erwachsenen Thiere an der Stelle, wo beim jungen der primäre Odontophor und die primäre Interradialplatte liegen, nur noch eine einzige Platte, die Sars'sche Keilplatte, zu finden sei; dieselbe müsse also doch wohl dadurch entstanden sein, dass jene beiden übereinander liegenden Primärplatten sich aufs Innigste miteinander zu einer einzigen Platte vereinigt hätten. Der Fehler dieser Beweisführung liegt in der Annahme, dass beim erwachsenen Thiere die primären Interradialplatten als gesonderte Skelettheile spurlos verschwunden seien. Allerdings hat weder Sars noch irgend ein anderer Forscher bei älteren Thieren etwas von den primären Interradialplatten gefunden. Dennoch sind sie vorhanden. Wenn man dort, wo sich die Rückenhaut der Scheibe auf das proximale Ende einer Zwischenmundplatte fest aufliegt, sorgfältig nachsucht, so findet man bei Exemplaren von \(r = 7 \text{ mm} \) und selbst noch bei solchen von \(r = 5 \text{ mm} \) eine kleine, kaum 1 mm grosse Platte, die nichts anderes sein kann als die erhalten gebliebene primäre Interradialplatte. Bei noch älteren Thieren wird es freilich immer schwieriger sie sicher zu unterscheiden; doch gelang es mir auch hier noch in einzelnen Interradien an Kalipräparaten ihre letzte Spur nachzuweisen. Es findet also keine Verschmelzung der primären Interradialplatten mit den Zwischenmundplatten, wie PERRIER annimmt, statt, sondern die primären Interradialplatten werden nur, da sie sehr frühzeitig zu wachsen aufhören, immer undeutlicher, sodass sie schliesslich scheinbar ganz verloren gegangen sind.

Die dünnen, durchscheinende Rückenhaut der Arme ist, abgesehen von den später zu besprechenden Pedicellarienwülsten, zum weitaus grössten Theile ganz frei von Skeletteinlagerungen. Dennoch lassen sich sowohl untere und obere Randplatten als auch Radialplatten und quere Skeletsplangen, die sich zwischen Radialplatten und oberen Randplatten anordnen, nachweisen: aber alle diese Skelettheile des Armrückens und der Armseiten sind mehr oder weniger verkümmert und rückgebildet.

Am besten erhalten sind noch die unteren Randplatten, denen man in der ganzen Länge des Armes, vom Armwinkel bis zur Terminalplatte, dicht über dem lateralen Rande der Adambulacralplatten begegnet. Sie bilden freilich nur noch an der Armbasis eine geschlossene Reihe, während sie weiterhin durch verhältnissmässig grosse Abstände von einander getrennt werden.

Jener zusammenhängende basale Abschnitt der unteren Randplattenreihe beginnt in der Dorsalansicht der Scheibe am distalen Ende der Zwischenmundplatte mit einer kräftig ausgebildeten ersten Platte, die mit ihrem Gegner, d. h. mit der ersten unteren Randplatte des benachbarten Armes, genau in der Interradialebene des Armes zusammenstösst und sich wie ein kurzer Gabelast der Zwischenmundplatte ausnimmt. In der ventralen Ansicht füllen die beiden ersten unteren Randplatten den kleinen Zwischenraum aus, der nach aussen von

¹) Von der von ihm selbst aufgegebenen früheren Behauptung dieses Forschers (1882, Comptes rendus), dass die primären Interradialplatten die Anlagen der Odontophoren seien, will ich wegen ihrer völligen Unhaltbarkeit hier ganz absehen. Er hatte damals die wirklichen Odontophoren des jungen Thieres gar nicht gesehen.
den Mundeckstücken zwischen den ersten Adambulacralplatten zweier benachbarter Arme übrig bleibt. Jede erste untere Randplatte ist länger als breit und von gedrungener Gestalt. Bei einem Exemplare von 8,5 mm Scheibenradius maass ich ihre Länge zu 1,3 mm und die Breite zu 0,6 mm. Bei jüngeren Thiereu ist die erste untere Randplatte entsprechend kleiner, z. B. bei r = 5 mm 0,9 mm lang und 0,45 mm breit und bei r = 3,5 mm erst 0,6 mm lang und kaum 0,2 mm breit. Dass sie schon bei r = 1,25 mm vorhanden ist, geht aus einer Abbildung PERRIER’s hervor (1894, Taf. 1, Fig. 1). Von Anfang an ist die erste untere Randplatte unbestachelt und bleibt es auch durch das ganze spätere Leben. Bei freiwilliger oder unfreiwilliger Ablösung des ganzen Armes verbleibt die erste untere Randplatte an der Scheibe, indem nur ihre Verbindung mit der am unversehrten Thiere unmittelbar auf sie folgenden, zweiten unteren Randplatte durchreisst. Man findet also die zweite untere Randplatte an abgetrennten Armen unmittelbar an deren Basis, wo sie dem lateralen Rande der zweiten Adambulacralplatte dorsalwärts dicht anliegt. An die zweite Randplatte, die ebenfalls länger als breit ist und sich distalwärts verschmälert, schliesst sich dann sehr häufig noch eine kleinere, dritte an. Bei den Exemplaren von den Lofoten scheint das nach den Beobachtungen von SARS, die ich bestätigen kann, die Regel zu sein; beide, die zweite und dritte Randplatte, reichen dann bis zur vierten Adambulacralplatte. Auch bei den mittelmeerischen Exemplaren treffe ich gewöhnlich das Gleiche an. Aber nicht immer findet man dicht an der zweiten eine dritte Randplatte; ich vermisst sie z. B. bei einem aus dem Mittelmeer stammenden Arme von 240 mm Länge. Andererseits kann mitunter auch noch eine vierte Randplatte sich an das distale Ende der dritten anlegen; alsdann erstreckt sich der zusammenhängende Abschnitt der unteren Randplattenreihe bis zur fünften Adambulacralplatte. Bei dem regelmässigen Verhalten zeichnen sich, ebenso wie bei diesen Ausnahmefällen, alle Randplatten des zusammenhängenden, basalen Abschnittes der Plattenreihe dadurch aus, dass sie, wie wir das von der ersten schon erfahren haben, stachellos bleiben. Der dichte Zusammenschluss der drei oder vier ersten unteren Randplatten tritt übrigens, nach einer Abbildung von SARS (Taf. 6, Fig. 16) zu schliessen, erst nachträglich ein: anfänglich sind auch diese Platten durch Abstände getrennt.

Alle folgenden unteren Randplatten, also in der Regel mit der vierten beginnend, berühren sich nie mehr, liegen stets auseinander gerückt, behalten aber ihre Lage am lateralen Rande einer Adambulacralplatte. Da ihre Zahl stets geringer ist als die der Adambulacralplatten, so ist nur ein Theil dieser letzteren in Verbindung mit einer unteren Randplatte. Ein ganz festes Zahl- und Lage-Verhältniss zwischen unteren Randplatten und Adambulacralplatten kommt dabei aber nicht zur Ausbildung. Im Grossen und Ganzen ist freilich die Anordnung die, dass auf jede zweite Adambulacralplatte eine untere Randplatte kommt. Es ist aber gar nicht selten, dass man auf einer grösseren Armstrecke erst an jeder dritten Adambulacralplatte eine untere Randplatte antrifft. Viel weniger oft kommt es vor, dass zwischen zwei mit unteren Randplatten verbundenen Adambulacralplatten drei randplattenlose liegen. Noch seltener und fast nur in der Nähe der Armbasis folgen zwei Adambulacralplatten aufeinander, die alle beide eine Randplatte tragen. Die rechten und linken unteren Randplatten
deselben Armes befinden sich auch nicht immer genau einander gegenüber, sondern sind sehr oft um die Länge einer Adambulacralplatte gegen einander verschoben; derartige Verschiebungen setzen sich bald nur über kurze, bald aber auch über lange Strecken der Armlänge fort und sind in der distalen Armhälfte nicht seltener als in der proximalen.

Die einzelnen Randplatten nehmen nach der Armspitze hin an Größe ab. In der proximalen Armhälfte haben sie bei erwachsenen Armen eine Länge von 0,9—1,7 mm und eine Breite von 0,75—1,1 mm. Stets ist die Platte länger als breit. An dem dorsalen Theile ihres länglichen Umrisses entsendet sie einen kurzen, breiten Fortsatz, der an den grifförmigen, dorsalwärts gerichteten Fortsatz der unteren Randplatten der *Asterias*-Arten erinnert. Gerade unter der Abgangsstelle dieses Fortsatzes erhebt sich die Aussenfläche der Platte zu einem Gelenkhöcker für die Insertion eines Randstachels.

In der Deutung der unteren Randplatten als solcher sind Sars (1875) und Sladen (1889) verschiedener Meinung. Jener bezeichnet sie nämlich als obere, dieser als untere Randplatten. Für die letztere Ansicht spricht erstens die unmittelbare Verbindung derselben mit den Adam-
bulacralplatten, zweitens die Fortsatzbildung an ihrem dorsalen Rande, drittens der Umstand, dass sich dorsalwärts von ihnen, wie wir gleich sehen werden, die Randstacheln echter oberer Randplatten entwickeln.

Vorher aber noch ein paar Worte über die Bewaffnung der unteren Randplatten. Mit Ausnahme der drei (oder vier ersten, zusammenstossenden Randplatten trägt eine jede auf dem erwähnten Gelenkhöcker ihrer Aussenfläche einen ansehnlichen Stachel, der schief nach aussen und distalwärts gerichtet ist und durchweg an Länge die Breite des Armes erheblich übertrifft. Am längsten, 12—18 mm lang, sind die Randstacheln im mittleren Theile des Armes. Nach der Armspitze und der Armbasis hin nehmen sie langsam an Größe ab; an einem Arme von den Lofoten z. B. hat der drittletzte Randstachel noch eine Länge von 2,3 mm, der zweifletzte von 1,5 mm und der letzte von 0,44 mm. Die Stacheln sind stets ganz gerade, sehr schlank und, wie schon Sars (Taf. 1, Fig. 15) andeutet, oberflächlich mit einigen leicht gedrehten Längsrinnen versehen. Ferner ist jeder Stachel von einer weichen Haut umhüllt, die sich oft über die Stachelspitze hinaus zu einem beutelförmigen Anhang verlängert und mit zahlreichen, dicht gestellten Pedicellarien besetzt ist.

Um die oberen Randplatten, die bis jetzt als solche noch nicht erkannt waren, aufzufinden, muss man das letzte Ende der Arme untersuchen. Trennt man die Armspitze in der Länge von 4—5 mm ab und betrachtet man dann das durch Kali oder Nelkenöl oder Canadabalsam durchsichtig gemachte Präparat von der Dorsalseite, so bemerkt man Querreihen von je drei kleinen, gegitterten Skeletplatten, die unterhalb der in Bildung begriffenen Pedi-
cellarienquerwülste in der Rückenhaut der Arme liegen. In ihrer Anordnung entsprechen diese queren Plattenreihen den unteren Randplatten; es stellt also jede Querreihe eine Ver-
bindung zwischen einer unteren Randplatte der einen Armseite mit der gerade oder schräg zunächst gegenüberliegenden unteren Randplatte der anderen Armseite dar. Von den drei Platten, aus denen sich die Querreihe zusammensetzt, wird die eine durch die Medianebene
des Armes genau halbirt; die beiden anderen (lateralen) liegen rechts und links von der medianen. Der einzige frühere Forscher, der diese queren Skelettreihen des Armrückens gesehen hat, ist Sans gewesen, der sie von einem in Regeneration begriffenen Arme als drei Längsreihen von gitterförmigen Kalkplättchen beschreibt und abbildet (seine Taf. 6, Fig. 15). Man findet sie aber an jedem unversehrten Arme, gleichviel ob derselbe jung oder alt ist. In der unmittelbaren Nähe der Terminalplatte folgen die Querreihen ziemlich dicht aufeinander, rücken aber in einiger Entfernung von der Terminalplatte immer weiter auseinander. Von den drei Platten, aus denen jede Querreihe besteht, kann die mediane offenbar nur als ein Homologon der Radialplatten anderer Seesterne angesehen werden. Sie ist immer breiter als lang und von quer ovalem bis abgerundet vierlappigem Umriss; in letzterem Falle, der aber erst an der viertletzten oder fünfletzten Platte deutlich zu werden pflegt, kann man wie an den Radialplatten der Asterias-Arten einen proximalen, einen distalen und jederseits einen lateralen Lappen unterscheiden. Was die Größenverhältnisse der Radialplatten angeht, so war an einem Arme die zweitletzte Platte 0,095 mm breit und 0,087 mm lang, die viertletzte 0,22 mm breit und 0,15 mm lang, an einem anderen Arme die letzte 0,16 mm breit und 0,08 mm lang. Die drittletzte 0,2 mm breit und 0,15 mm lang.

Von der jederseitigen lateralen Platte einer jeden Querreihe, die sich lose neben die mediane Radialplatte lagert, könnte man Zweifel hegen, ob man sie als Adradialplatte oder als obere Randplatte deuten soll. Nach ihrer Lage zwischen je einer Radialplatte und einer unteren Randplatte wären beide Deutungen zulässig. Doch führt die nachfolgende Überlegung zu einem bestimmten Entscheid. Wären es Adradialplatten, dann müssten sie nach Analogie anderer Seesterne später entstanden sein als die Radialplatten; das würde sich dann darin ausdrücken, dass sie in der Nähe der Terminalplatte kleiner wären als die Radialplatten. Wenn sie aber obere Randplatten sind, dann müssen wir erwarten, dass sie älteren Datums als die Radialplatten sind und demnach in der Nähe der Terminalplatte die Radialplatten an Grösse übertreffen. Nun ist nach meinen Beobachtungen das Letztere ganz entschieden der Fall. Schon die jüngste dieser lateralen Platten, die ich aus dem angegebenen Grunde nur für obere Randplatten halten kann, ist breiter und länger als die Radialplatte ihrer Querreihe; so z. B. maass ich die Breite der letzten oberen Randplatte zu 0,26 mm und die Länge zu 0,1 mm, während die daneben liegende Radialplatte nur 0,16 mm breit und 0,08 mm lang ist.

Sehr bald erreichen sowohl die Radialplatten als auch die oberen Randplatten das Ende ihres Wachsthumes und bleiben infolgedessen so klein, dass man sie nur mit Hülfe des Mikroskopes zu finden vermag. In einer etwas grösseren Entfernung von der Terminalplatte sucht man oft ganz vergebens nach ihnen. Wahrscheinlich fallen sie schliesslich einer Resorption anheim. Anders aber verhalten sie sich im proximalen Armabschnitte im Bereiche der Genitalanschwellung. Hier entwickeln sie sich zu queren, rippenförmigen Skeletbögen, die auf ihrer convexen Aussenseite mit einer Querreihe von Stacheln besetzt und äusserlich sofort erkennbar sind. Dabei vermehrt sich die Zahl der in einer Querrippe vorhandenen Skelet-
stücke durch Einschub secundärer Stücke auf (vier oder) fünf. Alle diese Stücke — wir wollen sie die Spangenstücke nennen — haben die Form eines platten, gedrungenen, leicht gebogenen Stabes, dessen Längsrichtung quer zur Längsachse des Armses liegt und dessen Convexität nach aussen gerichtet ist. Mit ihren seitlichen Enden schieben sich die Spangenstücke dachziegelig übereinander. Das äussere jede seitige Spangenstück stützt sich auf den Fortsatz der unteren Randplatte und ist selbst eine umgebildete obere Randplatte. Auf der convexen Aussenfläche trägt jedes Spangenstück auf einer entsprechenden Zahl von Gelenkhöckern 1—3 Stacheln, die Rippenstacheln, deren man auf einer ganzen, gut entwickelten Querrippe 8—10 oder wohl auch 12—14 zählt. Die Rippenstacheln werden 2,5—3 mm lang, erreichen aber meistens nur 1,5—2 mm an Länge; sie sind ebenso wie die Randstacheln gerade, zugespitzt, mit gewundener, oberflächlicher Längscanellirung und einzeln von pedicellarienführenden Haut umhüllt. Bald neigen sie sich mit der Spitze nach dem Armende hin, bald stehen sie senkrecht; in beiden Fällen geben sie der Querrippe das Ausschen eines Stachelkranzes. Auf den ersten paar Rippen sind die Stacheln kürzer als an der Mitte der Genitalknorpelung; auch sind die Stacheln derselben Querrippe unter sich gewöhnlich ungleich gross.

Die äussere Armspitze ist an den conservirten Thieren fast regelmässig ventralwärts niedergebogen, während sie bei den meisten anderen Seesternen die Neigung hat, sich dorsalwärts emporzubiegen. Unmittelbar an der die Spitze bildenden Terminalplatte ist der Arm schliesslich so zart geworden, dass seine Breite ohne die Randstacheln nur noch 0,3 mm misst. Die Terminalplatte selbst ist etwas breiter und sitzt dem Armende wie eine kleine, knopfförmige Anschwellung auf. An ihrer Dorsalseite ist sie gewölbt; an der Ventralseite zeigt
Brisinga coronata.

431

die eine verhältnismässig breite, tiefe Rinne für die Aufnahme der jüngsten Ambulacral- und Adambulacralstücke und des kräftig entwickelten Fühlers. Im Ganzen stellt sie eine nur 0,1 mm dicke, 0,4 mm breite und 0,45—0,5 mm lange Platte dar, deren Seitenwände sich ventralwärts heruntergebogen haben, sodass die Form einer kurzen Halbröhre mit ventraler Concavität entsteht. Oberflächlich ist die Platte auf dem Rücken wie an den Seiten von einer verhältnismässig dicken, weichen Haut überzogen, aus der sich zahlreiche, dichtgestellte Pedicellarien erheben. Ferner trägt sie an ihrem distalen Rande jederseits 2 oder 3 (seltener 4) spitze Stachelchen von 0,3—0,5 mm Länge, die auf kleinen Gelenkhöckern der Platte inseriren. Sars zeichnet in einigen seiner Figuren (Taf. 4, Fig. 21, 22) die Bestachelung etwas reicher (im Ganzen 10 oder 11 Stacheln), als ich sie an Exemplaren von den Lofoten und aus dem Mittelmeere erkennen kann. Dass seine Meinung, die Terminalplatte sei durch Verschmelzung der letzten Wirbel entstanden, von ihm selbst durch keinerlei Beobachtungen gestützt worden ist, dagegen allen heute bekannten Thatsachen durchaus widerspricht, bedarf kaum der Erwähnung.

Die Adambulacralplatten, deren Form Sars genannt beschrieben und durch Abbildungen erläutert hat, bilden den ventralen Seitenrand der Arme und sind im Allgemeinen doppelt so lang wie breit. Bei erwachsenen Thieren haben sie in der proximalen Armhälfte durchschnittlich eine Länge von 2,5 und eine Breite (in der Ansicht von unten) von 1,2 mm. In der Nähe der Armbasis werden sie im Verhältniss zu ihrer Länge breiter, dagegen im distalen Theile des Arms schmäler. Dass sie sich, wie Perrier meint, bei den mittelmeerischen Individuen durch schlankere Form vor den nordischen auszeichnen, vermag ich nicht zu bestätigen. Es erklärt sich vielmehr dieses angebliche Unterscheidungsmerkmal der Br. mediterranea Perr. von der Br. coronata G. O. Sars, das sich in gleichem Sinne auch auf die Ambulacralplatten bezieht, sehr einfach aus dem Umstande, dass Perrier seine vermeintliche neue Art auf jugendliche, halbwüchsig Exemplare der Br. coronata gegründet hat.

