STATIC AND DYNAMIC ELECTRICITY
INTERNATIONAL SERIES IN
PURE AND APPLIED PHYSICS
G. P. HARNWELL, Consulting Editor

Brillouin—WAVE PROPAGATION IN PERIODIC STRUCTURES
Cady—PIEZOELECTRICITY
Clark—APPLIED X-RAYS
Curtis—ELECTRICAL MEASUREMENTS
Edwards—ANALYTIC AND VECTOR MECHANICS
Finkelburg—ATOMIC PHYSICS
Gurney—INTRODUCTION TO STATISTICAL MECHANICS
Hardy and Perrin—THE PRINCIPLES OF OPTICS
Harnwell—ELECTRICITY AND ELECTROMAGNETISM
Harnwell and Livingood—EXPERIMENTAL ATOMIC PHYSICS
Houston—PRINCIPLES OF MATHEMATICAL PHYSICS
Hughes and DuBridge—PHOTOELECTRIC PHENOMENA
Hund—HIGH-FREQUENCY MEASUREMENTS
Ingersoll, Zobel, and Ingersoll—HEAT CONDUCTION
Kemble—THE FUNDAMENTAL PRINCIPLES OF QUANTUM MECHANICS
Kennard—KINETIC THEORY OF GASES
Koller—THE PHYSICS OF ELECTRON TUBES
Morse—VIBRATION AND SOUND
Muskat—PHYSICAL PRINCIPLES OF OIL PRODUCTION
Pauling and Goudsmit—THE STRUCTURE OF LINE SPECTRA
Richtmyer and Kennard—INTRODUCTION TO MODERN PHYSICS
Ruark and Urey—ATOMS, MOLECULES, AND QUANTA
Schart—QUANTUM MECHANICS
Seitz—THE MODERN THEORY OF SOLIDS
Slater—INTRODUCTION TO CHEMICAL PHYSICS
MICROWAVE TRANSMISSION
Slater and Frank—ELECTROMAGNETISM
INTRODUCTION TO THEORETICAL PHYSICS MECHANICS
Smythe—STATIC AND DYNAMIC ELECTRICITY
Stratton—ELECTROMAGNETIC THEORY
White—INTRODUCTION TO ATOMIC SPECTRA

Dr. Lee A. DuBridge was consulting editor of the series from 1939 to 1946.
PREFACE TO THE SECOND EDITION

The wide use of rationalized mks units and the increased importance of microwaves made this radical revision of the first edition imperative. The units are changed throughout. The resultant extensive resetting of the text permits a modernization of nomenclature through such changes as "capacitor" for "condenser" and "electromotance" for "electromotive force." The original wording has been preserved only in the Cambridge problems. In static-field chapters, forty problems of above-average difficulty have been added, usually covering boundary conditions omitted in the first edition. The expanded treatment of electromagnetic waves made necessary the rewriting of the parts of Chapter V dealing with Bessel functions and led to the introduction of vector surface harmonics, which greatly simplify some calculations. Much of Chapter XI on eddy currents has been rewritten, and two of the three electromagnetic-wave chapters are entirely new. Both the text and the 150 problems include methods and results not found in the literature. Two groups of advanced Ph.D. students worked over this material to get practice in attacking every type of wave-field problem. Many are too difficult for first-year graduate students, but every problem was solved by at least one of the advanced students. They can be worked either directly from the text or by fairly obvious extensions of it. Some useful results appear in the problems and are listed in the Index, which should be consulted by engineers with boundary value problems to solve. Chapter XV of the first edition is omitted because none of the remaining theory is based on it and because to bring it up to date would require an excessive amount of space.

None of the new topics appears to lie outside the scope of the mathematical preparation assumed for readers of the first edition. That the successful solution of electrical problems depends on physical rather than mathematical insight is borne out by the author's experience with the first edition, which shows that graduate students in electrical engineering and physics greatly excel those in mathematics.

It is believed that very few of the errors and obscure or ambiguous statements in the first edition escaped the scrutiny of the 375 students at the California Institute of Technology who worked it through. No infallible system for locating errors caused by the transposition of units has been found, and the author will appreciate letters from readers pointing them out.

Pasadena, Calif. July, 1950

William R. Smythe
PREFACE TO THE FIRST EDITION

It has been found that, in most cases, the average graduate student, even though he seems to be thoroughly familiar with advanced electrical theory, is unable to solve the electrical problems he encounters in research if they fall outside the routine types and so must be worked out from first principles. The present book is the result of having taught, for the last twelve years, a course designed to train first-year graduate students in physics, electrical engineering, geophysics, and mathematics to apply the principles of electricity and magnetism. Students in these fields must show a proficiency equivalent to an average grade in this course to be admitted to candidacy for the Ph.D. degree at this institute. It is hoped that this book will also provide a reference where workers in these fields may find the methods of attack on those problems, common in research, for which the formulas in the handbooks are inadequate. It is assumed that the reader has the mathematical preparation usually acquired in a good undergraduate course in introduction to mathematical physics. This implies a reasonable familiarity with vector analysis, the calculus, and elementary differential equations. All the mathematical development beyond this point is done herein by methods that a reader with such training can follow. The author has succeeded, with some difficulty, in avoiding the use of contour integration but believes that anyone going further into the subject should acquire a working knowledge of this powerful mathematical tool.

As has already been implied, this book is written for the experimental research physicist and engineer rather than for the theoretical man. For this reason, only that theory which has applications is included, and this is developed by the most concise method compatible with the assumed preparation of the reader. No subject is included for its historical interest alone. More than the usual number of problems have been worked out in the text, and these have been selected for one or more of the following reasons: the result has important applications, it clarifies the theory, it illustrates some useful mathematical device, it proves the utility of some concept in the theory. At the end of each chapter is an extensive collection of problems involving nearly all the theory in the text. Many of these are taken from the Cambridge University examination questions as printed in Jeans’s “The Mathematical Theory of Electricity and Magnetism,” Cambridge, 1925, and are included with the permission of the Cambridge University Press to whom we express our thanks. Although the best students can work all the problems, the average student cannot. They provide an oppor-
tunity for the reader who is working up the subject by himself to test his proficiency. In many cases important results, which lack of space prevented working out in the text, are included as problems and are listed in the index.

The treatment and arrangement of the subject matter depart from the most common practice in several respects. In the first place, it will be noticed that all developments are based directly on the macroscopic experimental facts rather than on the hypothetical microscopic structure of conductors and dielectrics. There are two reasons for this. The first is that, although the microscopic theory meets the crucial test, namely, gives the observed macroscopic laws within the precision of observation, this does not imply that the theory is unique or that other deductions from it are correct. The second is that the development of the most satisfactory theories, those based on wave mechanics, require mathematical technique with which we have assumed the reader to be unfamiliar when starting this book, but with which he will be quite familiar after finishing two-thirds of it. The development of these theories, necessarily brief, is therefore postponed until the last chapter. The second departure from the most common practice consists in the complete omission of the concept of the isolated magnetic pole. All magnetic theory is therefore based on the interactions of electric currents or moving charges. This logically leads to the use of the magnetic vector potential rather than the scalar potential, so that the former is used extensively, although not exclusively, in all magnetic and electromagnetic theory. It will surprise many to find that this leads to considerable simplification in certain places, notably in the calculation of inductance and the treatment of eddy currents and electromagnetic radiation. Other minor departures from the usual practice include the more extensive use of Bessel functions and conformal transformations and the treatment of forces between moving charges exclusively by the methods of special relativity. The latter procedure, besides having a very firm experimental basis, makes hypotheses as to the shape or size of electric charges unnecessary and gives a clearer idea of the limits within which the standard formulas can be applied without using such hypotheses.

Several subjects usually included in books on electricity and magnetism are omitted here. The theories of electrolytic conduction, thermionic emission, photoelectric phenomena, thermoelectric effects, etc., of which the reader is assumed to have an elementary knowledge, are entirely omitted because it is believed that a treatment of them, on the same level as the remainder of the book, would require a background of physical chemistry, thermodynamics, and quantum theory not possessed by the average reader. The theory of electrical machines and instruments, including vacuum tubes, is also omitted because it is
believed that such subjects are best treated in connection with laboratory courses. Certain alternative methods such, for example, as the Heavinside operational method and the dynamic method of circuit analysis have been omitted for lack of space.

Before starting this book the average reader will have become familiar with all the common systems of electrical units and will have his own preference. The actual system used will make little difference provided it is clearly indicated. For each section of the subject, the author has used that system which seemed simplest to work with. Thus the c.g.s. electrostatic units are used in Chaps. I to V, the c.g.s. electromagnetic units in Chaps. VII to XII, and the Gaussian system in Chaps. XIII, XIV, and XV. To avoid confusion, the units used are noted at the bottom of each page and a very complete system of conversion tables is given in the Appendix, enabling the results of any calculation to be expressed in any units. To see whether the use of rational units would have simplified calculations, all the numbered formulas occurring in the preliminary lithoprinted edition were scrutinized. It was found that the complexity of 1196 formulas would be unchanged, that of 169 would be decreased, and that of 123 would be increased. Thus in the theory there is little to choose between rationalized and unrationalized units. The results in problems were not investigated.

It has been the practice throughout, whenever an integration is performed or a mathematical transformation made, to refer, by number, to the appropriate formula in both Peirce's "A Short Table of Integrals," Ginn, 1929, and Dwight's "Tables of Integrals and Other Mathematical Data," Macmillan, 1934. It is therefore advisable for the prospective reader to procure a copy of one of these inexpensive tables. The bibliographies at the ends of the chapters are not by any means complete but include merely those books that have come to the author's attention which contain useful additional material or instructive alternative treatments.

The author has used every device he can think of to eliminate mistakes but is perfectly certain that they still persist and will be grateful to anyone pointing them out.

The author wishes to express his gratitude to the hundred graduate students, especially Dr. Pasternack, who worked through the preliminary lithoprinted edition, zealously detecting errors and obscure spots, and checking the answers to problems. He also wishes to thank Professors Ira S. Bowen and William V. Houston for reading sections of the manuscript and for valuable discussions. In particular, he wishes to thank Dr. Charles H. Townes for checking all the derivations in the final manuscript and the answers to those problems not appearing in the preliminary edition.

Pasadena, Calif.
August, 1939

William R. Smythe
CONTENTS

Preface to the Second Edition. .. v
Preface to the First Edition. .. vii
Table of Symbols ... xvii

CHAPTER I

Basic Ideas of Electrostatics .. 1

CHAPTER II

Capacitors, Dielectrics, Systems of Conductors. 25

CHAPTER III

General Theorems. .. 48
Gauss's theorem—Stokes's theorem—Equations of Poisson and Laplace—Orthogonal curvilinear coordinates—Curl in orthogonal curvilinear coordinates—\(\nabla \cdot (\epsilon \nabla V) \) in other coordinate systems—Green's theorems—Green's reciprocaton theorem for dielectrics—Green's function—Solution of Poisson's equation—Uniqueness theorem with dielectrics present—Introduction of new conductor—Green's equivalent stratum—Energy of a dielectric body in an electric field—Effect of an increase of capacitvity—Potential of axially symmetrical field—Problems—References.
CONTENTS

CHAPTER IV

Two-dimensional Potential Distributions. 63

Field and potential in two dimensions—Circular harmonics—Harmonic expansion of line charge potential—Conducting or dielectric cylinder in uniform field—Dielectric cylinder. Method of images—Image in conducting cylinder—Image in plane face of dielectric or conductor. Intersecting conducting planes—Dielectric wedge—Complex quantities—Conjugate functions—The stream function—Electric field intensity. Electric flux—Functions for a line charge—Capacitance between two circular cylinders—Capacitance between cylinder and plane and between two similar cylinders—Conformal transformations—Given equations of boundary in parametric form—Determination of required conjugate functions—The Schwarz transformation—Polygons with one positive angle—Polygon with angle zero—Polygons with one negative angle. Doublet. Inversion—Images by two-dimensional inversion—Polygon with two angles—Slotted plane—Riemann surfaces—Circular cylinder into elliptic cylinder—Dielectric boundary conditions—Elliptic dielectric cylinder—Torque on dielectric cylinder—Polygon with rounded corner—Plane grating of large cylindrical wires—Angles not integral multiples of $\frac{1}{4}\pi$—Problems—References.

CHAPTER V

Three-dimensional Potential Distributions. 111

CONTENTS

function for a cone—Green's function for a conical box—Oblate spheroidal coordinates—Oblate spheroidal harmonics—Conducting sheet with circular hole—Torque on disk in uniform field—Potential of charge distribution on spheroid—Potential of point charge in oblate spheroidal harmonics—Prolate spheroidal harmonics—Prolate spheroid in uniform field—Laplace's equation in cylindrical coordinates—Bessel's equation and Bessel functions—Modified Bessel equation and functions—Solution of Bessel's equation—Recurrence formulas for Bessel functions—Values of Bessel functions at infinity—Integrals of Bessel functions—Expansion in series of Bessel functions—Green's function for cylinder. Inverse distance—Green's function for cylindrical box—Bessel functions of zero order—Roots and numerical values of Bessel functions of zero order—Derivatives and integrals of Bessel functions of zero order—Point charge and dielectric plate—Potential inside hollow cylindrical ring—Nonintegral order and spherical Bessel functions—Modified Bessel functions—Recurrence formulas for modified Bessel functions—Values of modified Bessel functions at infinity—Integral of a product of complex modified Bessel functions—Green's function for a hollow cylindrical ring—Modified Bessel functions of zero order—Definite integrals for the modified Bessel function of the second kind. Value at infinity—Definite integrals for Bessel functions of zero order—Inverse distance in terms of modified Bessel functions—Cylindrical dielectric boundaries—Potential inside hollow cylindrical ring—Modified Bessel functions of nonintegral order—Approximate solutions. Electrostatic lens—Wedge functions—Problems—References.

CHAPTER VI

Electric Current

CHAPTER VII

Magnetic Interaction of Currents

Definition of the ampere in terms of the magnetic moment—Magnetic induction and permeability—Magnetic vector potential. Uniform field—Uniqueness theorems for magnetostatics—Orthogon expansions for vector potential—Vector potential in cylindrical coordinates—Vector potential in spherical coordinates—Vector potential in terms of magnetic induction on axis—Equation of axially symmetrical tubes of induction—Vector potential and field of biilar circuit—Vector potential and field of circular loop—Field of currents in spherical shell—Zonal currents in spherical shell—
Field of circular loop in spherical harmonics—Biots and Savarts law. Field of straight wire—Field of helical solenoid—Field in cylindrical hole in conducting rod—Field of rectilinear currents in cylindrical conducting shell—Force on electric circuit in magnetic field—Examples of forces between electric circuits—Vector potential and magnetization—Magnetic boundary conditions—Example of the use of A and A—Current images in plane face—Magnetic induction and permeability in crystals—Two-dimensional magnetic fields—Magnetic shielding of bifilar circuit—Current images in two dimensions—Magnetomotance and magnetic intensity—The magnetic circuit. Anchor ring—Air gaps in magnetic circuits—Field in shell-type transformer—Slotted pole piece. Effective air gap—Problems—References.

CHAPTER VIII

Electromagnetic Induction

CHAPTER IX

Transermal Phenomena in Networks

CHAPTER X

Alternating Currents

CHAPTER XI

Induced currents in extended conductors—Solution for vector potential of eddy currents—Steady-state skin effect—Skin effect on tubular conductor—Skin effect on solid cylindrical conductor—Solution in spherical coordinates for axial symmetry—Conducting sphere in alternating field—Power absorbed by sphere in alternating magnetic field—Transients in conducting sphere—Eddy currents in plane sheets—Eddy currents in infinite plane sheet by image method—Torque on small rotating current loop or magnetic dipole—Eddy currents from rotating dipole—Shielding of circular coil by thin conducting sheet—Zonal eddy currents in spherical shell—Eddy currents in thin cylindrical shell—Transient shielding by a thick cylindrical shell—Problems—References.

CHAPTER XII

CHAPTER XIII

CHAPTER XIV

from apertures in plane conducting screens—Diffraction from rectangular aperture in conducting plane—Orthogonal functions in diffraction problems.

Coaxial line—Problems—References.

CHAPTER XV
WAVE GUIDES AND CAVITY RESONATORS. 511

CHAPTER XVI
SPECIAL RELATIVITY AND THE MOTION OF CHARGED PARTICLES. 560
The postulates of special relativity—The Lorentz transformation equations—Transformation equations for velocity and acceleration—Variation of mass with velocity—The transformation equations for force—Force on charge moving in magnetic field—Motion of charge in uniform magnetic field—Energy of a charged moving particle—Magnetic cutoff of thermionic rectifier—Path of cosmic particle in uniform field—Magnetic field of moving charge—Retarded fields and potentials of moving charge—Radiation from linearly accelerated electron—Transformation of Maxwell’s equations—Ground speed of an airplane—Motion of charged particle in crossed electric and magnetic fields—Aberration and Doppler Effect—Problems—References.

APPENDIX
SYSTEMS OF ELECTRICAL UNITS. 585
TABLE I. RELATIONS BETWEEN CGS AND MKS MECHANICAL UNITS. 586
TABLE II. TRANSPOSITION OF MKS FORMULAS INTO CGS ESU. 586
TABLE III. TRANSPOSITION OF MKS FORMULAS INTO CGS EMU. 587
TABLE IV. TRANSPOSITION OF CGS ESU OR CGS EMU FORMULAS INTO MKS. 588
TABLE V. DIMENSIONS OF ELECTRIC AND MAGNETIC QUANTITIES. 590
TABLE VI. NUMERICAL VALUES. 591
INDEX. 593
TABLE OF SYMBOLS

Note: In this table bold-face symbols \((v, u, \phi, \ldots)\) are space vectors except in Chap. X, where they are phasors \((I, \mathcal{E}, \ldots)\) or conjugate phasors \((I^*, \mathcal{E}^*, \ldots)\). In subsequent chapters, phasors \((\tilde{I}, \tilde{\mathcal{E}}, \ldots)\), phasor space vectors \((\tilde{E}, \tilde{B}, \tilde{H}, \ldots)\), conjugate phasors \((\tilde{I}, \tilde{\mathcal{E}}, \ldots)\) and conjugate phasor space vectors \((\tilde{E}, \tilde{B}, \tilde{H}, \ldots)\) are shown by an erect (\(\sim\)) or an inverted (\(\sim\)) flat vee above the symbol. Magnitudes of vectors and scalars, whether time-dependent or not, are written without designation.

<table>
<thead>
<tr>
<th>Symbol(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A, A_\phi, A_z) etc.</td>
<td>Vector potential.</td>
</tr>
<tr>
<td>(A^0)</td>
<td>Normalized vector potential.</td>
</tr>
<tr>
<td>(A, A_\tau) etc.</td>
<td>Quasi-vector potential.</td>
</tr>
<tr>
<td>(B, B_\phi, B_z) etc.</td>
<td>Magnetic induction.</td>
</tr>
<tr>
<td>(B)</td>
<td>Susceptance.</td>
</tr>
<tr>
<td>(B^0)</td>
<td>Normalized or relative susceptance, (B\tilde{Z}_k).</td>
</tr>
<tr>
<td>(C)</td>
<td>Capacitance. A constant.</td>
</tr>
<tr>
<td>(C^0)</td>
<td>Normalized or relative capacitance, (C\tilde{Z}_k).</td>
</tr>
<tr>
<td>(c)</td>
<td>Velocity of light. A length.</td>
</tr>
<tr>
<td>(c_{mn})</td>
<td>Self-capacitance. Operator in 9.07.</td>
</tr>
<tr>
<td>(c_{mn})</td>
<td>Mutual capacitance. Operator in 9.07.</td>
</tr>
<tr>
<td>(D, D_\phi, D_z) etc.</td>
<td>Electric displacement.</td>
</tr>
<tr>
<td>(Dw)</td>
<td>Dwight integral tables.</td>
</tr>
<tr>
<td>(ds)</td>
<td>Differential element along (s).</td>
</tr>
<tr>
<td>(dr)</td>
<td>Differential change in (r).</td>
</tr>
<tr>
<td>(E, E, \tilde{E}, \tilde{E}) etc.</td>
<td>Electric field intensity.</td>
</tr>
<tr>
<td>(E(k))</td>
<td>Complete elliptic integral.</td>
</tr>
<tr>
<td>(e)</td>
<td>Electronic charge. 2.71828.</td>
</tr>
<tr>
<td>(\mathcal{E}, \mathcal{E}, \tilde{\mathcal{E}}, \tilde{\mathcal{E}}) etc.</td>
<td>Electromotance.</td>
</tr>
<tr>
<td>(\mathcal{E}_e)</td>
<td>Effective or rms electromotance.</td>
</tr>
<tr>
<td>(F, F_z)</td>
<td>Force.</td>
</tr>
<tr>
<td>(G)</td>
<td>Conductance, (\tilde{Y} = G + jB).</td>
</tr>
<tr>
<td>(g)</td>
<td>Acceleration of gravity.</td>
</tr>
<tr>
<td>(H, H, \tilde{H}, \tilde{H}) etc.</td>
<td>Magnetic field intensity.</td>
</tr>
<tr>
<td>(H^{(1)}_n, H^{(1)}_n(v), H^{(2)}_n, H^{(2)}_n(v))</td>
<td>Hankel functions.</td>
</tr>
<tr>
<td>(h)</td>
<td>Plank's constant.</td>
</tr>
<tr>
<td>(h_1, h_2, h_3)</td>
<td>In orthogonal curvilinear coordinates. Length elements are (h_1du_1, h_2du_2, h_3du_3).</td>
</tr>
<tr>
<td>(h^{(1)}_n, h^{(1)}_n(v), h^{(2)}_n, h^{(2)}_n(v))</td>
<td>Spherical Hankel functions.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>I, I, \hat{I}, \tilde{I}, etc.</td>
<td>Electric current.</td>
</tr>
<tr>
<td>I_0</td>
<td>Effective or rms current.</td>
</tr>
<tr>
<td>i_0</td>
<td>Effective or rms current density.</td>
</tr>
<tr>
<td>i, i, \dot{i}, i_z, etc.</td>
<td>Current density. Current.</td>
</tr>
<tr>
<td>i, j, k</td>
<td>Unit x, y, z vectors.</td>
</tr>
<tr>
<td>$J_n, J_n(v)$</td>
<td>Bessel functions.</td>
</tr>
<tr>
<td>j</td>
<td>$(-1)^i$.</td>
</tr>
<tr>
<td>$j_n, j_n(v)$</td>
<td>Spherical Bessel functions.</td>
</tr>
<tr>
<td>K</td>
<td>Relative capacitvity, $\varepsilon/\varepsilon_0$.</td>
</tr>
<tr>
<td>$K(k)$</td>
<td>Complete elliptic integral.</td>
</tr>
<tr>
<td>K_m</td>
<td>Relative permeatility, μ/μ_0.</td>
</tr>
<tr>
<td>$K_n, K_n(v)$</td>
<td>Modified Bessel functions.</td>
</tr>
<tr>
<td>$k_n, k_n(v)$</td>
<td>Modified spherical Bessel functions.</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann constant.</td>
</tr>
<tr>
<td>L, L_{mn}, L_n</td>
<td>Inductance.</td>
</tr>
<tr>
<td>L_{mn}</td>
<td>Mutual inductance.</td>
</tr>
<tr>
<td>L^0</td>
<td>Normalized or relative inductance, L/\bar{L}_k.</td>
</tr>
<tr>
<td>i, m, n</td>
<td>Direction cosines with x, y, z axis.</td>
</tr>
<tr>
<td>M, M</td>
<td>Magnetization.</td>
</tr>
<tr>
<td>M</td>
<td>Mutual inductance.</td>
</tr>
<tr>
<td>$M_x, M_y, M_z, \bar{M}, \bar{M}$, etc.</td>
<td>Dipole or loop moment.</td>
</tr>
<tr>
<td>m</td>
<td>Classical magnetic dipole moment (XII).</td>
</tr>
<tr>
<td>m</td>
<td>Mass. A number (usually integer).</td>
</tr>
<tr>
<td>N</td>
<td>Electric or magnetic flux.</td>
</tr>
<tr>
<td>n</td>
<td>Unit normal vector.</td>
</tr>
<tr>
<td>n</td>
<td>Index of refraction. A number.</td>
</tr>
<tr>
<td>$n_n, n_n(v)$</td>
<td>Spherical Bessel function.</td>
</tr>
<tr>
<td>$2n!!$</td>
<td>$2 \cdot 4 \cdot 6 \cdots 2n$</td>
</tr>
<tr>
<td>$(2n + 1)!!$</td>
<td>$1 \cdot 3 \cdot 5 \cdots (2n + 1)$</td>
</tr>
<tr>
<td>P</td>
<td>Polarization.</td>
</tr>
<tr>
<td>P, \bar{P}</td>
<td>Power.</td>
</tr>
<tr>
<td>\bar{P}</td>
<td>Average power.</td>
</tr>
<tr>
<td>$P_n, P_n^{(\mu)}$</td>
<td>Associated Legendre function.</td>
</tr>
<tr>
<td>P_c</td>
<td>Peirce integral tables.</td>
</tr>
<tr>
<td>\dot{p}, p</td>
<td>Momentum.</td>
</tr>
<tr>
<td>p</td>
<td>A number. $\omega \mu \gamma$. ω.</td>
</tr>
<tr>
<td>Q</td>
<td>Electric charge. Quality of cavity.</td>
</tr>
<tr>
<td>Q</td>
<td>Quadrupole moment.</td>
</tr>
<tr>
<td>$Q_n, Q_n^{(\mu)}$</td>
<td>Associated Legendre function.</td>
</tr>
<tr>
<td>q</td>
<td>Point or variable charge.</td>
</tr>
<tr>
<td>R, R_n, R_{mn}, R_{mn}</td>
<td>Resistance.</td>
</tr>
<tr>
<td>$R, R(r)$</td>
<td>Function of r only.</td>
</tr>
<tr>
<td>$R_n, R_n(v)$</td>
<td>Solution of Bessel's equation.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>$R_0, R_0(v)$</td>
<td>Solution of Bessel's modified equation.</td>
</tr>
<tr>
<td>R, r</td>
<td>Distance between two points.</td>
</tr>
<tr>
<td>s</td>
<td>Distance from origin.</td>
</tr>
<tr>
<td>S, S_c, S_o</td>
<td>Cavity cross-section areas.</td>
</tr>
<tr>
<td>S_m, S_{mn}, S_{nn}</td>
<td>Surface harmonic.</td>
</tr>
<tr>
<td>S, S_n, S_{mn}, S_{nn}</td>
<td>Elastance.</td>
</tr>
<tr>
<td>s_n</td>
<td>Self-elastance.</td>
</tr>
<tr>
<td>s_{mn}</td>
<td>Mutual elastance.</td>
</tr>
<tr>
<td>s</td>
<td>Distance along curve. An integer.</td>
</tr>
<tr>
<td>T, T</td>
<td>Torque.</td>
</tr>
<tr>
<td>T</td>
<td>Absolute temperature. Period.</td>
</tr>
<tr>
<td>t</td>
<td>Time.</td>
</tr>
<tr>
<td>TE</td>
<td>Transverse electric.</td>
</tr>
<tr>
<td>TM</td>
<td>Transverse magnetic.</td>
</tr>
<tr>
<td>te</td>
<td>Subscript for TE wave quantities.</td>
</tr>
<tr>
<td>tm</td>
<td>Subscript for TM wave quantities.</td>
</tr>
<tr>
<td>U</td>
<td>Stream or potential function.</td>
</tr>
<tr>
<td>$[U]$</td>
<td>$\oint dU$ around constant V curve.</td>
</tr>
<tr>
<td>u, v</td>
<td>Velocity.</td>
</tr>
<tr>
<td>u_1, u_2, u_3</td>
<td>Orthogonal curvilinear coordinates.</td>
</tr>
<tr>
<td>V</td>
<td>Potential or stream function.</td>
</tr>
<tr>
<td>$[V]$</td>
<td>$\oint dV$ around constant U curve.</td>
</tr>
<tr>
<td>v</td>
<td>Volume.</td>
</tr>
<tr>
<td>W_{te}</td>
<td>Solutions yielding TE waves.</td>
</tr>
<tr>
<td>W_{tm}</td>
<td>Solutions yielding TM waves.</td>
</tr>
<tr>
<td>X</td>
<td>Reactance.</td>
</tr>
<tr>
<td>x, y, z</td>
<td>Rectangular coordinates.</td>
</tr>
<tr>
<td>$Y_n, Y_n(v)$</td>
<td>Bessel functions.</td>
</tr>
<tr>
<td>Y, Y</td>
<td>Admittance, $G + jB$.</td>
</tr>
<tr>
<td>\tilde{Y}_0, \tilde{Y}</td>
<td>Normalized or relative admittance, $\tilde{Y} \tilde{Z}_k$.</td>
</tr>
<tr>
<td>Z, \tilde{Z}</td>
<td>Hertz vector.</td>
</tr>
<tr>
<td>$\tilde{Z}, Z, Z, Z_{nn}, Z_{nn}$</td>
<td>Impedance.</td>
</tr>
<tr>
<td>\tilde{Z}_k</td>
<td>Characteristic impedance.</td>
</tr>
<tr>
<td>\tilde{Z}_k</td>
<td>Normalized or relative impedance, \tilde{Z}/\tilde{Z}_k.</td>
</tr>
<tr>
<td>$Z, Z(z)$</td>
<td>Function of z only.</td>
</tr>
<tr>
<td>z</td>
<td>Complex variable, $x + jy$.</td>
</tr>
<tr>
<td>$\alpha, \beta, \gamma, \delta, \epsilon$</td>
<td>Often used for angles.</td>
</tr>
<tr>
<td>θ, ϕ, χ, ψ</td>
<td>Often used for angles.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>β</td>
<td>Ratio v/c. Ratio $(\mu - \mu_e)/(\mu + \mu_e)$.</td>
</tr>
<tr>
<td>β</td>
<td>Free space wave number, $\omega(\mu e)^1$.</td>
</tr>
<tr>
<td>β_{mn}</td>
<td>Wave guide wave number, $(\beta^2 - \beta_{mn}^2)^1$.</td>
</tr>
<tr>
<td>$\beta_{m\nu}$</td>
<td>Cutoff wave number.</td>
</tr>
<tr>
<td>β_{mnp}</td>
<td>Cavity resonance wave number.</td>
</tr>
<tr>
<td>$\Gamma, \tilde{\Gamma}$</td>
<td>Phasor propagation constant.</td>
</tr>
<tr>
<td>γ</td>
<td>Electrical conductivity.</td>
</tr>
<tr>
<td>Δ, Δ_{mn}</td>
<td>Determinant. A small part of.</td>
</tr>
<tr>
<td>δ</td>
<td>Skin depth. Phase difference.</td>
</tr>
<tr>
<td>δ</td>
<td>A small quantity. A small part of.</td>
</tr>
<tr>
<td>δ_{mn}^*</td>
<td>Kronecker delta, zero if $m \neq n$, one if $m = n$.</td>
</tr>
<tr>
<td>ϵ</td>
<td>Capacitance. A small quantity.</td>
</tr>
<tr>
<td>ϵ_e</td>
<td>Free space capacitance.</td>
</tr>
<tr>
<td>ϵ_p, ϵ_n</td>
<td>Phase angle.</td>
</tr>
<tr>
<td>$\Theta, \Theta(\theta)$</td>
<td>Function of θ only.</td>
</tr>
<tr>
<td>θ</td>
<td>Colatitude angle.</td>
</tr>
<tr>
<td>θ</td>
<td>Unit vector in θ direction.</td>
</tr>
<tr>
<td>$\theta, \theta', \theta''$</td>
<td>Angles of incidence, reflection, and refraction.</td>
</tr>
<tr>
<td>κ</td>
<td>Magnetic susceptibility. $(1 - \beta^2)^{-1}$.</td>
</tr>
<tr>
<td>λ</td>
<td>Wave length.</td>
</tr>
<tr>
<td>λ_{mn}</td>
<td>Cutoff wave length.</td>
</tr>
<tr>
<td>λ_ϕ</td>
<td>Wave-guide wave length.</td>
</tr>
<tr>
<td>λ_{mnp}</td>
<td>Cavity resonance wave length.</td>
</tr>
<tr>
<td>μ</td>
<td>Permeability. $\cos \theta$.</td>
</tr>
<tr>
<td>μ_e</td>
<td>Free space permeability, $4\pi \times 10^{-7}$.</td>
</tr>
<tr>
<td>ν</td>
<td>Frequency in cycles per second.</td>
</tr>
<tr>
<td>ν_{mn}</td>
<td>Cutoff frequency.</td>
</tr>
<tr>
<td>ν_{mnp}</td>
<td>Cavity resonance frequency.</td>
</tr>
<tr>
<td>$\Xi, \Xi(\xi)$</td>
<td>Function of ξ only.</td>
</tr>
<tr>
<td>ξ, ξ, ϕ</td>
<td>Oblate spheroidal coordinates.</td>
</tr>
<tr>
<td>ξ, η, ϕ</td>
<td>Prolate spheroidal coordinates.</td>
</tr>
<tr>
<td>$\Pi, \tilde{\Pi}$</td>
<td>Poynting vector.</td>
</tr>
<tr>
<td>$\tilde{\Pi}$</td>
<td>Rms Poynting vector.</td>
</tr>
<tr>
<td>ρ</td>
<td>Distance from z or θ axis. Charge density.</td>
</tr>
<tr>
<td>ρ_1</td>
<td>Unit vector in ρ-direction.</td>
</tr>
<tr>
<td>σ</td>
<td>Surface electric charge density.</td>
</tr>
<tr>
<td>s</td>
<td>Area or surface resistivity.</td>
</tr>
<tr>
<td>Φ</td>
<td>Function of ϕ only.</td>
</tr>
<tr>
<td>ϕ</td>
<td>Unit vector in ϕ direction.</td>
</tr>
<tr>
<td>ϕ</td>
<td>Longitude angle. Phase angle.</td>
</tr>
<tr>
<td>Ψ</td>
<td>Scalar potential.</td>
</tr>
<tr>
<td>Ω</td>
<td>Magnetomotance. Solid angle.</td>
</tr>
</tbody>
</table>
TABLE OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega)</td>
<td>Frequency in radians per second.</td>
</tr>
<tr>
<td>(\nabla)</td>
<td>Vector operator, (i\partial/\partial x + j\partial/\partial y + k\partial/\partial z).</td>
</tr>
<tr>
<td>(\nabla^2)</td>
<td>Two dimensional vector operator.</td>
</tr>
<tr>
<td>(\mathbf{a} \times \mathbf{b})</td>
<td>Vector product of (\mathbf{a}) and (\mathbf{b}).</td>
</tr>
<tr>
<td>(\mathbf{a} \cdot \mathbf{b})</td>
<td>Scalar product of (\mathbf{a}) and (\mathbf{b}).</td>
</tr>
<tr>
<td>(\nabla^2)</td>
<td>Laplace operator.</td>
</tr>
<tr>
<td>([v])</td>
<td>Retarded (v).</td>
</tr>
</tbody>
</table>
CHAPTER I
BASIC IDEAS OF ELECTROSTATICS

1.00. Electrification, Conductors, and Insulators.—The word "electricity" is derived from the Greek word for amber. Apparently Thales of Miletus first discovered, about 600 B.C. that amber, when rubbed, attracts light objects to itself. It is now known that most substances possess this property to some extent. If we rub with a piece of silk a glass rod or a metal rod supported by a glass handle, we find that both will attract small bits of paper, and we say they are electrified. We see that only in the case of the metal rod can we destroy the electrification by touching with the finger. Furthermore, we find when we touch the electrified metal rod with pieces of various materials held in the hand that metals and damp objects destroy the electrification whereas substances like glass and silk do not. We call substances that remove the electrification conductors and those which do not insulators. We can find materials that remove the electrification very slowly and that we might call poor conductors or poor insulators. Thus there is no definite division between the two classes.

1.01. Positive and Negative Electricity.—If we rub a glass rod with silk and touch some light conducting body, such as a gilded pith ball suspended by a silk string, with either the rod or the silk, we find it is electrified. If two balls are electrified by the glass or by the silk, they repel each other; but if one is electrified by the rod and one by the silk, they attract. Thus we conclude that there are two kinds of electrification and that bodies similarly electrified repel each other and those oppositely electrified attract each other. By experimenting with many substances, we conclude that there are only two kinds of electricity. Arbitrarily we define the electricity on the glass rod to be positive and that on the silk negative.

1.02. Coulomb's Law, Unit Charge, Dielectrics.—We next observe that the force between the balls decreases rapidly as they are separated. Coulomb investigated these forces with a torsion balance and found that the force between two small electrified bodies is directed along the line joining them, is proportional to the product of the charges, and is inversely proportional to the square of the distance between them. This is known as Coulomb's or Priestley's law. The statement of this law implies the definition of a quantity of electrification or of electric
charge. We formulate this as follows: An electrostatic unit of charge is that charge which, when placed one centimeter away from a like charge in a vacuum, repels it with a force of one dyne. The practical unit of charge is the coulomb which is \(0.3 \times 10^9\) electrostatic units.

In many homogeneous, isotropic, nonconducting mediums, the inverse-square law is found to hold, but the force between the same charges is reduced, so that for such a medium we may write this law, in mks units,

\[F = \frac{qq'}{4\pi\varepsilon r^2} r_1 \]

where \(F\) is the force on the charge of \(q'\) coulombs due to the charge \(q\), \(r\) the vector from \(q\) to \(q'\) whose magnitude is \(r\) meters, \(r_1\) a unit vector along \(r\), and \(\varepsilon\) the capacitivity which is a constant characteristic of the medium. \emph{In vacuo} the numerical value of \(\varepsilon\) is \(8.85 \times 10^{-12}\) farad per meter and is written \(\varepsilon_v\). The specific inductive capacity or relative capacitivity \(K\) is the ratio \(\varepsilon/\varepsilon_v\) which is dimensionless and has the same numerical value for all systems of units.

1.021. Limitations of the Inverse-square Law.—The precision of Coulomb's measurement has been greatly exceeded by modern methods, and we may now state that the exponent of \(r\) in 1.02 (1) has been verified, recently, to about 1 part in \(10^9\) for measurable values of \(r\). It should be borne in mind that we can apply Coulomb's law with certainty only to dimensions for which it has been verified. We shall endeavor throughout this book to avoid basing any macroscopic theory on the assumption of the validity of this law at atomic distances. The law applies strictly only to charged bodies whose dimensions are small compared with the distances between them. Their shape and composition are immaterial.

1.03. Electrical Induction.—The fact that the electrical charge on a conductor is mobile indicates that when an electric charge is brought near an uncharged conductor electricity of the opposite sign will move to the parts nearer the charge and that of the same sign to the parts more remote from it. From Coulomb's law, the force between nearer charges will be greater so that the charge will attract the conductor. These charges on the conductor are known as induced charges. Unless the more remote charge is removed, for example, by touching with the finger, the conductor will return to its neutral state when the inducing charge is removed. If, with the inducing charge in place, we separate the near and far parts of the conductor, being careful to keep them insulated, we find that the two parts are oppositely charged, as we would expect.

Many "static machines" have been devised that repeat this operation automatically and accumulate the separated charges.

When sufficiently sensitive methods are used, it is found that a charge
also exerts a small attractive force on uncharged insulators. This seems to indicate that even in insulators charges are present and are not absolutely fixed but may suffer some displacement. The hypotheses concerning the actual behavior of the electric charges in conductors and insulators will not be discussed here. The theories are still imperfect but have greatly improved since 1930.

1.04. The Elementary Electric Charges.—It has been found that an electric charge cannot be subdivided indefinitely. The smallest known negative charge is that of the negative electron and mesotron, first determined with considerable precision by Millikan. The accepted value is now 1.60×10^{-19} coulomb. The smallest known positive charge is that on the positron, or positive electron, on the mesotron, and on the proton. To a high order of precision, all these elementary charges are the same in magnitude. The mass of the negative electron and also, probably, that of the positron is 9.0×10^{-31} kg. The mass of the proton is about 1850 times that of the electron.

In handling electrical problems, we shall treat electrical charges as infinitely divisible, using charge density as if this were so. Clearly such a procedure is justifiable only when we are dealing with quantities much greater than 1.60×10^{-19} coulomb and certainly is useless if we go to atomic dimensions. We have seen that the electricity in conductors is free to move, so that if it possess inertia we might expect it to lag behind when the body is accelerated, thus producing an electric current which could be detected by its magnetic field. Maxwell predicted such phenomena but their magnitude is so small that they were detected and measured by Tolman, Barnett, and others not until long after his death. The results show that the mobile electricity in conductors is negative and that the ratio of its charge to its mass equals, within experimental error, the ratio for the negative electron. It appears that almost all the phenomena with which we deal in this book involve the distribution or motion of such electrons, a positive charge appearing when there is a dearth of electrons. As far as the mathematics is concerned, it is immaterial whether the positive, the negative, or both take part in the transfer of electric charge.

1.05. Electric Field Intensity.—When an infinitesimal electric charge, placed in a region, experiences a force, we say an electric field exists there. We define the electric intensity to be a vector equal to the force per unit charge acting on a positive charge placed at that point, the charge being so minute that no redistribution of charge takes place due to its presence. The last qualification is necessary because of the phenomenon of electric induction.

Just as a number of mechanical forces acting on a body can be resolved into a single resultant force by taking their vector sum, so the resultant
electric intensity due to any charge distribution can be obtained by taking the vector sum of the electric intensities due to each element of the distribution. Thus the electric intensity at point P due to n charges is

$$E_p = -\frac{1}{4\pi \epsilon} \sum_{i=1}^{n} \frac{q_i}{r_i^2}$$ \hspace{1cm} (1)

where E_p is the electric intensity in volts per meter, r_i is the vector of magnitude r_i directed from P to q_i, and ϵ is the capacitivity of the infinite homogeneous medium in which the system is immersed.

1.06. Electrostatic Potential.—Work is done against electric forces when a charge is moved in an electric field. The potential in volts at a point P in an electrostatic field is the work in joules per coulomb to bring a charge from the point of zero potential to the point P, the charge being so small that there is no redistribution of electricity due to its presence. The choice of the point of zero potential is a matter of convenience. It is frequently, but not always, chosen at infinity. To avoid other than electrostatic effects, it will be necessary to move the charge very slowly.

Let us compute the potential due to a point charge q. The work dV required to move a unit charge a distance ds in a field of intensity E is $-E \cdot ds$ or $-E ds \cos \theta$ where θ is the angle between E and ds. In the case of the point charge, this becomes

$$dV = -\frac{q \cos \theta}{4\pi \epsilon r^2} \, ds$$

where r is the vector from the charge q to the element of path ds and θ is the angle between r and ds as shown in the figure. Evidently $dr = ds \cos \theta$, so that we have for the potential in volts

$$\int_0^{r_p} dV = -\frac{q}{4\pi \epsilon} \int_{r_o}^{r_p} \frac{dr}{r^2} \text{ or } V_p = \frac{q}{4\pi \epsilon} \left(\frac{1}{r_p} - \frac{1}{r_o} \right)$$ \hspace{1cm} (1)

If r_o is chosen at infinity, this becomes

$$V_p = \frac{q}{4\pi \epsilon r_p}$$ \hspace{1cm} (2)

The electrostatic potential is a scalar point function and is independent of the path by which we bring our charge to the point. The potential at any point in an electrostatic field can be obtained by adding up the potentials due to the individual charges producing the field; thus

$$V_p = \frac{1}{4\pi \epsilon} \sum_{i=1}^{n} \frac{q_i}{r_i}$$ \hspace{1cm} (3)

where r_i is the distance from P to q_i in meters.
§1.07 ELECTRIC DIPOLES AND MULTipoles

Since it is usually much easier to take a scalar sum than a vector sum, it is evident why (3) is to be preferred to 1.05 (1) for purposes of computation. The field intensity at P can be obtained from (3) by taking the gradient; thus

$$E = - \nabla V$$

(4)

In rectangular coordinates, the components are

$$E_x = -\frac{\partial V}{\partial x}, \quad E_y = -\frac{\partial V}{\partial y}, \quad E_z = -\frac{\partial V}{\partial z}.$$

(5)

The components of the gradient in any other fixed coordinate system can be obtained by expressing V and the components of the gradient in terms of that system. A method of doing this is given in 3.03 and 3.05.

If the elementary charges are very close together compared with the dimensions involved, as is always the case in ordinary practice, we may treat the distribution as continuous and speak of the charge per unit volume as volume charge density ρ and the charge per unit area as the surface charge density σ. The summation in (3) now becomes an integral

$$V_p = \frac{1}{4\pi\epsilon} \int_V \rho \frac{dv}{r} + \frac{1}{4\pi\epsilon} \int_S \sigma \frac{dS}{r}$$

(6)

where dv is the element of volume and dS is the element of surface. It should be noted that this formula applies only when all space, including the interior of any material bodies present, has the capacitivity ϵ. When this is not the case, we must use the methods of Chaps. IV and V.

1.07. Electric Dipoles and Multipoles.—Let us superimpose the potentials due to a charge $-q$ at x_o, y_o, z_o and a charge $+q$ at $x_o + dx_o, y_o, z_o$. The resultant potential at some point P, whose coordinates are x, y, z, is V where

$$4\pi\epsilon V = \frac{q}{r_{op}} + \frac{1}{r_{op}} \left(\frac{q}{r_{op}} \right) dx_o - \frac{q}{r_{op}}$$

$$= -\frac{q}{r_{op}^5} \frac{dx_o \partial r_{op}}{\partial x_o} = \frac{q}{r_{op}^5} \left(\frac{dx_o (x - x_o)}{r_{op}^3} \right) = \frac{q}{r_{op}^5} \frac{dx_o \partial r_{op}}{\partial x}$$

If we let $dx_o \to 0$ as $q \to \infty$ in such a way that the product $q \cdot dx_o$ remains finite, we have formed what is known as an electric dipole. The strength or moment of this dipole is the vector quantity $M = q dx_o$, dx_o being directed from the negative to the positive charge. Thus in polar coordinates, the potential at the point r, θ due to a dipole at the origin is

$$V = \frac{M \cos \theta}{4\pi\epsilon r^2} = \frac{M \cdot r}{4\pi\epsilon r^3}$$

(1)

Evidently this can be extended so that if the potential V_p at the point P due to a set of n charges, the radius vector from q_i to P being r_i, is given by 1.06 (3), then the potential V_p', due to a set of n dipoles of the same strength and sign located at the same points with axes parallel to x is
By differentiating the expression for the potential of a unit electric dipole with respect to any of the rectangular coordinates, we get the potential due to a unit quadrupole whose dimensions are QL^2; thus

$$V'_p = \sum_{i=1}^{n} q_i (x_p - x_i)$$

represent the potentials due to a linear quadrupole (Fig. 1.07a) and a square quadrupole (Fig. 1.07b), etc. Further differentiations give us the potentials due to more complicated multipole arrangements but always ones in which the total charge is zero. For other cases see 1.12.

$$F = q(ds \cdot \nabla)E = (\mathbf{m} \cdot \nabla)E$$

In a uniform field, the charges are subject to forces $+qE$ and $-qE$ applied at a distance $ds \sin \theta$ apart where θ is the angle between ds and E. Thus there is a torque acting on the dipole of amount

$$T = tE \mathbf{q} \cdot \mathbf{s} \sin \theta = t \mathbf{m} \cdot \mathbf{E} \sin \theta = \mathbf{m} \times \mathbf{E}$$

where t is a unit vector normal to \mathbf{m} and \mathbf{E}.

1.071. Interaction of Dipoles.—The potential energy of a dipole, in any field whose potential is V, equals the total work done, against this field, in bringing each charge separately into place. If the potential of the field at P_1 where $+q$ is placed is V_1 and at P_2 where $-q$ is placed it is V_2, then

$$W = q(V_1 - V_2) = qP_1P_2 \frac{\partial V}{\partial s} = \mathbf{m} \cdot \mathbf{\nabla}$$

where s is in the direction of the dipole axis and \mathbf{m} is its moment. In vector notation, this is

$$W = (\mathbf{m} \cdot \mathbf{\nabla})V$$
§1.08 LINES OF FORCE

If \(\mathbf{M}_1 \) and \(\mathbf{M}_2 \) are the vector moments of two dipoles \(A \) and \(B \) and if \(\mathbf{r} \) is the vector from \(A \) to \(B \), then the potential at \(B \) due to \(A \) is, from 1.07 (1),

\[
4 \pi \varepsilon V = \frac{\mathbf{M}_1 \cos \theta}{r^2} = \frac{\mathbf{M}_1 \cdot \mathbf{r}}{r^3} = -\mathbf{M}_1 \cdot \nabla \left(\frac{1}{r} \right)
\]

Substituting this value for \(V \) in (2) gives

\[
4 \pi \varepsilon W = + \mathbf{M}_2 \cdot \nabla (\mathbf{M}_1 \cdot \mathbf{r} r^{-3}) = \mathbf{M}_2 \cdot (r^{-3} \nabla \mathbf{M}_1 \cdot \mathbf{r} + \mathbf{M}_1 \cdot \mathbf{r} \nabla r^{-3}) = \mathbf{M}_1 \cdot \mathbf{M}_2 r^{-3} - 3 \mathbf{M}_1 \cdot \mathbf{r} \mathbf{M}_2 \cdot \mathbf{r} r^{-5}
\]

If \(\mathbf{M}_1 \) and \(\mathbf{M}_2 \) make angles \(\theta \) and \(\theta' \) with \(\mathbf{r} \) and \(\phi \) with each other, we have

\[
W = \frac{\mathbf{M}_1 \mathbf{M}_2}{4 \pi \varepsilon r^3} (\cos \phi - 3 \cos \theta \cos \theta')
\]

If \(\psi \) is the angle between the planes intersecting in \(\mathbf{r} \), which contain \(\mathbf{M}_1 \) and \(\mathbf{M}_2 \), then, taking \(\mathbf{r} \) in the direction of \(x \) and \(\mathbf{M}_1 \) in the \(xy \)-plane, the direction cosines are \(t_1 = \cos \theta, t_2 = \cos \theta', m_1 = \sin \theta, m_2 = \sin \theta' \cos \psi, \) and \(n_1 = 0 \), so that \(\cos \phi \) and \(W \) become, respectively,

\[
\cos \phi = t_1 t_2 + m_1 m_2 + n_1 n_2 = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos \psi
\]

\[
W = \frac{\mathbf{M}_1 \mathbf{M}_2}{4 \pi \varepsilon r^3} (\sin \theta \sin \theta' \cos \psi - 2 \cos \theta \cos \theta')
\]

This gives the force between two dipoles, by differentiation, to be

\[
F = -\frac{\partial W}{\partial r} = \frac{3 \mathbf{M}_1 \mathbf{M}_2}{4 \pi \varepsilon r^4} (\sin \theta \sin \theta' \cos \psi - 2 \cos \theta \cos \theta')
\]

This has its maximum value when \(\psi = 0, \theta = \theta' = 0 \). The torque trying to rotate the dipole in the direction \(\alpha \) is obtained similarly, giving

\[
T = -\frac{\partial W}{\partial \alpha}
\]

1.08. Lines of Force.—A most useful method of visualizing an electric field is by drawing the “lines of force” and “equipotentials.” A line of force is a directed curve in an electric field such that the forward drawn tangent at any point has the direction of the electric intensity there. It follows that if \(\mathbf{d}s \) is an element of this curve,

\[
\mathbf{d}s = \lambda \mathbf{E}
\]

where \(\lambda \) is a scalar factor. Writing out the components in rectangular coordinates and equating values of \(\lambda \), we have the differential equation of the lines of force

\[
\frac{dx}{E_x} = \frac{dy}{E_y} = \frac{dz}{E_z}
\]

Analogous equations can be written in terms of other coordinate systems by using 3.03 and 3.05. Usually much easier methods of getting the equations of the lines of force exist than by integrating these equations.
We shall, however, give one example of the integration of this equation. Consider the field due to two charges \(+q\) at \(x = a\) and \(\pm q\) at \(x = -a\). Since, from symmetry, any section of the field by a plane including the \(x\)-axis will look the same, we may take the section made by the \(xy\)-plane. The sum of the \(x\)-components of the intensity at any point due to the two charges is \(E_x\), where

\[
4\pi\varepsilon E_x = \frac{q(x-a)}{[y^2 + (x-a)^2]^{3/2}} \pm \frac{q(x+a)}{[y^2 + (x+a)^2]^{3/2}}
\]

If we substitute,

\[
u = \frac{x + a}{y} \quad \text{and} \quad v = \frac{x - a}{y}
\]

this becomes

\[
4\pi\varepsilon E_x = \frac{qv}{y^2(1+v^2)^{3/2}} \pm \frac{qu}{y^2(1+u^2)^{3/2}}
\]

Similarly,

\[
4\pi\varepsilon E_y = \frac{q}{y^2(1+u^2)^{3/2}} \pm \frac{q}{y^2(1+v^2)^{3/2}}
\]

Equation (2) becomes

\[
dy = \frac{E_y}{E_x} = \frac{(1 + v^2)^{3/2} \pm (1 + u^2)^{3/2}}{u(1 + v^2)^{3/2} \pm v(1 + u^2)^{3/2}}
\]

Solving (3) for \(y\) and \(x\) and taking the ratio of the differentials give

\[
\frac{dy}{dx} = \frac{dv - du}{udv - vdu}
\]

Comparing these two expressions for \(dy/dx\), we see that

\[
\frac{du}{dv} = \mp \left(\frac{1 + u^2}{1 + v^2} \right)^{3/2}
\]

Separating variables and integrating, we have

\[
u(1 + u^2)^{-1} \pm v(1 + v^2)^{-1} = C
\]

In terms of \(x\) and \(y\), this becomes

\[
(x + a)[(x + a)^2 + y^2]^{-1} \pm (x - a)[(x - a)^2 + y^2]^{-1} = C
\]

This is the equation giving the lines of force shown in Figs. 1.08a and 1.08b in which the value of \(C\) for each line is marked. An easier method for getting this equation, by Gauss’s electric flux theorem, is given in 1.101.

We may write the left side of (4) in the form

\[
(x + a)r^{-1}(1 + 2axr^{-2} + a^2r^{-4})^{-1} - (x - a)r^{-1}(1 - 2axr^{-2} + a^2r^{-4})^{-1}
\]

where \(r^2 = x^2 + y^2\). If we let \(a \to 0\), expand the radicals by \(Pe 750\) or \(Dw 9.03\), neglect the square and higher powers of \(a\), and write \(C'\) for \(C/(2a)\), we obtain
§1.09 EQUIPOTENTIAL SURFACES

\[\frac{y^2}{r^3} = C' = \frac{\sin^2 \theta}{r} \]

(5)

which is the equation of the lines of force for an electric dipole, shown in Fig. 1.08c.

![Diagram](image)

Fig. 1.08a.—Field about equal charges of opposite sign. Lines of force and equipotential lines are shown by solid and dotted lines, respectively.

1.09. Equipotential Surfaces.—An equipotential surface in an electric field is one at all points of which the potential is the same. The equation of an equipotential surface is therefore

\[V = C \]

(1)

where \(C \) is a constant. Numerous maps of electric fields showing equipotentials and lines of force will be found in subsequent chapters. It should be noted that since no work is done in moving charges over an equipotential surface, the lines of force and equipotentials must intersect orthogonally. As an example of the use of this equation, we shall take the case just considered. The potential at any point \(P \) will be \(C \), where

\[q[(x - a)^2 + y^2]^{-\frac{1}{2}} = q[(x + a)^2 + y^2]^{-\frac{1}{2}} = 4\pi \varepsilon C \]

(2)
This is the equation of the equipotential surfaces shown in section in Figs. 1.08a and 1.08b by broken lines. C values are for $q = 4\pi e$.

There are often points or lines in an electrostatic field where an equipotential surface crosses itself at least twice so that ∇V vanishes there.

Fig. 1.08b.—Field about equal charges of the same sign. Lines of force and equipotential lines are shown by solid and dotted lines, respectively.

Fig. 1.08c.—Lines of force of electric dipole.

These are called neutral or equilibrium or singular points or lines. The origin in Fig. 1.08b is such a point. Some of the properties of such points are considered in 5.235.

1.10. Gauss's Electric Flux Theorem.—We shall derive this flux theorem from the inverse-square law on the assumption, to be modified later, that all space is filled with a uniform dielectric.
Consider a small element dS of a closed surface (Fig. 1.10), whose outward normal makes an angle α with the radius vector from a point charge q at P. Now draw a line from every point of the boundary of dS to the point P so that the small cone so formed cuts out an area $d\Sigma$ from the spherical surface, having P as a center and passing through Q. Then

$$d\Sigma = dS \cos \alpha.$$

The normal component of the intensity at Q due to a charge q at P is

$$E_n = \frac{q r \cdot n}{4\pi r^3} = \frac{q \cos \alpha}{4\pi r^2}.$$

The normal component of the flux through dS is defined as

$$dN = \varepsilon E_n dS = \frac{q \cos \alpha dS}{4\pi r^2} = \frac{q d\Sigma}{4\pi r^2}.$$

But the solid angle subtended by dS at P is $d\Sigma r^{-2} = d\Omega$, so that

$$4\pi dN = q d\Omega.$$

We notice that if the point is inside the surface the cone cuts the surface n times where n is an odd integer, and the angle α will be acute $\frac{1}{2}(n + 1)$ times and obtuse $\frac{1}{2}(n - 1)$ times so that the net value of the flux through the cone is $(q/4\pi) d\Omega$. But if the point is outside the surface, n is even and we have the same number of positive and negative values of $d\Omega$ so that the net contribution is zero. To obtain the total flux through the surface surrounding the charge, we integrate the normal component and obtain

$$4\pi \int_S dN = q \int_0^{2\pi} d\Omega \quad \text{or} \quad N = q.$$

By adding up the flux due to all the charges inside, we arrive at Gauss’s electric flux theorem which is: If any closed surface is taken in an electric field and if E is the electric intensity at any point on the surface and n the
unit outward normal vector to the surface, then

\[\epsilon \int_S \mathbf{E} \cdot \mathbf{n} \, dS = q \]

(1)

where the integration extends over the whole surface which includes the charge \(q \).

If the space outside this surface is not homogeneous but contains various dielectric and conducting bodies, it is necessary to make certain hypotheses as to the electrical behavior of matter in electrostatic fields. It is assumed therefore that, as regards such fields, matter is entirely electrical in nature consisting of positive and negative charges whose fields obey the inverse-square law. With this hypothesis the electrostatic effect of any material body is obtained by superimposing the fields of its constituent charges as calculated from this law. Equation (1) is valid, therefore, no matter what the nature of the dielectric or conducting material outside the surface considered may be because the fields of external charges were considered in its derivation. The above hypothesis is used, explicitly or implicitly, in most treatments of electrostatics.

1.101. Lines of Force from Collinear Charges.—To illustrate the application of this theorem, we shall use it to find the equation of the lines of force about any set of collinear electric charges \(q_1, q_2, q_3 \ldots \) situated at \(x_1, x_2, x_3 \ldots \) along the \(x \)-axis. From symmetry, no lines of force will pass through the surfaces of revolution generated by rotating the lines of force lying in the \(xy \)-plane about the \(x \)-axis. Gauss's electric flux theorem, applied to the charge free space inside such a surface between the planes \(x = A \) and \(x = B \) (Fig. 1.101), tells us that the total normal flux \(N \) entering through section \(A \) equals that leaving through section \(B \) since none passes through the surface. The equation of the surface is therefore obtained by setting \(N \) equal to a constant. From 1.05 (1), \(N \) equals the sum of the normal fluxes due to each charge and, as we have just found in proving Gauss's electric flux theorem, this is

\[4\pi N = q_1 \Omega_1 + q_2 \Omega_2 + q_3 \Omega_3 + \cdots \]
§1.11 POTENTIAL MAXIMA AND MINIMA

where \(\Omega_1, \Omega_2, \Omega_3 \ldots \) are the solid angles which section \(A \) subtends at \(x_1, x_2, x_3 \ldots \). In terms of the angles \(\alpha_1, \alpha_2, \alpha_3 \ldots \) in Fig. 1.101 this is

\[
N = \sum_{i=1}^{n} \frac{1}{2} q_i(1 - \cos \alpha_i) = C' - \frac{1}{2} \sum_{i=1}^{n} q_i \cos \alpha_i
\]

Collecting the constants on one side of the equation and substituting for the cosines in terms of the coordinates \(x, y \) of a line of force in the \(xy \)-plane, we have

\[
C = \sum_{i=1}^{n} q_i(x - x_i)[(x - x_i)^2 + y^2]^{-\frac{1}{2}} \tag{1}
\]

for the equation of a line of force. This agrees with 1.08 (4).

1.102. Lines of Force at Infinity.—If \(\tilde{r} = [(x - \bar{x})^2 + y^2]^\frac{1}{2} \) we neglect \([(x - x_i)/\tilde{r}]^n \) when \(x - x_i \ll \tilde{r} \) and \(n > 2 \) and write

\[
C = \frac{x - \bar{x}}{\tilde{r}} \sum_{i=1}^{n} q_i + \left[\frac{1}{\tilde{r}} - \frac{(x - \bar{x})^2}{\tilde{r}^3} \right] \sum_{i=1}^{n} q_i(x - x_i) = \frac{x - \bar{x}}{\tilde{r}} \sum_{i=1}^{n} q_i \tag{1}
\]

where \(\bar{x} \) is the coordinate of the "center of gravity" of the charges. Thus at infinity, the field is the same as if the algebraic sum of the charges were concentrated at their center of gravity. We may extend this rule to noncollinear charges by pairing off members of a group of charges and taking the centers of gravity of each pair by (1), then pairing off these centers of gravity, etc., until we arrive at the center of gravity of the group.

1.11. Potential Maxima and Minima. Earnshaw's Theorem.—Consider a small spherical surface enclosing a point \(P \) in an electric field. The average value of the potential over this sphere is

\[
\bar{V} = \frac{1}{4\pi r^2} \int_{S} V \, dS = \frac{1}{4\pi} \int_{0}^{\pi} \int_{0}^{2\pi} V \sin \theta \, d\theta \, d\phi
\]

Taking derivatives and applying Gauss's electric flux theorem gives

\[
\frac{d\bar{V}}{dr} = \frac{1}{4\pi} \int_{0}^{\pi} \int_{0}^{2\pi} \frac{dV}{dr} \sin \theta \, d\theta \, d\phi = \frac{1}{4\pi r^2} \int_{S} \frac{dV}{dr} \, dS = -\frac{q}{4\pi \varepsilon r^2}
\]

where \(q \) is the charge inside the sphere, giving, on integration, the result

\[
\bar{V} = \frac{q}{4\pi \varepsilon r} + C
\]

If \(q = 0 \), the average value of the potential over the small sphere enclosing \(P \) is the same as at \(P \). Hence the theorem that the potential cannot have a maximum or a minimum value at any point in space not occupied
by an electric charge. It follows from the definition of potential that to be in stable equilibrium a positive point charge must be at a point of minimum potential and a negative point charge must be at a point of maximum potential, the potential due to the charge itself being excluded. From the theorem just proved, this is impossible, giving us Earnshaw's theorem which states that a charge, acted on by electric forces only, cannot rest in stable equilibrium in an electric field. This shows that if we are to consider matter as purely electrical in nature and as made up of positive and negative charges controlled by electrical forces only, these forces must be different from those operating on a laboratory scale in electrostatics.

1.12. Potential of Electric Double Layer.—We saw in 1.07 that the potential due to a dipole may be obtained from that due to a single charge by differentiation in the direction of the dipole axis. From this, we see that if the potential at \(P \) due to an element \(dS \) of a surface having a charge density \(\sigma \) is

\[
dV = \frac{\sigma}{4\pi \epsilon r} dS
\]

where \(r \) is the distance from \(dS \) to \(P \), then

\[
\frac{\sigma}{4\pi \epsilon} dS \frac{\partial}{\partial n} \left(\frac{1}{r} \right)
\]

is the potential at \(P \) due to a dipole of strength \(\sigma \ dS \) which has the direction of \(n \). Therefore, if we have an electric double layer of moment \(\Phi \) per unit area, the potential at \(P \) due to it is

\[
V = \frac{1}{4\pi \epsilon} \int_S \frac{\Phi}{\partial n} \left(\frac{1}{r} \right) dS = \frac{1}{4\pi \epsilon} \int_S \frac{\Phi n \cdot r}{r^3} dS
\]

(1)

But we saw in 1.10 that \(n \cdot r \ r^{-3} \ dS = d\Omega \) where \(d\Omega \) is the solid angle subtended at \(P \) by the element \(dS \). Thus we have

\[
V = \frac{1}{4\pi \epsilon} \int \Phi d\Omega
\]

(2)

If the double layer is of uniform strength \(\Psi \), this becomes

\[
V = \frac{\Psi \Omega}{4\pi \epsilon}
\]

(3)

where \(\Omega \) is the total solid angle subtended by it at \(P \).

1.13. Electric Displacement and Tubes of Force.—The product of the capacity by the electric intensity occurs frequently and, in an isotropic dielectric, this product is designated as the electric displacement \(D \); thus

\[
D = \epsilon E
\]

(1)

In the mks system of units, \(D \) is measured in coulombs per square meter and \(E \) in volts per meter.

Lines of electric displacement, which are analogous to lines of electric
§1.14 STRESSES IN AN ELECTRIC FIELD

intensity, will have the same direction as the latter in an isotropic dielectric, but if \(\epsilon \) is greater than \(\epsilon_n \), they will be more closely spaced. Taking a small element of area normal to the displacement and drawing lines of displacement through its boundary, we cut out a tubular region in space known as a tube of force. Applying Gauss's electric flux theorem to the charge free space bounded by two normal cross sections of such a tube, we see that, since there is no contribution to the surface integral by the side walls of the tube, the flux entering one end must equal that leaving the other, so that if the areas of the sections are \(S_1 \) and \(S_2 \) the flux through the tube is

\[
N = S_1D_1 = S_2D_2
\]

Thus we define a unit tube of force to be one in which the flux through any section is unity. Many diagrams showing tubes of force will be found in subsequent chapters. Since there are \(4\pi \) square meters surface on the sphere of unit radius surrounding a point charge \(q \) and since the displacement on this surface is \(q/(4\pi) \), it follows that there are \(q \) unit tubes of force emerging from a charge \(q \). Thus the charge on the end of a unit tube is 1 coulomb.

1.14. Stresses in an Electric Field.—We have introduced the conception of lines and tubes of force merely as an aid toward visualizing an electric field. It is possible to carry this idea considerably further, as Faraday did, and actually look upon these tubes as transmitting electrical forces. Since this is sometimes a most useful method of attacking a problem, let us see if a system of stresses can be postulated to account for observed electrical forces. Let us determine what function of the electric intensity the tension along the tubes of force must be in order to account for the observed Coulomb force between two equal charges of opposite sign at a distance \(2a \) apart. Call this function \(\Phi(E) \). From 1.05 (1), the intensity in the plane of symmetry is

\[
E = \frac{2aq}{4\pi\epsilon(a^2 + y^2)^{1/2}} = \frac{q \cos^3 \theta}{2\pi a^2}
\]

The geometry is shown in Fig. 1.14. The ring element of area is

\[
dS = \frac{2\pi a^2 \sin \theta}{\cos^3 \theta} d\theta
\]
Writing the Coulomb force on the left and the tension across the yz-plane on the right and dividing both sides by $2\pi a^2$ give

$$\frac{q^2}{32\pi^2\epsilon a^4} = \frac{1}{2\pi a^2} \int \Phi(E) \, dS = \int_0^{\pi/2} \Phi \left(\frac{q \cos^2 \theta}{2\pi \epsilon a^2} \right) \sin \theta \, d\theta$$

(1)

Let $x = q/(2\pi \epsilon a^2)$, and expand Φ in powers of E; then

$$\frac{\epsilon x^2}{8} = \frac{1}{2\pi a^2} \int \sum_{n=0}^{\infty} C_n E^n \, dS = \sum_{n=0}^{\infty} C_n x^n \int_0^{\pi/2} \cos^{n-2} \theta \sin \theta \, d\theta$$

This equation must hold for all values of q and a and hence for all values of x. Thus $C_n = 0$ except when $n = 2$. For this we have, canceling out x,

$$\frac{\epsilon}{2} = C_2 \int_0^{\pi/2} \cos^3 \theta \sin \theta \, d\theta = \frac{C_2}{4}$$

Thus we find that

$$\Phi(E) = \frac{\epsilon E^2}{2}$$

(2)

This is the tension along the lines of force required to account for the Coulomb law of attraction between charges of opposite sign.