Die Bewaffnung der Adambulacralplatten bilden nach Sars (vergl. seine Abbildung Taf. 1, Fig. 14) jederseits von der Armfurche drei regelmässige Längsreihen von Stacheln. Die Stacheln sind im Einzelnen so vertheilt, dass auf jeder Platte deren drei in einer schiefen Querreihe stehen und an Grösse nach der Medianebene des Armes hin sehr rasch abnehmen. Der grösste, äusserste Stachel steht etwa auf der Mitte der ventralen Oberfläche der Platte und ist hier auf einem deutlich vortretenden Gelenkhöcker eingelenkt. Der zweite kann 1/3 so lange Stachel inserirt weiter mundwärts und zugleich näher an dem concaven Furchenrande (= ambulacralen Rande) der Platte. Der kleinste, innerste endlich befindet sich auf dem adoralen Ende des Furchenrandes der Platte. Dieser kleinste Stachel ist einwärts gegen die Medianebene der Füsschenfurche gerichtet und trennt die aufeinanderfolgenden Füsschen derselben Armseite voneinander. Dagegen ist der mittlere der drei Stacheln ventralwärts und der grosse, äussere schräg nach unten, aussen und zugleich distalwärts gerichtet. Alles das kann ich an den mir von den Lofoten vorliegenden Armen nur bestätigen: doch finde ich, dass mitunter, in ganz regelloser Vertheilung, statt der beiden kleineren Stacheln nur ein einziges Stachelchen vorhanden ist. Was aber an diesen Exemplaren constant zu sein
scheint, ist der Umstand, dass das aborale Ende des Furchenrandes der Adambulacralplatten stets stachellos bleibt.

Aus dem Gesagten geht hervor, dass schon bei den Exemplaren von den Lofoten allerlei Variationen der Adambulacralbewaffnung vorkommen. In viel höherem Grade gilt das nun aber für die mittelmeerischen Thiere. Anfänglich glaubte ich sogar einen constanten Unterschied in der Adambulacralbewaffnung der mittelmeerischen von den nordischen Exemplaren gefunden zu haben, musste mich aber durch weitere Untersuchungen davon überzeugen, dass nur eine individuelle Variabilität vorliegt. Jener Unterschied schien mir nämlich darin zu liegen, dass ich bei mittelmeerischen Stücken die beiden kleineren Stachelchen in anderer Anordnung antraf, als das bei den nordischen der Fall ist. Es liegt nur der eine von ihnen auf dem adoralen Ende des ambulacralen Plattenrandes, der andere aber auf dem bei den nordischen stets (?) stachellosen aboralen Ende, und dieser aborale Stachel ist es alsdann, der in die Füsschenfurchen zwischen die einzelnen Füsschen einspricht. Die ganze Anordnung der Adambulacralstacheln entspricht in diesem Falle den Abbildungen, die Sladen (1889; Taf. 109, Fig. 11; Taf. 110, Fig. 3) von der Adambulacralbewaffnung seiner nordamerikanischen Br. verticillata und seiner japanischen Br. armillata gibt. Der grosse, äussere Stachel liegt dabei, was übrigens auch an Exemplaren von den Lofoten vorkommt, dem aboralen Plattenrande etwas näher als dem adoralen, und von den beiden kleinen befindet sich der aborale näher an der Medianebene des Armes als der adorale. Bei fortgesetztem Vergleichen von Armen mittelmeerischer Exemplare ergab sich nun aber, dass die eben geschilderte Eigenthümlichkeit in der Stellung der kleinen Adambulacralstacheln keine ausnahmslose ist, dass vielmehr in einzelnen Fällen auch die für die Exemplare von den Lofoten beschriebene Anordnung auftritt, also der aborale der beiden kleinen Stachelchen fehlt und dafür dann auf dem adoralen Ende des ambulacralen Plattenrandes entweder nur ein oder

Was die Maasse der Adambulacralstacheln anbetrifft, so erreicht der äussere eine Länge von 4,5 mm, während die kleinen nur 1—1,5 mm lang werden. Die Stacheln sind von gestreckter, lang kegelförmiger, zugespitzter Gestalt. Wie bereits Sars [s. seine Abbildungen Taf. 1, Fig. 16—21] beschrieben hat, besitzen sie ebenso wie die Randstacheln eine feine, etwas gewundene Längscannelierung und sind von einer mit zahlreichen Pedicillarien erfüllten, die Stachel spitze gewöhnlich beutelförmig überragenden, weichen Hülle umkleidet.

Die Mundeckplatten bieten in der ventralen Ansicht einen ähnlichen Umrisss dar wie die nächst gelegenen Adambulacralplatten; ihr adoraler Rand ist convex und mit zwei oder drei kleinen Stachelhöckern besetzt; der ambulacrale Rand ist concav eingebuchtet, die ventrale Oberfläche gewölbt. Bei alten Thieren besitzt jede Mundeckplatte nach Sars (1875) auf ihrem adoralen Rande in der Regel drei jenen Höckerchen aufsitzende, nebeinander stehende Stachelchen, die sich gegen den Mund richten und zugleich untereinander divergiren. Ausserdem trägt jede Mundeckplatte auf ihrer ventralen Oberfläche einen etwas grösseren Stachel, durch den sich die Reihe der äusseren Adambulacralstacheln auf die Mundeckplatte fortsetzt. Bei den mittelmeerischen Exemplaren finde ich an Scheiben von 16—20 mm Durchmesser mitunter genau die von Sars angegebene Bestachelung der Mundeckplatten. Häufig aber begegne ich allerlei Abweichungen, die jedoch alle darin übereinstimmen, dass auf der Mitte der ventralen Oberfläche stets ein etwas grösserer, bis 2 mm langer Stachel steht und auf dem adoralen Rande immer mindestens zwei ein wenig schwächere, in der Regel 1,5 mm lange Stacheln angebracht sind. Fast immer inserirt neben dem grösseren Stachel und zugleich am aboralen Ende des ambulacralen Plattenrandes noch ein kleinerer Stachel, sodass die Mundeckplatte dann im Ganzen mit vier Stacheln bewehrt ist. Stellt sich, wie es oft vorkommt, noch ein fünfter Stachel ein, so liegt derselbe bald am adoralen Rande, der dann, der Sars'schen Beschreibung entsprechend, dreistachelig ist. oder er tritt auf dem aboralen Theile der Platte.
auf und bildet hier mit dem größeren Stachel der Plattenmitte und dem kleineren des ambulacralen Plattenrandes eine schiefe Querreih e. Seltener gesellt sich in letzterem Falle zu der adoralen Stachelgruppe noch ein kleines, überzähliges Stachelchen, sodass dann die Platte im Ganzen mit sechs Stacheln besetzt ist. In nicht ganz gleicher, aber doch sehr ähnlicher Weise erscheinen die Mundeckplatten auch in einer von Perrier (1894, Taf. 1, Fig. 6) veröffentlichten Abbildung mit sechs Stacheln ausgestattet, von denen drei am adoralen Plattenrande sitzen.

Der Vergleich mit jüngeren Exemplaren, z. B. einem solchen von \(r = 5 \, \text{mm} \), lehrt, dass schon bei ihnen der auf der Mitte der Platte sitzende Stachel sich durch seine Grösse auszeichnet; er hat bereits eine Länge von 1,4 mm, während die anderen Stacheln der Platte erst 0,5—1 mm lang sind. Der letzteren sind drei vorhanden: zwei, die nebeneinander auf dem adoralen Rande der Platte stehen, und ein kleinstes, der auf dem aboralen Ende des ambulacralen Plattenrandes eingelenkts ist. Dass der adorale Rand der Mundeckplatte bei jungen Thieren nur mit zwei Stacheln besetzt ist, hat auch schon Sars in einer seiner Abbildungen (Taf. 1, Fig. 2) dargestellt. Ebenso besitzt die kleinste, mir zu Gebote stehende Scheibe, deren \(r \) nur 3,5 mm misst, nur zwei Stachelchen auf dem adoralen Rande der Mundeckplatte; von diesen ist das der interradialen Hauptebene zunächst gelegene kleiner als das andere, scheint also jünger zu sein. An denselben Exemplaren ist der größere Stachel auf der Mitte der Platte schon gut entwickelt, dagegen fehlt das Stachelchen des aboralen Endes des ambulacralen Plattenrandes noch durchaus.

Bei jungen Individuen ist also jede Mundeckplatte im Ganzen mit drei, später mit vier Stacheln besetzt, zu denen bei alten Thieren in der Regel noch ein fünfter, seltener auch noch ein sechster hinzukommt. Von diesen Stacheln stehen beim alten Thiere bald drei, bald wie beim jungen nur zwei nebeneinander auf dem adoralen Rande der Platte und richten sich als eigenliche Mundeckstacheln mit ihrer Spitze gegen den Mund. In ihrer Form und in dem Besitze einer Pedicellarien beherbergenden Hülle stimmen die Stacheln der Mundeckplatten mit denen der Adambulacralplatten überein.

Wie Bell (1892) dazu kommt, in seiner Diagnose der *Br. coronata* zu sagen »Madreporite not conspicuous«, ist mir ganz unverständlich; denn die Madreporenplatte ist in ihrer verhältnismässig recht kräftigen Ausbildung auf den ersten Blick sofort zu erkennen und in allen vorliegenden Abbildungen aufs Deutlichste angegeben. Sie ist stets in der Einzahl vorhanden, liegt unmittelbar am inneren Rande der ihrem Interradius angehörigen Zwischenmundplatte (= Keilplatte oder »Odontophore«), also nahe am Scheibenrande, und zeichnet sich durch ihre gewölbte, oft knopfartig vorspringende, gefurchte Oberfläche aus. Wie ich an alten und jungen Scheiben feststellen konnte, ist ihre Lagebeziehung zu dem etwas exzentrischen After stets die typische; betrachtet man also die Scheibe von oben, so liegt sie in demjenigen Interradius, der links auf den Interradius des Afters folgt. Ihre Grösse hängt natürlich wesentlich vom Alter des Individuums ab. So fand ich ihren Durchmesser bei \(r = 3,5 \, \text{mm} \) erst 0,7 mm, bei \(r = 5 \, \text{mm} \) 0,9 mm gross, während derselbe bei \(r = 7 \, \text{mm} \) und \(r = 8 \, \text{mm} 1,5 \) mm und bei \(r = 8,5 \, \text{mm} \) und \(r = 10 \, \text{mm} 2,5 \, \text{mm} \) maass. Bei erwachsenen Thieren
schwankt ihr Durchmesser, wie auch Koehler (1896) gefunden hat, zwischen 2 und 3 mm, wobei individuelle Verschiedenheiten insofern bemerkbar werden, als bei gleicher Größe der Scheibe der Durchmesser der Madreporenplatte bald sich der einen bald der anderen Grenze jener Schwankung nähert. Es hat also, trotzdem im Allgemeinen die Größe der Madreporenplatte mit dem Alter zunimmt, doch nicht immer das älteste Individuum auch gerade die grösste Platte. Der Umriß der Platte ist in der Regel kreisrund; ihre von zahlreichen, unregelmässig verlaufenden, gebogenen Furchen durchsetzte Oberfläche ist stets frei von jeglicher Bestachelung und tritt bei den einen Exemplaren noch höher empor als bei den anderen. Bei der jüngsten mir vorliegenden Scheibe (r = 3,5 mm) besitzt die Platte an ihrem sonst kreisrunden Umfange einen nach aussen in interradialer Richtung gestellten, lappenförmigen Fortsatz, der ihr bei 0,7 mm Breite eine Länge von 0,9 mm giebt, aber selbst nicht mit Porenöffnungen besetzt ist. Dieser Fortsatz entspricht dem gleichen Fortsatz der primären Inter- radialplatten der übrigen Interradien und lässt deutlich erkennen, dass die Madreporenplatte hier durch Umbildung eines primären Interradiale entstanden ist. Später wird dieser Fortsatz in die sich vergrössernde Madreporenplatte aufgenommen.

Bell (1892) behauptet, dass die Gattung Brisinga keine »minor pedicellariae«, wohl aber zahlreiche »major pedicellariae« besitze. Genau das Umgekehrte ist, wie man längst weiss, das Richtige; die »minor pedicellariae«, d. h. gekrenzte Pedicellarien, sind in Unmengen vorhanden, während »major pedicellariae«, d. h. gerade Pedicellarien völlig fehlen.

Des Näheren sind bei Br. coronata die Pedicellarien, die alle die gleiche, winzige Größe haben, so vertheilt, dass man sie erstens auf wulstförmigen, etwas gewundenen Streifen antrifft, die quer über die Armrücken ziehen — mögen diese Wülste ganz weichhäftig sein oder von kalkigen, bestachelten Skeletstücke gestützt werden. Zweitens finden sich die Pedicellarien in dem häutigen Ueberzuge der Randstacheln der Adambulacralstacheln der Arme, drittens in dem häutigen Ueberzuge der Rückenstacheln der Scheibe und bei alten Thieren auch zwischen diesen Stacheln auf der Scheibennäckenhaut, viertens in dem häutigen Ueberzuge der Mundstacheln und endlich fünftens auf der Terminalplatte. An allen diesen Orten stehen die Pedicellarien in der Regel dicht gedrängt in ausserordentlich grosser Zahl, und an den Stacheln bildet die Pedicellarien führende Hülle gewöhnlich am freien Ende des Stachels einen dieses Ende überragenden, beutelförmigen Anhang. Die queren Pedicellarienwülste der Armrücken sind meistens so vertheilt, dass auf die Länge eines Wirbels fast genau zwei kommen, von denen jeder vierte seitlich zu einem Randstachel hinführt; es liegen also zwischen zwei aufeinander folgenden Randstacheln in der Regel drei Pedicellarienwülste. Nicht selten, namentlich in der Nähe der Armbasis, sind die Querwülste durch mehrfache Unterbrechungen in Stücke aufgelöst. Ferner rücken im distalen Abschnitt der Arme die Querwülste, die sich bis dicht an die Terminalplatte verfolgen lassen, oft verhältnismässig weiter auseinander, sodass auf die Länge eines Wirbels nur noch je einer kommt. Das Gleiche findet man häufig an jüngerer Armen bald in der ganzen Armlänge. Es kann demnach ein derartiges Verhalten keineswegs, wie Perrier (1894) zu meinen scheint, zur Kennzeichnung seiner Br. mediterranea

55*
als besonderer Art dienen. Auch KoeHLER weist neuerdings auf die grossen individuellen Verschiedenheiten in der Ausbildung der Pedicellarienquerwülste hin. Wenn er aber zugleich angiebt, dass die Wülste bei einzelnen Individuen sogar ganz fehlen, so möchte ich doch vermuten, dass das Exemplare waren, die beim Fange oder später arg misshandelt worden sind.

Von dem Baue der Pedicellarien hat Sars (1875, p. 21—22, Taf. 4, Fig. 23—30) eine ausführliche Darstellung gegeben, auf welche ich, da meine Beobachtungen durchaus damit übereinstimmen, hier nur zu verweisen brauche. Ich finde auf den Armen und an den Randstacheln der Arme die Länge der Pedicellarien = 0,078—0,093 mm, die Breite der geschlossenen Pedicellarien = 0,056 mm; dazu stimmt die Sars'sche Maassangabe von rund 0,1 mm Länge. Auch kann ich nur bestätigen, dass die Zangenstücke derjenigen Pedicellarien, die den Rückenstacheln der Scheibe und den Munddeckstacheln ansitzen, sich in der von Sars angegebenen Weise in der stärkeren Ausbildung der gezähnelten Innenplatte von den Pedicellarien der Arme unterscheiden; an den Adambularstacheln des proximalen Armabschnittes finde ich übrigens Pedicellarien, deren Zangenstücke in der Grösse und Form der gezähnelten Innenplatte eine Zwischenstellung zwischen denen des Armrückens und der Randstacheln einerseits und denen des Scheibenrückens und der Mundstacheln anderseits einnehmen.

Brisinga coronata.

437
	nördlich vom Cap Hatteras finden. Da aber eine nähere Prüfung des von Agassiz erwähnten zehnarmigen Exemplares nicht stattgefunden zu haben scheint¹), so erhebt sich der Zweifel, ob es sich dabei nicht vielmehr um die allerdings mit Br. coronata nahe verwandte, von Verrill²) als Br. costata bezeichnete Art des westlichen atlantischen Oceans handele.

Im Mittelmeer wurde die Br. coronata zuerst auf der Fahrt des Travailleur 1881 zwischen Marseille und Corsica gefunden. Kurz nachher — und noch bevor etwas von diesem Funde bekannt geworden war — wurde das erste Exemplar bei Neapel ausserhalb des Golfes in der Nähe von Capri am 31. Januar 1882 gefischt und mir von der dortigen zoologischen Station übersandt. Dem reichten sich dann einige weitere Funde der zoologischen Station zwischen Capri und Ischia an, während Cotombo bei seiner Durchforschung des neapolitanischen Golfes nirgends ein Exemplar antraf; die Art scheint also im Golfe selbst zu fehlen und erst ausserhalb desselben aufzutreten.

Stets findet sich die Art, oft gleichzeitig in mehreren Exemplaren, in beträchtlicher oder selbst sehr grosser Tiefe. Die oben erwähnten aussermittelmeerischen Fundorte liegen zwischen 400—2330 m. Im östlichen Mittelmeer ist der tiefste, bis jetzt bekannte Fundort 1770 m (in der Nähe der Küste von Tripolis), der niedrigste 129 m (bei der Insel Pelagosa in der südlichen Adria); die Mehrzahl der Fundorte des östlichen Mittelmeeres haben eine Tiefe von 500—1000 m. Die mir aus der Nähe des Golfes von Neapel vorliegenden Exemplare stammen aus Tiefen von 100—300 m (genauere Angaben der Tiefen fehlen leider). Die von Perrier aus dem westlichen Mittelmeer erwähnten Stücke wurden in Tiefen von 555—2660 m gefischt. Im Ganzen erstreckt sich also das verticale Verbreitungsgebiet von 100—2660 m.

Hinsichtlich der Bodenbeschaffenheit bevorzugt die Art in ganz entschiedener Weise reinen oder mit feinem Sand vermischten Schlammboden; nur ausnahmsweise wurde sie im östlichen Mittelmeer auf einem mit Steinen (Bimssteinen) oder Muschelbruchstücken vermengten Schlammboden angetroffen.

Nach Sars (1875) soll sich die Br. coronata von den verschiedensten Thieren ihrer Umgebung, insbesondere Ringelwürmern, Crustaceen, Mollusken und Rhizopoden, ernähren und zur Bewältigung grösserer Beutestücke ähnlich wie viele andere Seesterne die Fähigkeit besitzen, ihren Magen nach aussen zu stülpen. Indessen scheint Sars doch keine nähere Unter-

¹) In Perriers (1884) Bearbeitung der von den Fahrten des Blake' heimgeschwungenen Seesterne ist das Agassiz'sche Exemplar wohl deshalb nicht erwähnt, weil Perrier überhaupt nur die Ausbeute der beiden ersten Fahrten des Blake behandelt, nicht aber die der dritten Fahrt, auf der jenes Exemplar gefischt worden ist.
suchung des Mageninhaltes bei seinen Exemplaren vorgenommen zu haben. Diese Lücke habe ich an einem mittelmeerischen Exemplare auszufüllen versucht; ich fand in seinem Magen lediglich eine Menge von Foraminiferen.

Wenn aber derselbe Forscher weiter vermuthet, dass abgelöste Arme im Stande seien, eine neue Scheibe mit den übrigen Armen hervorzubringen, und sonach neben der geschlechtlichen auch eine ungeschlechtliche Vermehrung vorkomme, so ist dem doch entgegen zu halten, dass weder er noch Andere ein diese Vermuthung bestätigendes Exemplar, d. h. eine sog. Kometenform, gefunden haben.

Im Uebrigen hat die Art bekanntlich eine sehr hohe Regenerationsfähigkeit, durch welche sie den häufigen Verlust eines oder mehrerer Arme auszugleichen vermag. Dass die Arme in der Regel an derselben Stelle abbrechen, nämlich hart an der Scheibe zwischen dem zweiten und dritten Wirbel, also am dritten Füsschenpaare, und das mit solcher Leichtigkeit thun, dass die meisten erbeuteten Thiere sich sofort ihrer sämtlichen Arme entledigen, wird von allen Seiten (Sars, Perrier, v. Marenzeller, Koeher) übereinstimmend hervorgehoben. Unter natürlichen Verhältnissen scheinen aber vielleicht niemals die sämtlichen Arme auf einmal beseitigt zu werden, sondern immer nur einer oder mehrere in unregelmässiger Folge. So besitzt das eine mir von Neapel vorliegende, vollständige, achtarmige Exemplar drei grosse und fünf kleine Arme; die letzteren sind wieder unter sich ungleich lang, also auch ungleich alt, und so verheilt, dass zweimal ein kleiner Arm zwischen je zwei grossen steht, dann aber die drei anderen kleinen Arme unmittelbar aufeinander folgen. Ferner ist darauf hinzuweisen, dass unter den natürlichen Lebensbedingungen des Thieres die Arme keineswegs nur an ihrer Basis, sondern auch im Verlaufe ihrer Länge an beliebiger Stelle durchbrechen können und alsdann den Verlust durch Regeneration ersetzen. Sars hat bereits einen solchen Fall beschrieben, und mir liegen nicht weniger als vier Arme vor, die in weitem Abstande von ihrer Basis ihr ursprüngliches distales Ende verloren und durch eine Neubildung ersetzt haben. Mitunter kommt es sogar durch solchen theilweisen Verlust und Ersatz eines Armes zu der monströsen Bildung eines gegabelten Armes (s. Sars, 1875, Taf. 2, Fig. 3).

Für die Anatomie der Weichtheile verweise ich auf die Monographie von Sars (1875) und meinen Beitrag (1878).

In der nachstehenden Tabelle habe ich alles zusammengestellt, was wir bis jetzt über die Fortpflanzungszeit und die Jugendstadien wissen. Hoffentlich trägt diese lückenreiche Übersicht dazu bei, zu weiteren Forschungen auf diesem Gebiete anzuregen.
<table>
<thead>
<tr>
<th></th>
<th>Die Fortpflanzung fällt in die Monate:</th>
<th>Embryonale Entwicklung</th>
<th>Larve</th>
<th>Jungeste bis jetzt bekannte postlarvale Stadien</th>
<th>Spätere bekannte Jugendstadien</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Astropecten aurantiacus</td>
<td></td>
<td>?</td>
<td>Bipinnaria</td>
<td>junger Stern v. R = 20 mm</td>
</tr>
<tr>
<td>2.</td>
<td>Astropecten bispinosus</td>
<td></td>
<td>?</td>
<td>?</td>
<td>junger Stern v. R = 19 mm</td>
</tr>
<tr>
<td>3.</td>
<td>Astropecten spinulosus</td>
<td></td>
<td>?</td>
<td>?</td>
<td>junger Stern v. R = 22 mm</td>
</tr>
<tr>
<td>4.</td>
<td>Astropecten pentacanthus</td>
<td></td>
<td>?</td>
<td>Bipinnaria</td>
<td>junger Stern v. R = 10,5 mm</td>
</tr>
<tr>
<td>5.</td>
<td>Astropecten jonstoni</td>
<td></td>
<td>?</td>
<td>?</td>
<td>junger Stern v. R = 16 mm</td>
</tr>
<tr>
<td>6.</td>
<td>Luidia ciliaris</td>
<td></td>
<td>?</td>
<td>Bipinnaria, der H. asterigera ähnlich</td>
<td>junger Stern v. R = 0,52 mm</td>
</tr>
<tr>
<td>7.</td>
<td>Luidia sarsi</td>
<td></td>
<td>?</td>
<td>Bipinnaria asterigera</td>
<td>junger Stern v. R = 4 mm</td>
</tr>
<tr>
<td>8.</td>
<td>Plutonaster subinermis</td>
<td></td>
<td>?</td>
<td>?</td>
<td>junger Stern v. R = 3,5 mm</td>
</tr>
<tr>
<td>9.</td>
<td>Plutonaster bifrons</td>
<td></td>
<td>?</td>
<td>?</td>
<td>junger Stern v. R = 4,5 mm</td>
</tr>
<tr>
<td>10.</td>
<td>Odontaster mediterranens</td>
<td></td>
<td>?</td>
<td>?</td>
<td>junger Stern v. R = 9 mm</td>
</tr>
<tr>
<td>11.</td>
<td>Chaetaster longipes</td>
<td></td>
<td>?</td>
<td>?</td>
<td>junger Stern v. R = 4,5 mm</td>
</tr>
<tr>
<td>12.</td>
<td>Pentagonaster placenta</td>
<td></td>
<td>?</td>
<td>?</td>
<td>junger Stern v. R = 1,75 mm</td>
</tr>
<tr>
<td>13.</td>
<td>Pentagonaster hystricis</td>
<td></td>
<td>?</td>
<td>?</td>
<td>junger Stern v. R = 13,5 mm</td>
</tr>
<tr>
<td>14.</td>
<td>Marginaster capreensis</td>
<td></td>
<td>?</td>
<td>?</td>
<td>junger Stern v. R = 2,5 mm</td>
</tr>
<tr>
<td>15.</td>
<td>Asterina gibbosa</td>
<td></td>
<td>krieche Larve abgekürzte Entwicklung</td>
<td>bekannt</td>
<td>juenger Stern v. R = 2,5 mm</td>
</tr>
<tr>
<td>16.</td>
<td>Palmipes membranaceus</td>
<td></td>
<td>?</td>
<td>?</td>
<td>auflaufende Stadien von der Larve bis zum jungen Stern v. R = 1 mm und dann v. R = 2 mm bis zum erwachsenen Tiere</td>
</tr>
<tr>
<td>17.</td>
<td>Hacelia attenuata</td>
<td></td>
<td>?</td>
<td>?</td>
<td>junger Stern v. R = 2,2 mm</td>
</tr>
<tr>
<td>18.</td>
<td>Ophidiaster ophidianus</td>
<td></td>
<td>?</td>
<td>?</td>
<td>junger Stern v. R = 42 mm</td>
</tr>
<tr>
<td>19.</td>
<td>Echinaster sepositus</td>
<td></td>
<td>?</td>
<td>abgekürzte Entwicklung nur ein Bruchstück bekannt</td>
<td>junger Stern v. R = 5 mm</td>
</tr>
<tr>
<td>20.</td>
<td>Asterias tennispina</td>
<td></td>
<td>?</td>
<td>?</td>
<td>junger Stern v. R = 27 mm</td>
</tr>
<tr>
<td>21.</td>
<td>Asterias glacialis</td>
<td></td>
<td>krieche Larve abgekürzte Entwicklung</td>
<td>bekannt</td>
<td>junger Stern v. R = 2,05 mm</td>
</tr>
<tr>
<td>22.</td>
<td>Asterias edmundi</td>
<td></td>
<td>?</td>
<td>?</td>
<td>junger Stern v. R = 15 mm</td>
</tr>
<tr>
<td>23.</td>
<td>Asterias richardi</td>
<td></td>
<td>?</td>
<td>?</td>
<td>junger Stern v. R = 3,5 mm</td>
</tr>
<tr>
<td>24.</td>
<td>Brisinga coronata</td>
<td></td>
<td>?</td>
<td>?</td>
<td>junger Stern v. R = ? r = 1,15 mm</td>
</tr>
</tbody>
</table>
Dritter Abschnitt. Geographische Verbreitung.

1. Horizontale Verbreitung.

Uebersicht über das Vorkommen der mittelmeerischen Seesterne.

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Artenname</th>
<th>Verbreitung</th>
<th>Tiefen in Metern</th>
<th>Befruchtungs-Bodenbeschaffenheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Astropecten aurantiacus</td>
<td>+ + +</td>
<td>1—183 1—91 1—183</td>
<td>Sand oder Schlamm</td>
</tr>
<tr>
<td>2</td>
<td>Astropecten bispinosus</td>
<td>+ + Azoren</td>
<td>3—64 15—20 3—64</td>
<td>Schlamm und schlam-</td>
</tr>
<tr>
<td>3</td>
<td>Astropecten spinulosus</td>
<td>+ + Capverden, Azoren</td>
<td>4—55 4—55 9—320 9—320</td>
<td>Sand, Algen, See-</td>
</tr>
<tr>
<td>4</td>
<td>Astropecten pentacanthus</td>
<td>+ +</td>
<td>0—10 0—10 4—159</td>
<td>Schlamm, aber auch Sand</td>
</tr>
<tr>
<td>5</td>
<td>Astropecten jonstoni</td>
<td>+</td>
<td>4—159 1—159 4—150</td>
<td>Sand und Steine</td>
</tr>
<tr>
<td>6</td>
<td>Luidia ciliaris</td>
<td>+ südlich bis Capverden, nördlich bis Färöer</td>
<td>9—1292 9—684 35—1292</td>
<td>Schlamm oder Sand</td>
</tr>
<tr>
<td>7</td>
<td>Luidia sarsi</td>
<td>+ südlich fast zum Aquator, nördlich bis Golf von Biscaya</td>
<td>59—1425 59—1425 59—300</td>
<td>Sand und Schlamm mit</td>
</tr>
<tr>
<td>8</td>
<td>Plutonaster subinermis</td>
<td>+ +</td>
<td>im östlichen atlantischen Ocean von 19° bis 63° N. Br.</td>
<td>Schlamm oder Schlamm mit Sand und</td>
</tr>
<tr>
<td>9</td>
<td>Plutonaster bifrons</td>
<td>+ +</td>
<td>106—2525 106—2487 2020—2525</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Odontaster mediterraneus</td>
<td>+ +</td>
<td>414—1196 414—1196</td>
<td>Schlamm mit Sand</td>
</tr>
<tr>
<td>11</td>
<td>Chaetaster longipes</td>
<td>+ +</td>
<td>414—1196 414—1196</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Pentagonaster placenta</td>
<td>+ +</td>
<td>23—1139 65—1139 23—188</td>
<td>Sand und Detritus,</td>
</tr>
<tr>
<td>13</td>
<td>Pentagonaster hystricis</td>
<td>+ +</td>
<td>680—1710 1710 680—1196</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Marginaster capreensis</td>
<td>+ + zwischen Nordirland und Rockall</td>
<td>49—2487 2487 49—597</td>
<td>Sand oder Schlamm mit Steinen</td>
</tr>
<tr>
<td>15</td>
<td>Asterina gibbosa</td>
<td>+ + südlich bis 27°, nördlich bis 58° N. Br., westlich bis 30° W. L.</td>
<td>0—128 0—10 0—128</td>
<td>harter Boden, Steine, Felsen, Algen, See-</td>
</tr>
<tr>
<td>16</td>
<td>Palmipes membranaceus</td>
<td>+ + an den Westküsten Europas bis 39° N. Br.</td>
<td>9—600 9—200 20—600</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Hacelia attenuata</td>
<td>+ + Azoren</td>
<td>2—823 823 2—160</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Ophidiaster ophidianus</td>
<td>+ + Inseln des östlichen atlantischen Oceans (Guinea-Inseln, Kanaren, Madeira, Azoren)</td>
<td>1—105 1—3 1—105</td>
<td>harter Boden, Felsen, Steine, grober Sand,</td>
</tr>
<tr>
<td>19</td>
<td>Echinaster sepositus</td>
<td>+ + Küsten und Inseln des östlichen atlantischen Oceans von 19° bis 49° N. Br.</td>
<td>250 (1060) 1—60 1—250 (1060)</td>
<td>harter Boden, aber auch Sand und Schlamm, Algen, See-</td>
</tr>
<tr>
<td>20</td>
<td>Asterias tenuispina</td>
<td>+ + östlicher atlantischer Ocean von 14° bis 49° N. Br. (Capverden bis Azoren)</td>
<td>0—10 0—10 0—10</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Asterias glacialis</td>
<td>+ + Capverden bis Island, von 18° bis 70° N. Br.</td>
<td>1—180 1—180 1—100</td>
<td>steiniger, felsiger Boden</td>
</tr>
<tr>
<td>22</td>
<td>Asterias edmundi</td>
<td>+ + Golf von Biscaya</td>
<td>160—185 166 160—185</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Asterias richardi</td>
<td>+ + Capverden</td>
<td>100—710 225 100—710</td>
<td>Schlamm und Schlamm mit Steinen</td>
</tr>
<tr>
<td>24</td>
<td>Brisinga coronata</td>
<td>+ + im östlichen atlantischen Ocean von 19° bis 69° N. Br.</td>
<td>100—2660 100—2330 100—2660</td>
<td></td>
</tr>
</tbody>
</table>

1) Das Vorkommen in dieser beträchtlichen Tiefe beruht nur auf einer einzigen Angabe (s. p. 312), für deren Zuverlässigkeit wohl erst weitere Funde entscheidend sein werden.
Horizontale Verbreitung.

Palmipes membranaceus, Hacelia attenuata, Asterias glacialis, Asterias edmundi und Brisinga coronata.

Aus dem Gesagten folgt, dass wir für 22 von den 24 Mittelmeer-Arten behaupten können, dass sie aus dem östlichen atlantischen Ocean in das Mittelmeer eingewandert sind, während zwei Arten autochthone Mediterranformen darstellen.

Das Schema bringt deutlich zum Ausdruck, dass wir die 22 aus dem ostantlantischen Oecane eingewanderten Arten in vier Bündel zerlegen müssen. Die artenreichste Gruppe

Die 21 Arten, von denen wir sichere Fundorte ausserhalb des Mittelmeeres kennen, bewohnen daselbst sehr verschiedene grosse Bezirke des atlantischen Gebietes. Keine einzige Art scheint südwärts den Aequator zu überschreiten. Von Süd nach Nord hat der Verbreitungsbezirk der einzelnen Arten, in ganzen Breitengraden abgerundet, die folgende Ausdehnung:

<table>
<thead>
<tr>
<th>Art</th>
<th>Breitengrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astropecten aurantiacus</td>
<td>28—39°</td>
</tr>
<tr>
<td>Astropecten bispinosus</td>
<td>36—39°</td>
</tr>
<tr>
<td>Astropecten pentacanthus</td>
<td>15—39°</td>
</tr>
<tr>
<td>Luidia ciliaris</td>
<td>15—62°</td>
</tr>
<tr>
<td>Luidia sarsi</td>
<td>15—64°</td>
</tr>
<tr>
<td>Plutonaster subinermis</td>
<td>0—47°</td>
</tr>
<tr>
<td>Plutonaster bifrons</td>
<td>19—65°</td>
</tr>
<tr>
<td>Chaetaster longipes</td>
<td>4—40°</td>
</tr>
<tr>
<td>Pentagonaster placenta</td>
<td>36—47°</td>
</tr>
<tr>
<td>Pentagonaster hystrids</td>
<td>36—47°</td>
</tr>
<tr>
<td>Marginaster capreensis</td>
<td>36—57°</td>
</tr>
<tr>
<td>Asterina gibbosa</td>
<td>27—58°</td>
</tr>
<tr>
<td>Palmipes membranaceus</td>
<td>35—59°</td>
</tr>
<tr>
<td>Hacelia attenuata</td>
<td>36—39°</td>
</tr>
<tr>
<td>Ophidiaster ophidianus</td>
<td>0—39°</td>
</tr>
<tr>
<td>Echinaster sepositus</td>
<td>16—49°</td>
</tr>
<tr>
<td>Asterias tenuispina</td>
<td>14—40°</td>
</tr>
<tr>
<td>Asterias glacialis</td>
<td>15—70°</td>
</tr>
<tr>
<td>Asterias edmundi</td>
<td>36—47°</td>
</tr>
<tr>
<td>Asterias richardi</td>
<td>15—36°</td>
</tr>
<tr>
<td>Brisinga coronata</td>
<td>19—69°</td>
</tr>
</tbody>
</table>

Am weitesten nach Süden (bis zum Aequator) reicht demnach Plutonaster subinermis und Ophidiaster ophidianus. Dann folgt bis zu 4° n. Br. sich erstreckend Chaetaster longipes. Bis zu 19, 16, 15, 14° reichen südwärts Astropecten pentacanthus, Luidia ciliaris, Luidia sarsi, Plutonaster bifrons, Echinaster sepositus, Asterias tenuispina, Asterias glacialis, Asterias richardi und Brisinga coronata. Bis zu 27 und 28° gehen Astropecten aurantiacus und Asterina gibbosa. Da gegen dehnt sich bei Astropecten bispinosus, Pentagonaster placenta, Pentagonaster hystrics, Mar-
Pentagonaster capreensis, Palmipes membranaceus, Hacelia attenuata und Asterias edmundi das Verbreitungsgebiet südwests kaum über den Breitengrad der Strasse von Gibraltar aus.

Will man die Mittelmeer-Arten in nordische und subtropische zerlegen, so müsste man die Trennungslinie etwa an dem Nordende des Golfes von Biscaya ziehen und demgemäß Asterias glacialis, Brisinga coronata, Plutonaster bifrons, Luidia ciliaris, Luidia sarsi, Palmipes membranaceus, Asterina gibbosa und Marginaster capreensis als nordische, alle übrigen Arten als subtropische bezeichnen.

Auch in der süd-nördlichen Gesamtausdehnung ihres Verbreitungsgebietes überträgt Asterias glacialis alle anderen Arten, denn sie erstreckt sich über den Bereich von 55 Breitengraden. Bringt man alle Arten in dieser Hinsicht in eine Tabelle, so ergibt sich, dass sich über höchstens 10 Breitengrade ausdehnen Astropecten bispinosus und Hacelia attenuata, über höchstens 20 Grade Astropecten aurantiacus, Pentagonaster placenta, Pentagonaster hystericis und Asterias edmundi, über nicht mehr als 30 Grade Astropecten pentacanthus, Marginaster capreensis, Palmipes membranaceus, Asterias tennispina und Asterias richardi, über höchstens 40 Grade Chaetaster longipes, Asterina gibbosa, Ophiaster ophidianus und Echinaster sepositus, über höchstens 50 Grade Luidia ciliaris, Luidia sarsi, Plutonaster subinermis, Plutonaster bifrons und Brisinga coronata und endlich über mehr als 50 Grade Asterias glacialis.

In östlicher Richtung dehnt sich der aussermittelmeerische Verbreitungsbezirk am weitesten aus bei Luidia ciliaris, Luidia sarsi, Asterias glacialis (bis in das Skager Rak) und Brisinga coronata (bis zu den Lofoten).

In den nördlichen Theil der Nordsee dringen nur ein Luidia ciliaris, Luidia sarsi, Palmipes membranaceus und Asterias glacialis, während der südliche Theil der Nordsee keine einzige der mittelmeerischen Arten aufweist.
2. Verticale Verbreitung.

In verticaler Richtung ergiebt sich aus allen bis jetzt bekannten mittelmeerischen Fundorten, dass die Mehrzahl der Arten der litoralen Zone (0—300 m) gehört. Hier finden wir nicht weniger als vierzehn Arten, die ausschliesslich in dieser Zone leben, nämlich *Astropecten aurantiacus, Astropecten bispinosus, Astropecten spinulosus, Astropecten jonstoni, Luidia ciliaris, Plutonaster subinermis, Chaetaster longipes, Pentagonaster placenta, Asterina gibbosa, Hacelia attenuata, Ophidiaster ophidianus, Echinaster sepositus, Asterias tenuispina und Asterias glacialis.* Ferner kommen in der litoralen Zone noch fünf weitere Arten vor, die zugleich der continentalen Zone (301—1000 m) angehören: *Astropecten pentacanthus, Marginaster capreensis, Palmipes membranaceus, Asterias richardi und Asterias edmundi,* und endlich noch zwei Arten, *Luidia sarsi und Brisinga corona,* die aus der litoralen Zone bis in die abyssale (mehr als 1000 m) hinabreichen. Es fehlen also in der Litoralzone von allen 24 Arten nur drei, nämlich die beiden, nur continental und abyssal gefundenen Arten *Odontaster mediterraneus* und *Pentagonaster hystricis* und die einzige, ausschliesslich in abyssalen Tiefen gefischte Art *Plutonaster bifrons.* Die continentalen Zone besitzt keine einzige ihr allein zukommende Art, sondern wird nur von Formen bewohnt, die entweder auch litoral oder auch abyssal leben. Eine besondere continentale Seesternfauna lässt sich demnach im Mittelmeer nicht abgrenzen, wenigstens dann nicht, wenn man eine Tiefe von 300 m als obere Grenze der Continentalzone annimmt. Anders stellt sich aber die Sache, wenn man diese Grenze erheblich höher rückt und auf 100 m Tiefe verlegt. Dann haben wir immerhin sechs Arten: *Plutonaster bifrons, Odontaster mediterraneus, Pentagonaster hystricis, Asterias edmundi, Asterias richardi und Brisinga corona,* die in geringerer Tiefe als 100 m fehlen und von denen zwei, *Asterias edmundi* und *richardi,* bis in die abyssalen Tiefen nicht hinabzugehen scheinen.