It is evident in the preceding case that if there were only a tension along the tubes of force they would shorten as much as possible and all would lie in the line joining the charges. Since we know that in equilibrium they fill the entire space surrounding the charges, there must be some repulsion between them to prevent this. To determine this pressure $\Psi(E)$, let us consider the force between two equal charges of the same sign. This differs from the case just considered because lines of force terminate at infinity. The tension per unit area across a spherical surface of large radius falls off as the inverse fourth power of its radius because of (2) and the inverse-square law. The area of the sphere increases only with the square of its radius so that no force is transmitted this way. Therefore the entire force may be considered as due to the repulsion of the lines of force across the plane of symmetry. From 1.05 (1), the intensity in this plane is

$$E = \frac{2qy}{4\pi \epsilon (a^2 + y^2)^2} = \frac{q \cos^2 \theta \sin \theta}{2\pi \epsilon a^2}$$

(3)

Proceeding as before, we obtain instead of (1)

$$-\frac{q^2}{32\pi^2 \epsilon a^4} = \frac{1}{2\pi a^2} \int \Psi(E) \, dS = \int_0^{\pi/2} \Psi \left(\frac{q \cos^2 \theta \sin \theta}{2\pi \epsilon a^2} \right) \cos^3 \theta \, d\theta$$

(4)

For the same reasons as before, $\Psi(E)$ must be of the form $C_2 E^2$, and we evaluate C_2 in the same way which gives
\[\frac{-\varepsilon}{8} = C_2 \int_{0}^{\pi/2} \sin^3 \theta \cos \theta \, d\theta = \frac{C_2}{4} \]

Thus we find that
\[\Psi(E) = -\frac{\varepsilon E^2}{2} \quad (5) \]

This is the repulsive force per unit area between adjacent lines of force necessary to account for the Coulomb law of repulsion between charges of the same sign. These results may be put in the equivalent forms
\[\frac{\varepsilon E^2}{2} = E \cdot D = \frac{D^2}{2\varepsilon} \quad (6) \]

Since \(\Phi \) and \(\Psi \) are functions of \(\varepsilon \) and \(E \) only, the origin or shape of the field is immaterial and they must have the same form in all fields.

1.15. Gauss's Electric Flux Theorem for Nonhomogeneous Mediums.

We are now prepared to extend Gauss's electric flux theorem to isotropic mediums within which the capacitvity varies continuously from place to place. Let us suppose that a point charge \(q \) is situated at a point \(P \) somewhere inside a closed surface \(S \) in such a medium. We shall draw about \(P \) a sphere \(S' \) so small that \(\varepsilon' \) is constant throughout it. Now take an element \(dS \) of the surface \(S \), so small that \(\varepsilon \) is constant over \(dS \), and consider the tube of force, of which \(dS \) is a section, that cuts out an element \(dS' \) on \(S' \) and ends on \(q \). Now apply Gauss's theorem to the uncharged dielectric inside the tube between \(dS \) and \(dS' \). Since the normal component of \(D \) over the walls is zero, the only contribution to the surface integral is from \(dS \) and \(dS' \), so that
\[\varepsilon' E' \cdot n' \, dS' = \varepsilon E \cdot n \, dS \]

Integrating over the two surfaces, we have
\[\varepsilon' \int_{S'} E' \cdot n' \, dS' = \int_{S} \varepsilon E \cdot n \, dS \]

since \(\varepsilon' \) is the same for all elements \(dS' \). But we have already proved in 1.10 that the left-hand integral is \(q \), so that
\[\int_{S} \varepsilon E \cdot n \, dS = q \quad (1) \]

where \(\varepsilon \) and \(E \) are both functions of position. This may be extended as before, so that \(q \) includes all the charges inside \(S \).

A complicated field may result from simple sources. The application
of (1) in such a case is often greatly simplified by calculating the flux from each source separately and adding the result. Thus

$$\int (E_1 + E_2 + \cdots + E_n) \cdot n \, dS = \int E_1 \cdot n \, dS + \int E_2 \cdot n \, dS + \cdots + \int E_n \cdot n \, dS \quad (2)$$

This permits many problem answers to be written down by inspection.

1.16. Boundary Conditions and Stresses on the Surface of Conductors.

When the electric charge on a conductor is in static equilibrium, there can be no fields in the interior or along the surface. Otherwise, since by definition charges are free to move on a conductor, there would be a movement of the charges, contradicting the postulated equilibrium. It follows that the whole conductor is at one potential and that lines of force meet its surface normally and end there.

The charge density on the surface is \(\sigma \) coulombs per square meter, and there is one unit tube of force, pointing outward if \(\sigma \) is positive, from each charge; so we have

$$D = \varepsilon E = \sigma \quad (1)$$

Since lines of force leave the conducting surface normally, they can intersect each other only at infinitely sharp points or edges. We have seen that this occurs at a mathematical point or edge. The converse also holds. At the bottom of a sharp V-shaped groove or conical depression, \(D \) and \(\sigma \) are zero.

We have seen in 1.14 that there is a tension along these lines of force of the amount

$$F = \frac{D^2}{2\varepsilon} = \frac{\sigma^2}{2\kappa} \quad (2)$$

and so this is the outward force per square meter on a charged conducting surface. This force is independent of the sign of the charge.

It should be noted that we have neglected the hydrostatic forces that may be present in the dielectric owing to its tendency to expand or contract in an electric field. An expression including such forces will be derived later in 2.09.

1.17. Boundary Conditions and Stresses on the Surface of a Dielectric.—Let us apply Gauss's electric flux theorem to the small disk-shaped volume whose flat surfaces of area \(dS \) lie on opposite sides of the plane boundary between two dielectrics \(\varepsilon' \) and \(\varepsilon'' \) (Fig. 1.17a). The disk is so thin that the area of the edges is negligible compared with that of the faces. If there is no free charge on the surface and the normal components of displacement are \(D'_n \) and \(D''_n \), we find from 1.15 that

$$D'_n \, dS = D''_n \, dS \quad \text{or} \quad D'_n = D''_n \quad (1)$$

The stress on this surface due to the normal components of the displacement must be the difference between the stresses on the two sides, so
that, from 1.14 (6), we have
\[T_n = \frac{D_n'^2}{2\varepsilon'} - \frac{D_n''^2}{2\varepsilon''} = -\frac{D_n'^2(\varepsilon' - \varepsilon'')}{2\varepsilon'\varepsilon''} = -\frac{D_n'^2 K' - K''}{2\varepsilon''} \] (2)

Let us consider the work required to take a unit charge around the path shown in Fig. 1.17b in which the length of path normal to the boundary is vanishingly small. Starting at any point, the work done in taking a unit charge around the path is, if energy is to be conserved, zero, so that \(E'_i ds = E''_i ds \) or
\[E'_i = E''_i \] (3)

The pressure on the interface will be the difference in the pressure on the two sides; thus, from 1.14 (5), we have
\[P_n = \frac{1}{2} \varepsilon' E_i'^2 - \frac{1}{2} \varepsilon'' E_i''^2 = \frac{1}{2} E_i'^2(\varepsilon' - \varepsilon'') = \frac{1}{2} E_i'^2 \varepsilon''(K' - K'') \] (4)

We may state then that at the uncharged interface between two dielectrics, the normal component of the displacement and the tangential component of the intensity are continuous. In terms of the potential, these boundary conditions may be written
\[\varepsilon' \frac{\partial V'}{\partial n} = \varepsilon'' \frac{\partial V''}{\partial n} \quad \text{or} \quad K' \frac{\partial V'}{\partial n} = K'' \frac{\partial V''}{\partial n} \] (5)
\[V' = V'' \] (6)

where \(V' \) and \(V'' \) are the potentials in \(\varepsilon' \) and \(\varepsilon'' \). Equation (6) implies that the zero of potential is chosen in both mediums, so that at some point on the boundary \(V' = V'' \). It then follows, by integration of (3), that (6) holds for all points on the boundary.

The normal stresses directed from \(\varepsilon' \) to \(\varepsilon'' \) on the interface between two dielectrics may also be written, from (2) and (4),
\[F_n = T_n - P_n = -\frac{K' - K''}{2\varepsilon'' K'} \left(\frac{D_i'^2}{K'} + \frac{D_n'^2}{K''} \right) = -\frac{\varepsilon' - \varepsilon''}{2\varepsilon'} \left(\frac{D_i'^2}{\varepsilon'} + \frac{D_n'^2}{\varepsilon''} \right) \] (7)

The foregoing formulas do not take account of the fact that some dielectrics tend to contract or expand in the presence of an electric field. In such a medium, there will be an additional force of a hydrostatic nature acting on the surface. An expression including this force will be derived later, in 2.09.

At the boundary between two isotropic dielectrics, the lines of force and the lines of displacement will be refracted in the same way.
the angle between \(E_1 \) or \(D_1 \), in the dielectric \(\epsilon_1 \), and the normal to the boundary be \(\alpha_1 \), and let the corresponding angle in \(\epsilon_2 \) be \(\alpha_2 \) (Fig. 1.17c). Then from (1) and (3), we have

\[
D_1 \cos \alpha_1 = \epsilon_1 E_1 \cos \alpha_1 = D_2 \cos \alpha_2 = \epsilon_2 E_2 \cos \alpha_2
\]

\[
D_1 \epsilon_1^{-1} \sin \alpha_1 = E_1 \sin \alpha_1 = D_2 \epsilon_2^{-1} \sin \alpha_2 = E_2 \sin \alpha_2
\]

Dividing the first equation by the second gives

\[
\epsilon_1 \cot \alpha_1 = \epsilon_2 \cot \alpha_2
\]

This gives the law of refraction for both \(D \) and \(E \) at the boundary between two isotropic mediums with different capacitivities.

1.18. Displacement and Intensity in Solid Dielectric.—The dielectric constant was first introduced in the statement of Coulomb’s law [(1.02 (1)] as a factor that depends on the medium in which the electric force is measured. This hypothetical measurement is difficult to conceive in a solid dielectric, but by using the boundary conditions just derived we may devise a method of determining the displacement and intensity and hence the dielectric constant in such a medium.

To determine the displacement and intensity in a solid dielectric, let us excavate a small evacuated disk-shaped cavity whose thickness is very small compared with its radius. The intensity inside the cavity far from the edges will be determined entirely by the boundary conditions over the flat surfaces, as shown in Fig. 1.18a.

To determine the displacement, we orient the cavity so that the intensity inside is normal to the flat faces in Fig. 1.18a. From 1.17 (1), we know that the displacement in the dielectric equals that in the cavity. Thus by measuring the intensity in the cavity and multiplying by \(\epsilon_0 \), we determine the displacement in the dielectric.

To determine the intensity in the solid dielectric, we orient a long thin cylindrical cavity so that the intensity inside is parallel to the axis as in Fig. 1.18b. Then from 1.17 (3), we know that the intensity inside is the same as that in the solid dielectric. The ratio of the displacement to the intensity, the cavities being small compared with all dimensions of the dielectric mass and the external field remaining constant, gives the capacitivity of the medium.
The values of displacement and intensity found in this way certainly do not represent the actual fields on a molecular scale found inside a dielectric but are some type of average. Other types of average might give results contradicting macroscopic observations.

1.19. Crystalline Dielectrics.—We shall now use the experimental tests of the last article to find the relation between displacement D and intensity E in a homogeneous crystalline dielectric. Let us cut three plane parallel plates of thickness d from the positive x, y, and z faces of a large cube of this material. We now deposit a conducting layer on each face of each plate and apply a difference of potential V. If we consider areas of the plate sufficiently far from its edges we see that the potential boundary conditions on all such areas of all plates are identical so that the potential distribution in the central areas of all plates is the same. Thus the equipotentials near the center of each plate are parallel to its faces and from 1.06 (4) the intensity E equals V/d. By experimenting with our disk-shaped cavity which is taken small compared with d so that it does not disturb the charge distribution on the conducting faces we find that D is proportional to E but not in the same direction. Thus we have in the x, y and z plates, respectively,

$$
(D_x)_x = \epsilon_{11}E_x,
(D_y)_x = \epsilon_{12}E_x,
(D_z)_x = \epsilon_{13}E_x
$$
$$
(D_x)_y = \epsilon_{21}E_y,
(D_y)_y = \epsilon_{22}E_y,
(D_z)_y = \epsilon_{23}E_y
$$
$$
(D_x)_z = \epsilon_{31}E_z,
(D_y)_z = \epsilon_{32}E_z,
(D_z)_z = \epsilon_{33}E_z
$$

Even when E is the same in all plates the normal components of D will in general differ. However in all cases it is found experimentally that

$$
(D_x)_y E_x = (D_y)_x E_y,
(D_x)_z E_z = (D_z)_x E_z,
(D_y)_z E_y = (D_z)_y E_z
$$

Superimposing the results in (1) gives

$$
D_x = \epsilon_{11}E_x + \epsilon_{21}E_y + \epsilon_{31}E_z
$$
$$
D_y = \epsilon_{12}E_x + \epsilon_{22}E_y + \epsilon_{32}E_z
$$
$$
D_z = \epsilon_{13}E_x + \epsilon_{23}E_y + \epsilon_{33}E_z
$$

Comparing (2) and (1), we see that

$$
\epsilon_{12} = \epsilon_{21}, \quad \epsilon_{13} = \epsilon_{31}, \quad \epsilon_{23} = \epsilon_{32}
$$

Thus the single simple factor ϵ connecting the quantities D and E in the case of an isotropic medium becomes, for a crystal, a quantity known as a symmetrical tensor, having nine components of which six are different.

Let us see if it is possible to orient our axes so as to simplify (3). The product $E \cdot D$, being a scalar quantity, must be independent of the choice of axes. Writing out in terms of the components of E, we have, from (3), using (4),

$$
E \cdot D = \epsilon_{11}E_x^2 + \epsilon_{22}E_y^2 + \epsilon_{33}E_z^2 + 2\epsilon_{12}E_xE_y + 2\epsilon_{13}E_xE_z + 2\epsilon_{23}E_yE_z
$$

This is the equation of a quadric surface in E_x, E_y, and E_z. We can vary
these coordinates in any way we please, keeping $E_x^2 + E_y^2 + E_z^2$ constant, by rotating our axes. We may therefore orient our axes so that the cross products E_xE_y, E_xE_z, and E_yE_z disappear. The equation of the quadric referred to the new axes is

$$E \cdot D = \epsilon_1 E_x^2 + \epsilon_2 E_y^2 + \epsilon_3 E_z^2 \tag{6}$$

The components of the displacement referred to these axes are

$$D_x = \epsilon_1 E_x \quad D_y = \epsilon_2 E_y \quad D_z = \epsilon_3 E_z \tag{7}$$

The directions of the coordinate axes in (7) are called the electrical axes of the crystal. If $\epsilon_1, \epsilon_2, \epsilon_3$ are all the same, we have an isotropic medium; if only two are the same, we have a uniaxial crystal; and if all three are different, we have a biaxial crystal.

Problems

Problems marked C are taken from the Cambridge examination questions as reprinted by Jeans by permission of the Cambridge University Press.

1. The work required to bring a point charge q up to the centers, which are a distance b apart, of two thin parallel conducting coaxial rings, each of radius a, is W_1 and W_2, respectively. Show that the charges on the rings are

$$Q_{1,2} = \frac{4\pi e}{b^2}[(a^2 + b^2)^2 - a^2 W_{1,2} - a W_{2,1}]$$

2. Four equal parallel line charges lie at the corners of a square prism, those at the ends of one diagonal being positive and the others negative. Find the fraction of the total flux that enters the prism.

3. There is a charge q at $x = +a$, $y = 0$, $z = 0$. Find how large a charge must be placed at $x = -a$, $y = 0$, $z = 0$ so that a flux N passes in the positive direction through the circle $x = 0$, $y^2 + z^2 = a^2$.

4. Two thin concentric coplanar rings of radii 1 and 2 carry charges $-Q$ and $+(27)^{1/2}Q$, respectively. Show that the only neutral points in the field are at $x = 0$ and $\pm 2^{1/2}$.

5. Show that the equation of the lines of force between two parallel line charges, of strength q and $-q$ per unit length, at $x = a$ and $x = -a$, in terms of the flux per unit length N, between the line of force and the positive x-axis is

$$y = a \cot \left(\frac{2\pi N}{q} \right) + x^2 = a^2 \csc^2 \left(\frac{2\pi N}{q} \right)$$

6C. Charges $\pm 4q$, $-q$ are placed at the points A, B, and C is the point of equilibrium. Prove that the line of force that passes through C meets AB at an angle of 60° at A and at right angles at C. Find the angle at A between AB and the line of force that leaves B at right angles to AB.

(Write potential for small region about C in polar coordinates with origin at C.)

7C. Two positive charges q_1 and q_2 are placed at the points A and B, respectively. Show that the tangent at infinity to the line of force, which starts from q_1 making an angle α with BA produced, makes an angle

$$2 \sin^{-1} \left(q_1^{1/2} q_2 q_1^{-1} \sin \frac{\alpha}{2} \right)$$

with BA and passes through the point C in AB such that $AC:CB = q_2:q_1$.

8C. Point charges \(+q, -q \) are placed at the points \(A, B \). The line of force that leaves \(A \) making an angle \(\alpha \) with \(AB \) meets the plane that bisects \(AB \) at right angles in \(P \). Show that
\[
\sin \frac{\alpha}{2} = 2^{1/3} \sin \frac{1}{2} \angle PAB
\]

9C. If any closed surface is drawn not enclosing a charged body or any part of one, show that at every point of a certain closed line on the surface it intersects the equipotential surface through the point at right angles.

10C. Charges \(3q, -q, -q \) are placed at \(A, B, C \), respectively, where \(B \) is the middle point of \(AC \). Draw a rough diagram of the lines of force, show that a line of force that starts from \(A \) making an angle \(\alpha \) with \(AB > \cos^{-1} (-\frac{1}{3}) \) will not reach \(B \) or \(C \), and show that the asymptote of the line of force for which \(\alpha = \cos^{-1} (-\frac{1}{3}) \) is at right angles to \(AC \).

11C. If there are three electrified points \(A, B, C \) in a straight line, such that \(AC = f \), \(BC = a^{2}/f \), and the charges are \(q, -qa/f, \) and \(4\pi eVa \), respectively, show that there is always a spherical equipotential surface, and discuss the position of the equilibrium points on line \(ABC \) if \(4\pi eV = q(f + a)/(f - a)^{3} \) and if \(4\pi eV = q(f - a)/(f + a)^{3} \).

12C. \(A \) and \(C \) are spherical conductors with charges \(q + q' \) and \(-q \), respectively. Show that there is either a point or a line of equilibrium depending on the relative size and positions of the spheres and on \(q'/q \). Draw a diagram for each case, giving the lines of force and the sections of the equipotentials by a plane through the centers.

13C. An electrified body is placed in the vicinity of a conductor in the form of a surface of antielastic curvature. Show that at that point of any line of force passing from the body to the conductor, at which the force is a minimum, the principal curves of the equipotential surface are equal and opposite.

14C. If two charged concentric shells are connected by a wire, the inner one is wholly discharged. If the force law were \(r^{-(2+\rho)} \), prove that there would be a charge \(B \) on the inner shell such that if \(A \) were the charge on the outer shell and \(f, g \) the sum and difference of the radii \(2qB = -Ap [(f - g) \ln (f + g) - f \ln f + g \ln g] \), approximately.

15C. Three infinite parallel wires cut a plane perpendicular to them in the angular points \(A, B, C \) of an equilateral triangle and have charges \(q, q, -q' \) per unit length, respectively. Prove that the extreme lines of force which pass from \(A \) to \(C \) make at starting angles \((2q - 5q')\pi(6q)^{-1} \) and \((2q + q')\pi(6q)^{-1} \) with \(AC \), provided that
\(q' > 2q \).

16C. A negative point charge \(-q_1 \) lies between two positive point charges \(q_1 \) and \(q_2 \) on the line joining them and at distances \(\alpha, \beta \) from them, respectively. Show that if the magnitudes of the charges are given by \(q_1\beta^{-1} = q_2\alpha^{-1} \) and \(1 < \lambda \lt \alpha^{-1} \lt (\alpha + \beta)^{-1} \), there is a circle at every point of which the force vanishes. Determine the general form of the equipotential surface on which this circle lies.

17C. Charges of electricity \(q_1, -q_2, q_3, (q_1 > q_3) \) are placed in a straight line, the negative charge being midway between the other two. Show that, if \(4q_2 \) lie between \((q_1 + q_3)^{3} = (q_1 + q_3)^{3} \) and \((q_1 + q_3)^{3} = (q_1 + q_3)^{3} \), the number of unit tubes of force that pass from \(q_1 \) to \(q_2 \) is \(\frac{1}{2}(q_1 + q_3 - q_2) + 3(2q_1q_3)^{-1}(q_1 - q_2)(q_1 - q_2) + q_2^1 + q_3^1 \).

18C. An infinite plane is charged to surface density \(\sigma \), and \(P \) is a point distant \(\frac{1}{2} \) in. from the plane. Show that of the total intensity \(2\pi r \) at \(P \) half is due to the charges at points that are within 1 in. of \(P \) and half to the charges beyond.

19C. A disk of vulcanite (nonconducting), of radius 5 in., is charged to a uniform surface density by friction. Find the electric intensities at points on the axis of the disk distant, respectively, 1, 3, 5, 7 in. from the surface.
20. Two parallel coaxial circular rings of radii \(a\) and \(b\) carry uniformly distributed charges \(Q_1\) and \(Q_2\). The distance between their planes is \(c\). Show that the force between them is

\[
F = \frac{ck^2 Q_1 Q_2}{16\pi^2 (ab)^2} \left(\frac{E}{1 - k^2} \right)
\]

where \(k^2 = \frac{4ab}{c^2 + (a + b)^2}\)

and \(E\) is a complete elliptic integral of modulus \(k\).

21. Show that at a great distance the field of a ring charge \(-Q\) of radius \(b\) concentric and coplanar with a ring charge \(Q\) of radius \(c\) is identical with that of a linear quadrupole in which the end charges \(-Q\) are at a distance \(a\) from the center charge \(2Q\), provided that \(b^2 - c^2 = 4a^2\).

References

The author has found helpful treatments of the subject matter of this chapter in the following books:

CHAPTER II

CAPACITORS, DIELECTRICS, SYSTEMS OF CONDUCTORS

2.00. Uniqueness Theorem.—Before trying to find the potentials in a system of conductors when the charges are given or vice versa, it is well to be sure that there is only one correct solution.

First let us assume that a surface density \(\sigma \) on the conductors produces the same potentials as a different surface density \(\sigma' \). The potential at a point \(P \) on the surface of one of the conductors due to the surface density \(\sigma - \sigma' \) will be, from 1.06 (6),

\[V_p = \int_{S} \frac{\sigma - \sigma'}{4\pi r^2} dS = \frac{1}{4\pi \varepsilon} \int_{S'} \sigma dS - \frac{1}{4\pi \varepsilon} \int_{S'} \sigma' dS \]

where \(r \) is the distance from \(P \) to the surface element \(dS \) and the integration covers the surface of all conductors. The two integrals on the right were initially assumed equal, so that \(V_p \) is zero. The surface density \(\sigma - \sigma' \) therefore makes all conductors at zero potential, so that there is no electric field and \(\sigma - \sigma' \) is zero. Therefore \(\sigma = \sigma' \), and the distribution is unique. We have proved that only one distribution of electric charge will give a specified potential to every conductor in an electric field.

Now let us assume that a surface density \(\sigma \) on the conductors gives the same total charge \(Q \) in each conductor as a different surface density \(\sigma' \). The surface density \(\sigma - \sigma' \) will then give a total charge zero on each conductor. The density \(\sigma - \sigma' \) may be zero over the whole conductor or negative on some areas and positive on others. If the latter is the case, the tubes of force ending on negative areas must originate at points of higher potential and those ending on positive areas at points of lower potential. This reasoning applies to every conductor in the field so that, with the density \(\sigma - \sigma' \), no conductor can be at the maximum or the minimum of potential. Therefore, all of them must be at the same potential, and the field vanishes, which gives \(\sigma = \sigma' \). We have now proved that there is only one surface charge distribution which will give a specified total charge to each conductor in an electric field.

2.01. Capacitance.—One consequence of the fact (1.14) that all electrical stresses in a medium in an electric field depend on the intensity in the same way is that the equilibrium is undisturbed if the intensity everywhere in the field is changed by the same factor. Thus if we double the surface density at every point in a system of charged conductors, the
configuration of the field is unchanged but the intensity is doubled, and hence the work required to take a small charge from one conductor to another is also doubled. This constant charge to potential ratio of an isolated conductor is its capacitance, and the reciprocal ratio is its elastance. These terms are not precise when other conductors are in the field unless all are both earthed and uncharged. If \(Q \) is the charge in coulombs, \(C \) the capacitance in farads, \(S \) the elastance in daryafs, and \(V \) the potential in volts, then the definitive equations are

\[
Q = CV \quad V = SQ
\]

(1)

Two insulated conductors near together constitute a simple capacitor. If these two conductors are given equal and opposite charges, the capacitance of the capacitor is the ratio of the charge on one to the difference of potential between them. The ratio is always taken so as to make the capacitance a positive quantity. Thus, for a capacitor we have

\[
Q = C(V_1 - V_2) \quad V_1 - V_2 = SQ
\]

(2)

2.02. Capacitors in Series and Parallel.—If we take \(n \) simple uncharged capacitors, connect one member of each capacitor to a terminal \(A \) and the other member to a terminal \(B \), as shown in Fig. 2.02a, and then apply a potential \(V \) between \(A \) and \(B \), we have

\[
Q_1 = C_1 V, \quad Q_2 = C_2 V, \quad \ldots, \quad Q_n = C_n V
\]

where \(Q_1, Q_2, \ldots, Q_n \) are the charges on the capacitors whose capacitances are \(C_1, C_2, \ldots, C_n \), respectively. The total charge is then

\[
Q = Q_1 + Q_2 + \cdots + Q_n = V(C_1 + C_2 + \cdots + C_n)
\]

Thus these capacitors, which are said to be connected in parallel or "multiple arc," behave like a single capacitor whose capacitance is

\[
C = C_1 + C_2 + \cdots + C_n
\]

(1)

Let us take \(n \) simple uncharged capacitors, connecting the first member of capacitor 1 to \(A \) and the second member to the first member of capacitor 2, then connecting the second member of 2 to the first member of 3, and so forth, finally connecting the second member of the \(n \)th capacitor to \(B \) as shown in Fig. 2.02b. These capacitors are now said to be connected in series or "cascade." The application of a potential between \(A \) and \(B \) gives

\[
V = V_1 + V_2 + \cdots + V_n = S_1Q_1 + S_2Q_2 + \cdots + S_nQ_n
\]

where \(V \) is the potential across the \(n \)th capacitor. Since each pair of connected conductors has remained insulated, its net charge is zero. Hence, if all the tubes of force leaving one member of a capacitor end on the other member of the same capacitor, we have

\[
Q_1 = Q_2 = \cdots = Q_n
\]
so that the charge factors out of the right side of the equation. Thus these capacitors, connected in series, behave like a single capacitor of capacitance \(C \) or elastance \(S \) where

\[
S = S_1 + S_2 + \cdots + S_n, \quad \frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots + \frac{1}{C_n} \tag{2}
\]

We observe that, in general, it will not be possible to confine the fields in the manner assumed so that this formula is an approximation. The additional "distributed" capacitance due to stray fields is usually negligible in cases where the members of a capacitor are close together, and the dielectric constant of the region between is high compared with that outside the capacitor. In the case of air capacitors with widely separated members, this formula may be worthless.

2.03. Spherical Capacitors.—Consider a pair of concentric spherical conducting shells, the inner, of radius \(a \), carrying a charge \(+Q\) and the outer, of radius \(b \), carrying a charge \(-Q\), the space between being filled by a homogeneous isotropic dielectric of capacitivity \(\varepsilon \). From symmetry, the electric displacement must be directed radially and its magnitude can depend only on \(r \). Hence, applying Gauss’s electric flux theorem to a concentric spherical surface of radius \(r \) where \(b > r > a \), we have

\[
\int_S \varepsilon E \cdot n \, dS = 4\pi r^2 \varepsilon E = Q
\]

so that

\[
E = -\frac{\partial V}{\partial r} = \frac{Q}{4\pi \varepsilon r^2}
\]

The potential difference between the spheres is therefore

\[
V_a - V_b = -\frac{Q}{4\pi \varepsilon} \int_b^a \frac{dr}{r^2} = \frac{Q}{4\pi \varepsilon} \left(\frac{1}{a} - \frac{1}{b} \right) = \frac{b - a}{4\pi \varepsilon ab} Q
\]

This gives the capacitance of a spherical capacitor to be

\[
C = \frac{4\pi \varepsilon ab}{b - a} \tag{1}
\]

The capacitance of a single sphere of radius \(a \) immersed in a dielectric of capacitivity \(\varepsilon \) can be obtained from (1) by letting \(b \to \infty \) giving

\[
C = 4\pi \varepsilon a \tag{2}
\]
2.04. Cylindrical Capacitors.—Consider a pair of concentric circular conducting cylinders of infinite length, the inner, of radius a, carrying a charge Q per unit length and the outer, of radius b, carrying a charge $-Q$ per unit length, the space between being filled with a homogeneous isotropic medium of capacitivity ϵ. From symmetry, the electric displacement must be directed radially outward from the axis and lie in a plane normal to the axis, and its magnitude must depend only on r. Apply Gauss's electric flux theorem to the volume enclosed by two planes, normal to the axis and one centimeter apart, and the concentric circular cylinder of radius r when $b > r > a$. The plane walls contribute nothing to the surface integral; we have therefore

$$\int_S \epsilon E \cdot n \, dS = 2\pi reE = Q$$

so that

$$E = -\frac{\partial V}{\partial r} = \frac{Q}{2\pi er} \quad (1)$$

The potential difference between the cylinders is therefore

$$V_a - V_b = -\frac{Q}{2\pi \epsilon} \int_b^a \frac{dr}{r} = -\frac{Q}{2\pi \epsilon} \ln \frac{a}{b} \quad (1.1)$$

Thus the capacitance per unit length of a long cylindrical capacitor is

$$C = \frac{2\pi \epsilon}{\ln (b/a)} \quad (2)$$

If we let $b \to \infty$, we see that $C \to 0$. Therefore, if there is a finite charge per unit length on a circular cylinder of finite radius and infinite length, the potential difference between its surface and infinity is infinite. Since physically we deal only with cylinders of finite length, this difficulty does not arise, but it indicates that the results of this article apply only where the distance to the surface of the cylinder is small compared with the distance to the ends.

2.05. Parallel-plate Capacitors.—When two infinite parallel conducting planes, carrying charges $+Q$ and $-Q$, are a distance a apart, the space between being filled with a homogeneous isotropic dielectric, we see from symmetry that the field between them must be uniform and normal to the plates. If σ is the charge per square meter, then there must be, from 1.13, σ unit tubes leaving every square meter of the plates. Thus we have for the displacement and intensity between the plates the relation
\[D = \varepsilon E = -\varepsilon \frac{\partial V}{\partial x} = \sigma \]

The difference of potential between the plates is

\[V_2 - V_1 = \frac{\sigma}{\varepsilon} \int_0^a dx = \frac{\sigma a}{\varepsilon} \quad (1.1) \]

Therefore the capacitance per unit area is \(\varepsilon / a \), and the capacitance of an area \(A \) is

\[C = \frac{\varepsilon A}{a} \quad (1) \]

In practice, the field will be uniform only far from the edges of the plate, so that this formula is an approximation which is good if \(a \) is small compared with all surface dimensions of the plate and still better if, in addition, the capacitance of the region between the plates is higher than that of the region beyond the edges.

2.06. Guard Rings.—The derivation of formula 2.04 (2) for the capacitance per unit length of a cylindrical capacitor and that of 2.05 (1) for the capacitance of a parallel-plate capacitor both involve the hypothesis of conductors of infinite dimensions. To permit

the application of these formulas to actual capacitors, a device known as a guard ring is used. For the cylindrical capacitors, shown in Fig. 2.06a, the end sections of one of the members are separated from the center section by narrow cracks but are maintained at the same potential. Thus the distorted field near the edges does not affect the center section, except for a very small effect produced by the cracks, so that the charge on this section is related to the potential difference by 2.04 (1.1).

A similar arrangement is used for the parallel-plate capacitor by leaving a narrow gap between the central section of one plate and the area surrounding it, maintaining both at the same potential as shown in Fig. 2.06b. The field between the central areas is now uniform except for the negligible effect of the small gap, and the charge on this section is related to the potential difference by 2.05 (1.1).
2.07. Energy of a Charged Capacitor.—We can compute the mutual energy of any system of charges directly from the definition of potential. The work in joules to put the \(j \)th charge in place will be, from 1.06 (3),

\[
W_j = q_j V_j = \frac{q_j}{4\pi \varepsilon} \sum_{i=1}^{n} q_i r_{ij} \quad \text{where} \ i \neq j
\]

The total work to put all charges in place is

\[
W = \frac{1}{8\pi \varepsilon} \sum_{i=1}^{n} \sum_{j=1}^{n} q_i q_j r_{ij} \quad \text{where} \ i \neq j
\] (1)

The factor \(\frac{1}{2} \) is necessary because the summation includes not only the work done in bringing the \(i \)th charge into its position in the field of the \(j \)th charge but also that done in bringing the \(j \)th charge into the field of the \(i \)th charge, which is the same. If \(V_i \) is the potential at the spot where the \(i \)th charge is situated, this may be written, from 1.06 (3),

\[
W = \frac{1}{2} \sum_{i=1}^{n} q_i V_i
\] (2)

When all charges lie on the same conductor \(a \), they are at the same potential and if their sum is \(Q_a \), we may write

\[
W_a = \frac{1}{2} \sum_{\text{over } a} q_i V_i = \frac{V_a}{2} \sum_{\text{over } a} q_i = \frac{1}{2} Q_a V_a
\] (3)

If the capacitance of a conductor is \(C \), we have, from 2.01 (1), the following equivalent expressions for the energy of a charged conductor:

\[
W = \frac{1}{2} QV = \frac{1}{2} Q^2 / C = \frac{1}{2} CV^2
\] (4)

For a capacitor, the two members of which carry charges \(Q \) and \(-Q \) at potentials \(V_1 \) and \(V_2 \), respectively, the energy becomes

\[
W = \frac{1}{2} Q V_1 - \frac{1}{2} Q V_2 = \frac{1}{2} Q (V_1 - V_2)
\] (5)

From 2.01 (2), (5) has the same equivalent forms as (4).

2.08. Energy in an Electric Field.—We have seen that visualizing electric forces as transmitted by stresses in the region occupied by an electric field gives results consistent with the observed laws of electrostatics. Where stresses exist, potential energy must be stored. We shall now compute this energy density. Consider an infinitesimal disk-shaped element of volume oriented in such a way that the two faces are equipotential surfaces. If this element is taken sufficiently small, the faces of the disk will be flat and parallel and the field inside uniform and identical with that in an infinitesimal parallel-plate capacitor. Let the thickness of the disk be \(ds \); then the difference of potential between the
faces is \((\partial V/\partial s)\) \(ds = -E\) \(ds\). Let \(n\) be the unit vector normal to the faces so that \(E = En\). The charge on an area \(dS\) of the face is

\[
D \cdot n \, dS = \frac{D \cdot E}{E} \, dS
\]

and the capacitor volume is \(dv = ds \, dS\), so that 2.07 (4) gives

\[
dW = \frac{D \cdot E}{2} \, dv
\]

This gives, for the energy density in the field,

\[
\frac{dW}{dv} = \frac{D \cdot E}{2}
\]

In an isotropic dielectric, \(D \cdot E = DE\), giving

\[
\frac{dW}{dv} = \frac{\varepsilon E^2}{2} = \frac{DE}{2\varepsilon} = \frac{D^2}{2\varepsilon}
\]

In a crystalline dielectric, we have, from 1.19 (5),

\[
\frac{dW}{dv} = \frac{1}{2}(\varepsilon_1E_1^2 + \varepsilon_2E_2^2 + \varepsilon_3E_3^2 + 2\varepsilon_{12}E_1E_2 + 2\varepsilon_{13}E_1E_3 + 2\varepsilon_{23}E_2E_3)
\]

or if the coordinate axes are chosen to coincide with the electric axes of the crystal, we have, from 1.19 (6),

\[
\frac{dW}{dv} = \frac{1}{2}(\varepsilon_xE_x^2 + \varepsilon_yE_y^2 + \varepsilon_zE_z^2)
\]

2.081. Parallel-plate Capacitor with Crystalline Dielectric.—Let us now calculate the capacitance per square meter of a parallel-plate capacitor where the dielectric consists of a slab of crystal of thickness \(d\). Let the capacitivities along the crystal axes \(x\), \(y\), and \(z\) be \(\varepsilon_1\), \(\varepsilon_2\), and \(\varepsilon_3\), respectively, and let the direction cosines of the angle made by the normal to the capacitor plates with these axes be \(l, m,\) and \(n\). Since, electrically, one square meter section is like any other, the equipotentials must be parallel to the plates and equally spaced and the electric intensity must lie along the normal. Thus we have

\[
E = (X^2 + Y^2 + Z^2)\mathbf{i} = \frac{V}{d}
\]

where \(V\) is the potential across the capacitor. Thus

\[
X = \frac{lV}{d}, \quad Y = \frac{mV}{d}, \quad Z = \frac{nV}{d}
\]

Substituting in 2.08 (4), multiplying by the volume \(d\) of a square meter section, and using 2.07 (4), we have

\[
\frac{1}{2}C_1V^2 = \frac{d}{2}[\varepsilon_1l^2\left(\frac{V}{d}\right)^2 + \varepsilon_2m^2\left(\frac{V}{d}\right)^2 + \varepsilon_3n^2\left(\frac{V}{d}\right)^2]
\]
so that the capacitance per square meter is

\[C_1 = \frac{n^2 e_1 + m^2 e_2 + n^2 e_3}{d} \] (2)

2.09. Stresses When the Capacitivity Is a Function of Density.—In considering stresses in a dielectric heretofore in 1.16 and 1.17, we have ignored the possibility that the capacititivity may actually change with density \(\tau \) so that there may be a hydrostatic stress tending to expand or contract the dielectric. By working with a volume element of the shape and orientation used in 2.08, we can simplify the investigation to that of a small parallel-plate capacitor of area \(\Delta S \) and spacing \(\delta \) in which the charge on the plates is considered as embedded in the dielectric at the boundary. Combining 2.07 (4) with 2.05 (1) and assuming an isotropic dielectric of capacititivity \(\epsilon \), we have for the energy of our capacitor

\[\Delta W = \frac{\delta}{2\epsilon} \overline{\Delta S} Q^2 = \frac{m}{2\epsilon \tau} \overline{\Delta S} Q^2 = \frac{mD^2}{2\epsilon \tau} \Delta S \]

where we have let \(m \) be the mass of the dielectric per unit area between the plates so that \(m = \tau \delta \). If \(m \) is assumed constant and \(\epsilon \) is taken as a function of \(\tau \), the force on an area \(\Delta S \) of the plate is

\[\Delta F = -\frac{\partial(\Delta W)}{\partial \delta} = -\frac{\partial(\Delta W)}{\partial \tau} \frac{\partial \tau}{\partial \delta} = \frac{D^2 \partial(\epsilon \tau)}{2\epsilon \tau} \Delta S \]

Thus the stress or force per unit area pulling on the surface of the conductor is

\[\frac{\Delta F}{\Delta S} = \frac{D^2 \partial(\epsilon \tau)}{2\epsilon \tau} \]

Carrying out the differentiation and comparing with 1.16 (2), we see that the additional hydrostatic stress is

\[\frac{D^2 \partial \epsilon}{2\epsilon \tau \partial \tau} = \frac{E^2 \partial \epsilon}{2\epsilon \tau \partial \tau} = -\frac{\epsilon \epsilon E^2 \partial K}{2\epsilon \tau \partial \tau} \] (2)

At the surface between two dielectrics, we shall now have to add to those stresses already considered the difference in this hydrostatic pressure giving, in place of 1.17 (7), for the total stress directed from \(K' \) to \(K'' \) the value

\[F_n = \frac{1}{2\epsilon e_0} \left[K' - K'' \left(\frac{D_{t'}^2}{K'} + \frac{D_{n'}^2}{K''} \right) - \frac{D_{t'}^2 \partial K'}{K'^{1/2} \partial K''} + \frac{D_{n'}^2 \partial K'}{K'^{1/2} \partial K''} \right] \] (3)

At the surface between a dielectric and a vacuum set \(K'' = 1 \) and \(\partial K''/\partial \tau'' = 0 \), we have

\[F_n = \frac{1}{2\epsilon e_0} \left[K' - 1 \left(\frac{D_{t'}^2}{K'} + D_{n'}^2 \right) - \frac{D_{t'}^2 \partial K'}{K'^{1/2} \partial K''} \right] \]

\[= \frac{\epsilon \epsilon E^2}{2} \left[(K' - 1) - \tau' \frac{\partial K'}{\partial \tau} \right] - \frac{\epsilon \epsilon E^2}{2} (K' - 1)^2 \] (4)
where

\[E''^2 = E_t''^2 + E_n''^2 = \left(\frac{D}{\varepsilon} \right)^2 + \left(\frac{D_n}{\varepsilon} \right)^2 \]

The sign of \(\partial K'/\partial \tau' \) may be either positive or negative, and if this term is large enough to predominate in (4) the dielectric may either expand or contract in the field. The phenomenon is known as electrostriction and has been observed by Quincke and others.

2.10. Electrostriction in Liquid Dielectrics.—There is a relation known as the Clausius-Mossotti formula which connects the relative capacitivity with the density for a given liquid.

\[\frac{K - 1}{K + 2} = C \tau \quad (1) \]

\(C \) is a constant characteristic of the liquid. This formula, although theoretically derived on incomplete assumptions, has been extremely well confirmed in many cases experimentally (see Geiger-Scheel, “Handbuch der Physik,” Band XII, p. 518). Differentiating, it gives

\[\frac{\partial K}{\partial \tau} = \frac{(K + 2)^2}{3} C = \frac{(K + 2)(K - 1)}{3\tau} \]

Substituting in 2.09 (2), we find that the hydrostatic pressure tending to contract the liquid is

\[P = \frac{\varepsilon E^2}{2} \frac{(K + 2)(K - 1)}{3} \quad (2) \]

We have assumed throughout that the liquid is nearly incompressible so that \(\tau \) is nearly constant. Thus we see that if we had a charged sphere immersed in a large body of liquid dielectric the pressure given by (2) would vary inversely as the fourth power of the distance from the center of the sphere, and if the liquid were slightly compressible it would be most dense at the sphere’s surface, when other effects such as gravitation are neglected.

2.11. Force on Conductor in Dielectric.—So far we have considered the force at the charged boundary between a dielectric and a conductor as if the charge were on the dielectric side of the boundary so that the entire field lies in the dielectric. This gives, from 1.16 (2), the force per unit area to be \(D^2/(2\varepsilon) \), neglecting electrostriction. We know from considering the energy of a charged capacitor that this result is correct. Now let us investigate the force if the charge is taken to be on the conducting side of the boundary, the capacitivity of the conductor being \(\varepsilon' \). The force then becomes \(D^2/(2\varepsilon') \). The surface of the dielectric is now in the field so that there will be a tension on it pressing against the conductor whose amount is given by 2.09 (3). Neglecting electrostriction and remembering that the field is normal to the surface we obtain for the sum
of these forces

\[F_2 = \frac{K - K'}{2\epsilon KK'}D^2 = \frac{\epsilon - \epsilon'}{2\epsilon \epsilon'}D^2 \]

The total force acting on the conductor will now be

\[F = F_1 - F_2 = \frac{K - K + K'}{2\epsilon KK'}D^2 = \frac{D^2}{2\epsilon} \tag{1} \]

Thus either point of view as to the location of the charge gives the same resultant force.

If, instead of being discontinuous, the relative capacitivity is considered to change rapidly but continuously in crossing the boundary, the stresses must be determined by integrating. The total resultant stresses come out the same as before although their distribution near the boundary is different.

2.12. Green's Reciprocation Theorem.—We shall now prove that if charges \(Q_1, Q_2, \ldots, Q_n \) on the conductors of a system give rise to potentials \(V_1, V_2, \ldots, V_n \) and if charges \(Q'_1, Q'_2, \ldots, Q'_n \) give rise to potentials \(V'_1, V'_2, \ldots, V'_n \), then

\[\sum_{i=1}^{n} Q_i V'_i = \sum_{i=1}^{n} Q'_i V_i \tag{1} \]

Let us first consider a system of point charges and write down in the form of a matrix \(n^2 \) terms, each of which comprises the product of one point charge by the potential of a second point charge. Using 1.06 (3), we shall write the sum of the columns in the bottom row and the sum of the horizontal rows in the right-hand column. Thus we obtain

\[
\begin{align*}
0 &+ \frac{q'q_1}{4\pi \epsilon r_{21}} + \frac{q'_2q_1}{4\pi \epsilon r_{31}} + \cdots + \frac{q'_nq_1}{4\pi \epsilon r_{n1}} = q_1 V'_1 \\
\frac{q'q_2}{4\pi \epsilon r_{12}} &+ 0 + \frac{q'_2q_2}{4\pi \epsilon r_{32}} + \cdots + \frac{q'_nq_2}{4\pi \epsilon r_{n2}} = q_2 V'_2 \\
\frac{q'q_3}{4\pi \epsilon r_{13}} &+ \frac{q'_2q_3}{4\pi \epsilon r_{33}} + 0 + \cdots + \frac{q'_nq_3}{4\pi \epsilon r_{n3}} = q_3 V'_3 \\
&\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\frac{q'q_n}{4\pi \epsilon r_{1n}} &+ \frac{q'_2q_n}{4\pi \epsilon r_{2n}} + \frac{q'_3q_n}{4\pi \epsilon r_{3n}} + \cdots + 0 = q_n V'_n \\
\frac{q'_1V_1}{q_1} &+ \frac{q'_2V_2}{q_2} + \frac{q'_3V_3}{q_3} + \cdots + \frac{q'_nV_n}{q_n} = q'_1V_1 + q'_2V_2 + \cdots + q'_nV_n
\end{align*}
\]

The order of summation being immaterial, the sum may be obtained by adding the terms of the last row or last column. Equating these gives

\[\sum_{s=1}^{n} q'_s V_s = \sum_{s=1}^{n} q_s V'_s \tag{2} \]
It should be noted that for these point charges V_s is the potential at q_s due to all unprimed charges except q_s itself. All charges located on the same conductor are multiplied by the same potential and so may be collected; thus

$$
\Sigma q'_i V = V \Sigma q'_i = Q' V
$$
giving (1). One important application of this theorem is obtained by putting $Q'_1, Q'_2, \ldots, Q'_n = 0$, $Q_2, Q_3, \ldots, Q_n = 0$, and $Q_1 = Q'_2$ in (1). This gives $V'_1 = V_2$. Thus the potential to which an uncharged conductor A is raised by putting a charge Q on B is the same as that to which B, when uncharged, will be raised by putting the charge Q on A. This theorem is still valid if dielectric boundaries are present as is proved in 3.07.

2.13. Superposition of Fields.—By adding $\Sigma Q_i V_i$ or $\Sigma Q'_i V'_i$ to both sides of 2.12 (1) and comparing with 2.12 (1), we see that if charges Q_1, Q_2, \ldots, Q_n produce potentials V_1, V_2, \ldots, V_n etc., then charges $Q_1 + Q'_1, Q_2 + Q'_2, \ldots, Q_n + Q'_n$ give $V_1 + V'_1, V_2 + V'_2, \ldots, V_n + V'_n$. A great many new problems can be solved by superimposing the solutions of known problems. As an example of this, suppose we are given the charges Q_1, Q_2, \ldots, Q_n on n concentric conducting spheres of radii r_1, r_2, \ldots, r_n and wish to find the potential of any sphere, say the sth. We may superimpose the potential produced by each of these charged shells separately, giving

$$
4\pi \varepsilon V_s = (Q_1 + Q_2 + \cdots + Q_s)r_s^{-1} + Q_{s+1}r_{s+1}^{-1} + \cdots + Q_n r_n^{-1} \quad (1)
$$
since the potential outside a charged shell at a distance r from its center is independent of its radius and equals $Q(4\pi \varepsilon r)^{-1}$, and the potential inside a conducting spherical shell of radius a is equal to $Q(4\pi \varepsilon a)^{-1}$.

2.14. Induced Charges on Earthed Conductors.—If we place a point charge q at P in the neighborhood of a group of earthed conductors, induced charges will appear on them. We can find the induced charge Q on any one of these conductors if we know the potential V'_p to which the point P would be raised, the charge q being absent, by raising that conductor to a potential V'. For, from 2.12 (1),

$$
Q V' + q V'_p + q_1 \cdot 0 + q_2 \cdot 0 + \cdots = Q' \cdot 0 + 0 \cdot V_p + q'_1 \cdot 0 + q'_2 \cdot 0 + \cdots
$$
so that

$$
Q = -\frac{V'p}{V'_p q} \quad (1)
$$

If a conducting sphere is the only conductor and P is at a distance r from its center, we have, from 2.03 (2), $V' = q_1(4\pi \varepsilon a)^{-1}$ and $V'_p = q_1(4\pi \varepsilon r)^{-1}$, so that the charge induced on it by a charge q at P is

$$
Q = -\frac{aq}{r} \quad (2)
$$
CAPACITORS, DIELECTRICS, SYSTEMS OF CONDUCTORS §2.15

If a point P lies between two conductors, one of which encloses the other, and if the potential at P is known when the conductors are at potentials V'_1 and V'_2, respectively, then the charge induced on either, when both are earthed, by a charge q at P can be found by 2.12 (1). Let the induced charges be Q_1 and Q_2; then

$$Q_1 V'_1 + Q_2 V'_2 + q V'_2 = 0$$

Also since all tubes of force from q end on these conductors, we have the relation $Q_1 + Q_2 = - q$. Solving gives

$$Q_1 = \frac{V'_2 - V'_1}{V'_1 - V'_2} q \quad \text{and} \quad Q_2 = \frac{V'_1 - V'_2}{V'_2 - V'_1} q$$

(3)

Thus from 2.03 if the point P lies between two earthed spheres, the charge induced on the inner and outer spheres are, respectively,

$$Q_1 = \frac{-r_1(r_2 - r)}{r(r_2 - r_1)} q \quad \text{and} \quad Q_2 = \frac{-r_2(r - r_1)}{r(r_2 - r_1)} q$$

(4)

where r is the distance of P from the center and $r_1 < r < r_2$.

From 2.04 if P lies between two earthed cylinders, the charge induced on the inner and outer are, respectively,

$$Q_1 = -\frac{\ln (r_2/r)}{\ln (r_2/r_1)} q \quad \text{and} \quad Q_2 = -\frac{\ln (r_1/r)}{\ln (r_1/r_2)} q$$

(5)

From 2.05 if P lies between two earthed plates at a distance a from the first plate and b from the second, we have

$$Q_1 = -\frac{bq}{a + b} \quad \text{and} \quad Q_2 = -\frac{aq}{a + b}$$

(6)

2.15. Self- and Mutual Elastance.—Consider n initially charged conductors, fixed in position and shape. We have seen that putting a charge on any conductor of the group will affect the potential of all other conductors in a definite way which depends only on the geometrical configuration of the system and the capacitivity. The ratio of the rise in potential V_r of conductor r to the charge Q_r placed on conductor s to produce this rise is called the coefficient of potential or mutual elastance s_{sr}. The first application of Green’s reciprocation theorem (2.12) shows that $s_{sr} = s_{rs}$. A superposition of solutions for charges Q_r, Q_s, Q_t, etc., on conductors r, s, t gives

$$V_1 = s_{11} Q_1 + s_{21} Q_2 + \cdots + s_{n1} Q_n$$
$$V_2 = s_{12} Q_1 + s_{22} Q_2 + \cdots + s_{n2} Q_n$$
$$\quad \cdots \cdots$$
$$V_n = s_{1n} Q_1 + s_{2n} Q_2 + \cdots + s_{nn} Q_n$$

(1)

Thus s_{sr} is the potential to which the rth conductor is raised when a unit charge is placed on the sth conductor, all the other conductors being
present but uncharged. Putting a positive charge on a conductor always raises the potential of neighboring insulated conductors so s_{rs} is always positive. The coefficient s_{rr} is called self-elastance.

§2.16. Self- and Mutual Capacitance.

We may solve the set of equations 2.15 (1) and obtain the charge on a conductor in terms of the potentials of neighboring conductors. The solutions are

\[
\begin{align*}
Q_1 &= c_{11}V_1 + c_{21}V_2 + \cdots + c_{n1}V_n \\
Q_2 &= c_{12}V_1 + c_{22}V_2 + \cdots + c_{n2}V_n \\
&\vdots \\
Q_n &= c_{1n}V_1 + c_{2n}V_2 + \cdots + c_{nn}V_n
\end{align*}
\]

(1)

where

\[
c_{11} = \frac{1}{\Delta} \begin{vmatrix} s_{22} & \cdots & s_{n2} \\ s_{23} & \cdots & s_{n3} \\ \vdots & & \vdots \\ s_{2n} & \cdots & s_{nn} \end{vmatrix}, \quad c_{12} = c_{21} = -\frac{1}{\Delta} \begin{vmatrix} s_{21} & \cdots & s_{n1} \\ s_{31} & \cdots & s_{n3} \\ \vdots & & \vdots \\ s_{n1} & \cdots & s_{nn} \end{vmatrix}
\]

and

\[
\Delta = \begin{vmatrix} s_{11} & \cdots & s_{n1} \\ s_{12} & \cdots & s_{n2} \\ \vdots & & \vdots \\ s_{1n} & \cdots & s_{nn} \end{vmatrix}
\]

(2)

so that c_{rr} is the minor of s_{rr} in Δ divided by Δ.

The quantity c_{rr} is called the coefficient of capacitance or the self-capacitance and is defined as the charge to potential ratio on the rth conductor when the other conductors are present but earthed. Since the potential has the same sign as the charge, c_{rr} is always positive.

The quantity c_{sr} is called the coefficient of induction or the mutual capacitance and may be defined as the ratio of the induced charge on the rth conductor to the potential of the sth conductor when all conductors, except the sth, are grounded. The induced charge is always opposite in sign to the inducing charge so c_{rs} is always negative or zero.

§2.17. Electric Screening.

Suppose conductor 2 surrounds conductor 1 as in Fig. 2.17. All tubes of force from 1 end on 2 so that, if $V_2 = 0$, the charge on 1 depends only on its own potential, which means that, in 2.16 (1),

\[
c_{31} = c_{41} = \cdots = c_{n1} = 0
\]

(1)

Thus there is no inductive effect between 1 and any of the conductors outside of 2. In this case, we say that they are electrically screened from
1. We notice also that, since \(Q_2 = -Q_1 \) when all but 1 are earthed, \(c_{11} = -c_{12} \).

Because of the complete similarity of 2.15 (1) and 2.16(1), we see that we can express the elastances in terms of the capacitances by an interchange of \(s \) and \(c \) in 2.16 (2). When 1 is screened by 2, we put in the values given by (1) and obtain

\[
s_{1r} = s_{2r} \quad 1 < r
\]

Substitution of \(s_{2r} \) for \(s_{1r} \) in the first equation of 2.15 (1) and subtraction of the second from it give

\[
V_1 - V_2 = (s_{11} - s_{12})Q_1
\]

If \(V_1 > V_2 \), tubes of force pass from \(V_1 \) to \(V_2 \) and \(Q_1 \) is positive so that \(s_{11} - s_{12} \) is positive, and since, from (2), \(s_{12} = s_{22} \), we have

\[
s_{11} > s_{12} \quad \text{and} \quad s_{11} > s_{22}
\]

2.18. Elastances and Capacitances for Two Distant Conductors.—Let two conductors 1 and 2 have capacitances \(C_1 \) and \(C_2 \) when alone. When 1 is uncharged, let us bring up 2, which has a charge \(Q_2 \), to a mean distance \(r \) from 1, \(r \) being large compared with the linear dimensions, of magnitude \(a \), of either conductor. The potential to which 1 is raised is \(Q_2(4\pi r)^{-1} \), if we neglect the variation of this potential over the region occupied by 1 which is of the order \(a(4\pi r^2)^{-1} \). Comparison of this with the first equation of 2.15 (1) shows that \(s_{21} = (4\pi r)^{-1} \). A charge of opposite sign to \(Q_2 \) and of order of magnitude \(Q_2a(4\pi r)^{-1} \) will be induced on the nearer parts of 1 and an equal charge of the same sign on the more remote parts. Here we have equal and opposite charges, separated by a distance smaller than \(a \) which is small compared with \(r \), so that the field at the distance \(r \) is essentially a dipole field, and the potential \([1.07 (1)] \) at 2 due to the presence of 1 uncharged is at most of order \(Q_2a^2(4\pi r^3)^{-1} \). To this order of magnitude, therefore, 1 does not affect the potential at 2 so that, from the second equation in 2.15 (1), we have \(s_{22} = V_2Q_2^{-1} = C_2^{-1} \) and similarly \(s_{11} = C_1^{-1} \). Thus to a first approximation,

\[
s_{11} = \frac{1}{C_1}, \quad s_{12} = s_{21} = \frac{1}{4\pi r}, \quad s_{22} = \frac{1}{C_2}
\]

Solving for the self- and mutual capacitances by 2.16 (2), we have, neglecting \(r^{-3} \) terms,

\[
c_{11} = \frac{16\pi^2\varepsilon^2 r^2 C_1}{16\pi^2\varepsilon^2 r^2 - C_1 C_2}, \quad c_{12} = c_{21} = -\frac{C_1 C_2}{4\pi r}, \quad c_{22} = \frac{16\pi^2\varepsilon^2 r^2 C_2}{16\pi^2\varepsilon^2 r^2 - C_1 C_2}
\]

2.19. Energy of a Charged System.—If the electrical intensity and the displacement were known at all points outside a set of charged conductors, it would be possible to get the energy of the system by integration from
2.08 (1); thus

$$W = \frac{1}{2} \int V \cdot D \cdot dV$$ \hspace{1cm} (1)$$

where the integration extends over the whole volume outside the conductors.

Frequently we do not know the field at all points but do know the potentials and charges on conductors and the self- or mutual capacitances. To determine the energy, suppose we add to the charges \(Q_{1\alpha}, Q_{2\alpha}, \ldots, Q_{n\alpha}\) on the conductors, by infinitesimal steps, \(Q_i d\alpha; Q_2 d\alpha, \ldots, Q_n d\alpha\), starting with the initial uncharged state where \(\alpha = 0\) and ending with the final state where \(\alpha = 1\). Since the potentials are \(V_1\alpha, V_2\alpha, \ldots, V_n\alpha\) when the charges are \(Q_1\alpha, Q_2\alpha, \ldots, Q_n\alpha\), the work done in a single step is

$$dW = V_1Q_1d\alpha + V_2Q_2d\alpha + \cdots + V_nQ_n\alpha d\alpha$$

The energy in the final state is then

$$W = \sum_{i=1}^{n} V_i Q_i \int_0^{1} \alpha d\alpha = \frac{1}{2} \sum_{i=1}^{n} V_i Q_i$$ \hspace{1cm} (2)$$

If we substitute for \(Q_i\) from 2.16 (1), we have

$$W_v = \frac{1}{2}(c_{11}V_1^2 + 2c_{12}V_1V_2 + c_{22}V_2^2 + \cdots)$$ \hspace{1cm} (3)$$

If we substitute for \(V_i\) from 2.15 (1), we have

$$W_q = \frac{1}{2}(s_{11}Q_1^2 + 2s_{12}Q_1Q_2 + s_{22}Q_2^2 + \cdots)$$ \hspace{1cm} (4)$$

2.20. Forces and Torques on Charged Conductors.—If the electrical intensity and displacement are known at all points on the surface of a conductor, the total resultant force on the conductor in the direction of the unit vector \(\hat{p}\) can be obtained from 2.11 (1) by integration over the surface of the conductor, giving

$$F_v = \int_{S} \frac{D}{2} \cdot E \cdot \hat{p} \cdot n \, dS$$ \hspace{1cm} (1)$$

where \(n\) is the unit vector normal to the surface element \(dS\).

When the charges and the elastances of a set of conductors are known, the potential energy of the system is given by 2.19 (4) in which \(s_{11}, s_{12}, \text{etc.},\) are functions of the configuration of the system. As in mechanics, we determine the force or torque tending to produce a change in any element of this configuration by taking the negative derivative of the potential energy with respect to this element.

$$-\frac{\partial W}{\partial \eta} = -\frac{1}{2} \left(\frac{\partial s_{11}}{\partial \eta} Q_1^2 + 2\frac{\partial s_{12}}{\partial \eta} Q_1Q_2 + \cdots \right)$$ \hspace{1cm} (2)$$

This gives either a force or a torque tending to increase \(\eta\) depending on whether \(\eta\) is a length or an angle. In this case where the charge is kept
constant, the change in electrical energy equals the mechanical work done. If, on the other hand, we work with 2.19 (3), keeping the potentials constant by a battery or equivalent device, we may supply additional energy to the system. The force in both cases must be the same, since it depends only on the initial state of the system which may be expressed in terms of either charge or potential.

To determine the force in terms of the potential, let us combine 2.19 (4), (2), and (3) in the equation

$$\Psi = W_q + W_v - \Sigma V_i Q_i = 0$$

(3)

Taking the total differential, we have

$$d\Psi = \sum_{i=1}^{n} \frac{\partial \Psi}{\partial Q_i} dQ_i + \sum_{i=1}^{n} \frac{\partial \Psi}{\partial V_i} dV_i + \sum_{i=1}^{n} \frac{\partial \Psi}{\partial \eta_s} d\eta_s = 0$$

(4)

But from (3), 2.19 (4), and 2.15 (1)

$$\frac{\partial \Psi}{\partial Q_i} = \frac{\partial W_q}{\partial Q_i} - V_i = \sum_{j=1}^{n} s_{ij} Q_j - V_i = 0$$

and from (3), 2.19 (3), and 2.16 (1)

$$\frac{\partial \Psi}{\partial V_i} = \frac{\partial W_v}{\partial V_i} - Q_i = \sum_{j=1}^{n} c_{ij} V_j - Q_i = 0$$

Substituting in (4) gives

$$\sum_{i=1}^{n} \frac{\partial \Psi}{\partial \eta_s} d\eta_s = 0$$

This sum is zero for any values of $d\eta_s$ we choose; so each term must be separately equal to zero. Substituting for Ψ from (3) gives

$$\frac{\partial \Psi}{\partial \eta_s} d\eta_s = \frac{\partial W_q}{\partial \eta_s} d\eta_s + \frac{\partial W_v}{\partial \eta_s} d\eta_s = 0$$

(5)

But we know that $-\frac{\partial W_q}{\partial \eta_s}$ is the force or torque tending to increase η_s, so that in terms of the potentials this is

$$+ \frac{\partial W_v}{\partial \eta_s} = \frac{1}{2} \left(\frac{\partial c_{11}}{\partial \eta_s} V_1^2 + 2 \frac{\partial c_{12}}{\partial \eta_s} V_1 V_2 + \cdots \right)$$

(6)

When the charges are kept constant, the work done making a small displacement is given by (2), and when the potentials are kept constant it is given by (6). The difference must represent the work done by the device maintaining the potential giving

$$\left(\frac{\partial W_v}{\partial \eta_s} - \frac{\partial W_q}{\partial \eta_s} \right) d\eta_s = 2 \frac{\partial W_v}{\partial \eta_s} d\eta_s$$

(7)
PROBLEMS

Problems

Problems marked C are taken from the Cambridge examination questions as reprinted by Jeans by permission of the Cambridge University Press.

1. Three identical spheres of radius \(a \) are placed with their centers in line, the intervals being \(r_1 \) and \(r_2 \), and are numbered in order. At first, only the central one 2 carries a charge \(Q \). It is now connected with 1. This connection is then broken, and it is connected with 3. Show that, if the intervals are large compared with \(a \), the final charge on 3 is

\[
Q_3 = \frac{Q}{4} \left[\frac{ar_1^2}{r_1(r_1 + r_2)(r_2 - a)} + 1 \right]
\]

2. Four identical uncharged conducting spheres are placed at the corners of a square and numbered in rotation. A charge is given to 1, which is then connected for an instant by a thin wire to 2, 3, and 4 in turn. Show that finally

\[
Q_4 = \frac{Q}{8} \left(s_{11} - s_{24} \right) \quad Q_1 = \frac{Q}{8} \left(s_{11} - 2s_{14} + s_{24} \right)
\]

3. If, initially, spheres 1 and 2 in the last problem had charges \(+Q \) and \(-Q \), respectively, and if, as described, 1 is connected for an instant to 3 and 4 in turn, and if the side of the square \(r \) is large compared with the radius \(a \) of the spheres, show that, finally,

\[
Q_4 = 2^{-4}Q[(2^4 - 3)a]/(r - a)
\]

approximately, and find \(Q_3 \) and \(Q_1 \).

4. Each of three similar spheres, situated a considerable distance apart at the corners of an equilateral triangle, has initially a charge \(Q \). Each in turn is now earthed for an instant and then insulated. Show that the final charge on 3 is

\[
a^2r^{-4}Q(3 - 2a/r)\]

and find the final charges on 1 and 2.

5. Four similar conductors are arranged at the corners of a regular tetrahedron in such a way that each is perfectly symmetrical with respect to the other three. All are initially uncharged. One is now given a charge \(Q \) by means of a battery of voltage \(V \) and is then insulated. It is now connected for an instant to each of the other three in turn and then to earth. The charge is now \(-Q_1 \). Show that all the mutual capacitances are \(56Q^2/\left[V(24Q^2 + 7Q)(8Q - 7Q^2) \right] \) and find the elastances.

6. Two conductors are mirror images of each other and are initially uncharged. A sphere with a charge \(Q \) is now brought in contact with a certain point on one conductor and then with the image point on the other. If, in each case, it shares its charge equally with the conductor, show that after a large number of alternate contacts the charge will be equally distributed between the three conductors.

7. Three similar insulated conductors are so arranged that each is perfectly symmetrical with respect to the other two. A wire from a battery of unknown voltage is touched to each in turn. The charges on the first two are found to be \(Q_1 \) and \(Q_2 \). What is the charge on the third?

8. The inner and outer of three concentric spherical conducting shells of radii \(a \), \(b \), and \(c \) are grounded. The intervening sphere is split into halves and charged. Find how large \(a \) must be in order just to prevent the halves from separating if \(a < b < c \).

9. Three conductors are connected by fine wires and charged. Find how the charge is distributed between them if

\[
s_{11} = s_{22} \neq s_{23}, \quad s_{12} = s_{24} \neq s_{13}, \quad s_{11} + s_{12} = s_{12} + s_{32}
\]
10. A pair of concentric spherical conductors of radii a and b are connected by a wire. A point charge q is detached from the inner one and moved radially with uniform velocity v to the outer one. Show that the rate of transfer of the induced charge from the inner to the outer sphere is $dQ/dt = -qab(b - a)^{-1}v(a + vt)^{-2}$.

11. A ring carrying a total charge Q and of radius a lies inside of an earthed sphere of radius b, its axis coinciding with a diameter and its plane at a distance c from the center. Find the potential at the center.

12. A charge q when placed on the axis of a thin earthed conducting ring of radius a at a distance b from the center is found to induce a charge $-Q$ on it. Show that the capacitance of the ring is $4\pi\epsilon_qab^{1/2}(a^2 + b^2)^{3/2}$.

13. A conducting sphere of radius a is embedded in the center of a sphere of dielectric of radius b and relative capacitivity K. Show that the capacitance of the conducting sphere is $4\pi\epsilon_p/Kab/(a - b)^{-1}$.

14. The conductor in the last problem is earthed and a point charge q is placed at a distance r from its center, where $r > b > a$. Show that the charge induced on the sphere is $-Kabq/|r[b + (K - 1)a]|$.

15. A spherical capacitor with inner radius a and outer radius b is filled with two spherical layers of capacitivities ϵ_1 and ϵ_2, the boundary between being given by $r = \frac{1}{2}(a + b)$. If, when both shells are earthed, a point charge on the dielectric boundary induces equal charges on the inner and outer shells, find the ratio ϵ_1/ϵ_2.

16. An uncharged conducting spherical shell of mass M floats with one quarter of its volume submerged in a liquid of capacitivity ϵ. To what potential must it be charged to float half submerged?

17C. If the algebraic sum of the charges on a system of conductors is positive, then on one at least the surface density is everywhere positive.

18C. There are a number of insulated conductors in given fixed positions. The capacities of any two of them in their given positions are C_1 and C_2, and their mutual coefficient of induction is B. Prove that if these conductors are joined by a thin wire, the capacity of the combined conductor is $C_1 + C_2 + 2B$.

19C. In a system of insulated conductors, having been charged in any manner, charges are transferred from one conductor to another, till they are all brought to the same potential V. Show that $V = E/(s_1 + 2s_2)$, where s_1, s_2 are the algebraic sums of the coefficients of capacity and induction, respectively, and E is the sum of the charges.