Eine besondere abyssale Seesternfauna lässt sich im Mittelmeer, wie das v. Marenzeller (1895) bereits für die Echinodermen überhaupt dargethan hat, nicht nachweisen; denn die einzige Art, *Plutonaster bifrons,* die daselbst bis jetzt nur aus mehr als 1000 m Tiefe bekannt ist, kommt ausserhalb des Mittelmeeres auch in der continentalen und in der litoralen Zone vor. Betrachtet man die Tabelle, in die ich alle Mittelmeer-Arten nach den Tiefen ihrer Fundorte eingetragen habe, so wird sofort ersichtlich, dass man eine faunistische Grenzlinie nur an einer Stelle, nämlich an der 100 m-Linie, ziehen kann. Die sechs Arten, die nach oben diese Linie nicht überschreiten, können wir als Arten des tiefen Wassers den übrigen 18 im niedrigen Wasser, d. h. in Tiefen von 0—100 m lebenden, gegenüberstellen.

In derselben Tabelle sind die ausserhalb des Mittelmeeres bekannten Tiefen mit einer dünmen, rechts neben der Hauptlinie stehenden Linie angemerkt. Sieben Arten steigen ausserhalb des Mittelmeeres in grössere Tiefen hinab als im Mittelmeer: *Asterias glacialis, Chaetaster longipes, Pentagonaster placenta, Hacelia attenuata, Plutonaster subinermis, Marginaster capreensis, Pentagonaster hystricis.* Dagegen gehen ungekehrt zehn Arten im Mittelmeer in grössere
Verticale Verbreitung.

Tiefen-Tabelle der mittelmeerischen Seesterne.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0—100</td>
<td></td>
</tr>
<tr>
<td>100—200</td>
<td></td>
</tr>
<tr>
<td>200—300</td>
<td></td>
</tr>
<tr>
<td>300—400</td>
<td></td>
</tr>
<tr>
<td>400—500</td>
<td></td>
</tr>
<tr>
<td>500—600</td>
<td></td>
</tr>
<tr>
<td>600—700</td>
<td></td>
</tr>
<tr>
<td>700—800</td>
<td></td>
</tr>
<tr>
<td>800—900</td>
<td></td>
</tr>
<tr>
<td>900—1000</td>
<td></td>
</tr>
<tr>
<td>1000—1100</td>
<td></td>
</tr>
<tr>
<td>1100—1200</td>
<td></td>
</tr>
<tr>
<td>1200—1300</td>
<td></td>
</tr>
<tr>
<td>1300—1400</td>
<td></td>
</tr>
<tr>
<td>1400—1500</td>
<td></td>
</tr>
<tr>
<td>1500—1600</td>
<td></td>
</tr>
<tr>
<td>1600—1700</td>
<td></td>
</tr>
<tr>
<td>1700—1800</td>
<td></td>
</tr>
<tr>
<td>1800—1900</td>
<td></td>
</tr>
<tr>
<td>1900—2000</td>
<td></td>
</tr>
<tr>
<td>2000—2100</td>
<td></td>
</tr>
<tr>
<td>2100—2200</td>
<td></td>
</tr>
<tr>
<td>2200—2300</td>
<td></td>
</tr>
<tr>
<td>2300—2400</td>
<td></td>
</tr>
<tr>
<td>2400—2500</td>
<td></td>
</tr>
<tr>
<td>2500—2600</td>
<td></td>
</tr>
<tr>
<td>2600—2700</td>
<td></td>
</tr>
<tr>
<td>2700—2800</td>
<td></td>
</tr>
</tbody>
</table>
Tiefen als ausserhalb desselben: Astropecten aurantiacus, Asterina gibbosa, Ophidiaster ophidianus, Echinaster sepositus, Asterias edmundi, Asterias richardi, Palmipes membranaceus, Astropecten pentacanthus, Luidia sarsi, Brisinga coronata.

Mit Hinsicht auf die obere Grenze ihres mittelmeerischen Wohngebietes lassen sich als eigentliche Strandbewohner, die unmittelbar unter dem Wasserspiegel angetroffen werden, nur drei Arten bezeichnen: Asterina gibbosa, Asterias tenuispina und Astropecten jonstoni, zu denen sich in der geringen Tiefe von 1—2 m Asterias glacialis, Astropecten aurantiacus, Ophidiaster ophidianus und Echinaster sepositus gesellen. Dann folgen zunächst in 2—5 m Tiefe Astropecten bispinosus, Astropecten spinulosus, Luidia ciliaris, Hacelia attenuata und in 5—10 m Astropecten pentacanthus. In 10—50 m beginnt das Wohngebiet von Palmipes membranaceus, Luidia sarsi, Pentagonaster placenta und Chaetaster longipes, und in 50—100 m treten Plutonaster subinermis und Marginaster capreensis auf. Erst in einer Tiefe von 100—200 m stellen sich Asterias edmundi, Asterias richardi und Brisinga coronata ein, und in 200—500 m schliesst sich Odontaster mediterraneus an. Endlich, in mehr als 500 m, finden sich Pentagonaster kystricus und Plutonaster bifrons.

Die Differenz zwischen der oberen und der unteren Grenze der vertikalen Verbreitung beträgt im Mittelmeer weniger als 100 m bei Astropecten bispinosus, Astropecten spinulosus, Astropecten jonstoni, Pentagonaster placenta, Asterias tenuispina, Asterias glacialis; 100—500 m bei Astropecten aurantiacus, Luidia ciliaris, Plutonaster subinermis, Chaetaster longipes, Asterina gibbosa, Hacelia attenuata, Ophidiaster ophidianus, Echinaster sepositus und Asterias edmundi; 500—1000 m bei Astropecten pentacanthus, Plutonaster bifrons, Odontaster mediterraneus, Pentagonaster kystricus, Marginaster capreensis, Palmipes membranaceus und Asterias richardi; 1000—2000 m bei Luidia sarsi; mehr als 2000 m bei Brisinga coronata.

3. Bodenbeschaffenheit.

Nach der Beschaffenheit des Bodens, auf dem sie vorzugsweise leben, kann man die mittelmeerischen Seesterne in drei Gruppen bringen. Die erste Gruppe besteht aus eigentlichen Schlammliebhabern; dahin gehören Astropecten bispinosus, Astropecten pentacanthus,

Zwischen reichem Pflanzenwuchs (Algen, See-gras) finden sich namentlich Astropecten bispinosus, Astropecten spinulosus, Pentagonaster placenta, Asterina gibbosa, Echinaster sepositus und Asterias tenuispina.
Vierter Abschnitt. Systematische Ergebnisse.

Es ist vielleicht nicht ohne Interesse, der Übersicht über die systematischen Ergebnisse eine Tabelle voraus zu schicken, in welcher die Arten nach ihrer Maximalgröße geordnet sind.

<table>
<thead>
<tr>
<th>Maximallänge:</th>
<th>Namen der Art:</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>840</td>
<td>Asterias glacialis</td>
</tr>
<tr>
<td>830</td>
<td>Brisinga coronata</td>
</tr>
<tr>
<td>630</td>
<td>Luidia ciliaris</td>
</tr>
<tr>
<td>550</td>
<td>Astropecten aurantiacus</td>
</tr>
<tr>
<td>480</td>
<td>Ophidiaster ophidianus</td>
</tr>
<tr>
<td>440</td>
<td>Plutonaster subinermis</td>
</tr>
<tr>
<td>310</td>
<td>Luidia sarsi</td>
</tr>
<tr>
<td>300</td>
<td>Echinaster sepositus</td>
</tr>
<tr>
<td>270</td>
<td>Hacelia attenuata</td>
</tr>
<tr>
<td>200</td>
<td>Chaetaster longipes</td>
</tr>
<tr>
<td>200</td>
<td>Palmipes membranaceus</td>
</tr>
<tr>
<td>190</td>
<td>Astropecten bispinosus</td>
</tr>
<tr>
<td>180</td>
<td>Astropecten pentacanthus</td>
</tr>
<tr>
<td>170</td>
<td>Asterias tenuispina</td>
</tr>
<tr>
<td>165</td>
<td>Plutonaster bifrons</td>
</tr>
<tr>
<td>160</td>
<td>Pentagonaster placenta</td>
</tr>
<tr>
<td>100</td>
<td>Astropecten spinulosus</td>
</tr>
<tr>
<td>90</td>
<td>Asterias edmundi</td>
</tr>
<tr>
<td>70</td>
<td>Asterias richardi</td>
</tr>
<tr>
<td>70</td>
<td>Astropecten jonstoni</td>
</tr>
<tr>
<td>70</td>
<td>Asterina gibbosa</td>
</tr>
<tr>
<td>68</td>
<td>Odontaster mediterraneus</td>
</tr>
<tr>
<td>52</td>
<td>Pentagonaster hystricis</td>
</tr>
<tr>
<td>20</td>
<td>Marginaster capreensis</td>
</tr>
</tbody>
</table>

Zur besonderen Befriedigung gereicht es mir, dass ich, abgesehen von der Bastardform Palmipes lobianci, keine einzige neue Species aufzustellen brauchte, dagegen in der Lage

Im Einzelnen gelangte ich in Betreff der Arten und Varietäten zu den im Folgenden zusammengestellten Resultaten.

Chaetaster. Risso’s Asterias verrucosa gehört zu Chaetaster longipes (Retz.).

Marginaster. Marginaster limbrinatus Sladen gehört zu M. capreensis (Gasco).

Asterina. Asterias minuta Olivi, Asterias umbilicata Konrad, Asterias minima Verany und wahrscheinlich auch Asterias membranacea Risso sind identisch mit Asterina gibbosa (Pen-
Asteriscus arecifensis Greeff fällt ebenfalls mit A. gibbosa zusammen. — Asteriscus pancerii Gasco ist eine Varietät derselben Art.

Ophidiaster. Ophidiaster canariensis Greeff gehört zu O. ophidianus (Lm.).

Was die Gattungen anlangt, so mussten Astrella Perrier und Marthasterias Jullien gestrichen werden; jene, weil sie auf eine Jugendform der Ludia sarsi gegründet ist; diese, weil sie auf einer irrrthümlichen Auffassung von Exemplaren der Asterias glacialis beruht. Auch die Abgrenzung einer besonderen Gattung Tethyaster Sladen konnte wenigstens für die in Betracht kommende mittelmeerische Art Plutonaster subinermis nicht als berechtigt anerkannt werden. Dagegen wurde von der Gattung Ophidiaster die Gray'sche Untergattung Hacelia als selbständige Gattung abgetrennt. Die Gattung Odontaster wurde an die Archasteriden ange- schlossen. Für die Gattung Chaetaster ergab sich eine Veränderung ihrer systematischen Stellung durch den Nachweis einer unpaaren oberen und unteren Randplatte und der Be-
schränkung der Papulacae auf die Dorsalseite des Körpers; sie kann nicht länger zu den Linckiiden gerechnet werden, sondern stellt sich als Vertreter einer neuen (provisorischen) Familie der Chaetasteriden dar, die sich am nächsten an die Archasteriden anreihet. *Echinaster* erwies sich in der Anordnung der Papulaceae als eine stenopneustische Form.

Wenn man unter den heute lebenden Seesternen nach einer Form sucht, die der hypothetischen Stammform der Seesterne möglichst nahe steht, also die relativ älte...
Systematische Ergebnisse.

darstellt, so muss man meines Erachtens verlangen, dass sie die folgenden Merkmale besitzt: erstens deutliche Randplatten; zweitens Beschränkung der Papulae auf den proximalen Abschnitt der Armücken; drittens gut entwickelte primäre Scheitelplatten und Terminalplatten; viertens eine selbständige Madreporenplatte; fünftens ein regelmässiges, nur aus Radialplatten oder allenfalls auch noch Adradialplatten gebildetes Armrückenskelet; sechstens eine allgemeine Granulation oder gleichmässige Bestachelung der Haut, aber noch keinerlei Pedicellarien; siebentens noch keine oder nur im Armwinkel stehende Ventrolateralplatten; endlich achtens noch keine Zusammendrängung der Füsschen zu vierzeiliger Anordnung.
Fünfter Abschnitt. Morphologische Ergebnisse.

1. Allgemeine Wachstumsverhältnisse. Durch die genauen Messungen junger, halbwüchsiger und erwachsener Individuen, sowie durch das Studium der Skeletentwicklung ergab sich für alle Arten, dass die Arme an ihrer Spitze wachsen, indem sich die neuen Skeletplatten (dorsale, marginale, adambulacrale und ambulacrale) an der in allen Stadien unabhängig die Armspitze einnehmenden Terminalplatte anlegen. Der proximale Armabschnitt ist immer der älteste, der distale immer der jüngste; nur die Terminalplatte ist noch älter als alle beide. Das distale Armstück wiederholt, solange der Seestern seine Maximalgrösse noch nicht erreicht hat, in seinem ganzen Aufbaue die Verhältnisse des jugendlichen Armes und hält sie selbst dann noch in den Grundzügen fest. Will man also eine Jugendform auf eine bestimmte, bis dahin nur in erwachsenen Exemplaren bekannte Art beziehen oder irgend eine zweifelhafte Art als Jugendform einer andern erklären,

Anfänglich, bei der Umbildung der Larve in den jungen Seestern, wird zunächst die spätere Scheibe angelegt; dann erst bilden sich die Arme. Bei allen Arten wachsen die Arme rascher als die Scheibe, aber doch je nach den Arten in sehr ungleichem Maasse. Ueberwiegt die Wachstumsschnelligkeit der Arme nur wenig diejenige der Scheibe, so behält das Thier die pentagonale oder annähernd pentagonale Gestalt, die es schon in der ersten Jugend beim Beginne der Armentwicklung angenommen hatte; übertrifft aber die Schnelligkeit, mit der die Arme sich vergrößern, erheblich diejenige, mit der die Scheibe wächst, so entstehen langarmige Sterne. Bei *Hacelia attenuata* z. B. wächst der Arm von dem jüngsten bekannten Jugendstadium an bis zum alten Thiere zweimal, bei *Asterias glacialis*, *Echinaster sepositus*, *Chaetaster longipes* mehr als dreimal so rasch wie die Scheibe, und noch sehr viel schneller wächst er bei *Brisinga coronata*, bei der schliesslich der Armradius 40 mal so gross werden kann wie der Scheibenradius. Aus der verschiedenen Schnelligkeit in der Größenzunahme des Armradius und des Scheibenradius ergibt sich, dass bei keiner Seesternart das in der Diagnose herkömmlicherweise aufgeführte Verhältniss r : R die Bedeutung einer constanten Grösse hat, sondern sich mit dem Alter zu Gunsten von R ändert, also auch für Bestimmungszwecke nur einen relativen Werth besitzt, der namentlich bei langarmigen Formen fast gar nichts besagt, wenn nicht zugleich wenigstens die Gesamtlänge des gemessenen Exemplares angegeben wird. Auch die einfache Angabe des Verhältnisses der basalen Armbreite zur Länge des Armradius hat für sich allein wenig Werth, da auch in ihm der Werth von R mit dem Alter zunimmt, also die Armbreite verhältnissmässig um so grösser ausfällt, je jünger das Thier ist.

2. Das Dorsalskelet der Scheibe lässt sich bei aller Mannigfaltigkeit seiner Ausbildung auf eine Grundform zurückführen, die für sämtliche Seesterne zu gelten scheint und sich sowohl entwicklungs geschichtlich als auch auf vergleichend-anatomischem Wege nachweisen lässt. Diese Grundform setzt sich aus elf Platten zusammen, von denen eine die Mitte einnimmt und deshalb das Centrale heisst; die zehn übrigen ordnen sich um das Centrale zu einem inneren und einem äusseren Kranze. Die fünf Platten des inneren Kranzes liegen in der Richtung der Interradien, weshalb wir sie die primären Interradialplatten nannten. Die fünf Platten des äusseren Kranzes fallen in die Richtung der Radien und werden später zu den an den Armspitzen befindlichen unpaaren Endplatten, die wir deshalb als die Terminalia bezeichneten. Alle diese elf Platten schliessen anfänglich dicht aneinander. Das
Centrale C ist ursprünglich gleichseitig pentagonal umrandet, mit radial gerichteten Ecken und interradial gestellten Seiten. Auch die primären Interradialien JR1 stellen Pentagone dar, aber mit ungleich grossen Seiten: die proximale Seite grenzt an eine Seite der Centralplatte; die gegen-überliegende Ecke fällt in eine Interradiallinie; von den beiden lateralen Seiten dient die kürzere, proximale zur Verbindung mit der benach-}

barten primären Interradialplatte, während die längere, distale an die Terminalplatte T anstösst. Der Aft von A entwickelt sich stets zwischen dem Centrale und einer primären Interradialplatte. Die Madre-porenplatte Md aber entsteht am distalen Ende der zunächst nach links folgenden Interradialplatte oder wird durch eine Umbildung dieser Platte selbst geliefert (s. p. 467). Wir können also den ganzen ursprünglichen Aufbau der Dorsalseite der Seesterne in obiges Schema bringen.

den ebenso gestalteten und frühzeitig in grosser Zahl auftretenden secundären Scheitelplatten so ähnlich sehen, dass sie sich nicht mehr mit Bestimmtheit herausfinden lassen.

Das anfängliche gegenseitige Zusammenstossen der später auseinander gerückten primären Interradialia konnte bei den Jungen von Pentagonaster placenta, Asterina, Palmipes, Hacelia, Asterias glacialis dargethan werden und findet sich nach Perrier's Beobachtungen auch bei Brisinga.

Centroradialia konnten wir bei Chaetaster, Marginaster, Asterina, Palmipes, Hacelia, Ophidiaster, Echinaster, Asterias wahrnehmen, und auch bei Brisinga fehlen sie nicht. Stets treten sie früher auf, als irgend welche andere secundären Scheitelplatten, folgen also zeitlich unmittelbar auf die primären Interradialplatten und die Centralplatte. Indessen gehen ihnen die primären Radialplatten des Armrückenskeletes voran. Das secundäre Scheitelskelet, als dessen Anfänge wir die Centroradialia betrachten müssen, beginnt also seine Entwicklung später als das dorsale Armskelet. Auch weiterhin bleibt es in der Schnelligkeit seines Wachsthumes und in seiner räumlichen Ausdehnung stets hinter dem Dorsalskelet der Arme zurück. Bei Marginaster, Echinaster juv., Hacelia juv. und Asterias verbinden die Centroradialia die proximalen lateralen Randlappen je zweier primären Interradial-
Morphologische Ergebnisse.

Sind die Centroradialplatten angelegt, dann schieben sich weitere secundäre Scheitelplättchen, wo sie überhaupt vorkommen, in der Regel in adcentraler Richtung zwischen die Centroradialplatten und die Centralplatte oder auch zwischen die primären Interradialplatten und die Centralplatte ein. Diese secundären Plättchen erinnern häufig, ebenso wie die Centroradialia selbst, durch den Umstand, dass sie sich von innen her mit ihren Enden den schon vorhandenen Platten anlegen, an die Connectivplatten des Armskeletes (namentlich bei *Marginaster, Hacelia, Ophidiaster*). Bald können die secundären Plättchen das ganze Scheitelfeld ausfüllen (*Odontaster, Pentagonaster, Chaetaster, Astrophyten, Luidia, Plutonaster*), bald beschränken sie sich in Zahl und Stellung und ordnen sich dann so, dass sie das ursprüngliche Scheitelfeld in secundäre Scheitelfelder zerlegen, die gewöhnlich in interradialer Richtung liegen (*Echinaster, Hacelia, Ophidiaster, Asterias*).