20C. Prove that the effect of the operation described in the last question is a decrease of the electrostatic energy equal to what would be the energy of the system if each of the original potentials were diminished by V.

21C. Two equal similar condensers, each consisting of two spherical shells, radii a, b, are insulated and placed at a great distance r apart. Charges e, e' are given to the inner shells. If the outer surfaces are now joined by a wire, show that the loss of energy is, approximately $(16\pi\epsilon)^{-2}(e - e')^2(b^{-1} - r^{-1})$.

22C. A condenser is formed of two thin concentric shells, radii a, b. A small hole exists in the outer sheet through which an insulated wire passes connecting the inner sheet with a third conductor of capacity c at a great distance r from the condenser. The outer sheet of the condenser is put to earth, and the charge on the two connected conductors is E. Prove that the force on the third conductor is, approximately,

$$ac^2E^2(4\pi\epsilon r^2)^{-1}[4\pi\epsilon ab(a - b)^{-1} + c]^{-2}$$

23C. Two closed equipotentials V_1, V_0 are such that V_1 contains V_0, and V_p is the potential at any point P between them. If now a charge E is put at P and both equipotentials are replaced by conducting shells and earth connected, then the charges
E₁, E₂ induced on the two surfaces are given by

\[E₁(V₁ - V₂) = E₂(V₂ - V₁) = E(V₁ - V₂) \]

24C. A conductor is charged from an electrophorus by repeated contacts with a plate, which after each contact is recharged with a quantity E of electricity from the electrophorus. Prove that if e is the charge of the conductor after the first operation, the ultimate charge is \(Ee(E - e)^{-1} \).

25C. Four equal uncharged insulated conductors are placed symmetrically at the corners of a regular tetrahedron and are touched in turn by a moving spherical conductor at the points nearest to the center of the tetrahedron, receiving charges \(e₁, e₂, e₃, e₄ \). Show that the charges are in geometrical progression.

26C. In 25C, replace “tetrahedron” by “square” and prove that

\[(e₁ - e₂)(e₁e₂ - e₃) = e₁(e₂e₃ - e₁e₄) \]

27C. Two insulated fixed conductors are at given potentials when alone in the electric field and charged with quantities \(E₁, E₂ \) of electricity. Their coefficients of potential are \(s₁₁, s₁₂, s₂₂ \). But if they are surrounded by a spherical conductor of very large radius \(R \) at zero potential with its center near them, the two conductors require charges \(E₁', E₂' \) to produce the given potentials. Prove, neglecting \(R^{-1} \), that

\[(E₁' - E₁)(E₂' - E₂)^{-1} = (s₂₂ - s₁₂)(s₁₁ - s₁₂)^{-1} \]

28C. Show that the locus of the positions, in which a unit charge will induce a given charge on a given uninsulated conductor, is an equipotential surface of that conductor supposed freely electrified.

29C. Prove (1) that if a conductor, insulated in free space and raised to unit potential, produces at any external point \(P \) a potential denoted by \((P) \), then a unit charge placed at \(P \) in the presence of this conductor uninsulated will induce on it a charge \(-(P) \); (2) that if the potential at a point \(Q \) due to the induced charge is denoted by \((PQ) \), then \((PQ) \) is a symmetrical function of the positions of \(P \) and \(Q \).

30C. Two small uninsulated spheres are placed near together between two large parallel planes, one of which is charged, and the other connected to earth. Show by figures the nature of the disturbance so produced in the uniform field, when the line of centers is (1) perpendicular, (2) parallel to the planes.

31C. A hollow conductor \(A \) is at zero potential and contains in its cavity two other insulated conductors \(B \) and \(C \), which are mutually external. \(B \) has a positive charge, and \(C \) is uncharged. Analyze the different types of lines of force that are possible within the cavity, classifying with respect to the conductor from which the line starts and the conductor at which it ends, and proving the impossibility of the geometrically possible types that are rejected. Hence, prove that \(B \) and \(C \) are at positive potentials, the potential of \(C \) being less than that of \(B \).

32C. A portion \(P \) of a conductor, the capacity of which is \(C \), can be separated from the conductor. The capacity of this portion, when at a long distance from other bodies, is \(c \). The conductor is insulated, and the part \(P \) when at a considerable distance from the remainder is charged with a quantity \(e \) and allowed to move under the mutual attraction up to it. Describe and explain the changes that take place in the electrical energy of the system.

33C. A conductor having a charge \(Q₁ \) is surrounded by a second conductor with charge \(Q₂ \). The inner is connected by a wire to a very distant uncharged conductor. It is then disconnected, and the outer conductor connected. Show that the charges \(Q'_₁, Q'_₂ \) are now

\[Q'_₁ = \frac{mQ₁ - nQ₂}{m + n + mn}, \quad Q'_₂ = \frac{(m + n)Q₂ + mnQ'_1}{m + n} \]
where $C, C(1 + m)$ are the coefficients of capacity of the near conductors, and C_n is the capacity of the distant one.

34C. If one conductor contains all the others, and there are $n + 1$ in all, show that there are n relations between either the coefficients of potential or the coefficients of induction, and if the potential of the largest is V_0 and that of the others V_1, V_2, \ldots, V_n, then the most general expression for the energy is $\frac{1}{2}CV_0^2$ increased by a quadratic function of $V_1 - V_0, V_2 - V_0, \ldots, V_n - V_0$, where C is a definite constant for all positions of the inner conductors.

35C. The inner sphere of a spherical condenser (radii a, b) has a constant charge E, and the outer conductor is at potential zero. Under the internal forces, the outer conductor contracts from radius b to radius b_1. Prove that the work done by the electric forces is $E^2(b - b_1)/(8\pi\epsilon_0 b_1)$.

36C. If, in the last question, the inner conductor has a constant potential V, its charge being variable, show that the work done is $2\pi\epsilon_0 V^2a^2(b - b_1)/[(b_1 - a)(b - a)]$ and investigate the quantity of energy supplied by the battery.

37C. With the usual notation, prove that $(s_{11} + s_{22}) > (s_{12} + s_{11}), s_{11}s_{22} > s_{12}s_{12}$.

38C. Show that if $s_{\rho\rho}, s_{\phi\phi}, s_{22}$ are three coefficients before the introduction of a new conductor and $s'_{\rho\rho}, s'_{\phi\phi}, s'_{22}$ the same coefficients afterward, then

$$(s_{\rho\rho}s_{22} - s_{\phi\phi}s_{\rho\rho}^') - (s_{\rho\rho} - s_{\phi\phi})^2$$

39C. A system consists of $p + q + 2$ conductors $A_1, A_2, \ldots, A_p, B_1, B_2, \ldots, B_q, C, D$. Prove that when the charges on the A's and on C and the potentials of the B's and of C are known, there cannot be more than one possible distribution in equilibrium, unless C is electrically screened from D.

40C. A, B, C, D are four conductors, of which B surrounds A and D surrounds C. Given the coefficients of capacity and induction (1) of A and B when C and D are removed, (2) of C and D when A and B are removed, (3) of B and D when A and C are removed, determine those for the complete system of four conductors.

41C. Two equal and similar conductors A and B are charged and placed symmetrically with regard to each other; a third movable conductor C is carried so as to occupy successively two positions, one practically wholly within A, the other within B, the positions being similar and such that the coefficients of potential of C in either position are p, q, r in ascending order of magnitude. In each position, C is in turn connected with the conductor surrounding it, put to earth, and then insulated. Determine the charges on the conductors after any number of cycles of such operations, and show that they ultimately lead to the ratios $1: -\beta: \beta^2 - 1$, where β is the positive root of $rx^2 - qx + p - r = 0$.

42C. Two conductors are of capacities C_1 and C_2, when each is alone in the field. They are both in the field at potentials V_1 and V_2, respectively, at a great distance r apart. Prove that the repulsion between the conductors is

$$C_1C_2(4\pi\epsilon_0V_1 - C_2V_2)(4\pi\epsilon_0V_2 - C_1V_1)/[(4\pi\epsilon_0)(16\pi^2\epsilon_0\beta^2 - C_1C_2)]$$

As far as what power of r^{-1} is this result accurate?

43C. Two equal and similar insulated conductors are symmetrically placed with regard to each other, one of them being uncharged. Another insulated conductor is made to touch them alternately in a symmetrical manner, beginning with the one that has a charge. If e_1, e_2 are their charges when it has touched each once, show that their charges, when it has touched each r times, are, respectively,

$$\frac{e_1^2}{2e_1 - e_2} \left[1 + \left(\frac{e_1 - e_2}{e_1}\right)^{2r-1}\right]$$

and

$$\frac{e_1^2}{2e_1 - e_2} \left[1 - \left(\frac{e_1 - e_2}{e_1}\right)^{2r}\right]$$

(For 43C and 44C see difference equations, 5.081.)
PROBLEMS

44C. Three conductors A_1, A_2, and A_3 are such that A_3 is practically inside A_2.
A_1 is alternately connected with A_2 and A_3 by means of a fine wire, the first contact
being with A_4. A_1 has a charge E_1, initially, A_2 and A_3 being uncharged. Prove
that the charge on A_1 after it has been connected n times with A_3 is
\[
\frac{E_1}{\alpha + \beta} \left[1 + \frac{\alpha(\gamma - \beta)}{\beta(\alpha + \gamma)} \left(\frac{\alpha + \beta}{\alpha + \gamma} \right)^{n-1} \right]
\]
where α, β, γ stand for $s_{11} - s_{12}$, $s_{22} - s_{12}$, and $s_{23} - s_{22}$.

46C. A spherical condenser, radii a, b, has air in the space between the spheres.
The inner sphere receives a coat of paint of uniform thickness t and of a material of
which the inductive capacity is K. Find the change produced in the capacity of the
condenser.

46C. A conductor has a charge ϵ, and V_1, V_2 are the potentials of two equipotential
surfaces completely surrounding it ($V_1 > V_2$). The space between these two surfaces
is now filled with a dielectric of inductive capacity K. Show that the change in the
ergy of the system is $\frac{1}{2} \epsilon (V_1 - V_2) / (K - 1)/K$.

47C. The surfaces of an air condenser are concentric spheres. If half the space
between the spheres is filled with solid dielectric of specific inductive capacity K, the
dividing surface between the solid and the air being a plane through the center of the
spheres, show that the capacity will be the same as though the whole dielectric were
of uniform specific inductive capacity $\frac{3}{2}(1 + K)$.

48C. The radii of the inner and outer shells of two equal spherical condensers,
remote from each other and immersed in an infinite dielectric of inductive capacity K,
are, respectively, a and b, and the inductive capacities of the dielectric inside the
condensers are K_1, K_2. Both surfaces of the first condenser are insulated and charged,
the second being uncharged. The inner surface of the second condenser is now
connected to earth, and the outer surface is connected to the outer surface of the first
condenser by a wire of negligible capacity. Show that the loss of energy is
\[
\frac{Q^2[2(b - a)K + aK_2]}{8\pi \epsilon_0 [(b - a)K + aK_2]}
\]
where Q is the quantity of electricity that flows along the wire.

49C. The outer coating of a long cylindrical condenser is a thin shell of radius a,
and the dielectric between the cylinders has inductive capacity K on one side of a
plane through the axis and K' on the other side. Show that when the inner cylinder
is connected to earth and the outer has charge q per unit length, the resultant force
on the outer cylinder is
\[
\frac{q^2(K - K')}{\pi^2 \epsilon_0 a(K + K')^2} \text{ per unit length}
\]

50C. A heterogeneous dielectric is formed of n concentric spherical layers of specific
inductive capacities K_1, K_2, \ldots, K_n, starting from the innermost dielectric, which
forms a solid sphere; also, the outermost dielectric extends to infinity. The radii of
the spherical boundary surfaces are a_1, a_2, \ldots, a_n, respectively. Prove that the
potential due to a quantity Q of electricity at the center of the spheres at a point
distant r from the center in the dielectric K_s is
\[
\frac{1}{4 \pi \epsilon_0 K_s} \left[\frac{Q}{r - a_s} + \frac{Q}{K_{s+1}} \left(\frac{1}{a_s} - \frac{1}{a_{s+1}} \right) + \cdots + \frac{Q}{K_n a_{n-1}} \right]
\]

51C. A condenser is formed by two rectangular parallel conducting plates of
breadth b and area A at distance d from each other. Also, a parallel slab of a dielec-
CAPACITORS, DIELECTRICS, SYSTEMS OF CONDUCTORS

tric of thickness \(t \) and of the same area is between the plates. This slab is pulled along its length from between the plates so that only a length \(x \) is between the plates. Prove that the electric force sucking the slab back to its original position is

\[
\frac{E^2 dbt'(d - t')}{2\epsilon_0[A(d - t') + xbt']^2}
\]

where \(t' = t(K - 1)/K \). \(K \) is the specific inductive capacity of the slab, \(E \) is the charge, and the disturbances produced by the edges are neglected.

52C. Three closed surfaces \(1, 2, 3 \) are equipotentials in an electric field. If the space between 1 and 2 is filled with a dielectric \(\epsilon \), and that between 2 and 3 is filled with a dielectric \(\epsilon' \), show that the capacity of a condenser having 1 and 3 for faces is \(C \), given by \(1/C = \epsilon_0/(\epsilon A) + \epsilon_0/(\epsilon'B) \) where \(A, B \) are the capacities of air condensers having as faces the surfaces 1, 2 and 2, 3, respectively.

53C. The surface separating two dielectrics \((K_1, K_2) \) has an actual charge \(\sigma \) per unit area. The electric intensities on the two sides of the boundary are \(F_1, F_2 \) at angles \(c_1, c_2 \) with the common normal. Show how to determine \(F_2 \), and prove that \(K_1 \cos c_2 = K_1 \cos c_1[1 - \sigma/(K_1F_1 \cos c_1)] \).

54C. The space between two concentric spheres, radii \(a, b \) which are kept at potentials \(A, B \) is filled with a heterogeneous dielectric of which the inductive capacity varies as the \(n \)th power of the distance from their common center. Show that the potential at any point between the surfaces is

\[
[(Aa^{n+1} - Bb^{n+1})/(a^{n+1} - b^{n+1})] - (ab/r)^{n+1}(A - B)/(a^{n+1} - b^{n+1})
\]

55C. A condenser is formed of two parallel plates, distant \(h \) apart, one of which is at zero potential. The space between the plates is filled with a dielectric whose inductive capacity increases uniformly from one plate to the other. Show that the capacity per unit area is \(\epsilon_0(K_2 - K_1)[h \ln (K_2/K_1)] \) where \(K_1 \) and \(K_2 \) are the values of the inductive capacity at the surfaces of the plate. The inequalities of distribution at the edges of the plates are neglected.

56C. A spherical conductor of radius \(a \) is surrounded by a concentric spherical conducting shell whose internal radius is \(b \), and the intervening space is occupied by a dielectric whose specific inductive capacity at a distance \(r \) from the center is \((c + r)/r \). If the inner sphere is insulated and has a charge \(E \), the shell being connected with the earth, prove that the potential in the dielectric at a distance \(r \) from the center is \([E/(4\pi\epsilon_0)] \ln [(b/r)(c + r)/(c + b)] \).

57C. A spherical conductor of radius \(a \) is surrounded by a concentric spherical shell of radius \(b \), and the space between them is filled with a dielectric of which the inductive capacity at distance \(r \) from the center is \(\mu e^{-p^2} \). \(b = ra^{-1} \). Prove that the capacity of the condenser so formed is \(8\pi\epsilon_0\mu a/[(e^2/a^2) - \epsilon] \).

58C. Show that the capacity of a condenser consisting of the conducting spheres \(r = a, r = b \), and a heterogeneous dielectric of inductive capacity \(K = f(\theta, \phi) \) is \(\epsilon_0ab(b - a)^{-1}\int\int f(\theta, \phi) \sin \theta \ d\theta \ d\phi \).

59C. In an imaginary crystalline medium, the molecules are disks placed so as to be all parallel to the plane of \(xy \). Show that the components of intensity and polarization (displacement in our notation) are connected by equations of the form

\[
4\pi f = \epsilon_{21}X + \epsilon_{21}Y, \quad 4\pi g = \epsilon_{21}X + \epsilon_{21}Y, \quad 4\pi h = \epsilon_{21}Z
\]

60C. A slab of dielectric of inductive capacity \(K \) and of thickness \(z \) is placed inside a parallel-plate condenser so as to be parallel to the plates. Show that the surface of the slab experiences a tension \((\epsilon_0^2/K)[1 - K^{-1} - x d(K^{-1})/dz] \).
61C. For a gas $K = 1 + \theta \rho$, where ρ is the density and θ is small. A conductor is immersed in the gas. Show that if θ is neglected the mechanical force on the conductor is $\frac{4\sigma^2}{\epsilon_0}$ per unit area. Give a physical interpretation of this result.

62C. The curve
\[
\frac{1}{(x^2 + y^2)^{3/2}} = \frac{9a}{16} \left(\frac{a + x}{[(x + a)^2 + y^2]^{3/2}} + \frac{a - x}{[(x - a)^2 + y^2]^{3/2}} \right) = \frac{1}{a}
\]
when rotated round the axis of x generates a single closed surface, which is made the bounding surface of a conductor. Show that its capacity will be $4\pi\epsilon_0a$ and that the surface density at the end of the axis will be $\epsilon/(3\pi a^2)$, where ϵ is the total charge.

63. The potential ratios, P_{rn}, of a system of n conductors may be defined by
\[
V_1 = P_{11}V_1 + P_{12}V_2 + \cdots + P_{1n}V_n
\]
\[
V_2 = P_{21}V_1 + P_{22}V_2 + \cdots + P_{2n}V_n
\]
\[
\vdots
\]
\[
V_n = P_{n1}V_1 + P_{n2}V_2 + \cdots + P_{nn}V_n
\]
Show that P_{rn} is given in terms of the clastances and capacitances by
\[
P_{rn} = \delta_{r1}\delta_{1s} + \delta_{r2}\delta_{2s} + \cdots + \delta_{rn}\delta_{ns}
\]

References

The author has found helpful treatments of the subject matter of this chapter in the following books:

ABRAHAM, M., and R. BECKER: "Classical Electricity and Magnetism," Blackie, 1932. Treats simple cases by vector method.

GEIGER-SCHICHEL: "Handbuch der Physik," Vol. XII, Berlin, 1927.

GRAY, A.: "Absolute Measurements in Electricity and Magnetism," Macmillan, 1888. Gives extensive treatment of special cases.

THOMSON, J. J.: "Mathematical Theory of Electricity and Magnetism," Cambridge, 1921.

THOMSON, W.: "Papers on Electrostatics and Magnetism," Macmillan, 1884. Solves many problems and gives numerical results on spheres and spherical segments.

WEBSTER, A. G.: "Electricity and Magnetism," Macmillan, 1897. Gives a clear treatment using long notation.

CHAPTER III

GENERAL THEOREMS

3.00. Gauss’s Theorem.—We now proceed to find a relation between the integral over a closed surface \(S \) and over \(m - 1 \) other closed surfaces, inside it, of the normal component of a vector \(A \), which is a continuous function of position in space, and the integral of its divergence defined as \(\nabla \cdot A \), throughout the volume \(v \) between these surfaces. Let the components of \(A \) in rectangular coordinates be \(A_x, A_y, A_z \) so that

\[
\nabla \cdot A = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}
\]

(1)

Let us suppose \(v \) divided up into slender prisms of rectangular cross section \(dy \, dz \). One of these (Fig. 3.00) cuts elements \(dS'_i, dS''_i \) from \(S_i \),

the coordinates of which are \(x'_i \) and \(x''_i \) and the outward drawn normal unit vectors to which are \(n'_i, n''_i \). The contributions of the elements \(dS'_i \) and \(dS''_i \) to the surface integral are

\[
A_{x'_i} \cdot n'_i \, dS'_i + A_{x''_i} \cdot n''_i \, dS''_i
\]

But from Fig. 3.00, \(i \cdot n'_i \, dS'_i = -i \cdot n''_i \, dS''_i = dy \, dz \) so that the total contribution to all sections of that prism, cut from \(v \), which penetrates surfaces \(p \) to \(q \) is

\[
\sum_{j=p}^{q} dy \, dz (A_{x'_i} - A_{x''_i}) = \sum_{j=p}^{q} dy \, dz \int_{x'_i}^{x''_i} \frac{\partial A_x}{\partial x} \, dx
\]

We now sum over all the prisms into which \(v \) is divided, and we have

\[
\sum_{j=1}^{m} \int_{S_i} A_{x'_i} \cdot n_i \, dS_i = \int_v \frac{\partial A_x}{\partial x} \, dx \, dy \, dz
\]
§3.02 EQUATIONS OF POISSON AND LAPLACE

Working out similar expressions for A_y and A_z and adding, we obtain, after substituting $\nabla \cdot A$ from (1) and writing $dv = dx \, dy \, dz$, the expression

$$\sum_{j=1}^{m} \int_{S_{ij}} A \cdot n_i \, dS_i = \int_V \nabla \cdot A \, dv$$

(2)

This formula, apparently first given by Green, states a law widely known as Gauss's theorem.

3.01. Stokes's Theorem.—We can derive another important theorem directly from Gauss's theorem. Let us apply 3.00 (2) to an infinitesimal right cylinder of height h, base area S, curved area S', and peripheral length s. Let n be the unit vector normal to the base and n_1 that normal to the side. Let F be some vector function and replace A by $n \times F$. Since n is a constant in the following expression $F' \nabla \times n$ vanishes.

$$\nabla \cdot \left(n \times F \right) = F \cdot \nabla \times n - n \cdot \nabla \times F$$

But $[n \times F] \cdot n$ is zero on the flat faces so that the surface integral over S vanishes and 3.00 (2) becomes

$$\int_{S'} n \times F \cdot n_1 \, dS' = \int_{S} F \cdot n_1 \times n \, dS' = -\int_S n \cdot \nabla \times F \, dv$$

But $dv = h \, dS$ and $dS' = h \, ds$, so that the surface and volume integral become line and surface integrals, respectively, giving

$$\oint_F \cdot n_1 \times n \, ds = -\int_S n \cdot \nabla \times F \, dS$$

Now $n \times n_1 = -n_1 \times n$ is a unit vector directed along the boundary, so that if we choose it for the positive direction of s we have $n_1 \times n \, ds = -ds$, and summing up for all the infinitesimal cylinders composing a surface we have

$$\sum \oint_F \cdot ds = \sum \int_S n \cdot \nabla \times F \, dS$$

In summing up the line integrals, every interior contour is covered twice in opposite directions, so that they cancel each other leaving only the integral around the outer edge of the whole area. The sum of the surface integrals is of course the integral over the whole surface, so that

$$\oint_F \cdot ds = \int_S n \cdot \nabla \times F \, dS$$

(1)

This is Stokes's theorem and may be stated as follows: The line integral of a vector function F around any closed contour equals the surface integral of its curl over any surface bounded by this contour.

3.02. Equations of Poisson and Laplace.—In Gauss's theorem, let the vector A be the electric displacement $D = \varepsilon E$ and apply Gauss's electric flux theorem [1.15 (1)] to the surface integral, and we obtain

$$\int_V \nabla \cdot D \, dv = Q = \int_V \rho \, dv$$
where \(\rho \) is the electric charge density. Thus we have, if \(dv \) becomes vanishingly small,

\[
\text{div } D = \nabla \cdot D = \frac{dQ}{dv} = \rho
\]

(1)

If we write \(D = \varepsilon E = -\varepsilon \text{ grad } V = -\varepsilon \nabla V \), this becomes

\[
\text{div } (\varepsilon \text{ grad } V) = \nabla \cdot (\varepsilon \nabla V) = -\rho
\]

(2)

This is Poisson's equation for a nonhomogeneous dielectric. If the dielectric is homogeneous, \(\varepsilon \) is a constant and may be factored out, giving

\[
\text{div } \text{ grad } V = \nabla \cdot \nabla V = \nabla^2 V = -\frac{\rho}{\varepsilon}
\]

(3)

If \(\rho = 0 \), we obtain Laplace's equation which may then be written, in rectangular coordinates, for a nonhomogeneous but isotropic dielectric

\[
\frac{\partial}{\partial x} \left(\frac{\partial V}{\varepsilon \partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial V}{\varepsilon \partial y} \right) + \frac{\partial}{\partial z} \left(\frac{\partial V}{\varepsilon \partial z} \right) = 0
\]

(4)

If the dielectric is homogeneous but not isotropic and if the coordinate axes lie on the electric axes of the crystal as in 1.19 (7), this becomes

\[
\varepsilon_1 \frac{\partial^2 V}{\partial x^2} + \varepsilon_2 \frac{\partial^2 V}{\partial y^2} + \varepsilon_3 \frac{\partial^2 V}{\partial z^2} = 0
\]

(5)

If the dielectric is both homogeneous and isotropic, the equation becomes

\[
\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0
\]

(6)

3.03. Orthogonal Curvilinear Coordinates.—In most electrostatic problems, the data given are the charges on, or the potentials of, all conductors involved, the size and location of all other charges, and the dielectric constant at all points. The problem is considered solved when the potential at all points has been determined. To do this, it is necessary to find a solution of Laplace's equation that can be made to fit the given boundary conditions. There is usually one system of coordinates in terms of which these conditions can be most simply expressed, and it is therefore desirable to solve Laplace's equation in this coordinate system. All commonly used coordinate systems can be classed as orthogonal curvilinear coordinates.

Consider three families of mutually orthogonal surfaces, one member of each family passing through every point of the region under consideration. Any member of the first family can be specified by giving the proper numerical value to \(u_1 \) and similarly for the other families by \(u_2 \) or \(u_3 \). An infinitesimal rectangular parallelepiped will be cut out of space by the six surfaces \(u_1, u_1 + du_1, u_2, u_2 + du_2, u_3, u_3 + du_3 \). Since the quantities \(u_1, u_2, \) and \(u_3 \) will represent distances in a few cases only,
it will, in general, be necessary to multiply \(du_1\), \(du_2\), and \(du_3\) by certain factors* \(h_1\), \(h_2\), and \(h_3\) to get the actual length of its edges. These factors may be variable from point to point in the field, and so they are functions of \(u_1\), \(u_2\), and \(u_3\). The lengths of the edges of our parallelepiped are therefore

\[
ds_1 = h_1 du_1, \quad ds_2 = h_2 du_2, \quad ds_3 = h_3 du_3 \tag{1}
\]

These are shown in Fig. 3.03.

If \(V\) is a scalar, then, by definition, components of the gradient are

\[
\frac{\partial V}{\partial s_1} = \frac{\partial V}{h_1 \partial u_1}, \quad \frac{\partial V}{\partial s_2} = \frac{\partial V}{h_2 \partial u_2}, \quad \frac{\partial V}{\partial s_3} = \frac{\partial V}{h_3 \partial u_3} \tag{2}
\]

To calculate the divergence in this coordinate system apply Gauss's theorem [3.00 (2)] to the infinitesimal volume shown in Fig. 3.03. The outward normal component of the flux of the vector \(A\) through the faces \(OCGB\) and \(ADFE\) is

\[
\frac{\partial}{\partial s_1}(A_1 ds_2 ds_3) ds_1 = \frac{\partial}{\partial u_1}(h_2 h_3 A_1) du_1 du_2 du_3 = \frac{1}{h_1 h_2 h_3} \frac{\partial}{\partial u_1}(h_2 h_3 A_1) dV
\]

Adding the two corresponding expressions for the other four faces and comparing with 3.00 (2), we see that

\[
\text{div} \ A = \nabla \cdot A = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1}(h_2 h_3 \partial V) + \frac{\partial}{\partial u_2}(h_3 h_1 \partial V) + \frac{\partial}{\partial u_3}(h_1 h_2 \partial V) \right] \tag{3}
\]

Now letting \(A = \epsilon \nabla V\) and substituting in Poisson's equation [3.02 (2)], we have

\[
\frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1}(h_2 h_3 \epsilon \partial V) + \frac{\partial}{\partial u_2}(h_3 h_1 \epsilon \partial V) + \frac{\partial}{\partial u_3}(h_1 h_2 \epsilon \partial V) \right] = -\rho
\]

\[
\nabla \cdot (\epsilon \nabla V) = -\rho \tag{4}
\]

Putting \(\rho = 0\) gives us Laplace's equation for a nonhomogeneous isotropic dielectric. If the dielectric is homogeneous and isotropic, \(\epsilon\) as well as \((h_1 h_2 h_3)^{-1}\) may be factored out of the equation.

3.04. Curl in Orthogonal Curvilinear Coordinates.—Let us apply Stokes's theorem to the face \(OADC\) of the elementary curvilinear cube of Fig. 3.03. Let \(F_1\), \(F_2\), and \(F_3\) be the components of a vector along \(u_1\), \(u_2\), and \(u_3\). Then, from 3.03 (2), the line integral along \(OA\) and \(DC\) is

\[
\begin{align*}
[h_1(u_1, u_2)F_1(u_1, u_2) - h_1(u_1, u_2 + du_2)F_1(u_1, u_2 + du_2)] du_1 \\
&= -\frac{\partial(h_1 F_1)}{\partial u_2} du_1 du_2
\end{align*}
\]

*Our notation is that used by Houston, "Principles of Mathematical Physics" and Abraham-Becker, "Classical Electricity and Magnetism." The Peirce and Smithsonian Tables and Jeans, "Electricity and Magnetism," use \(h_1\), \(h_2\), and \(h_3\) for the reciprocal quantities.
and along AD and CO it is
\[h_2(u_1 + du_1, u_2)F_2(u_1 + du_1, u_2) - h_2(u_1, u_2)F_2(u_1, u_2) \, du_2 = \frac{\partial (h_2F_2)}{\partial u_1} \, du_1 \, du_2 \]

Adding these gives the line integral around this face, and, by Stokes's theorem, this equals the integral of the normal component of the curl of F over the area $h_1h_2 \, du_1 \, du_2$ of the face. Cancelling out the factor $du_1 \, du_2$, this gives
\[(\nabla \times F)_3 = \frac{1}{h_1h_2} \left[\frac{\partial (h_2F_2)}{\partial u_1} - \frac{\partial (h_1F_1)}{\partial u_2} \right] \quad (1) \]

and similarly for the other faces, we have
\[(\nabla \times F)_1 = \frac{1}{h_3h_2} \left[\frac{\partial (h_3F_3)}{\partial u_2} - \frac{\partial (h_2F_2)}{\partial u_3} \right] \quad (2) \]
\[(\nabla \times F)_2 = \frac{1}{h_3h_1} \left[\frac{\partial (h_1F_1)}{\partial u_3} - \frac{\partial (h_3F_3)}{\partial u_1} \right] \quad (3) \]

3.05. $\nabla \cdot (\epsilon \nabla V)$ in Other Coordinate Systems.—In spherical polar coordinates where $r = u_1$ is the distance from the origin, $\theta = u_2$ is the

colatitude angle, and $\phi = u_3$ is the longitude angle, we have
\[ds_1 = h_1 \, du_1 = dr \quad h_1 = 1 \\
 ds_2 = h_2 \, du_2 = r \, d\theta \quad h_2 = r \\
 ds_3 = h_3 \, du_3 = r \sin \theta \, d\phi \quad h_3 = r \sin \theta \]

From 3.03 (4), Laplace’s equation becomes
\[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\epsilon \sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \phi} \left(\epsilon \frac{\partial V}{\partial \phi} \right) = 0 \quad (1) \]

In cylindrical coordinates where $\rho = u_1$ is the distance from the z-axis, $\phi = u_2$ is the longitude angle, and $z = u_3$ is the distance from the xy-plane, we have
\[ds_1 = h_1 \, du_1 = d\rho \quad h_1 = 1 \\
 ds_2 = h_2 \, du_2 = \rho \, d\phi \quad h_2 = \rho \\
 ds_3 = h_3 \, du_3 = dz \quad h_3 = 1 \]
§3.06 GREEN'S THEOREMS

This arrangement is shown in Fig. 3.056. From 3.03 (4), Laplace's equation becomes

$$\nabla \cdot (\epsilon \nabla V) = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\epsilon \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial}{\partial \phi} \left(\epsilon \frac{\partial V}{\partial \phi} \right) + \frac{\partial}{\partial z} \left(\epsilon \frac{\partial V}{\partial z} \right) = 0 \quad (2)$$

We shall have occasion to use still other coordinate systems, such as the confocal system. These will be taken up later in connection with special problems.

3.06. Green's Theorems.—In 3.00 (2), let $A = (\epsilon \text{ grad } \Phi) \Psi = \Psi \epsilon \nabla \Phi$ where Ψ and Φ are scalar quantities which are finite and continuous in the region of integration and can be differentiated twice, and ϵ is a scalar quantity which may be differentiated once and which may be discontinuous at certain boundaries in the region. We shall exclude these discontinuities by drawing surfaces around them which fit them closely on both sides. Let n'_p and n''_p be the unit normal vectors drawn into the pth boundary from the two sides, and let the values of A on the two sides be A'_p and A''_p. Then if there are q such surfaces enclosing q discontinuities, the integral over them is

$$\sum_{p=1}^{q} \int_{S_p} (A'_p \cdot n'_p + A''_p \cdot n''_p) \, dS_p$$

where dS_p is an element of the original surface of discontinuity. Adding these terms to 3.00 (2) and substituting $A = \Psi \epsilon \nabla \Phi$, we have

$$\sum_{j=1}^{m} \int_{S_i} \Psi \frac{\partial \Phi}{\partial n_j} \, dS_j + \sum_{p=1}^{q} \int_{S_p} \left(\epsilon' \Psi \frac{\partial \Phi'}{\partial n'_p} + \epsilon'' \Psi \frac{\partial \Phi''}{\partial n''_p} \right) \, dS_p$$

$$= \int_V \epsilon \nabla \Psi \cdot \nabla \Phi \, dv + \int_V \Psi \nabla \cdot (\epsilon \nabla \Phi) \, dv \quad (1)$$

If we write a similar equation with Ψ and Φ interchanged and subtract the two, we obtain

$$\sum_{p=1}^{q} \int_{S_p} \left[\epsilon' \left(\Psi \frac{\partial \Phi'}{\partial n'_p} - \Phi' \frac{\partial \Psi}{\partial n'_p} \right) + \epsilon'' \left(\Psi \frac{\partial \Phi''}{\partial n''_p} - \Phi'' \frac{\partial \Psi}{\partial n''_p} \right) \right] \, dS_p$$

$$+ \sum_{j=1}^{m} \int_{S_i} \left(\frac{\partial \Phi}{\partial n_j} - \frac{\partial \Phi}{\partial n_j} \right) \, dS_j = \int_V [\Psi \nabla \cdot (\epsilon \nabla \Phi) - \Phi \nabla \cdot (\epsilon \nabla \Psi)] \, dv \quad (2)$$

When ϵ is a constant, without discontinuities, (1) becomes

$$\sum_{j=1}^{m} \int_{S_i} \Psi \frac{\partial \Phi}{\partial n_j} \, dS_j = \int_V (\nabla \Psi \cdot \nabla \Phi + \Psi \nabla^2 \Phi) \, dv \quad (3)$$
and (2) becomes
\[\sum_{j=1}^{m} \int_{S_j} \left(\Psi \frac{\partial \Phi}{\partial n_j} - \Phi \frac{\partial \Psi}{\partial n_j} \right) dS_i = \int_V (\nabla \Psi) \cdot (\nabla \Phi) + (\nabla \Phi) \cdot (\nabla \Psi) \, dv \]
(4)

A useful vector analogue of (3) and (4) has been proved by Stratton as follows. In 3.00 (2) let \(A = \Psi \times (\nabla \times \Phi) \) where \(\Psi \) and \(\Phi \) are vector quantities that are finite and continuous in the region of integration and can be differentiated twice. Then
\[
\sum_{j=1}^{m} \int_{S_j} [\Psi \times (\nabla \times \Phi)] \cdot n_j \, dS_i = \int_V \nabla \cdot [\Psi \times (\nabla \times \Phi)] \, dv
\]
(5)

Subtraction of a similar equation with \(\Psi \) and \(\Phi \) interchanged gives
\[
\sum_{j=1}^{m} \int_{S_j} [\Psi \times (\nabla \times \Phi) - \Phi \times (\nabla \times \Psi)] \cdot n \, dS_i
\]
(6)

3.07. Green's Reciprocation Theorem for Dielectrics.—In 3.06 (2), let \(\Psi = V \) be the potential of one distribution of electricity \(\Phi = V' \) that of another and let \(\epsilon \) be the capacititivity. If the contact surfaces of the different dielectrics are uncharged, we have, from 1.17 (5),
\[
\epsilon_p \frac{\partial \Phi'}{\partial n_p} = \epsilon_{\Phi'} \frac{\partial \Phi'}{\partial n_p} = -\epsilon_{\Phi'} \frac{\partial \Phi'}{\partial n_p}
\]
and, from 1.17 (6), \(\Psi' = \Psi_{\Phi'} \) and \(\Phi' = \Phi_{\Phi'} \) and a similar relation for \(\Psi \), so that the integrals over the surfaces of discontinuity disappear; and if there are no charges throughout the volume, \(\nabla \cdot (\epsilon \nabla \Psi) = 0 \) and \(\nabla \cdot (\epsilon \nabla \Phi) = 0 \), so that the volume integral vanishes, leaving
\[
\sum_{j=1}^{m} \int_{S_i} \left(\nabla_i \epsilon \frac{\partial V'}{\partial n_i} - V' \frac{\partial \epsilon}{\partial n_i} \right) \, dS_i = 0
\]
or
\[
\sum_{j=1}^{m} \left(V_i \int_{S_i} \sigma' \, dS_i - V' \int_{S_i} \sigma \, dS_i \right) = 0
\]
or
\[
\sum_{j=1}^{m} Q_i V'_i = \sum_{j=1}^{m} Q'_i V_i
\]
(1)

Thus we have proved Green's reciprocation theorem 2.12 (1) to hold when dielectrics are present.

3.08. Green's Function.—Let \(\Psi \) be the potential due to a unit charge at the point \(P \), and let \(\Phi \) be the potential due to the induced surface
density ρ on some closed surface S at zero potential, which surrounds P. We may consider the unit charge at P as consisting of charge density ρ which is everywhere zero except in an infinitesimal volume $d\mathbf{v}$ enclosing P. This element is so small that Φ has a constant value Φ_p throughout it. On the surface $\Phi = -\Psi$, at a distance r from P, $\Psi = (4\pi r \epsilon)^{-1}$; also, $\nabla^2 \Phi$ is zero throughout \mathbf{v}, whereas $\nabla^2 \Psi = -\rho/\epsilon$ in $d\mathbf{v}$ and is zero elsewhere. Substituting in 3.06 (4) gives

$$\int_S \frac{1}{4\pi r} \left\{ \frac{\partial \Phi}{\partial n} + (4\pi r \epsilon)^{-1} \right\} \, dS = \Phi_p \int_V \rho \, d\mathbf{v} = \Phi_p$$

where, as in 3.00 and 3.06, the positive direction of \mathbf{n} is from \mathbf{v} into S. Writing G for $\Phi + (4\pi r \epsilon)^{-1}$, this becomes

$$\Phi_p = \frac{1}{4\pi} \int_{S'} \frac{1}{\partial n} \, dS = \frac{1}{4\pi \epsilon} \int_{S'} \sigma \, dS$$

(1)

We shall refer to G as Green’s function although some authors designate Φ by this name. It is evident that G is a solution of Laplace’s equation which is zero over a given boundary and has a simple pole at a point P inside. Electrically, it represents the potential inside an earthed conducting surface under the influence of a unit charge at a point P within it. Equation (1), which is identical with 1.06 (6), is usually worthless for determining G as we rarely know σ on the conductor. Many methods of determining G for various types of boundaries will appear in subsequent chapters.

The force F_1 acting along u_1 on a charge q at u_1', u_2', u_3' in the coordinate system of 3.03 can be found from $G(u_1, u_2, u_3)$ by the formulas

$$\frac{q}{2} \lim_{\delta \to 0} \left\{ \left[\frac{\partial G(u_1, u_2', u_3')}{\partial u_1} \right]_{u_1' + \delta} + \left[\frac{\partial G(u_1, u_2', u_3')}{\partial u_1} \right]_{u_1' - \delta} \right\} = \frac{q}{2} \frac{\partial G(u_1', u_2', u_3')}{\partial u_1'}$$

(2)

The first is valid because, when δ is small, the fields of the induced charges at $u_1' + \delta$ and $u_1' - \delta$ are the same, but those of the charge itself are equal and opposite and cancel out. The second form follows from 2.07 (2) because the field energy of the charge itself is unaltered by a change in u_1' so only the induced charge energy is affected.

3.09. Solution of Poisson’s Equation.—In a vacuum, the potential at the point P due to a charge density ρ in the element of volume $d\mathbf{v}$ is, from 1.06 (2),

$$dV = \rho (4\pi r \epsilon)^{-1} \, d\mathbf{v}$$

where r is the distance from the element $d\mathbf{v}$ to P. Thus the potential at P due to all charges in space is

$$V_p = \frac{1}{4\pi \epsilon} \int_V \frac{\rho \, d\mathbf{v}}{r}$$

(1)

But we know from 3.02 (3) that this potential satisfies Poisson’s equation

$$\nabla^2 V = -\frac{\rho}{\epsilon}$$

(2)

Thus (1) is a solution of (2).
We may also solve (2) directly by means of Gauss’s theorem. Let us apply this theorem to the region \(v \) between a very small sphere of area \(\sigma \) and a larger sphere of area \(\Sigma \) and radius \(R \), both centers being at \(P \).

Write \(\Psi = r^{-1} \) and \(\Phi = V \) in 3.06 (4), and we have

\[
\iint_{v} \left[\frac{1}{r} \frac{\partial V}{\partial n} - V \frac{\partial}{\partial n} \left(\frac{1}{r} \right) \right] dS + \iint_{\Sigma} \left[\frac{1}{r} \frac{\partial V}{\partial n} - V \frac{\partial}{\partial n} \left(\frac{1}{r} \right) \right] dS = \int_{v} \left[\frac{1}{r} \nabla^2 V - V \nabla^2 \left(\frac{1}{r} \right) \right] dV \tag{3}
\]

Consider the first of these integrals. On the small sphere, \(\partial/\partial n = -\partial/\partial r \) and the solid angle subtended by any area \(dS \) is \(dS/\sigma \), so that, since \(\partial V/\partial r \) is finite, the integral is

\[
-r \int \frac{\partial V}{\partial r} d\Omega - \int V d\Omega \to -4\pi V_p \tag{4}
\]

If the total charge \(Q \) producing the potential \(V \) lies in the finite region, then \(V \to Q/(4\pi r)^{-1} \) as \(R \to \infty \) so on the surface \(\Sigma \), both terms in the integrand approach \(Q/(4\pi R^2)^{-1} \) whereas the surface area is \(4\pi R^2 \). Thus the second integral becomes zero as \(Q/(eR)^{-1} \). Since \(r^{-1} \) is a solution of Laplace’s equation, \(\nabla^2 (r^{-1}) = 0 \) and (3) becomes, if (2) is used,

\[
-4\pi V_p = \int_{v} \frac{\nabla^{2}V}{r} dV = -\frac{1}{\epsilon} \int_{v} \rho dV \tag{5}
\]

which gives us (1) again.

3.10. Uniqueness Theorem with Dielectrics Present

If there were several solutions to Laplace’s equation satisfying the same boundary conditions so that we had to resort to experiment to choose the correct one, there would be little use for potential theory. We shall now prove that if the location and size of all fixed charges inside a certain region are specified, as well as the value of the potential over all its boundaries, with the possible exception of certain closed conducting surfaces on which only the total charge is given; then the value of \(V \) is uniquely determined in this region. Suppose there are two values \(V \) and \(V' \), both of which satisfy the boundary conditions. Since both satisfy Laplace’s equation, their difference also does, so that, from 3.02 (2),

\[
\nabla \cdot [\epsilon \nabla (V - V')] = 0
\]

everywhere, since fixed charges cancel. Put \(\Phi = \Psi = V - V' \) in 3.06 (1), and remember that, as in 3.07, the integrals over the boundaries between dielectrics vanish if these are uncharged. The substitution gives

\[
\sum_{j=1}^{m} \int_{S_i} \epsilon (V - V') \frac{\partial}{\partial n_i} (V - V') dS_i = \int_{V} [\epsilon [\nabla (V - V')]^2 dV \tag{1}
\]

The surface integrals vanish in those terms on the left representing boundaries on which the potentials are specified, since \(V = V' \) at every
§3.12 GREEN'S EQUIVALENT STRATUM

point. All surfaces on which the total charge is specified, but not the actual potential, are conducting surfaces so that V and V' are constant and may be taken out of the integrals, giving, for the nth such surface, by 1.15 (1),

$$ (V_n - V'_n) \int_{S_n} \epsilon \frac{\partial}{\partial n} (V_n - V'_n) \, dS_n = (V_n - V'_n) (Q_n - Q'_n) $$

By hypothesis the charge on this surface is fixed so that $Q_n - Q'_n$ is zero. The whole left side of (1) is, therefore, zero and, since the integrand on the right is always positive, $\nabla (V - V')$ must vanish everywhere. Thus $V - V'$ must be a constant and since it is zero on the boundaries it must be zero everywhere and the theorem is proved.

3.11. Introduction of New Conductor.—We shall now prove that if a new uncharged or earthed conductor is introduced into the electric field produced by a system of charged conductors, the charge on all conductors remaining unchanged, the energy of the system is decreased. Let the energy, electric field, and the space occupied by this field be designated by W, E, and v, respectively, in the original system and by W', E', and v' in the final system; then we have

$$ W - W' = \frac{\epsilon}{2} \int_v E^2 \, dv - \frac{\epsilon}{2} \int_{v'} E'^2 \, dv $$

Now putting $\Psi = V$ and $\Phi = V - V'$ in 3.06 (3) and remembering that $\nabla^2 \Phi = 0$ throughout the volume give

$$ \int_{v'} \nabla V' \cdot \nabla (V - V') \, dv = \int_{v'} E' \cdot (E - E') \, dv = \sum_{i=1}^{m} \int_{S_i} V'_i \left(\frac{\partial V}{\partial n_i} - \frac{\partial V'}{\partial n_i} \right) \, dS_i $$

$$ = \frac{1}{\epsilon} \sum_{i=1}^{m} V'_i (Q_i - Q'_i) = 0 $$

since $Q'_i = Q_i$, so that the last term in the last integral (1) vanishes, and $W - W'$ is a positive quantity. Since we do no work in making an earth connection, any motion of electric charge caused thereby must be at the expense of the electric field and so cause a further decrease in energy.

3.12. Green's Equivalent Stratum.—Let V_r be the potential at some point P, outside a closed surface S, due to an electric charge density $\rho(x, y, z)$, throughout the volume v, enclosed by S. In 3.06 (4), let $\Psi = r^{-1}$ and $\Phi = V$, so that $\nabla^2 \Phi = -\rho/\epsilon$ by 3.02 (3). This gives

$$ \int_{S_r} \frac{\partial V}{\partial n} \, dS - \int_S V \frac{\partial}{\partial n} \left(\frac{1}{r} \right) \, dS = -\frac{1}{\epsilon} \int_v \rho \, dv = -4\pi V_r $$

(1)
by 1.06 (6), where \(r \) is the distance from \(P \) to \(dv \). Thus we see that the potential \(V_P \) at \(P \) can be expressed either as a volume integral of the charge density in \(v \) or by two surface integrals over the surface, \(S \), enclosing \(v \). Referring to 1.06 (6) and 1.12 (1), we see that this means that \(V_P \) will be unchanged if we remove the volume distribution \(\rho \) and replace it by a surface stratum which coincides with \(S \) and carries a charge \(-\epsilon(\partial V/\partial n)\) per unit area and an outward pointing dipole distribution of moment \(\epsilon V \) per unit area.

If \(S \) is an equipotential surface, the second integral becomes, by 3.00 (2), when \(V \) is taken out,

\[
V \int_S n \cdot \nabla \left(\frac{1}{r} \right) dS = V \int_v \nabla^2 \left(\frac{1}{r} \right) dv
\]

(2)

This is zero since \(1/r \) is the potential of a point charge \(4\pi \epsilon \) at \(P \), and therefore \(\nabla^2 (1/r) = 0 \) inside \(v \). In this case, no dipole layer is required. This shows that an electric field is unchanged when any area of an equipotential surface is replaced by a very thin uncharged conducting sheet, because such a sheet may be regarded as two equipotential surfaces infinitely close together enclosing this area. By (1), they must have equal and opposite densities on the exterior faces to leave \(V_P \) unchanged.

3.13. Energy of a Dielectric Body in an Electric Field.—From the last article the forces exerted on external fixed charges by a given volume distribution and by its equivalent stratum are the same. It follows from Newton's laws that the reverse is also true. This fact facilitates the calculation of the work done in placing an uncharged dielectric body in the field produced by fixed sources in a region of capacitivity \(\epsilon_o \). If the stratum is brought into the field fully formed, 1.06 and 1.071 (2) give the energy of an area \(dS \) to be

\[
dW = [\sigma V + (M \cdot \nabla)V] dS
\]

(1)

where \(\sigma \) is the charge density, \(M \) the dipole moment density, and \(V \) the potential of the external fixed charges. The dielectric polarization and hence the strength of the equivalent stratum are proportional in this case to the external field and are built up by it from zero to its final value so that the total work done is one-half that given by (1). Substitution for \(\sigma \) and \(M \) from the last article and integration over the surface of the stratum give

\[
W = \frac{1}{2} \epsilon_o \int_S (-Vn \cdot \nabla V_o + V_o n \cdot \nabla V) dS
\]

(2)

where \(V_o \) is the final potential just outside the equivalent stratum or the dielectric surface. By 1.17 (5) and (6) the potential just inside the dielectric surface is related to \(V_o \) by the equations

\[
V_o = V_i \quad \text{and} \quad \epsilon_o n \cdot \nabla V_o = \epsilon n \cdot \nabla V_i
\]

(3)
where \(\varepsilon \) is the capacitivity of the body. Substitution of (3) in (2) and application of Gauss's theorem 3.00 (2) to the result give

\[
W = \frac{1}{2} \int_S (\varepsilon V n \cdot \nabla V - \varepsilon V n \cdot \nabla V) \, dS = \frac{1}{2} \int_V (\varepsilon_0 - \varepsilon) \nabla V \cdot \nabla V_i \, dV
\]

(4)
since \(\nabla^2 V = \nabla^2 V_i = 0 \). Thus if the electric field intensity produced in the volume \(v \) of a uniform isotropic medium of capacitivity \(\varepsilon_0 \) by a fixed charge distribution is \(E \), and when \(v \) is occupied by a uniform isotropic body \(\varepsilon \) it is \(E_\varepsilon \), then the energy difference is

\[
W = \frac{1}{2} \int_V (\varepsilon_0 - \varepsilon) E \cdot E_i \, dV
\]

(5)
The torque or force acting on the body in the direction \(\theta \) is

\[
F = -\frac{\partial W}{\partial \theta}
\]

(6)

3.14. Effect of an Increase of Capacitivity.—If the capacitivity at any point in the electric field produced by a system of charged conductors is increased, the energy of the system is decreased provided the charges on the conductors are kept constant. To prove this, let \(W \) be the energy of the system, \(Q_i \) the charge on the \(j \)th conductor, \(\rho \) the volume density of charge, \(V \) the potential at any point, and \(\varepsilon \) the capacitivity. We assume that \(Q_i \) and \(\rho \) remain constant when \(\varepsilon \) is varied but that \(V \) and \(W \) vary. Thus,

\[
W = \frac{1}{2} \int_V \varepsilon E^2 \, dV = \frac{1}{2} \int_V \varepsilon (\nabla V)^2 \, dV
\]

\[
\delta W = \frac{1}{2} \int_V \delta \varepsilon (\nabla V)^2 \, dV + \int_V \varepsilon \nabla V \cdot \nabla (\delta V) \, dV
\]

(1)
Substitute \(\delta V \) for \(\Phi \) and \(V \) for \(\Phi \) in 3.06 (1), set \(\nabla \cdot (\varepsilon \nabla \Phi) = -\rho \), and assume uncharged dielectric surfaces over which the integral vanishes.

\[
\int_V \varepsilon \nabla (\delta V) \cdot \nabla V \, dV = \sum_{j=1}^m \int_{S_i} \delta V \varepsilon \frac{\partial V}{\partial n_i} \, dS_i + \int_V \delta V \rho \, dV
\]

\[
= \sum_{j=1}^m \delta V_i \int_{S_i} \sigma \, dS_i + \int_V \delta V \rho \, dV
\]

\[
= \sum_{j=1}^m Q_i \delta V_i + \int_V \delta V \rho \, dV = 2\delta W
\]

since we also have

\[
W = \frac{1}{2} \sum_{j=1}^m Q_i V_i + \frac{1}{2} \int_V \rho V \, dV
\]
Substituting in (1) and transferring $2\delta W$ to the left side, we have

$$\delta W = -\frac{1}{2} \int_V \delta \varepsilon (\nabla V)^2 \, dV$$

(2)

Thus δW is negative if $\delta \varepsilon$ is positive.

3.15. Potential of Axially Symmetrical Field.—It can be verified by substitution in 3.05 (2) and integration by parts that a solution of Laplace’s equation, if ε is constant and V does not depend on ϕ, is

$$V(z, \rho) = \frac{1}{2\pi} \int_0^{2\pi} \Phi(z + j\rho \sin \theta) \, d\theta$$

(1)

where $\Phi(z)$ is a real function of z whose Taylor expansion is, by Dw 39,

$$\Phi(z, \rho) = \Phi(z) + \Phi'(z)j\rho \sin \theta + (2!)^{-1}\Phi''(z)(j\rho \sin \theta)^2 + \cdots$$

(2)

Substitution of (2) in (1) and integration from 0 to 2π give

$$V(z, \rho) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n!)^2} \frac{\partial^{2n}\Phi(z)}{\partial z^{2n}} \left(\frac{\rho}{2}\right)^{2n}$$

(3)

It is evident that $V(z, 0)$ is identical with $\Phi(z)$. If no axial charges exist, (5) gives V uniquely at all points attainable from the axis without crossing a charged surface. The proof resembles that used for 7.08 (5).

Problems

Problems marked C are taken from the Cambridge examination questions as reprinted by Jeans by permission of the Cambridge University Press.

1. Show that the components of the curl in cylindrical coordinates are

$$\text{curl}_\rho \mathbf{A} = \frac{1}{\rho} \left[\frac{\partial A_\phi}{\partial \phi} - \frac{\partial A_\rho}{\partial z} \right]$$

$$\text{curl}_\phi \mathbf{A} = \frac{\partial A_\rho}{\partial z} - \frac{\partial A_\phi}{\partial \rho}$$

$$\text{curl}_z \mathbf{A} = \frac{1}{\rho} \left[\frac{\partial (\rho A_\phi)}{\partial \phi} - \frac{\partial A_\rho}{\partial \phi} \right]$$

2. Show that the components of the curl in spherical polar coordinates are

$$\text{curl}_r \mathbf{A} = \frac{1}{r \sin \theta} \left[\frac{\partial (\sin \theta A_\phi)}{\partial \theta} - \frac{\partial A_\theta}{\partial \phi} \right]$$

$$\text{curl}_\theta \mathbf{A} = \frac{1}{r \sin \theta} \left[\frac{\partial A_r}{\partial \phi} - \sin \theta \frac{\partial (r A_\phi)}{\partial r} \right]$$

$$\text{curl}_\phi \mathbf{A} = \frac{1}{r} \left[\frac{\partial (r A_\theta)}{\partial r} - \frac{\partial A_r}{\partial \theta} \right]$$

3. Show that for ellipsoidal coordinates, as defined in 5.01, we write in 3.03 (1)

$$4h_1^2 = (u_1 - u_2)(u_1 - u_3)D_1, \quad 4h_2^2 = (u_2 - u_3)(u_2 - u_1)D_2, \quad 4h_3^2 = (u_3 - u_1)(u_3 - u_2)D_3,$$
where $D_{1,2,3} = [(a^2 + u_{1,2,3})(b^2 + u_{1,2,3})(c^2 + u_{1,2,3})]^{-1}$, $c > b > a$, $-b^2 < u_3 < -a^2$, and $-a^2 < u_1 < 0$. For special cases of oblate and prolate spheroids, see 5.27 and 5.28.

4. If three sets of orthogonal surfaces are defined by the concentric spheres $u_1^2 = x^2 + y^2 + z^2$ and by the two cones $x^2u_2^2 + y^2(u_2^2 - b^2) + z^2(u_2^2 - c^2) = 0$ and $x^2u_3^2 + y^2(u_3^2 - b^2) + z^2(u_3^2 - c^2) = 0$, show that we must choose $h_1 = 1$,

$$h_2 = u_1^2(u_1^2 - u_2^2)[(u_1^2 - b^2)(c^2 - u_3^2)]^{-1},$$

and $h_3 = u_1^2(u_1^2 - u_3^2)[(b^2 - u_2^2)(c^2 - u_3^2)]^{-1}$.

5. If the three sets of orthogonal surfaces are $x^2c^{-2}u_1^2 + y^2c^{-2}(u_1^2 - 1)^{-1} = 1$, $y^2c^{-2}u_2^2 - y^2c^{-2}(1 - u_2^2)^{-1} = 1$, and $z = u_3$, show that $h_1^3 = c^2(u_1^2 - u_2^2)(u_1^2 - 1)^{-1}$, $h_2^3 = c^2(u_1^2 - u_2^2)(1 - u_2^2)^{-1}$, and $h_3 = 1$.

6. If the orthogonal surfaces are $y^2 = 4cuxz + 4c^2u_1^2$, $y^2 = -4cuxz + 4c^2u_2^2$, and $z = u_3$, show that $h_1^3 = u_1^{-1}(u_1 + u_2)$, $h_2^3 = u_2^{-1}(u_1 + u_2)$, $h_3^3 = 2c(u_1u_2)^2$.

7. If the sets of orthogonal surfaces are $z = c(u_1 - u_2)$, $x^2 + y^2 = 4c^2u_1u_2$, and $y = x$ tan u_2, show that $h_1 = c(u_1^{-1}(u_1 + u_2))^2$, $h_2 = c(u_2^{-1}(u_1 + u_2))^2$, and $h_3 = 2c(u_1u_2)^2$.

8. If the orthogonal surfaces are $(x^2 + y^2)^2 = c$ sinh $u_1(cosh u_1 - cos u_2)^{-1}$, $y = x$ tan u_2, and $z = c$ sinh $u_1(cosh u_1 - cos u_2)^{-1}$, then $h_1 = c(cosh u_1 - cos u_2)^{-1}$, $h_2 = h_1$, and $h_3 = c$ sinh $u_1(cosh u_1 - cos u_2)^{-1}$.

These are known as toroidal coordinates and give anchor rings, spheres, and planes.

9. If the orthogonal surfaces are $(x^2 + y^2)^2 = c$ sinh $u_2(cosh u_1 - cos u_2)^{-1}$, $y = x$ tan u_2, and $z = c$ sinh $u_1(cosh u_1 - cos u_2)^{-1}$, then $h_1 = c(cosh u_1 - cos u_2)^{-1}$, $h_2 = h_1$, and $h_3 = c$ sinh $u_2(cosh u_1 - cos u_2)^{-1}$. These are called bipolar coordinates, because if r_1 and r_2 are the vectors from a point to the points $z = +c$ and $z = -c$, respectively, we have $u_1 = \ln (r_2/r_1)$ and $u_2 = (r_1 \cdot r_2)r_1^{-1}r_2^{-1}$.

10C. If the specific inductive capacity varies as e^{-r^2}, where r is the distance from a fixed point in the medium, verify that a solution of the differential equation satisfied by the potential is $a^2e^{-2e^{r^2/a}} - 1 - ra^{-1} - r^2(2a^{-2})^3 \cos \theta$, and hence determine the potential at any point of a sphere, whose inductive capacity is the above function of the distance from the center, when placed in a uniform field of force.

11C. If the electric field in the field is confined to a given system of conductors at given potentials and the inductive capacity of the dielectric is slightly altered according to any law such that at no point is it diminished and such that the differential coefficients of the increment are also small at all points, prove that the energy of the field is increased.

12. Find the conditions where a set of two dimensional equipotentials $V_2 = f(z, y)$ can generate a set of equipotentials when rotated about the x axis. Show that if this is possible the potential is

$$V = A \int e^{-F(V_2)}dV_2 + B \quad \text{where} \quad F(V_2) = \frac{1}{y(\nabla V_2)^2} \frac{\partial V_2}{\partial y}$$

References

The author has found helpful treatments of the subject matter of this chapter in the following books:

CHAPTER IV

TWO-DIMENSIONAL POTENTIAL DISTRIBUTIONS

4.00. Field and Potential in Two Dimensions.—A potential problem is said to be two-dimensional when all equipotential surfaces in the field are cylindrical, which means that each can be generated by moving an infinite straight line parallel to some fixed straight line. The unit of charge is now a uniform line charge parallel to this axis and having a strength of 1 coulomb per meter length. We have already seen in 2.04 (1) that in a homogeneous isotropic dielectric the field intensity at a distance \(r \) from such a charge is radial and its magnitude is

\[E = \frac{q}{2\pi \epsilon r} \quad (1) \]

The potential obtained by integrating this is

\[V = -\frac{q}{2\pi \epsilon} \ln r + C \quad (2) \]

Clearly the zero of potential cannot be chosen, conveniently, at infinity as this would make \(C \) infinite. We usually give \(C \) a value that makes the computation as simple as possible.

Theoretically, a two-dimensional electrostatic problem can never occur as all conductors are finite. However, there are a vast number of important cases in which the lengths of the parallel cylindrical conductors are so great compared with the intervening spaces that the end effects are negligible, and the problem then becomes two-dimensional.

4.01. Circular Harmonics.—In its most general sense, the term “harmonic” applies to any solution of Laplace’s equation. In the more usual but restricted sense, it applies to a solution of Laplace’s equation in a specified coordinate system, which has the form of a product of three terms, each of which is a function of one coordinate only. The solution required to fit a given set of boundary conditions is then constructed by adding up a number of such harmonics which have been multiplied by suitable coefficients.

In the ordinary cylindrical coordinates described in 3.05, we should therefore have cylindrical harmonics of the form

\[V = R(\rho)\Phi(\phi)Z(z) \quad (1) \]

In the special case where \(Z(z) \) is a constant; this reduces to a two-dimensional problem and the harmonics are called circular harmonics. For
this case, we usually write \(r \) for \(\rho \) and \(\theta \) for \(\phi \) so that for a uniform isotropic dielectric Laplace’s equation, 3.05 (2), becomes, when we multiply through by \(r^2 \),

\[
\frac{r^2}{\partial r} \left(\frac{\partial V}{\partial r} \right) + \frac{\partial^2 V}{\partial \theta^2} = 0
\]

(2)

We now wish to find solutions of this equation of the form

\[
V = R(r)\Theta(\theta)
\]

(3)

Substituting in (2) and dividing through by (3) give

\[
\frac{1}{R} \left(\frac{\partial R}{\partial r} + r^2 \frac{\partial^2 R}{\partial r^2} \right) + \frac{1}{\Theta} \frac{\partial^2 \Theta}{\partial \theta^2} = 0
\]

This equation will evidently be satisfied by solutions of the equations

\[
\frac{d^2 \Theta}{d \theta^2} = -n^2 \Theta
\]

(4)

\[
\frac{d^2 R}{d r^2} + \frac{1}{r} \frac{d R}{d r} = n^2 \frac{R}{r^2}
\]

(5)

A solution of (4), the simple harmonic motion equation, is

\[
\Theta = A \cos n\theta + B \sin n\theta
\]

(6)

and it is easily verified that the solution of (5) is

\[
R = C r^n + D r^{-n}
\]

(7)

where \(n \neq 0 \). If \(n = 0 \), we have the solutions

\[
\Theta = A \theta + B
\]

(8)

\[
R = C \ln r + D
\]

(9)

The number \(n \) is called the degree of the harmonic. The circular harmonics then are

Degree zero \hspace{1cm} V = (A\theta + B)(C \ln r + D) \hspace{1cm} \text{(10)}

Degree not zero \hspace{1cm} V = (A \cos n\theta + B \sin n\theta)(C r^n + D r^{-n}) \hspace{1cm} \text{(11)}

A sum of such terms, with different constants for each \(n \), or an integral with respect to \(n \) is also a solution of (2). Thus

\[
V = \sum_n \Theta_n R_n \quad \text{or} \quad V = \int f(n) \Theta_n R_n \, dn
\]

(12)

It should be noticed that we have placed no restrictions on \(n \). If the equation

\[
\Sigma (A_n \cos n\theta + B_n \sin n\theta) = \Sigma (C_n \cos n\theta + D_n \sin n\theta)
\]

(13)

holds for all values of \(\theta \) where \(n \) is an integer, then we have the relations

\[
A_n = C_n \quad \text{and} \quad B_n = D_n
\]

(14)
To prove this, it is necessary only to multiply both sides of (13) by \(\cos m\theta \) and integrate from 0 to \(2\pi \), giving

\[
\sum (A_n \int_0^{2\pi} \cos n\theta \cos m\theta \, d\theta + B_n \int_0^{2\pi} \sin n\theta \cos m\theta \, d\theta) = \sum (C_n \int_0^{2\pi} \cos n\theta \cos m\theta \, d\theta + D_n \int_0^{2\pi} \sin n\theta \cos m\theta \, d\theta)
\]

If \(m \neq n \), using Pc 361 and 360 or Dw 445 and 465, we see that all terms on both sides drop out. If \(m = n \), we use Pc 489 and 364 or Dw 450.11 and 858.4 and obtain

\[
\frac{1}{\pi} A_n = \frac{1}{\pi} C_n.
\]

A similar procedure using the sine proves the second part of (14).

4.02. Harmonic Expansion of Line Charge Potential.—In using circular harmonics, it is frequently necessary to have the expansion due to a line charge whose coordinates are \(r_0, \theta_0 \). If \(R \) is the distance from the line charge \(q \) to the field point \(P \) (Fig. 4.02), then, from 4.00 (2) when \(C \) is zero, the potential \(V \) at \(P \) is given by

\[
4\pi \epsilon V = -2q \ln R = -q \ln \left[r^2 + r_0^2 - 2rr_0 \cos (\theta - \theta_0) \right]
\]

Using Pc 768 or Dw 601 where \(r_0 \) is less than \(r \), we obtain

\[
-2q \ln r + q \{ \frac{r_0}{r} [e^{i(\theta - \theta_0)} + e^{-i(\theta - \theta_0)}] + \frac{1}{2} \left(\frac{r_0}{r} \right)^2 [e^{2i(\theta - \theta_0)} + e^{-2i(\theta - \theta_0)}] + \cdots \}
\]

Writing as a summation and expanding \(\cos n(\theta - \theta_0) \) by Pc 592 or Dw 401.04 give

\[
V = \frac{q}{2\pi \epsilon} \left[\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{r_0}{r} \right)^n (\cos n\theta_0 \cos n\theta + \sin n\theta_0 \sin n\theta) - \ln r \right]
\]

This holds when \(r > r_0 \). When \(r < r_0 \), the same procedure gives, factoring out \(\ln r_0 \) instead of \(\ln r \),

\[
V = \frac{q}{2\pi \epsilon} \left[\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{r}{r_0} \right)^n (\cos n\theta_0 \cos n\theta + \sin n\theta_0 \sin n\theta) - \ln r_0 \right]
\]

These are the required expansions.

4.03. Conducting or Dielectric Cylinder in Uniform Field.—As an example involving boundary conditions at both dielectric and conducting
surfaces, let us find the field at all points when an infinite conducting cylinder of radius a surrounded by a layer, of relative capacitivy K and radius b, is set with its axis perpendicular to a uniform field of strength E.

The original potential outside the cylinder is of the form

$$V = Ex = Er \cos \theta$$

At infinity, the potential superimposed on this, due to the induced charges on the cylinder, must vanish so that no terms of the form r^n can occur in it. Since this potential must be symmetrical about the x-axis, no terms involving $\sin n\theta$ can occur. The final potential outside must therefore be of the form

$$V_o = Er \cos \theta + \sum_{n=1}^{\infty} A_n r^{-n} \cos n\theta \quad (1)$$

Since the values $r = 0$ and $r = \infty$ are excluded from the dielectric, both r^n and r^{-n} can occur there but $\sin n\theta$ terms are thrown out as before. The potential in the dielectric must therefore be of the form

$$V_i = \sum_{n=1}^{\infty} (B_n r^n + C_n r^{-n}) \cos n\theta \quad (2)$$

If we take the center of the cylinder at the origin, then $V = 0$ throughout the conductor. We have therefore found solutions of Laplace's equation that satisfy the boundary conditions at infinity and the symmetry conditions. It is now necessary only to determine A_n, B_n, and C_n so that the boundary conditions at the dielectric and conducting surfaces are satisfied. From 1.17 (5) and (6), at $r = b$ the boundary conditions are

$$\frac{\epsilon \partial V_o}{\partial r} = \frac{\epsilon \partial V_i}{\partial r} \quad \text{or} \quad \frac{\partial V_o}{\partial r} = K \frac{\partial V_i}{\partial r} \quad \text{and} \quad V_o = V_i \quad (3)$$

Substituting (1) and (2) in (3) gives

$$E \cos \theta - \Sigma n A_n b^{-n-1} \cos n\theta = K \Sigma n (B_n b^{n-1} - C_n b^{-n-1}) \cos n\theta$$
$$E b \cos \theta + \Sigma A_n b^{-n} \cos n\theta = \Sigma (B_n b^n + C_n b^{-n}) \cos n\theta$$

From 4.01 (14), we have, if $n \neq 1$,

$$-A_n b^{-n-1} = K B_n b^{n-1} - K C_n b^{-n-1} \quad (4)$$
$$A_n b^{-n} = B_n b^n + C_n b^{-n} \quad (5)$$

At the conducting surface, $r = a$, $V_i = 0$, so that

$$0 = B_n a^n + C_n a^{-n} \quad (6)$$

Adding (4) $\times b$ to (5) gives

$$(K + 1) B_n = (K - 1) C_n b^{-2n} \quad (7)$$

The only way (6) and (7) can be satisfied is to have $B_n = C_n = 0$ or $(K + 1)/(K - 1) = - (a/b)^{2n}$. The latter condition is impossible since
§4.03

CONDUCTING CYLINDER

K and a are independent so that the first holds, and substituting in (5) we have

\[A_n = B_n = C_n = 0 \]

(8)

When \(n = 1 \) we have, instead of (4), (5), and (6),

\[
\begin{align*}
E - A_1b^{-2} &= KB_1 - KC_1b^{-2} \\
E + A_1b^{-2} &= B_1 + C_1b^{-2} \\
0 &= B_1a + C_1a^{-1}
\end{align*}
\]

Solving these equations for \(A_1, B_1, \) and \(C_1 \) gives

\[
\begin{align*}
A_1 &= -E b^2 (K + 1)a^2 + (K - 1)b^2 \\
&
\quad \div (K + 1)b^2 + (K - 1)a^2 \\
B_1 &= \frac{2E b^2}{(K + 1)b^2 + (K - 1)a^2} \\
C_1 &= \frac{-2E a^2 b^2}{(K + 1)b^2 + (K - 1)a^2}
\end{align*}
\]

(9)

The potentials (1) and (2) then become

\[
V_o = \left(Er + \frac{A_1}{r} \right) \cos \theta, \quad V_i = \left(B_1r + \frac{C_1}{r} \right) \cos \theta
\]

(10)

The lines of electric displacement are shown in Fig. 4.03a.

![Fig. 4.03a](image)

Fig. 4.03.

We may get the case of a conducting cylinder of radius \(a \) by letting \(K = 1 \) in (9), so that

\[A_1 = C_1 = -E a^2 \quad \text{and} \quad B_1 = E \]

and the potential is

\[
V_o = E \left(r - \frac{a^2}{r} \right) \cos \theta
\]

(11)

The field is shown in Fig. 4.03b.

We get the case of a dielectric cylinder of radius \(b \) by letting \(a = 0 \) in (9), so that
\[A_1 = \frac{K - \frac{1}{K} b^2 E}{K + 1}, \quad B_1 = \frac{2E}{K + 1}, \quad C_1 = 0 \]

and the potentials are

\[V_o = E \left(r - \frac{K - \frac{1}{K} b^2}{K + 1} \right) \cos \theta, \quad V_i = \frac{2E}{K + 1} r \cos \theta \quad (12) \]

We notice that the field inside the dielectric is uniform. The displacement is shown, for \(K = 5 \), in Fig. 4.03c.

4.04. Dielectric Cylinder. Method of Images.—Let us consider a dielectric cylinder of radius \(a \) under the influence of a line charge at \(r = b, \theta = 0 \). The potential due to the line charge alone may be obtained from 4.02 (2) by putting \(r_0 = b, \theta_0 = 0 \). We must superimpose on this a potential, due to the polarization of the dielectric, which vanishes at infinity and is symmetrical about the \(x \)-axis. The final potential when \(a < r < b \) is therefore

\[V_o = \frac{q}{2\pi \varepsilon_o} \left[\sum_{n=1}^{\infty} \left[\frac{1}{n} \left(\frac{r}{b} \right)^n + \frac{A_n}{r^n} \right] \cos n\theta - \ln b + C_1 \right] \quad (1) \]

Since the potential inside must be finite when \(r = 0 \) and symmetrical about the \(x \)-axis, it is of the form

\[V_i = \frac{q}{2\pi \varepsilon_o} \left(\sum_{n=1}^{\infty} B_n r^n \cos n\theta + C_2 \right) \quad (2) \]

Setting \(V_o = V_i \) when \(r = a \), we have

\[\frac{1}{n} \left(\frac{a}{b} \right)^n + \frac{A_n}{a^n} = a^n B_n \quad \text{and} \quad C_2 = -\ln b + C_1 \quad (3) \]

Setting \(\varepsilon_o \partial V_o / \partial r = \varepsilon_o \partial V_i / \partial r \) or \(\partial V_o / \partial r = K \partial V_i / \partial r \) when \(r = a \), gives

\[\frac{a^{n-1}}{b^n} - \frac{n}{a^{n+1}} A_n = nKa^{n-1} B_n \quad (4) \]
Solving (3) and (4) for A_n and B_n gives

$$A_n = \frac{1 - K a^n}{1 + K nb^n}, \quad B_n = \frac{2n}{(1 + K)nb^n}$$

The potential outside then becomes

$$V_o = \frac{q}{2\pi \epsilon_0} \left\{ \sum_{n=1}^{\infty} \left[\frac{1}{n} \left(\frac{r}{b} \right)^n + \frac{1 - K (a^2/b)^n}{1 + K} \frac{1}{r^n} \right] \cos n\theta - \ln b + C_1 \right\}$$

and that inside becomes

$$V_i = \frac{q}{\pi \epsilon_0 (1 + K)} \sum_{n=1}^{\infty} \left(\frac{r}{b} \right)^n \cos n\theta - \frac{q}{2\pi \epsilon_0} \left(\ln b - C_1 \right)$$

If we let

$$C_1 = 0 = -\frac{1 - K}{1 + K} \ln r + \frac{1 - K}{1 + K} \ln r$$

then (5) becomes exactly the expansion given by 4.02 (1) and (2) for the potential due to three line charges on the x-axis, one of strength q' at $x = a^2/b$, one of strength $-q'$ at $x = 0$, and one of strength q at $x = b$. Also, (6) gives the expansion due to a charge q'' situated at $x = b$, where

$$q' = \frac{1 - K}{1 + K} q \quad \text{and} \quad q'' = \frac{2}{1 + K} q$$

Thus when an uncharged dielectric cylinder of radius a is brought into the neighborhood of a line charge q with its axis parallel to the charge and at a distance b from it, the additional potential in the region outside the cylinder due to its presence is the same as if it were replaced by a parallel “image” line charge q' located between q and the axis at a distance a^2/b from the latter, plus a line charge $-q'$ at the origin. The potential inside the cylinder is the same, except for the additive constant, as if it were absent and q were replaced by a charge q''. Some authors write $2K$ instead of 2 in the numerator of q'', in which case the potential inside the cylinder must be calculated as if all space were filled with the dielectric K.

When a dielectric cylinder is introduced into any electric field produced by a two-dimensional charge distribution parallel to its axis, it follows from the last paragraph, since such a distribution can always be built up from line charges, that the form of the field inside the cylinder is unchanged but its intensity is reduced by the factor $2/(K + 1)$.

4.05. Image in Conducting Cylinder.—It follows from 1.17 (8) that as $K \to \infty$ the lines of force become incident normally at the dielectric surface. This is the condition at the boundary of a conductor, so that we may get the law of images in an uncharged conducting cylinder by
letting \(K \to \infty \) in 4.04 (7), giving \(q' = -q \). Thus when a line charge of strength \(q \) is placed parallel to the axis of an uncharged conducting cylinder of radius \(a \) and at a distance \(b \) from it, the additional field outside the cylinder due to its presence is the same as if it were replaced by a parallel line charge \(-q\) located between \(q \) and the axis at a distance \(a^2/b \) from the latter plus a charge \(q \) on the axis.

As will be noted from Fig. 4.05, the image position can be located by drawing a tangent to the dielectric or conducting cylinder from the point \(q \). The line through this point, normal to \(-qq'\), intersects \(-qq'\) at \(q' \).

![Image](4.05)

4.06. Image in Plane Face of Dielectric or Conductor. Intersecting Conducting Planes.—If we let the radius of the cylinder become infinite, keeping the distance \(d = b - a \) of the line charge from the face constant, then the distance of the image \(q' \) from the face is

\[
a - a^2b^{-1} = ab^{-1}(b - a) \to d
\]

Thus the image laws derived in the last two sections apply to a line charge lying parallel to the faces of a semi-infinite dielectric or conducting block. The image charge is the same distance back of the face as the actual charge is in front. For a conductor, \(q' = -q \), and for a dielectric, \(q' \) and \(q'' \) are given by 4.04 (7).

It is evident from Fig. 4.06 that if two planes intersect at the origin at an angle \(\pi/m \), where \(m \) is an integer, both planes will be equipotentials under the influence of line charges parallel to the intersection lying in the cylinder \(r = r_0 \) and arranged with \(+q\) at \(\theta_0, 2\pi m^{-1} + \theta_0, 4\pi m^{-1} + \theta_0, \ldots, 2(m - 1)\pi m^{-1} + \theta_0 \) and \(-q\) at \(2\pi m^{-1} - \theta_0, 4\pi m^{-1} - \theta_0, \ldots, 2\pi - \theta_0 \).

4.07. Dielectric Wedge.—Another solution of 4.01 (2) is obtained if \(n \neq 0 \) by writing \(jn \) for \(n \) in 4.01 (4), (5), (6), and (7), so that

\[
\Theta_n = A \cosh n\theta + B \sinh n\theta
\]

\[
R_n = C'_{1,2}e^{\pm jn\ln r} = C'_{1,2}e^{\pm jn\ln r} = C \cos (n \ln r) + D \sin (n \ln r)
\]

This solution is periodic in \(\ln r \) instead of \(\theta \) so that in 4.01 (12) \(R_n \) not \(\Theta_n \) is now the orthogonal function. These harmonics can be used to solve
§4.07 DIELECTRIC WEDGE

the problem of a dielectric wedge of capacitivity \(\varepsilon_2 \) bounded by the planes \(\theta = -\alpha \) and \(\theta = \alpha \) under the influence of a line charge \(q \) at \(\theta = \gamma \), \(r = a \) in a medium of capacitivity \(\varepsilon_1 \) as shown in Fig. 4.07. There are no cylindrical boundaries where the sine and cosine terms in (2) must vanish so \(n \) is not restricted to discrete values but may vary continuously which indicates the integral form of 4.01 (12).

We write \(\beta \) for \((\varepsilon_1 - \varepsilon_2)/(\varepsilon_1 + \varepsilon_2) \) and choose potentials of the forms

\[
V_1 = (1 + \beta) \int_0^\infty [A(k)e^{k\theta} + B(k)e^{-k\theta}] \cos [k \ln (r/a)] \, dk + C_0
\]

\[
V_2 = \int_0^\infty [C(k)e^{k\theta} + D(k)e^{-k\theta}] \cos [k \ln (r/a)] \, dk + C_0
\]

\[
V_3 = \int_0^\infty [E(k)e^{k\theta} + F(k)e^{-k\theta}] \cos [k \ln (r/a)] \, dk + C_0
\]

according to whether \(-\alpha < \theta < \alpha \) (3), \(\alpha < \theta < \gamma \) (4), or \(\gamma < \theta < 2\pi - \alpha \) (5). The constant \(C_0 \) can be chosen to make \(V \) zero at any specified point. For this point at \(r = a \), \(\theta = 0 \), it has the value

\[-(1 + \beta) \int_0^\infty [A(k) + B(k)] \, dk \]

The circle \(r = a \) passing through \(q \) is a line of force because \(\partial V/\partial r \) is zero there. Thus half the flux from \(q \) goes to \(r = \infty \) and half to \(r = 0 \) where there is a charge \(-\frac{1}{2}q\). By Fourier's integral theorem, if two of the integrals in (3), (4), and (5) are equal to each other over the whole range of \(\ln (r/a) \), then their integrands are equal. Application of 1.17 (5) and (6) to the integrands of \(V_1 \) and \(V_2 \) at \(\theta = \alpha \) gives, after rearrangement,

\[
C = A + \beta e^{-2\alpha} B, \quad D = \beta e^{2\alpha} A + B
\]

Similarly joining \(V_1 \) at \(\theta = -\alpha \) to \(V_3 \) at \(\theta = 2\pi - \alpha \) gives

\[
E = (A + \beta Be^{2\alpha}) e^{-2\alpha r}, \quad F = (\beta A e^{-2\alpha} + B) e^{2\alpha r}
\]

To meet the remaining boundary conditions at \(\theta = \gamma \), we write down an expression for the flux density originating anywhere in the \(\theta = \gamma \) plane and evaluate it by Gauss’s theorem, thus

\[
\frac{\varepsilon_1}{r} \left(\frac{\partial V_2}{\partial \theta} - \frac{\partial V_3}{\partial \theta} \right) = \frac{\varepsilon_1}{r} \int_0^\infty k[C e^{k\gamma} - D e^{-k\gamma} - E e^{k\gamma} + F e^{-k\gamma}] \cos \left(k \ln \frac{r}{a} \right) \, dk
\]

When both sides are multiplied by \(\cos [t \ln (r/a)]dr \) and integrated from \(r = 0 \) to \(r = \infty \), the left side is simply \(q \) by Gauss’s theorem because the integrand vanishes except near \(r = a \) and the right side is found by Four-
ier's integral theorem so that

\[q = \frac{1}{2}\pi\epsilon_1 k[(C - E)e^{k\gamma} - (D - F)e^{-k\gamma}] \]

Also \(V_2' \) is equal to \(V_2 \) at \(\theta = \gamma \) so that

\[(C - E)e^{k\gamma} = -(D - F)e^{-k\gamma} \]

Elimination of \(D \) and \(F \) or of \(C \) and \(E \) from these equations gives

\[C = E + \frac{q}{\pi\epsilon_1 k}e^{-k\gamma}, \quad D = F - \frac{q}{\pi\epsilon_1 k}e^{k\gamma} \quad (8) \]

The solution of (6), (7), and (8) for \(A \) and \(B \) gives

\[A, B = \frac{q[e^{\pi k(\gamma - \eta)} - e^{\pi k(\gamma - \eta)}]}{2\pi \epsilon_1 [\sinh^2 k\pi - \beta^2 \sinh^2 k(\pi - 2\alpha)]} \quad (9) \]

where the upper signs go with \(A \) and the lower with \(B \). In the special symmetrical case where \(\gamma = \pi \), the potential in the dielectric wedge is

\[V_1 = \frac{q(1 + \beta)}{\pi \epsilon_1} \int_0^\infty \frac{\cosh k\theta \cos[k \ln(r/a)] - 1}{k \sinh k\pi + \beta \sinh k(\pi - 2\alpha)} dk \quad (10) \]

The integrand, which is finite at \(k = 0 \) and falls off exponentially as \(k \) increases, can be plotted as a function of \(k \) and the integral then evaluated with a planimeter. If the only charge is to be at \(r = a, \theta = \gamma \), then the charge \(-\frac{1}{2}q\) at the origin may be canceled by addition to \(V_1, V_2, \) and \(V_3 \) of the term

\[\frac{1}{2}q \ln \frac{r}{a} [\alpha(\epsilon_1 - \epsilon_2) - \pi \epsilon_1]^{-1} \quad (11) \]

If the cylinder \(r = b \) is at zero potential, then we must superimpose two solutions of the form just derived, one for \(q \) at \(r = a, \theta = \gamma \) and the other for \(-q\) at \(r = b^2/a, \theta = \gamma \). If the cylinders \(r = b \) and \(r = c \) are at zero potential, then we shall need discrete values of \(n \) in (2) and the potential function will be a series instead of an integral.

4.08. Complex Quantities.—Before taking up the general subjects of conjugate functions and conformal transformations, it will be well to review some of the more important properties of complex quantities. If \(z = x + jy \), it is clear that to every point in the \(xy \)-plane, usually called, in this connection, the \(z \)-plane, there corresponds one value of \(z \). In polar coordinates, we have, using \(Pc \) 609 or \(Dw \) 408.04,

\[z = x + jy = r \cos \theta + jr \sin \theta = re^{j\theta} \quad (1) \]

The magnitude of the vector \(r \) is known as the modulus of \(z \) and written \(|z|\). The angle \(\theta \) is known as the argument, amplitude,* phase or angle

*This term, universally understood by mathematicians to represent the angle in this case, is also, unfortunately, in general use to specify the maximum fluctuation of any alternating quantity in connection with alternating currents. Thus, when the complex notation is used for such quantities, it becomes practically identical with the term "modulus" as used here.
of z. When a complex number z is raised to a power n, we have

$$z^n = r^n e^{in\theta}$$

(2)

so we may say that the modulus of z^n is the nth power of the modulus of z and the argument of z^n is n times the argument of z. When we take the product of two complex numbers, we get

$$zz_1 = rr_1 e^{i(\theta+\theta_1)}$$

(3)

so that the modulus of the product of two complex numbers equals the product of their moduli and the argument is the sum of their arguments. By putting z_{1}^{-1} for z_1 in (3), we see that the modulus of the quotient of two complex numbers equals the quotient of their moduli and the argument equals the difference of their arguments.

If we have $z_1 = x_1 + jy_1 = f(z) = f(x + jy)$, then the quantity $z_{1}^* = x_1 - jy_1 = f(x - jy)$ is called the complex conjugate of z. That the latter relation holds if $f(z)$ is an analytic function can be shown by expanding $f(x \pm jy)$ in a power series with real coefficients, for wherever $\pm j$ occurs to an even power the term is real and the choice of sign disappears, whereas whenever $\pm j$ occurs to an odd power the term is imaginary and the choice of sign remains as before. Thus we have

$$|z_1|^2 = x_1^2 + y_1^2 = z_1 z_1^* = f(x + jy) \cdot f(x - jy)$$

This gives us the rule that to obtain the modulus of a function of a complex variable we multiply it by its complex conjugate and take the square root of the product.

4.09. Conjugate Functions

Laplace’s equation in two dimensions and rectangular coordinates is written

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} = 0$$

(1)

Since this is a partial differential equation of the second order, the general solution must contain two arbitrary functions and it is easily verified by differentiation that such a solution is

$$U = \Phi(x + jy) + \Psi(x - jy)$$

It should be noted that to be a solution of (1), Φ and Ψ must possess definite derivatives where (1) holds, and hence are analytic functions in this region and capable of expansion in a power series (see Whittaker and Watson, “Modern Analysis,” Chap. V). Since U is to be the electrostatic potential, it must be a real quantity and so the imaginary part of Φ must be equal and opposite to that of Ψ, so that, if $\Phi(x + jy) = u + jv$, then $\Psi(x - jy) = w - jv$, where u, v, and w are real quantities. Since
both Φ and Ψ are analytic functions, we may expand them in series; thus we have

$$\Phi(x + jy) = \Phi(re^{i\theta}) = \sum_{n=0}^{\infty} A_n r^n e^{in\theta} = \sum_{n=0}^{\infty} A_n r^n \cos n\theta + j\sum_{n=0}^{\infty} A_n r^n \sin n\theta$$

$$\Psi(x - jy) = \Psi(re^{-i\theta}) = \sum_{n=0}^{\infty} B_n r^n e^{-in\theta} = \sum_{n=0}^{\infty} B_n r^n \cos n\theta - j\sum_{n=0}^{\infty} B_n r^n \sin n\theta$$

Since the imaginary parts of Φ and Ψ are equal and opposite over the entire range of θ, we see from 4.01 (14) that $A_n = B_n$ so that the real parts of Φ and Ψ are equal or $u = w$. Thus we have $U = 2u$.

Let V be another real quantity such that $V = 2v$, and we have

$$U + jV = 2(u + jv) = 2\Phi(x + jy) = f(x + jy) \quad (2)$$

The function V also satisfies Laplace’s equation as may be shown by noting that the above expansion is in circular harmonics or by multiplying through by $-j$, giving

$$V - jU = -jf(x + jy) = F(x + jy)$$

Thus V is the real part of $F(x + jy)$, just as U is the real part of $f(x + jy)$. We shall write W for $U + jV$ and z for $x + jy$, giving

$$W = f(z) \quad (3)$$

The functions $U(x, y)$ and $V(x, y)$ are called conjugate functions.

4.10. The Stream Function.—Differentiating (3) with respect to x and y gives

$$\frac{\partial W}{\partial x} = \frac{\partial U}{\partial x} + j\frac{\partial V}{\partial x} = f'(z)\frac{\partial z}{\partial x} = f'(z)$$

$$\frac{\partial W}{\partial y} = \frac{\partial U}{\partial y} + j\frac{\partial V}{\partial y} = f'(z)\frac{\partial z}{\partial y} = jf'(z)$$

Multiply the second equation by j, add to the first, equate real and imaginary parts, and we have

$$\frac{\partial V}{\partial x} = -\frac{\partial U}{\partial y} \quad \text{and} \quad \frac{\partial V}{\partial y} = \frac{\partial U}{\partial x} \quad (1)$$

This is the condition that the two families of curves $U(x, y) = \text{constant}$ and $V(x, y) = \text{constant}$ intersect each other orthogonally. As we have seen, we may choose either set to represent equipotentials, in which case we call this the potential function. The other set which intersects this set everywhere orthogonally then represents the lines of force and is known as the stream function.

4.11. Electric Field Intensity. Electric Flux.—Let us consider the derivative

$$\frac{dW}{dz} = \frac{dU + j\, dV}{dx + j\, dy} = \frac{(\partial U/\partial x) dx + (\partial U/\partial y) dy + j[(\partial V/\partial x) dx + (\partial V/\partial y) dy]}{dx + j\, dy}$$
Substitute for \(\partial U/\partial x \) and \(\partial U/\partial y \) from 4.10 (1).
\[
\frac{dW}{dz} = \frac{(\partial V/\partial y)(dx + jdy) + j(\partial V/\partial x)(dx + jdy)}{dx + jdy} = \frac{\partial V}{\partial y} + j\frac{\partial V}{\partial x} = \frac{\partial U}{\partial x} - j\frac{\partial U}{\partial y}
\]
Thus if \(V \) is the potential function, the imaginary part of \(-dW/dz \) gives the \(x \)-component of the electric field intensity and the real part gives the \(y \)-component. Regardless of whether \(U \) or \(V \) is the potential function, the absolute value of \(dW/dz \) at any point gives the magnitude of the electric field intensity at that point. If \(dn \) is an element of length in the direction of maximum increase of potential and \(ds \) is the element of length obtained by rotating \(dn \) counterclockwise \(\frac{1}{2}\pi \) radians, then we get from (1)
\[
\left| \frac{dW}{dz} \right| = \frac{\partial U}{\partial n} = \frac{\partial V}{\partial s} \quad \text{or} \quad \left| \frac{dW}{dz} \right| = \frac{\partial V}{\partial n} = -\frac{\partial U}{\partial s}
\]
According as \(U \) or \(V \) is the potential function. In the latter case, if we wish to know the flux through any section of an equipotential surface between the curves \(U_1 \) and \(U_2 \), we integrate, giving by 1.10 (1),
\[
\text{Flux} = -\epsilon \int_{U_1}^{U_2} \frac{\partial V}{\partial n} \, ds = \epsilon \int_{U_1}^{U_2} \frac{\partial U}{\partial s} \, ds = \epsilon(U_2 - U_1)
\]
Thus just as the difference of potential between any two points in the field is given by the difference in the values of the potential function at the two points, so the total flux passing through a line joining any two points in a field equals the product of the capacitivity by the difference in the value of the stream function at the two points multiplied by \(\epsilon \).

If the surfaces \(V_1 \) and \(V_2 \) are closed and all charges are situated on one side of one surface and the opposite side of the other so that all lines of force in the region between pass from one surface to the other, then, from 2.01, they form a capacitor. The charge \(Q \) on either is the total flux leaving per unit length. From (3), this flux is the product of \(\epsilon \) by the increment in \(U \), written \([U]\), in going once around a \(V \)-curve. Since the potential difference is \(|V_2 - V_1| \), the capacitance, in vacuo, is
\[
C = \frac{|Q|}{|V_2 - V_1|} = \frac{\epsilon[U]}{|V_2 - V_1|}
\]

4.12. Functions for a Line Charge.—Before taking up the methods available for finding the required \(f(x + jy) \) to fit a given problem, let us consider a simple case where the form of this function is evident by inspection. In polar coordinates by \(Pc 609 \) or \(Dw 408.04 \), we have
\[
z = x + jy = r \cos \theta + jr \sin \theta = re^{j\theta}
\]
The potential of a line charge at the origin is \(U = -\frac{1}{2}q(\pi r)^{-1} \ln r \) from 4.00 (2). Clearly from (1) this is the real part of \(-\frac{1}{2}q(\pi r)^{-1} \ln z \), so
\[W = U + jV = -\frac{q \ln z}{2\pi\varepsilon} = -\frac{q \ln r}{2\pi\varepsilon} - \frac{jq\theta}{2\pi\varepsilon} \]
\[= -\frac{q \ln (x + jy)}{2\pi\varepsilon} - \frac{q \ln (x^2 + y^2)^{1/2}}{2\pi\varepsilon} - \frac{jq \tan^{-1} (y/x)}{2\pi\varepsilon} \]

is the desired function. To check this we observe that, as \(\theta \) goes from 0 to \(-2\pi\), the function \(eV \) goes from 0 to \(q \) and so is the flux emerging from a charge \(q \) as required by 4.11.

We may now write down \(f(z) \) when there is a line charge at \(r_0, \theta_0, \) or \(z_0 \). The potential is

\[U = -\frac{q}{2\pi\varepsilon} \ln R = -\frac{q}{2\pi\varepsilon} \ln [r^2 + r_0^2 - 2rr_0 \cos (\theta - \theta_0)] \]
\[= -\frac{q}{2\pi\varepsilon} \ln [(r \cos \theta - r_0 \cos \theta_0)^2 + (r \sin \theta - r_0 \sin \theta_0)^2] \]
\[= -\frac{q}{2\pi\varepsilon} \ln (A^2 + B^2)^{1/2} \]

But from (2), substituting \(A \) for \(a \) and \(B \) for \(y \), we see that \(\ln (A^2 + B^2)^{1/2} \) is the real part of \(\ln (A + jB) \) so that the required function is

\[W = -\frac{q}{2\pi\varepsilon} \ln (A + jB) = -\frac{q}{2\pi\varepsilon} \ln (re^{j\theta} - re^{j\theta_0}) = -\frac{q}{2\pi\varepsilon} \ln (z - z_0) \]

The function for \(n \) line charges situated at \(z_1, z_2, \ldots, z_n \) is therefore

\[W = -\frac{1}{2\pi\varepsilon} \sum_{s=1}^{n} q_s \ln (z - z_s) \]

4.13. Capacitance between Two Circular Cylinders

We have already seen in 4.05 that the equipotentials about two equal and opposite line charges are circular cylinders. Let us therefore superimpose the fields due to charges \(2\pi\varepsilon \) at \(y = a \) and \(-2\pi\varepsilon \) at \(y = -a \). This choice of the charge \(q \) simplifies the coefficients. From 4.12 (3), the expression for \(W \) becomes, using \(Pc \) 645 or \(Dw \) 601.2 and 505.1,

\[W = \ln \frac{z + ja}{z - ja} = 2j \cot^{-1} \frac{z}{a} \]

Solving for \(z \) and using \(Pc \) 601 or \(Dw \) 408.19, we have

\[z = a \cot \frac{U + jV}{2j} = -\frac{a \sin (U/j) + a \sin V}{\cos (U/j) - \cos V} \]

Using \(Pc \) 606 and 607, we can now separate real and imaginary parts, giving

\[x = \frac{a \sin V}{\cosh U - \cos V} \quad y = \frac{a \sinh U}{\cosh U - \cos V} \]

Eliminating \(V \) from these equations gives

\[x^2 + y^2 - 2ay \coth U + a^2 = 0 \]
This may be written

\[x^2 + (y - a \coth U)^2 = a^2 \csch^2 U \]

(3)

Thus, as anticipated, the equipotentials are a set of circles with centers on the \(y \)-axis, positive potentials being above the \(x \)-axis and negative below. Eliminating \(U \) from (2) gives

\[x^2 - 2ax \cot V + y^2 - a^2 = 0 \]

This may be written

\[(x - a \cot V)^2 + y^2 = a^2 \csc^2 V \]

(4)

Thus the lines of force are also a set of circles, all of which pass through the points \(y = +a \) and \(y = -a \) on the \(y \)-axis.

To determine the capacitance per unit length between the cylinders \(U = U_1 \) and \(U = U_2 \), it is necessary, from 4.11 (4), only to divide the charge \(2\pi \epsilon \) by the difference of potential \(U_2 - U_1 \). We are given the radii \(R_1 \) and \(R_2 \) of the two cylinders and the distance \(D \) between their axes, from which we must determine \(a \), \(U_1 \), and \(U_2 \). From (3), \(R_1 = a|\csch U_1| \), \(R_2 = a|\csch U_2| \) and \(D = a(|\coth U_1| \pm |\coth U_2|) \), taking the lower sign if \(U_1 \) and \(U_2 \) are both positive, giving one cylinder inside the other and taking the upper sign if \(U_1 \) is negative giving one cylinder outside the other. We now write by \(Pc \ 661 \) or \(Dw \ 651.02 \), using the same sign rule,
\[\cosh (U_2 - U_1) = \cosh U_2 \cosh U_1 \pm |\sinh U_2 \sinh U_1| \]
\[= (\cosh U_2 \cosh U_1 \pm 1)|\sinh U_2 \sinh U_1| \]

Now apply \(P_{c 659} \) or \(D_{w 650.08} \) to the \(\pm 1 = \pm \frac{1}{2} \pm \frac{1}{2} \) term, giving
\[\cosh (U_2 - U_1) = \frac{(\cosh U_2 - \cosh^2 U_2) \pm \frac{1}{2}(\cosh^2 U_1 - \cosh^2 U_1)|\sinh U_1 \sinh U_2|}{2|\cosh U_1 \cosh U_2|} \]

Putting in values of \(D, R_1, \) and \(R_2 \) gives
\[\cosh (U_2 - U_1) = \pm \frac{D^2 - R_1^2 - R_2^2}{2R_1R_2} \]

Thus the capacitance per unit length between the two cylinders is
\[C = 2\pi \epsilon \left[\cosh^{-1} \left(\pm \frac{D^2 - R_1^2 - R_2^2}{2R_1R_2} \right) \right]^{-1} \quad (5) \]

where the lower sign is taken when one cylinder is inside the other and the upper sign when they are external to each other. The two cases are shown in Figs. 4.13a and 4.13b.

4.14. Capacitance between Cylinder and Plane and between Two Similar Cylinders.—In Fig. 4.13a, let \(R_1 = D + h \rightarrow \infty \) so that the outer cylinder circles through infinity and coincides, in the finite region, with the \(x \)-axis. Then we have, neglecting \(R_2^2 \) compared with \(R_1^2 \) and \(D^2 \), and \(h \) compared with \(2R_1, R_1 + D = 2R_1 - h \approx 2R_1, \)
\[\frac{R_1^2 + R_2^2 - D^2}{2R_1R_2} \rightarrow (R_1 - D)(R_1 + D) \rightarrow \frac{h}{R_2} \]

Thus the capacitance per unit length of a conducting cylinder of radius \(R \) with its axis parallel to and at a distance \(h \) from an infinite conducting plane is
\[C = 2\pi \epsilon \left(\cosh^{-1} \frac{h}{R} \right)^{-1} \quad (1) \]

Two similar cylinders with their centers at a distance \(D = 2h \) apart have half the capacitance per unit length given by (1) since they consist of two such capacitors in series. The resultant expression is in somewhat simpler form than that obtained by putting \(R_1 = R_2 \) and \(D = 2h \) in 4.13 (5)
\[C = \pi \epsilon \left(\cosh^{-1} \frac{D}{2R} \right)^{-1} \quad (2) \]

4.15. Conformal Transformations.—Evidently conjugate functions furnish a powerful means for solving two-dimensional potential problems, provided we can find the proper function. Before taking up methods of doing this, we shall investigate certain special properties of functions of a
§4.16 Given Equations of Boundary in Parametric Form

complex variable. Suppose we plot values of \(z = x + jy \) on one plane and values of \(z_1 = x_1 + jy_1 \) on a second plane and let \(z \) be an analytic function of \(z_1 \) so that at least one point in the \(z \)-plane corresponds to each point in the \(z_1 \)-plane. Then as we move the latter along some curve, the corresponding point in the \(z \)-plane will also describe a curve, provided \(z = f(z_1) \) is continuous, otherwise the second point may jump from place to place. If the \(z \) curve returns to the starting point when the \(z_1 \) curve does, then \(f(z_1) \) is said to be single valued in this region of the \(z \)-plane. From the rule for quotients of complex numbers 4.08, we have

\[
\left| \frac{dz}{dz_1} \right| = \frac{|dz|}{|dz_1|} = \frac{ds}{ds_1} = h \tag{1}
\]

where \(ds \) is the length of an element \(dz \) of a curve in the \(z \)-plane and \(ds_1 \) is the length of the corresponding element \(dz_1 \) of the corresponding curve in the \(z_1 \)-plane. Thus the modulus of \(dz/dz_1 \) measures the magnification of an element from a certain point in the \(z \)-plane when transformed to the corresponding point in the \(z_1 \)-plane.

Let us draw the infinitesimal triangle made by the intersection of three curves in the \(z_1 \)-plane, and let the lengths of the sides be \(ds_1, ds_1', ds_1'' \). Then the lengths of the sides of the transformed triangle will be \(ds = h \, ds_1, \ ds' = h \, ds_1', \ ds'' = h \, ds_1'' \). Thus \(ds_1:ds_1':ds_1''=ds:ds':ds'' \), so that the two triangles are similar and the angles of the intersections of corresponding curves in the two planes are the same. Such a transformation is said to be conformal.

Since the argument of the quotient of two complex numbers is the difference of their arguments, we see that the argument of \((dz/dz_1) \) is the angle through which the element has been rotated in transforming from one plane to the other.

4.16. Given Equations of Boundary in Parametric Form.—If \(f(x, y) = 0 \) is the equation of one of the desired equipotential boundaries and \(x \) and \(y \) can be expressed as real analytic functions of a real parameter \(t \) whose total range just covers the conductor, then there is a simple method of obtaining a solution of Laplace’s equation fitting this boundary. Let

\[
x = f_1(t) \quad y = f_2(t) \tag{1}
\]

Then the desired solution is

\[
x + jy = f_1(bW) + jf_2(bW) \tag{2}
\]

This gives \(V = 0 \) as the conductor, for substituting this value gives exactly the parametric equation of the conductor with \(bU \) in place of \(t \).

Unfortunately, the number of cases where this method is useful is very limited. Among them may be mentioned the confocal conics and the various cycloidal curves. As an example, let us find the field on one side of a corrugated sheet of metal whose equation is that of a cycloid
and which forms one boundary of a uniform field. The equation of the surface is

\[x = a(\theta - \sin \theta) \quad y = a(1 - \cos \theta) \]

(3)

so that \(z = a(bW - \sin bW) + aj(1 - \cos bW) = a(bW + j - je^{-ibW}) \) giving \(x = a(bU - e^{\nu} \sin bU), \ y = a(bV + 1 - e^{\nu} \cos bU) \). When \(V \) is large and negative \(x = abU \) and \(y = +abV \), so that we have a uniform field in the \(-y\)-direction of strength \(E = +\partial V/\partial y = e^{-ib^{-1}} \). Substituting for \(b \) gives

\[z = a\left(\frac{W}{aE} + j - je^{-jW/aE}\right) \]

To find the field at any point, we differentiate, and

\[\frac{dW}{dz} = \frac{1}{E} \left[1 - e^{-jW/aE} \right] = E \left[1 - \frac{e^{-jW/aE}}{e^{2W/aE}} \right] \]

To get the surface density on the sheet, we note that on the conductor \(V = 0 \) and \(y = a[1 - \cos (U/aE)], \) and

\[\sigma = e^{\frac{dW}{dz}} \left|_{V=0} \right. = \left(\frac{a}{2y} \right)^{\frac{1}{4}} e^{E} \]

This result gives the field on the side of the sheet with sharp ridges. The solution on the other side gives lines of discontinuity so that it is of no value there.

4.17. Determination of Required Conjugate Functions.—In most cases, the search for a function \(W \) which fits the given boundary conditions in the \(z \)-plane begins by looking for a transformation which reduces the boundaries to simpler shapes. If the new boundary conditions are unfamiliar, we endeavor to find a second transformation which will still further simplify the boundary conditions. Eventually, we should arrive at a situation where the solution can be written down by inspection. We then proceed backward along the steps we have come to the solution of the original problem. It is frequently possible to jump these steps and write \(f(W, z) = 0 \) by eliminating the intermediate complex variables. If this is impossible, those variables serve as parameters connecting \(W \) and \(z \).

In manipulating these transformations, it is often helpful to visualize that portion of the \(z \)-plane between the boundaries as an elastic membrane which possesses the property that no matter how we distort the boundaries the angle of intersection of any lines drawn on the membrane remains unchanged. The membrane may not separate from a boundary.
but may slide along it and be expanded or contracted indefinitely.

For example, suppose the boundaries in our problem are two non-concentric nonintersecting circles or two intersecting circles or two of one type and one or two of the other intersecting orthogonally. The region with such boundaries may be transformed into a rectangle by 4.13 (1), the relation being

$$z_1 = \ln \frac{z + ja}{z - ja} \quad (1)$$

Here we have written $z_1 = x_1 + jy_1$ for $W = U + jV$, since we are attaching no electrical significance to x_1 and y_1 at present. From 4.13 (3) and (4), we see that, when $-\infty < x < \infty$ and $-\infty < y < \infty$, then $-0 < y_1 < 2\pi$ and $-\infty < x_1 < \infty$. Thus (1) transforms a horizontal strip of width 2π in the z_1-plane into the whole of the z-plane. Vertical lines in this strip, from 4.13 (3), go into circles given by

$$x^2 + (y - a \coth x_1)^2 = a^2 \csch^2 x_1 \quad (2)$$

and horizontal lines go into circles passing through $y = \pm a$, $x = 0$ given by 4.13 (4) to be

$$(x - a \cot y_1)^2 + y^2 = a^2 \csc^2 y_1 \quad (3)$$

This transformation can be visualized by imagining an infinite horizontal strip of elastic membrane of width 2π being rotated counterclockwise to a vertical position in a z'-plane, so that points $x_1 = 0$, $y_1 = 0$, and $x_1 = 0$, $y_1 = 2\pi$ go to AA' and BB' and then pinched together at $y' = +\infty$ and $y' = -\infty$. These points C and C' are then brought toward each other along the y-axis while the center of the strip is expanded horizontally. The lines CA, CB and $C'A'$, $C'B'$ are opened out, as a fan is
opened about the point C and C', respectively, until CA coincides with CB and $C'A'$ with $C'B'$. The membrane thus expands to fill the whole z-plane, the infinitesimal arcs AA' and BB' being stretched into infinite arcs bisected by the x-axis.

The operation, after the first rotation, is pictured in Fig. 4.17. If there are to be no discontinuities where CA folds against CB and $C'A'$ against $C'B'$, then the potential used in the horizontal strip in the z_1-plane must be periodic in y_1 with a period 2π.

Problems involving line charges and rectangular boundaries or ones where different sections of such boundaries are at different potentials can now be solved by images. In other cases, it may be necessary to unfold the rectangle into a half plane by a Schwarz transformation, giving, in general, elliptic functions.

4.18. The Schwarz Transformation.—One of the most useful transformations is that which transforms the upper half of the z_1-plane, bounded by the real axis and an infinite arc, into the interior of a polygon in the z-plane, or vice versa. If the latter is finite, it will be bounded entirely by the deformed real axis $y_1 = 0$ of the z_1-plane. If not, portions of its boundary at infinity may be formed by expanding or contracting the original infinite arc of the z_1-plane.

To find the transformation that will bend the real axis of the z_1-plane into the specified polygon in the z-plane, consider the complex derivative

$$ \frac{dz}{dz_1} = C_1(z_1 - u_1)^{\beta_1}(z_1 - u_2)^{\beta_2} \cdots (z_1 - u_n)^{\beta_n} $$

(1)

where u_1, u_2, \ldots, u_n and $\beta_1, \beta_2, \ldots, \beta_n$ are real numbers, C_1 is a complex constant and $u_n > u_{n-1} > \cdots > u_2 > u_1$. As we have seen, the argument of the product of several factors raised to certain powers equals the sum of the products of the argument of each factor by its exponent, so that

$$ \arg \frac{dz}{dz_1} = \arg C_1 + \beta_1 \arg (z_1 - u_1) + \cdots + \beta_n \arg (z_1 - u_n) $$

(2)

When dz_1 is an element of the real axis in the z_1-plane, we may write it dx and we have

$$ \arg \frac{dz}{dz_1} = \arg \frac{dx + jdy}{dz_1} = \tan^{-1} \frac{dy}{dx} $$

(3)

This is the angle that the element dz_1 into which dz_1 is transformed, makes with the real axis $y = 0$ in the z-plane. When z_1 is real and lies between u_r and u_{r+1}, then $(z_1 - u_1), (z_1 - u_2), \ldots, (z_1 - u_r)$ are real positive numbers whose arguments are zero, and $(z_1 - u_{r+1}), (z_1 - u_{r+2}), \ldots, (z_1 - u_n)$ are real negative numbers whose arguments are π. This gives, from (2) and (3)
\(\theta_r = \tan^{-1} \frac{dy}{dx} = \arg C_1 + (\beta_{r+1} + \beta_{r+2} + \cdots + \beta_n)\pi \) (4)

Thus all elements of the \(x_1 \)-axis which lie between \(u_r \) and \(u_{r+1} \) (Fig. 4.18) have the same direction after transformation and form a straight line, whose slope is given by (4), as shown. Similarly, the elements lying between \(u_{r+1} \) and \(u_{r+2} \) form a straight line having the slope

\[\theta_{r+1} = \tan^{-1} \frac{dy}{dx} = \arg C_1 + (\beta_{r+2} + \beta_{r+3} + \cdots + \beta_n)\pi \] (5)

The angle between these two lines is given by

\[\theta_{r+1} - \theta_r = -\pi \beta_{r+1} \]

We have now formed two sides of a polygon, and in a similar fashion we can evaluate the remaining \(\beta \)'s and \(u \)'s to give us the desired vertex angles and lengths of sides of our polygon.

Suppose that the field is to be on the upper side of the broken line in the \(z \)-plane shown in Fig. 4.18. Then any angle, such as \(\alpha_{r+1} \), measured between two adjacent sides of the polygon on the side of the field is called an interior angle of the polygon, and since \(\pi - \alpha_{r+1} = -\pi \beta_{r+1} \) we have, to get this angle, to choose

\[\beta_{r+1} = \frac{\alpha_{r+1}}{\pi} - 1 \] (6)

Substituting in (1) gives

\[\frac{dz}{dz_1} = C_1(z_1 - u_1) \frac{a_1}{x_1} - 1 (z_1 - u_2) \frac{a_1}{x_1} - 1 \cdots (z_1 - u_n) \frac{a_n}{x_1} - 1 \] (7)

Integrating this expression gives

\[z = C_1 \int [(z_1 - u_1) \frac{a_1}{x_1} - 1 (z_1 - u_2) \frac{a_1}{x_1} - 1 \cdots] \, dz_1 + C_2 = C_1 f(z_1) + C_2 \] (8)

This is the desired transformation.

From (4), we see that we may orient our polygon in the \(z \)-plane any way we please by giving \(C_1 \) the proper argument. The size of the polygon
is determined by the modulus of C_1. The polygon may be displaced in any direction without rotation by choosing the proper value of C_2.

To show that we have measured α_r on the correct side of the boundary, let us set $z_1 = W$ so that the real axis $y_1 = V = 0$ represents an equipotential line. If $\alpha_r < \pi$, the field $dW/dz = dz_1/dz$ must be zero in the angle; and if $\alpha_r > \pi$, it must be infinite. Setting $x_1 = U = u_r$ in (7), we see that this is true which verifies the result.

4.19. Polygons with One Positive Angle.—When the real axis is bent at only one point, no generality is lost by taking this point at the origin, so that $u_1 = 0$ in 4.18 (8) giving, if $\alpha > 0$,

$$z = C_1^\frac{\alpha}{2} + C_2$$

If we choose $C_2 = 0$ and C_1 real, the polygon formed has its apex at the origin and is bounded by $\theta = 0$, $\theta = \alpha$ and by an arc at infinity. From 4.08, the modulus of z^n is the nth power of the modulus of z, so that circles given by $r_1 = a_1$ in the z_1-plane transform into circles $r = a$ in the z-plane. Thus a problem involving the region bounded by two radii of a circle and the included arc can be reduced by (1) to one involving a diameter and a semicircular arc.

When $\alpha = 2\pi$, the real axis is folded back on itself and the upper half of the z_1-plane opened into the full z-plane. Separating real and imaginary parts gives $y = 2C_1x_1y_1$ and $x = C_1(x_1^2 - y_1^2)$. Eliminating y_1 and x_1 in turn gives $y^2 = -4C_1x_1^2(x - C_1x_1^2)$ and $y^2 = 4C_1y_1^2(x + C_1y_1^2)$ which are the equations of two orthogonal families of confocal parabolas. Thus, if we plot the uniform field $W = z_1$ on the z_1-plane, we find it transformed in the z-plane into the field about a charged semi-infinite conducting plane. If we plot the field between a line charge and an earthed horizontal conducting plane passing through the origin in the z_1-plane, then we find it transformed in the z-plane into the field between a semi-infinite conducting plane and a line charge parallel to its edge.

When $\alpha = 3\pi/2$, if we set $W = z_1$, we have, in the z-plane, the field near the edge of a charged conducting 90° wedge whose sides coincide with the positive x-axis and the negative y-axis. The field between such a wedge and a line charge can be found in the same way as when $\alpha = 2\pi$.

When $\alpha = \pi$, there is, of course, no change in the coordinate system except that it is magnified by the factor C_1.

When $\alpha = \frac{\pi}{2}$, if we set $W = z_1$, we find, in the z-plane that W represents the field in a 90° notch in a conductor, the positive x-axis and the positive y-axis forming the sides of the notch. In this case, $C_1^2U = x^2 - y^2$ and $C_1^2V = 2xy$, so that the equipotentials and lines of force are orthogonal families of equilateral hyperbolas. The field due to a charged filament parallel to the edge of the notch is obtained as when $\alpha = 2\pi$.

TWO-DIMENSIONAL POTENTIAL DISTRIBUTIONS
4.20. Polygon with Angle Zero.—In this important case, the x_1-axis is folded back parallel to itself and the upper half plane is compressed into the space between. In order that two parallel intersecting lines have a finite distance between them, it is necessary that the point of intersection be at infinity. Instead of 4.19 (1), we now have

$$z = C_1 \ln z_1 + C_2$$ \hspace{1cm} (1)

If, as before, we take $C_2 = 0$ and C_1 real, the origin $z_1 = 0$ is transformed to $z = -\infty$ and the new origin is at $z_1 = 1$. Writing $z_1 = r_1 e^{i\theta_1}$, we see that when $\theta_1 = 0$, $z = C_1 \ln x_1$, which is the real axis in the z-plane, and when $\theta_1 = \pi$, $x = C_1 \ln r_1$ and $y = C_1 \pi$, which is a line parallel to the real axis and at a distance $C_1 \pi$ above it. Thus the upper half of the z_1-plane is transformed into a horizontal strip in the z-plane. Radial lines $\theta_1 = \text{constant}$ are transformed into horizontal lines $y = \text{constant}$; the semicircles $r_1 = \text{constant}$ go into vertical lines, of length $C_1 \pi$. Frequently, we have problems in which a configuration is periodic, i.e., the field may be split in identical strips. In such a case, the transformation (1) is useful. Suppose, for example, we have a charged filament between two parallel earthed conducting planes. Going back to the z_1-plane, we see that this is reduced to a filament parallel to a single earthed plane. By images 4.06 and 4.12 (4), the required function is

$$W = -\frac{q}{2\pi \epsilon} \left(\ln \frac{z_1 - e^{i\theta_1}}{z_1 - e^{-i\theta_1}} + C \right)$$

To make $W = 0$ when $z_1 = +1$, take $C = -\ln (-e^{i\theta_1})$ so that we have

$$W = -\frac{q}{2\pi \epsilon} \ln \frac{z_1 - e^{i\theta_1}}{1 - z_1 e^{i\theta_1}}$$ \hspace{1cm} (2)

Transforming into the z-plane taking $C_2 = 0$, $C_1 \pi = a$, and $C_1 \theta_0 = b$, we have, substituting for z_1 from (1),

$$W = -\frac{q}{2\pi \epsilon} \ln \frac{e^{\pi z/a} - e^{\pi b/a}}{1 - e^{(z+b)/a}} = -\frac{q}{2\pi \epsilon} \ln \frac{e^{\pi(x-b)/a} - e^{-\pi(x-b)/a}}{e^{\pi(z+b)/a} - e^{\pi(z+b)/a}}$$

Now using Pc 652, 660, and 645 or Dw 654.1, 655.1, and 702, we have

$$W = -\frac{q}{2\pi \epsilon} \ln \left[\frac{\sinh \left(\frac{\pi}{a} (z - jb) \right)}{\sinh \left(\frac{\pi}{a} (z + jb) \right)} \right]$$

$$= -\frac{q}{2\pi \epsilon} \ln \frac{1 + j \tanh \left(\frac{\pi z}{a} \right) \cot \left(\frac{\pi b}{a} \right)}{1 - j \tanh \left(\frac{\pi z}{a} \right) \cot \left(\frac{\pi b}{a} \right)}$$

$$= -\frac{q}{2\pi \epsilon} \tan^{-1} \left[\tanh \left(\frac{\pi z}{a} \right) \cot \left(\frac{\pi b}{a} \right) \right]$$ \hspace{1cm} (3)

We can separate real and imaginary parts and get

$$\tan \frac{2\pi e V}{q} = -\frac{\sin (\pi b/a) \sinh (\pi x/a)}{-\cos (\pi b/a) \cosh (\pi x/a) + \cos (\pi y/a)}$$ \hspace{1cm} (4)

$$\tanh \frac{2\pi e U}{q} = -\frac{\cos (\pi b/a) \sin (\pi y/a)}{\sin (\pi b/a) \cos (\pi y/a) + \cosh (\pi x/a)}$$ \hspace{1cm} (5)
The z_1- and z-planes are shown in Fig. 4.20. If the plates are to be at a difference of potential U_0, we need superimpose on this only a vertical field given by $W' = -jU_0\omega/a$. The final solution will then be

$$W'' = W + W' = -[jq/(\pi\epsilon)] \tan^{-1} \left[\tanh \left(\frac{\pi z}{a} \right) \cot \left(\frac{\pi b}{a} \right) \right] - jU_0\omega/a \quad (6)$$

where U is the potential function.

When a plane grating of parallel wires, spaced a distance a apart, forms one boundary of a uniform field, we can find the conjugate functions in the same way. It is necessary only to put $+q$ at both $z_1 = j$ and $z_1 = -j$ and proceed as before. We obtain, in the z-plane, a section of the field including one wire and bounded by lines of force proceeding from the wire to $x = +\infty$.

It may be noted that if we plot a uniform field in the z-plane and transform back into the z_1-plane, we get the field about a line charge already worked out in 4.12.

4.21. Polygons with One Negative Angle. Doublet. Inversion. It is now natural to investigate the meaning of Schwarz transformations with negative angles. The transition from positive to negative angles is clearly illustrated in Fig. 4.21. The ends of the real axis of the z_1-plane are now brought together at an angle α at the origin in the z-plane, if $C'_2 = 0$ in 4.19 (1). The approximate form of the lines $y_1 = \text{constant}$ in the z-plane is shown in the figure.

The most important cases, by far, in this category are those in which $\alpha = -\pi$. Suppose, for example, we start with a uniform field $W = z_1$. If U is the potential function, we may think of this field as produced by
an infinite positive charge at \(x_1 = +\infty \) and an infinite negative charge at \(x_1 = -\infty \). Inspection of Fig. 4.21 shows that the transformation in question brings these two charges infinitely close together on opposite sides of the \(y \)-axis in the \(z \)-plane. By definition, a two-dimensional dipole consists of two equal and opposite parallel infinite line charges, infinitely close together, the product of the charges per unit length by the distance between them being finite and equal to the dipole strength per unit length \(m \). We can get the transformation directly from 4.13 (1) by writing \(a \) for \(ja \) and using \(Pc 769 \) or \(Dw 601.2 \); thus

\[
W = -\frac{q}{2\pi\epsilon} \ln \frac{1 - \frac{a}{z}}{\frac{a}{z} \to 0} = \frac{M}{2\pi\epsilon z} \tag{1}
\]

whence

\[
U = \frac{M \cos \theta}{2\pi\epsilon r}, \quad V = -\frac{M \sin \theta}{2\pi\epsilon r}
\]

also

\[
x^2 + y^2 - \frac{Mx}{2\pi\epsilon U} = 0, \quad x^2 + y^2 + \frac{My}{2\pi\epsilon V} = 0 \tag{2}
\]

Thus the equipotentials are circles tangent to the \(y \)-axis at the origin, and the lines of force are also circles but tangent to the \(x \)-axis at the origin.

Another important case where \(\alpha = -\pi \) is obtained by letting \(C_1 = a^2 \) in 4.19 (1) giving

\[
z = \frac{a^2}{z_1} \tag{3}
\]

Write this in polar coordinates, and separate real and imaginary parts, and we have

\[
rr_1 = a^2 \quad \text{and} \quad \theta = -\theta_1
\]

Thus every point outside the circle \(r_1 = a \) in the \(z_1 \)-plane transforms into a point inside the circle \(r = a \) in the \(z \)-plane. If \(W = f(z_1) \) is a solution of Laplace's equation, then \(W = f(z_1^*) \), where \(z_1^* \) is the complex conjugate of \(z_1 \), is also a solution and this field is the mirror image of the other, giving \(r_1 = r_1^* \) and \(\theta_1 = -\theta_1^* \). Comparing the \(z \)-plane and the \(z_1^* \)-plane, we have

\[
rr_1^* = a^2 \quad \text{and} \quad \theta = \theta_1^* \tag{4}
\]

When such a relation holds, \(r, \theta \) and \(r_1^*, \theta_1^* \) are said to be inverse points and \(a \) is the radius of inversion. If the sum of the charges in the \(z \)-plane is not zero, then there must be an equal and opposite charge at infinity, on which the excess lines of force end, and which will appear at the origin on the \(z_1 \)- or \(z_1^* \)-plane. Hence we have the rule for inversion in two dimensions.
If a surface S is an equipotential under the influence of line charges $q', q'', \text{ etc.},$ at $z', z'', \text{ etc.}$, then the inverse surface will be an equipotential under the influence of charges $q', q'', \text{ etc.},$ at $z'_1, z''_1, \text{ etc.},$ plus a charge $-2q$ at the origin. This method is useful for obtaining, from the solution of a problem involving intersecting plane boundaries, a solution of a problem with intersecting circular cylindrical boundaries. In polar coordinates, the equation of the circle in the z-plane is

$$r^2 - 2ur \cos (\theta - \alpha) = R^2 - u^2$$

where the center of the circle is at u, α and R is its radius. Multiplying through by r_1^4 and writing θ_1^* for θ and α_1^* for α from (4), we have

$$(rr_1^*)^2 - 2rr_1^*ur_1^* \cos (\theta_1^* - \alpha_1^*) = (R^2 - u^2)r_1^2$$

Writing a^2 for rr_1^* from (4) and rearranging give

$$r_1^2 + 2a^2u R^2 - u^2\cos (\theta_1^* - \alpha_1^*) = \frac{a^4}{R^2 - u^2}$$

or

$$r_1^2 - 2ur_1^* \cos (\theta_1^* - \alpha_1^*) = R_1^2 - u_1^2$$

where

$$u_1 = -\frac{a^2u}{R^2 - u^2} \quad \text{and} \quad R_1 = \frac{a^2R}{|R^2 - u^2|}$$

Thus the circle inverts into a circle. If the original circle passed through the origin, then $|u| = R$ so that $|u_1| \to R_1 = \infty$. Thus the inverted circle is of infinite radius with its center at infinity, which means a straight line. The nearest approach of this line to the origin is

$$|u_1| - |R_1| = \frac{a^2}{u + R} = \frac{a^2}{2R}$$

and the equation of the radius vector normal to it is $\theta_1^* = \alpha_1^*$. Conversely, a straight line inverts into a circle passing through the origin.

4.211. Images by Two-dimensional Inversion.

At this point, we shall pause in the discussion of Schwarz transformations long enough to give an example of two-dimensional inversion. We shall use the rules just derived to find an expression, in terms of images, for the field between an infinite cylindrical conductor, carrying a charge $-q$ per unit length and bounded by the external surfaces of two circular cylinders intersecting orthogonally and a parallel infinite line charge of strength $+q$ per unit length. In Fig. 4.211a, representing the z-plane, the charge is at P and the conducting surface is indicated by the solid line. From 4.21, we see that, if we invert about the point O, the circles will become straight lines, and since this process is conformal, these lines will intersect orthogonally. For simplicity, we take the circle of inversion, shown dotted, tangent to the larger cylinder. Figure 4.211b shows the inverse system in the z_1^*-plane. The latter system presents the familiar problem,
§4.22

POLYGON WITH TWO ANGLES

89

treated in 4.06, of a line charge parallel to the line of intersection of two orthogonal conducting planes. From 4.06, we know the field in the angle between the planes to be identical with that produced in this region when all conductors are removed, but we have, in addition to \(q \) at \(P' \), line charges \(-q, +q, \) and \(-q \) at \(P'_1, P'_2, \) and \(P'_3, \) respectively.

The rules of inversion tell us that the surface inverse to these planes, which is the surface of our conductor, coincides with a natural equipotential in the field of charges \(+q, -q, +q, \) and \(-q \) at \(P, P_1, P_2, \) and \(P_3, \) respectively, where \(P, P_1, P_2, \) and \(P_3 \) are inverse points to \(P', P'_1, P'_2, \) and \(P'_3. \) We see that if \(CP = r_c \) and \(BP = r_b, \) then \(P_1 \) is on \(BP \) at a distance \(b^2/r_b \) from \(B, P_3 \) is on \(CP \) at a distance \(c^2/r_c \) from \(C, \) and \(P_2 \)

![Diagram](image)

Fig. 4.211.—Two-dimensional inversion.

is at the intersection of \(BP_3 \) and \(CP_1. \) Since \(P', P'_1, P'_2, \) and \(P'_3 \) lie on a circle orthogonal to the lines \(Q'Q'_1 \) and \(Q'Q'_5 \) in the \(z_1^* \) plane, then \(P, P_1, P_2, \) and \(P_3 \) lie on a circle orthogonal to the circles in the \(z \)-plane.

4.22. Polygon with Two Angles.—From the large number of cases that come under this class, we shall select as an important example that in which the real axis is bent into a rectangular trough of width \(2a. \)

Taking \(\alpha_1 = \alpha_2 = \frac{1}{2} \pi \) in 4.18 (7), \(u_1 = +a, u_2 = -a, \) we obtain

\[
\frac{dz}{dz_1} = \frac{A}{(z_1^2 - a^2)^2}
\]

Integrating by \(Pc \) 126b or 127 or \(Dw \) 260.01 or 320.01 gives

\[
z = A \cosh^{-1} \left(\frac{z_1}{a_1} \right) + C_1 = jA \sin^{-1} \left(\frac{z_1}{a_1} \right) + C_2
\]

Taking \(C_2 = 0 \) gives, if the second form is used, \(z = 0 \) when \(z_1 = 0. \) In order that \(z = \pm a \) when \(z_1 = \pm a_1, \) we must have \(a = \frac{1}{2} jA \pi \) or \(jA = 2a/\pi, \) giving

\[
z = \frac{2a}{\pi} \sin^{-1} \frac{z_1}{a_1} \quad \text{or} \quad z_1 = a_1 \sin \frac{\pi}{2a} z
\]
The most useful application of this is obtained by applying (2) to a uniform field in the z-plane. Taking $a = \frac{1}{2} \pi$ and writing $W = z$, we have

$$z_1 = a_1 \sin W$$

(3)

The vertical strip of the uniform field is unfolded as shown in Fig. 4.22a. Thus, if V is the potential function, the field in the z_1-plane is the upper half of that due to a charged strip of width $2a_1$, and if U is the potential, it is the upper half of that due to two semi-infinite coplanar sheets at a difference of potential π with a gap of width $2a_1$ between them. Separating real and imaginary parts of (3), if Pc 615 or Dw 408.16 is used, gives

$$x_1 = a_1 \sin U \cosh V \quad y_1 = a_1 \cos U \sinh V$$

Divide the first equation by $a_1 \cosh V$ and the second by $a_1 \sinh V$, square, and add, and we have

$$\frac{x_1^2}{a_1^2 \cosh^2 V} + \frac{y_1^2}{a_1^2 \sinh^2 V} = 1$$

(4)

This shows the curves on which V is constant to be confocal ellipses with major and minor axes $2a_1 \cosh V$ and $2a_1 \sinh V$, respectively. In the same way, dividing by $a_1 \sin U$ and $a_1 \cos U$, squaring, and subtracting, we have

$$\frac{x_1^2}{a_1^2 \sin^2 U} - \frac{y_1^2}{a_1^2 \cos^2 U} = 1$$

(5)

The curves on which U is constant are confocal hyperbolas. We note that by giving V values from 0 to ∞ and U values from $-\pi$ to $-\frac{1}{2} \pi$ and π to $\frac{1}{2} \pi$ in the lower half plane, the field due to the strip is represented everywhere in the plane. The hyperbolic lines of force are then discontinuous in passing through the conducting strip. On the other hand, by giving U values between $-\frac{1}{2} \pi$ and $\frac{1}{2} \pi$ and V values from 0 to $-\infty$ in the lower half plane, we represent completely the field due to the two planes. The elliptic lines of force now are discontinuous in passing through the conducting planes.

Suppose that in place of a single charged strip we have a great number of similar strips lying uniformly spaced and parallel to each other in the same plane. It is clear that we may obtain a typical cell of such a field by folding up the x_1-axis in Fig. 4.22a at $u_1 = -b_1$ and $u_2 = -b_1$ where $b_1 > a_1$ and by applying (2), with b_1 substituted for a_1 and b for a, to (3), giving

$$z_1 = a_1 \sin W = b_1 \sin \left(\frac{1}{2} \pi z/b\right)$$

where $2b$ is the width of the cell in the grating. This is shown in Fig. 4.22b. Since $x = \pm a, \ y = 0$ when $V = 0, \ U = \pm \frac{1}{2} \pi$ we must have

$$a_1 = b_1 \sin \left(\frac{1}{2} \pi a/b\right)$$

so that the transformation is

$$W = \sin^{-1} \left[\frac{\sin \left(\frac{1}{2} \pi z/b\right)}{\sin \left(\frac{1}{2} \pi a/b\right)} \right]$$

(6)
Although derived for the region above the x-axis, we notice that this formula represents the field equally well when $0 > y > -\infty$, where choosing positive values of V requires that, when $0 < x < b$, $\frac{1}{2}\pi < U < \pi$ and, when $0 > x > -b$, $-\pi < U < -\frac{1}{2}\pi$. The strength of the field at $y = \infty$ is $-\frac{1}{2}\pi/b$, so that to get the transformation for a field of strength E' we must multiply by the factor $2bE'/\pi$. If we used this grating as the boundary of a uniform field of strength E extending to $y = +\infty$, then we need only superimpose a vertical field of strength E' when $E' = \frac{1}{2}E$, which will cancel the original field at $y = -\infty$, and add to that at $y = +\infty$ giving

\[
W' = \frac{E}{2} \left\{ z + \frac{2b}{\pi} \sin^{-1} \left[\frac{\sin \left(\frac{\pi z}{b} \right)}{\sin \left(\frac{\pi a}{b} \right)} \right] \right\}
\]

(7)
The field intensity at any point is then given by

\[
\left| \frac{dW}{dz} \right| = \frac{E}{2} \left| 1 \pm \frac{\cos \left(\frac{\pi z}{b} \right)}{\cos^2 \left(\frac{\pi z}{b} \right) - \cos^2 \left(\frac{\pi a}{b} \right)} \right|
\]

(8)

4.23. Slotted Plane.—To obtain the field in the neighborhood of a plane conducting sheet with a slit of width $2a$ in it, we may bend down that portion of the real axis lying between $x = +a$ and $x = -a$ and

Fig. 4.22a.—Transformation of semi-infinite vertical strip into upper half plane.

Fig. 4.22b.—Transformation of field of single charged flat strip into one section of field of charged grating composed of coplanar parallel flat strips.
expand it to enclose the whole lower half of the z-plane, at the same time drawing that area of the z_1-plane near the origin through the gap. By examining Fig. 4.23, we see that $\alpha_1 = 2\pi$, $\alpha_2 = -\pi$, $\alpha_3 = 2\pi$, $u_1 = +a_1$, $u_2 = 0$, $u_3 = -a_1$, giving, from 4.18 (7),

$$\frac{dz}{dz_1} = C_1 \frac{z_1^2 - a_1^2}{z_1^2}$$

Integrating gives 4.18 (8) to be

$$z = C_1 \left(z_1 + \frac{a_1^2}{z_1} \right) + C_2$$

When $z_1 = \pm a_1$, we wish $z = \pm a$. This gives $C_2 = 0$ and $2a_1C_1 = a$, so that the result is

$$z = \frac{a}{2} \left(\frac{z_1}{a_1} + \frac{a_1}{z_1} \right) \quad (1)$$

If we start with a uniform vertical field $W = -Ez_1$ in the z_1-plane and take $2a_1 = a$, the transformation leaves the field at ∞ in the z-plane unchanged but it now terminates on a sheet with a slit in it and part of the field penetrates the slit. From (1), we have

$$W = -Ez_1 = -\frac{1}{2}E \left[z \pm (z^2 - a^2)^{1/2} \right] \quad (2)$$

where V is the potential function. If the imaginary part of the square root is always taken positive, then, to make the fields add above the x-axis and subtract below, we must use the positive sign in (2).

The surface density on the sheet is given by

$$\sigma = -\epsilon \left| \frac{dW}{dz} \right|_{y=0} = \frac{\epsilon E}{2} \left(1 \pm \frac{x}{(x^2 - a^2)^{1/2}} \right) \quad (3)$$

where the sign is chosen so that the two terms add on the upper surface and subtract on the lower.

The field between a charged filament and an earthed slotted sheet in the z-plane is easily obtained by (1) from the field between a charged filament and an earthed plane in the z_1-plane.

Fig. 4.23.—Plane with slot forming one boundary of uniform field.
Writing the right side of (1) in polar coordinates and solving for x and y, we have

\[
\frac{x}{r_1^2 + a_1^2} = \frac{a}{2r_1 a_1} \cos \theta_1
\]

(4)

\[
\frac{y}{r_1^2 - a_1^2} = \frac{a}{2r_1 a_1} \sin \theta_1
\]

(5)

Squaring and adding give

\[
\frac{x^2}{(r_1^2 + a_1^2)^2} + \frac{y^2}{(r_1^2 - a_1^2)^2} = \frac{a^2}{4r_1^2 a_1^2}
\]

(6)

Thus, if $r_1 > a_1$, the semicircle of radius r_1 and that of radius a_1^2/r_1 transform into the upper and lower halves, respectively, of the ellipse in the z-plane given by (6). The semicircle $r_1 = a_1$ flattens into the real axis between $x = +a$ and $x = -a$.

4.24. Riemann Surfaces.—To visualize completely the possibilities of a given transformation, it is often valuable to use the concept of a Riemann surface. This is well illustrated by the example in the last article. Although we have already used up all points in the z-plane to represent positive values of y_1, equation 4.23 (1) gives us a value of z for every negative value of y_1, i.e., when $-\pi < \theta_1 < 0$ as well. From 4.23 (5), we see that if $0 < r_1 < a_1$ and $-\pi < \theta_1 < 0$ we arrive in the upper half of the z-plane, and if $a_1 < r_1 < \infty$ and $-\pi < \theta_1 < 0$ we arrive in the lower half. Thus there are two points in the z_1-plane corresponding to each point in the z-plane. We can eliminate this double value by making the z-plane a double sheet. We must be careful, however, to connect these two sheets in such a way that, in tracing a continuous circuit in one plane, we trace a continuous circuit through corresponding points in the other. The central portion of such a surface, known as a Riemann surface, is shown in Fig. 4.24 at the right. Lines in the lower surface are dotted, and the sheets are spread apart to clarify the diagram. When $x^2 < a^2$, it is possible to pass only between A and B or C and D, and when $x^2 > a^2$ it is possible to pass only between A and C or between...
B and D. The circle $r_1 = \epsilon_1$ where $\epsilon_1 \to 0$ becomes a circle at infinity lying in and surrounding the AC sheet. It is possible to construct Riemann surfaces for a great many transformations.