Die Afteröffnung fanden wir immer an ihrer typischen Stelle zwischen dem Centrale und der rechts von der Madreporenplatte gelegenen primären Interradialplatte (*Asterina, Palmipes, Marginaster, Pentagonaster, Hacelia, Ophidiaster, Echinaster, Asterias*). Das Afterfeld entsteht entweder aus dem ganzen ursprünglichen Scheitelfeld (bei *Asterina*) oder aus zwei zusammenfließenden secundären Scheitelfeldern (bei *Palmipes*), oder aus anderthalb secundären Scheitelfeldern (bei *Ophidiaster*), oder aus nur einem einzigen secundären Scheitelfeld (bei *Marginaster, Echinaster, Hacelia, Asterias glacialis* und *A. richardi*).

3. Die Terminalplatte der Arme ist stets ein einheitliches Skeletstück, welches diesen Charakter niemals, weder im jugendlichen noch im erwachsenen Zustande aufgibt. Ihre erste Anlage geschicht so frühzeitig, dass sie unter den sämtlichen Skeletplatten des Armes die älteste ist. Auch bei langarmigen Seesternen tritt sie schon zu einer Zeit auf, in der man von freien Armen noch gar nicht sprechen kann. Es bilden nämlich in dem noch kreisrund oder pentagonal ungenügend jüngsten Stadium des Seesternes die Terminalplatten in engem Zusammenschlusses mit den primären Interradialplatten und der Centralplatte das ganze Dorsalskelet des Körpers und berühren sich unter einander in den Interradien. Immer sind sie älter als die Randplatten und die Armrückenplatten. Erst durch deren Entwicklung werden sie aus ihrer anfänglichen unmittelbaren Nachbarschaft mit den primären Interradialplatten weiter und weiter hinweggedrängt. Sie stellen also ursprünglich Bestandtheile des Scheitelskeletes dar, obgleich wir sie später an der Spitze der Arme antreffen. Das ganze übrige, aus den Rand- und Rückenplatten gebildete Armskelet ist nur ein Einschub zwischen die Terminalplatte und die primären Interradialplatten, aber ein Einschub,
Morphologische Ergebnisse.

der in seinem distalen Bezirke, also dicht an der Terminalplatte, immer weiter wächst und so diese Platte gewissermaassen vor sich her treibt. Anfangs sind die Terminalplatten stets breiter als lang und im Vergleiche zu den Maassen des ganzen jungen Thieres erheblich grösser als beim erwachsenen Thiere. Es findet zwar später eine manchmal sogar ziemlich beträchtliche Grössenzunahme der Terminalplatte statt, aber die Platte bleibt doch immer, auch da, wo sie schliesslich zu einer recht ansehnlichen Grösse gelangt, in der Schnelligkeit ihres weiteren Wachstumes hinter dem Wachstum des ganzen Thieres zurück (vgl. die Maassangaben bei Marginaster capreensis, Asterina gibbosa, Palmipes membranaceus, Hacelia attenuata, Echinaster sepositus).

Ihre Grundform, die breiter als lang ist und ungefähr einen Halbkreis darstellt, der seine gerade Seite nach dem Mittelpunkte der Scheibe richtet, wird nicht selten dauernd festgehalten, oft aber in der Weise abgeändert, dass die proximale, anfänglich gerade Seite entweder sich zuspitzt (z. B. bei Pentagonaster und Odontaster) oder sich abrundet (z. B. bei Ophiidiaster ophiidians) oder aber sich einbuchtet (z. B. bei Plutonaster, Marginaster, Asterina, Palmipes, Hacelia); ist dieEinbuchtung sehr tief, so zerlegt sie den proximalen Theil der Platte in zwei flügelförmige Fortsätze (z. B. bei Luidia). Bei diesen Umänderungen wird dann auch noch sehr häufig das anfängliche Verhältniss von Länge und Breite in das Gegentheil verkehrt, so dass die Platte schliesslich ebenso lang oder länger als breit ist, während sie beim jungen Thiere breiter als lang war, so z. B. bei Luidia ciliaris, Plutonaster subinermis, Pentagonaster placenta, Palmipes membranaceus, Hacelia attenuata. Dagegen bleibt sie andauernd breiter als lang bei den Astrophycten-Arten, bei Chaetaster longipes, Marginaster capreensis, Asterina gibbosa, Echinaster sepositus und den Asterias-Arten.

An ihrer Unterseite entwickelt die Terminalplatte schon sehr früh eine Längsrinne, die beim weiteren Wachstum des Thieres immer deutlicher ausgebildet wird und durch einen Vorsprung ihrer beiden Ränder gewöhnlich in zwei aufeinander folgende, aber nur unvollständig getrennte Abschnitte zerlegt wird, von denen der distale zur Aufnahme des Fühlers und des Auges dient und als die sensorielle Nische von dem proximalen unterschieden werden kann, der die jüngsten Füsschen beherbergt und deshalb als die locomotorische Nische bezeichnet werden mag (vgl. z. B. Luidia ciliaris, Marginaster, Pentagonaster placenta, Hacelia, Ophiidiaster, Asterias, Brisingia).

Seitlich grenzt die Terminalplatte in allen Fällen an die jüngsten oberen und unteren Randplatten und ventral an die jüngsten Ambulacral- und Adambulacralplatten. Wird sie
von ihrer Verbindung mit den Armückenplatten durch Zusammenstoss der oberen Randplatten ausgeschlossen (z. B. bei Pentagonaster placenta), so erfolgt dieser Ausschluss erst im Laufe der späteren Entwicklung und stellt demnach kein ursprüngliches Verhältniss dar.

Die Adradialplatten werden nur selten, z. B. bei *Asterias glacialis*, zahlreicher als die Radialplatten. Indessen scheint überhaupt bei der Gattung *Asterias* die anderswo herrschende Ordnung in der Zahl und Lagerung der Adradialplatten in einer Auflösung begriffen zu sein, die bei *A. edmundi* schon den Eindruck einer Verflüsserung macht und sich auch bei *A. tensispina* darin ausdrückt, dass fast immer nur auf je zwei Radialplatten eine Adradialplatte kommt. Daran schliesst sich *Brisinga* mit ihrem völligen Mangel der Adradialplatten an. Ob sie auch bei *Marginaster* ganz in Wegfall gekommen sind, kann man bezweifeln, weil die beiden bei dieser Art als Interbrachialplatten bezeichneten Skeletstücke durch die Art ihrer Verbindung untereinander und mit den Interradial- und oberen Randplatten auch ihre
Morphologische Ergebnisse.

463

Deutung als eine adorale und eine dorsolaterale Platte zulassen. Die erste = älteste Adradialplatte schiebt sich ähnlich wie die primäre Radialplatte über den Rand der primären Interradialplatte hinüber, kann aber ebenfalls in der späteren Entwicklung von ihr abgedrängt werden (Asterias, Echinaster, Ophiaster). Anfänglich bilden also die primären Interradialplatten gewissermassen die Basis, auf die sich das dorsale Armsgeset stützt.

In den Interradien kann sich nach aussen von den primären Interradialplatten eine unpaare Plattenreihe ausbilden (Chaetaster, Asterina, Palmipes, Echinaster), die jedoch in anderen Fällen Hacelia, Ophiaster und Asterias gar nicht zur Entwicklung kommt. Ob man diese Platten als zweite, dritte u. s. w. Interradialplatte oder als unpaare Dorsolateralplatten (ähnlich den unpaaren Ventrolateralplatten) bezeichnet, ist wohl ziemlich gleichgültig.

Bei Hacelia und Ophiaster vermögen sie gleichfalls die Verbindung der dorsalen Armplatten untereinander und mit den oberen Randplatten, kommen aber auch noch zwischen den letzteren und den unteren Randplatten vor. Endlich treten auch bei jungen Thieren von Echinaster sepositus deutliche Connectivplättchen zwischen den Dorsalplatten des Armes auf, bleiben aber hier später bei der Regellosigkeit, die das Dorsalskelet der alten Thiere darbietet, nicht mehr sicher von den anderen Platten unterscheidbar.

In allen Fällen sind die Connectivplatten quer zur Längsrichtung des Armes gestellt. Nur ausnahmsweise sahen wir bei Hacelia attenuata s. p. 279 Anm.) auch einmal ein longitudinalhes Connectiv im ältesten Bezirke des Armrückens auftreten. Stets sind die Connective jünger als die durch sie verbundenen Platten, wovon wir uns bei Marginaster, Hacelia, Ophiaster, Echinaster und Asterias überzeugen konnten. Ihr Auftreten scheint wesentlich durch die Entwicklung der Papulac bedingt zu sein. Wie Keile treiben sie die anfänglich dichter zusammenschliessenden Dorsalplatten auseinander, um so den nöthigen Raum für die Ausbildung der Athmungsorgane zu schaffen.
Bei *Palmipes* begegneten wir im Bereiche der medianen Armrückenstreifen kleinen supplementären Plättchen, die ebenfalls mit der Entwicklung der Papulæ in Zusammenhang zu stehen scheinen, aber dennoch mit den eigentlichen Connectivplatten nicht identisch sind. Denn sie legen sich nicht wie diese von innen her zwischen je zwei Skeletplatten, sondern ordnen sich oberflächlicher rings um die Papulæ. Sie sind mit kleinen, die Papulæ beschützenden Stachelbürstchen besetzt und entsprechen meines Erachtens den Basalplättchen der bei Asterina vorkommenden Pedicellarien. Daraus glaube ich weiter schliessen zu dürfen, dass die Stammform der Gattung *Palmipes* mit büschelförmigen Pedicellarien versehen war, die später auf dem Stadium einer kleinen Stachelgruppe stehen blieben, statt sich vollends zu Pedicellarien auszubilden.

Einer unpaaren oberen und unteren Randplatte begegneten wir nur bei zwei Arten, nämlich bei Odontaster mediterraneus, wo sie sofort erkennbar sind, und bei Chaetaster longipes, wo sie erst bei sorgfältiger Untersuchung aufgefunden werden können und deshalb den bisherigen Forschern völlig entgangen waren. Ob das bei Marginaster capreensis als Schaltstück beschriebene, bei anderen Seesternen bis jetzt unbekannte Skeletstück des Randes sich etwa als eine verkümmerte unpaare Randplatte deuten lässt, muss ich einstweilen dahingestellt sein lassen.

In der Regel ist die Zahl der unteren Randplatten um 1 oder 2 höher als die der oberen; so bei den Astropecten-, Phutonaster- und Pentagonaster-Arten, bei Chaetaster longipes, Marginaster capreensis, Echinaster sepositus, Asterias tenispina und Asterias richardi. Dagegen sind beide Zahlen gleich bei Hacelia attenuata, Ophidiaster ophidium, Asterias glacialis und, wie es scheint, auch bei Asterina gibbosa. Nur bei Odontaster mediterraneus fanden sich
Morphologische Ergebnisse.

1—3 untere Randplatten weniger als obere. Bei fast allen Arten wächst die Zahl der oberen und unteren Randplatten langsamer als die Länge des Armradius, woraus sich ohne weiteres ergibt, dass die einzelnen Randplatten während des Wachstumes des ganzen Thieres eine mehr oder weniger erhebliche Längenzunahme erfahren müssen. Bei Marginaster capreensis jedoch wächst die Randplattenzahl fast ebenso rasch wie die Länge des Armradius, und bei Asterina gibbosa wächst sie sogar anfänglich rascher und erst später ungefähr ebenso schnell. Dass auch die Breite der Randplatten mit dem Alter zunimmt, zeigen die bei verschiedenen Arten gemachten Maßangaben junger und alter Platten.

Ein Einschub neuer Randplatten zwischen die bereits vorhandenen kommt normalerweise weder bei jungen noch bei alten Thieren vor; Ausnahmen treten nur bei Ausheilungen von Verletzungen auf. Alle neuen Randplatten entstehen an der Terminalplatte, sodass immer die dem Armwinkel nächste die älteste und die am meisten distal gelegene die jüngste ist.

Der Armwinkel können die Platten mit dem Wachsthum des Thieres eine Compression erfahren, wie uns das z. B. bei den Astropecten-Arten, bei Chaetaster longipes und bei Pentagonaster placenta entgegentrat.

In der Form der einzelnen Randplatten des erwachsenen Thieres wächst häufig die Breite über die Länge vor, so bei den Astropecten- und Asterias-Arten, bei Odontaster mediterraneus, Chaetaster longipes, Phlotaster subinermis. Umgekehrt sind die Platten länger als breit bei Echinaster sepositus, Brisinga coronata, Hacelia attenuata und annähernd auch bei Ophidiaster ophiidians. Die jungen Thiere verhalten sich aber in dieser Hinsicht oft anders als die alten. So z. B. sind die oberen Randplatten der Asterina gibbosa anfänglich länger als breit, beim erwachsenen Thiere aber breiter als lang. Bei Pentagonaster placenta ist die erste obere Randplatte zuerst länger als breit, dann wird sie breiter als lang, und schliesslich übertrifft beim erwachsenen Individuum wieder ihre Länge die Breite. Diese Beispiele zeigen hinreichend, dass nicht nur die Grösse, sondern auch die Form der Platten während des Wachsthumens Aenderungen erfahren kann, die bei der Aufstellung neuer Arten berücksichtigt werden müssen.

stossen, unterliegt auch dieses Verhalten individuellen Variationen (*Pentagonaster placenta, Odontaster mediterraneus*) und stellt sich überhaupt erst während des jugendlichen Wachstums ein, sodass man in diesem Zusammen treffen der beiderseitigen oberen Randplatten kein ursprüngliches, sondern ein sekundäres Merkmal erblicken muss.

8. Für die Munddeckplatten würde sich vielleicht die Bezeichnung Adoralplatten empfehlen.

Ihre Bewaffnung ist im Allgemeinen bei erwachsenen Thieren reicher als bei jungen; sowohl die Grösse als auch die Zahl der Stacheln nimmt mit dem Alter zu, wie sich das insbesondere bei den beiden *Luidia*- und den beiden *Plutonaster*-Arten sowie bei *Odontaster mediterraneus*, *Pentagonaster placenta*, *Asterina gibbosa*, *Palmipes membranaceus* nachweisen liess. Doch kommt ausnahmsweise auch das umgekehrte Verhalten vor, wie es *Echinaster*

9. Nicht weniger gilt das in Betreff der adambulacralen Bestachelung; denn auch sie ist beim jungen oder halbwüchsigen Thiere sehr häufig ärmer als beim erwachsenen. Dazu kommt, dass sie überall da, wo sie aus mehr als einem Stachel besteht, in der Nähe des Mundes reicher entwickelt zu sein pflegt, als in der Mitte des Armes und hier wieder reicher als an der Arm spitze. Für die Beschreibung der Arten ergibt sich daraus die Forderung, dass die Adambulacralschichtung mindestens an jenen drei Stellen des Armes untersucht werden muss, oder dass doch wenigstens angegeben wird, an welchem Armabschnitt die von dem Beobachter beschriebene Adambulacralschichtung geprüft worden ist. Zur Feststellung der Zugehörigkeit vermutlicher Jugendformen zu einer bestimmten, bis dahin nur im erwachsenen Zustand bekannten Art ist die genaue Untersuchung der Adambulacralschichtung im distalen Armabschnitt des ausgebildeten Thieres unerlässlich. Denn in diesem Bezirke besitzt, wie ich bei allen darauf untersuchten Arten ausreichend feststellte, auch das alte Thier noch diejenigen Verhältnisse, die bei dem jungen in der ganzen Länge des Armes herrschten, was ja bei dem in distaler Richtung fortschreitenden Wachstum des Armes überhaupt kaum anders sein kann. Eine besonders auffallende Umbildung erfahren die subambulacralen Stacheln im Laufe der Entwicklung bei Hacelia attenuata, indem sie aus einer anfänglich platten, fächerförmigen Gestalt in eine plump cylindrische übergeführt werden (s. p. 298).

An den ältesten Adambulacralschichten, also an der ersten oder auch noch an einer oder mehreren der nächstfolgenden, ist die ganze Bewaffnung fast stets durch eine Vermehrung der Stacheln ausgezeichnet und bildet häufig auch in der Anordnung einen Übergang zur Bewaffnung der Munddeckplatten. Wie an den letzten die Stacheln des ambulacralen Randes in ihrer definitiven Ausbildung denen der ventralen Oberfläche vorausgehen, so auch
an den Adambulacralplatten die eigentlichen Furchenstacheln den subambulacralen (z. B. bei *Luidia ciliaris*, *Asterina gibbosa*, *Palmipes membranaceus*). Sind Furchenstacheln und subambulacrale Stacheln in ihrer Struktur verschieden, wie es bei *Chaetaster longipes* der Fall ist, so wiederholt sich diese Differenz an den Stacheln der Munddeckplatten (s. p. 152, 153). Alles das erklärt sich mit Leichtigkeit daraus, dass die Munddeckplatten keine Skeletstücke besonderer Art sind, sondern eigentlich die wahren ersten Adambulacralplatten darstellen, die sich, abgesehen von ihrer verhältnismässigen Grösse, wesentlich nur dadurch von den übrigen Adambulacralplatten unterscheiden, dass sie an ihrem adoralen Ende einen bis zum Körper der ersten Ambulacralplatte reichenden Fortsatz entwickeln, der die für den Durchtritt der ersten Füsschenampulle bestimmte Skeletlücke zum Abschlusse bringt (vergl. Taf. 6, Fig. 36.1). Auch das ist eine Besonderheit der Munddeckplatten im Gegensatze zu den übrigen Adambulacralplatten, dass sie sich mit der benachbarten gleichen Platte des nächsten Armes durch einen besonderen Muskel fester verbinden. Dagegen kann man in der blossen Auseinanderräumung der beiden zu einer Munddecke gehörigen Munddeckplatten noch nichts für sie Eigenartiges sehen, denn bei den *Asterias*-Arten (*A. tenuispina, A. glacialis*) stossen auch die drei bis fünf ersten Adambulacralplatten zweier benachbarten Arme in der Interradiallinie unmittelbar zusammen.

Die Zahl der Adambulacralplatten, die ja stets derjenigen der Wirbel entspricht, ist bei allen mittelmeerischen Seesternen mit alleiniger Ausnahme der beiden *Luidia*-Arten und des *Plutonaster subinervis* grösser als diejenige der unteren oder oberen Randplatten. Nur in geringem Maasse wird die Zahl der Randplatten von der der Adambulacralplatten übertroffen bei *Asterina gibbosa* und *Palmipes membranaceus*. Auch bei *Echinaster sepositus* sind die Adambulacralplatten kaum 1½mal so zahlreich wie die Randplatten, und im distalen Armabschnitt gleicht sich dieser Unterschied sogar fast ganz aus, was darauf hinweist, dass im späteren Alter dieser Art die Bildung neuer Ambulacral- und Adambulacralplatten langsamer fortschreitet als die Bildung neuer Randplatten. Durchschnittlich 1½mal so zahlreich wie die Randplatten sind die Adambulacralplatten bei den *Astropecten*-Arten, fast 2mal so zahlreich bei *Chaetaster longipes*, 2mal so zahlreich bei *Brisinga coronata*, etwas mehr als 2mal so häufig bei *Hacelia attenuata* und *Ophiaster ophioboum*, 2½mal so häufig bei *Asterias richardi*, 3mal bei *Asterias edmundi*, fast 4mal bei *Asterias tenuispina* und 4—5mal bei *Asterias glacialis*.

Morphologische Ergebnisse.