4.25. Circular Cylinder into Elliptic Cylinder.—The last two articles show that the region outside the circle $r_1 = a_1$ in the z_1-plane can be transformed into the region outside that part of the real axis lying between $x = +a$ and $x = -a$, in the BD sheet of the z-plane, by means of the relation

$$z = \frac{a_1}{2} \left(\frac{z_1}{a_1} + \frac{a_1}{z_1} \right)$$

(1)

Since, in the z_1-plane we are restricted to a region outside the circle $r_1 = a_1$, we cannot cross the x_1-axis where $-a_1 < x_1 < +a_1$. Consequently in the z-plane, we cannot cross the x-axis where $-a < x < +a$ and the line joining $+a$ and $-a$ is said to be a cut in the z-plane.

Electrically, this enables us to transform any field which, plotted in the z_1-plane, makes $r_1 = a_1$ an equipotential or a line of force into a field, plotted in the z-plane, in which the line joining $x = +a$ and $x = -a$ is an equipotential or a line of force. More generally, since from 4.23 (6) any circle $r_1 = b_1$ where $b_1 > a_1$ transforms into an ellipse, we may obtain from the solution of any problem involving concentric circular cylindrical boundaries the solution of a problem involving confocal elliptical boundaries. If the circle in the z_1-plane is taken eccentric to $r_1 = a_1$ in the proper way, it transforms into an airfoil. This is therefore the famous “airfoil transformation” used in aeronautics.

4.26. Dielectric Boundary Conditions.—With the aid of 1.17 (5) and (6) and the relations 4.10 (1), we shall now determine the boundary conditions that must be satisfied by the potential and stream functions when $W_1 = U_1 + jV_1 = f_1(z)$ and $W_2 = U_2 + jV_2 = f_2(z)$ are functions representing the electrostatic fields on the two sides of a boundary where the capacitivities are ϵ_1 and ϵ_2, respectively. Let $\frac{\partial}{\partial n}$ and $\frac{\partial}{\partial s}$ represent differentiation normal to and parallel to the boundary, respectively. Then, from 1.17 (5) and 4.10 (1), if U is the potential function,

$$\frac{\partial U_1}{\partial n} = \frac{\epsilon_1}{\epsilon_2} \frac{\partial U_2}{\partial n} \quad \text{or} \quad \frac{\partial V_1}{\partial s} = \frac{\epsilon_1}{\epsilon_2} \frac{\partial V_2}{\partial s}$$

(1)

If we take the zero stream line of W_1 and W_2 to join at the boundary, then we may integrate (1) along the boundary from this line to any other point V_1, V_2 and obtain in terms of the capacitivity

$$\epsilon_1 V_1 = \epsilon_2 V_2 \quad \text{or} \quad K_1 V_1 = K_2 V_2$$

(2)

in terms of the relative capacitivity. From 1.17 (6), we have

$$U_1 = U_2$$

(3)

These are the boundary conditions when U is the potential function.
§4.261 ELLIPTIC DIELECTRIC CYLINDER

If V is the potential function, the boundary conditions are

$$V_1 = V_2 \quad \text{and} \quad \epsilon_1 U_1 = \epsilon_2 U_2 \quad \text{or} \quad K_1 U_1 = K_2 U_2 \quad (4)$$

4.261. Elliptic Dielectric Cylinder.—Conformal transformations can be applied not only to cases involving equipotential or line of force boundaries, but also to many cases involving dielectric boundaries. The fact that such an operation preserves angles means that the law of refraction of the lines of force [1.17 (8)] will still be satisfied. Suppose, for example, our problem is to find the conjugate functions giving the field at all points when an elliptic cylinder is placed in a uniform field of force making an angle α with its major axis. Let the equation of the elliptic dielectric boundary be

$$\frac{x^2}{m^2} + \frac{y^2}{n^2} = 1 \quad (1)$$

The transformation of 4.25 immediately suggests itself as a means for deriving this elliptic boundary, represented in the z-plane, from a circular boundary $r_1 = b$, represented in the z_1-plane. For simplicity, let us take $a_1 = 1$ in 4.23 and 4.25, so that the z-plane represents the area outside the unit circle in the z_1-plane. Writing 4.23 (6) in the form of (1) and equating coefficients, we see that

$$a^2 = m^2 - n^2 \quad \text{and} \quad b^2 = \frac{m + n}{m - n} \quad (2)$$

It is often convenient, when elliptical boundaries are involved, to use confocal coordinates u and v instead of rectangular coordinates x and y. Such a system is shown in Figs. 4.22a and b. From 4.22 (3), we see that the relations are

$$z = a \sin w, \quad x = a \sin u \cosh v, \quad y = a \cos u \sinh v \quad (3)$$

The transformation of 4.25 (1) then becomes $z = \frac{1}{2}a(z_1 + z_1^{-1})$ or

$$z_1 = je^{-iw} = je^{-iu+iv} = \frac{1}{a}[z + (z^2 - a^2)i] = a[z - (z^2 - a^2)i]^{-1} \quad (4)$$

This equation shows us that at a great distance from the origin, where $r_1 \to \infty$, $z = \frac{1}{2}az_1$, so that a uniform field $W = \frac{1}{2}aEz_1$ transforms into the uniform field $W = Ez$ in this region. It is clear that the desired field may be formed by superimposing a vertical field of strength $E \sin \alpha$ on a horizontal field of strength $E \cos \alpha$. These component fields are shown in Figs. 4.261a and b. Since the axis between the foci is an equipotential in a and a line of force in b, we see that in the z_1-plane the situation is as shown in Figs. 4.261c and d, respectively.

The field of Fig. 4.261c has already been solved in 4.03, from which we have, taking U' for the potential function and $U'_1 = 0$ on the unit circle,
Fig. 4.261.—(a) and (b) show elliptic cylinder, \(K = 9, \ m/n = 3 \), in uniform fields \(2^{1/4}E \). Equation (4), Art. 4.261, transforms (a) and (b) into (c) and (d), which involve only circular boundaries. Superposition of (a) and (b) gives (e) where cylinder is in field \(E \) at \(45^\circ \) to the axis.
\[W'_0 = \frac{1}{2}jaE \sin \alpha(-z_1 + A'z_1^{-1}) \]
\[W'_i = -\frac{1}{2}jaB'E \sin \alpha(z_1 + z_1^{-1}) \]

where, using (2), we have
\[A' = \frac{-b^2[(K + 1) + (K - 1)b^2]}{(K - 1) + (K + 1)b^2} = \frac{-(m + n)(Km - n)}{(m - n)(Km + n)} \]
\[B' = \frac{2b^2}{(K - 1) + (K + 1)b^2} = \frac{m + n}{Km + n} \]

For Fig. 4.261d, we see similar harmonics must occur. Since \(V''_i = 0 \) when \(z_1 = e^{i\theta} \), the solutions must be of the form
\[W''_0 = \frac{1}{2}aE \cos \alpha(z_1 + A''z_1^{-1}) \]
\[W''_i = \frac{1}{2}aB''E \cos \alpha(z_1 + z_1^{-1}) \]

Since, from 4.26, we must have \(U''_0 = U''_i \) and \(V''_0 = KV''_i \) when \(r = b \), we have
\[b^2 + A'' = B''(b^2 + 1) \quad \text{and} \quad b^2 - A'' = KB''(b^2 - 1) \]

Solving for \(A'' \) and \(B'' \) gives
\[A'' = \frac{b^2[(K + 1) - (K - 1)b^2]}{b^2(K + 1) - (K - 1)} = \frac{(m + n)(m - Kn)}{(m - n)(m + Kn)} \]
\[B'' = \frac{2b^2}{b^2(K + 1) - (K - 1)} = \frac{m + n}{m + Kn} \]

Superimposing and using the transformation (4), we have, outside the cylinder,
\[W_0 = \frac{1}{2}aE[e^{-i\alpha z_1} + (A'' \cos \alpha + jA' \sin \alpha)z_1^{-1}] \]
\[= \frac{1}{2}aE[e^{-i(\alpha+\omega)} - (A'' \cos \alpha + jA' \sin \alpha)e^{i\omega}] \]
\[= \frac{1}{2}E[e^{-i\alpha}[z + (z^2 - \alpha^2)i] + (A'' \cos \alpha + jA' \sin \alpha)\{z - (z^2 - \alpha^2)i\}] \]

Similarly, inside the cylinder, we have
\[W_i = \frac{1}{2}aE(B'' \cos \alpha - jB' \sin \alpha)(z_1 + z_1^{-1}) \]
\[= E(m + n) \left(\frac{\cos \alpha}{m + Kn} - j \frac{\sin \alpha}{Km + n} \right)z \]

We notice that the field inside the cylinder is still uniform. The lines of electric displacement when the external field makes an angle of 45° with either axis of the ellipse are shown in Fig. 4.261e.

4.262. Torque on Dielectric Cylinder

The torque \(T \) per unit length on an infinite dielectric cylinder perpendicular to a uniform electric field with which its major axis makes an angle \(\alpha \) may be found from the last article and from 3.13 (5) and (6). Thus
\[T = -\frac{\partial}{\partial \alpha} \left[\frac{1}{2} \varepsilon_0 (1 - K) \int EE_i \cos \phi \, dv \right] \]

where \(\phi \) is the angle between the original field \(E \) and the final inside
field E_i. E_i, E_i, and $\cos \phi$ are constant in ν and may be taken outside the integral leaving $\int dv = \pi mn$ per meter. The relative directions and the magnitudes of E and E_i are given by (4.261) (14) with 1 or K replacing K.

$$E = \left| \frac{\partial W_i}{\partial z} \right|_1 = |E|e^{i\theta}, \quad E_i = \left| \frac{\partial W_i}{\partial z} \right|_K = |E_i|e^{i\theta_i}$$

Simplification of the (4.261) (14) product and substitution in (1) give

$$|E| |E_i| \cos (\theta - \theta_i) = |E(r)E_i(r)| = |E(r)E_i(r)| + |E(0)E_i(0)|$$

$$T = \frac{1}{2}\varepsilon \varepsilon_0 E^2(K - 1)\pi m n(m + n) \frac{\partial}{\partial \alpha} \left(\frac{\cos^2 \alpha}{m + Kn} + \frac{\sin^2 \alpha}{Kn} \right)$$

$$= \frac{\pi \varepsilon \varepsilon_0 E^2(K - 1)^2mn(m^2 - n^2) \sin 2\alpha}{2(Km + n)(m + Kn)}$$

This torque acts to align the major axis with the field.

4.27. Polygon with Rounded Corner.—There are several methods of replacing the sharp corner in a Schwarz transformation with a rounded one. By one method, we replace the factor $z_i^{(\alpha/\pi)-1}$ in

$$\frac{dz}{dz_1} = z_1^{\alpha-1} (z_1 - u_2)^{\alpha-1} \cdots$$

by $[(z_1 + \lambda(z_1^2 - 1))^{(\alpha/\pi)-1}$, where $|u_0| < |u_{n-1}| > \cdots > |u_2| > 1$ and $\lambda < 1$. By another method, we replace the factor $z_i^{(\alpha/\pi)-1}$ by

$$(z_1 + 1)^{\alpha-1} + \lambda(z_1 - 1)^{\alpha-1}$$

In both cases, the argument of the new factor is zero when $z_1 \geq 1$ and is $\alpha - \pi$ when $z_1 \leq -1$, so that the faces of the polygon on either side of the region $-1 < z_1 < +1$ make the same angle with each other as if the factor $z_i^{(\alpha/\pi)-1}$ were used. Between $z_1 = +1$ and $z_1 = -1$, we now have a curve whose shape can be adjusted somewhat by means of the factor λ.

4.28. Plane Grating of Large Cylindrical Wires.—We have already seen in 4.20 how the problem of a plane grating formed by cylindrical wires of small radius may be solved by taking for the cylindrical surfaces the natural equipotentials surrounding a grating of line charges. When the diameters of the wires become comparable with the spacing, this approximation breaks down completely. We may solve this case however by the method of the last article. Let us take the “cell” of the grating, outlined in Fig. 4.28a. From the figure, we see that the differential expression connecting z_1 and z is

$$\frac{dz}{dz_1} = C_1 \frac{(z_1 + 1)^{\lambda} + \lambda(z_1 - 1)^{\lambda}}{[(z_1 - 1)(z_1 + 1)]^{\lambda}}$$

$$= \frac{C_1}{[(z_1 - 1)(z_1 + 1)]^{\lambda}} + [(z_1 + 1)(z_1 + a_1)]^{\lambda}$$

(1)
We illustrate here a method we have not hitherto used for evaluating the constant C_1. Since $z_1 = r_1 e^{i \theta_1}$ if we keep r_1 constant, we have

$$dz_1 = j r_1 e^{i \theta_1} d \theta_1 = j z_1 d \theta_1$$

We notice that when $r_1 \to \infty$ and θ_1 goes from 0 to π then z goes from $y = 0$ to $y = b$. Substituting $j z_1 d \theta_1$ for dz_1 in (1) and letting $z_1 \to \infty$, we have

$$\int_0^b dz = j C_1 (1 + \lambda) \int_0^\pi d \theta_1 \quad \text{or} \quad j b = j C_1 \pi (1 + \lambda)$$

$$C_1 = \frac{b}{\pi (1 + \lambda)} \quad \text{(2)}$$

Frequently, this method can be used to evaluate a constant by an elementary integration of a special case, usually $r_1 \to 0$ or $r_1 \to \infty$, before performing the general integration. Integrating (1) using Pc 113 or letting $z_1 = (a_1 u^2 \pm 1) (1 - u^2)^{-1}$ and using $ Dw$ 140.02 gives

$$z = \frac{2b}{\pi (1 + \lambda)} \left[\tanh^{-1} \left(\frac{z_1 - 1}{z_1 + 1} \right) + \lambda \tanh^{-1} \left(\frac{z_1 + 1}{z_1 + 1} \right) \right] + C_2 \quad \text{(3)}$$

When $z = c$, $z_1 = +1$, so that C_2 is not real and

$$c = \frac{2b \lambda}{\pi (1 + \lambda)} \tanh^{-1} \left(\frac{2}{1 + a_1} \right) \quad \text{or} \quad \frac{a_1 + 1}{2} = \coth^2 \left[\frac{\pi c (1 + \lambda)}{2b \lambda} \right] \quad \text{(4)}$$

When $z = jc$, $z_1 = -1$, so that C_2 is not imaginary and

$$c = \frac{+2b}{\pi (1 + \lambda)} \tan^{-1} \left(\frac{2}{a_1 - 1} \right) \quad \text{or} \quad \frac{a_1 - 1}{2} = \cot^2 \left[\frac{\pi c (1 + \lambda)}{2b} \right] \quad \text{(5)}$$

Subtracting, we have

$$1 = \coth^2 \left[\frac{\pi c (1 + \lambda)}{2b \lambda} \right] - \cot^2 \left[\frac{\pi c (1 + \lambda)}{2b} \right]$$

$$\csc^2 \frac{\pi c (1 + \lambda)}{2b} = \coth \frac{\pi c (1 + \lambda)}{2b}$$
To determine \(\lambda \) in terms of \(b \) and \(c \), we can plot the ratio of the left side of this equation as a function of \(\lambda \) and choose that value of \(\lambda \) for which the ratio is unity. Having determined \(\lambda \), we now add (4) and (5) and obtain

\[
a_1 = \coth^2 \left(\frac{\pi c(1 + \lambda)}{2b\lambda} \right) + \cot^2 \left(\frac{\pi c(1 + \lambda)}{2b} \right)
\]

which determines \(a_1 \).

The question of how close the curve approximates to \(r = c \) has been investigated by Richmond, and its distance from the origin has been found to vary from \(c \) by less than 2 per cent if \(2c < b \).

To obtain the solution when the grating forms one boundary of a uniform field (Fig. 4.28f), we can superimpose Fig. 4.28d and Fig. 4.28e where lines of force are dotted and equipotentials solid. For case \(d \), the desired function in the \(z_1 \)-plane is evidently, from 4.22 (3),

\[W = A \sin^{-1} z_1 \]

where \(V \) is the potential function. Since we wish \(\frac{1}{2}Eb \) lines of force in the strip of Fig. 4.22a instead of \(\pi \), we must take \(A \) equal to \(\frac{1}{2}Eb/\pi \), giving

\[W = \frac{Eb}{2\pi} \sin^{-1} z_1 \]

Similarly for case \(e \), we need the \(z_1 \)-axis between \(-a_1 \) and \(+1 \) at potential zero; so, shifting the origin,

we have

\[W = \frac{Eb}{2\pi} \sin^{-1} \frac{2z_1 + a_1 - 1}{a_1 + 1} \]

When these fields are superimposed, we get case \(f \) with a uniform field of strength \(E \) at \(x = +\infty \) and strength 0 at \(x = -\infty \). The potential function, as in 4.22 (3), is \(V \). Accurate drawings of such fields may be seen in the article mentioned.

4.29. Angles Not Integral Multiples of \(\frac{1}{2}\pi \)._—In problems where the angles of the polygon are not integral multiples of \(\frac{1}{2}\pi \) or in which more

than two right-angle bends are involved in an unsymmetrical polygon or where two or more conductors of rectilinear section at different potentials are at a finite distance apart, the integration of the differential relation of the Schwarz transformation may lead to Jacobi elliptic functions. These functions can be manipulated in a manner analogous to that used for trigonometric and hyperbolic functions, but the operations are much more complicated. No examples involving such functions will be given here.

Problems

Problems marked C are taken from the Cambridge examination questions as reprinted by Jeans, by permission of the Cambridge University Press.

1. That half of the xz-plane for which x is positive is at zero potential except for the strip between $x = 0$ and $x = a$ which is at potential V_0. The whole of the yz-plane is at zero potential. Show that the potential at any point for which x and y are positive is

$$V = V_0 \left(\tan^{-1} \frac{y}{x - a} - 2 \tan^{-1} \frac{y}{x} + \tan^{-1} \frac{y}{x + a} \right)$$

2. The positive halves of the x and y planes are conducting sheets. All the surface is earthed except the region near the intersection, bounded by the lines $x = a$ and $y = b$, which is insulated and raised to a potential V. Find the surface density at any point on the sheet.

3. By inversion, establish the image law for a line charge in a parallel circular conducting cylinder.

4. A conductor is formed by the outer surface of two similar circular cylinders, of radius a, intersecting orthogonally. It carries a charge q per unit length. Show that $q(2r^2 - a^2)/(4\pi ar^2) - 1$ is the surface charge density, where r is the distance from the axis.

5. Show that when an elliptic conducting cylinder is charged, the ratio of the maximum to the minimum surface densities equals the ratio of the major to the minor axis.

6. A filament carrying a charge q per unit length passes vertically through a vertical hole of radius a in a block of relative capacitivity K. The filament is a distance c from the center of the hole. Show that the force per unit length pulling it toward the wall is $[(K - 1)/(K + 1)]q^2/[2\pi \epsilon_0 (a^2 - c^2)]$.

7. Two fine fiber leads are to be run vertically through an earthed conducting circular cylindrical tube of radius a. Show that the spacing of the fibers must be $2(5^2 - 2)\lambda a$ in order that, when charged to equal and opposite potentials, there will be no force on them.

8. An infinite circular conducting cylindrical shell of radius a is divided longitudinally into quarters. One quarter is charged to a potential $+V_1$ and the one diagonally opposite to $-V_1$. The other two are earthed. Show that the potential at any point inside is

$$V = \frac{V_1}{\pi} \left(\tan^{-1} \frac{2a y}{a^2 - r^2} + \tan^{-1} \frac{2ax}{a^2 - r^2} \right)$$

9. Consider the region of space between the cylinder $x^2 + y^2 = b^2$ and the xz-plane. All the curved boundary and that portion of the plane boundary for which
\[a < |x| < b \] is at zero potential. The part of the latter for which \(-a < x < +a\) is at the potential \(V_o\). Show that the equation of the lines of force inside is, when \(a \leq r \leq b\)

\[
U = \frac{2V_o}{\pi} \sum a^n \left[\frac{1}{r^n} + \left(\frac{r}{b^2} \right)^n \right] \cos n\theta
\]

where only odd values of \(n\) are taken.

10C. Three long thin wires, equally electrified, are placed parallel to each other so that they are cut by a plane perpendicular to them in the angular points of an equilateral triangle of side \(2a\). Show that the polar equation of an equipotential curve drawn on the plane is

\[
r^4 + b^4 - 2r^2b^2 \cos 3\theta = \text{constant}
\]

the pole being at the center of the triangle and the initial line passing through one of the wires.

11C. A long hollow cylindrical conductor is divided into two parts by a plane through the axis, and the parts are separated by a small interval. If the two parts are kept at potentials \(V_1\) and \(V_2\), the potential at any point within the cylinder is

\[
\frac{1}{2}(V_1 + V_2) + \frac{V_1 - V_2}{\pi} \tan^{-1} \frac{2ar \cos \theta}{a^2 - r^2}
\]

where \(r\) is the distance from the axis, and \(\theta\) is the angle between the plane joining the point to the axis and the plane through the axis normal to the plane of separation.

12C. An electrified line with charge \(e\) per unit length is parallel to a circular cylinder of radius \(a\) and inductive capacity \(K\); the distance of the wire from the center of the cylinder being \(c\). Show that the force on the wire per unit length is

\[
\frac{K - 1}{K + \frac{1}{2\pi\epsilon_c(c^2 - a^2)}}
\]

13C. A cylindrical conductor of infinite length whose cross section is the outer boundary of three equal orthogonal circles of radius \(a\) has a charge \(e\) per unit length. Prove that the electric density at distance \(r\) from the axis is

\[
\frac{e}{6\pi a} \left(\frac{3r^2 + a^2)(3r^2 - a^2 - 6^4ar)(3r^2 - a^2 + 6^4ar)}{r^2(9r^4 - 3a^2r^2 + a^4)} \right)
\]

14. A horizontal plane at potential zero has its edge parallel to and at a distance \(c\) from an infinite vertical plane at potential \(\frac{1}{2}\pi\). Show that the charge density on the vertical plane is \(\epsilon(y^2 + c^2)^{-1}\) and on the horizontal plane \(-\epsilon(x^2 - c^2)^{-1}\), where \(x\) and \(y\) are measured from the line in the vertical plane nearest the edge of the horizontal plane.

15. Show that the capacitance per unit length between a flat strip of width \(2c\) and an elliptic cylinder whose foci coincide with the edges of the strip and whose semimajor axis is \(a\) is \(2\epsilon[\cosh^{-1}(a/c)]^{-1}\).

16. Show that the force of attraction per unit length between two similar parallel wires of radius \(a\) and carrying a charge \(+q\) and \(-q\) per unit length, respectively, is \(q^2/[2\pi\epsilon(c^2 - 4a^2)^{1/2}]\) where \(c\) is the distance between centers.

17. A plane grating is formed of parallel flat coplanar strips of width \(2a\) with their center lines at a distance \(2b\) apart. If the grating is charged, show that the equipotential surface which is at a mean distance \(b\) from the plane of the grating deviates from a true plane by approximately \(0.028b\cos^2(\pi a/b)\).
18. Find, approximately, the field about a grating composed of parallel wires of radius a at a distance 2π apart, charged to a potential U_o and a parallel earthed plate at a distance b from the center of the wire, if $a \ll b$ and $a \ll 2\pi$.

$$U = \frac{-U_o}{U_1} \ln \frac{e^{2x} - 2ce^x \cos y + c^2}{c^2e^{2x} - 2ce^x \cos y + 1}$$

where

$$U_1 = -\ln \frac{e^{2b} - 2c^b \cos a + c^2}{c^2e^{2b} - 2c^b \cos a + 1}$$

and $c = \cosh b \cos a + (\cosh^2 b \cos^2 a - 1)^{1/2}$. Here we have taken $2a$ for the maximum thickness, measured parallel to the earthed plate, of a closed equipotential about a line charge, the distance from $2a$ to the plate being b.

19. Using the results of Arts. 4.03 and 4.25, find the transformation which gives the field about a conducting earthed strip of width $2c$ whose plane lies in the direction of a uniform electric field. Let U be the potential function.

$$W = \pm E(z^2 - c^2)^{1/2}$$

20. Superimposing a uniform field on the result of the last problem, find the transformation giving the field about a flat conducting strip of width $2c$, lying with its axis perpendicular to a uniform electric field and its plane inclined at an angle α to it. Find the torque per unit length acting on it.

$$W = E[\pm (z^2 - c^2)^{1/2} \cos \alpha - jz \sin \alpha], \quad T = \frac{1}{2} \pi \kappa E^2 \sin 2\alpha$$

21. By an inverse Schwarz transformation, find the field about two semi-infinite coplanar planes charged to potentials $+U_o$ and $-U_o$, whose edges are parallel and at a distance $2c$ apart. Let U be the potential function. Show that $z = c \sin \left(\frac{\pi W}{U_0}\right)$.

22. By rotating the transformation of problem 21 through 90° and applying a Schwarz transformation, find the field about a freely charged horizontal grating composed of similar vertical strips of width $2a$ parallel to each other and at a distance $2b$ apart. Let V be the potential function. The charge on the strip is εU_o.

$$W = \frac{U_o}{2\pi} \sin^{-1} \frac{\sinh \left[\pi z/(2j)\right]}{\sinh \left(\frac{\pi a}{b}\right)}$$

23. By shifting the origin of problem 21 to the left and applying a logarithmic transformation, find the transformation which gives the field about the grating of problem 22 when it forms one boundary of a uniform field. Let the potential function be V. The charge on the strip is εU_o.

$$W = \frac{U_o}{2\pi} \sin^{-1} \frac{e^{\pi z/b} - \cosh (\pi a/b)}{\sinh (\pi a/b)}$$

24. Taking U for the potential function and taking $c = 1$ in problem 21, apply a logarithmic transformation and obtain the field about a set of semi-infinite conducting planes spaced a distance b apart whose edges lie on the y-axis and which are charged alternately to potentials $+U_o$ and $-U_o$.

$$z = \frac{b}{\pi} \ln \sin \frac{\pi W}{2U_o}$$

25. Show that it is possible to shape the edges of the plates in a many-plate parallel-plate capacitor so that the field over the whole plate surface including the edges is constant. Show that this surface is the surface $U = U_o/2$ in problem 24 and that its
equation is

\[x = -\frac{b}{2\pi} \ln \left(2 \cos \frac{2\pi y}{b} \right) \]

26. A variable air capacitor consists of thin plates which slide between other fixed plates. Show, using problem 24, that the additional capacitance due to the bulging of the lines of force at the edges is equivalent to adding a strip of width \((b/\pi)\ln 2\) to the edges of the plate, where the spacing between fixed plates is \(b\).

27. By rotating the transformation of 4.22 through 90°, letting \(b = \pi\), and applying a logarithmic transformation, find the field about a cylindrical trough of radius 1 which subtends an angle \(2\alpha\) at the center of curvature and carries a charge \(-Q\), in the presence of a charge \(+{\text{1}}/4Q\) at the origin.

\[W = \frac{Q}{2\pi}\sin^{-1}\left[\frac{j(r - 1) \cos \left(\frac{1}{2} \theta\right) - (r + 1) \sin \left(\frac{1}{2} \theta\right)}{2r \sin \left(\frac{1}{2} \alpha\right)} \right] \]

28. By superimposing a potential due to \(-{\text{1}}/4Q\) at the origin in the last problem, get the potential due to a freely charged circular cylindrical trough of unit radius, subtending an angle \(2\alpha\) at the origin.

\[W = \frac{Q}{4\pi}\sin^{-1}\left[\frac{2 \sin^{-1} \left(\frac{j(r - 1) \cos \left(\frac{1}{2} \theta\right) - (r + 1) \sin \left(\frac{1}{2} \theta\right)}{2r \sin \left(\frac{1}{2} \alpha\right)} + j \ln r - \theta \right)}{2} \right] \]

29. Show that the ratio of the charge on the convex surface to that on the concave surface in the last problem is \((\pi + \alpha)/(\pi - \alpha)\).

30. Show that the charge density on the surface in the last problem is

\[\frac{1}{2}(Q/\pi)[1 - \cos \theta (\cos^2 \theta - \cos^2 \frac{1}{2} \alpha)] \]

where the positive sign applies to the convex surface.

31. Two semi-infinite straight-edged thin conducting sheets are arranged with edges parallel, so that one is the image of the other in the \(y\)-plane. They are at zero potential and form one boundary of the field. Find the transformations for the following cases:

a. Sheets parallel, field outside,

\[z = -\left(\frac{b_0}{\pi}\right)(jW^2a^{-2} - 2j \ln W - \pi - j + 2j \ln a) \]

b. Sheet at 90°, field outside,

\[z = (1 - j)\left(\frac{3b_0a^{-3}}{8}\right)\left(\frac{2W^2}{3} + 2a^2W^{-3}\right) + jb_0 \]

c. Sheets at 90°, field inside,

\[z = (1 + j)\frac{b_0}{\pi}a^{-3}W^{-3}(W^2 + a^2) - jb_0 \]

32. Find the transformation that gives field at all points when a filament carrying a charge \(q\) per unit length is placed at a distance \(d\) in front of the center of a slit of width \(2b\) in an earthed conducting plane.

\[W = -\frac{q}{2\pi \epsilon} \ln \frac{z \pm (z^2 - b^2)^{1/2} - jd \pm (d^2 + b^2)^{1/2}}{z \pm (z^2 - b^2)^{1/2} + jd \pm (d^2 + b^2)^{1/2}} \]

33. A Wolff electroscope consists of two similarly charged fibers of radius \(c\) at a distance \(2d\) apart placed symmetrically inside and parallel to the axis of an earthed
cylinder of radius \(b \). Show that the capacitance per unit length between the two fibers and the case lies between

\[
C = 8\varepsilon \left\{ \ln \left[\frac{b^4}{4c^2d^2} \right] \right\}^{-1}
\]

and

\[
C = 8\varepsilon \left\{ \ln \left[\frac{b^4}{4c^2(d^2 + c^4)} \right] \right\}^{-1}
\]

neglecting \(c^4 \) and \(d^4 \) compared with \(b^4 \).

34. Two similar parallel conducting cylinders are in contact and carry a total charge \(q \) per unit length. Show that the capacitance per unit length between these cylinders and a third large cylinder whose axis is their line of contact is approximately \(2\pi\varepsilon/\ln(2b/\pi a) \), where \(b > a \).

35. One plate, of thickness \(2A \), of a variable air capacitor moves midway between two other plates at a distance \(2B \) apart. Show that the transformation for the field in the neighborhood of the edge is

\[
z = A - \frac{2jB}{\pi} \cosh^{-1} \frac{B}{[A(2B - A)]^\frac{1}{2}} + \frac{2(B - A)}{\pi} \cosh^{-1} \frac{(B - A) \sinh (\frac{\pi W}{2})}{[A(2B - A)]^\frac{1}{2}}
\]

and show that the apparent increase in width of the plate due to the bulging of the field at the edge is approximately

\[
\Delta y = \frac{2}{\pi} \left\{ B \ln \frac{2B - A}{B - A} - A \ln \frac{[A(2B - A)]^\frac{1}{2}}{B - A} \right\}
\]

36. A thin infinite plate at potential \(V = 1 \) has in it an infinitely long slit of width \(2K \). It lies parallel to and at a distance \(h \) from another plate at potential \(V = 0 \). Show that the field at any point is given by

\[
x = h \left[\frac{2a^2}{\pi (1 - a^2)} \frac{\sin \pi U}{\cosh \pi U + \cos \pi V} + U \right]
\]

\[
y = h \left[\frac{2a^2}{\pi (1 - a^2)} \frac{\sin \pi V}{\cosh \pi U + \cos \pi V} + V \right]
\]

where \(U \) is the stream function and \(a \) is determined from the relation

\[
\pi K = +2h[\tanh^{-1} a + a/(1 - a^2)]
\]

37. It is desired to find the field near a charged plate of thickness \(2h \) having a rounded edge of radius \(h \). Show that a suitable transformation is

\[
z = h[W^2 + 2x^{-1}W(W^2 - 1)^\frac{1}{2} + 2x^{-1} \sin^{-1} W]
\]

where \(V = 0 \) on the plate whose surface is given by

\[
y = (2h/\pi)(x/h)^\frac{1}{2}(1 - x/h)^\frac{1}{2} + \sin^{-1} (x/h)^\frac{1}{2}
\]

when \(0 < x < h \) and by \(y = \pm h \) when \(x > h \). Show that this curve deviates from the circle of radius \(h \) by less than \(.14h \).

38. Show that when a conducting cylinder whose cross section is a hypocycloid of \(n \) points is at the potential \(V = 0 \), and carries a charge \(Q \) per unit length, the potential at any point outside is given by the transformation

\[
z = a \frac{e^{2j\pi W}}{nQ} \left[(n - 1) + e^{-\frac{2\pi \varepsilon W}{Q}} \right]
\]

where \(a \) is the distance of an edge from the axis.
39. Show that a regular prism of \(n \) sides each of width
\[
2a \sin \left(\frac{\pi}{n} \right) \cot \left(\frac{\pi}{n} \right) \frac{1}{n}\left(1 - 2b \sec \left(\frac{\pi}{n} \right) - 1 \right)
\]
may be circumscribed on the equipotential \(V = Q/(2\pi en) \tan \left(\frac{\pi}{n} \right) \) in the preceding problem in such a way that each side touches it along two lines at a distance
\[
2a \sin \left(\frac{\pi}{n} \right) \cot \left(\frac{\pi}{n} \right) \frac{1}{n}\n\]
apart. Show that the two surfaces come nearer coincidence as \(n \) increases and that when \(n = 5 \) their maximum axial distances differ by less than 6 per cent and their minimum by less than 1 per cent.

40C. A cylinder whose cross section is one branch of a rectangular hyperbola is maintained at zero potential under the influence of a line charge parallel to its axis and on the concave side. Prove that the image consists of three such line charges, and hence find the density of the induced distribution.

41C. A cylindrical space is bounded by two coaxial and confocal parabolic cylinders, whose latera recta are \(4a \) and \(4b \), and a uniformly electrified line which is parallel to the generators of the cylinders intersects the axes which pass through the foci in points distant \(c \) from them (\(a > c > b \)). Show that the potential throughout the space is
\[
A \ln \frac{\cosh \frac{\pi r^4 \cos \frac{1}{2} \theta}{a^4 - b^4}}{\cosh \frac{\pi r^4 \cos \frac{1}{2} \theta}{a^4 - b^4}} + \cos \frac{\pi (r^4 \sin \frac{1}{2} \theta + c^4 - a^4 - b^4)}{a^4 - b^4}
\]
where \(r, \theta \) are polar coordinates of a section, the focus being a pole. Determine \(A \) in terms of the electrification per unit length of the line.

42C. An infinitely long elliptic cylinder of inductive capacity \(K \), given by \(x + jy = c \cosh (\xi + j\eta) \), is in a uniform field \(P \) parallel to the major axis of any section. Show that the potential at any point inside the cylinder is
\[
-Px(1 + \coth \alpha)/(K + \coth \alpha)
\]

43C. Two insulated uncharged circular cylinders outside each other, given by \(\eta = \alpha \) and \(\eta = -\beta \) where \(x + jy = c \tan \left(\frac{1}{2}(\xi + j\eta) \right) \), are placed in a uniform field of force of potential \(Fx \). Show that the potential due to the distribution on the cylinders is
\[
-2F \sum_{1}^{n} (-1)^{n} \frac{\sinh n\beta + e^{-n(\eta + \beta)} \sinh n\alpha}{\sinh n(\alpha + \beta)} \sin n\xi
\]

44C. Two circular cylinders outside each other, given by \(\eta = \alpha \) and \(\eta = -\beta \) where \(x + jy = c \tan \left(\frac{1}{2}(\xi + j\eta) \right) \), are put to earth under the influence of a line charge \(q \) on the line \(x = 0, y = 0 \). Show that the potential of the induced charge outside the cylinders is
\[
\frac{q}{\pi \epsilon} \sum_{1}^{n} \frac{1}{n} \frac{\sinh n(\eta + \beta) + e^{-n(\eta + \beta)} \sinh n(\alpha - \eta)}{\sinh n(\alpha + \beta)} \cos n\xi + C
\]
the summation being taken for all odd positive integral values of \(n \).

45C. The cross sections of two infinitely long metallic cylinders are the curves
\[
(x^2 + y^2 + c^2)^2 - 4c^2x^2 = a^4 \quad \text{and} \quad (x^2 + y^2 + c^2)^2 - 4c^2x^2 = b^4
\]
where \(b > a > c \). If they are kept at potentials \(V_1 \) and \(V_2 \), respectively, the intervening space being filled with air, prove that the surface densities per unit length of the electricity on the opposed surfaces are
PROBLEMS

\[\frac{\epsilon(V_1 - V_2)(x^2 + y^2)^{1/2}}{a^4 \ln (b/a)} \quad \text{and} \quad \frac{\epsilon(V_1 - V_2)(x^2 + y^2)^{1/4}}{b^4 \ln (b/a)} \]

respectively.

46C. What problems are solved by the transformation
\[
d(x + jy)/dt = c(t^2 - 1)^{1/2}/(a^2 - t^2), \quad \pi(\Psi + j\overline{\Psi}) = \ln [(a + t)/(a - t)] \quad \text{where} \quad a > 1?
\]

47C. What problem in electrostatics is solved by the transformation
\[
x + jy = c\mathrm{sn}(\Phi + j\Psi)
\]

where \(\Psi\) is taken as the potential function, \(\Phi\) being the function conjugate to it?

48. A uniform field \(E_0\) is bounded by the upper face \((y = 0)\) of an infinite plate conductor of thickness \(b\). The portion between \(x = a\) and \(x = -a\) is removed leaving an infinite slit. If \(U\) is the potential function, show that the transformation for the field may be written in the alternative forms:

\[
E_0z = -\left(1 - W^2\right)^{1/2}\left(\frac{m^2}{W^2} - 1\right)^{1/2} \sin^{-1}\left(\frac{W}{m}\right) - 2E\left(\sin^{-1}\frac{W}{m}\right) + C_1E_0
\]

\[
jE_0z = \left(1 - W^2\right)^{1/2}\left(-1 + \frac{m^2}{W^2}\right)^{1/2} + (1 + m^2)F\left(\sin^{-1}\left(1 - W^2\right)^{1/2}, (1 - m^2)^{1/2}\right)
\]

\[
- 2E\left(\sin^{-1}\left(1 - W^2\right)^{1/2}, (1 - m^2)^{1/2}\right) + j\alpha E_0
\]

\[
E_0z = \left(1 - \frac{m^2}{W^2}\right)\left(W^2 - 1\right)^{1/2} - (1 - m^2)\sin^{-1}\left(\frac{1}{W}\right) + 2E\left(\sin^{-1}\frac{1}{W}\right) + C_2E_0
\]

where \(F(p, q)\) and \(E(p, q)\) are elliptic integrals of modulus \(q\) of the first and second kinds, respectively. The constants \(C_1, C_2,\) and \(m\) satisfy the equations

\[
C_1 - a = a + j\alpha - C_1 = [(1 - m^2)K(m) - 2E(m)]/E_0
\]

\[
bE_0 = -(1 + m^2)K[(1 - m^2)^{1/2}] + 2E[(1 - m^2)^{1/2}]
\]

where \(K\) and \(E\) are complete elliptic integrals of modulus \(m\).

49. An infinite conducting sheet at potential zero occupies the \(x = 0\) plane except for a groove or ridge whose section is a circular arc of radius \(b\) with its center at \(x = c\). This surface forms one boundary of a field \(E\) that extends to \(x = \infty\) and is uniform except near the groove or ridge. Show that the potential is the imaginary part of

\[
W = \frac{(b^2 - c^2)^{1/2}}{\alpha} \left[\frac{\pi E}{\sin \frac{\pi}{\alpha}} \right] \left[\frac{[z + j(b^2 - c^2)^{1/2}]^{1/2} - [z - j(b^2 - c^2)^{1/2}]^{1/2}}{\alpha}\right]
\]

where \(\cos \alpha = c/b\) and for a ridge \(0 < \alpha < \pi\) and for a groove \(\pi < \alpha < 2\pi\).

50. Show that in two-dimensional rectangular harmonics a solution of Laplace's equation is \(V = (A \sin mx + B \cos mx)(C \sin my + D \cosh my)\) when \(m\) is not equal to zero and \(V = (A + Bx)(C + Dy)\) when \(m = 0\).

51. The walls of an infinitely long conducting prism are given by \(x = 0, x = a\) and \(y = 0, y = b\). A line charge of strength \(q\) per unit length lies at \(x = c, y = d\), where \(0 < c < a\) and \(0 < d < b\). Show that the potential inside the prism is

\[
V' = \frac{2q}{\pi e} \sum_{m=1}^{\infty} \frac{1}{m} \frac{\csc \left(\frac{m\pi x}{a}\right)}{\sin \left(\frac{m\pi y}{a}\right)} \frac{\sin \left(\frac{m\pi x}{a}\right)}{\sin \left(\frac{m\pi d}{a}\right)} \frac{\sin \left(\frac{m\pi c}{a}\right)}{\sin \left(\frac{m\pi a}{a}\right)} \frac{\sin \left(\frac{m\pi x}{a}\right)}{\sin \left(\frac{m\pi y}{a}\right)}, \quad 0 < y < d
\]

\[
V'' = \frac{2q}{\pi e} \sum_{m=1}^{\infty} \frac{1}{m} \frac{\csc \left(\frac{m\pi x}{a}\right)}{\sin \left(\frac{m\pi y}{a}\right)} \frac{\sin \left(\frac{m\pi d}{a}\right)}{\sin \left(\frac{m\pi b}{a}\right)} \frac{\sin \left(\frac{m\pi c}{a}\right)}{\sin \left(\frac{m\pi a}{a}\right)} \frac{\sin \left(\frac{m\pi x}{a}\right)}{\sin \left(\frac{m\pi y}{a}\right)}, \quad d < y < b
\]
Show by (3.08 (2)) that the force per unit length is

\[
\frac{q^2}{\varepsilon} \sum_{m=1}^{\infty} \left[\frac{i}{b} \cosh \frac{mb^2}{a} \sinh \frac{m(2c-a)}{b} \sin \frac{m\pi d}{b} + \frac{j}{a} \cosh \frac{mb^2}{a} \sinh \frac{m(2d-b)}{a} \sin \frac{m\pi c}{a} \right]
\]

Note that, unless \(c \) and \(d \) are very small, this series converges rapidly.

52. Show that the set of three line charges \(q \) at \(z_{10}, q \) at \(z_{10}^+ \), and \(-q\) at the origin in the \(z_2\)-plane of Art. 4.261 transform into the undistorted field of a single line charge \(q \) at \(z_0 \) in the \(z_2\)-plane where \(z_0 = z_{10} + z_{10}^+ \).

53. Using the image law of 4.04 for a circular dielectric cylinder and the image law established in the last problem for the unit circle, find the conjugate functions giving the field when a line charge \(q \) is placed parallel to the axis of an elliptic dielectric cylinder \(K \). In the confocal coordinates of 4.261, the charge is at \(u_0, v_0 \) outside the cylinder whose surface is given by \(v_1 \). Obtain the result, inside the dielectric.

\[
W_i = \frac{-q}{\pi \varepsilon \varepsilon_0 (K + 1)} \sum_{n=0}^{\infty} \left(\frac{K-1}{K+1} \right)^n \ln \left(2 \left(\sin (u + jv) - \sin [u_0 \pm j(2n v_1 + v_0)] \right) \right)
\]

and outside, due to polarization alone,

\[
W_o = \frac{q}{2\pi \varepsilon \varepsilon_0} \left(\frac{K-1}{K+1} \right) \ln \left(1 - e^{i(u - u_0) + 2\pi i - \pi i - \pi i} \right)
\]

- \(\frac{4K}{(K + 1)^2} \sum_{n=1}^{\infty} \left(\frac{K-1}{K+1} \right)^n \ln \left(1 \pm e^{i(u - u_0) - (x + y + 2\pi n)} \right) \)

where the upper sign is taken when \(n \) is even and the lower when \(n \) is odd.

54. A line charge \(q \) is placed parallel to the generators of a parabolic dielectric cylinder. In terms of the parabolic coordinates \(y = 2\xi \eta \) and \(x = \xi^2 - \eta^2 \), where \(-\infty < \xi < +\infty \) and \(0 < \eta < \infty \), the coordinates of the charge are \(\xi_0 \) and \(\eta_0 \) and of the surface of the cylinder \(\eta_1 \). Show that inside the dielectric the transformation giving the field is

\[
W_i = \frac{-q}{\pi \varepsilon \varepsilon_0 (K + 1)} \sum_{n=0}^{\infty} \left(\frac{K-1}{K+1} \right)^n \ln \left((\xi + j\eta)^2 - (\xi_0 \pm j(\eta_0 + 2n \eta_1))^2 \right)
\]

and that outside, due to the polarization alone, it is

\[
W_o = \frac{q}{2\pi \varepsilon \varepsilon_0} \left(\frac{K-1}{K+1} \right) \ln \left(\xi - \xi_0 - j(2\eta_1 - \eta_0 - \eta) \right)
\]

- \(\frac{4K}{(K + 1)^2} \sum_{n=1}^{\infty} \left(\frac{K-1}{K+1} \right)^n \ln \left(\xi \mp \xi_0 + j[\eta + (\eta_0 + 2n \eta_1)] \right) \)

where the upper sign is taken when \(n \) is even and the lower when \(n \) is odd.

55. The cylinder \((x/a)^{2n} + (y/b)^{2n} = 1\) carries a charge \(-Q\) per unit length. Show by applying Gauss's theorem to the surface \(V = 0 \) that

\[
z = a \left(\cos \frac{2\pi e W}{Q} \right)^{1/2} + jb \left(\sin \frac{2\pi e W}{Q} \right)^{1/2}
\]

Then show by applying it to the cylinder \(r = \infty \) that the enclosed charge per unit length is \(nQ \). Hence the space outside the cylinder is charge free only when \(n \) is 1.
56. A conductor is bounded by \(\theta = \alpha, \theta = -\alpha, \) and \(r = 1 \) and carries a charge \(\pi \epsilon \) per unit length. Show that \(V \) is the potential function in the transformation
\[
\ln z = -2i\left\{ \frac{\sin^{-1} \frac{\pi \sin W}{\alpha(2\pi - \alpha)}}{\alpha(2\pi - \alpha)} + \frac{\pi - \alpha}{\pi} \tan^{-1} \frac{(\pi - \alpha) \sin W}{\alpha(2\pi - \alpha) - \alpha^2 \sin^2 W} \right\}
\]

57. An infinite conducting square prism with sides of width \(a \) carries a charge \(Q \) per unit length. Show that, if \(x \) is the distance from the center of any face, the charge density is given by the parametric equations
\[
\sigma = Q[F(\frac{1}{2}x, 2^{-1}) - E(\frac{1}{2}x, 2^{-1})](2\pi a \cos \phi)^{-1}
\]
\[
x = \frac{1}{2}[F(\phi, 2^{-1}) - E(\phi, 2^{-1})][F(\frac{1}{2}x, 2^{-1}) - E(\frac{1}{2}x, 2^{-1})]^{-1}
\]
where \(F \) and \(E \) are elliptic integrals of the first and second kinds.

58. Two conducting strips occupy the regions \(a < x < b \) and \(-a > x > -b \) in the \(y = 0 \) plane. Show that the capacitance per unit length between them is \(eK(m)/K(n) \) if \(K(k) \) is a complete elliptic integral of modulus \(k \), \(m \) is \((b^2 - a^2)^{\frac{1}{2}}/b \), and \(n \) is \(a/b \).

59. Show that the capacitance per unit length between two conducting strips, one in the \(z = b \) plane and one in the \(z = -b \) plane, whose edges lie at \(y = a \) and \(y = -a \), is \(eK(k')/K(k) \) where \(K(k') \) and \(K(k) \) are complete elliptic integrals whose moduli \(k' \) and \(k = (1 - k^2)^{\frac{1}{2}} \) must be chosen to satisfy the equation
\[
\frac{a}{b} = \frac{K(k')E[\cos^{-1}(E(k'/K(k'))], k'] - E(k')F[\cos^{-1}(E(k'/K(k'))], k']}{E(k')K(k) - (k/k')^2E(k)K(k')}
\]
A reasonably close trial value for \(k \) can be obtained from a rough estimate of \(C \).

60. The surface \(V = \pi \) is the negative \(x- \) and \(y- \) axis and the surface \(V = 0 \) is \(x = h \) when \(y < k \) and \(y = k \) when \(x < h \). Show that the transformation giving the field is
\[
\frac{1}{2}a = \tan^{-1}[k(e^W + 1)^{\frac{1}{2}}(h_k^W - k^2)^{-1}] - k \tan^{-1}[h(e^W + 1)^{\frac{1}{2}}(h_k^W - k^2)^{-1}]
\]
Show that the additional capacitance per unit length over what would exist, if the only fields between \(V = 0 \) and \(V = \pi \) were uniform and in the regions \(x < 0 \) and \(y < 0 \), is
\[
\frac{2e}{\pi} \left[\ln \frac{h_k^2 + k^2}{4hk} + \frac{k}{h} \tan^{-1} \frac{h}{k} \right]
\]

References

The author has found helpful treatments of the subject matter of this chapter in the following books:

Sokolnikoff, I. S., and E. S.: “Higher Mathematics for Engineers and Physicists,”
Solves some useful problems.
important examples in detail.
presentation of conjugate functions.
CHAPTER V
THREE-DIMENSIONAL POTENTIAL DISTRIBUTIONS

5.00. When Can a Set of Surfaces Be Equipotentials?—At first glance, one might think that the class of three-dimensional potential distributions in which there is symmetry about an axis could be obtained by rotation of a section of a two-dimensional distribution provided that, in so doing, the boundaries in the latter case generated the boundaries in the former. This is not true in general. We shall now find the condition that a set of nonintersecting surfaces in space must satisfy in order to be a possible set of equipotential surfaces. Let the equation of the surfaces be

$$F(x, y, z) = C$$

(1)

Since one member of the family corresponds to each value of C, if it is to be an equipotential, we must have one value of V for each value of C, so that

$$V = f(C)$$

must satisfy Laplace's equation. Differentiating results in

$$\frac{\partial V}{\partial x} = f'(C) \frac{\partial C}{\partial x}, \text{ etc.,} \quad \frac{\partial^2 V}{\partial x^2} = f''(C) \left(\frac{\partial C}{\partial x} \right)^2 + f'(C) \frac{\partial^2 C}{\partial x^2}, \text{ etc.}$$

Substituting in Laplace's equation gives

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = f''(C) \nabla C^2 + f'(C) \nabla^2 C = 0$$

giving

$$\frac{\nabla^2 C}{\nabla C^2} = \frac{f''(C)}{f'(C)} = \Phi(C)$$

(2)

The condition then that the surface $F(x, y, z) = C$ can be an equipotential is that $\nabla^2 C/\nabla C^2$ can be a function of C only.

By integration of (2), we can now obtain the actual potential. Since $f''(C)/f'(C) = d[\ln f'(C)]/dC$, we have

$$\int \Phi(C) \, dC = - \ln [f'(C)] + A'$$

or

$$f'(C) = A e^{-\int \Phi(C) \, dC}$$

Integrating again gives

$$V = f(C) = A \int e^{-\int \Phi(C) \, dC} \, dC + B$$

(3)
The constants A and B can be determined by specifying the values of the potential on any two of the surfaces given by (1).

5.01. Potentials for Confocal Conicoids.—As an application of the formula just derived, we shall now show that any one of the three sets of nonintersecting confocal conicoids, given by the equation

$$\frac{x^2}{a^2 + \theta} + \frac{y^2}{b^2 + \theta} + \frac{z^2}{c^2 + \theta} = 1$$

where $c > b > a$ and $-c^2 < \theta < \infty$, is a possible set of equipotential surfaces. To get a picture of these surfaces, let us vary θ over the given range. For the range $-a^2 < \theta < \infty$, every term in (1) is positive so that it represents an ellipsoid. When $\theta = \infty$, we have a sphere of infinite radius, and when $\theta = -a^2$, the ellipsoid is flattened to an elliptical disk lying in the yz-plane. When θ passes from $-a^2 + \delta$ to $-a^2 - \delta$, we pass from the region of the yz-plane inside the disk to that outside. The latter is one limiting case of the hyperboloid of one sheet which (1) represents when $-b^2 < \theta < -a^2$. When $\theta = -b^2$, the hyperboloid of one sheet is flattened into that region of the xz-plane which includes the x-axis and lies between the hyperbolas cutting the z-axis at

$$z = \pm (c^2 - b^2)^{1/2}.$$

When θ passes from $-b^2 + \delta$ to $-b^2 - \delta$, we pass to the region of the xz-plane on the other side of these hyperbolas which is the limiting case in which the hyperboloid of two sheets, represented by (1) when $-c^2 < \theta < -b^2$, is flattened into the xz-plane. When $\theta = -c^2$, we have the other limiting case in which the two sheets of this hyperboloid coalesce in the xy-plane. Thus one curve of each set passes through each point in space; and, since it can be shown that the three sets are orthogonal, we can apply to them the theory developed in 3.04 for orthogonal curvilinear coordinates which leads to ellipsoidal harmonics. The latter are too complicated to be treated here, although later we shall treat the special cases of spheroidal harmonics.

To return to our problem: Let

$$M_n = \frac{x^2}{(a^2 + \theta)^n} + \frac{y^2}{(b^2 + \theta)^n} + \frac{z^2}{(c^2 + \theta)^n}$$

and

$$N = \frac{1}{a^2 + \theta} + \frac{1}{b^2 + \theta} + \frac{1}{c^2 + \theta}$$

With this notation, (1) becomes $M_1 = 1$, and differentiating this we have

$$\frac{2x}{a^2 + \theta} - M_2 \frac{\partial \theta}{\partial x} = 0 \quad \text{or} \quad \frac{\partial \theta}{\partial x} = \frac{2x}{M_2(a^2 + \theta)},$$

so that

$$(\nabla \theta)^2 = \left(\frac{\partial \theta}{\partial x} \right)^2 + \left(\frac{\partial \theta}{\partial y} \right)^2 + \left(\frac{\partial \theta}{\partial z} \right)^2 = 4 \frac{M_2}{M_2^2} = \frac{4}{M_2}$$

(1.1)
Differentiating again gives
\[
\frac{\partial^2 \theta}{\partial x^2} = \frac{2}{M_x(a^2 + \theta)} \left(\frac{2x}{M_x(a^2 + \theta)^2} \frac{\partial \theta}{\partial x} - \frac{2x}{a^2 + \theta} \frac{1}{M_x^2} \left(\frac{2x}{(a^2 + \theta)^2} - 2M_x \frac{\partial \theta}{\partial x} \right) \right)
\]
\[
= \frac{2}{M_x(a^2 + \theta)} - \frac{2x^2}{M_x^2(a^2 + \theta)^3} - \frac{2x^2}{M_x^2(a^2 + \theta)^3} + \frac{8x^2 M_x}{(a^2 + \theta)^3 M_x^2} \text{ etc.}
\]

Adding similar expressions for \(y\) and \(z\) gives
\[
\nabla^2 \theta = \frac{2N}{M_x} - \frac{8M_y}{M_x^2} + \frac{8M_z M_x}{M_x^2} = \frac{2N}{M_x}
\]

Substituting in (5.00) (2), we have
\[
\frac{\nabla^2 \theta}{(\nabla \theta)^2} = \frac{2N}{M_x} \cdot \frac{M_x}{4} = \frac{N}{2} \quad \text{so} \quad \Phi(\theta) = \frac{1}{2} \left(\frac{1}{a^2 + \theta} + \frac{1}{b^2 + \theta} + \frac{1}{c^2 + \theta} \right)
\]

This proves that such a set of equipotentials is possible. We now find

the potential by (5.00) (3) to be
\[
V = A \int_0^\theta [(a^2 + \theta)(b^2 + \theta)(c^2 + \theta)]^{-1} d\theta + B
\]

This is an elliptic integral given by Peirce 542 to 549 with \(x = -\theta\).

The constants \(A\) and \(B\) may be taken real or imaginary, whichever makes \(V\) real.

5.02. Charged Conducting Ellipsoid.—If we choose \(V = 0\) when \(\theta = \infty\), 5.01 (3) takes the form
\[
V = -A \int_0^\theta [(a^2 + \theta)(b^2 + \theta)(c^2 + \theta)]^{-1} d\theta
\]

If we choose \(V = V_0\) when \(\theta = 0\) then, substituting in (1) gives
\[
-A = V_0 \left\{ \int_0^\theta [(a^2 + \theta)(b^2 + \theta)(c^2 + \theta)]^{-1} d\theta \right\}^{-1}
\]

The field at infinity due to this ellipsoid, if its total charge is \(Q\), will be \(Q/(4\pi \varepsilon r^2)\). We see from 5.01 (1) that as \(\theta \to \infty\), \(x^2 + y^2 + z^2 = r^2 \to \theta\), and so \(\partial \theta / \partial r \to 2r\) giving
\[
\frac{\partial V}{\partial r} \quad \to \quad \frac{\partial V}{\partial \theta} \frac{\partial \theta}{\partial r} = \frac{A}{r^3} \cdot 2r = \frac{2A}{r^2}
\]

Hence
\[
8\pi \varepsilon A = -Q
\]

The capacitance of the ellipsoid is, from (2),
\[
C = \frac{Q}{V_0} = -\frac{8\pi \varepsilon A}{V_0} = \frac{8\pi \varepsilon}{V_0} \left\{ \int_0^\theta [(a^2 + \theta)(b^2 + \theta)(c^2 + \theta)]^{-1} d\theta \right\}^{-1}
\]

The surface density is given by
\[
\sigma = -\varepsilon |\nabla V|_{\theta = 0} = -\varepsilon \left(\frac{\partial V}{\partial \theta} \right)_{\theta = 0}
\]
From (1), \((\partial V/\partial \theta)_{\theta=0} = A(abc)^{-1}\) and, from 5.01 (1.1), \(|\nabla \theta| = 2Mz^{-1}\) so that
\[
\sigma = \frac{Q}{4\pi abc} \left(\frac{x^2}{a^4} \right) = \frac{Q}{4\pi bc} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \right)^{-1} \tag{5}
\]

§5.03. Elliptic and Circular Disks.—The capacitance of an elliptic disk, obtained by putting \(a = 0\) in 5.02 (4), is still an elliptic integral. To get the surface density, we write 5.02 (5) in the form
\[
\sigma = \frac{Q}{4\pi bc} \left(1 - \frac{y^2}{b^2} - \frac{z^2}{c^2} \right)^{-1} \tag{1}
\]

Now let \(a \to 0\), and the terms involving \(y\) and \(z\) can be neglected. Since both \(x\) and \(a\) are zero, the first term must be evaluated from 5.01 (1) where \(\theta\) is put equal to zero, giving
\[
\sigma = \frac{Q}{4\pi bc} \left(\frac{y^2}{b^2} + \frac{z^2}{c^2} \right)^{-1} \tag{2}
\]

The capacitance of a circular disk is obtained by putting \(a = 0\) and \(b = c\) in 5.02 (4), giving by \(Pc 114\) or \(Dw 186.11\)
\[
C = 8\pi \left[\int_0^\infty \frac{\theta^{-1}(b^2 + \theta)^{-1}d\theta}{b} \right] = 8\pi b \left(\frac{2}{b} \tan^{-1} \frac{\theta}{b} \right) \left(\frac{\theta}{b} \right)^{-1} = 8\pi b \tag{3}
\]
Letting \(\rho^2 = y^2 + z^2\) and \(b = c\) in (1), the surface density on each side is
\[
\sigma = \frac{Q}{4\pi b(b^2 - \rho^2)^{1/2}} \tag{4}
\]

The potential due to such a disk given by 5.02 (1) with \(a = 0\) and \(b = c\) is
\[
V = \frac{2V_0}{\pi} \left(\frac{1}{2\pi} - \tan^{-1} \frac{\theta}{b} \right) = \frac{2V_0}{\pi} \tan^{-1} \frac{b}{\theta} \tag{5}
\]
Putting in the value of \(\theta\) obtained by letting \(r^2 = x^2 + y^2 + z^2\), \(a = 0\), and \(b = c\) in 5.01 (1) gives
\[
V = \frac{2V_0}{\pi} \tan^{-1} \left(\frac{2b\{r^2 - b^2 + [(r^2 - b^2)^2 + 4b^2x^2]\}^{-1}}{b} \right) \tag{6}
\]

This problem can also be solved by oblate spheroidal harmonics (5.271).

5.04. Method of Images. Conducting Planes.—An application of the test of 5.00 shows that in no case involving more than one point charge can we obtain the potential from the analogous two-dimensional case. Nevertheless, two of the methods used in such cases can also be applied to three-dimensional problems. One of these is the method of images. Any case in which the equation of a closed conducting surface under the influence of a point charge can be expressed in the form
\[
0 = \sum_{s=1}^{n} \frac{q_s}{r_s} \tag{7}
\]
§5.05 PLANE BOUNDARY BETWEEN DIELECTRICS

where \(r \) is the distance from \(q \) to any point \(P \) on the surface and \(r_s \) is the distance from some point \(s \) on the other side of the surface to \(P \) can be solved by the method of images. We shall consider only simple spherical and plane surfaces. It is evident from symmetry that a single infinite conducting plane or two such planes intersecting in the \(z \)-axis at an angle \(\pi/m \) under the influence of a single point charge \(q \) in the \(xy \)-plane can be solved by locating point images in the \(xy \)-plane at the same places as in the two-dimensional case shown in Fig. 4.06. Adding up the potentials due to the point charge \(q \) and its point images gives exactly the same potential \(V \) in the region between the intersecting planes as would be obtained by adding up the potentials due to the charge \(q \) and the equal and opposite induced charge distributed over the planes. Hence we can determine this induced surface density \(\sigma \) on the conductor by finding \(-\varepsilon \partial V/\partial n \) on the plane to be replaced by the conductor. In the case of a point charge \(q \) at a distance \(a \) from an earthed conducting plane from 1.14, and 1.16 (1), the induced density at \(P \) is

\[
\sigma = -\frac{aq}{2\pi r^3} \tag{1}
\]

where \(r \) is the distance from \(q \) to \(P \). From 2.17, we know that whatever the actual distribution of charges in the space separated from \(q \) by the earthed plane this cannot affect \(\sigma \) on the side facing \(q \).

5.05. Plane Boundary between Dielectrics.—Since the case of a uniform line charge parallel to the plane face bounding two dielectrics may be considered as built up of equal point charges uniformly spaced along the line and since the images can be built up in the same way, it is plausible to suppose that the same image law holds in both cases.

Let the relative capacitivities of regions of positive and negative \(z \) be \(K_1 \) and \(K_2 \), respectively. Consider any configuration of charges in dielectric \(K_1 \) whose potential, with no dielectric present, would be given by

\[
V_{\text{vac}} = f(x, y, z)
\]

so that, if only \(K_1 \) were present, it would be, from 1.06 (3),

\[
V_1 = \frac{1}{K_1} f(x, y, z)
\]

The potential of an image in the \(z = 0 \) plane would be

\[
V_i = C_1 f(x, y, -z)
\]

The law of images of 4.04 suggests that when \(K_2 \) is present the fields in \(K_1 \) and \(K_2 \) should have the forms

\[
V_1 = \frac{1}{K_1} f(x, y, z) + C_1 f(x, y, -z) \tag{1}
\]
THREE-DIMENSIONAL POTENTIAL DISTRIBUTIONS §5.06

and

\[V_2 = C_2 f(x, y, z) \] (2)

When \(z = 0 \), \(V_1 = V_2 \) and \(K_1 \partial V_1 / \partial z = K_2 \partial V_2 / \partial z \) from 1.17 (5) so that

\[1 + K_1 C_1 = K_1 C_2 \quad \text{and} \quad 1 - K_1 C_1 = K_2 C_2 \]

solving and substituting in (1) and (2), we have

\[V_1 = \frac{1}{K_1} \left[f(x, y, z) + \frac{K_1 - K_2}{K_1 + K_2} f(x, y, -z) \right] \] (3)

and

\[V_2 = \frac{2}{K_1 + K_2} f(x, y, z) \] (4)

Referring again to 1.06 (3), we see that if we have an actual charge \(q \) at \(P_1 \) in \(K_1 \), then the field in \(K_1 \) is the same as if the whole region were occupied by \(K_1 \) and we had an additional charge \(q' \) at the image point \(P_2 \), and the field in \(K_2 \) is that which would exist if the whole region were occupied by dielectric \(K_n \) and there were only a charge \(q'' \) at \(P_h \) where

\[q' = \frac{K_1 - K_2}{K_1 + K_2} q \quad \text{and} \quad q'' = \frac{2K_n}{K_1 + K_2} q \] (5)

For calculating the field the choice of \(K_n \) is immaterial but all authors take \(K_1, 1 \) or \(K_2 \). We use \(K_1 \).

5.06. Image in Spherical Conductor.—We saw in 4.05 that the cylinder \(\rho = a \) is an equipotential under the influence of a line charge \(q \) at \(\rho = b \) and a second line charge \(-q\) at \(\rho = +a^2/b \). Likewise we shall now see that it is possible to have the sphere \(r = a \) at zero potential with a point charge \(q \) at \(r = b \) and a point charge \(q' \) at \(r = a^2/b \), and we shall determine \(q' \), which does not, as in the two-dimensional case, equal \(-q\). The potential \(V' \) at \(r = a \) due to \(q' \) is, from Fig. 5.06,

\[4\pi \varepsilon V' = q'(a^2 b^{-2} + a^2 - 2a^2 b^{-1} \cos \theta)^{-1} = ba^{-1}q'(a^2 + b^2 - 2ab \cos \theta)^{-1} = ba^{-1}R^{-1}q' \]

The potential at \(r = a \) due to \(q \) is \(q/(4\pi R) \). In order that the sphere be at zero potential, these must be equal and opposite, giving

\[q' = -\frac{aq}{b} \] (1)

The potential at any point is then

\[V = (4\pi \varepsilon)^{-1} q[(r^2 + b^2 - 2br \cos \theta)^{-1} - a(b^2 \pi^2 + a^4 - 2a^2 br \cos \theta)^{-1}] \] (2)

The surface density on the sphere will be

\[\sigma = -\varepsilon \left(\frac{\partial V}{\partial r} \right)_{r=a} = \frac{q}{4\pi} \left[\frac{a - b \cos \theta}{R^3} - \frac{b(b - a \cos \theta)}{a R^3} \right] = \frac{a^2 - b^2}{4\pi a R^3} q \] (3)
We can evidently raise the potential of the sphere to any desired value V by adding the potential due to a point charge q at the center where

$$q = 4\pi \varepsilon a V$$

(4)

If we wish the field between a point charge q and a conducting sphere having a total charge Q, we need only add to (2) the potential due to a charge $Q + aq/b$ at the center.

We find that there is not, as in the analogous two-dimensional case, a simple image solution for the dielectric sphere and the point charge. We shall have to use spherical harmonics to solve this problem.

5.07. Example of Images of Point Charge.—As an example illustrating the last three articles, let us locate the images in the case where the earthed conductor consists of a plane sheet, lying in the yz-plane with a spherical boss of radius a centered at the origin, and the region below the xz-plane is filled with a material of relative capacititivity K. The point charge q lies at x_o, y_o, z_o and $x_o^2 + y_o^2 + z_o^2 = b^2$. To locate the required images, we complete the boundaries with dotted lines as shown in Fig. 5.07. For the field above the xz-plane, the potential can be found by superimposing that due to the original charge plus seven images located as follows:

- q at x_o, y_o, z_o
- $-q$ at $-x_o, y_o, z_o$
- $-aq/b$ at $\left(\frac{a}{b}\right)^2 x_o, \frac{a}{b} y_o, \left(\frac{a}{b}\right)^2 z_o$
- aq/b at $-\left(\frac{a}{b}\right)^2 x_o, \frac{a}{b} y_o, \left(\frac{a}{b}\right)^2 z_o$
- q' at $x_o, -y_o, z_o$
- $-q'$ at $-x_o, -y_o, z_o$
- $-aq'/b$ at $\left(\frac{a}{b}\right)^2 x_o, -\frac{a}{b} y_o, \left(\frac{a}{b}\right)^2 z_o$
- aq'/b at $-\left(\frac{a}{b}\right)^2 x_o, -\frac{a}{b} y_o, \left(\frac{a}{b}\right)^2 z_o$

where, from 5.05 (5),

$$q' = \frac{1 - K}{1 + K} q$$

Below the xz-plane, in the dielectric, the potential can be obtained using only the images above the xz-plane and substituting q'' for q where, from 5.05 (1),

$$q'' = \frac{2q}{1 + K}$$

A section of the conductor by the xy-plane together with a projection of the images upon this plane is shown in Fig. 5.07.
5.08. Infinite Set of Images. Two Spheres.—Frequently, it is impossible to get equipotentials of the desired shape by any arrangement of a finite number of point charges. In some cases, however, one surface can be made an equipotential by some interior configuration of point charges. Then, by a suitable arrangement of image charges, the other surfaces may be made equipotentials, at the same time, however, distorting the first surface. By a third set of images, the latter is restored to its original shape at the expense of the other surfaces, and so forth. If, because they become more remote or grow smaller or tend to cancel each other, the effect of each successive group of images diminishes, we may get as close an approximation to the exact solution as we wish by taking enough of them.