Entwicklungsgeschichtlich treten die Ventrolateralplatten bei den jungen Thieren erst verhältnissmässig spät auf und zeichnen sich dadurch aus, dass sie sich stets später anlegen als die an sie anstoessenden Adambulacralplatten und unteren Randplatten, wie ich das insbesondere an jugendlichen Exemplaren von Luidia ciliaris, L. sarsi, Pentagonaster placenta, Marginaster capreensis, Asterina gibbosa, Hacelia attenuata, Echinaster sepositus und Asterias glacialis feststellen konnte. Da auch die primären Scheitelplatten, die Terminalplatten, die oberen Randplatten und selbst die Dorsalplatten der Arme den Ventrolateralplatten zeitlich vorangingen, so stellen letztere unter allen Bestandtheilen des Seesternskelletes den allerjüngsten dar. Entsprechend der allgemeinen Regel, dass der proximale Theil des Armes der älteste ist, begegnen wir den zuerst auftretenden Ventrolateralplatten immer im Armwinkel. Von hier aus vermehren sie sich in distaler Richtung, sodass die der Arm spitze am nächsten gelegene stets die jüngste ist. Ein Einschub von Platten zwischen die bereits vorhandenen scheint nur ganz ausnahmsweise (vergl. p. 287 Hacelia attenuata) vorzukommen. Gelangen mehrere Längsreihen zur Entwicklung, so findet ihr Wachsthum ebenfalls stets an ihrem distalen Ende statt. Unter sich verglichen haben aber die mehrfachen Längsreihen keineswegs immer dieselbe Altersbeziehung. Die zweite, dritte u. s. w. Längsreihe entstehen nämlich der Reihe nach entweder an der admarginalen oder an der adambulacralen Seite der zuerst vorhandenen Längsreihe; im ersteren Falle ist die äussere, d. h. die an die unteren Randplatten angrenzende, ventrolaterale Längsreihe die jüngste, im zweiten Falle dagegen ist sie die älteste.

Dass überhaupt die Zahl der ventrolateralen Längs- und Querreihen mit dem weiteren Wachsthum des Thieres eine Zunahme erfährt, sahen wir bei Plutonaster subinermis, Marginaster capreensis, Odontaster mediterraneus, Chaetaster, Pentagonaster placenta, Asterina, Palmipes, Hacelia und Ophidiaster. Für eine sichere Abgrenzung der Arten muss also zukünftig auf diese Verhältnisse mehr Rücksicht genommen werden als bisher. Ebenso muss dabei dem Umstande Rechnung getragen werden, dass die oberflächliche Bewaffnung der Ventrolateralplatten, die bald mehr derjenigen der unteren Randplatten, bald mehr der der Adambulacrplatten ähnelt, distalwärts und randwärts schwächer zu sein pflegt als proximal und furchenwärts (was ja dem relativen Alter der Platten entspricht), und dass sie ferner beim alten Thiere reicher ist als beim jungen (z. B. Plutonaster, Luidia, Marginaster, Asterina, Palmipes) und ausserdem bei gleichalten Thieren individuellen Schwankungen unterliegt (z. B. bei Plutonaster bifrons, Marginaster capreensis, Asterina gibbosa). Endlich müsste die Systematik auch darauf Bezug nehmen, ob in den Interradien unpaare Ventrolateralplatten ganz fehlen (z. B. bei Astropecten-Arten und bei Ophidiaster ophidianus) oder in der Einzahl oder Mehrzahl vorhanden sind.

13. Für die äußeren Skeletanhänge: Stacheln, Schüppchen, Granula, Paxillen kronen und Pedicellarien ergaben sich aus der Untersuchung der mittelmeerischen Arten einige Gesichtspunkte, die sowohl morphologisch als vielleicht auch systematisch verwerthbar erscheinen.

Was zunächst die Stacheln betrifft, so möchte ich erstens hervorheben, dass die Wimperstachelchen an den Randplatten der Astropectiniden und Archasteriden, die sich bei Plutonaster subinermis sogar auf die Ventrolateralplatten fortsetzen, homolog sind mit den cribriformen Organen der in der mediterranen Fauna nicht vertretenen Porcellanasteriden.

Die von mir schon vor Jahren (1882) bei Asterina gibbosa fundene Regel in der Entwicklung der Stacheln, die sich darin ausdrückt, dass sich über einer rädhchenförmigen sechsspeichigen Basis ein centraler und drei peripherische Stäbe erheben, die durch Querstäbe verbunden werden und im Sinne einer rechtssdrehenden Spirale ihr Wachsthum fortsetzen, konnte in gleicher Weise an den Stachelanlagen von Luidia ciliaris, L. sarsi und Palmipes membranaceus festgestellt werden.

In der Verbindungsweise der Granula, Schüppchen und Stacheln mit den Skeletplatten lassen sich drei verschiedene Stufen unterscheiden. Im einfachsten Falle sind die Granula durch die ganze Haut verbreitet, ohne sich auf die darunter liegenden Skeletplatten zu beschränken. Eine derartige, von den Skeletplatten unabhängige, allgemeine Granulation der Haut ist bei den Gattungen Hacelia und Ophidiaster eigenthümlich. Auf der zweiten Stufe finden wir alle Granula, Schüppchen und Stacheln die ja nur in ihren Formverhältnissen von einander verschieden, aber durch alle möglichen Übergänge verknüpft sind, ausschliesslich über den Skeletplatten angebracht und mit ihnen so verbunden, dass sie mit ihren Basen entweder in kleinen Grübchen oder auf kleinen, glatten Höckerchen der Platten befestigt sind. Diese Stufe ist bei den meisten Seesternen ausgebildet und wird

Die Paxillen werden noch häufig mit Unrecht in toto als äussere Skeletanhänge von derselben morphologischen Bedeutung wie die Stacheln angesehen. Ihre Entwicklung, die wir namentlich bei den beiden *Luidia*-Arten verfolgen konnten, lehrt aber ebenso deutlich wie eine Vergleichung der verschiedensten fertigen Paxillenformen, dass nur ihre Kronenstachelchen zu den äusseren Skeletanhängen gerechnet werden dürfen, während Basis und Schaft eines Paxillus zusammen eine einheitliche Skeletplatte der Körperwand darstellen, die morphologisch den tafelförmigen Skeletplatten anderer Seesterne gleichwertig ist. Zuerst legt sich, mit einem dreiarmigen Stäbchen beginnend, die Basis des Paxillus an, die sich dann in der Mitte zu einem emporgreifenden Schaft verdickt, der eigentlich nichts anderes ist, als ein einer grösseren Anzahl von Stacheln gemeinsamer Gelenkhöcker. Es kann demnach auch nur natürlich erscheinen, dass alle Versuche, die Paxillen in echte und false, oder in noch mehr Sorten zu unterscheiden, undurchführbar sind und sich wegen ihrer Künstlichkeit auch für die Zwecke einer natürlichen Systematik kaum verwenden lassen. Am deutlichsten geht die allgemeine Homologie der Paxillen mit anderen bestachelten Skeletplatten wohl daraus hervor, dass bei *Luidia auf der einen Seite die oberen Randplatten zu Paxillen werden und auf der anderen Seite die unteren Randplatten in ihrer ersten Anlage die Gestalt von Paxillen haben. Im selben Sinne sprechen die Thatsachen, dass bei *Chaetaster fast alle Skeletplatten die Form grosser Paxillen annehmen, dass man bei *Chaetaster und Odontaster unter den Paxillenförmigen Skeletplatten des Scheibenrückens die primären Skeletplatten des Scheitels herausfinden kann, und dass die Paxillen des Armrückens sich bei *Plutonaster subinermus, Odontaster und Chaetaster in der Medianlinie ebenso ordnen wie die Radialplatten anderer Seesterne. Ferner verhalten sich die Paxillenbasen, wenn sie nicht wie bei *Astropecten ganz isolirt von einander bleiben, sondern sich wie bei *Luidia und Plutonaster unmittelbar miteinander verbinden, in der Art ihrer dachziegeligen Ubereinanderlagerung
Morphologische Ergebnisse.

475

Eine besondere Stellung nimmt hinsichtlich der Pediecellarien die Gattung Echinaster ein. Bei ihren nahen verwandtschaftlichen Beziehungen zu den Asteriden sollte man erwarten, dass auch sie mit gekreuzten Pediecellarien ausgerüstet wäre. Dieselben sind aber nicht zur Entwicklung gelangt, sondern werden in ihrer schützenden Function ersetzt durch die mächtige Entfaltung besonderer Hautdrüsen. Nun aber begegnet man in der äusseren Hautlage
Morphologische Ergebnisse.

derselben Gattung zahlreichen, zerstreuten, sehr kleinen Kalkkörperchen, die man bei anderen Seesternen vermisst. Was liegt näher als die Vermuthung, dass diese Kalkkörperchen die Rudimente von Pedicellarien sind, mit denen die Stammform der Gattung Echinaster vielleicht ebenso reichlich versehen war, wie unsere heutigen Asteriiden, die aber mit der Ausbildung der Hautdrüsen einer Verkümmernng anheimfielen?

Litteratur.

Aldrovandi, Ulyss., De animalculis insectis libri septem. Bononiae 1638.
Appellöf, A., Om Bergensfjordenes faunistiske praeg. in: Bergens Museums Aarsberetning 1891 No. 2 Bergen 1892.
— Faunistiske undersøgelser i Herrefjorden. in: Bergens Museums Aarbog for 1894–95 Bergen 1896 No. 11.
Asbjørnsen s. M. Sars.
Barrois, Théod., Catalogue des Crustacés Podophthalmaires et des Échinodermes recueillis à Concarneau 1850. Lille 1852.

Beltramieux, Edouard, Faune du département de la Charente-Inférieure. La Rochelle 1864 [aus: Annales de l'Académie de la Rochelle].

Ben eden s. Van Beneden.

Berthelot s. Barker-Webb.

Bütschi s. Möbius.

Collin s. Meissner.

Colombo, A., La fauna sottomarina del golfo di Napoli. in: Rivista maritima 1857, Roma 1858.

Columna, Fab., Aquatilium et terrestrium aliquot animalium observationes. Romae 1616.

Couch, Jonath., Remarks on some Species of Asterias found in Cornwall. in: Charlesworth's Magaz. Nat. Hist. (2) Vol. 4 1810 p. 32—34.

Danielssen s. J. Koren und M. Sars.

Danielssen, D. C., og J. Koren, Asteroida. in: Norwegian North-Atlantic Expedition 1876—1878 Christiania 1884, with 15 pl. and 1 map.

Delle Chiaje, Stefano, Memorie sulla storia e notomia degli animali senza vertebre del regno di Napoli. 4 Voll. Napoli 1823, 1825, 1828, 1829.
— Descrizione e notomia degli animali invertebrati della Sicilia citeriore. 5 Voll. Napoli 1841.

--- A history of British Starfishes and other animals of the class Echinodermata. London 1841.

--- Synopsis of the Species of Starfishes, Echinodermata, in the British Museum. London 1866, with 16 pl.

Grieß, A. James, Untersuchungen über das dyrelivet i de vestlandske fjorde. II. Echinodermfer, Annelider etc. fra Moster. Bergens Museums Aarhverntegning 1888 mit 1 Taf.). Bergen 1889.
Litteratur.

Grieg, A. James, Om echinodermfaunaen i de vestlandske fjorde. Bergens Museums Aarbog 1891—93 Bergen 1896 No. 12.

Jonston, Joh., Historiae naturalis de exsanguibus aquaticis libri IV. Francofurti ad M. 1650.

Koren s. Daniellssen, Düben und M. Sars.

Linck, Joh. Henr., De stellis marinis. Lipsiae 1733.

Marenzeller, s. auch Steinadchner.

Meissner, Maximiilian, Asteriden gesammelt von Herrn Stabsarzt Dr. Sander auf der Reise S. M. S. „Prinz Adalbert“. Archiv Naturg. 58. Bd. 1892 p. 183—190 T. 12.

Müller, O. Fr., Zoologiae danicae prodromus. Hafniae 1776.
Nordgaard, O., Enkelte træk af Reitsstadsfjordens evertebratfauna (Polyzoa, Echinodermata, Hydroïdae).
Bergens Museums Aarbog for 1892 Bergen 1893 No. 1.
— Museum Normanianum, or a Catalogue of the Invertebrata of Europe etc. 1. Echinodermata. 1886.
Orbigny, Alcide Bi, s. Barker-Webb et Berthelot.
Petiver, Jac., Gazophylacium Natuurae et artis. Londini 1711.

— Dissertatio sistens species cognitas Asteriarum. Lundae 1805.

Rondeletius, Guil., Libri de piscibus marinis. Lugduni 1554.

— Universae aquatilium historiae pars altera. Lugduni 1555.

Sars, M., Beskrivelser og Jagttagelser over nogle mærkelige eller nye i Havet ved den Bergenske Kyst levende Dyr. Bergen 1835.

Sars, M., J. Koren et D. C. Danielssen, Fauna litoralis Norvegiae. 2. Livr. Bergen 1856. Enthält:
2. Sars, D’une nouvelle Étoile de mer, Astropecten arcticus.
3. Asbjørnsen, P. Chr., Brisinga endecacnemos.

Sars, M., s. auch Koren.

Seba, Albertus, Thesaurus rerum naturalium. Tom. 3. Amstelaedami 1758.

Sluiter, C. Ph., Die Asteriden-Sammlung des Museums zu Amsterdam. Bijdragen Dierkunde Leiden Afl. 17 1895 p. 49—64.
Litteratur.

Tiedemann, Friedr., Anatomie der Röhrenholothurie, des pommeranzfarbigen See sterns und des Steinseeigels. Landshut 1816.

Verany, G. B., Catalogo degli animali invertebrati marini del golfo di Genova e Nizza. Genova 1846.

REGISTER

zum ersten Abschnitt: Beschreibung der Arten.

Die Synonyma sind cursiv gedruckt.

actus (Goniaster) 157
actus (Goniodiscus) 157, 158, 156
Adetopneusia 156
africana (Asterias) 365, 366, 373, 374, 389
agassizii (Hymenodiscus) 423
agassizii (Plutonaster) 124
alternata (Luidia) 78, 50
andromeda (Astropecten) 109
andromeda (Psilaster) 109, 117
angulosa (Asterias) 364, 365, 366
angulosa (Stellaria) 364
Anseropoda 243, 245
antarcticus (Astropecten) 1, 5
aranciaca (Asterias) 3, 15, 39
aranciaca var. (Asterias) 50
Archaster 111, 117, 119
Archaster 118
Archasteridae 104—133, 136, 156.
armillata Brisinga 132
arrecifeensis (Asteriscus) 265, 210, 217, 226, 231, 232
asper (Pentadactylosaster) 313, 315
aspera (Luidia) 70
aster (Astropecten) 27, 50
Asteracanthion 345, 347, 364, 365, 366
Asterias 2, 237, 240, 245, 321, 344—418, 428, 429
Asteriidae 344—418
Asterinidae 207—271
Asteriscus 207, 210, 213, 241, 245
Asteropsis 189, 190
Astrella 55, 86, 90, 100, 101, 102
Astonymum 159, 185
Astropecten 1, 2—60, 61, 69, 70, 107, 108, 109, 110, 112, 113, 114, 117, 121, 163, 327
Astropecten 105, 106, 136
Astropectinidae 2—104, 136
Astropus 136
atlantica (Asterias) 362
attenuata (Hiacelia) 155, 271, 272—299, 301—312, 315
attenuatus (Ophidiaster) 272, 273
aurantica (Asterias) 3
aurantica (Stellaria) 3
auranticus (Astropecten) 2, 3, 3—16, 17, 18, 19, 20, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 40, 44, 47, 52, 53, 61, 106, 110, 113, 114
aurantis (Ophidiaster) 300, 301
balteatus (Pentagonaster) 181, 185, 186—187
bifrons (Archaster) 118
bifrons (Gonipecten) 115
bifrons (Plutonaster) 104, 118—125
Bipinmária asterigerana 82, 84, 91
Bipinmária asterigerana (v. Luidia sarsi) 99
Bipinmária (v. Asterias glacialis) 394
Bipinmária (v. Astropecten aurantiacus) 15—16
Bipinmária (v. Astropecten jonstoni) 60
Bipinmária (v. Astropecten pentacanthus) 47
Bipinmária (v. Luidia ciliaris) 52, 54, 91, 99
bispinosa (Asterias) 16, 17
bispinosa (Stellaria) 16
bispinosus (Astropecten) 2, 3, 16—31, 33, 34, 37, 38, 46, 52, 53
brevir (var. von Astropecten pentacanthus) 39, 43
Brisinga 2, 418—438
Brisingiidae 418—438
burtonti (Asterina) 210
calamaria (Asterias) 359, 362
callosoa (Echinaster) 320, 321
canariensis (Ophidiaster) 300, 301
cancellatus echinatus (Sol) 364
capreensis (Asteropsis) 189
capreensis (Marginaster) 175, 189—206
echinatus | Asterias) 243, 245
cartilaginea | (Stella) 243, 245
cartilaginea | (Asterina) 210
Chaetaster 2, 117, 129,
134—156, 279, 327
Chaetasteridae 134—156
Chaetasterinae 136, 155
Cheilaster 159, 190
ciliaris | (Asterias) 61
ciliaris | (Luidia) 60, 81—85,
85, 86, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97,
98, 99, 100, 101, 102,
103—104, 131, 345
ciliatus | (Asteriscus) 207,
210, 214, 224, 231
clathrata | (Luidia) 67, 70
concinnus | (Pentagonaster)
181, 185, 156, 187—188
coriacea | (Asterias) 272, 273
coronata | (Brisinga) 418—
438
costata | (Brisinga) 437
Craspidea 60
crassus | (Pentagonaster) 176
crenaster | (Astropecten) 3, 4
Cribrella 313, 315, 316, 311
Cribrella 314
Cryptozonia 156, 325
cylindricus | (Ophidiaster)
294, 295, 310

diaphanus | (Palimpse) 257,
258
dorius | (Echinaster) 314,
345, 347
dubia | (Luidia) 97
duncanii | (Ophidiaster) 294

Echinaster 2, 313—343,
345, 347
Echinasteridae 313—343
echinata | (Stella marina)
344, 346
echinatus | (Astropecten) 16,
17
echinatus cancellatus | (Sol)
364

Echinasterinae 136
Goniaster 157, 159
Goniodiscus 157, 159, 176
Goniopenten 105, 106, 118,
Gosselini (Pentagonaster)
119
gracilis | (Asterias) 362
gracilis | (Astropecten) 60
granularis | (Pentagonaster)
179—180, 185, 186
green | (Astropecten) 185
green | (Pentagonaster) 185
Hacelia 2, 155, 271—299,
301—312, 315
Haesitans | (Pentagonaster)
188
Helcogonicus | (Astropecten) 15
helicostichus | (Ophidiaster)
294
Henricia 316
heptactis | (Asterias) 341, 346
hesperus | (Craspidea) 60
hispidus | (Astropecten) 49
hispidus | (Odontaster) 126,
133
Hymenidiscus 423
hystrichis | (Pentagonaster)
157, 159, 179—189
imperialis | (Asterias) 61, 62
irregularis | (Astropecten)
15, 39, 49
johnstoni s. jonstoni
jonstoni | (Asterias) 50
jonstoni | (Astropecten) 2, 3,
16, 17, 27, 31, 32, 33,
34, 38, 39, 48, 50—60
kergroheii | (Pentagonaster)
175, 185, 188—189
krausei | (Ctenodiscus) 73
lacerta | (Asterias) 272, 273
lepidus | (Pentagonaster) 114
lessonae | (Ophidiaster) 272,
274, 276, 278, 279, 286,
287, 289, 295
Limbata | (Luidia) 70
Linckia 272, 273
Linckiiidae 136, 155, 271—313
lobianci | (Palimpse) 243,
267—271
longipes | (Asterias) 134
longipes | (Astropecten) 136
longipes | (Astropus) 136
longipes | (Chaetaster) 129,
134—156, 279
Lophaster 99
Luidia 1, 60—104, 117,
163, 181, 345
madirensis | (Asterias) 364,
365, 366, 367, 374, 378,
382, 384, 385, 386, 388,
389, 390
Marginaster 2, 175, 189—
206
Marthasteridae 365, 366,
367, 374, 383, 384, 385
mediterranea | (Brislinga) 418,
419, 423, 311, 312
mediterranea | (Rhophia) 313,
314, 316, 318
mediterranea | (Echinaster
sepitus var.) 343
mediterranea | (Gnathaster)
125
mediterranea | (Odontaster)
125—133, 175
membranacea | (Anseropoda)
243
membranacea | (Asterias) 207,
209, 243, 245, 265, 314
membranacea | (Palmasterias)
243
membranacea | (Stella) 243
membranacea | (Asteriscus)
243
membranacea | (Palimpse) 207,
209, 217, 220, 230,
243—267, 268, 269,
270, 271, 314
meridionalis | (Astropecten)
4, 5, 7, 8
miliaris | (Linckia) 272, 273
niliar {Ophidiaster} 273
minima {Asterias} 207, 209
minor {Pentagonaster} 157, 167—176
minor {var. von Asterina gibbosa} 205, 210
minuta {Asterias} 207, 209
minuta {Asterina} 207, 209
mirabilis {Odontaster} 133
mirabilis {Pentagonaster} 157, 159, 176
moerei {Chactaster} 141
müelleri {Asterina} 374, 393
müller {Astropecten} 15, 47, 49
multifora {Linckia} 272
moosurus {Astropecten} 17, 18, 22, 27