![Diagram](image-url)

Fig. 5.08.

This method can be used to find the self- and mutual capacitances for two spheres. Let the radii of spheres 1 and 2 be \(a\) and \(b\), and let the distances between their centers be \(c\). From 2.16, the coefficient \(c_{11}\) is the charge on 1 and \(c_{12}\) that on 2, when 2 is grounded and 1 is raised to unit potential. By interchanging \(a\) and \(b\) in \(c_{11}\), we can obtain \(c_{22}\).

The two cases, when \(c < (b - a)\) and when \(c > (b + a)\), are shown in Figs. 5.08a and 5.08b, respectively. In these figures, \(m = a/c\) and \(n = b/c\).

First, we put sphere 1 at unit potential by placing a charge \(q = 4\pi ea\) at its center \(O'\). We then put 2 at zero potential by placing an image \(q' = -4\pi eab/c = -4\pi ena\) [see 5.06 (1)] at a distance \(b^2/c = nb\) to the left of \(O\). Next, we restore 1 to unit potential with the image

\[
q'' = \frac{+aq'}{(c - nb)} = \frac{+4\pi emna}{(1 - n^2)}
\]

at a distance \(a^2/(c - nb) = ma/(1 - n^2)\) to the right of \(O'\) and then restore 2 to zero potential by placing an image

\[
q''' = \frac{-bq''}{c - ma/(1 - n^2)} = \frac{-4\pi en^2a}{(1 - m^2 - n^2)}
\]
at the proper distance from O, and so forth. We note that the size of each successive image decreases so that we are approaching the exact solution. Adding up the charges on 1 gives

$$c_{11} = 4\pi\varepsilon_0 \left[1 + \frac{mn}{1 - n^2} + \frac{m^2 n^2}{(1 - n^2)^2 - m^2} + \cdots \right]$$

(1)

where the upper sign refers to case b. Adding up the charge on 2 gives, in case b,

$$c_{12} = 4\pi\varepsilon_0 \left[-n a - \frac{mn^2 a}{1 - n^2 - m^2} - \cdots \right]$$

(2)

In case a, from 2.17, $c_{12} = -c_{11}$. From symmetry, we can write down, in case b,

$$c_{22} = 4\pi\varepsilon_0 \left[1 + \frac{mn}{1 - m^2} + \frac{m^2 n^2}{(1 - m^2)^2 - n^2} + \cdots \right]$$

(3)

In case a, c_{22} is of no importance.

From 2.20 (6), the force of attraction between the two spheres will be, since $V_2 = O$,

$$F = \frac{V_1^2}{2} \frac{\partial c_{11}}{\partial c} = -4\pi\varepsilon_0 V_1^2 \left\{ \frac{mn}{(1 - n^2)^2} + \frac{m^2 n^2 [2(1 - n^2) - m^2]}{[(1 - n^2)^2 - m^2]^2} + \cdots \right\}$$

(4)

If we wish the potential at any point P, we must add up the potentials at P due to each of the image charges. If the spheres are at potentials V_1 and V_2 where $V_2 \neq 0$, we shall have, in case b, a second set of images, for we must now start with a charge $q_1 = 4\pi\varepsilon_0 V_1$ at the center of 1 and $q_2 = 4\pi\varepsilon_0 b V_2$ at the center of 2. The sizes and positions of the second set of images can be obtained by interchanging O and O' and a and b in the values for the first set.

5.081 Difference Equations. Two Spheres.

The formulas of the last article are not very convenient for precise calculation unless m and n are small. Better formulas, involving hyperbolic functions, can be obtained by getting the general relation between successive images and then solving the resulting difference equation. Let us designate the nth image in 1 by q_n so that the initial charge at its center is $q_1 = 4\pi\varepsilon_0 a$ and the image of q_n in 2 by p_n. In Fig. 5.08, the distance from O' to q_n is s_n and that from O to p_n is r_n. Then, using lower signs for case a and upper for case b, we have

$$p_n = \frac{-b q_n}{c + s_n}, \quad r_n = \frac{b^2}{c + s_n}$$

(1)

$$q_{n+1} = \frac{\pm a p_n}{c - r_n} = \frac{\pm ab q_n}{c(c + s_n) - b^2}$$

(2)

$$s_{n+1} = \frac{\pm a^2}{c - r_n} = \frac{\pm a^2(c + s_n)}{c(c + s_n) - b^2} = \frac{a q_{n+1}}{b} q_n(c + s_n)$$

(3)
Eliminating \(c \mp s_n \) from (2) and (3), we have
\[
\pm \frac{q_n}{q_{n+1}} = \frac{c}{a^2} q_{n-1} q_{n+1} s_{n+1} - \frac{b}{a}
\]
so that
\[
\pm \frac{q_{n-1}}{q_{n}} = \frac{c}{a^2} q_{n-1} q_{n} s_{n} - \frac{b}{a} \tag{4}
\]
Eliminating \(s_n \) from (2) and (4) rearranging give
\[
\frac{1}{q_{n+1}} + \frac{1}{q_{n-1}} = \pm \frac{c^2 - a^2 - b^2}{ab} \frac{1}{q_n} \tag{5}
\]
This is known as a difference equation of the second order with constant coefficients. The general method of solution is to substitute \(1/q_n = u^n \), divide through by \(u^{n-1} \), and solve the resultant quadratic equation for \(u \) algebraically. If the two solutions are \(u_1 \) and \(u_2 \), the solution of the difference equation is
\[
\frac{1}{q_n} = A u_1^n + B u_2^n \tag{6}
\]
where \(A \) and \(B \) are to be determined by the terminal conditions. The present equation is specially simple because the coefficients of \(1/q_{n+1} \) and \(1/q_{n-1} \) are the same. Comparing with Dw 651.03 and 651.04 or Pc 660 and 671, which give
\[
\sinh (n + 1)\theta + \sinh (n - 1)\theta = 2 \cosh \theta \sinh n\theta \\
\cosh (n + 1)\theta + \cosh (n - 1)\theta = 2 \cosh \theta \cosh n\theta
\]
we see that a solution of (5) is
\[
\frac{1}{q_n} = A \cosh n\alpha + B \sinh n\alpha \tag{7}
\]
if we choose
\[
\cosh \alpha = \pm \frac{c^2 - a^2 - b^2}{2ab} \tag{8}
\]
To evaluate \(A \) and \(B \), let us write down for the first two images
\[
\frac{1}{q_1} = \frac{1}{4\pi \varepsilon a} = A \cosh \alpha + B \sinh \alpha \\
\frac{1}{q_2} = \pm \frac{c^2 - b^2}{ab} \frac{1}{4\pi \varepsilon a} = \left(2 \cosh \alpha \pm \frac{\alpha}{b}\right) \frac{1}{4\pi \varepsilon a} = A \cosh 2\alpha + B \sinh 2\alpha
\]
Multiply the first of these equations by \(2 \cosh \alpha \) so that it can be written in terms of \(\cosh 2\alpha \) and \(\sinh 2\alpha \), and solve for \(A \) and \(B \), and we have
\[
A = \mp \frac{1}{4\pi \varepsilon b} \quad B = \frac{b \pm \alpha \cosh \alpha}{4\pi \varepsilon ab \sinh \alpha} \tag{9}
\]
Substituting in (7) and using Dw 651.01 or Pc 660, we have
\[
\frac{1}{q_n} = \frac{b \sinh n\alpha \pm a \sinh (n - 1)\alpha}{4\pi \varepsilon ab \sinh \alpha} \tag{10}
\]
Adding the charges on 1 then gives

\[c_{11} = 4\pi e ab \sinh \alpha \sum_{n=1}^{\infty} [(b \sinh n\alpha \pm a \sinh (n-1)\alpha)^{-1} \]

where the lower sign refers to case \(a \) (Fig. 5.08a) and the upper to case \(b \) (Fig. 5.08b). In case \(a \), from 2.17, \(c_{12} = -c_{11} \). In case \(b \), to get \(c_{12} \), we must determine \(p_n \). Taking the upper signs and eliminating \(c - s_n \) from (1) and (2), we have

\[\frac{-1}{p_n} = \frac{a}{c q_{n+1}} + \frac{b}{c q_n} \]

Substituting for \(1/q_{n+1} \) and \(1/q_n \) from (10), using (8) and \(D_w 651.06 \), we have

\[\frac{1}{p_n} = -\frac{c \sinh n\alpha}{4\pi e ab \sinh \alpha} \]

so that adding up the charges on 2 gives

\[c_{12} = -\frac{4 \pi e ab \sinh \alpha}{c} \sum_{n=1}^{\infty} \text{csch } n\alpha \]

We can write down \(c_{22} \) from (11) for case \(b \), by symmetry, thus:

\[c_{22} = 4\pi e ab \sinh \alpha \sum_{n=1}^{\infty} [a \sinh n\alpha + b \sinh (n-1)\alpha]^{-1} \]

5.082. Sphere and Plane and Two Equal Spheres.—A special case of some interest is that of a plane and a sphere. We can get this case by letting \(d + c = b \to \infty \) in case \(a \) or \(c - d = b \to \infty \) in case \(b \), where \(d \) is the distance from the plane to the center of sphere 1. In either case, \(n \to 1 \), \(m \to 0 \), and \(m/|1 - n| = a/d \) so that we have

\[c_{11} = 4\pi e a \left(1 + \frac{a^2}{2d} + \frac{a^2}{4d^2 - a^2} + \cdots \right) = 4\pi e a \sinh \alpha \sum_{n=1}^{\infty} \text{csch } n\alpha \]

where \(d = a \cosh \alpha \) and \(a \) is negligible compared with \(b \). In either case, \(c_{12} = -c_{11} \). In the case of the sphere and the plane, the force is

\[F = \frac{V_1^2}{2} \frac{\partial c_{11}}{\partial d} = -2\pi e a^2 V_1^2 \left\{ \frac{1}{2d^2} + \frac{8ad}{(4d^2 - a^2)^2} + \cdots \right\} = 2\pi e V_1^2 \sum_{n=1}^{\infty} [\text{csch } n\alpha(\coth \alpha - n \coth n\alpha)] \]

In the case of two equal spheres of radius \(a \) at a distance \(c \) apart, the formulas of 5.081 are somewhat simplified by writing in terms of
\[\beta = \frac{1}{2} \alpha \] where, setting \(a = b \), we have, by \(Dw \) 652.6 or \(Pc \) 667,

\[\cosh \beta = \left[\frac{1}{2}(1 + \cosh \alpha) \right]^\frac{1}{2} = \frac{c}{2a} \]

(3)

In terms of \(\beta \), 5.081 (11) becomes, setting \(a = b \),

\[c_{11} = c_{22} = 4\pi e a \sinh \beta \sum_{n=1}^{\infty} \frac{1}{\cosh (2n - 1)\beta} \]

(4)

and 5.081 (13) becomes

\[c_{12} = -4\pi e a \sinh \beta \sum_{n=1}^{\infty} \frac{1}{\cosh 2n\beta} \]

(5)

5.09. Inversion in Three Dimensions. Geometrical Properties.—We have already seen in 4.21 that if, in a plane, we draw a circle of radius \(K \) about the origin and then draw a radial line outward from its center, any two points on this line, distant \(r \) and \(r' \) from the origin, are said to be inverse points if

\[rr' = K^2 \]

(1)

In 4.21, the circle represented a section of a cylinder, but it can just as well represent a principal section of a sphere. Thus for every point of any surface in space there corresponds an inverse point, and the surface formed by these inverse points is said to be the inverse surface. If the equation, in spherical polar coordinates, of the original surface was \(f(r, \theta, \phi) \), then the equation of the inverse surface is \(f(K^2/r, \theta, \phi) \). We proved in 4.21 that straight lines invert into circles lying in the same plane and passing through the center of inversion, and vice versa, whereas circles not passing through the origin invert into circles. Hence, in the present case, planes invert into spheres passing through the center of inversion and spheres not passing through the center of inversion invert into spheres. Since, in 4.21, we arrived at the laws of inversion by a conformal transformation, we know that angles of intersection are not altered by inversion. It is evident from this that when a small cone of solid angle \(d\Omega \) with its vertex at the origin cuts out area elements \(dS \) and \(dS' \) from the surface \(S \) and its inverse surface \(S' \), the angle \(\theta \) between the axis of the cone and the area elements in the same, so that

\[\frac{dS}{dS'} = \frac{r^2 d\Omega \cos \theta}{r'^2 d\Omega \cos \theta} = \frac{r^2}{r'^2} \]

(2)

5.10. Inverse of Potential and Image Systems.—We shall now show that it is possible to formulate laws for the inversion of electrical quantities such that we can obtain from the solution of a problem with a certain boundary surface the solution of a second problem with the inverse boundary surface.
Consider Fig. 5.10 in which P', R', and Q' are the inverse points of P, R, and Q, respectively, and O is the center of inversion. Then a charge q at P gives a potential $V = \frac{q}{4\pi \epsilon PQ}$ at Q, and a charge q' at P' will produce a potential $V' = \frac{q'}{4\pi \epsilon P'Q'}$ at Q'. Triangles $OQ'P'$ and OPQ are similar since $K^2 = OP \cdot OP' = OQ \cdot OQ'$, and the included angle of both is α. The necessary relation between the potential V at Q before inversion to the potential V' at Q' after inversion is then

$$\frac{V'}{V} = \frac{q'}{q} \frac{PQ}{P'Q'} = \frac{q'}{q} \frac{OP}{OQ'}$$

In order to make this relation useful, we must find a suitable law for the inversion of charges. It was shown in 5.06 that a sphere of radius K is at zero potential under the influence of a charge q at $r = b$ and a charge $|q'| = +K|q|/b$ at $r' = K^2/b$ which is the inverse point. If the sphere is to remain at zero potential after inversion about itself, which will interchange the charges, the law of inversion of charges must be

$$\frac{q'}{q} = \frac{K}{b} = \frac{K}{OP} = \frac{OP'}{K}$$

We give the ratio the positive sign because we wish the inversion of charge to leave its sign unchanged. Substituting this value in the equation for the inversion of potential, we have the relation

$$\frac{V'}{V} = \frac{K}{OP} \frac{OP}{OQ'} = \frac{K}{OQ} = \frac{OQ}{K}$$

This shows that $V' = 0$ if $V = 0$ provided OQ is finite, which means that if any surface is at zero potential under the influence of point charges q_1, q_2, \ldots, q_n at P_1, P_2, \ldots, P_n, which are at finite distances, not zero, from the center of inversion, then the inverse surface will be at zero potential under the influence of the inverse charges q'_1, q'_2, \ldots, q'_n at P'_1, P'_2, \ldots, P'_n. The qualification is necessary since (1) does not provide for inverting charges when OP is zero or infinite. It also follows from this rule that if any problem can be solved by images, the inverse problem can also be solved by images.

5.101. Example of Inversion of Images.—Let us now compute the force acting on a point charge q placed in the plane of symmetry at P at a distance b from the point of contact of two earthed spheres of radius a. Clearly, the two spheres can be obtained by inverting the system of planes shown in Fig. 5.101a. Taking the circle of inversion, shown dotted, tangent to the planes simplifies the computation. Before inver-
sion, the potential at \(P' \) due to the images alone is

\[
V' = \frac{1}{2\pi \varepsilon} \sum_{n=1}^{\infty} (-1)^n \frac{q'}{4na} = -\frac{q'}{8\pi \varepsilon a} \ln 2
\]

The field of the images has a neutral point at \(P' \) so that the value \(V'_p \) of \(V' \) inside a circle of radius \(\delta' \) around \(P' \) is constant if terms in \(\delta'^n \) are neglected when \(n > 1 \). Thus inversion by 5.10 (2) gives the potentials at

\[
\begin{align*}
V_b' &= \frac{2a}{b} V'_p, \\
V_{b+\delta}' &= \frac{2a}{b+\delta} V'_p \\
&\approx V_b - \frac{2a\delta}{b^2} V'_p
\end{align*}
\]

From 5.10 (1), \(q' \) inverts into \(2aq/b \) so that the force on \(q \) is

\[
F = qE = \lim_{\delta \to 0} \frac{q(V_b - V_{b+\delta})}{\delta} = -\frac{aq^2}{2\pi \varepsilon b^3} \ln 2
\]

5.102. Inversion of Charged Conducting Surface.—Let us now consider a conducting surface \(S \) charged to potential \(1/K \), which produces a surface density \(\sigma \), and let \(Q \) be any point on this surface. From 5.10 (2), the potential at the corresponding point \(Q' \) on the inverse surface \(S' \) is \(V'_q = 1/OQ' \). Since the potential at \(Q' \) due to a negative charge \(4\pi \varepsilon \) at \(O \) is \(-1/OQ'\), it is clear that we can make the potential over the inverse surface everywhere zero by superimposing the potential due to such a charge. Reversing the procedure, we have the useful rule that, if we can solve the problem of a conductor at potential zero under the influence of a positive charge \(4\pi \varepsilon \), then we obtain by inversion, with this charge as a center, the solution of the problem of the inverse conducting surface raised to a potential \(-K^{-1}\).
§5.11 THREE-DIMENSIONAL HARMONICS

For the inversion of the surface density at P, we have, from 5.09 (1) and (2) and 5.10 (1), the relation

\[
\frac{\sigma'}{\sigma} = \frac{q'}{dS'} = \frac{K}{OP} \cdot \frac{(OP)^2}{(OP')^2} = \frac{(OP)^3}{K^3} = \frac{K^3}{(OP')^3}
\]

(1)

5.103. Capacitance by Inversion.—As an application of the rule of 5.102, we shall compute the capacitance of a conductor formed by two spheres of radii a and b which intersect orthogonally. Clearly, the inverse system is that shown in Fig. 5.103a, in which two earthed planes, intersecting at right angles, are under the influence of the point charge \(q' = 4\pi \epsilon \). This field can be replaced by that due to the image charges shown. The desired conductor, obtained by inversion, will be at potential \(V = -1/K = -1/2a \). By 1.10 (1), the charge on this surface equals the sum of the image charges, \(q_1, q_2, \) and \(q_3 \), giving, by 5.10 (1),

\[
Q = q_1 + q_2 + q_3 = 4\pi \epsilon \left[\frac{-a}{2a} + \frac{ab}{2a(a^2 + b^2)^{1/2}} - \frac{b}{2a} \right]
\]

and the capacitance is

\[
C = \frac{Q}{V} = 4\pi \epsilon \left[\frac{(a + b)(a^2 + b^2)^{1/2} - ab}{(a^2 + b^2)^{1/2}} \right]
\]

(1)

The potential around the conductor can be computed directly from the image charges \(q_1, q_2, q_3 \) or by inversion of the potential due to image charges alone in the region in the angle of the planes.

5.11. Three-dimensional Harmonics.—We saw in 5.00 that it is not, in general, possible, by rotating the orthogonal set of curves representing a normal section of a two-dimensional field, to obtain a set of three-dimensional equipotential surfaces. It is, however, possible to generate
in this way a set of surfaces which, together with the planes intersecting
on the axis and defined by the longitude angle, form a complete set of
orthogonal curvilinear coordinates which can be treated by the method of
3.03. When the axial section of our three-dimensional boundary problem
gives a two-dimensional boundary solvable by a conformal transfor-
mation, this provides a method of finding a coordinate system in which
the original boundary conditions are very simple. The problem then
becomes that of obtaining a general solution of Laplace’s equation in this
coordinate system.

Let us suppose that \(u_1 = f_1(x, y) \) and \(u_2 = f_2(x, y) \) are conjugate
functions in the \(z \)-plane, given by

\[
z = x + jy = f(u_1 + ju_2) = f(u)
\]

Then, by 4.11 (1), we have

\[
\frac{dz}{du} = f'(u) \quad \text{or} \quad dx + j \, dy = f'(u)(du_1 + j \, du_2)
\]

Multiply this by the conjugate complex, and we get

\[
\frac{dz}{du} = dx^2 + dy^2 = \left| \frac{dz}{du} \right|^2 (du_1^2 + du_2^2)
\]

If this system is rotated about the \(y \)-axis, we have, for the element
of length,

\[
ds^2 = ds_1^2 + x^2(d\phi)^2 = \left| \frac{dz}{du} \right|^2 (du_1^2 + du_2^2) + x^2(d\phi)^2
\]

Comparing with 3.03 (1), where \(d\phi = du_3 \), we see that

\[
h_1 = h_2 = \left| \frac{dz}{du} \right| \quad \text{and} \quad h_3 = x
\]

so that, from 3.03 (4), Laplace’s equation is

\[
x^2 \left| \frac{dz}{du} \right|^2 \left[\frac{\partial}{\partial u_1} \left(x \frac{\partial V}{\partial u_1} \right) + \frac{\partial}{\partial u_2} \left(x \frac{\partial V}{\partial u_2} \right) \right] + \frac{\partial^2 V}{\partial \phi^2} = 0
\]

We can immediately split off the last term by the method of 4.01 by
assuming a solution of the form

\[
V = U(u_1, u_2)\Phi(\phi)
\]

Dividing through by \(V \) and setting the last term of (3) equal to \(-m^2 \),
we have for \(\Phi \) the form, as in 4.01 (6),

\[
\Phi = A_1 e^{im\phi} + B_1 e^{-im\phi} = A \cos m\phi + B \sin m\phi
\]

The partial differential equation to be solved for \(U(u_1, u_2) \) then becomes

\[
\frac{1}{x} \frac{\partial}{\partial u_1} \left(x \frac{\partial U}{\partial u_1} \right) + \frac{1}{x} \frac{\partial}{\partial u_2} \left(x \frac{\partial U}{\partial u_2} \right) - \frac{m^2}{x^2} \frac{\partial^2 z}{\partial u_1^2} U = 0
\]
The difficulty of solving this equation depends on the form of \(x(u_1, u_2) \) and of \(|dz/du|\). In many important coordinate systems, including all those treated in this chapter, \(x \) has the form

\[
x = g_1(u_1)g_2(u_2)
\]

and, when 4.11 (1) is used,

\[
\frac{dz}{du} = \left| \frac{\partial x}{\partial u_1} - \frac{\partial x}{\partial u_2} \right|^2 = \left(\frac{\partial x}{\partial u_1} \right)^2 + \left(\frac{\partial x}{\partial u_2} \right)^2 = g_1^2 g_2^2 + g_2^2 g_2'^2
\]

Assuming a solution of the harmonic form

\[
U(u_1, u_2) = U_1(u_1)U_2(u_2)
\]

and substituting (7), (8), and (9) in (6), we find that, when divided through by \(U_1(u_1)U_2(u_2) \), each term contains only one variable so that, putting terms containing \(u_1 \) equal to a constant \(+ (s + m^2c)\) and those containing \(u_2 \) equal to \(- (s + m^2c)\), we obtain the total differential equations

\[
\begin{align*}
\frac{1}{g_1} \frac{d}{du_1} \left(g_1 \frac{dU_1}{du_1} \right) - m^2 \left(g_1 \right)^2 + c & = 0 \\
\frac{1}{g_2} \frac{d}{du_2} \left(g_2 \frac{dU_2}{du_2} \right) - m^2 \left(g_2 \right)^2 - c & = 0
\end{align*}
\]

The remainder of this chapter will be concerned with the solving of these equations and with applying these solutions and (5) to potential problems.

We obtain spherical polar coordinates from 4.12 (2) by interchanging \(x \) and \(y \) so that

\[
g_1 = e^{u_1} = r \quad \text{and} \quad g_2 = \sin u_2 = \sin \theta
\]

If we put \(c = -1 \) and \(s = n(n + 1) \) in (10) and (11) and write in terms of \(r \) and \(\theta \), these equations become 5.12 (2.1) and 5.14 (2).

We get oblate spheroidal harmonics from 4.22 (3) giving

\[
g_1 = a_1 \sin u_1 = c_1(1 - \xi^2) \quad \text{and} \quad g_2 = \cosh u_2 = (1 + \xi^2)^{\frac{1}{2}}
\]

If we put \(c = +1 \) and \(s = -n(n + 1) \) in (10) and (11) and write in terms of \(\xi \) and \(\zeta \), these equations become exactly 5.271 (2).

We obtain prolate spheroidal harmonics from 4.22 (3) with \(x \) and \(y \) interchanged, giving

\[
g_1 = a_1 \cos u_1 = c_2(1 - \xi^2) \quad \text{and} \quad g_2 = \sinh u_2 = (\eta^2 - 1)^{\frac{1}{2}}
\]

If we put \(c = -1 \) and \(s = -n(n + 1) \) in (10) and (11) and write in terms of \(\xi \) and \(\eta \), we get the standard form of Laplace's equation in prolate spheroidal coordinates referred to in 5.28.

We obtain cylindrical coordinates by rotating the transformation \(z = u \) so that we have \(g_1 = u_1 = \rho = k^{-1}v \) and \(g_2 = 1 \). If, in (10), we put \(c = 0 \), \(s = -k^2 \), \(m = n \) and divide through by \(k^2 \), we obtain
Bessel's equation [5.291 (3)]. The same substitution in (11) gives 5.291 (2).

5.111. Surface of Revolution and Orthogonal Wedge.—In the particular case where \(m \neq 0 \) and Eq. 5.11 (7) is satisfied, we can obtain the solutions of 5.11 (10) and 5.11 (11) in a simple form. Let the conjugate functions to be rotated be \(u_1 = f_1(x, y) \) and \(u_2 = f_2(x, y) \). Then let us choose new orthogonal coordinates \(u_1 \) and \(u_2 \), such that

\[
\begin{align*}
g_1(u_1) &= (A_1 e^{u_1} + B_1 e^{-u_1}) = F_1(u_1) \\
g_2(u_2) &= (A_2 \cos u_2 + B_2 \sin u_2) = F_2(u_2)
\end{align*}
\]

We have from 5.11 (7), by hypothesis, using \(\rho \) for the radius of rotation of any point,

\[
\rho = g_1(u_1)g_2(u_2) = F_1(u_1)F_2(u_2)
\]

If we set \(mc = 1 \) and \(s = 0 \) in 5.11 (10) and 5.11 (11), we can easily verify by substitution that solutions of these equations are

\[
\begin{align*}
U_1 &= C_1 g_1^m \\
U_2 &= C_2 g_2^m
\end{align*}
\]

The differential equations are of the second order so that there must be a second solution of each. Since the method of finding this from the known solution will be useful in other cases besides the present one, we shall work out the case with general coefficients here. Suppose that \(y = v \) is a particular solution of

\[
\frac{d^2y}{dx^2} + M \frac{dy}{dx} + Ny = 0
\]

where \(M \) and \(N \) are function of \(x \). Substitute \(y = vz \) in this equation, and write \(z' \) for \(dz/dx \), and we have, after eliminating \(v \) by (6), the result

\[
\begin{align*}
v \frac{dz'}{dx} + \left(2 \frac{dv}{dx} + Mv\right)z' &= 0 \\
\ln z' + \ln v^2 + \int M \, dx &= C
\end{align*}
\]

or

\[
z' = \frac{dz}{dx} = Bv^{-2}e^{-\int M \, dx}
\]

Integrating gives

\[
z = A - B\int v^{-2}e^{-\int M \, dx} \, dx
\]

so that

\[
y = v(A + B\int v^{-2}e^{-\int M \, dx} \, dx)
\]

In the present case, putting 5.11 (10) and 5.11 (11) in the form of (6) by carrying out the first differentiation and multiplying through by
§5.12

SPHERICAL HARMONICS

129

Using for \(v \) the solutions of (4) and (5), we obtain the second solutions from (7), setting \(A = 0 \), to be

\[
U_1 = D_1 g_1^n \int \frac{du_1}{g_1^{2m+1}}
\]

and

\[
U_2 = D_2 g_2^n \int \frac{du_2}{g_2^{2m+1}}
\]

Thus a solution of Laplace's equation is given by

\[
V = g_1^n (C_1 + D_1 \int \frac{du_1}{g_1^{2m+1}}) g_2^n (C_2 + D_2 \int \frac{du_2}{g_2^{2m+1}}) \cos (m \phi + \beta)
\]

This form of solution is particularly useful when the surface of a charged conductor is formed by a figure of rotation and a wedge with its edge on the axis of rotational symmetry.

A simple example will illustrate an application of this solution. A charged infinite conducting wedge of exterior angle \(\alpha \) has a spherical conducting boss of radius \(a \) intersecting both faces orthogonally. Here, taking the center of the sphere as the origin and the faces of the wedge to be \(\phi = \pm \frac{1}{2} \alpha \), we have \(\rho = r \sin \theta \), \(g_1 = e^{u_1} = r \), \(g_2 = \sin u_2 = \sin \theta \). All the boundary conditions are satisfied by taking

\[
m = \frac{\pi}{\alpha}, \quad D_1 = \left(1 + \frac{2\pi}{\alpha}\right) C_1 a^{1+\frac{2\pi}{\alpha}}, \quad C_2 = 1, \ D_2 = 0, \ \text{and} \ \beta = 0
\]

Thus we obtain

\[
V = C_1 a^{\pi} \left[1 - \left(\frac{a}{r}\right)^{1+\frac{2\pi}{\alpha}} \right] (\sin \theta)^{\pi} \cos \frac{\pi \phi}{\alpha}
\]

This gives \(V = 0 \) on the surface of the wedge and sphere and agrees with 4.19 when we are far from the origin.

5.12. Spherical Harmonics.—When the boundary conditions of a potential problem are simply expressed in spherical polar coordinates, it is useful to have a general solution of Laplace's equation in this system. To get this solution, we proceed in exactly the same way as in 4.01. In terms of the distance from the origin \(r \), the colatitude angle \(\theta \) measured from the \(z \)-axis, and the longitude angle \(\phi \) measured about the \(z \)-axis from the \(z \)-plane, Laplace's equation, from 3.05 (1), takes the form

\[
\frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2} = 0
\]

We wish to find solutions of the form

\[
V = R \Theta \Phi = RS
\]
where \(R \) is a function of \(r \) only, \(\Theta \) a function of \(\theta \) only, and \(\Phi \) a function of \(\phi \) only. The function \(S = \Theta \Phi \) is called a surface harmonic, and the function \(\Theta \), when \(\Phi \) is a constant, is called a zonal surface harmonic. Substituting \(RS \) for \(V \) in (1) and dividing through by \(RS \), we have

\[
\frac{1}{R} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \frac{1}{S} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial S}{\partial \theta} \right) + \frac{1}{S} \frac{\partial^2 S}{\partial \phi^2} = 0
\]

The first term is a function of \(r \) only, and the other ones involve only the angles. For all values of the coordinates, therefore, the equation can be satisfied only if

\[
\frac{1}{S} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial S}{\partial \theta} \right) + \frac{1}{S} \frac{\partial^2 S}{\partial \phi^2} = -K
\]

\[
\frac{1}{R} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) = K
\]

The solution of the second equation is easily seen to be

\[
R = Ar^n + Br^{-n-1}
\]

where \(K = n(n + 1) \). Substituting this value of \(K \) in the first equation and multiplying through by \(S \) give

\[
\frac{1}{S} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial S}{\partial \theta} \right) + \frac{1}{S} \frac{\partial^2 S}{\partial \phi^2} + n(n + 1)S = 0
\]

Equation (2) therefore takes the form

\[
V = (Ar^n + Br^{-n-1})S_n
\]

It is evident that this is a solution of Laplace’s equation only if the same value of \(n \) is used in both terms, hence the subscript on \(S_n \). Any sum or integral with respect to \(n \) of terms like (5) is also a solution.

In the special case where \(n = 0 \), (4) becomes

\[
\sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial S_0}{\partial \theta} \right) + \frac{\partial^2 S_0}{\partial \phi^2} = 0
\]

In 6.20 it is shown that either \(U \) or \(V \) satisfies this equation, provided

\[
U + jV = F[(\cos \phi + j \sin \phi) \tan \frac{1}{2} \theta]
\]

Thus every conjugate function of the last chapter yields two solutions of Laplace’s equation in three dimensions by substitution of \(\cos \phi \tan \frac{1}{2} \theta \) for \(x \), and \(\sin \phi \tan \frac{1}{2} \theta \) for \(y \), and multiplication by \(A + Br^{-1} \). Especially useful solutions obtained by choosing \(W = z^m \) and \(W = \ln z \) are, respectively,

\[
V = (A + Br^{-1})(C \cot^m \frac{1}{2} \theta + D \tan^m \frac{1}{2} \theta) \cos (m\phi + \delta_m)
\]

\[
V = (A + Br^{-1})(C \ln \tan \frac{1}{2} \theta + D\phi)
\]

5.13. General Property of Surface Harmonics

—Before obtaining solutions of (4), we may derive, by Green’s theorem, a useful property of
§5.131 POTENTIAL OF HARMONIC CHARGE DISTRIBUTION

Let us again write down 3.06 (4), giving

$$\int_V (\Psi \nabla^2 \Phi - \Phi \nabla^2 \Psi) dV = \int_S \left(\frac{\partial \Phi}{\partial n} - \frac{\partial \Psi}{\partial n} \right) dS$$

(1)

Let us take \(\Psi = r^n S_m \) and \(\phi = r^n S_n \) so that \(\nabla^2 \phi = \nabla^2 \Psi = 0 \) and the volume integral vanishes. Taking the surface to be a unit sphere and writing \(d\Omega \) for the element of solid angle, we have

$$\frac{\partial \Psi}{\partial n} = \frac{\partial (r^n S_m)}{\partial r} = m r^{m-1} S_m = m S_m$$

and similarly \(\partial \Phi/\partial n = n S_n \). Substituting in (1) gives

$$\int_S (n S_n S_m - m S_n S_m) d\Omega = (n - m) \int_S S_n S_m d\Omega = 0$$

so that if \(n \neq m \) we have the result

$$\int_S S_n S_m d\Omega = 0 \quad (2)$$

5.131. Potential of Harmonic Charge Distribution.—Let us suppose that, on the surface of a sphere, we have an electric charge density, \(\sigma_n \), which is finite, continuous, and of such a nature that we can choose a small area, \(\Delta S \), anywhere on it so that, over \(\Delta S \), \(\sigma_n - \sigma_n \) is negligible compared with the mean value, \(\sigma_n \), of \(\sigma_n \) over \(\Delta S \). This charge gives rise to a potential, \(V_o \), outside the sphere and the potential, \(V_i \), inside it. Applying Gauss's electric flux theorem [1.10 (1)] to a small box fitting closely this element of the shell, we have

$$\sigma_n = \epsilon \left(\frac{\partial V_i}{\partial r} - \frac{\partial V_o}{\partial r} \right)_{r=a} \quad (1)$$

Let us consider that \(\sigma_n \) is such that

$$\epsilon V_o = \frac{1}{2n + 1} \frac{a^{n+2}}{r^{n+1} S_n} \quad (2)$$

Then, since \(V_o = V_i \) when \(r = a \), we must have

$$\epsilon V_i = \frac{1}{2n + 1} \frac{a^n}{r^{n-1} S_n} \quad (3)$$

Substituting (2) and (3) in (1) gives

$$\sigma_n = S_n \quad (4)$$

In studying \(S_n \) we shall see that when \(\theta \) enters as \(P_m(\cos \theta) \), it meets the conditions imposed on \(\sigma_n \) at the beginning of this article. By using these equations and 1.06 (6) we can evaluate two useful integrals.

$$\int_{S_i R_i} dS = \frac{4\pi}{2n + 1} \frac{r^n S_n}{a^{n-1}} \quad \int_{S_o R_o} dS = \frac{4\pi}{2n + 1} \frac{a^{n+2} S_n}{r^{n+1}} \quad (5)$$
The angles in S_n are the coordinates of the terminal point of R_1 or R_2. Thus by superposition, the potential due to any surface distribution which can be expanded in the form

$$\sigma = S_0 + S_1 + S_2 + \cdots$$

is given by

$$V_r = \frac{a}{\epsilon} \left[S_0 + \frac{r}{a} S_1 + \frac{r^2}{3} S_2 + \cdots \right] \quad \text{if } r < a$$

$$V_\theta = \frac{a}{\epsilon} \left[\frac{a}{r} S_0 + \frac{a^2}{3} S_1 + \frac{a^3}{5} S_2 + \cdots \right] \quad \text{if } r > a$$

5.14. Differential Equations for Surface Harmonics.—The variables θ and ϕ, in the differential equation, 5.12 (4), for the surface harmonics $S = \Theta \Phi$, may be separated by the process already used. Substitute $\Theta \Phi$ for S in 5.12 (4), and divide through by $\Theta / \sin^2 \theta$ giving

$$\frac{\sin \theta}{\Theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) + \frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2} + n(n + 1) \sin^2 \theta = 0$$

For all values of θ and ϕ, this equation can be satisfied only if

$$\frac{\sin \theta}{\Theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) + n(n + 1) \sin^2 \theta = K_1 \quad \text{and} \quad \frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2} = -K_1$$

If we put $K_1 = m^2$, the solution of the second equation is easily seen to be

$$\Phi = C \cos m \phi + D \sin m \phi$$

except when $m = 0$, when it becomes

$$\Phi = M \phi + N$$

Putting $K_1 = m^2$ in the first equation and multiplying through by $\Theta / \sin^2 \theta$ give

$$\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) + \left[n(n + 1) - \frac{m^2}{\sin^2 \theta} \right] \theta = 0$$

This is the differential equation for Θ.

5.15. Surface Zonal Harmonics. Legendre's Equation.—Before considering a more general solution of 5.14 (2), let us solve the most important special case in which V is independent of ϕ so that Φ is constant and, from 5.14 (1), m is zero. Equation 5.14 (2) then becomes, when μ is written for $\cos \theta$,

$$\frac{d}{d\mu} \left[(1 - \mu^2) \frac{d\Theta_n}{d\mu} \right] + n(n + 1) \Theta_n = 0$$

This is Legendre's equation, and its solutions are surface zonal harmonics.

5.151. Series Solution of Legendre’s Equation.—To obtain a solution of 5.15 (1) in series, let us assume the solution

$$\Theta_n = \Sigma \alpha_n \mu^n$$
§5.151 SERIES SOLUTION OF LEGENDRE'S EQUATION

Substituting this in 5.15 (1) gives
\[\Sigma \{r(r - 1)a_r \mu^{r-2} + [n(n + 1) - r(r + 1)]a_r \mu^r \} = 0 \]
To be satisfied for all values of \(\mu \), the coefficient of each power of \(\mu \) must equal zero separately so that
\[(r + 1)(r + 2)a_{r+2} + [n(n + 1) - r(r + 1)]a_r = 0 \]
\[a_r = \frac{-(r + 1)(r + 2)}{n(n + 1) - r(r + 1)}a_{r+2} \quad (2) \]
To expand in increasing powers of \(\mu \), we notice that if \(a_r = 0 \) then \(a_{r-2} = a_{r-4} = \cdots = 0 \) and from (2) \(a_{-1} \) and \(a_{-2} \) are zero if \(a_0 \) and \(a_1 \) are finite, so that all negative powers of \(\mu \) disappear. Hence, if we choose \(a_0 = 1 \) and use the even powers, we have the solution
\[p_n = 1 - \frac{n(n + 1)}{2!} \mu^2 + \frac{n(n - 2)(n + 1)(n + 3)}{4!} \mu^4 - \cdots \quad (3) \]
If we choose \(a_1 = 1 \) and use the odd powers, we have
\[q_n = \mu - \frac{(n - 1)(n + 2)}{3!} \mu^3 + \frac{(n - 1)(n - 3)(n + 2)(n + 4)}{5!} \mu^5 - \cdots \quad (4) \]
A complete solution of 5.15 (1), if \(-1 < \mu < +1\), is
\[\Theta_n = A_n p_n + B_n q_n \]
regardless of whether \(n \) is an integer or a fraction, real or complex, provided the series converges. Recurrence formulas for \(p_n \) and \(q_n \) may be obtained by subtracting \(p_{n+1} \) from \(p_{n-1} \), giving
\[p_{n-1} - p_{n+1} = \left[\frac{(n + 1)(n + 2) - n(n - 1)}{2!} \mu^2 \right. \]
\[\left. - \frac{(n + 1)(n + 4) - n(n - 3)(n - 1)(n + 2)}{4!} \mu^4 + \cdots \right] \]
\[= (2n + 1)\mu \left(\mu - \frac{(n - 1)(n + 2)}{3!} \mu^3 + \cdots \right) \]
\[= (2n + 1)\mu q_n \quad (5) \]
By a similar procedure, we obtain
\[(n + 1)^2 q_{n+1} - n^2 q_{n-1} = (2n + 1)\mu p_n \quad (6) \]
Differentiating (4) and adding \(n \, dq_{n-1}/d\mu \) and \((n + 1) \, dq_{n+1}/d\mu \) give
\[nq'_{n-1} + (n + 1)q'_{n+1} = \left[2n + 1 - \frac{(n - 2 + n + 3)n(n + 1)}{2!} \mu^2 \right. \]
\[\left. + \frac{(n - 4 + n + 5)n(n - 2)(n + 1)(n + 3)}{4!} \mu^4 - \cdots \right] \]
\[= (2n + 1)\left(1 - \frac{n(n + 1)}{2!} \mu^2 + \frac{n(n - 2)(n + 1)(n + 3)}{4!} \mu^4 - \cdots \right) \]
\[= (2n + 1)p_n \quad (7) \]
By a similar procedure, we obtain

\[(n + 1)p'_{n-1} + np'_{n+1} = -n(n + 1)(2n + 1)q_n\] \hspace{1cm} (8)

5.152. Legendre Polynomials. Rodrigues’s Formula.—If \(n\) is a positive even integer, the series in 5.151 (3) evidently terminates and has \(\frac{1}{2}(n + 2)\) terms and may be written

\[p_n = (-1)^{\frac{n}{2}}2^{n-\frac{1}{2}}\frac{[\left[\frac{1}{2}(n - 1)\right]]!}{n!} \sum_{r=0}^{\frac{n}{2}} (-1)^{n-r} \frac{(n + 2r)!\mu^{2r}}{2^n[\frac{1}{2}(n - 2r)]!(\frac{1}{2}(n + 2r + 1))!(2r)!}\]

In this case, we define the polynomials \(P_n(\mu)\) to be

\[P_n(\mu) = \frac{(-1)^{\frac{n}{2}}n!}{2^n[\left[\frac{1}{2}(n - 1)\right]]!}p_n\] \hspace{1cm} (1)

If \(n\) is a positive odd integer, the series in 5.151 (4) evidently terminates and has \(\frac{1}{2}(n + 1)\) terms and may be written

\[q_n = (-1)^{\frac{n-1}{2}}2^{n-1}\frac{[\left[\frac{1}{2}(n - 1)\right]]!}{n!} \sum_{r=0}^{\frac{n-1}{2}} (-1)^{n-r} \frac{(n + 2r + 1)!\mu^{2r+1}}{2^n[\frac{1}{2}(n - 2r - 1)]!(\frac{1}{2}(n + 2r + 1))!(2r + 1)!}\]

In this case, we define the polynomial \(P_n(\mu)\) to be

\[P_n(\mu) = \frac{(-1)^{\frac{n-1}{2}}n!}{2^{n-1}[\left[\frac{1}{2}(n - 1)\right]]!}q_n\] \hspace{1cm} (2)

Legendre’s polynomial, given by \(P_n(\mu)\) where \(n\) is a positive integer, in ascending powers of \(\mu\) by (1) and (2) may be written in reverse order by substituting \(s = \frac{1}{2}n - r\) in (1) and \(s = \frac{1}{2}(n - 1) - r\) in (2), both giving the result

\[P_n(\mu) = \sum_{s=0}^{m} (-1)^s \frac{(2n - 2s)!}{2^n(s!)(n - s)![(n - 2s)!]}\mu^{n-2s}\] \hspace{1cm} (3)

where \(m = \frac{1}{2}n\) or \(\frac{1}{2}(n - 1)\), whichever is an integer.

An expression for \(P_n(\mu)\), known as Rodrigues’s formula, may be obtained by writing (3) in the form

\[P_n(\mu) = \frac{1}{2^n n!} \sum_{s=0}^{m} (-1)^s \frac{n!}{s![(n - s)!]}\frac{(2n - 2s)!}{(n - 2s)!}\mu^{n-2s}\]

\[= \frac{1}{2^n n!} \frac{d^n}{d\mu^n} \sum_{s=0}^{n} (-1)^s \frac{n!}{s![(n - s)!]}\mu^{2n-2s}\]
§5.154 RECURRENCY FORMULAS FOR LEGENDRE POLYNOMIALS 135

The last summation is the binomial expansion of \((\mu^2 - 1)^n\) so that

\[
P_n(\mu) = \frac{1}{2^n n!} \frac{d^n}{d\mu^n} (\mu^2 - 1)^n
\]

Equations (3) and (4) are valid solutions of Legendre's equation [5.15 (1)] whatever the range of the variable \(\mu\). In prolate spheroidal harmonics, we have \(0 < \mu < \infty\). For very large values of \(\mu\), the highest power outweighs all others; so we have

\[
P_n(\mu) \to \frac{(2n)!}{\mu^n 2^n n!} \mu^n
\]

5.153. Legendre Coefficients. Inverse Distance.—The polynomials of 5.152 are also known as Legendre's coefficients, the reason being evident from the following considerations. The reciprocal of the distance between two points at distances \(a\) and \(b\) from the origin, where \(b > a\), when the angle between \(a\) and \(b\) is \(\theta\) and \(\mu = \cos \theta\), can be written:

\[
\frac{1}{R} = \left(a^2 + b^2 - 2ab\mu \right)^{-1} = \frac{1}{\mu^2 + b^2} \left(1 + \frac{a^2 - 2ab\mu}{b^2} \right)^{-1}
\]

\[
= \frac{1}{\mu^2 + b^2} \left[\frac{1}{b} - \frac{a^2 - 2ab\mu}{2b^2} + \frac{1}{2} \frac{a^2 - 2ab\mu}{b^2} - \cdots \right]
\]

\[
= \frac{1}{\mu^2 + b^2} \left[1 + \frac{a^2}{b^2} + \frac{3\mu^2 - 1}{2} \frac{a^2}{b^2} + \cdots \right]
\]

We see that the coefficient of \((a/b)^n\) is exactly the expression for \(P_n(\mu)\) in 5.152 (3) so that we may write

\[
\frac{1}{R} = \sum P_n(\mu) \left[\left(\frac{a}{b} \right)^n P_n(\mu) + \left(\frac{a}{b} \right)^{n+1} P_{n+1}(\mu) + \cdots \right]
\]

5.154. Recurrence Formulas for Legendre Polynomials.—If \(n\) is an odd integer, we may substitute for \(p_{n-1}, p_{n+1}\), and \(q_n\) in 5.151 (5) from 5.152 (1) and (2) and obtain, after dividing out the factor

\[
\frac{2^{n-1} \left(\frac{1}{2} (n - 1) \right)!}{n! (-1)^{\frac{1}{2}(n+1)}}
\]

the result

\[
nP_{n-1} + (n + 1)P_{n+1} = (2n + 1)\mu P_n
\]

An identical expression is obtained, when \(n\) is even, from 5.151 (6). We omit the argument of these polynomials when there is no ambiguity in doing so.

If \(n\) is an even integer, we may substitute in 5.151 (7) for \(p_n, q'_{n-1}\), and \(q'_{n+1}\) from 5.152 (1) and (2), divide out the factor

\[
\frac{2^n (2n + 1) \left(\frac{1}{2} (n) \right)!}{(-1)^{\frac{1}{2}n} n!}
\]
and obtain

\[P'_{n+1} - P'_{n-1} = (2n + 1)P_n \tag{2} \]

An identical expression is obtained, when \(n \) is odd, from 5.151 (8).

The integral of \(P_n(\mu) \) is given by integrating (2), the result being

\[\int P_n(\mu) \, d\mu = \frac{P_{n+1} - P_{n-1}}{2n + 1} \tag{3} \]

The derivative of \(P_n(\mu) \) is given, by adding successive equations of the type of (2), to be

\[P'_n(\mu) = (2n - 1)P_{n-1} + (2n - 5)P_{n-3} + \cdots \tag{4} \]

Another useful expression for the derivative may be obtained by differentiating (1) and eliminating \(P'_{n-1} \) by (2), giving

\[P'_{n+1} = \mu P'_n + (n + 1)P_n \quad \text{or} \quad P'_n = \mu P'_{n-1} + nP_{n-1} \tag{4.1} \]

Eliminating \(P'_{n-1} \) and \(P'_{n+1} \) between these equations and (2) and combining with (1), (2), or (3) give the following equivalent forms:

\[P'_n = \frac{(n + 1)(\mu P_n - P_{n+1})}{1 - \mu^2} = -n(\mu P_n - P_{n-1}) \]

\[= \frac{n(n + 1)}{2n + 1} \frac{P_{n-1} - P_{n+1}}{1 - \mu^2} = -n(n + 1) \int P_n(\mu) \, d\mu \tag{5} \]

5.155. Integral of Product of Legendre Polynomials.—In using Legendre polynomials, the integral of their product over the range \(\theta = 0 \) to \(\pi \), or \(\mu = -1 \) to +1, is important. We saw in 5.13 (2) that

\[\int_{-1}^{+1} P_n(\mu)P_m(\mu) \, d\mu = 0 \quad \text{if} \quad m \neq n \tag{1} \]

If \(m = n \) we substitute for one \(P_n \) from 5.152 (4)

\[\int_{-1}^{+1} [P_n(\mu)]^2 \, d\mu = \frac{1}{2^n n!} \int_{-1}^{+1} P_n(\mu) \frac{d^n}{d\mu^n} (\mu^2 - 1)^n \, d\mu \]

Integrate the right side \(n \) times by parts, letting \(u \) be the first term and \(dv \) the second each time. Since \(\frac{d^n}{d\mu^n} (\mu^2 - 1)^n \) always contains the factor \((\mu^2 - 1)^{n-r} \), \(v \) will always be zero when the limits are inserted and so the product \(uv \) drops out and we have finally

\[\int_{-1}^{+1} [P_n(\mu)]^2 \, d\mu = \frac{(-1)^n}{2^n n!} \int_{-1}^{+1} \frac{d^n}{d\mu^n} P_n(\mu) (\mu^2 - 1)^n \, d\mu \]

But from 5.152 (3),

\[\frac{d^n P_n(\mu)}{d\mu^n} = \frac{(2n)! n!}{2^n n!} = \frac{(2n)!}{2^n n!} \tag{2} \]
so that

\[\int_{-1}^{+1} [P_n(\mu)]^2 \, d\mu = \frac{(2n)!}{2^{2n}(n!)^2} \int_{-1}^{+1} (1 - \mu^2)^n \, d\mu = \frac{(2n - 1)!!}{(2n)!!} \int_{0}^{\pi} \sin^{2n+1} \theta \, d\theta \]

Integration by Parts 483 or Dw 854.1 gives

\[\int_{-1}^{+1} [P_n(\mu)]^2 \, d\mu = \frac{2}{2n + 1} \]

5.156. **Expansion of Function in Legendre Polynomials.**—Any function that can be expanded in Fourier's series in the interval \(-1 < \mu < +1\) can also be expanded in a series of Legendre polynomials in the same interval and by a similar method. Assume the expansion

\[f(\mu) = a_0 P_0(\mu) + a_1 P_1(\mu) + \cdots + a_n P_n(\mu) + \cdots \]

Multiply by \(P_m(\mu) \), and integrate from \(\mu = -1 \) to \(+1 \). By 5.13 (2), all terms vanish except the \(m \)th term; so we have, from 5.155 (3).

\[a_m = \frac{1}{2} (2m + 1) \int_{-1}^{+1} f(\mu) P_m(\mu) \, d\mu \]

Note that if \(f(\mu) = 0 \) when \(-1 < \mu < +1\) then \(a_m = 0 \). This means that if we have an expansion in Legendre's polynomials equal to zero, the coefficient of each term must be separately equal to zero. As in the case of a Fourier's series, at a discontinuity this expansion gives half the sum of the values of \(f(\mu) \) on each side. A formula for \(a_m \) which is frequently more convenient than (2) can be obtained by substituting Rodrigues's formula [5.152 (4)] in (2). Thus

\[a_m = (-1)^m \frac{2m + 1}{2^{m+1} m!} \int_{-1}^{+1} f(\mu) \frac{d^m (1 - \mu^2)^m}{d\mu^m} \, d\mu \]

Integrating this by parts repeatedly, always letting the first member be \(u \) and the second \(dv \), we find that \(|u|^{m+1} \) is zero and \(\int_{-1}^{+1} u \, dv \) alternates in sign until finally we are left with

\[a_m = \frac{2m + 1}{2^{m+1} m!} \int_{-1}^{+1} \frac{d^m f(\mu)}{d\mu^m} (1 - \mu^2)^m \, d\mu \]

If the derivatives of \(f(\mu) \) are simple, this gives usually an easy integration.

5.157. **Table of Legendre Polynomials.**—A table of values of \(P_n(\mu) \) can be computed from 5.152 (3) or (4). The values of \(n < 9 \) are

\[P_0(\mu) = 1, \quad P_1(\mu) = \mu, \quad P_2(\mu) = \frac{1}{2} (3\mu^2 - 1) \]

\[P_3(\mu) = \frac{1}{2} (5\mu^3 - 3\mu), \quad P_4(\mu) = \frac{(35\mu^4 - 30\mu^2 + 3)}{8} \]
\(P_6(\mu) = \frac{(63\mu^6 - 70\mu^3 + 15\mu)}{8} \)
\(P_8(\mu) = \frac{(231\mu^6 - 315\mu^4 + 105\mu^2 - 5)}{16} \)
\(P_7(\mu) = \frac{(429\mu^7 - 693\mu^5 + 315\mu^3 - 35\mu)}{16} \)
\(P_8(\mu) = \frac{(635\mu^8 - 12,012\mu^6 + 5930\mu^4 - 1260\mu^2 + 35)}{128} \)

Other useful values of \(P_n(\mu) \) are

\[
\begin{align*}
(P_n(0) & = 0 & (n \text{ odd}) \\
(P_n(0) & = (-1)^n \frac{1 \cdot 3 \cdot 5 \cdots (n-1)}{2 \cdot 4 \cdot 6 \cdots n} & (n \text{ even}) \\
(P_n(1) & = 1 & (\text{any } n) \\
(P_n(-\mu) & = (-1)^n P_n(\mu) & (\text{any } n) \\
(P_n'(0) & = -(n+1)P_{n+1}(0) & [\text{from 5.154 (5)}] \\
(P_n'(1) & = \frac{1}{2}n(n+1) & [\text{from 5.15 (1)}]
\end{align*}
\]

The values of \(P_n(\mu) \) for \(0 \leq n \leq 7 \) are shown in Fig. 5.157.

5.158. Legendre Polynomial with Imaginary Variable.—We shall have occasion, in oblate spheroidal harmonics, to deal with \(P_n(j\xi) \) where \(j = (-1)^{\frac{1}{2}} \) and \(0 \leq \xi < \infty \). Substituting \(j\xi \) for \(\mu \) in 5.152 (3), we have

\[
P_n(j\xi) = (-1)^{\frac{1}{2}n} \sum_{s=0}^{m} \frac{(2n - 2s)!}{2^n(s)!(n-s)!(n-2s)!} j^{n-2s}
\]

where \(m = \frac{1}{2}n \) or \(\frac{1}{2}(n - 1) \), whichever is an integer. A similar substitution in 5.152 (5) gives

\[
P_n(j\xi) \xrightarrow{\xi \to \infty} \frac{(2n)!}{2^n(n!)^2} (-1)^{\frac{1}{2}n}\xi^n
\]
§5.16. Potential of Charged Ring.—If \(V \) is symmetrical about the
\(x \)-axis and its value is known at all points
on this axis and if this value can be expressed
by a finite or convergent infinite series in-
volving only integral power of \(x \), then the
potential at any point can be obtained by
multiplying the \(n \)th term by \(P_n(\cos \theta) \) and
writing \(r \) for \(x \). The result holds for
the same range of values of \(r \) as the range of \(x \)
in the original expansion.

Let us apply this to a ring carrying a total
charge \(Q \) (Fig. 5.16) giving
\[
4\pi V_A = Q(c^2 + x^2 - 2cx \cos \alpha)^{-1}
\]
Expanding this by 5.153 (1) gives
\[
x > c \quad V_A = \frac{Q}{4\pi \epsilon c} \sum_{n=0}^{\infty} \left(\frac{c}{x} \right)^{n+1} P_n(\cos \alpha)
\]
\[
x < c \quad V_A = \frac{Q}{4\pi \epsilon c} \sum_{n=0}^{\infty} \left(\frac{x}{c} \right)^{n} P_n(\cos \alpha)
\]
The potential at any point \(P \) at \(r, \theta \) is given by
\[
r > c, \text{ or } \theta \neq \alpha, \ r = c \quad V_p = \frac{Q}{4\pi \epsilon c} \sum_{n=0}^{\infty} \left(\frac{c}{r} \right)^{n+1} P_n(\cos \alpha)P_n(\cos \theta)
\]
\[
r < c, \text{ or } \theta \neq \alpha, \ r = c \quad V_p = \frac{Q}{4\pi \epsilon c} \sum_{n=0}^{\infty} \left(\frac{r}{c} \right)^{n} P_n(\cos \alpha)P_n(\cos \theta) \quad (1)
\]
Other examples of this method will appear at the end of this and subse-
quent chapters.

5.17. Charged Ring in Conducting Sphere.—If the value of the
potential due to a given fixed charge distribution is known in a certain
region, then the values of the potential when an earthed conducting
spherical shell is placed there can be found. Expand the original poten-
tial in spherical harmonics, and superimpose a second potential, similarly
expanded, due to the induced charge such that the sum is zero over the
sphere. The latter should vanish at infinity if the original distribution
is outside the sphere and be finite at the center if it is inside.

As an example, let us find the potential at any point inside a spherical
ionization chamber of radius \(b \), if the collecting electrode is a thin con-
centric circular ring of radius \(a \). Let us set \(\alpha = \frac{1}{2} \pi \) and take \(r > a \) in
the last problem, inserting the value for \(P_n(0) \) from 5.157 and writing \(2n \)
for n, since only even powers remain, we have for the potential due to the ring alone

$$V_r = \frac{Q}{4\pi \epsilon a} \sum_{n=0}^{\infty} (-1)^n \frac{1 \cdot 3 \cdot 5 \cdots (2n - 1)}{2 \cdot 4 \cdot 6 \cdots 2n} \left(\frac{a}{r}\right)^{2n+1} P_{2n}(\cos \theta)$$

The potential of the induced charge must be finite at the origin; so it has the form

$$V_i = \frac{Q}{4\pi \epsilon a} \sum_{n=0}^{\infty} A_{2n} r^{2n} P_{2n}(\cos \theta)$$

But $V_i + V_r = 0$ when $r = b$, and from 5.156 (2) we may equate the coefficient of each $P_n(\cos \theta)$ separately to zero, so that

$$A_{2n} = -(-1)^n \frac{1 \cdot 3 \cdot 5 \cdots (2n - 1)}{2 \cdot 4 \cdot 6 \cdots 2n} \frac{1}{b^{2n}} \frac{a^{2n+1}}{b^{2n+1}}$$

and if $a < r < b$ or $r = a$, $\theta \neq \frac{1}{2}\pi$, the potential becomes

$$V = \frac{Q}{4\pi \epsilon a} \sum_{n=0}^{\infty} (-1)^n \frac{(2n - 1)!!}{(2n)!!} \left[\left(\frac{a}{r}\right)^{2n+1} - \left(\frac{a}{b}\right)^{2n+1} \left(\frac{r}{b}\right)^{2n} \right] P_{2n}(\cos \theta)$$

If $r < a$ or $r = a$, $\theta \neq \frac{1}{2}\pi$, we have

$$V = \frac{Q}{4\pi \epsilon a} \sum_{n=0}^{\infty} (-1)^n \frac{(2n - 1)!!}{(2n)!!} \left[\left(\frac{r}{a}\right)^{2n} - \left(\frac{a}{b}\right)^{2n+1} \left(\frac{r}{b}\right)^{2n} \right] P_{2n}(\cos \theta)$$

Care should be taken in the application of this method to fields produced by a distribution of charge on conductors. In general, in an actual case, the field of the induced charges will cause the inducing charges to redistribute themselves and invalidate the result.

5.18. Dielectric Shell in Uniform Field.—We now compute the field inside a dielectric shell of internal and external radii a and b, placed in a uniform electrostatic field of strength E. As in the last problem, we may consider the potential outside as that due to the original field $Er \cos \theta$ plus that due to the polarization of the dielectric. The latter must vanish at infinity so that it can contain only reciprocal powers of r. Furthermore, the only surface harmonic appearing in our boundary condition at infinity is $P_1(\mu) = \cos \theta$ so that the potential outside must be of the form

$$V_1 = \left(Er + \frac{A}{r^2} \right) \cos \theta$$

In the dielectric of relative capacitivity K, since r is neither zero nor infinite, we include both terms, giving
\[V_2 = \left(Br + \frac{C}{r^2} \right) \cos \theta \]

In the cavity, the potential must be finite so our only choice is

\[V_3 = Dr \cos \theta \]

The four boundary conditions necessary to determine \(A, B, C, \) and \(D \) are

\[r = b, \quad V_1 = V_2 \quad \text{or} \quad E b + \frac{A}{b^2} = B b + \frac{C}{b^2} \] \quad (1)

\[\frac{\partial V_1}{\partial r} = K \frac{\partial V_2}{\partial r} \quad \text{or} \quad E - \frac{2A}{b^2} = K b - \frac{2KC}{b^2} \] \quad (2)

\[r = a, \quad V_2 = V_3 \quad \text{or} \quad B a + \frac{C}{a^2} = D a \] \quad (3)

\[K \frac{\partial V_2}{\partial r} = \frac{\partial V_3}{\partial r} \quad \text{or} \quad KB - \frac{2KC}{a^3} = D \] \quad (4)

Solving these equations, we obtain

\[D = \frac{9KE}{9K - 2(1 - K)^2[(a/b)^3 - 1]} \] \quad (5)

Looking at the expression for \(V_3 \), we see that this is the strength of the electric field inside the shell.

5.19. Off-center Spherical Capacitor.—As an example of boundary conditions involving surface harmonics, let us compute, approximately, the charge distribution on the inner shell of a slightly off-center spherical capacitor. The formulas derived by images in 5.08 require many terms to give accuracy in this case if the inner radius \(a \) is nearly equal to the outer radius \(b \). Let us choose the origin at the center of the inner surface; then the approximate equation of the outer surface is

\[r = b + cP_1(\mu) \] \quad (1)

where \(c \) is the distance between centers and \(\mu = \cos \theta \). This is obtained from 5.153 (1), the reciprocal of which may be written

\[b = r[1 + cr^{-1}P_1(\mu)]^{-1} = r - cP_1(\mu) \]

when terms in \(c^n \) are neglected if \(n > 1 \). Since here the boundary conditions involve both \(P_0(\mu) \) and \(P_1(\mu) \) and since both \(r = 0 \) and \(r = \infty \) are excluded from the field, the potential must be of the form

\[V = A + \frac{B}{r} + \left(Cr + \frac{D}{r^2} \right) P_1(\mu) \] \quad (2)

where \(C \) and \(D \) are small correction terms of the order of \(c \). The boundary conditions are

\[r = a \quad V_1 = A + \frac{B}{a} + \left(Ca + \frac{D}{a^2} \right) P_1(\mu) \]

\[r = b + cP_1(\mu) \quad V_2 = A + \frac{B}{b} \left[1 - \frac{c}{b} P_1(\mu) \right] + \left(Cb + \frac{D}{b^2} \right) P_1(\mu) \]
where the products Cc and Dc have been neglected. From 5.156 (2), we may equate the coefficients of $P_0(\mu)$ and $P_1(\mu)$ separately to zero, giving

$$A + \frac{B}{a} - V_1 = 0 \qquad Ca + \frac{D}{a^2} = 0$$
$$A + \frac{B}{b} - V_2 = 0 \quad -\frac{Bc}{b^2} + Cb + \frac{D}{b^2} = 0$$

Solving, we have

$$B = \frac{ab(V_1 - V_2)}{b - a}, \quad C = \frac{abc(V_1 - V_2)}{(b - a)(b^3 - a^3)}, \quad D = -\frac{a^3bc(V_1 - V_2)}{(b - a)(b^3 - a^3)}$$

We may now obtain the surface density

$$\sigma = -e\left(\frac{\partial V}{\partial r}\right)_{r=a} = eab(V_1 - V_2)\left(\frac{1}{a^2} - \frac{3c}{b^3 - a^3\cos\theta}\right)$$

where terms in c^n are neglected. We notice that if we integrate this over the surface of the sphere, the correction term drops out so that the capacitance is the same as if the spheres were concentric, if only terms in c are included.

5.20. Simple Conical Boundary.

We have already seen in 5.131 how the potential due to any charge distribution on the surface of a sphere can be expressed in spherical harmonics. It might also be pointed out that if the value of the potential V on the surface of any cone of revolution, whose equation is $\theta = \alpha$, can be expressed in the form

$$V = \Sigma(A_n r^n + B_n r^{-n-1})$$

where n is an integer, then, at any point in space

$$V = \sum (A_n r^n + B_n r^{-n-1})P_n(\cos\theta)$$

for it can be seen by inspection that this solution satisfies Laplace's equation and the boundary conditions.

The second solution of Legendre's equation given by the infinite series in 5.151 (3) or (4) is called a zonal harmonic of the second kind and is denoted by $Q_n(\mu)$. We shall define it by expressions similar to 5.152 (1) and (2) to be

$$(n \text{ odd}) \quad Q_n(\mu) = (-1)^{\frac{n+1}{2}} \frac{[\frac{1}{2}(n - 1)]!2^{n-1}}{n!} p_n$$

$$(n \text{ even}) \quad Q_n(\mu) = (-1)^{\frac{n}{2}} \frac{[\frac{1}{2}n]!2^n}{n!} q_n$$

These hold for $-1 < \mu < +1$.

Although at present we are dealing with solutions of Legendre's equation in which $\mu = \cos\theta$, we shall find later, in using spheroidal harmonics, that we need solutions in which $\mu^2 > 1$. This requires the
§5.212 LEGENDRE FUNCTIONS OF THE SECOND KIND 143

expansion 5.151 (1) with negative values of \(r \). We may write 5.151 (2)
in the form

\[
a_{r+2} = -\frac{(n-r)(n+r+1)}{(r+1)(r+2)}a_r
\]

(3)

We observe that if \(a_{r+2} = 0 \), \(a_{r+4} = a_{r+6} = \cdots = 0 \) and if \(a_{r+1} = 0 \),
\(a_{r+3} = a_{r+5} = \cdots = 0 \). But \(a_{n+2} \) is zero if \(a_n \) is finite, and \(a_{n+1} \) is
zero if \(a_{n-1} \) is finite. If we let \(a_n = \frac{2n!}{2^n(n!)^2} \), we get 5.152 (3), a
polynomial defining \(P_n(\mu) \), but if we take \(a_{-n-1} = \frac{2^n(n!)^2}{(2n+1)!} \) we
obtain, by writing \(r = -n - 3, r = -n - 5, \) etc., in (3), the coefficients
in the series

\[
Q_n(\mu) = \frac{2^n(n!)^2}{(2n+1)!} \left[\frac{1}{\mu^{n+1}} + \frac{(n+1)(n+2)}{2(2n+3)} \frac{1}{\mu^{n+3}} + \cdots \right]
\]

\[
= \frac{2^n(n!)^2}{(2n+1)!} \sum_{r=0}^{\infty} \frac{(n+r)!(n+2r)!(2n+1)!}{r!(n!)^2(2n+2r+1)!} \mu^{-n-2r-1}
\]

Writing \(s \) for \(r \) to agree with the notation of 5.152 (3), we have

\[
Q_n(\mu) = 2^n \sum_{s=0}^{\infty} \frac{(n+s)!(n+2s)!}{s!(2n+2s+1)!} \mu^{-n-2s-1}
\]

(4)

This series evidently converges when \(\mu^2 > 1 \) and defines \(Q_n(\mu) \) in this
range. When \(\mu \) is very large, the smallest negative power in (4) out-
weighs the remainder so that we have

\[
Q_n(\mu) \xrightarrow[\mu \to \infty]{} \frac{2^n(n!)^2}{(2n+1)!} \mu^{n+1}
\]

(5)

5.211. Recurrence Formulas for Legendre Functions of the Second
Kind.—The following formulas connecting different orders of \(Q_n(\mu) \) can
be obtained from 5.151 (5) and (6) by substituting for \(p_n \) and \(q_n \) the values
of 5.21 (1) and (2) in exactly the same way as 5.154 (1), (2), (3), (4),
and (5) were derived.

\[
nQ_{n-1} + (n+1)Q_{n+1} = (2n+1)\mu Q_n
\]

(1)

\[
Q'_{n+1} - Q'_{n-1} = (2n+1)Q_n
\]

(2)

\[
\int Q_n(\mu) \, d\mu = \frac{Q_{n+1} - Q_{n-1}}{2n+1}
\]

(3)

\[
Q'_{n} = (2n-1)Q_{n-1} + (2n-5)Q_{n-3} + \cdots + \mu(1-\mu^2)^{-1}
\]

(4)

\[
Q'_{n} = \frac{(n+1)(\mu Q_n - Q_{n-1})}{1-\mu^2}
\]

(5)

5.212. Legendre Functions of the Second Kind in Terms of Legendre
Polynomials.—A useful expression for \(Q_n(\mu) \) may be obtained from
Legendre's equation if we know that \(P_n(\mu) \) is a solution. In 5.111 (6)
and (7), we saw that if \(v \) is one solution of the differential equation
\[
\frac{d^2 y}{dx^2} + M \frac{dy}{dx} + Ny = 0
\]
(1)
where \(M \) and \(N \) are functions of \(x \), then a second solution is
\[
y = v(A + B e^{\int M \, dx})
\]
(2)

In Legendre's equation [5.15 (1)] \(v = P_n(\mu) \) and \(M = -2\mu(1 - \mu^2)^{-1} \)
so that \(\int M \, d\mu = \ln (1 - \mu^2) \) and \(e^{-\int M \, d\mu} = (1 - \mu^2)^{-1} \) giving (2) the form
\[
Q_n(\mu) = P_n(\mu) \left\{ A + B \int \frac{d\mu}{(1 - \mu^2)[P_n(\mu)]^2} \right\}
\]

To determine the constants \(A \) and \(B \), let \(n = 0 \) and \(n = 1 \), and integrate by \(Dw 140 \) or \(Pc 48 \) and by \(Dw 152.1 \) or \(Pc 57 \), and expand the logarithm by \(Dw 601.2 \) or \(Pc 769 \). This gives
\[
Q_0(\mu) = A + \frac{1}{2} B \ln \frac{1 + \mu}{1 - \mu} = A + B \left(\mu + \frac{1}{3} \mu^3 + \frac{1}{5} \mu^5 + \cdots \right)
\]
\[
Q_1(\mu) - A\mu = \frac{\mu B}{2} \ln \frac{1 + \mu}{1 - \mu} - B = B \left(-1 + \mu^2 + \frac{\mu^4}{3} + \frac{\mu^6}{5} + \cdots \right)
\]

From 5.21 (2) and (1), we see that \(Q_0(\mu) = q_0 \) and \(Q_1(\mu) = -p_1 \), and comparing the values of \(q_0 \) and \(p_1 \) in 5.151 (4) and 5.151 (3) we see that
\[
A = 0 \quad \text{and} \quad B = 1
\]
so that the general expression for \(Q_n(\mu) \) is
\[
Q_n(\mu) = P_n(\mu) \int \frac{d\mu}{(1 - \mu^2)[P_n(\mu)]^2}
\]
(3)
and in particular
\[
Q_0(\mu) = \frac{1}{2} \ln \frac{1 + \mu}{1 - \mu}
\]
(4)
and
\[
Q_1(\mu) = \frac{1}{2} \mu \ln \frac{1 + \mu}{1 - \mu} - 1
\]
(5)
Applying 5.211 (1), we obtain
\[
Q_2(\mu) = \frac{3}{2} \mu Q_1(\mu) - \frac{1}{2} Q_0(\mu) = \frac{1}{2} \left(3\mu^2 - 1 \right) \ln \frac{1 + \mu}{1 - \mu} - \frac{3\mu}{2}
\]
\[
= \frac{1}{2} P_2(\mu) \ln \frac{1 + \mu}{1 - \mu} - \frac{3}{2} P_1(\mu)
\]
(6)
By repeated application of 5.211 (1), we get
\[
Q_n(\mu) = \frac{1}{2} P_n(\mu) \ln \frac{1 + \mu}{1 - \mu} - \frac{2n - 1}{1} P_{n-1}(\mu) - \frac{2n - 5}{3(n - 1)} P_{n-3}(\mu) - \cdots
\]
(7)
This holds for \(\mu^2 < 1 \). The general solution of Legendre's equation is
\[
\Theta = A P_n(\mu) + B Q_n(\mu)
\]
If we write \(A' = A - \frac{1}{2}B \ln(-1) \) and substitute in (7), we have

\[
\Theta = A' P_n(\mu) + B \left[\frac{1}{2} P_n(\mu) \frac{\mu + 1}{\mu - 1} - \frac{2n - 1}{1 \cdot n} P_{n-1}(\mu) - \cdots \right]
\]

So that when \(\mu^2 > 1 \), we may define \(Q_n(\mu) \) by the equation

\[
Q_n(\mu) = \frac{1}{2} P_n(\mu) \frac{\mu + 1}{\mu - 1} - \frac{2n - 1}{1 \cdot n} P_{n-1}(\mu) - \frac{2n - 5}{3(n-1)} P_{n-3}(\mu) - \cdots \quad (8)
\]

Putting \(n = 0 \) and \(n = 1 \), expanding the logarithm by \(Dw \) 601.3 or \(Pc \) 770, and comparing the values of \(Q_0(\mu) \) and \(Q_1(\mu) \) with 5.21 (4), we see that the formulas agree.

5.213. Special Values of Legendre Functions of the Second Kind.
The actual values of \(Q_n(\mu) \) may now be found easily from 5.212 (7) or (8), but it is frequently convenient to know certain important special values for real arguments as follows:

\[
\text{for real arguments as follows:}
\begin{align*}
(n \text{ even}) \quad Q_n(0) &= 0 \\
(n \text{ odd}) \quad Q_n(0) &= (-1)^{\frac{n}{2}}(n+1)\frac{2 \cdot 4 \cdot 6 \cdots (n-1)}{1 \cdot 3 \cdot 5 \cdots n} \\
\text{(any n)} \quad Q_n(-\mu) &= (-1)^n Q_n(\mu) \\
Q_n(1) &= \infty \quad Q_n(\infty) = 0
\end{align*}
\]

5.214. Legendre Function of the Second Kind with Imaginary Variable.—In connection with oblate spheroidal harmonics, we shall have to deal with \(Q_n(j\xi) \) where \(j = (-1)^{\frac{1}{2}} \) and \(0 < \xi < \infty \). No difficulty is experienced when \(\xi > 1 \), for substituting \(j\xi \) for \(\mu \) in 5.21 (4) we have

\[
Q_n(j\xi) = (-j)^{n+1} 2^n \sum_{s=0}^{\infty} \frac{(-1)^s(n + 2s)!(n + s)!}{s!(2n + 2s + 1)!} \xi^{-n-2s-1} \quad (1)
\]

If we make the same substitution in 5.212 (8), the result is ambiguous owing to the fact that the logarithm term is multiple valued. Using \(Pc \) 770 and 780 or \(Dw \) 601.2 and 506.2, we may write

\[
\ln \left(\frac{j\xi + 1}{j\xi - 1} \right) = 2j \left(\frac{1}{\xi} + \frac{1}{3\xi^3} - \frac{1}{5\xi^5} + \cdots \right) = -2j \cot^{-1} \xi
\]

If we expand the coefficient in 5.212 (8) by 5.158 (1) and substitute the above series for the logarithm, we find the result is identical with (1) so that a consistent value has been chosen and we may write

\[
Q_n(j\xi) = -j \cot^{-1} \xi P_n(j\xi) - \frac{2n-1}{1 \cdot n} P_{n-1}(j\xi) - \frac{2n-5}{3(n-1)} P_{n-3}(j\xi) - \cdots \quad (2)
\]

where the arc cotangent ranges from 0 to \(\pi \). We may use this expression to define \(Q_n(j\xi) \) over the whole range \(-\infty < \xi < \infty \) since it has no pecul-
THREE-DIMENSIONAL POTENTIAL DISTRIBUTIONS §5.215

arities at \(\zeta = 1 \). We note that \(Q_n(j\phi) \) is finite when \(\zeta \) is finite and that

\[
\begin{align*}
(n \text{ even}) & \quad Q_n(j \cdot 0) = -\frac{1}{2} j\pi P_n(j \cdot 0) = (-1)^{\frac{n-1}{2}} \frac{1 \cdot 3 \cdot 5 \cdots (n-1)}{2 \cdot 4 \cdot 6 \cdots n} \\
(n \text{ odd}) & \quad Q_n(j \cdot 0) = (-1)^{\frac{n+1}{2}} \frac{2 \cdot 4 \cdot 6 \cdots (n-1)}{1 \cdot 3 \cdot 5 \cdots n}
\end{align*}
\]

When \(\zeta \) is very large, the smallest negative power in (1) outweighs the remainder so that we have

\[
\lim_{\zeta \to \infty} Q_n(j\phi) \quad \to \quad \frac{2^n(n!)^2}{(2n+1)!} \left(-\frac{j}{\zeta} \right)^{n+1} \frac{1}{\zeta^{n+1}}
\]

An expression that is sometimes useful is obtained by differentiating 5.212 (3) and eliminating the integral from the resultant equation by 5.212 (3). Substituting \(j\phi \) for \(\mu \) gives

\[
P_n(j\phi)Q'_n(j\phi) - P'_n(j\phi)Q_n(j\phi) = (1 + \zeta^2)^{-1}
\]

5.215. Use of Legendre Function of the Second Kind in Potential Problems.—The most important applications of zonal harmonics of the second kind occur in connection with spheroidal harmonics. Owing to the fact that \(Q_n(\mu) \) is infinite when \(\mu = 1 \), they are used as spherical harmonics chiefly in problems where conical boundaries exclude the axis from the region of the electrostatic field.

Let us consider the case of two coaxial cones. Let the potential be zero over the cone \(\theta = \beta \), and let \(V_a = \Sigma(A_n r^n + B_n r^{-n-1}) \) over the cone \(\theta = \alpha \). Then, at any point in between,

\[
V = \sum \frac{(A_n r^n + B_n r^{-n-1})[Q_n(\cos \beta)P_n(\mu) - P_n(\cos \beta)Q_n(\mu)]}{P_n(\cos \alpha)Q_n(\cos \beta) - P_n(\cos \beta)Q_n(\cos \alpha)}
\]

where \(\mu = \cos \theta \). It is evident by inspection that this solution satisfies the boundary conditions.

A particular case of some interest is that in which one cone is at potential zero and the other at potential \(V_1 \). We then have, since \(P_0(\mu) = 1 \),

\[
V_1 = A_0 \frac{Q_0(\cos \beta) - Q_0(\cos \alpha)}{Q_0(\cos \beta) - Q_0(\cos \alpha)} = A_0
\]

Also \(Q_0(\cos \theta) = \frac{1}{2} \ln \left[(1 + \cos \theta)/(1 - \cos \theta) \right] = -\ln \tan \frac{1}{2} \theta \) from Dw 406.2 or Pc 578 so that the potential has the form

\[
V = V_1 \left(\frac{\ln \frac{\tan \frac{1}{2} \beta}{\tan \frac{1}{2} \theta}}{\ln \frac{\tan \frac{1}{2} \beta}{\tan \frac{1}{2} \alpha}} \right)
\]

5.22. Nonintegral Zonal Harmonics.—For many problems involving conical boundaries, we find harmonics with integral values of \(n \) inadequate. In such cases, we must expand in terms of harmonics with values
of \(n \) so chosen that the roots of \(P_\alpha(\mu) \) or \(Q_\alpha(\mu) \) are zero on the cones in question. Many of the equations already used, such as the recurrence formulas for \(P_\alpha(\mu) \) and \(Q_\alpha(\mu) \) are equally valid for nonintegral values of \(n \) but the definitions and derivations need modification to fit this case. A convenient expression for \(P_\alpha(\mu) \) good for all values of \(n \) is the series

\[
\sum_{r=0}^{\infty} \frac{(n+1)(n+2) \ldots (n+r)(-n)(1-n) \ldots (r-1-n)}{(r!)^2} \left(1 - \frac{\mu}{2}\right)^r
\]

(1)

This series converges for \(\mu = \cos \theta \) except at \(\theta = \pi \). An example of this type of harmonic is given in 5.26, 5.261, and 5.262, if we take the charge on the axis of the box so that \(m = 0 \).

When \(\nu \) is not an integer, \(P_\alpha(\mu) \) and \(P_\alpha(-\mu) \) are independent solutions of Legendre’s equation and are connected with \(Q_\alpha(\mu) \) by the relation

\[
Q_\alpha(\mu) = \frac{\pi}{2 \sin \nu \pi} \left[\cos \nu \pi P_\alpha(\mu) - P_\alpha(-\mu) \right]
\]

(2)

When \(n \) is integral, the \(Q_\alpha(\mu) \) of 5.21 is the limit of \(Q_\alpha(\mu) \) as \(\nu \to n \).

5.23. Associated Legendre Functions.—We have seen in 5.12 and 5.14 that a solution of Laplace’s equation, in spherical coordinates, of the form \(R \Theta \Phi \) is possible when

5.12 (3) \quad R = Ar^n + Br^{-n-1}

5.14 (1) \quad \Phi = C \cos m\phi + D \sin m\phi

and \(\Theta \) is a solution of 5.14 (2) which becomes, when \(\mu \) is written for \(\cos \theta \),

\[
\frac{d}{d\mu} \left[(1 - \mu^2) \frac{d \Theta}{d\mu} \right] + \left[n(n+1) - \frac{m^2}{1 - \mu^2} \right] \Theta = 0
\]

(3)

To obtain a solution of this equation, we start with Legendre’s equation, obtained by putting \(m = 0 \). Differentiating the product composing the first term, we may write Legendre’s equation

\[
(1 - \mu^2) \frac{d^2y}{d\mu^2} - 2 \mu \frac{dy}{d\mu} + n(n+1)y = 0
\]

We know solutions of this to be \(y = P_\alpha(\mu) \) and \(y = Q_\alpha(\mu) \). Differentiate this \(m \) times, and write \(v \) for \(d^m y / d\mu^m \), and we obtain

\[
(1 - \mu^2) \frac{d^2v}{d\mu^2} - 2 \mu \frac{dv}{d\mu} + (n-m)(n+m+1)v = 0
\]

(4)

Write \(w = (1 - \mu^2)^m v \) or \(v = (1 - \mu^2)^{-m} w \), and this is

\[
(1 - \mu^2) \frac{d^2w}{d\mu^2} - 2 \mu \frac{dw}{d\mu} + \left[n(n+1) - \frac{m^2}{1 - \mu^2} \right] w = 0
\]

(4.1)

This equation is identical with (3), when the first differentiation in (3) is
carried out, so that a solution of (3) is
\[\Theta = w = (1 - \mu^2)^{\frac{1}{2}} (1 - \mu^2)^{\frac{1}{2}} \frac{d^m y}{d \mu^m} \]

Since \(y \) is a solution of Legendre's equation, a complete solution of (3) is
\[\Theta = A' P_n^m(\mu) + B' Q_n^m(\mu) \]
where if \(-1 < \mu < +1\), \(P_n^m(\mu) \) and \(Q_n^m(\mu) \) are defined by
\[P_n^m(\mu) = (1 - \mu^2)^{\frac{1}{2}} \frac{d^m P_n(\mu)}{d \mu^m} \]
\[Q_n^m(\mu) = (1 - \mu^2)^{\frac{1}{2}} \frac{d^m Q_n(\mu)}{d \mu^m} \]

For \(-1 < \mu < +1\) Hobson introduces the factor \((-1)^m\) on the right. When \(\mu \) is imaginary or real, but greater than unity, we define these functions by the equations
\[P_n^m(\mu) = (\mu^2 - 1)^{\frac{1}{2}} \frac{d^m P_n(\mu)}{d \mu^m} \]
\[Q_n^m(\mu) = (\mu^2 - 1)^{\frac{1}{2}} \frac{d^m Q_n(\mu)}{d \mu^m} \]

These functions are known as associated Legendre functions of the first and second kind. We can compute them from the expressions for \(P_n(\mu) \) and \(Q_n(\mu) \) already obtained by using (6) and (7).

For \(\mu \) real but less than unity, (6) and (7) give
\[P_1^1(\mu) = (1 - \mu^2)^{\frac{1}{2}} \quad P_2^2(\mu) = 15(1 - \mu^2)^{\frac{1}{2}} \]
\[P_2^1(\mu) = 3(1 - \mu^2)^{\frac{1}{2}} \mu \quad P_1^2(\mu) = \frac{3}{2}(1 - \mu^2)^{\frac{1}{2}} (7\mu^2 - 3\mu) \]
\[P_3^1(\mu) = \frac{3}{2}(1 - \mu^2)^{\frac{1}{2}} (5\mu^2 - 1) \quad P_3^2(\mu) = 105(1 - \mu^2)^{\frac{1}{2}} \mu \]
\[P_3^3(\mu) = 15(1 - \mu^2)^{\frac{1}{2}} \mu \quad P_4^4(\mu) = 105(1 - \mu^2)^2 \]
\[Q_1^1(\mu) = (1 - \mu^2)^{\frac{1}{2}} \left(\frac{1}{2} \ln \frac{1 + \mu}{1 - \mu} + \frac{\mu}{1 - \mu^2} \right) \]
\[Q_2^2(\mu) = (1 - \mu^2)^{\frac{1}{2}} \left(\frac{3}{2} \mu \ln \frac{1 + \mu}{1 - \mu} + \frac{3\mu^2 - 2}{1 - \mu^2} \right) \]
\[Q_3^3(\mu) = (1 - \mu^2)^{\frac{1}{2}} \left(\frac{3}{2} \ln \frac{1 + \mu}{1 - \mu} + \frac{5\mu - 3\mu^3}{(1 - \mu^2)^2} \right) \]

For higher values of \(m \) and \(n \), use the recurrence formulas of 5.233.

For \(\mu \) real but greater than unity, the values given by (8) and (9) can be obtained by substituting in the above formulas for the first factor \((\mu^2 - 1)^{\frac{1}{2}}\) instead of \((1 - \mu^2)^{\frac{1}{2}}\) and by writing, in addition, in the logarithm term of \(Q_n^m(\mu) \) the factor \(\mu - 1 \) instead of \(1 - \mu \). For higher values of \(m \) and \(n \), use the recurrence formulas of 5.233.

For the imaginary values of the argument, we have, from 5.157, 5.214, and (8) and (9),
§5.231 INTEGRALS OF PRODUCTS OF ASSOCIATED FUNCTIONS 149

\[P_1(j \xi) = j \xi \quad Q_1(j \xi) = \xi \cot^{-1} \xi - 1 \]
\[P_1(j \xi) = j(1 + \xi^2)^{1/2} \quad Q_1(j \xi) = (1 + \xi^2)^{1/2} \left(\cot^{-1} \xi - \frac{\xi}{1 + \xi^2} \right) \]
\[P_2(j \xi) = -\frac{1}{2}(3\xi^2 + 1) \quad Q_2(j \xi) = \frac{1}{2}(3\xi^2 + 1) \cot^{-1} \xi - 3\xi \]

\begin{align*}
P_2(j \xi) & = -3(1 + \xi^2) \quad Q_2(j \xi) = j(1 + \xi^2)^{1/2} \left(3\xi \cot^{-1} \xi - \frac{3\xi^2 + 2}{1 + \xi^2} \right) \\
P_4(j \xi) & = -3(1 + \xi^2) \quad Q_4(j \xi) = j(1 + \xi^2)^{1/2} \left[3 \cot^{-1} \xi - \frac{5\xi + 3\xi^3}{(1 + \xi^2)^2} \right]
\end{align*}

In the formulas for \(Q_n^m(j \xi) \), the arc cotangent ranges from 0 to \(\pi \) as \(\xi \) ranges from \(+\infty \) to \(-\infty \).

When \(\mu \to \infty \), we have, using 5.152 (5) and 5.21 (5) in (8) and (9),

\[P_n^m(\cos \theta) = (2m - 1)! \sin^m \theta \quad (14) \]

An integral, useful for all values of \(n \) when \(x > 1 \), is

\[\pi P_n^m(x) = (n + 1)(n + 2) \cdots (n + m) \int_0^\pi [x + (x^2 - 1)^{1/2} \cos \phi]^n \cos m \phi \, d\phi \quad (15) \]

Substitution in (3) and two integrations by parts prove that it satisfies Legendre's equation. The constant factor is verified by letting \(x \to \infty \) so that the integral can be evaluated and the result compared with (12).

5.231. Integrals of Products of Associated Functions.—Equation 5.13 (2) shows us that, if \(n \neq n' \),

\[\int_{-1}^{+1} \int_0^{2\pi} [P_n^m(\mu)P_{n'}^{m'}(\mu)(A \cos m \phi + B \sin m \phi)(A' \cos m' \phi + B' \sin m' \phi)] \, d\mu \, d\phi = 0 \quad (1) \]

Because of the trigonometric products occurring, this integral is also zero if \(m \) is an integer, and \(m \neq m' \), by Pc 359, 360, and 361 or Dw 435, 445, and 465, regardless of the value of \(n \) and \(n' \).

To get the result when \(n = n' \) and \(m = m' \) we must determine the integral of the square of \(P_n^m(\mu) \) over a unit sphere.

Substitute from 5.23 (6) and 5.152 (4) for \(P_n^m(\mu) \) and rearrange the factors and we have, integrating by parts,
\[
\int_{-1}^{+1} [P_n^m(\mu)]^2 d\mu = \int_{-1}^{+1} u dv
\]
\[
= \frac{(-1)^m}{2^{2n}(n!)^2} \int_{-1}^{+1} \left[(\mu^2 - 1)^n \frac{d^{n+m}}{d\mu^{n+m}} (\mu^2 - 1) \right] d \left[\frac{d^{n+m-1}}{d\mu^{n+m-1}} (\mu^2 - 1) \right]
\]
\[
= \frac{(-1)^m}{2^{2n}(n!)^2} \int_{-1}^{+1} \frac{d}{d\mu} \left[(\mu^2 - 1)^n \frac{d^{n+m}}{d\mu^{n+m}} (\mu^2 - 1) \right] d \left[\frac{d^{n+m-2}}{d\mu^{n+m-2}} (\mu^2 - 1) \right]
\]
We now integrate repeatedly by parts, the general form of \(u\) and \(v\) being
\[
u = \frac{d^{s-1}}{d\mu^{s-1}} \left[(\mu^2 - 1)^n \frac{d^{n+m}}{d\mu^{n+m}} (\mu^2 - 1) \right], \quad v = \frac{d^{m+n-s}}{d\mu^{m+n-s}} (\mu^2 - 1)^n
\]
The product \(uv\) always vanishes at both limits since \(u\) contains the factor \(\mu^2 - 1\) when \(m \geq s\) and \(v\) when \(m < s\). Thus after \(m + n\) integrations by parts we obtain
\[
\int_{-1}^{+1} [P_n^m(\mu)]^2 d\mu = \int_{-1}^{+1} \frac{(1 - \mu^2)^n}{2^{2n}(n!)^2} \left\{ \frac{d^{n+m}}{d\mu^{n+m}} \left[(\mu^2 - 1)^n \frac{d^{n+m}}{d\mu^{n+m}} (\mu^2 - 1) \right] \right\} d\mu \quad (2)
\]
The second factor in the integrand is evidently a constant, \(\mu\) being eliminated by the differentiations. Keeping only the highest power of \(\mu\), by substituting \(\mu^2\) for \(\mu^2 - 1\), we see by inspection that its value is
\[
[2n(2n - 1)(2n - 2) \cdots (n - m + 1)(n + m)! = \frac{(2n)!}{(n - m)!}]
\]
The equation now becomes, using 5.155 (2.1) and 5.155 (3),
\[
\int_{-1}^{+1} [P_n^m(\mu)]^2 d\mu = \frac{(n + m)!}{(n - m)!} \frac{(2n)!}{(2n)!} \int_{-1}^{+1} (1 - \mu^2)^n d\mu
\]
\[
= \frac{(n + m)!}{(n - m)!} \int_{-1}^{+1} [P_n(\mu)]^2 d\mu = \frac{2}{2n + 1} \frac{(n + m)!}{(n + m)!} \quad (3)
\]
From (1) when \(n \neq n'\),
\[
\int_{-1}^{+1} P_n^m(\mu) P_{n'}^{m'}(\mu) d\mu = 0 \quad (4)
\]
When \(m \neq m'\), another integral relation that is sometimes useful is
\[
\int_{-1}^{+1} P_n^m(\mu) P_{n'}^{m'}(\mu) \frac{1}{1 - \mu^2} d\mu = 0 \quad (5)
\]
To obtain this formula, write 5.23 (3) with \(\theta = y, m = m\) and with \(\theta = y'\), \(m = m'\), multiply the first by \(y\), the second by \(y\), subtract and integrate from \(-1\) to \(+1\). To integrate when \(m = m'\), transfer the middle term of 5.233 (4) to the right side, square, write \(n - 1\) for \(n\) throughout, multiply by \(n + m\), and eliminate \(\Theta_n^{m+1} \Theta_n^{m-1}\) from the result by using the square of 5.233 (7) multiplied by \(n - m\). When integrated from \(-1\) to \(+1\), all terms not involving \(1 - \mu^2\) are integrated by (3) and cancel.
§5.232 ASSOCIATED FUNCTIONS WITH IMAGINARY ARGUMENT 151

out, leaving

\[\int_{-1}^{1} (\Theta_m^2) d\mu = \frac{n + m}{n - m} \int_{-1}^{1} (\Theta_{m-1}^2) d\mu = \frac{(n + m)!}{(2m)!}(n - m)! \int_{-1}^{1} (\Theta_m^2) d\mu \]

Substitution of 5.23 (14) for \(\Theta_m^2 \) and integration by parts give

\[\int_{-1}^{1} [P_{m}^0(\mu)]^2 d\mu = \frac{(n + m)!}{(2m)!}(n - m)! \int_{0}^{\pi} \sin^{2m-1} \theta d\theta = \frac{1}{m} \frac{(n + m)!}{(n - m)!} \]

(6)

In dealing with vector potentials, we shall need to use the orthogonal properties of the surface vector function of \(\cos \theta \) defined by

\[P_n^m(\mu) = \Phi(1 - \mu^2)^{m} \pm \phi m(1 - \mu^2)^{-m} P_n^m(\mu) \]

Integration of the scalar product of two such functions gives

\[\int_{-1}^{1} P_n^m(\mu) \cdot P_n^p(\mu) d\mu = \int_{-1}^{1} [(1 - \mu^2)P_n^m(\mu)P_n^p(\mu) + m^2(1 - \mu^2)^{-1}P_n^m(\mu)P_n^p(\mu)] d\mu \]

Substitution for the second term from 5.23 (3) and rearrangement give

\[\int_{-1}^{1} \left\{ [(1 - \mu^2)P_n^m]'_pP_n^p + \frac{d}{d\mu}[(1 - \mu^2)P_n^m]P_n^p \right\} d\mu + n(n + 1) \int_{-1}^{1} P_n^mP_n^p d\mu \]

\[= \left[(1 - \mu^2)P_n^mP_n^p \right]_{-1}^{1} + n(n + 1) \int_{-1}^{1} P_n^mP_n^p d\mu = n(n + 1) \int_{-1}^{1} P_n^mP_n^p d\mu \]

By (1) this is zero if \(n \neq p \) and by (3) if \(n = p \) it is

\[\int_{-1}^{1} P_n^m(\mu) \cdot P_n^m(\mu) d\mu = \frac{2n(n + 1)(n + m)!}{2n + 1(n - m)!} \]

(8)

5.232. Associated Functions with Imaginary Argument.—In connection with oblate spheroidal harmonics, the functions \(P_n^m(j\xi) \) and \(Q_n^m(j\xi) \) occur, where \(\xi \) ranges from 0 to \(\infty \). Series for these functions can be found by applying 5.23 (8) and (9) to 5.158 (1) and 5.214 (1). It will be noted that the resultant series for \(P_n^m(j\xi) \) has only zero or positive powers of \(\xi \) so that \(P_n^m(j \cdot 0) \) is finite and \(P_n^m(j \cdot \infty) \) is infinite. The series for \(Q_n^m(j\xi) \) contains only negative powers of \(\xi \) so that \(Q_n^m(j \cdot \infty) \) is zero.

We shall obtain an expression analogous to 5.214 (5) which is sometimes useful. From 5.212 (2) we have

\[Q_n^m(\mu) = P_n^m(\mu) \left\{ A + B \int \frac{d\mu}{(1 - \mu^2)[P_n^m(\mu)]^2} \right\} \]

Eliminating the integral from this equation and the equation obtained by differentiating it and substituting \(j\xi \) for \(\mu \), we obtain

\[P_n^m(j\xi) \frac{d}{d\xi} Q_n^m(j\xi) - Q_n^m(j\xi) \frac{d}{d\xi} P_n^m(j\xi) = \frac{jB}{1 + \xi^2} \]

(1)
Letting $\zeta \to \infty$ and using 5.23 (12) and (13) we find that

$$B = (-1)^m \frac{(n + m)!}{(n - m)!} \quad (2)$$

5.233. Recurrence Formulas for Legendre Associated Functions.
We have seen in 5.154 and 5.211 that $P_n(\mu)$ and $Q_n(\mu)$ have identical recurrence formulas. The signs in the corresponding formulas for $\Theta_n = AP_n^m(\mu) + BQ_n^m(\mu)$ depend on whether $-1 < \mu < +1$ or whether $\mu > 1$ or is imaginary. We shall now obtain these formulas, the upper sign referring to the case $\mu = \cos \theta$. Differentiate 5.154 (4.1) m times, multiply through by $\sin^{m+1} \theta$ or $(\mu^2 - 1)^{4(m+1)}$, and then by 5.23 (6) and (7) or 5.23 (8) and (9) we have

$$\Theta_{n+1}^{m+1} = (m + n + 1)[\pm(1 - \mu^2)]^i \Theta_n^m + \mu \Theta_n^{m+1} \quad (1)$$

Now differentiate 5.154 (2) m times, multiply by $[\pm(1 - \mu^2)]^i$, and we have, by 5.23 (6) and (7) or 5.23 (8) and (9),

$$\Theta_{n+1}^{m+1} - \Theta_n^{m+1} = (2n + 1)[\pm(1 - \mu^2)]^i \Theta_n^m \quad (2)$$

Subtract this from (1), and we obtain

$$\Theta_n^{m+1} = (m - n)[\pm(1 - \mu^2)]^i \Theta_n^m + \mu \Theta_n^{m+1} \quad (3)$$

Write $n - 1$ for n in (1), and eliminate Θ_{n+1}^{m+1} and Θ_{n-1}^m by using (3) and (3) with $m - 1$ substituted for m, respectively. Dividing the result through by $-(1 - \mu^2)$, we get

$$\Theta_n^{m+1} = 2m\mu[\pm(1 - \mu^2)]^i \Theta_n^m \pm (m + n)(n - m + 1)\Theta_n^{m-1} = 0 \quad (4)$$

This is the recurrence formula in m.

Now multiply (1) by $m - n$ and (3) by $m + n + 1$, and subtract. Writing m for $m + 1$ in the result, we have

$$(m - n - 1)\Theta_{n+1}^m + (2n + 1)\mu \Theta_n^m - (m + n)\Theta_{n-1}^m = 0 \quad (5)$$

This is the recurrence formula in n.

Differentiating 5.23 (6) and (7) or 5.23 (8) and (9) and using the above formulas, we have

$$[\pm(1 - \mu^2)]^i \Theta_n' = \mp m\mu[\pm(1 - \mu^2)]^i \Theta_n^m + \Theta_n^{m+1}$$

$$= \mp \frac{1}{2}(m + n)(n - m + 1)\Theta_n^{m-1} + \frac{1}{2} \Theta_n^{m+1} \quad (6)$$

We sometimes wish to express $[\pm(1 - \mu^2)]^i \Theta_n^m$ in terms of Legendre functions. To do this, write $m - 1$ for m in (1), divide through by $[\pm(1 - \mu^2)]^i$, substitute for $\mu[\pm(1 - \mu^2)]^i \Theta_n^m$ from (4), and write $n - 1$ for n in the result, giving

$$2m[\pm(1 - \mu^2)]^i \Theta_n^m = \pm \Theta_n^{m+1} + (m + n - 1)(m + n)\Theta_n^{m-1} \quad (7)$$

Writing $m - 1$ for m in (2) and substituting in the last form of (6) give

$$(1 - \mu^2)\Theta_n' = \mp m\mu \Theta_n^m \mp (m + n)(n - m + 1)(2n + 1)^{-1}(\Theta_{n+1}^m - \Theta_{n-1}^m)$$
§5.235

NEUTRAL POINTS AND LINES

153

Substitution of (5) in the last, first, or middle term gives, respectively,

\[(1 - \mu^2)\Theta_n' = \pm (n + 1)\mu \Theta_n + (n - m + 1)\Theta_{n+1} \]

\[= \pm (2n + 1)^{-1} [(m - n - 1)\Theta_{n+1} + (n+1)(m+n)\Theta_{n-1}] \]

\[= \pm n\mu \Theta_n' \pm (m + n)\Theta_m \]

(8)

5.234. Special Values of Associated Legendre Functions.—With the aid of the recurrence formulas of the last article, especially 5.233 (4) and 5.233 (6), combined with 5.157 and 5.213, we obtain the following relations

\[
\begin{align*}
(n + m \text{ even}) & \quad P_n^m(0) = (-1)^{\frac{1}{2}(n-m)} \frac{1 \cdot 3 \cdot 5 \cdots (n + m - 1)}{2 \cdot 4 \cdot 6 \cdots (n - m)} \\
(n + m \text{ odd}) & \quad P_n^m(0) = 0 \\
(n + m \text{ odd}) & \quad Q_n^m(0) = (-1)^{\frac{1}{2}(n-m+1)} \frac{2 \cdot 4 \cdot 6 \cdots (n + m - 1)}{1 \cdot 3 \cdot 5 \cdots (n - m)} \\
(n + m \text{ even}) & \quad Q_n^m(0) = 0
\end{align*}
\]

5.235. Neutral Points and Lines.—The nature of neutral points is clarified by taking one as the origin for a spherical harmonic potential expansion. Inside a sphere so small that it includes no charge, the potential must be everywhere finite and so of the form

\[
V = \sum_{n=0}^{\infty} \sum_{m=0}^{n} A_{mn} r^n P_n^m(\cos \theta) \cos (m\phi - \delta_m)
\]

(1)

At a neutral point, \(\nabla V \) is zero so that as \(r \to 0, \partial V/\partial r \to 0, \) and \(A_{m1} \) is zero. Neutral points may be classified according to the highest \(p \) value for which all \(A_{mn} \)'s \((n \leq p) \) vanish at \(r = 0 \). Thus for a neutral point of the \(p \)th order, \(p \) is the largest integer for which, for all values of \(\theta \) and \(\phi, \)

\[
\frac{\partial V}{\partial r} \to 0, \quad \frac{\partial^2 V}{\partial r^2} \to 0, \quad \cdots \quad \frac{\partial^p V}{\partial r^p} \to 0
\]

(2)

Sufficiently close to a neutral line or point of the \(p \)th order

\[
V = A_{00} + r^{p+1} \sum_{m=0}^{p+1} A_{m,p+1} P_{p+1}^m(\cos \theta) \cos (m\phi + \delta_m)
\]

(3)

The potential at the neutral point is \(A_{00} \). The equipotential surfaces intersecting there are given when \(r \) is small, by equating the summation to zero. For an axially symmetrical field, \(m \) is zero so the surfaces are
circular cones of half angles α given by $P_{p+1}(\cos \alpha) = 0$. From 5.157, for a first-order point, α is $54^\circ 44'$ and $125^\circ 36'$; for a second-order point, α is $39^\circ 14'$, 90°, and $140^\circ 46'$, etc. The simple neutral line occurs when all but the $m = p + 1$ term are zero. In this neutral line $p + 1$ planes intersect, the angles between adjacent planes being $\pi/(p + 1)$.

5.24. Biaxial Harmonics.—It is sometimes convenient to be able to express a surface zonal harmonic $P_n(\cos \theta')$ in terms of general surface harmonics $S_n(\theta, \phi)$ referred to another axis. Let the two axes intersect at the origin and let the coordinates of the θ'-axis, referred to the θ, ϕ system, be $\theta = \Theta$ and $\phi = 0$. We must then determine the coefficients in the expansion

$$P_n(\cos \theta') = \sum_{m=0}^{m=n} A_m P_n^m(\cos \theta) \cos m\phi$$

Multiply both sides by $P_n^m(\cos \theta) \cos s\phi$, and integrate over the surface of a unit sphere. On the right side, by 5.231, all terms go out except the S_n terms. By 5.231 (3), this becomes

$$A_m \int_S [P_n^m(\cos \theta)]^2 \cos^2 m\phi \, dS = \frac{2\pi}{2n + 1} \frac{(n + m)!}{(n - m)!} A_m$$

on the left side, we must evaluate the integral

$$\int_S P_n(\cos \theta') S_n(\theta, \phi) \, dS$$

This identical integral appears as the coefficient of b^n when we find the potential V_P at the point $\theta' = 0$, $r = b$ due to a distribution of charge density $S_n(\theta, \phi)$ on the surface of a unit sphere. We have solved this problem in 5.131 so that we can evaluate the integral by equating it to the coefficient of b^n in that solution which must hold for all values of $b \leq 1$. Thus we have

$$4\pi \varepsilon V_P = \int_S \left(\frac{\sigma \varphi}{PQ} \right) \, dS = \int_S S_n(\theta, \phi) (1 + b^2 - 2b \cos \theta')^{-1} \, dS$$

When expanded by 5.153 (1), the integrals of the products of the form $P_r(\cos \theta') S_n(\theta, \phi)$ go out by 5.13 (2) leaving only the term

$$4\pi \varepsilon V_P = b^n \int_S P_n(\cos \theta') S_n(\theta, \phi) \, dS$$

But we have already evaluated V_P in 5.131 (5) in the form

$$4\pi \varepsilon V_P = \frac{4\pi}{2n + 1} b^n [S_n(\theta, \phi)]_P$$

In the present case, the coordinates of P, referred to the θ-axis, are $\theta = \Theta$, $\phi = 0$ and so $S_n(\theta, \phi) = P_n^m(\cos \Theta)$ and equating coefficients
of \(b^n \) in the two expressions for \(V_p \) gives
\[
\int S P_n(\cos \theta')P_m^n(\cos \theta) \cos m\phi \, dS = \frac{4\pi}{2n + 1} P_m^n(\cos \Theta)
\]
(3)

Equating (2) and (3) and solving for \(A_m \), we get
\[
A_m = 2 \frac{(n - m)!}{(n + m)!} P_m^n(\cos \Theta)
\]
(4)

when \(m = 0 \), (2) and (3) become by 5.155 (3) and 5.131 (5)
\[
A_m \int S [P_n(\cos \theta)]^2 \, dS = \frac{4\pi A_0}{2n + 1} = \int S P_n(\cos \theta')P_n(\cos \theta) \, dS = \frac{4\pi P_n(\cos \Theta)}{2n + 1}
\]

Substituting in (1) gives
\[
P_n(\cos \theta') = \sum_{m=-n}^{m=n} (2 - \delta_m^0) \frac{(n - m)!}{(n + m)!} P_m^n(\cos \Theta)P_n^n(\cos \theta) \cos m\phi
\]
(5)

where \(\delta_m^0 = 1 \) if \(m = 0 \) and \(\delta_m^0 = 0 \) if \(m \neq 0 \). This symbol is called the Kronecker delta and is more generally written \(\delta_m^n \) where \(\delta_m^n = 1 \) if \(m = n \) and \(\delta_m^n = 0 \) if \(m \neq n \).

5.25. Conical Boundaries.—The potential inside a cone produced by an arbitrary potential distribution over its surface is found by choosing separation constants in 5.12 (1) so that \(R \) and \(\Phi \) are orthogonal functions. Thus, if \(n \) is \(jp - \frac{1}{2} \), then \(k \) is \(-p^2 + \frac{1}{4} \) and \(R \) becomes, from 5.12 (3),
\[
R_p = A' r^{p-1} + B' r^{-p+1} = r^{-\frac{1}{2}} A \cos (p \ln r + \delta_p)
\]
(1)

The product \(R_p R_p' \, dr \) then becomes \(\cos (p\psi + \delta_p) \cos (p'\psi + \delta_{p'}) \, d\psi \) where \(\psi \) is \(\ln r \) and leads to Fourier's series or integrals in \(\ln r \). There now appear in the \(\theta \)-factor Legendre functions of order \(jp - \frac{1}{2} \) known as cone functions and treated by Hobson, Heine, and others. Hobson gives the series
\[
P_{jp-4}(\pm \mu) = 1 + \frac{4p^2 + 1/2}{2^2} \left(\frac{1 \mp \mu}{2} \right)
\]
\[+ \frac{(4p^2 + 1/2)(4p^2 + 3/2)}{2^2 \cdot 4^2} \left(\frac{1 \mp \mu}{2} \right)^2 + \cdots
\]
(2)

The upper sign solution, infinite at \(\mu = 1 \), is useful outside a cone, and the lower sign one is useful inside it. The function is not periodic. No assumptions regarding \(n \) were made in deriving 5.23 (6) so that
\[
P_{jp-4}(\pm \mu) = (1 - \mu^2)^{1m} \frac{\partial^n P_{jp-4}(\pm \mu)}{\partial \mu^n}
\]
(3)

5.26. Nonintegral Associated Legendre Functions.—As mentioned in the last article, when working with conical boundaries we may use \(P_n^m(\mu) \) or \(Q_n^m(\mu) \) where \(n \) is not an integer. To use these functions, we
need expansion in series of Legendre functions that include all values of \(n \) for which \(\Theta_n^m(\mu) = 0 \). For this purpose we must have formulas analogous to 5.13 (2) and 5.231 (3). Let \(\Theta_n^m(\mu) = y \) and \(\Theta_n^m(\mu) = y' \) be solutions of 5.23 (3) such that

\[
\Theta_n^m(\mu_0) = \Theta_n^m(\mu_0) = 0
\]

Thus we have

\[
(1 - \mu^2)\frac{d^2y}{d\mu^2} - 2\mu\frac{dy}{d\mu} + \left[n(n + 1) - \frac{m^2}{1 - \mu^2} \right]y = 0
\]

\[
(1 - \mu^2)\frac{d^2y'}{d\mu^2} - 2\mu\frac{dy'}{d\mu} + \left[n'(n' + 1) - \frac{m^2}{1 - \mu^2} \right]y' = 0
\]

Multiply the first by \(y' \) and the second by \(y \), and subtract, and we obtain

\[
\frac{d}{d\mu} \left[(1 - \mu^2) \left(y'\frac{dy}{d\mu} - y\frac{dy'}{d\mu} \right) \right] + (n - n')(n + n' + 1)yy' = 0
\]

Integrate from \(\mu_0 \) to 1, and we get

\[
\int_{\mu_0}^{1} \Theta_n^m(\mu)\Theta_n^m(\mu) \, d\mu = -\left| \frac{(1 - \mu^2)\left(\Theta_n^m\frac{d\Theta_n^m}{d\mu} - \Theta_n^m\frac{d\Theta_n^m}{d\mu} \right)}{(n - n')(n + n' + 1)} \right|_{\mu_0}^{1}
\]

(2)

From (1), we have, if \(n \neq n' \),

\[
\int_{\mu_0}^{1} \Theta_n^m(\mu)\Theta_n^m(\mu) \, d\mu = 0
\]

(3)

If \(n = n' \), we must proceed as follows. Let \(n - n' = \Delta n' \). Substitute \(y = y' + (\partial y'/\partial n')\Delta n' \) in (2), and we get

\[
y\frac{dy'}{d\mu} - y\frac{dy}{d\mu} = y'\frac{dy'}{d\mu} + \frac{\partial y'}{\partial \mu} \frac{\partial y'}{\partial n'} \Delta n' - y\frac{dy'}{d\mu} - y'\frac{\partial^2 y'}{\partial \mu \partial n'} \Delta n'
\]

Since at \(\mu = \mu_0, y' = 0 \), we have, as \(n \to n' \),

\[
\int_{\mu_0}^{1} [\Theta_n^m(\mu)]^2 \, d\mu = -\frac{(1 - \mu_0^2)}{2n + 1} \left(\frac{\partial \Theta_n^m}{\partial \mu} \frac{\partial \Theta_n^m}{\partial n} \right)_{\mu = \mu_0}
\]

(4)

To calculate values of \(\frac{\partial \Theta_n^m}{\partial n} \), one may use series such as 5.151 (1) or definite integral expressions which may be found in works cited at the end of this chapter.

5.261. Green's Function for a Cone.—We shall now solve the problem of an earthed cone \(\theta = \alpha \) under the influence of a point charge \(q \) at \(r = a, \theta = \beta, \phi = \phi_0 \). By a point charge, we mean one having dimensions too small to measure physically but mathematically not zero so that the field-intensity and potential functions are mathematically bounded. Our boundary condition \(V = 0 \) on the cone will be satisfied automatically if we use a series of Legendre functions in which we choose such values of \(n \) that \(P_n^m(\mu_0) \) is zero where \(\mu_0 = \cos \alpha \). Clearly, from
5.262 Green’s Function for a Conical Box

5.23 (1), (2), and (6), with such a choice of n, solutions of Laplace’s equation which are finite at $r = 0$, $r = \infty$, agree at $r = a$, and have the proper symmetry about ϕ_0 are

$$ r < a \quad V_i = \sum_{n} \sum_{m=0}^{\infty} A_{mn} \left(\frac{r}{a} \right)^n P_n^m(\mu) \cos m(\phi - \phi_0) \quad (1) $$

$$ r > a \quad V_0 = \sum_{n} \sum_{m=0}^{\infty} A_{mn} \left(\frac{a}{r} \right)^{n+1} P_n^m(\mu) \cos m(\phi - \phi_0) \quad (2) $$

To determine the coefficients A_{mn}, we use a new variable $\phi' = \phi - \phi_0$ and proceed, as in 4.07, to write $\partial V_i / \partial r - \partial V_0 / \partial r$, multiply both sides by $P_i^s(\mu) \cos p\phi' \, d\mu \, d\phi'$, and integrate from $\phi' = 0$ to $\phi' = 2\pi$ and from $\mu = \mu_0$ to $\mu = 1$. Then, by $PC 361$ or $DW 445$, all terms on the right are out unless $m = p$ and, by 5.26 (3), they are also out unless $n = s$. Thus we have, multiplying through by a^2,

$$ a^2 \int_{\mu_0}^{2\pi} \int_{\mu_0}^{2\pi+1} P_i^s(\mu) \cos p\phi' \left(\frac{\partial V_i}{\partial r} - \frac{\partial V_0}{\partial r} \right)_{r=a} \, d\mu \, d\phi' = aA_{ps} (2s^2 + 1) \int_{\mu_0}^{2\pi+1} [P_i^s(\mu)]^2 \, d\mu \int_0^{2\pi} \cos^2 p\phi' \, d\phi' \quad (3) $$

The integrals on the right are evaluated by 5.26 (4) and, except when $p = 0$, by $PC 363$ or $DW 440.20$. To evaluate the left side, we note that $a^2 \, d\mu \, d\phi' = -a^2 \sin \theta \, d\theta \, d\phi' = -dS$. The field is continuous across the sphere $r = a$, except over the infinitesimal area ΔS at $\theta = \beta$, $\phi = \phi_0$ or $\phi' = 0$ where the charge is located. Thus $\partial V_i / \partial r = \partial V_0 / \partial r$ except over ΔS and the integral vanishes elsewhere. We take ΔS so small that we may write $P_i^s(\mu_1)$ for $P_i^s(\mu)$, where $\mu_1 = \cos \beta$, and 1 for $\cos p\phi'$. We note that on the inner face of ΔS, $\partial V_i / \partial r = -\partial V_0 / \partial n$ and that on the outer face of ΔS, $\partial V_0 / \partial r = \partial V / \partial n$ so that the left side of (3) becomes, by Gauss’s electric flux theorem [1.10 (1)]

$$ -P_i^s(\mu_1) \int_{\Delta S} \frac{\partial V}{\partial n} \, dS = q \int_{\epsilon} ^{2\pi} P_i^s(\mu_1) \quad (4) $$

Solving (3) for A_{ps} and writing m for p and n for s to fit the notation of (1) and (2), we have

$$ A_{mn} = -\frac{(2 - \delta^s_m) q}{2\pi a(1 - \mu_0^2)} \int_{\mu = \mu_0} [\frac{\partial P_n^m(\mu) \partial P_n^m(\mu)}{\partial \mu} \frac{\partial P_n^m(\mu)}{\partial n}]_{\mu = \mu_0} \quad (5) $$

where $\delta^s_m = 1$ if $m = 0$ and $\delta^s_m = 0$ if $m \neq 0$.

5.262. Green’s Function for a Conical Box.—Suppose that the charge q lies between the earthed spheres $r = d$ and $r = c$ and inside the earthed cone $\theta = \alpha$, so that $c < a < d$ and $0 < \beta < \alpha$. We must then super-impose on the Green’s function for the cone a potential that will be zero
on the cone and will give a resultant zero potential when \(r = d \) and \(r = c \). Since both \(r = 0 \) and \(r = \infty \) are excluded, such a potential will have the form of 5.261 (1) or 5.261 (2) where the terms \((r/a)^n\) or \((a/r)^{n+1}\) are replaced by \(C_n r^n + D_n r^{-n-1}\). When this is added to 5.261 (1) and we put \(r = c \), the result must be zero so that

\[
\left(\frac{c}{a}\right)^n + C_n a^n + \frac{D_n}{c^{n+1}} = 0 \tag{1}
\]

When we add it to 5.261 (2) and put \(r = d \), the result must also be zero so that

\[
\left(\frac{a}{d}\right)^{n+1} + C_n d^n + \frac{D_n}{d^{n+1}} = 0 \tag{2}
\]

Solving (1) and (2) for \(C_n \) and \(D_n \) and adding the new potential to 5.261 (1) give, if \(r < a \),

\[
V_i = \sum_{n} \sum_{m=0}^{n} A_{mn} a^{2n+1} \frac{a^{2n+1} - d^{2n+1}}{a^n(c^{2n+1} - d^{2n+1})} \left(r^n - \frac{c^{2n+1}}{r^{n+1}} \right) P_n^m(\mu) \cos (\phi - \phi_0) \tag{3}
\]

Similarly, if \(r > a \), we have, from 5.261 (2),

\[
V_o = \sum_{n} \sum_{m=0}^{n} A_{mn} a^{2n+1} \frac{a^{2n+1} - c^{2n+1}}{a^n(c^{2n+1} - d^{2n+1})} \left(r^n - \frac{d^{2n+1}}{r^{n+1}} \right) P_n^m(\mu) \cos (\phi - \phi_0) \tag{4}
\]

If, in addition, the planes \(\phi = +\gamma \) and \(\phi = 0 \), where \(\gamma > \phi_0 > 0 \), are at zero potential, and if \(\gamma = \pi/s \) where \(s \) is an integer, we can obtain the potential by the method of images, superimposing solutions of the type (3) and (4). If \(\gamma \neq \pi/s \), we would need to use nonintegral harmonics of the form \(\sin (m\pi\phi/\gamma) \). This would introduce in \(A_{mn} \) the factor \(2\pi/\gamma \), and in (3) and (4) the factor \(\sin (m\pi\phi_0/\gamma) \sin (m\pi\phi/\gamma) \) would replace \(\cos (\phi - \phi_0) \).

5.27. Oblate Spheroidal Coordinates.—Common geometrical forms occurring in electrical apparatus are the thin circular disk and the thin sheet with a circular hole. None of the coordinate systems so far studied gives these forms as natural boundaries except the confocal system of 5.01 and 5.02. In this system, we can specify a single value of one coordinate that gives exactly the desired surface, and no more, for the whole range of the remaining coordinates. Our problem is greatly simplified by the axial symmetry which gives oblate spheroids instead of the general ellipsoids. We shall now investigate the solution of Laplace’s equation in such a system that introduces the functions called oblate spheroidal harmonics.

In 5.01 (1), let the longer semiaxes \(b \) and \(c \) be equal and let \(y = \rho \cos \phi \) and \(z = \rho \sin \phi \). We then have the equation
\[\frac{x^2}{a^2 + \theta} + \frac{\rho^2}{b^2 + \theta} = 1 \]

(1)

In this equation, let \(a^2 + \theta = (b^2 - a^2)\theta_i^2 = c_i^2 \theta_i^2 \). Then we have confocal oblate spheroids when \(-a^2 < \theta < \infty\) or \(0 < \xi^2 < \infty\), where \(\theta_i^2 = \xi_i \), and when \(-b^2 < \theta < -a^2\) or \(0 < \xi^2 < 1\), where \(-\theta_i^2 = \xi_i^2\) we have confocal hyperboloids of one sheet. Evidently the third coordinate is the longitude angle \(\phi \). The equation of the spheroids is

\[\frac{x^2}{c_i^2 \xi^2} + \frac{\rho^2}{c_i^2 (\xi^2 + 1)} = 1 \]

(2)

and that of the hyperboloids is

\[\frac{x^2}{-c_i^2 \xi^2} + \frac{\rho^2}{c_i^2 (1 - \xi^2)} = 1 \]

(3)

Eliminating \(\rho \) from these equations gives

\[x = c_i \xi \xi \]

(4)

and eliminating \(x \) gives

\[\rho = c_i [(1 + \xi^2)(1 - \xi^2)]^\frac{1}{4} \]

(5)

The coordinate \(\rho \) is always positive, but \(x \) goes from \(-\infty \) to \(+\infty\). Therefore if we choose \(0 < \xi < \infty\), we must take \(-1 \leq \xi \leq +1\) as shown in Fig. 5.273, and if we choose \(-\infty < \xi < +\infty\) we must take \(0 \leq \xi \leq 1\) as shown in Fig. 5.272.

To write Laplace's equation in this system, we must determine \(h_1, h_2, \) and \(h_3 \) in 3.03 (4). From 3.03 (1),

\[\frac{1}{h_1} = \frac{\partial \xi}{\partial n} = \frac{\partial \theta_1}{\partial n} \quad \text{and} \quad \frac{1}{h_2} = \frac{\partial \xi}{\partial n} = \frac{\partial \theta_1}{\partial n} \]

With the aid of 5.01 (1.1), we have

\[\frac{\partial \theta_1}{\partial n} = \frac{1}{2c_i^2 \theta_1 \partial n} = \frac{|\nabla \theta|}{2c_i^2 \theta_1} = \frac{1}{c_i^2 \theta_1 M^2_2} \]

Writing the coordinates in the order \(\xi, \xi, \phi \) and substituting for \(x \) and \(\rho \) from (4) and (5) give

\[h_1 = c_i^2 \xi \left[\frac{x^2}{(-c_i^2 \xi^2)^2} + \frac{\rho^2}{c_i^2 (1 - \xi^2)^2} \right]^\frac{1}{4} = c_1 \left(\frac{\xi^2 + \xi^2}{1 - \xi^2} \right)^\frac{1}{4} \]

(6)

\[h_2 = c_i^2 \xi \left[\frac{x^2}{c_i^2 \xi^2} + \frac{\rho^2}{c_i^2 (1 + \xi^2)^2} \right]^\frac{1}{4} = c_1 \left(\frac{\xi^2 + \xi^2}{1 + \xi^2} \right)^\frac{1}{4} \]

(7)

\[h_3 = \rho \frac{d\phi}{d\phi} = \rho = c_1 [(1 + \xi^2)(1 - \xi^2)]^\frac{1}{4} \]

(8)

We may now write Laplace's equation by 3.03 (4).

\[\frac{\partial}{\partial \xi} \left[(1 - \xi^2) \frac{\partial V}{\partial \xi} \right] + \frac{\partial}{\partial \xi} \left[(1 + \xi^2) \frac{\partial V}{\partial \xi} \right] + \frac{\xi^2 + \xi^2}{(1 + \xi^2)(1 - \xi^2)} \frac{\partial^2 V}{\partial \phi^2} = 0 \]

(9)
5.271. Oblate Spheroidal Harmonics.—A solution of 5.27 (9) in the form \(V = \Xi Z \Phi \) where \(\Xi \), \(Z \), and \(\Phi \) are functions of \(\xi \), \(\zeta \), and \(\phi \) only, respectively, is called an oblate spheroidal harmonic. Multiplying 5.27 (9) through by \((1 + \xi^2)(1 - \zeta^2)|\Xi Z \Phi (\xi^2 + \zeta^2)|^{-1}\), we find that the last term involves \(\phi \) only. We can get a solution, as in 5.12, by setting this term equal to \(-m^2\) and the other terms equal to \(+m^2\), giving

\[
\frac{1}{\Xi} \frac{d^2 \Xi}{d\xi^2} = -m^2
\]

and

\[
\frac{1}{Z} \frac{d}{d\xi} \left[(1 - \xi^2) \frac{d\Xi}{d\xi} \right] + \frac{1}{Z} \frac{d}{d\zeta} \left[(1 + \zeta^2) \frac{d\Xi}{d\zeta} \right] = \frac{m^2(\xi^2 + \zeta^2)}{(1 + \xi^2)(1 - \zeta^2)}
\]

As before, this can be satisfied by taking

\[
\frac{d}{d\xi} \left[(1 - \xi^2) \frac{d\Xi}{d\xi} \right] - \frac{m^2 \Xi}{1 - \xi^2} + n(n + 1) \Xi = 0
\]

and

\[
\frac{d}{d\zeta} \left[(1 + \zeta^2) \frac{d\Xi}{d\zeta} \right] + \frac{m^2 Z}{1 + \zeta^2} - n(n + 1) Z = 0
\]

Putting \(\zeta' = j\zeta \) in the last equation gives

\[
\frac{d}{d\zeta'} \left[(1 - \zeta'^2) \frac{d\Xi}{d\zeta'} \right] - \frac{m^2 Z}{1 - \zeta'^2} + n(n + 1) Z = 0
\]

The solution of (1) is, from 5.23 (2),

\[
\Phi_m = C \cos m\phi + D \sin m\phi
\]

Since (2) and (3) are identical with 5.23 (3), the solution is given by 5.23 (5) to be

\[
\Xi_{mn} = A P^m_n(\xi) + B Q^m_n(\xi)
\]

\[
Z_{mn} = A' P^m_n(\zeta') + B' Q^m_n(\zeta') = A' P^m_n(j\zeta) + B' Q^m_n(j\zeta)
\]

The general solution is then

\[
V = \sum_m \sum_n \Xi_{mn} Z_{mn} \Phi_m
\]

Since a sphere is a special case of a spheroid, we should expect spherical harmonics to be a special case of spheroidal harmonics. Let us see how the solution given by (4), (5), (6), and (7) passes over into 5.23 (2), 5.23 (5), and 5.23 (1) as the eccentricity of our ellipsoid becomes zero. By letting \(c_1 \to 0 \), the disk given by \(\zeta = 0 \) shrinks to the point given by \(r = 0 \). From 5.27 (4), we see that, since \(1 > \xi > 0 \), \(\zeta \to \infty \) as \(c_1 \to 0 \), we may neglect 1 compared with \(\zeta^2 \) in 5.27 (5) and have

\[
\rho \to \frac{c_1 \xi (1 - \xi^2)}{\xi (1 - \xi^2)}
\]
Solving for ξ gives

$$\xi \rightarrow x(x^2 + \rho^2)^{-\frac{1}{2}} = \cos \theta = \mu$$

(8)

Thus (5) becomes 5.23 (5).

From 5.27 (4), we now see that

$$\xi \rightarrow \frac{x}{c_1 \cos \theta} = \frac{r}{c_1}$$

(9)

Referring to 5.23 (12) and 5.23 (13), we have

$$A_1 P_n^m(j\xi) \rightarrow A_2 r^n \quad \text{and} \quad B_1 Q_n^m(j\xi) \rightarrow B_2 r^{n+1}$$

(10)

Thus (6) becomes 5.23 (1).

By means of (8) and (10), we can frequently choose, at once, the proper oblate spheroidal harmonics to use in a given problem from a knowledge of the form of the solution for the corresponding problem in spherical harmonics.

5.272. Conducting Sheet with Circular Hole.—Let us now consider the case of an infinite thin plane conducting sheet, with a circular hole, which either is freely charged or forms one boundary of a uniform field.

In order to have our coordinate continuous in the region of the field, we take $0 \leq \xi \leq 1$ and $-\infty < \zeta < +\infty$, ζ having the same sign as x. The equation of the sheet is $\xi = 0$, as shown in Fig. 5.272. Let us work out the case where such a sheet at potential zero forms one boundary of a uniform field. At $x = \infty$, the field will still be uniform and undisturbed by the hole, and at $x = -\infty$ the field will be zero. Equations 5.27 (4) and (5) simplify when $\zeta^2 \rightarrow \infty$, since 1 can then be neglected compared
with \(\xi \), giving

\[
r^2 = x^2 + \rho^2 = c_1^2 \xi^2 + c_2^2 \xi^2 - c_1^2 c_2^2 = c_3^2 \xi^2
\]

so that \(\xi \to \pm r/c_1 \) and \(\xi = x/(c_1 \xi) \to |x|/r = |\cos \theta| \). Now the equation of the uniform field at \(x = \infty \) is \(V = Er \cos \theta \) so that \(\xi \) can enter as \(\cos \theta \) only which permits only \(P_1(\xi) \), and hence only \(m = 0, n = 1 \). Then the potential from 5.271 (7), (5), and (6) is

\[
V = P_1(\xi)[A' P_1(j \xi) + B' Q_1(j \xi)]
\]

Writing in the values of \(P_1 \) and \(Q_1 \) from 5.23 (11), we have

\[
V = \xi[jA' \xi + B'(\xi \cot^{-1} \xi - 1)]
\]

To evaluate \(A' \) and \(B' \), consider \(\xi = \pm \infty \). When \(\xi = + \infty \), the coefficient of \(B' \) is negligible and

\[
Er \cos \theta = \frac{jA' r}{c_1} \cos \theta \quad \text{giving} \quad Ec_1 = jA'
\]

when \(\xi = - \infty \) the constant term is negligible and

\[
0 = \cos \theta \left(\frac{jA' r}{c_1} + \frac{\pi B' r}{c_1} \right) \quad \text{giving} \quad \pi B' = -jA'
\]

or

\[
B' = -\frac{Ec_1}{\pi}
\]

If the edge of the hole is given by \(\rho = a \), we have, from 5.27 (5), since both \(\xi \) and \(\xi \) are zero there, \(c_1 = a \), giving for the potential

\[
V = aE \xi \left[\xi - \frac{1}{\pi} (\xi \cot^{-1} \xi - 1) \right]
\]

To get the charge density on the plate, we have

\[
\sigma = -e \frac{\partial V}{\partial x} \to \mp e \frac{\partial V}{\partial \xi} \frac{\partial \xi}{\partial x}
\]

From 5.27 (5), when \(\xi = 0 \), \(a \xi = \pm (\rho^2 - a^2)^{\frac{1}{2}} \) and also

\[
\cot^{-1} \left[\pm (\rho^2 - a^2)^{\frac{1}{2}} \right] = \frac{1}{2} \mp \cos^{-1} \left(\frac{a}{\rho} \right)
\]

so that from (6) and (7)

\[
\sigma = -eE \left\{ \pm \frac{1}{2} + \frac{1}{\pi} \left[\cos^{-1} \frac{a}{\rho} + \frac{a}{(\rho^2 - a^2)^{\frac{1}{2}}} \right] \right\}
\]

where we take the plus sign on the upper side of the plate and the minus sign on the lower side.

5.273. Torque on Disk in Uniform Field.—The case of an uncharged conducting disk of radius \(a \) whose normal makes an angle \(\alpha \) with an electric field \(E \) which was uniform before the introduction of the disk
may be considered as the superposition of two cases, the first being a field $E \cos \alpha$ normal to the plane of the disk and the second a field $E' = E \sin \alpha$ parallel to the plane of the disk. To solve the latter case, we may use oblate spheroidal harmonics. In this case, in order that the coordinates will be continuous in the region of the field, we shall take $0 \leq \xi < \infty$ and $-1 \leq \xi \leq +1$. The coordinates are then as shown in Fig. 5.273. As in the last article at $r = \infty$, $\zeta \rightarrow r/a$ and $\xi \rightarrow \pm \cos \theta$,

having the same sign as x. At infinity, where the field is still undisturbed, we have

$$V_\infty = E' \rho \cos \phi = E' \alpha [(1 - \xi^2)(1 + \xi^2)]^\frac{1}{4} \cos \phi$$

(1)

Since ϕ enters only as $\cos \phi$, we must have $m = 1$ in 5.271 (4), (5), (6), and (7). Since $n \geq m$, the smallest value of n that can occur is $n = 1$. Furthermore, when $r = \infty$, ξ and ζ can enter only as in (1) which is given by the factor $(1 - \mu^2)^{\frac{1}{4}}$ in 5.23 (6) and (7). We can therefore not have $n > 1$ since the differentiation in 5.23 (6) and (7) would then bring in ξ and ζ as factors. From 5.23 (11),

$$Q_1(\xi) = (1 + \xi^2)^\frac{1}{4} \left(\cot^{-1} \xi - \frac{\xi}{1 + \xi^2} \right)$$

and from 5.23 (10),

$$P_1(\xi) = (1 - \xi^2)^\frac{1}{4}$$

Since the potential is finite when $\xi = \pm 1$, the factor $Q_1(\xi)$ is excluded and the potential must be

$$V' = P_1(\xi)[A P_1(\xi) + B Q_1(\xi)] \cos \phi$$

$$= (1 - \xi^2)^\frac{1}{4} \left[j A (1 + \xi^2)^\frac{1}{4} + B (1 + \xi^2)^\frac{1}{4} \left(\cot^{-1} \xi - \frac{\xi}{1 + \xi^2} \right) \right] \cos \phi$$

(2)
When $\xi = 0$ \(V' = 0\), therefore \(jA = -\frac{1}{2}\pi B\). When $\xi = \infty$, the last two terms in \(\xi\) are negligible compared with the first term, and equating to (1)

\[E'a = -\frac{1}{2}\pi B \quad \text{or} \quad B = -\frac{2E'a}{\pi} \]

so that the final expression for the potential is

\[V' = 2\pi^{-1}E'a[(1 - \xi^2)(1 + \xi^2)]^{\frac{1}{2}}(\tan^{-1} \frac{\xi}{1 + \xi^2}) \cos \phi \quad (3) \]

Substituting \(\rho\) from 5.27 (5), this may be written

\[V' = 2\pi^{-1}E'a\rho\left(\tan^{-1} \frac{\xi}{1 + \xi^2}\right) \cos \phi \quad (4) \]

Since the component \(E \cos \alpha\) of the field perpendicular to the disk is not disturbed by the presence of the uncharged disk, its potential is given by \(V'' = Ex \cos \alpha\), so that, superimposing on the solution (4) gives \(V = V' + V''\) the form

\[V = E\left[\frac{2\rho}{\pi}\left(\tan^{-1} \frac{\xi}{1 + \xi^2}\right) \sin \alpha \cos \phi + x \cos \alpha\right] \quad (5) \]

where \(\xi\) is given in terms of \(\rho\) and \(x\) by 5.27 (4), (5).