Nardoa 273
neglecta {Asterias} 396
neglecta {Asterias} 395, 396
neglecta {Stolasterias} 395
Nepanthia 134, 135
nodosus {Chactaster} 141
normani {var. von Luidia ciliaris} 75—79

oculata {Cribrella} 313, 315, 316, 321, 341
oculata {Cribrella} 314
Odinia 418, 419, 420
Odontaster 1, 125—133, 175
ophidiama {Asterias} 300
ophidianus {Ophidiaster} 155, 295, 296, 299, 300
—313, 315, 345
ophidianus {Ophidiaster} 272, 273, 274
Ophidiaster 2, 136, 137, 155, 294, 295, 296, 297, 299—313, 315, 345
Ophidiaster 272, 273, 274, 276, 278, 279, 285, 287, 289, 295
ophidion {Asterias} 417, 418
Othilia 316

pacifica {Linckia} 273
Palmasterias 243, 245

Palmipes 1, 207, 210, 216, 217, 220, 227, 229, 230, 243—271, 314
Palmipes {Asterias} 243
Palmipes {Asteriscus} 243, 244, 245
Pancerii {Asteriscus} 208, 210
Pandina {Asterias} 418, 419, 420
Papyracea {Asterias} 243, 245
Pararchaster 117, 133, 156
Parellii {Astropecten} 106, 117
Parellii {Thetyaster} 117
Pauccispina {Luidia} 55, 56, 57, 59, 92, 93, 94, 95
Pectinata {Asterias} 61, 62
Pentacantha {Asterias} 39
Pentacantha {Astropecten} 2, 3, 39—49, 52, 53, 110
Pentacantha var. brecior {Astropecten} 39
Pentacantha var. serratus 47—49
Pentacres 207
Pentadactylaster 313, 315
Pentagonaster 1, 114, 157—189, 327
Pentagonasteridae 157—189
Perarmatus {Astropecten} 4, 7, 12
Perrier {Asterias} 396
Perrier {Pentagonaster} 188
Phanerozonia 156, 325
Pharia 274, 310
Placenta {Anseropoda} 215
Placenta {Astropecten} 243, 245
Placenta {Asteriscus} 243
Placenta {Goniaster} 157
Placenta {Gonioblastus} 157, 158
Placenta {Palmipes} 244
Placenta {Pentagonaster} 157—179, 182
Placentaformis {Goniaster} 157
Placentaformis {Gonioblastus} 157, 158, 176
Placentaformis {Pentagonaster} 160, 161, 162, 165, 166, 167, 168, 171, 172, 174, 175
Platycantha {Asterias} 16
Platycanthus {Astropecten} 2, 16—31, 53
Platycanthus {Astropecten} 50
Plutonaster 1, 66, 104—125, 327
Porania 190
Poraniaidae 189—206
Poraniomorpha 190
Profundus {var. von Astarte} 364
Psilaster 109, 117
Pulchella {Asterias} 207, 219
Pulchellus {Asteriscus} 208, 210, 231, 232
Purpureus {Echinaster} 341
Purpureus {Ophidiaster} 294
Pusillus {Ophidiaster} 294, 295
Pyramidata {Pharia} 274, 310
Rhopia 313, 314, 316, 318, 321
Richardi {Asterias} 344, 362, 372, 398, 399, 401, 402, 403—418
Richardii {Hydrasteridae} 403
Rigidas {Plutonaster} 124
Robilliardii {Ophidiaster} 294
Rosacea {Asterias} 243, 314
Rubens {Asterias} 345, 359, 417, 418
Rubens {Asterias} 61, 62, 313, 314, 315, 345
Rubra {Stella} 315
Sagena {Asterias} 313, 315, 316
Sanguinolenta {Asterias} 313, 315, 316
Sanguinolentus {Echinaster} 314, 341
Sarsi {Luidia} 60, 61, 62, 81, 82, 85—104, 181
Savaresti {Asterias} 344, 345, 346
Saviglyi {Luidia} 62, 96
Saviglyi {Luidia} 61, 62, 55, 86
Seytaster 136
Sepisola {Asterias} 313, 315, 316
Sepisola {Cribrella} 314
Sepisola {Rhopia} 313, 314, 321
Sepisola {Stellaria} 313
Separitus {Echinaster} 313—343, 345
Separitus {Echinaster} var. mediterraneus 314
Serratus {var. von Astropecten pentacanthus} 2, 40, 47—49
Simplex {Astrella} 55, 56, 90, 100, 101, 102
Sol 364
Spinosa {Asterias} 105
Spinosa {Asterias} 364, 366
Spinous {Echinaster} 314
Spinusola {Asterias} 31
Spinulosus {Astropecten} 2, 3, 31—39, 50, 51, 52, 53, 59, 60
Squamatus {Astropecten} 50, 51
Stegnaster 245
Stella 213, 215, 315
Stella marina echinata 344, 346
Stella marina 3, 5, 16
Stellaster 139
Stellatia {Astropecten} 3
Stellatia 209
Stellon {Vulgärname} 4
Stellonia 313, 316, 345, 347, 364
Stelluccia 299
Stenopneusia 156
Stolasterias 345, 347

Register.
Register.

Stolasterias 365, 367, 395, 396, 399

subinermis (Asterias) 105

subinermis (Astropecten) 105

subinermis (Goniopecten) 105

subinermis (Plutonaster) 105

subulata (Asterias) 134, 135

subulatus (Chaetaster) 134, 135

sulcifera (Asterias) 396

tenuiospina (Stellonia) 345

tenuiospina (Stolasterias) 345

tenuiospina (Asteracanthion) 345

tenuiissima (Asterias) 61, 62, 345

tessellata (Nepanthia) 134, 135

Tethyaster 105, 106, 117

tribulus (Echinaster) 314, 345, 347

tubifer (Ophiidiaster) 294

typicus (Archaster) 111, 117

umbilicata (Asterias) 207, 209

Uraster 364

variegata (Luidia) 80

variolata (Asterias) 272, 273

variolata (Nardoa) 273

verrucosa (Asterias) 134, 136

verruculata (Asterias) 207, 209

verruculatus (Asteriscus) 207, 208, 231

verticillata (Brisinga) 432

vincenti (Pentagonaster) 158

webbiana (Asterias) 365, 366, 374, 378, 380, 384, 392

webbiana (Stellonia) 364

webbianus (Asteracanthion) 364
Druck von Breitkopf & Härtel in Leipzig.
ERKLÄRUNG
der zwölf Tafeln.
Allgemein gültige Bezeichnungen.

A After.
Ad Adambulacralplatte.
Ad1, Ad2 erste, zweite Adambulacralplatte u. s. w.
AF Armfeld.
AF1, AF2 erstes, zweites Armfeld u. s. w.
AoF Analfeld.
AR Adradialplatte.
AR1, AR2 erste, zweite Adradialplatte u. s. w.
C Centralplatte.
CF oder cF Centrafeld.
Co Connectivplatte.
CR Centroradialplatte.
Dl oder dl Dorsolateralplatte.
IB1, IB2 erste, zweite Interbrachialplatte.
IBF Interbrachialfeld.
IO Interoralplatte.
IR1 primäre Interradialplatte.
IR2, IR3 zweite, dritte Interradialplatte.
Md Madreporenplatte.
ME Munddeckplatte.
oR obere Randplatte.
oR1, oR2 erste, zweite obere Randplatte u. s. w.
P Papula (auch = Porenfeld).
R Radialplatte.
R1 primäre Radialplatte.
R2, R3 zweite, dritte Radialplatte u. s. w.
RF Radialfeld.
scF secundäres Centrafeld (= secundäres Scheitelfeld).
T Terminalplatte.
ur untere Randplatte.
ur1, ur2 erste, zweite untere Randplatte u. s. w.
V7 Ventrolateralplatte.

R mit Pfeil und IR mit Pfeil bedeutet die Richtung einer radialen oder interradialen Hauptebene.

Figuren, bei denen keine Vergrößerung angegeben, sind in natürlicher Größe gezeichnet.

In Tafel 8—12 sind die primären Radialplatten mit Gelb, die primären Interradialplatten mit Blau und die primäre Centralplatte mit Grün belegt. In Tafel 8, Fig. 3 sind auch die secundären Radialplatten gelb, die Adradialplatten gelb und schraffiert, die zweiten Interradialplatten roth, die übrigen Interradialplatten und die Dorsolateralplatten braun getönt.
Tafel 1.

Fig. 1. *Plutonaster subinermis*. Rückenansicht eines ganzen Thieres.
Fomum in Plano Acollo a Nager. Sonostrica.
Fig. 1. *Astropecten aurantiacus.* Rückenansicht eines ganzen Thieres.
- 5. *Astropecten pentacanthus.* Rückenansicht der Scheibe und eines Armes.
A. Astrpecten pentacanthus B. Astrpecten bispinosus

SLOSSUS. 5 ASTRPECTEN PENTACANTHUS 6 ASTRPECTEN BISPINOSUS
1. ASTROPECTEN AURANTICUS
2. ASTROPECTEN PENTACanthus
3. ASTROPECTEN SPINULOSUS
4. ASTROPECTEN JOHNSTONI
5. ASTROPECTEN BISPINOSUS
Tafel 3.

Fig. 1. *Asterias glacialis*. Rückenansicht eines ganzen Thieres.

6.7 Hacelia attenuata. 8. Asterias tenuispina.
1, 2, 3 Asterias glacialis. 4 & Ophioaster ophiurus. 6 & Hagelia attenuata. 8 Asterias tenuispina.
Tafel 4.

Fig. 1. *Luidia ciliaris*. Rückenansicht eines ganzen Thieres; zwei Arme an der Spitze regenerirt.
4, 5. *Echinaster sepositus.*
1. Luidia ciliaris
2. Luidia sarsi
3. Echinaster sepositus
Tafel 5.

Fig. 1. *Pentagonaster placenta*. Rückenansicht eines ganzen Thieres.
- 10. *Pentagonaster placenta*. Rückenansicht eines jungen Thieres, Vergrößerung $\frac{5}{4}$.
Tafel 6.

Fig. 1—5. Astrotopen auratricula.
2. Ein venteraler Interbrachialbezirk eines mittelgrossen Exemplares nach Entfernung der Stacheln; 1/4. F1 erste Ventrolateralplatte.
4. Eine Mundecke eines erwachsenen Exemplares, von unten gesehen; 1/1. a ein Stachel der äusseren, b ein solcher der inneren natürlichen Reih; 1. 2. 3. 4. die vier Mundeckstacheln.
5. Eine Mundeckplatte eines erwachsenen Exemplares, von der Seite und ein wenig von oben gesehen; 7/1. a. a zwei Stacheln der äusseren der beiden zentralen Reihen; b. b zwei Stacheln der dritten Mundeckstachel führenden Reih; c. c zwei Stacheln der zum vierten Mundeckstachel führenden Reihe; d. d. d vier die vier Mundeckstacheln.
6. Astrotopen hispinous. Eine Mundecke von unten mit der angrenzenden ersten Adambulacralplatte; 7/1. a die surale Stachelscheibe; b die Reihe kleiner Stacheln am ambulacralen Rande; 1. 2. 3. die drei Mundeckstacheln; Ad1 die erste Adambulacralplatte, links von den Stacheln entblößt, rechts damit besetzt.
7. Astrotopen spinolous. Eine Mundecke von unten, mit der links angrenzenden ersten Adambulacralplatte; 7/1. a die surale Stachelscheibe; 1. 2. 3. 4. 5. 6. die Mundstacheln am ambulacralen Rande der Mundeckplatte.
8. Astrotopen pentactaculis. Eine Mundecke von unten, mit der rechts angrenzenden ersten Adambulacralplatte; 7/1. a die surale Stachelscheibe; 1. 2. 3. 4. 5. 6. 7. 8 die Stacheln des ambulacralen Randes der Mundeckplatte.
9. Astrotopen junctus. Eine Mundecke von unten; 7/1. 1. 2. 3. die drei Mundstacheln am ambulacralen Rande der Mundeckplatte.
10. Darm eines Exemplares von R = 150 mm, von oben gesehen. a Magen; b. b radiale Blinddärme; c Enddarm.
11. Drei Paxillen aus einem Interradius des Scheibenzirkels, von oben gesehen; 7/1.
12. Ein venteraler Interbrachialbezirk, nach Entfernung der Bestachelung; 1/5. Mit Ausnahme der ersten sind die Adambulacralplatten nur angedeutet und ebenso wie die nur in ihren Umrissen angegebenen unteren Randplatten fortlaufend numerirt.
13. Die sechste und neunte Adambulacralplatte mit ihrer Bewaffnung; 4/1. ab das aborale, ad das adorale Ende der Figur; a. a. a die drei Stacheln der inneren Gruppe; b. b. b die beiden sich zunächst daran anschliessenden Stacheln.
17. Ein Paxillus desselben Thieres, von oben gesehen; vergrössert. Die Stacheln der Krone sind entfernt; e Schaft; b. b einer der sichern Fortsätze der Basalplatte.
18. Schema über die Anordnung der Paxillen und Papulac auf den Seitenflächen eines Armrückens, von aussen gesehen; vergrössert. Von den Paxillen sind nur die Umriss der Basalplatten angegeben; ab das aborale, ad das adorale, med das mediale, lat das laterale Ende der Figur. a Basalplatte eines Paxilli; b Papula.
19. Kalkkörperchen aus der Wand des Mann; 20/1.
20. Kalkkörperchen aus der Wand eines Füsschens; 20/1.
23. Ein Fünftel desselben Exemplares, Rückenansicht; 24/1. Die feinen Dornchen an den Enden der Stacheln sind weggelassen.
25. Ein junger Mittelpaxillus aus der Armsspitze eines erwachsenen Exemplares, von oben gesehen; 20/1. a Basalplatte, b einer der Stacheln der Krone.
27—29. Drei Entwicklungsstadien eines Paxillus, von oben gesehen; 20/1. a Anlage des späteren Schaftes, b Anlage eines Stachel der späteren Krone in Fig. 29 weggelassen.
31. Schema über die Form und Anordnung der Basen der Seitenpaxillen, nach Entfernung der Schäfte und Kronen, von aussen gesehen; vergrössert. ab aborales, ad adorales, med mediocro, lat laterales Ende der Figur.
32. Terminalplatte eines mittelgrossen Exemplares, von oben gesehen; 7/1.
33. Dieselbe von unten; 17/1.
34. Dieselbe von der Seite; 17/1. Links liegt die ventrale, rechts die dorsale Seite der Platte.
35. Ein venteraler Interbrachialbezirk eines jungen Exemplares, von unten gesehen; 20/1. Die Umriss der unteren Randplatten und der Adambulacralplatten sind schematisch gezeichnet. F1 die unpaare, F1' die erste paarige Ventrolateralplatte. S die durchschimmernde Anstrich der interbrachialen Septum. S dd, Sdd erste und zweite Suprabsambulacralstück. I der innere, II der äussere Adambulacralstachel, III die beiden subambulacralen Stacheln. 1—7 die Stacheln der Mundeckplatte; 1 = Est. der Eckstachel; 1 u. 4 die beiden Stacheln am adoralen Ende der suralen Rand; 1. 2. 3 die Stacheln des ambulacralen Randes; 5. 6. 7 die drei Stacheln auf dem distalen Bezirk der Mundeckplatte.
36. Ein Radius und ein Interradius des Skelettes eines eben von der Bipinnaria abgeloteten jungen Sternes, von unten gesehen; 20/1. F1, F2 Austrittsstelle des ersten und des zweiten Füsschens; Aun1, Aun2, Aun3 erstes bis drittes Ambulacralknoten; /1 flüssigerförmiger Fortsatz der Terminalplatte; 1—5 junge Stacheln mit ihrem Hautüberzuge e; 1. 2. die beiden Stacheln der Mundeckplatte; 3. 4. junge Adambulacralstacheln; 5. 6. die beiden in dieser Ansicht jederseits auf der Terminalplatte sichtbaren Stachel; außerdem trägt die Terminalplatte jederseits auf ihrer Dorsalseite noch drei derartige Stachel. Links ist die Mundeckplatte z. Th. weggelassen dargestellt, sodass die darunter gelegene junge Interoralplatte sichtbar geworden ist.
Fig. 1—12. **Ludia serrata.**

1. Terminalplatte des Exemplares Nr. 12, von oben gesehen; 1/2.
2. Dieselbe von unten gesehen; 1/2.
3. Dieselbe von oben und von vorn gesehen; 1/2.
4. Dieselbe von der Seite gesehen; rechts die Bauchseite, links die Rückenseite; 1/2.
6. Anlage der Paxillenbasis, von oben gesehen; a erste Anlage eines Stachelchens der späteren Krone.
7. Dieselbe von der vorderen und auf der sechsten Stachelanlage tritt schon eine centrale Spitze auf.
8. Ein noch späteres Stadium, von unten gesehen; der Schaf des Paxillus ist jetzt schon angelegt, aber in dieser Ansicht nicht sichtbar; a und b zwei in dieser Ansicht unter der Basalplatte liegende, weiter entwickelte Stachelanlagen.
11. Ein jünger Stachel der Terminalplatte von einem jungen Exemplare (R = 1 mm); 3/4. a die centrale Spitze; b, b zwei von den drei peripherischen Spitzen, die dritte liegt dem Beschauer zugekehrt; die Wachstumsrichtung ist durch die Pfeil-Linie angedeutet.
12. Eine Munddecke eines jungen Exemplares (R = 6,5 mm), von unten gesehen; 1/4. 1 Munddeckstachel; 2 Pequir's piquant surdentiert; 3, 4, 5, 6 die beiden Stacheln auf dem distalen Beirck der Platte; 5, 6 die beiden kleinen Stacheln des ambulakralen Randes; 1, 2, 3 sind schon im vorigen, eben erst von der Diplomaria abgelösten Stadium vorhanden.

13—23. **Marginalster Expectrline.**

13. Uebersicht über das Dorsalkelet des erwachsenen Thieres nach Entfernung der Stacheln, von oben gesehen; 1/2; s die sekundären Verbindungsstücke der Centroradialia mit dem Centrale; Ap Analplattehen; Fv 1, Fv 2 u. s. w. Verbindungstücke der Radialplaten mit der primären Internodralplatte und mit den oberen Randplatten; Sh Schaltstück; s die sekundäre Kalkplatte.
14. Uebersicht über das Dorsalkelet eines jungen Thieres nach Entfernung der Stacheln; 1/2. Dieselben Bezeichnungen wie in Fig. 13.
15. Terminalplatte des erwachsenen Thieres, von oben gesehen; 1/2.
16. Dieselbe, von unten gesehen; 1/2.
17. Dieselbe, von vorn gesehen; 1/2.
18. Die erste obere Randplatte eines erwachsenen Exemplares, von aussen gesehen; 1/2.
21. Eine primäre Internodralplatte und einige angrenzende Platten mit ihrer Bestachelung, von erwachsenen Thiere 1/2. Bezeichnungen wie in Fig. 13.
22. Ein Fünftel der Ventralseite eines jungen Thieres; 1/4. Ret Randstachel; a Grenzlinie des Hautüberzuges der Stachelbasis; Fv 1 die äussere unpaare Ventraloralplatte; Fv 2 die zweithäufige unpaare Ventraloralplatte; Fv 1 1/2 und Fv 2 1/2; die erste und zweite der dritten, Fv 1 1/2, die erste und zweite der zweiten Bogens; I, II, III der innere, mittlere und äussere Stachel des Adambulacralplatte; 1—6 die Stacheln der Munddecke, 1—4 die vier des ambulakralen Randes, 5, 6 die beiden der ventralen Oberfläche.
23. Uebersicht über die Anordnung der Ventraloralplatten des erwachsenen Thieres, nach Entfernung der Stacheln; 1/4. Fv 1 1/2, Fv 2 1/2, Fv 1 1 3, Fv 2 1 3; die erste und zweite Platte des dritten Bogens; Fv 1 1/4 die einzig Platte des vierten Bogens; x die Stelle, an welcher der Ansatz des interbrachialen Septums durchsichet. Auf dem letzten a, R soll stehen a, R 4 statt a, R 1.

24—42. **Apostrogonster pleurea.**

27. Dieselbe, von aussen; 1/8. a Nische für Füller und Auge; b lappenförmiger Vorrag; c Rinne für die jüngsten Wirbel.
28. Dieselbe, von unten; 1/8. Bezeichnung wie in Fig. 27.
31. Dieselbe, von der Seite; 1/8. a Insertionsgrübchen der Granula auf der Aussenseite sind weggelesen; c distales, d proximales Ende der Basis.
34. Dieselbe, von der Seite; 1/8.
35. Eine Munddecke eines erwachsenen Thieres; 1/1. Ext Eckstachel.
36. Eine isolierte Adamburacralplatte aus dem mittleren Armabschnitt eines erwachsenen Exemplares, von ihrer distalen Fläche gesehen; 1/8. a Seite der Gelenkverbindung mit dem Ambulacralstöck; b die der Ambulacralfläche zugewandte Seite; c die äussere (= der ventrale Seite.
38. Eine Munddecke mit ihrer Nachbarschaft von einem jungen Exemplare; 3/4. Fv 1 die unpaare Ventraloralplatte; Fv 1 1/2. Fv 1, Fv 2 die ersten paarigen Ventraloralplatten. Ext Munddeckstachel; V—IV die vier Reihen der Ambulacralpapillen.
40. Ein Radialbezirk der Rückenseite jüngsten Exemplares; 3/4. D 1, D 2 erstes und zweites Dorsalplatte; Gr Granula; a Kalkpapillen der Terminalplatte, die dem Rand der in dieser Ansicht nicht sichtbaren Ambulacralrinne aufsitzen.
42. Rückansicht eines jungen Thieres; 1/8.
Tafel 8.

Fig. 1. *Pentagonaster granulatis.* Neuntes und zehntes Paar der Adambulacralplatten, von aussen gesehen; 24¹/₁. a der adorale, b der aborale Rand der Figur. Am Ambulacralfurchen: I, II, III die drei Längsreihen der Adambulacralpapillen; c überzählige Papille.

3-17. *Palmipes membranaceus.*

3. Der centrale Theil des Rückenakeltes eines erwachsen Exemplares, von innen gesehen; 5/₁. Die interradialen Hauptebeben sind durch Pfeile angedeutet. sP supplementäre Plättchen, x, x, x drei besonders grosse derselben.

4. Ein Stück aus dem Mittelstreifen des dorsalen Armskeletes eines erwachsenen Exemplares, von innen gesehen; 19¹/₁; r die Reihe der Radialplatten, ar die Reihe der Adradialplatten; al die schiefen Querreihen der Dorso-lateralplatten; sP supplementäre Kalkplättchen; ad adcentrales (= proximales), ab abcentrales (= distales) Ende der Figur.

5. Eine Dorso-lateralplatte, von aussen; 3¹/₈.

6. Dieselbe von innen; 19¹/₁.

7. Terminalplatte, von oben; 3¹/₈. An dieser und den beiden folgenden Figuren ist das untere Ende das distale.

8. Dieselbe, von unten; 3¹/₈.

9. Dieselbe, von der Seite; 3¹/₈.

10. Eine untere Randplatte mit ihrem Stachelrichter von einem sehr jungen Thiere, von unten gesehen; 19¹/₁.

11. Ein Stachelbecher aus einem dorsalen Stachelbürstchen eines erwachsen Exemplares; 20¹/₁.

12. Ein ebensoesches in anderer Ansicht; 20¹/₁.

15. Die isolirte Madreporenplatte eines erwachsenen Thieres, von aussen; 17¹/₁.

16. Dieselbe, von innen; 21¹/₁. a die in die Höhle der Auftreibung führende Spalte.

17. Scheitel eines sehr jungen Thieres (R = 2,38 mm), von aussen; 3¹/₈. Die Stachelanlagen sind weggelassen.

18-30. *Ophiaster ochridanus.*

18. Ein schlupfenförmiges Granulum des ventralen Armwinkels; vergrössert.

20. Dieselbe, schräg von der Seite; 19¹/₁.

22. Eine Rückenplatte des Armes, von innen; 6¹/₈, a der adorale (= proximale) Randlappen.

23. Eine Connectivplatte des Armrückens, von der Seite; 6¹/₈.

24. Dieselbe von oben; 6¹/₈.

26. Skelet des Scheibenrückens und des proximalen Theiles eines Armrückens, von aussen gesehen; 5¹/₂. P Basis einer Papula; mAF1 erstes, mAF2 zweites mediales, lAF1 erstes, lAF2 zweites laterales Armfeld.

28. Bewaffnung der Munddeckplatte und der vier ersten Adambulacralplatten von der Armfurchen aus gesehen; 5¹/₂.

29. Munddecke und ihre Nachbarschaft, von aussen; 8¹/₈. S Subambulacralstachel; Gr Granula.

30. After mit seiner Umgebung, von aussen; 21¹/₁.
Tafel 9.

Fig. 1—14. *Asterina gibbosa.*

- 1. Rückenskelet eines 45 Tage alten jungen Thieres, von aussen; 48/.
- 2. Rückenskelet eines jungen Thieres von R = 2 mm, von innen; 30/.
- 3. Rückenskelet eines nur wenig älteren Thieres von R = 2,3 mm, von aussen; 36/.
- 4. Rückenskelet eines erwachsenen Exemplares, von innen; 5/.
- 5. Rückenskelet eines jungen Exemplares von R = 3,25 mm, von innen; 30/.
- 6. Rückenskelet eines erwachsenen Thieres, von aussen; 5/.

- 7. Ventraler Interbrachialbezirk eines Exemplares von R = 25 mm, nach Entfernung der Bestachelung, von aussen; 6/.
- 8. Eine Ventrolateralplatte eines erwachsenen Exemplares, von innen; 13/.
- 10. Terminalplatte eines erwachsenen Exemplares, von oben; 13/.
- 11. Eine untere Randplatte eines erwachsenen Exemplares; 24/.
- 12. Madreporenplatte eines erwachsenen Exemplares, von aussen gesehen; 24/.
- 14. Ein Fünftel des Ventralskelletes eines jungen Thieres von R = 2 mm, von unten; 41/.

15—24. *Chaetaster longipes.*

- 15—24. Glasstacheln. Fig. 15 u. 16 von den Rückenpaxillen; 05/.
- 17. Fig. 17 von einer proximalen Adambulacratalplatte; 05/.
- 18. Fig. 18 von einer oberen Randplatte; 05/.
- 19. Fig. 19 von einer unteren Randplatte; 230/.
- 20. Fig. 20 von einer oberen Randplatte; 230/.
- 21—24. Fig. 21—24 von einem jungen Thiere; 230/.
- 22. Fig. 24 Basis eines jungen Stachels.
- 25. Schema über die Anordnung der supplementären Plättchen im Armmorchen, von aussen; die supplementären Plättchen sind wie durchscheinend gezeichnet.
- 26. Rücken des jungen Exemplares Nr. 11, von oben; 24/.
- 27. Rücken des halbwüchsigen Exemplares Nr. 8, von oben; 13/.
- 30. Rücken des jungen Exemplares Nr. 11, von unten; 29/.
- 31. Scheibe und ein Arm desselben jungen Thieres, von oben; 19/.

Bezeichnungen wie in den vorigen Figuren.
CHAETASTER LONGIPES.
Asterina cibbosa. Chaetaster longipes.
Tafel 10.

Fig. 1—18. *Echinaster sepositus*.

1. Ein Stück des Armrückenskeletes aus dem proximalen Armabschnitt nach Entfernung der Stacheln, von aussen gesehen; \(\gamma / \). Das untere Ende der Figur ist das adorale.

2. Ein Stück aus der Rückenseite des proximalen Armabschnittes, von aussen; \(\gamma / \). *St* Stacheln, *D* Drüsen.

3. Seitlicher Bezirk des Armskeletes aus dem proximalen Armabschnitt, nach Entfernung der Stacheln, von aussen; \(\gamma / \). Das untere Ende der Figur ist das adorale.

4. Terminalplatte von oben; \(\gamma / \).

5. Dieselbe, von unten; \(\gamma / \).

6. Eine Adambulacralplatte aus dem proximalen Armabschnitt eines erwachsenen Exemplares, so gesehen, dass man gleichzeitig alle drei Adambulacralstacheln (1, 2, 3) erblickt; \(\gamma / \). 1 der innere, 2 der äussere Furchenstachel, 3 der subambulacralen Stachel. Das untere Ende der Figur ist das adorale.

7. Rückenskelet des Armes eines jungen Thieres von R = 5,5 mm, von oben; \(\gamma / \).

8. Ventralskelte eines jungen Thieres von R = 6 mm, von unten; \(\gamma / \). *uVI71* unpaare Ventrolateralplatte der ersten Längsreihe.

9. Seitenansicht des Skeletes des proximalen Armabschnittes von einem Exemplare von R = 16 mm. \(zR \) Zwischenrandplatten.

10. Ein ventraler Interbrachialbezirk desselben Exemplares, von unten; \(\gamma / \). *VII71* Platten der ersten, *VII2* der zweiten ventrolateralen Längsreihe. *uVII1* wie in Fig. 8, *zR* wie in Fig. 9.

11. Derselbe Bezirk von einem älteren Exemplare von R = 87 mm; \(\gamma / \). Bezeichnungen wie vorhin.

12. Rückenskelet der Scheibe eines jungen Thieres von R = 5,5 mm, von aussen; \(\gamma / \).

13. Derselbe von einem etwas älteren jungen Exemplare (R = 9,5 mm), von aussen; \(\gamma / \). Die Bestachelung ist mit Ausnahme der Madreporenplatte weggelassen.

14. Derselbe von einem halbwüchsigen Exemplare von R = 22 mm, von aussen; \(\gamma / \). Auf der in internadialer Richtung links an die Madreporenplatte angrenzenden Platte soll es statt \(R2 \) heissen \(IR2 \).

15. Derselbe von einem erwachsenen Exemplare (R = 66 mm), von innen; \(\gamma / \). *St* Steinkanal.

16. Munddecke eines halbwüchsigen Exemplares (R = 22 mm), von aussen; \(\gamma / \). 1, 2, 3 die drei Stacheln der Mundeckplatte.

17. Madreporenplatte eines unversehrten erwachsenen Thieres (R = 67 mm), von oben; \(\gamma / \).

18. Schräga Ansicht eines Stückchens des seines weichen Ueberzuges beraubten Furchenfeldes der Madreporenplatte des erwachsenen Thieres (R = 87 mm); \(\gamma / \).
Tafel 11.

Fig. 1—17. *Hacelia attenuata*.
- 1. Aufbau des ventralen Armskeletes bei einem Exemplare von $R = 85\, \text{mm}$, von aussen gesehen; stark 3mal vergrössert. Die Zeichnung umfasst die letzten 14 mm des Arms. V_{11}, V_{12}, V_{13} die erste, zweite, dritte Längsreihe der Ventrolateralplatten. $V_{11}(l)$ die letzte Platte der ersten, $V_{12}(l)$ die letzte Platte der zweiten, $V_{13}(l)$ die letzte Platte der dritten ventrolateralen Längsreihe. $Pa(l)$ die letzte Papula der äusseren ventralen Reihe, $P(l)$ die letzte Papula der inneren ventralen Reihe; $P(l)$ die letzte zwischen zwei unteren Randplatten liegende Papula der inneren ventralen Reihe.
- 4. Stück des Armskeletes eines jungen Exemplares ($R = 8\, \text{mm}$), von aussen und von der Seite gesehen; $15/4$. V_{11} eine Platte der ersten (jetzt noch allein vorhandenen) Längsreihe der Ventrolateralplatten.
- 5. Rückenskelet der Scheibe und eines Armes von denselben jungen Thiere, von oben; $15/4$. mAF_{1}, mAF_{2} erstes u. zweites mediales Armfeld; lAF_{1}, lAF_{2} erstes u. zweites laterales Armfeld.
- 6. Rückenskelet der Scheibe eines halbwüchsig Exemplares von $R = 21\, \text{mm}$, von oben; $9/4$. Bezeichnungen wie in Fig. 5.
- 8. Skelet eines ventralen Interbrachialbezirkes von einem jungen Thiere ($R = 13\, \text{mm}$), von aussen; $15/4$. uV_{11} die unpaare Platte der ersten, uV_{12} die unpaare der zweiten ventrolateralen Längsreihe. V_{11} erste, V_{12} zweite ventrolaterale Längsreihe. Die von den uR ausgehenden punktierten Linien sollen die zu jeder uR gehörigen V_{1} hervorheben.
- 11. Bewaffnung der Munddecke und der ersten Ambulacralplatten bei einem erwachsenen Thiere ($R = 85\, \text{mm}$), von aussen; $6\times 5/4$. 1, 2, 3 die drei aussen sichtbaren Stacheln am ambulacralen Rande der Munddeckstückes.
- 13—15. Drei salzfassfähige Pedicellarien mit niedergelegten Zangenstücken, von aussen gesehen; $17/4$. Fig. 13 gebogene Form; Fig. 14 gerade Form; Fig. 15 dreiklappige Form.
- 16. Skelett des Armrückens und eines Fünftels des Scheibenrückens von einem ganz jungen Thiere ($R = 2,2\, \text{mm}$), von oben; $3\times 3/4$. Die Granula Gr sind in der Abbildung absichtlich weniger dicht gestellt als in Wirklichkeit, um die darunter befindlichen Skeletplatten deutlicher zeigen zu können. Stplatte Stacheln der Terminalplatte.
- 17. Ein Stachel der Terminalplatte desselben kleinen Exemplares, von der Fläche gesehen; 5×4.
- 19. Innenansicht des dorsalen Armskeletes in der distalen Armhälfte nicht ganz bis zur Armspitze reichend; $3/4$. Bezeichnungen wie in Fig. 18. x bedeutet die Stellen der Papulae büschel.
9. Asterias tenuispina
Tafel 12.

Fig. 1—16. *Asterias glacialis.

1. Rückenskelet des proximalen Armabschnittes von einem erwachsenen Exemplare (R = 115 mm), von innen gesehen; 57/4. Das untere Ende der Figur ist das adorale. mSp mediales, lSp laterales Spangenstück.

2. Ein gleiches Präparat von aussen; 57/4.

5. Eine untere Randplatte aus dem proximalen Armabschnitt eines grossen Exemplares (R = 190 mm), von aussen; 32/4. Das untere Ende dieser und der beiden folgenden Figuren ist das aborale.

10. Scheitelskelet eines jungen Thieres von R = 2,95 mm, von aussen; 35/1 zur Erläuterung vergl. auch S. 378).

12. Dasselbe von einem jungen Thiere von R = 9 mm, von aussen; 16/4. mSp mediales, lSp laterales Spangenstück.

13. Dasselbe von einem jungen Thiere von R = 12,5 mm, von aussen; 19/4. mSp mediales Spangenstück. rB die Anlage einer der radialen Skeletbrücken im Scheitelfeld.

18—22. *Asterias richardi.*

22. Rückenskelet der Scheibe, von innen gesehen; 13/4.
Fauna und Flora des Golfes von Neapel.
Faune et Flore du Golfe de Naples.

Bereits erschienen: — Ont déjà paru:

<table>
<thead>
<tr>
<th>Jahrgang</th>
<th>Annee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1880</td>
</tr>
<tr>
<td>1.</td>
<td>1880</td>
</tr>
<tr>
<td>2.</td>
<td>1881</td>
</tr>
<tr>
<td>2.</td>
<td>1881</td>
</tr>
<tr>
<td>3.</td>
<td>1882</td>
</tr>
<tr>
<td>3.</td>
<td>1882</td>
</tr>
<tr>
<td>4.</td>
<td>1883</td>
</tr>
<tr>
<td>4.</td>
<td>1883</td>
</tr>
<tr>
<td>5.</td>
<td>1884</td>
</tr>
<tr>
<td>5.</td>
<td>1884</td>
</tr>
<tr>
<td>6.</td>
<td>1885</td>
</tr>
<tr>
<td>6.</td>
<td>1885</td>
</tr>
<tr>
<td>7.</td>
<td>1886</td>
</tr>
<tr>
<td>7.</td>
<td>1886</td>
</tr>
<tr>
<td>8.</td>
<td>1887</td>
</tr>
<tr>
<td>8.</td>
<td>1887</td>
</tr>
<tr>
<td>9.</td>
<td>1888</td>
</tr>
<tr>
<td>9.</td>
<td>1888</td>
</tr>
<tr>
<td>10.</td>
<td>1889</td>
</tr>
<tr>
<td>10.</td>
<td>1889</td>
</tr>
<tr>
<td>11.</td>
<td>1890</td>
</tr>
<tr>
<td>11.</td>
<td>1890</td>
</tr>
<tr>
<td>12.</td>
<td>1891</td>
</tr>
<tr>
<td>12.</td>
<td>1891</td>
</tr>
<tr>
<td>13.</td>
<td>1892</td>
</tr>
<tr>
<td>13.</td>
<td>1892</td>
</tr>
<tr>
<td>14.</td>
<td>1893</td>
</tr>
<tr>
<td>14.</td>
<td>1893</td>
</tr>
<tr>
<td>15.</td>
<td>1894</td>
</tr>
<tr>
<td>15.</td>
<td>1894</td>
</tr>
<tr>
<td>16.</td>
<td>1895</td>
</tr>
<tr>
<td>16.</td>
<td>1895</td>
</tr>
<tr>
<td>17.</td>
<td>1896</td>
</tr>
<tr>
<td>17.</td>
<td>1896</td>
</tr>
</tbody>
</table>

In Vorbereitung: — En préparation:

Bei Subskription auf wenigstens 5 Jahrgänge beträgt der Preis für den Jahrgang 50 Mark.
Für les souscripteurs de 5 années au moins, le prix est fixé à 62,50 Fr. par année.

Mittheilungen aus der Zoologischen Station zu Neapel.

Vollständig erschienen die Bände: — Ont paru les volumes:

I. 1878—79. 592 Seiten mit 18 Tafeln. 29.—
II. 1880—81. 530 pages avec 20 planches. 29.—
III. 1881—82. 602 » 26 » 41.—
IV. 1883. 522 » 40 » 59.—
V. 1884. 580 » 32 » 56.—
VI. 1885—86. 756 » 33 » 58.—
VII. 1886—87. 748 » 27 » 56.—
VIII. 1888. 662 » 25 » 55.—
IX. 1889—90. 676 » 25 » 58.—
X. 1891—92. 680 » 40 » 70.—
XL. 1893—94. 694 » 24 » 58.—

Bei Bezugs der ersten 9 Bände wird deren Preis auf die Hälfte ernössigt. — Pour les acheteurs des volumes 1 à 9, le prix en sera réduit de moitié.

Zoologischer Jahresbericht.

Erschienen sind die Berichte für: — Ont paru les comptes-rendus pour:

1879. Preis 32.— 30.— Fr.
1880. » 31.— 30.— Fr.
1881. » 31.— 30.— Fr.
1882. » 32.— 30.— Fr.
1883. » 34.— 30.— Fr.
1884. » 36.— 30.— Fr.
1885. » 36.— 30.— Fr.
1886. » 24.— 30.— Fr.
1887. » 24.— 30.— Fr.

Autoren- und Sachregister zu den Jahresberichten für 1886—1890, bearbeitet von P. Schiemenz und E. Schoebel.

Preis 16.— 20 Fr.

Bei Bezugs der Jahrgänge 1879—1885 incl. beträgt der Preis derselben nur die Hälfte, also 116.—. — Pour les acheteurs des années 1879—1885 incl., le prix en sera réduit de moitié, à 145 Fr.