We could get the torque from (5) by finding the surface density \(\sigma\) whence the force per unit area would be \(\frac{1}{2}\sigma^2/\epsilon\), etc. An easier method, however, is to observe that the surface density induced by \(E \cos \alpha\) produces no torque when acted on by \(E \sin \alpha\) because the lever arm is zero. Hence, the entire torque must be that due to \(\sigma'\), induced by \(E \sin \alpha\), and acted upon by \(E \cos \alpha\). From (4),

\[\sigma' = -\epsilon \left[\frac{\partial V'}{\partial x} \right]_{\xi = 0} = -\frac{2\epsilon E'\rho}{\pi} \left\{ \left(\frac{1}{1 + \xi^2} + \frac{1 - \xi^2}{(1 + \xi^2)^{\frac{3}{2}}} \right) \partial \xi \right\} \cos \phi \]

But from 5.27 (4), \(\xi = x/(a\xi)\) so that \(\partial \xi/\partial x = (a\xi)^{-1}\). When \(\xi = 0\), from 5.27 (5), \(a^2\xi^2 = a^2 - \rho^2\) so that

\[\sigma' = -\frac{4\epsilon E \sin \alpha}{\pi} \frac{\rho \cos \phi}{(a^2 - \rho^2)^{\frac{3}{4}}} \quad (6) \]

For the element of area \(\rho d\rho d\phi\), the lever arm is \(\rho \cos \phi\), and the field is \(E \cos \alpha\) so that the total torque is, including charge on both sides,

\[T = -\frac{8\epsilon E^2 \sin \alpha \cos \alpha}{\pi} \int_0^a \int_{-\pi}^{+\pi} \rho^3 \cos^2 \phi \frac{d\phi}{(a^2 - \rho^2)^{\frac{3}{4}}} \rho \cos \phi \quad (7) \]

Since \(2 \sin \alpha \cos \alpha = \sin 2\alpha\), we have upon integrating by \(Dw 858.3\) or \(Pc 489\)

\[T = -4\epsilon E^2 \sin 2\alpha \int_0^a \frac{\rho^3 d\rho}{(a^2 - \rho^2)^{\frac{1}{4}}} \]
§5.274 POTENTIAL OF CHARGE DISTRIBUTION ON SPHEROID

Integrating again by Dw 323.01 or Pc 159 gives

$$T = -4eE^2 \sin 2\alpha \left[\frac{1}{3}(a^2 - \rho^2) - a^2(a^2 - \rho^2) \right]_0^\alpha = -\frac{8e^2 E^2 \sin 2\alpha}{3} \quad (7)$$

5.274. Potential of Charge Distribution on Spheroid.—Let us suppose that, on the surface of an oblate spheroid, $\xi = \xi_0$, we have an electric charge density σ_n of the nature described in the first paragraph of 5.131. This charge gives rise to a potential V_o outside the spheroid and V_i inside it. Applying Gauss's electric flux theorem, 1.10 (1), to a small box fitting closely an element of the spheroid gives

$$\frac{\sigma_n}{\epsilon} = \left\{ \frac{\partial V_i}{\partial n} - \frac{\partial V_o}{\partial n} \right\}_s = \left[\frac{1}{h_2} \left(\frac{\partial V_i}{\partial \xi} - \frac{\partial V_o}{\partial \xi} \right) \right]_\xi = \xi_0 \quad (1)$$

Let us consider that σ_n is such that

$$\epsilon V_o = j(-1)^m \frac{(n - m)!}{(n + m)!} (1 + \xi_0^2) P_n^m(j\xi_0) Q_n^m(j\xi) S_n^m$$

$$S_n^m = C_{mn} P_n^m(\xi) \cos m(\phi - \phi_m) \quad (2)$$

This choice makes V_o finite at $\xi = \infty$. In order that ∇V_i be finite when $\xi = 0$, $\xi = 0$, and V_i equal V_o when $\xi = \xi_0$, V_i must be of the form

$$\epsilon V_i = j(-1)^m \frac{(n - m)!}{(n + m)!} (1 + \xi_0^2) Q_n^m(j\xi_0) P_n^m(j\xi) S_n^m$$

Substituting (2) and (4) in (1) and using 5.232 (1) we obtain

$$\sigma_n = \left\{ \frac{1}{h_2} \right\}_\xi S_n^m$$

Setting

$$A_{mn} = \frac{j(-1)^m}{\epsilon} \frac{(n - m)!}{(n + m)!} (1 + \xi_0^2) \quad (5)$$

we can, with the aid of (2), (4), (5) and 1.06 (6), evaluate two useful integrals, which are

$$\int_{\xi = \xi_0}^{\xi = \infty} \frac{S_n^m}{h_2} dS = A_{mn} P_n^m(j\xi_0) Q_n^m(j\xi) S_n^m$$

$$\int_{\xi = \xi_0}^{\xi = \infty} \frac{S_n^m}{h_2} dS = A_{nn} Q_n^m(j\xi_0) P_n^m(j\xi) S_n^m$$

Now consider a surface density which is a superposition of densities of the form σ_n so that the potentials are superpositions of potentials of the form of (7). Thus we have

$$\sigma = \Sigma \Sigma h_2^{-1} S_n^m = \Sigma \Sigma h_2^{-1} C_{rs} P_r^s(\xi) \cos s(\phi - \phi_s)$$

To determine the coefficients C_{mn}, we multiply by

$$P_n^m(\xi) \cos m(\phi - \phi_m) h_2 h_3 d\xi d\phi$$
and integrate over the spheroid. Exactly as with (5), all terms go out except those for which \(m = s \) and \(n = r \). For these terms, we use 5.24 (2) and so obtain, when \(m \neq 0 \),

\[
C_{mn} = \frac{2n+1}{2\pi c_1} \frac{(n-m)!}{(n+m)!} \frac{1}{1 + \xi_0^2} \int_{-1}^{1} \int_{0}^{2\pi} \sigma P_n^m(\xi) \cos m(\phi - \phi_m) h_1 h_3 \, d\xi \, d\phi \quad (8)
\]

The potentials due to the distribution \(\sigma \) are then given by

\[
\begin{align*}
\xi < \xi_0 & \quad V_i = \sum_{n=0}^{\infty} \sum_{m=0}^{n} M_{mn} P_n^m(j \xi) P_n^m(\xi) \cos m(\phi - \phi_m) \quad (9) \\
\xi > \xi_0 & \quad V_o = \sum_{n=0}^{\infty} \sum_{m=0}^{n} N_{mn} Q_n^m(j \xi) P_n^m(\xi) \cos m(\phi - \phi_m) \quad (10)
\end{align*}
\]

where, by combining (4) and (8),

\[
M_{mn} = j(-1)^m (2 - \delta_m^0) (2n+1) \left[\frac{(n-m)!}{(n+m)!} \right]^2 Q_n^m(j \xi_0) \int_{-1}^{1} \int_{0}^{2\pi} \sigma P_n^m(\xi) \cos m(\phi - \phi_m) h_1 h_3 \, d\xi \, d\phi \quad (11)
\]

where \(\delta_m^0 = 1 \) if \(m = 0 \) and \(\delta_m^0 = 0 \) if \(m \neq 0 \). From (4) we have

\[
N_{mn} = M_{mn}^* P_n^m(j \xi_0) Q_n^m(j \xi_0) \quad (12)
\]

The \(2 - \delta_m^0 \) factor is required because if \(m = 0 \) the integration with respect to \(\phi \) used to obtain (8) introduces a factor \(2\pi \) instead of \(\pi \).

5.275. Potential of Point Charge in Oblate Spheroidal Harmonics.

We can use the results of the last article to obtain the potential due to a point charge at \(\xi_0, \phi_0, \phi_0 \). By a point charge, we mean one whose dimensions, although too small to measure physically, are mathematically not zero so that the field-intensity function and the potential function are everywhere bounded. We take the charge density \(\sigma \) everywhere zero except in an area \(S \), at \(\phi = \phi_0, \xi = \xi_0 \), which is so small that \(P_n^m(\xi) \) has the constant value \(P_n^m(\xi_0) \) and \(\cos m(\phi - \phi_m) = \cos m(\phi - \phi_0) = 1 \). The integral in 5.274 (11) then becomes

\[
P_n^m(\xi_0) \int \int \sigma h_1 h_3 \, d\xi \, d\phi = P_n^m(\xi_0) \int_S \sigma \, dS = qP_n^m(\xi_0)
\]

The coefficient of 5.274 (11) now becomes

\[
M_{mn} = j(2 - \delta_m^0) q (-1)^m \frac{2n+1}{4\pi c_1} \left[\frac{(n-m)!}{(n+m)!} \right]^2 Q_n^m(j \xi_0) P_n^m(\xi_0) \quad (1)
\]

By 5.274 (12) we have

\[
N_{mn} = j(2 - \delta_m^0) q (-1)^m \frac{2n+1}{4\pi c_1} \left[\frac{(n-m)!}{(n+m)!} \right]^2 P_n^m(j \xi_0) P_n^m(\xi_0) \quad (2)
\]
The potentials due to \(q \) are then given by

\[
\zeta < \zeta_0 \quad V_i = \sum_{n=0}^{\infty} \sum_{m=0}^{n} M_{mn} P_n^m(j\zeta) P_n^m(\xi) \cos m(\phi - \phi_0) \tag{3}
\]

\[
\zeta > \zeta_0 \quad V_o = \sum_{n=0}^{\infty} \sum_{m=0}^{n} N_{mn} Q_n^m(j\zeta) P_n^m(\xi) \cos m(\phi - \phi_0) \tag{4}
\]

With the aid of these formulas, we can now get Green's function for regions bounded by surfaces of the oblate spheroidal coordinate system, using the same methods as with the spherical harmonics.

5.28. Prolate Spheroidal Harmonics.—A common form of spark gap consists of two coaxial rods with rounded ends which can be well approximated by the two sheets of an hyperboloid of revolution. We also find cases involving elongated conductors which resemble prolate spheroids. These surfaces are natural boundaries in the prolate spheroidal system of coordinates since a specified value of one coordinate will give one of these surfaces, and no more, for the entire range of the remaining coordinates. The solution of Laplace's equation in this system leads to functions called the prolate spheroidal harmonics.

We proceed exactly as in 5.27 except that we now let the two shorter semiaxes \(a \) and \(b \) in 5.01 (1) be equal and let \(x = \rho \sin \phi \) and \(y = \rho \cos \phi \). We then have the equation

\[
\frac{\rho^2}{b^2 + \theta} + \frac{z^2}{c^2 + \theta} = 1 \tag{1}
\]
Let \(c^2 + \theta = (c^2 - b^2)\theta_2^2 = c_2^2\theta_2^2 \). We have now confocal prolate spheroids when \(-b^2 < \theta < \infty\) or \(1 < \eta^2 < \infty\), where \(\theta_2^2 = \eta^2 \), and we have confocal hyperboloids of two sheets when \(-c^2 < \theta < -b^2\) or \(0 < \xi^2 < 1\) where \(\theta_2^2 = \xi^2 \). Figure 5.28 shows an axial section of this system. The third coordinate is the longitude angle \(\phi \). The equation of the spheroids is

\[
\frac{\rho^2}{c_2^2(\eta^2 - 1)} + \frac{z^2}{c_2^2\eta^2} = 1
\]

and that of the hyperboloids is

\[
\frac{\rho^2}{c_2^2(1 - \xi^2)} + \frac{z^2}{c_2^2\xi^2} = 1
\]

Eliminating \(\rho \) from these equations gives

\[
z = c_2\eta\xi
\]

and eliminating \(z \) gives

\[
\rho = c_2[(1 - \xi^2)(\eta^2 - 1)]^{1/4}
\]

As in 5.27, if we take \(1 \leq \eta < \infty\), we must take \(-1 \leq \xi \leq 1\), but there is no reason to give negative values to \(\eta \), since these coordinates are everywhere continuous. Taking the coordinates in the order \(\xi, \eta, \phi \), we determine \(h_1, h_2 \) and \(h_3 \) as in 5.27, giving

\[
h_1 = c_2^2\xi\left[\frac{\rho^2}{c_2^4(1 - \xi^2)^2} + \frac{z^2}{c_2^4\xi^4}\right]^{1/4} = c_2\left(\frac{\eta^2 - \xi^2}{1 - \xi^2}\right)^{1/4}
\]

\[
h_2 = c_2^2\eta\left[\frac{\rho^2}{c_2^4(\eta^2 - 1)^2} + \frac{z^2}{c_2^4\eta^4}\right]^{1/4} = c_2\left(\frac{\eta^2 - \xi^2}{\eta^2 - 1}\right)^{1/4}
\]

\[
h_3 = \rho - c_2[(1 - \xi^2)(\eta^2 - 1)]^{1/4}
\]

Laplace's equation is obtained exactly as in 5.101 (9) except that we have \(\eta^2 - 1 \) for \(1 + \xi^2\) and \(\eta^2 - \xi^2\) for \(\xi^2 + \xi^2\). Proceeding as in 5.271, we find that, assuming a solution of the form \(\Xi H\Phi \), we have the same differential equation 5.271 (2) for both \(\Xi \) and \(H \), and \(\Phi \) as before is given by 5.271 (4) so that

\[
\Xi_{mn} = AP_n^m(\xi) + BQ_n^m(\xi)
\]

\[
H_{mn} = A'P_n^m(\eta) + B'Q_n^m(\eta)
\]

\[
\Phi_m = C \cos m\phi + D \sin m\phi
\]

The general solution is given by

\[
V = \sum_m \sum_n \Xi_{mn} H_{mn} \Phi_m
\]

5.281. Prolate Spheroid in Uniform Field.—As an application of the results of the last article, let us find the field where an earthed plane, having a conducting spheroidal boss of height \(c \) and base radius \(b \), forms one boundary of a uniform field. This situation might arise, for example, in the field between a flat horizontal electrified storm cloud situated above a wet haystack or fir tree on the earth's surface. Let the field
at \(z = \infty \) be \(Er \cos \theta \). As before, when
\[
\eta \to \infty \quad \eta \to \frac{r}{c_2} \quad \text{and} \quad \xi \to \frac{z}{r} = \cos \theta
\]
Thus, referring to 5.23 (12), we see that \(\xi \) can enter only as \(P_1(\xi) \); so the potential is, using 5.212 (8),
\[
V = P_1(\xi)[(AP_1(\eta) + BQ_1(\eta)] = \xi \eta \left[A + B \left(\frac{1}{2} \ln \frac{\eta + 1}{\eta - 1} - \frac{1}{\eta} \right) \right] = \frac{z}{c_2} \left[A + B \left(\coth^{-1} \eta - \frac{1}{\eta} \right) \right]
\]
at \(z = \infty, \eta = \infty, \eta^{-1} = 0 \) and \(\coth^{-1} \eta = 0 \) so that
\[
E_z = \frac{Az}{c_2} \quad \text{or} \quad A = c_2 E
\]
The spheroid with semiaxes \(c \) and \(b \) is obtained by putting \(\theta = 0 \) in 5.28 (1) or \(c_2^2 \eta_0^2 = c^2 \). Thus
\[
0 = c_2 E + B \left(\coth^{-1} \eta_0 - \frac{1}{\eta_0} \right) \quad \text{or} \quad B = -c_2 E \left(\coth^{-1} \eta_0 - \frac{1}{\eta_0} \right)^{-1}
\]
Thus the final expression for the potential is
\[
V = E_z \left(1 - \frac{\coth^{-1} \eta - \frac{1}{\eta}}{\coth^{-1} \eta_0 - \frac{1}{\eta_0}} \right)
\]
(1)
where
\[
\eta_0 = \frac{c}{c_2} = \frac{c}{(c^2 - b^2)^{\frac{1}{2}}}
\]
and \(\eta, \xi, \) and \(z \) are connected by 5.28 (4) and (5).

5.29. Laplace's Equation in Cylindrical Coordinates.—For potential problems where the boundary conditions are most simply expressed in a cylindrical coordinate system, we need a solution of Laplace's equation in such a system, where it takes the form
\[
\frac{\partial^2 V}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial V}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} = 0
\]
(1)
Here \(\rho = \rho \cos \phi \) and \(\gamma = \rho \sin \phi \). We have already in 4.01 investigated the special case in which \(V \) is independent of \(z \) and found it gives rise to circular harmonics. We now try a solution of the form \(V = R \Phi Z \) where \(R, \Phi, \) and \(Z \) are, respectively, functions of \(\rho, \phi, \) and \(z \) alone. This solution will be called a cylindrical harmonic. Substituting in (1) and dividing through by \(R \Phi Z \rho^{-2} \), we have
\[
\frac{\rho}{R} \frac{d}{d \rho} \left(\frac{dR}{d \rho} \right) + \frac{1}{\rho} \frac{d \Phi}{d \phi} + \frac{1}{\rho^2} \frac{d^2 \Phi}{d \phi^2} + \frac{\partial^2 Z}{\partial z^2} = 0
\]
(2)
5.291. Bessel's Equation and Bessel Functions.—In 5.29 (2), we set

\[\frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2} = -n^2 \]
(1)

and

\[\frac{1}{Z} \frac{d^2 Z}{dz^2} = k^2 \]
(2)

Then \(R \) satisfies the equation

\[\rho \frac{d}{d\rho} \left(\rho \frac{dR}{d\rho} \right) + (k^2 \rho^2 - n^2)R = 0 \]

If we set \(v = k\rho \), this equation takes the form

\[\frac{d^2 R}{dv^2} + \frac{1}{v} \frac{dR}{dv} + \left(1 - \frac{n^2}{v^2}\right)R = 0 \]
(3)

Complete solution of 1 and 2 are

\[\Phi = A e^{in\phi} + B e^{-in\phi} = A' \cos n\phi + B' \sin n\phi \]
(4)

\[Z = C e^{kz} + D e^{-kz} = C' \cosh kz + D' \sinh kz \]
(5)

A solution of (3), which is known as Bessel's equation, is called a Bessel function of the \(n \)th order. The cylindrical harmonic may now be written

\[V = R_n(k\rho)\Phi(n\phi)Z(kz) \]
(6)

except when \(k = 0 \) when, from 4.01 (5) and 4.07 (2), solutions are

\[V_0 = (M \rho^n + N \rho^{-n})(Cz + D)(A \cos n\phi + B \sin n\phi) \]
(7)

\[V_0 = [M \cos (n \ln \rho) + N \sin (n \ln \rho)](Cz + D)(A \cosh n\phi + B \sinh n\phi) \]
(8)

When \(k \) and \(n \) are both zero, we have

\[V_{00} = (M \ln \rho + N)(Cz + D)(A \phi + B) \]
(9)

5.292. Modified Bessel Equation and Functions.—A somewhat different equation is obtained by substituting \(jk \) for \(k \) in 5.291 (2). We then get in place of 5.291 (3)

\[\frac{d^2 R_0}{dv^2} + \frac{1}{v} \frac{dR_0}{dv} - \left(1 + \frac{n^2}{v^2}\right)R_0 = 0 \]
(1)

which is called the modified Bessel equation and whose solutions are called modified Bessel functions. In place of 5.291 (5), we now have

\[Z = C e^{ikz} + D e^{-ikz} = C' \cos kz + D' \sin kz \]
(2)

The cylindrical harmonic is now written

\[V = R_0^o(k_1\rho)e^{i\phi}e^{\pm ikz} \]
(3)

Solutions of this type will be considered in Arts. 5.32 to 5.36.

5.293. Solution of Bessel's Equation.—Let \(R_n = \sum a_v\nu^{v+n} \) in 5.291 (3), and we obtain

\[v^n \sum [s(2n + s)a_v\nu^{v-2} + a_v] = 0 \]
(1)
§5.293

SOLUTION OF BESSEL'S EQUATION

171

Whence,

\[a_s = -[s(2n + s)]^{-1}a_{s-2} \]

(2)

If \(a_0 \) is finite, then \(a_{-2}, a_{-4}, \text{ etc.} \) are zero. Let \(a_0 = [2^n \Gamma(n + 1)]^{-1} \), which reduces to \((2^n n!)^{-1}\) when \(n \) is an integer, then we have, by repeated use of (2), writing \(J_n(v) \) for \(R_n(v) \),

\[J_n(v) = \frac{v^n}{2^n \Gamma(n + 1)} \left[1 - \frac{v^2}{2^2(n + 1)} + \frac{v^4}{2^4 2!(n + 1)(n + 2)} - \cdots \right] \]

\[= \sum_{r=0}^{\infty} (-1)^r \frac{(\frac{3}{2}v)^{n+2r}}{r! \Gamma(n + r + 1)} \]

(3)

The function \(J_n(v) \) is called a Bessel function of the \(n \)th order of the first kind. Evidently \(J_n(0) = 0 \) when \(n \neq 0 \), and it will be shown in 5.303 that \(J_n(\infty) = 0 \) also.

Since 5.291 (3) is a second-order differential equation, there must be a second solution. Where \(n \) is not an integer, this is \(J_{-n}(v) \); but when \(n \) is an integer, \(J_{-n}(v) \) and \(J_n(v) \) are not independent solutions. To show this, write \(-n \) for \(n \) in (3) then, since \([\Gamma(-n)]^{-1} \) is zero, the series for \(J_{-n}(v) \) and \((-1)^n J_n(v) \) are identical. When \(n \) is not integral, the formula

\[Y_s(v) = \frac{J_s(v) \cos \nu \pi - J_{-s}(v)}{\sin \nu \pi} \]

(4)

defines a second solution. When \(\nu \) is integral, this becomes \(0/0 \). To find its value, write \(-\nu \) for \(\nu \) in (3), split the \(0 \) to \(\infty \) \(r \)-summation into one from \(n \) to \(\infty \) and one from \(0 \) to \(n - 1 \), write \(n + s \) for \(r \) in the former, and \(\pi^{-1} \Gamma(\nu - r) \sin \nu \pi \) for \(\{\Gamma(1 - (\nu - r))\}^{-1} \) by \(Dw \ 850.3 \) in the latter. When \(J_{-\nu}(v) \) in (4) is replaced by this result and \(\cos \nu \pi \) by \((-1)^n \), it becomes

\[\frac{(-1)^n}{\sin \nu \pi} \left[J_s(v) - \sum_{s=0}^{\infty} (-1)^s (\frac{3}{2}v)^{r+2s} (n + s)! \Gamma(n - \nu + s + 1) \right] - \sum_{r=0}^{n-1} (-1)^r (\frac{3}{2}v)^{2r-s} \Gamma(\nu - r) \]

The bracket is zero when \(\nu = n \) from (3) so the first term still has the form \(0/0 \). To evaluate this, differentiate each factor with respect to \(\nu \) and write \(n \) for \(\nu \). By referring to page 19 of Jahnke and Emde we find

\[\frac{d}{dz} \left[\frac{1}{\Gamma(z)} \right] = -\frac{1}{\Gamma(z)} \frac{d}{dz} \ln \Gamma(z) = -\frac{1}{\Gamma(z)} \left(-C + \sum_{m=1}^{\infty} \frac{1}{m} \right) \]

where \(C = .5772157 \) is Euler's number. With this formula and \(Dw \ 563.3 \) or \(Pc \ 828 \), the \(0/0 \) form is evaluated and writing \(\ln \alpha \) for \(C - \ln 2 \) gives
\[Y_n(v) = \frac{2}{\pi} J_n(v) \ln (\alpha v) - \sum_{r=0}^{n-1} \frac{(\frac{1}{2}v)^{2r-n}(n - r - 1)!}{\pi r!} \]

\[- \sum_{r=0}^{\infty} \frac{(-1)^r (\frac{1}{2}v)^{n+2r}}{\pi r!(n + r)!} \left(\sum_{m=1}^{n-1} \frac{1}{m} + \sum_{m=1}^{n+r} \frac{1}{m} \right) \]

A complete solution of Bessel's equation when \(n \) is an integer is

\[R_n(v) = A' J_n(v) + B' Y_n(v) \]

We note that \(Y_n(0) \) is infinite and shall see in 5.303 that \(Y_n(\infty) \) is zero. There are many notations for the function defined by (5). Watson and the British Association Tables use \(Y_n(v) \), Jahnke and Emde, Schelkunoff, and Stratton use \(N_n(v) \), and Gray, Mathews, and MacRobert use \(\tilde{Y}_n(v) \).

Setting \(M = 1/v \) and \(N = 1 - (n/v)^2 \) in 5.111 (6) reduces it to 5.291 (3) so that, if \(J_n(v) \) is the known solution, 5.111 (7) becomes

\[Y_n(v) = J_n(v) \{ A + B[f(v)J^2_n(v)]^{1/2} dv \} \]

Differentiating this and omitting the argument give

\[\frac{d}{dv} \left(\frac{Y_n}{J_n} \right) = \frac{Y_n'}{J_n} - \frac{J_n'Y_n}{J_n^2} = \frac{B}{vJ_n^2} \]

From the recurrence formulas, \(B \) is independent of both \(n \) and \(v \) and so may be evaluated for integral \(n \)'s by taking the simple case where \(n \) is zero and \(v \) is very small. Then only the \(\ln v \) term in (5) is important, so it and its derivative may be used for \(Y_n(v) \) and \(Y_n'(v) \) in (8). The logarithm terms cancel and \(B \) comes out \(2/\pi \) so (8) may be rearranged in the form

\[Y_n'(v)J_n(v) - J_n'(v)Y_n(v) = \frac{2}{\pi v} \]

For cylindrical electromagnetic waves we need the "Hankel" functions which combine with \(e^{iut} \) to give traveling waves and are defined by

\[H_n^{(1)}(v) = J_n(v) + jY_n(v), \quad H_n^{(2)}(v) = J_n(v) - jY_n(v) \]

5.294. Recurrence Formulas for Bessel Functions.—If we multiply 5.293 (3) by \(v^n \) and differentiate, we obtain

\[\frac{d[v^nJ_n(v)]}{dv} = \frac{v^{2n-1}}{2^{n-1} \Gamma(n)} \left[1 - \frac{v^2}{2^{2n}} + \frac{v^4}{2^4 2n(n+1)} - \cdots \right] \]

Factoring out \(v^n \) on the right side and comparing with 5.293 (3), we see that

\[\frac{d[v^nJ_n(v)]}{dv} = v^nJ_{n-1}(v) \]
Differentiate left side, rearrange, divide out \(v^n \), and indicate differentiation with respect to \(v \) by a prime, and we have

\[
J'_n = J_{n-1} - \frac{n}{v} J_n
\]

(1)

If we use the same procedure multiplying by \(v^{-n} \) instead of by \(v^n \), we obtain

\[
J'_n = -J_{n+1} + \frac{n}{v} J_n = \frac{1}{2}(J_{n-1} - J_{n+1})
\]

(2)

Subtracting (1) from (2), we have

\[
\frac{2n}{v} J_n = J_{n-1} + J_{n+1}
\]

(3)

Writing \((-1)^n J_{-n}(v)\) for \(J_n(v) \) in (1), (2), and (3) gives the recurrence formulas for \(J_{-n}(v) \). Differentiation of 5.293 (4) and substitution for \(J'_n(v) \) from (1) and for \(J'_{-n}(v) \) from a similar formula give, as \(v \to \infty \), so that \(\cos v\pi \) may be replaced by \(-\cos (v - 1)\pi\) and \(\sin v\pi \) by \(-\sin (v - 1)\pi\),

\[
\frac{J'_{n} \cos v\pi - J'_{-n}}{\sin v\pi} \to \frac{J_{n-1} \cos (v - 1)\pi - J_{-n}}{\sin (v - 1)\pi} - \frac{v(J_{n} \cos v\pi - J_{-n})}{v \sin v\pi}
\]

A similar process can be applied to (2) so that

\[
Y'_n = Y_{n-1} - \frac{n}{v} Y_n
\]

(4)

\[
Y'_n = -Y_{n+1} + \frac{n}{v} Y_n
\]

(5)

Subtraction of these equations gives

\[
\frac{2n}{v} Y_n = Y_{n-1} + Y_{n+1}
\]

(6)

Two useful integral formulas are got by integrating the equation from which (1) was derived and the analogous equation associated with (4).

\[
\int v^n J_{n-1}(v) \, dv = v^n J_n(v)
\]

(7)

\[
\int v^n Y_{n-1}(v) \, dv = v^n Y_n(v)
\]

(8)

A similar integration of (2) and (5) gives

\[
\int v^{-n} J_{n+1}(v) \, dv = -v^{-n} J_n(v)
\]

(9)

\[
\int v^{-n} Y_{n+1}(v) \, dv = -v^{-n} Y_n(v)
\]

(10)

5.295. Values of Bessel Functions at Infinity.—In potential problems involving \(\rho = \infty \), one must know how \(J_n(k\rho) \) and \(Y_n(k\rho) \) behave there. To find this limiting value, we use a trick often employed by Sommerfeld. In 5.291 (3), as \(v \to \infty \) let us, as a first approximation, drop the terms containing \(v^{-1} \) and \(v^{-2} \). This gives the approximate differential equation

\[
\frac{d^2 R}{dv^2} + R = 0
\]

(1)
The solution of this equation is

\[R = R'e^{\pm iv} \]

(2)

We now insert this trial solution in Bessel's equation 5.291 (3) and consider \(R' \) to vary so slowly with \(v \) that \(d^2R'/dv^2, v^{-1} dR'/dv, \) and \(v^{-2}R' \) can be neglected compared with \(dR'/dv \) and \(v^{-1}R' \), and we obtain

\[2\frac{dR'}{dv} + \frac{R'}{v} = 0 \quad \text{or} \quad R' = Cv^{-1} \]

so that, from (2) our asymptotic solution becomes

\[R = Cv^{-1}e^{\pm iv} \]

(3)

We now see that the largest term neglected was of the order \(v^{-1} \). \(J_n(v) \) and \(Y_n(v) \) must be real linear combinations of the two solutions given by taking the plus or minus sign so that they must be of the form

\[J_n(v) \rightarrow \Delta v^{-1} \cos (v + \alpha) \]

(4)

\[Y_n(v) \rightarrow Bv^{-1} \cos (v + \beta) \]

(5)

To find how \(\Delta \) and \(\alpha \) depend on \(n \), put (4) into 5.294 (1) and 5.294 (2) which give, as \(v \to \infty, \ J'_n = J_{n-1} \) and \(J'_n = -J_{n+1} \), respectively. This gives the relation \(\alpha_{n+1} = \alpha_n + \frac{1}{2} \pi \) which is satisfied by \(\alpha_n = -\frac{1}{2}n\pi + \gamma \) and shows that \(\Delta \) does not depend on \(n \). Because \(n \) need not be an integer, we may write \(n = \frac{1}{2} \) in (4) and compare it with 5.31 (2) which shows that \(\gamma = -\frac{1}{4} \pi \) and gives

\[J_n(v) \rightarrow (\frac{2}{\pi v})^{\frac{1}{4}} \cos \left(v - \frac{1}{2}n\pi - \frac{1}{4}\pi \right) \]

(6)

where terms in \(v^{-4m} \) have been neglected if \(m \geq 3 \) and \(n \) is real.

To get \(Y_n(v) \) substitute (6), with \(v \) and \(-v \) for \(n \), in 5.293 (4). The result gives 0/0 when \(n \) is integral, but replacement of numerator and denominator by their derivatives with respect to \(v \) gives, when \(v = n, \)

\[Y_n(v) \to (\frac{2}{\pi v})^{\frac{1}{4}} \sin \left(v - \frac{1}{2}n\pi - \frac{1}{4}\pi \right) \]

(7)

Thus both Bessel functions vanish at infinity. From (6), (7), and 5.293 (10) we find that for the Hankel functions

\[H_n^{(1)}(v) \to (\frac{2}{\pi v})^{\frac{1}{2}} e^{i(v-\frac{1}{2}n\pi - \frac{1}{4}\pi)}, \quad H_n^{(2)}(v) \to (\frac{2}{\pi v})^{\frac{1}{2}} e^{-i(v-\frac{1}{2}n\pi - \frac{1}{4}\pi)} \]

(8)

5.296. Integrals of Bessel Functions.—In 5.261, we made an expansion in spherical harmonics satisfy the condition \(V = 0 \) on the cone \(\theta = \alpha \) by choosing only such orders \(n \) of the harmonics \(\Theta_n^m, (\cos \theta) \) as made \(\Theta_n^m (\cos \alpha) = 0. \) To determine the coefficients in this expansion, it was first necessary, in 5.26, to evaluate the integral of the product of two such
harmonics over the range of θ from 0 to α. In the same way, if we are to get an expansion in Bessel functions that meets the condition $V = 0$ or $E = 0$ on the cylinder $\rho = a$, we must evaluate the integral of the product of $R_n(k_p \rho)$ and $R_n(k_q \rho)$ over this range, where k_p and k_q are chosen to meet the boundary conditions.

Let $u = R_n(k_p \rho)$ and $v = R_n(k_q \rho)$ be two solutions of Bessel's equation. Then from 5.291

\[
\frac{1}{\rho} \frac{d}{d\rho} \left(\frac{d u}{d \rho} \right) + \left(k_p^2 - \frac{n^2}{\rho^2} \right) u = 0
\]

\[
\frac{1}{\rho} \frac{d}{d\rho} \left(\frac{d v}{d \rho} \right) + \left(k_q^2 - \frac{n^2}{\rho^2} \right) v = 0
\]

Multiply the first by ρv and the second by ρu subtract, and integrate, and we have

\[
(k_p^2 - k_q^2) \int_0^a \rho w \, d\rho = - \int_0^a \left[v \frac{d}{d\rho} \left(\frac{d u}{d \rho} \right) - u \frac{d}{d\rho} \left(\frac{d v}{d \rho} \right) \right] d\rho
\]

Integrate each term on the right side by parts, and the integrals cancel, leaving

\[
(k_p^2 - k_q^2) \int_0^a \rho w \, d\rho = -\left(\rho v \frac{d u}{d \rho} - \rho u \frac{d v}{d \rho} \right)_0^a
\]

\[
= -a[k_p R_n(k_p a) R'_n(k_q a) - k_q R_n(k_q a) R'_n(k_p a)]
\]

This is zero if

\[R_n(k_p a) = R_n(k_q a) = 0 \quad (1) \]

or if

\[R'_n(k_p a) = R'_n(k_q a) = 0 \quad (2) \]

or if

\[k_p a R'_n(k_p a) + B R_n(k_p a) = k_q a R'_n(k_q a) + B R_n(k_q a) = 0 \quad (3) \]

Thus if $k_p \neq k_q$, we have the result

\[\int_0^a \rho R_n(k_p \rho) R_n(k_q \rho) \, d\rho = 0 \quad (4) \]

If $R_n(k_p a) = R_n(k_q a) = R_n(k_p b) = R_n(k_q b) = 0$ we have, since

\[\int_a^b f(x) \, dx = \int_0^b f(x) \, dx - \int_0^a f(x) \, dx \]

the result

\[\int_a^b \rho R_n(k_p \rho) R_n(k_q \rho) \, d\rho = 0 \quad (5) \]

To evaluate the integral when $k_p = k_q$, multiply Bessel's equation [5.291 (3)] through by $v^2 (d R_n / dv) \, dv$ giving

\[v^2 \frac{d}{dv} \left(\frac{d R_n}{dv} \right) + v \left(\frac{d R_n}{dv} \right)^2 \, dv + v^2 R_n \frac{d R_n}{dv} \, dv - n^2 R_n \frac{d R_n}{dv} \, dv = 0 \]
Integrate from 0 to a using integration by parts on the first and third terms. We thus find the following expression to be zero:

$$\frac{v^2}{2}(\frac{dR_n}{dv})^2 \bigg|_0^a - \int_0^a v\bigg(\frac{dR_n}{dv}\bigg)^2 dv + \int_0^a v\bigg(\frac{dR_n}{dv}\bigg)^2 dv + \left.\frac{v^2}{2}R_n^2\right|_0^a - \int_0^a vR_n^2 dv - \left.\frac{n^2R_n^2}{2}\right|_0^a$$

Canceling the second and third terms and solving for the fifth give

$$\int_0^a v[R_n(v)]^2 dv = \frac{1}{2}\left[v^2\bigg(\frac{dR_n(v)}{dv}\bigg)^2\right]_0^a + (v^2 - n^2)[R_n(v)]^2_0^a$$

(6)

Substituting for the derivative from 5.294 (2) gives

$$\int_0^a v[R_n(v)]^2 dv = \frac{1}{2}a^2\{[R_n(a)]^2 + [R_{n+1}(a)]^2\} - naR_n(a)R_{n+1}(a)$$

$$= \frac{1}{2}a^2\{[R_n(a)]^2 + [R_{n-1}(a)]^2\} - naR_n(a)R_{n-1}(a)$$

(7)

In dealing with the vector potential we shall have occasion to make use of the orthogonal properties of the vector function defined by

$$R_n(k_{p\rho}) = \frac{\phi}{k_{p\rho}}R_n(k_{p\rho}) \pm \frac{\phi}{k_{p\rho}}R_n(k_{p\rho})$$

(8)

The integral of the scalar product of two such functions from 0 to a is

$$\int_0^a R_n(k_{p\rho}) \cdot R_n(k_{q\rho}) \rho d\rho$$

$$= \int_0^a \left[R_n'(k_{p\rho})R_n'(k_{q\rho}) + \frac{n^2}{k_{p\rho}}R_n(k_{p\rho})R_n(k_{q\rho})\right] \rho d\rho$$

(9)

With the aid of (1), (2), (3), (4), (5), (6) of Art. 5.294 we may write this as the sum of two integrals of the form of (4). Thus

$$\frac{1}{2}\int_0^a R_{n+1}(k_{p\rho})R_{n+1}(k_{q\rho}) \rho d\rho + \frac{1}{2}\int_0^a R_{n-1}(k_{p\rho})R_{n-1}(k_{q\rho}) \rho d\rho$$

(10)

Evaluate each integral by the formula for $\int \rho v\, dv$ already given and add the results, then eliminate the derivatives by 5.294 (1) and 5.294 (2), cancel terms not involving the n^th order, and combine the resultant $n+1$ and $n-1$ orders by the same formulas. These operations give, if $v = k_p\alpha$ and $v' = k_q\alpha$,

$$\int_0^a R_n(k_{p\rho}) \cdot R_n(k_{q\rho}) \rho d\rho = (k_p^2 - k_q^2)^{-1}[vR_n(v')R'_n(v) - v'\rho_n(v)R_n(v')]$$

(11)

Thus, if $k_p \neq k_q$, the integral vanishes under conditions (1), (2), or (3). But, if $k_p = k_q$, evaluation of each integral in (10) by (7) gives for their sum

$$\frac{1}{2}[a^2 - (n/k_p)^2][R_n(k_{p\rho}a)]^2 + \frac{1}{2}[aR'_n(k_{p\rho}a)]^2 + (a/k_p)R'_n(k_{p\rho}a)R_n(k_{p\rho}a)$$

(12)

Thus a surface vector function of ρ and ϕ, one component of which vanishes at $\rho = a$, may be written as a sum of terms of the form

$$R_n(k_{p\rho}) \sin (n\phi + \delta_n).$$
§5.297. Expansion in Series of Bessel Functions.—Consider a function $f(v)$ which satisfies the conditions for expansion into a Fourier series in the range from $v = 0$ to $v = a$ and which fulfills one of the following boundary conditions:

(a) $f(a) = 0$. This case arises, if $f(a)$ is a potential function, when the boundary is at zero potential.

(b) $f'(a) = 0$. This case occurs when the boundary is a line of force.

(c) $af'(a) + Bf(a) = 0$. This case reduces to (a) if $B = \infty$ and to (b) if $B = 0$. An example of its use is given in 11.08.

The function $f(v)$ may be expanded in the form

$$f(v) = \sum_{r=1}^{\infty} A_r J_n(\mu_r v)$$

where the values of μ_r are chosen so that in case (a) $J_n(\mu_r a) = 0$, in case (b) $J'_n(\mu_r a) = 0$, and in case (c) $\mu_r a J'_n(\mu_r a) + B J_n(\mu_r a) = 0$. To determine A_r, multiply both sides of (1) by $v J_n(\mu_r v)$, and integrate from $v = 0$ to $v = a$. By 5.296 (4), all terms on the right vanish except $A_s \int_0^a [v J_n(\mu_r v)]^2 dv$ so that

$$A_s = \frac{\int_0^a v f(v) J_n(\mu_r v) \, dv}{\int_0^a [v J_n(\mu_r v)]^2 \, dv}$$

We can evaluate the lower integral by 5.296 (7) giving

$$\int_0^a [v J_n(\mu_r v)]^2 dv = \mu_r^{-2} \int_0^{\mu_r a} x [J_n(x)]^2 \, dx = \frac{1}{2} a^2 \{ [J_n(\mu_r a)]^2 + [J_{n\pm 1}(\mu_r a)]^2 \} - \frac{na}{\mu_r} J_n(\mu_r a) J_{n\pm 1}(\mu_r a)$$

In case (a), substituting (3) in (2) gives

$$A_s = \frac{2}{[a J_{n\pm 1}(\mu_r a)]^2} \int_0^a v f(v) J_n(\mu_r v) \, dv$$

In case (b), substituting (3) in (2) gives

$$A_s = \frac{2}{(a^2 - n^2 \mu_r^{-2}) [J_n(\mu_r a)]^2} \int_0^a v f(v) J_n(\mu_r v) \, dv$$

In case (c), substituting (3) in (2) gives

$$A_s = \frac{2}{[a^2 + (B^2 - n^2)/\mu_r^2] [J_n(\mu_r a)]^2} \int_0^a v f(v) J_n(\mu_r v) \, dv$$

5.298. Green's Function for Cylinder. Inverse Distance.—We shall calculate by the principles of the last few articles the potential when a point charge q is placed at the point $z = 0$, $\rho = b$, $\phi = \phi_0$, inside an earthed conducting cylinder. By a point charge, we mean one whose
dimensions, although too small to measure physically, are different from zero, so that the field-intensity function and the potential function are everywhere bounded. From 5.291 (6), a solution that vanishes when \(z = \infty \), is symmetrical about the \(\phi = \phi_0 \) plane, gives \(V = 0 \) when \(\rho = a \), and is valid for positive values of \(z \), is

\[
V = \sum_{r=1}^{\infty} \sum_{s=0}^{\infty} A_{rs} e^{-\mu_r s} J_s(\mu_r \rho) \cos (\phi - \phi_0)
\]

where \(\mu_r \) is chosen so that \(J_s(\mu_r a) = 0 \). \(Y_s(\mu_r \rho) \) is excluded because it is infinite on the axis.

From symmetry, the whole plane \(z = 0 \) is formed by lines of force except at the point charge itself. To complete the boundary condition in this plane, we shall consider \((\partial V/\partial z) \) to be zero except in a small area \(\Delta S \) at \(\phi = \phi_0, \rho = b \). Differentiating (1) and setting \(z = 0 \) give

\[
\left(\frac{\partial V}{\partial z} \right)_0 = - \sum_{r=1}^{\infty} \sum_{s=0}^{\infty} \mu_r A_{rs} J_s(\mu_r \rho) \cos s(\phi - \phi_0)
\]

We determine \(A_{rs} \) in this expansion as in 5.296 and 5.297 by multiplying through by \(\rho J_s(\mu_r \rho) \cos p(\phi - \phi_0) \) and integrating from \(\rho = 0 \) to \(\rho = a \) and from \(\phi = 0 \) to \(\phi = 2\pi \). By Dw 858.2 or Pc 488 and 5.296 (4), all terms on the right disappear unless \(p = s \) and \(q = r \). In the latter case, we see by Dw 858.4 or Pc 489 that the \(\phi \) integration introduces a factor \(\pi \) on the right if \(s > 0 \) and \(2\pi \) if \(s = 0 \), so that we have, by 5.297 (4),

\[
A_{rs} = \frac{-(2 - \delta_s^0)}{\pi \mu_r [a J_{s+1}(\mu_r a)]^2} \int \left(\frac{\partial V}{\partial z} \right)_0 \rho J_s(\mu_r \rho) \cos s(\phi - \phi_0) \, d\rho \, d\phi
\]

where \(\delta_s^0 = 1 \) if \(s = 0 \) and \(\delta_s^0 = 0 \) if \(s \neq 0 \). In the \(z = 0 \) plane, the area \(\Delta S \) in which \((\partial V/\partial z)_0 \neq 0 \) is taken so small that in it \(J_s(\mu_r \rho) \) has the constant value \(J_s(\mu_r b) \) and \(\cos s(\phi - \phi_0) = 1 \). The integral then becomes

\[
J_s(\mu_r b) \int \int \left(\frac{\partial V}{\partial z} \right)_0 \rho \, d\phi \, d\rho = J_s(\mu_r b) \int_{\Delta S} \frac{\partial V}{\partial n} \, dS = -\frac{q}{2\varepsilon} J_s(\mu_r b)
\]

from Gauss's electric flux theorem [1.10 (1)] it being remembered that only half the flux passes upward. Substituting for the integral in (2) gives

\[
A_{rs} = \frac{q(2 - \delta_s^0) J_s(\mu_r b)}{2\pi \varepsilon \mu_r a^2 [J_{s+1}(\mu_r a)]^2}
\]

Thus we obtain, for the potential,

\[
V = \frac{q}{2\pi \varepsilon a^2} \sum_{r=1}^{\infty} \sum_{s=0}^{\infty} (2 - \delta_s^0) e^{-\mu_r |z|} \frac{J_s(\mu_r b) J_s(\mu_r \rho)}{\mu_r [J_{s+1}(\mu_r a)]^2} \cos s(\phi - \phi_0)
\]
This is Green’s function (see 3.08) for a circular cylinder. If the coordinates of \(q \) are \(\rho = b, \ z = z_0, \) and \(\phi = \phi_0 \) we should substitute \(|z - z_0|\) for \(|z|\) in the above formula. If the charge is on the axis, all but the first term of the \(s \)-summation drops out and \(J_0(\mu b) = 1. \)

When \(a \to \infty \) in (4), it gives the potential of a charge \(q \) in unbounded space. From 5.295 (6) \(J_n(\mu a) \) oscillates sinusoidally as \(\mu a \to \infty \) so that its zeros are uniformly spaced at intervals \(\pi = \mu_{r+1} a - \mu_r a = \Delta \mu \) and so that, when \(J_n(\mu a) \) is zero, \(J_{n+1}(\mu a) \) is \((\frac{1}{2} \pi \mu a)^{\pm 1}\). Thus (4) becomes

\[
V = \frac{q}{2\pi \rho c^2} \sum_{s=0}^{\infty} (2 - \delta_0^s) \cos s(\phi - \phi_0) \sum_{r=0}^{\infty} e^{-r \Delta \mu |z - z_0|} J_s(\mu b) J_s(r \Delta \mu \rho) \frac{1}{2} \frac{a^2}{2} \frac{a^2}{2} \Delta \mu
\]

If \(k = r \Delta \mu \), then as \(\Delta \mu \to 0 \) and \(r \to \infty \) this takes the integral form

\[
V = \frac{q}{4\pi \rho c^2} = \frac{q}{4\pi \rho c} \sum_{s=0}^{\infty} (2 - \delta_0^s) \cos s(\phi - \phi_0) \int_0^{\infty} e^{-k |z - z_0|} J_s(k b) J_s(k \rho) \ dk
\]

where \(R^2 = (z - z_0)^2 + \rho^2 + b^2 - 2\rho b \cos (\phi - \phi_0) \). If \(b = z_0 = 0 \), this gives

\[
(\rho^2 + z^2)^{\pm 1} = \int_0^{\infty} e^{-k |z|} J_0(k \rho) \ dk
\]

With \(z, z_0, \) and \(\phi_0 \) zero, write \(R \) for \(\rho \) in (6) and compare with (5). Thus

\[
J_0[(\rho^2 + b^2 - 2\rho b \cos \phi)^{\pm 1}] = \sum_{s=0}^{\infty} (2 - \delta_0^s) J_s(\rho) J_s(b) \cos s\phi
\]

5.299. Green’s Function for Cylindrical Box.—Superimposing potentials of the form of 5.298 (4) according to the principle of images 5.07 and 5.101, we may make the planes \(z = 0 \) and \(z = L \) at zero potential as well as the cylinder \(\rho = a \). If the coordinates of the positive charge \(q \) are \(z = c, \rho = b, \) and \(\phi = \phi_0, \) there are positive images at \(z = 2nL + c \) and negative images at \(z = 2nL - c \) where \(n \) has all integral values from \(-\infty \) to \(+\infty \). If \(z < c, \) the factor involving \(z \) in the resultant potential is

\[
\sum_{n=0}^{\infty} e^{-\mu(2nL+c-z)} + \sum_{n=1}^{\infty} e^{-\mu(2nL-c+z)} - \sum_{n=1}^{\infty} e^{-\mu(2nL-c-z)} - \sum_{n=0}^{\infty} e^{-\mu(2nL+c+z)}
\]

\[
= 2 \left(e^{-\mu c} \sum_{n=0}^{\infty} e^{-2n\mu c} - e^{\mu c} \sum_{n=1}^{\infty} e^{-2n\mu c} \right) \sinh \mu_r z
\]

\[
= 2 \left[(e^{-\mu c} - e^{\mu c}) \sum_{n=0}^{\infty} e^{-2n\mu c} + e^{\mu c} \right] \sinh \mu_r z
\]

Summing the series, by Dw 9.04 or Pc 755, multiplying numerator and
denominator of the sum by $e^{\mu L}$, and putting over a common denominator give
\[
\frac{2 \sinh \mu_r(L - c) \sinh \mu_r z}{\sinh \mu_r L}
\]
Substituting this value in 5.298 (4) gives, when $z < c$, the potential
\[
V = \frac{q}{\pi \epsilon_0} \sum_{r=1}^{\infty} \sum_{s=0}^{\infty} (2) \delta_y (L - c) \sinh \mu_r z \frac{J_s(\mu_b)J_s(\mu_r \rho)}{\mu_r[J_s(\mu_r + 1) - 1]^2} \cos(\phi - \phi_0) \quad (1)
\]
When $z > c$, substitute $L - z$ for z and $L - c$ for c. If the charge is on the axis of the cylindrical box, drop the summation with respect to s in (1), retaining only the $s = 0$ term.

If, in addition, the planes $\phi = 0$ and $\phi = \phi_1$, where $0 < \phi_0 < \phi_1$, were at zero potential, and if $\phi_1 = \pi/n$, where n is an integer, we could get the Green's function by superimposing, according to the principle of images (see 5.07), $2n$ solutions of the type of (1).

5.30. Bessel Functions of Zero Order.—In the important case where we are dealing with fields symmetrical about the z-axis, the potential is independent of ϕ so that Bessel's equation becomes, from 5.291 (3),
\[
\frac{d^2 R}{dv^2} + \frac{1}{v} \frac{dR}{dv} + R = 0 \quad (1)
\]
and the solution [5.293 (3)] becomes
\[
J_0(v) = 1 - \frac{v^2}{2^2} + \frac{v^4}{2^4(2!)} - \frac{v^6}{2^6(3!)} + \cdots \quad (2)
\]
This series is evidently convergent for all values of v. As with $J_\nu(v)$, $J_0(\infty) = 0$ but $J_0(0) = 1$. Equation 5.293 (5) becomes, when $n = 0$,
\[
Y_0(v) = \frac{2}{\pi} \left[J_0(v) \ln \alpha v + \frac{v^2}{2^2} - \frac{v^4(1 + \frac{1}{2})}{2^4(2!)} + \frac{v^6(1 + \frac{1}{2} + \frac{3}{6})}{2^6(3!)} - \cdots \right] \quad (3)
\]
where $\ln \alpha = -0.11593$.

5.301. Roots and Numerical Values of Bessel Functions of Zero Order.—If we plot the values of $J_0(v)$ and $Y_0(v)$ given by 5.30 (2) and (5), we get the curves shown in Figs. 5.301a and 5.301b. We see that they oscillate up and down across the v-axis. It can be shown that both $J_0(v)$ and $Y_0(v)$ have an infinite number of real positive roots. The same is true of $J_\nu(v)$ and $Y_\nu(v)$. As we have seen in finding the Green's function for a cylinder, the existence of these roots is very useful as it makes it possible to choose an infinite number of values of k which will make $J_\nu(k\rho)$ or $Y_\nu(k\rho)$ zero for any specified value of ρ. Many excellent tables exist which give numerical values, graphs, roots, etc., of Bessel functions. Care should be taken in observing the notation used as this
varies widely with different authors. Asymptotic expansions provide an easy method of evaluating Bessel functions of large argument.

5.302. Derivatives and Integrals of Bessel Functions of Zero Order.
Putting \(n = 0 \) in 5.294 (2) and (5), we have

\[
J'_0(v) = -J_1(v) \quad \text{and} \quad Y'_0(v) = -Y_1(v) \tag{1}
\]

From 5.294 (7) and (8), we have

\[
\int_0^\infty v J_0(v) \, dv = v J_1(v) \quad \text{and} \quad \int_0^\infty v Y_0(v) \, dv = v Y_1(v) \tag{2}
\]

There are several definite integrals involving \(J_0(v) \) which will be useful. From 5.30 (2), using Dw 854.1 or Pc 483, we have

\[
J_0(v) = \sum_{n=0}^{\infty} \frac{(-1)^n v^{2n}}{2^{2n}(n!)^2} = \sum_{n=0}^{\infty} (-1)^n \frac{v^{2n}}{(2n)!} \frac{(2n)!}{2^{2n}(n!)^2}
\]

\[
= \frac{1}{\pi} \sum_{n=0}^{\infty} (-1)^n \frac{v^{2n}}{(2n)!} \frac{1 \cdot 3 \cdots (2n - 1)}{2 \cdot 4 \cdots 2n}
\]

\[
= \frac{1}{\pi} \sum_{n=0}^{\infty} (-1)^n \frac{v^{2n}}{(2n)!} \int_0^\pi \cos^{2n} t \, dt
\]
Interchanging integration and summation symbols and using \(Dw 415.02 \) or \(Pc 773 \), we obtain

\[
J_o(v) = \frac{1}{\pi} \int_0^\infty \sum_{n=0}^\infty (-1)^n \frac{(v \cos t)^{2n}}{(2n)!} dt = \frac{1}{\pi} \int_0^\infty \cos (v \cos t) dt
\]

so that

\[
J_o(k\rho) = \frac{1}{\pi} \int_0^\infty \cos (k\rho \cos t) dt = \frac{1}{\pi} \int_0^\infty \cos (k\rho \sin t) dt \quad (3)
\]

We can show easily, by using the trigonometric formulas for sums and differences of angles and integrating by parts, that an expression that satisfies the recurrence formulas \(5.294 \) (1), (2), and (3), is

\[
J_n(v) = \frac{1}{\pi} \int_0^\infty \cos (nt - v \sin t) dt \quad (4)
\]

This evidently substitution reduces to (3) when \(n = 0 \).

Direct substitution in \(5.291 \) (3) and integration by parts show that

\[
J_n(v) = \frac{(\frac{1}{2}v)^n}{\Gamma(\frac{1}{2})\Gamma(n + \frac{1}{2})} \int_0^\infty \cos (v \cos \theta) \sin^{2n} \theta d\theta \quad (5)
\]

satisfies Bessel’s equation if \(n > -\frac{1}{2} \). Comparing the value of \((\frac{1}{2}v)^{-n}J_n(v)\) given by (5) as \(v \to 0 \) with that given by \(5.293 \) (3) fixes the constant.

It can be shown that 5.298 (6) still holds if we write \(jz \) for \(z \), thus

\[
\int_0^\infty e^{-jzk}J_0(k\rho) dk = (\rho^2 - z^2)^{-1} \quad (6)
\]

whence, equating real and imaginary parts, we have, when \(\rho^2 > z^2 \),

\[
\int_0^\infty \cos kzJ_0(k\rho) dk = (\rho^2 - z^2)^{-1} \quad (6)
\]

\[
\int_0^\infty \sin kzJ_0(k\rho) dk = 0 \quad (7)
\]

When \(\rho^2 < z^2 \), we have

\[
\int_0^\infty \cos kzJ_0(k\rho) dk = 0 \quad (8)
\]

\[
\int_0^\infty \sin kzJ_0(k\rho) dk = (z^2 - \rho^2)^{-1} \quad (9)
\]

5.303. Point Charge and Dielectric Plate

As a first application of the last two articles, let us find the potential on one side of an infinite plate of material of thickness \(c \) and relative capacityivity \(K \), due to a point charge \(q \) on the opposite side. We shall take the point charge at the origin and the \(z \)-axis perpendicular to the plate. The equation of the surfaces of the plate will be \(z = a \) and \(z = b \) where \(b - a = c \). From 5.298 (6), the potential due to the point charge alone is

\[
V = \frac{q}{4\pi \varepsilon_0 r} = \frac{q}{4\pi \varepsilon_0} \int_0^\infty J_0(k\rho)e^{-k|z|} dk \quad (1)
\]
Since this is a solution of Laplace's equation, which involves z and ρ only, it is evident that we shall still have a solution if we insert any function of k under the integral sign. Let V_1 be the potential when $-\infty < z < a$, and write

$$V_1 = (4\pi \varepsilon_o)^{-1} q \left[\int_{0}^{\infty} J_0(k\rho)e^{-kz} \, dk + \int_{0}^{\infty} \Phi(k)J_0(k\rho)e^{+kz} \, dk \right]$$ \hspace{1cm} (2)$$

The second term represents the potential in the region below the plate due to the polarization of the plate and is finite everywhere in this region. The potential in the plate may be written

$$V_2 = (4\pi \varepsilon_o)^{-1} q \left[\int_{0}^{\infty} \Psi(k)J_0(k\rho)e^{-kz} \, dk + \int_{0}^{\infty} \Theta(k)J_0(k\rho)e^{+kz} \, dk \right]$$ \hspace{1cm} (3)$$

This evidently is finite if $a < z < b$. The potential above the plate, where $b < z < +\infty$, must vanish at $z = \infty$ and so may be written

$$V_3 = (4\pi \varepsilon_o)^{-1} q \int_{0}^{\infty} \Omega(k)J_0(k\rho)e^{-kz} \, dk$$ \hspace{1cm} (4)$$

We must now determine $\Phi(k)$, $\Psi(k)$, $\Theta(k)$, and $\Omega(k)$, so the boundary conditions are satisfied for all values of ρ between 0 and ∞. This requires that the integrands alone satisfy these conditions. To prove this, we make use of the Fourier Bessel integral which states that, with suitable restrictions on n and the form of $f(x)$,

$$f(x) = \int_{0}^{\infty} \frac{J_n(tx)}{t} \left[\int_{0}^{\infty} uf(u)J_n(tu) \, du \right] dt$$

Thus, if we have

$$\int_{0}^{\infty} f_1(k)J_0(k\rho) \, dk = \int_{0}^{\infty} f_2(k)J_0(k\rho) \, dk$$

we may multiply both sides by $\rho J_0(m\rho) \, d\rho$ and integrate from 0 to ∞ and obtain, after multiplying through by m,

$$f_1(m) = f_2(m)$$

Applying this to the present case, at $z = a$ we have, after canceling out $J_0(k\rho)$, $V_1 = V_2$, giving

$$e^{-ka} + \Phi(k)e^{ka} - \Psi(k)e^{-ka} - \Theta(k)e^{ka} = 0$$ \hspace{1cm} (5)$$

and $\partial V_1/\partial z = K\partial V_2/\partial z$ which gives, canceling $J_0(k\rho)$,

$$-e^{-ka} + \Phi(k)e^{ka} + K\Psi(k)e^{-ka} - K\Theta(k)e^{ka} = 0$$ \hspace{1cm} (6)$$

At $z = b$, we have in the same way $V_2 = V_3$, giving

$$\Psi(k)e^{-kb} + \Theta(k)e^{kb} - \Omega(k)e^{-kb} = 0$$ \hspace{1cm} (7)$$

and $K\partial V_2/\partial z = \partial V_3/\partial z$ which gives

$$-K\Psi(k)e^{-kb} + K\Theta(k)e^{kb} + \Omega(k)e^{-kb} = 0$$ \hspace{1cm} (8)$$
Solving (5), (6), (7), and (8) for $\Omega(k)$ gives

$$\Omega(k) = \frac{4K}{(K + 1)^2 - (K - 1)^2e^{2k(a-b)}}$$ \hspace{1cm} (9)

To simplify this we write $b - a = c$ and $\beta = (K - 1)/(K + 1)$ so that $1 - \beta^2 = 4K(K + 1)^{-2}$ which gives

$$\Omega(k) = \frac{1 - \beta^2}{1 - \beta^2e^{-2kc}}$$

Substituting in (4), we have, for V_3, the result

$$V_3 = \frac{q(1 - \beta^2)}{4\pi\epsilon_0} \int_0^\infty J_0(kp)e^{-ks} dk$$ \hspace{1cm} (10)

If we wish to expand this as a series, we may expand the denominator by Dw 9.04 or Pc 755.

$$4\pi\epsilon_0 V_3 = q(1 - \beta^2)\left[\int_0^\infty J_0(kp)e^{-ks} dk + \beta^2 \int_0^\infty J_0(kp)e^{-k(z+2c)} dk + \cdots \right]$$

Substituting from 5.298 (6) for each integral gives

$$V_3 = \frac{q(1 - \beta^2)}{4\pi\epsilon_0} \left\{ \frac{1}{(z^2 + \rho^2)^{\frac{1}{2}}} + \frac{\beta^2}{[(z + 2c)^2 + \rho^2]^{\frac{1}{2}}} + \frac{\beta^4}{[(z + 4c)^2 + \rho^2]^{\frac{1}{2}}} + \cdots \right\}$$

which may be written

$$V_3 = \frac{q(1 - \beta^2)}{4\pi\epsilon_0} \sum_{n=0}^\infty \frac{\beta^{2n}}{[(z + 2nc)^2 + \rho^2]^{\frac{1}{2}}}$$ \hspace{1cm} (11)

Another, but more tedious, method of obtaining this result would have been to use images. The potential in the other regions can be obtained in the same way by solving (5), (6), (7), and (8) for $\Phi(k)$, $\Psi(k)$, and $\Theta(k)$ and substituting in (2) and (3). Clearly this method could be applied to any number of plates.

5.304. Potential inside Hollow Cylindrical Ring.—As another example, let us find the potential at any point in the region bounded by the two cylinders $\rho = a$ and $\rho = b$, both of which are at zero potential, and the two planes $z = 0$ at potential zero and $z = c$ at potential $V = f(\rho)$. Since both $\rho = 0$ and $\rho = \infty$ are excluded, we may have both $J_0(k\rho)$ and $Y_0(k\rho)$. From 5.291 (5) and 5.293 (6), it is evident that a solution of Laplace’s equation which satisfies the boundary conditions at $z = 0$ and $\rho = b$ is given by

$$V_k = A_k \sinh (\mu_k z) \left[J_0(\mu_k \rho) - \frac{J_0(\mu_k b)}{Y_0(\mu_k b)} Y_0(\mu_k \rho) \right]$$ \hspace{1cm} (1)
We can satisfy the conditions $V_k = 0$ at $\rho = a$ by choosing values of μ_k so that

$$J_0(\mu_k a) - \frac{J_0(\mu_k b)}{Y_0(\mu_k b)} Y_0(\mu_k a) = 0$$

Hence, all the boundary conditions except that at $z = c$ will be satisfied by a sum of such solutions

$$V = \sum_{k=1}^{\infty} V_k$$ \hspace{1cm} (2)

The final boundary condition $V = f(\rho)$ at $z = c$ will be satisfied if we choose A_k so that

$$f(\rho) = \sum_{k=1}^{\infty} A_k \sinh \mu_k c \left[J_0(\mu_k \rho) - \frac{J_0(\mu_k b)}{Y_0(\mu_k b)} Y_0(\mu_k \rho) \right]$$

Represent the term in brackets by $R_0(\mu_k \rho)$, since it satisfies Bessel's equation, multiply through by $\rho R_0(\mu_k \rho)$ where $R_0(\mu_k a) = R_0(\mu_k b) = 0$, and integrate from a to b. Since $R_0(\mu_k a) = R_0(\mu_k b) = 0$, we see from 5.296 (5) that all terms on the right drop out except the one for which $k = s$. For this term, we have, by 5.296 (6),

$$\int_a^b \rho f(\rho) R_0(\mu_k \rho) \, d\rho = \left[b^2 \left(\frac{dR_0}{d(\mu_k \rho)} \right)_{\rho=b}^2 - a^2 \left(\frac{dR_0}{d(\mu_k \rho)} \right)_{\rho=a}^2 \right] A_k \sinh \mu_k c$$

Differentiating $R_0(\mu_k \rho)$ by 5.302 (1), we have

$$R_0'(\mu_k \rho) = - \left\{ J_1(\mu_k \rho) - \frac{J_0(\mu_k b)}{Y_0(\mu_k b)} Y_1(\mu_k \rho) \right\}$$

Solving for A_k gives

$$A_k = \frac{2 \int_a^b \rho f(\rho) R_0(\mu_k \rho) \, d\rho}{\left[b^2 [R_0'(\mu_k b)]^2 - a^2 [R_0'(\mu_k a)]^2 \right] \sinh \mu_k c}$$ \hspace{1cm} (3)

Substituting (3) in (1) and then (1) in (2) gives the required solution.

If we wish the potential inside the earthed cylinder $\rho = a$ with $V = 0$ when $z = 0$ and $V = f(\rho)$ when $z = c$, we drop the Y_0 term in (1), and (3) becomes

$$A_k = \frac{2 \int_0^a \rho f(\rho) J_0(\mu_k \rho) \, d\rho}{a^2 [J_1(\mu_k a)]^2 \sinh \mu_k c}$$ \hspace{1cm} (4)

5.31. Nonintegral Order and Spherical Bessel Functions.—When n is not an integer, a complete solution of Bessel's equation is

$$R_n(\nu) = AJ_n(\nu) + BJ_{-n}(\nu)$$ \hspace{1cm} (1)

We no longer need $Y_n(\nu)$ because it must be merely a linear combination
of $J_n(v)$ and $J_{-n}(v)$. The formulas of 5.294 are equally valid for these values. The function $J_{\pm(n+\frac{1}{2})}(v)$ where n is an integer are especially simple, for if we substitute $n = \frac{1}{2}$ and $n = -\frac{1}{2}$ in 5.293 (3) and compare with the sine and cosine expansion Pc 772 and 773 or Dw 415.01 and 415.02, we have

$$J_{\frac{1}{2}}(v) = \left(\frac{2}{\pi v}\right)^{\frac{1}{2}} \sin v \quad \text{and} \quad J_{-\frac{1}{2}}(v) = \left(\frac{2}{\pi v}\right)^{\frac{1}{2}} \cos v$$

If we then put $n = \frac{1}{2}$ and $n = -\frac{1}{2}$ in 5.294 (3), we get

$$J_{\frac{1}{2}}(v) = \left(\frac{2}{\pi v}\right)^{\frac{1}{2}} \left[\left(\frac{3}{v^2} - 1\right) \sin v - \frac{3}{v} \cos v\right]$$

$$J_{-\frac{1}{2}}(v) = \left(\frac{2}{\pi v}\right)^{\frac{1}{2}} \left[\frac{3}{v} \sin v + \left(\frac{3}{v^2} - 1\right) \cos v\right]$$

Putting $n = \frac{1}{2}$ and $n = -\frac{1}{2}$ gives

$$J_{\frac{1}{2}}(v) = \left(\frac{2}{\pi v}\right)^{\frac{1}{2}} \left[\left(\frac{3}{v^2} - 1\right) \sin v - \frac{3}{v} \cos v\right]$$

$$J_{-\frac{1}{2}}(v) = \left(\frac{2}{\pi v}\right)^{\frac{1}{2}} \left[\frac{3}{v} \sin v + \left(\frac{3}{v^2} - 1\right) \cos v\right]$$

In this fashion we could eventually obtain the formula

$$J_{\pm(n+\frac{1}{2})}(v) = \left(\frac{2}{\pi v}\right)^{\frac{1}{2}} \left\{ \left[\sin \left[v \mp \frac{1}{2}(2n + 1 \mp 1)\pi\right]\right] \sum_{s=0}^{\frac{1}{2}(n+1)} \frac{(-1)^s(n + 2s)!}{(2s + 1)!(n - 2s)!}\right. + \left. \left[\cos \left[v \mp \frac{1}{2}(2n + 1 \mp 1)\pi\right]\right] \sum_{s=0}^{\frac{1}{2}(n-1)} \frac{(-1)^s(n + 2s + 1)!}{(2s + 1)!(n - 2s - 1)!(2v)^{2s+1}}\right\}$$

where the upper limit of each summation is the nearest integer to the value given and the upper or the lower sign is to be used throughout. We observe that, because $\cos \left(n + \frac{1}{2}\right)\pi$ is zero, 5.293 (4) becomes

$$Y_{n+\frac{1}{2}}(v) = (-1)^{n+1}J_{-(n+\frac{1}{2})}(v)$$

When $n + \frac{1}{2}$ is written for n in 5.293 (3) and $v \to 0$, there results

$$J_{n+\frac{1}{2}}(v) \to 2^n\frac{\Gamma(n + \frac{1}{2})}{\pi^n} = \left(\frac{2v}{\pi}\right)^{\frac{1}{2}} \frac{v^n}{(2n + 1)!!}$$

The spherical Bessel functions $j_n(v)$ and $n_n(v)$ are defined as

$$j_n(v) = \left(\frac{\pi}{2v}\right)^{\frac{1}{2}}J_{n+\frac{1}{2}}(v) = \frac{1}{v}J_n(v), \quad n_n(v) = \left(\frac{\pi}{2v}\right)^{\frac{1}{2}}Y_{n+\frac{1}{2}}(v) = \frac{1}{v}N_n(v)$$
been tabulated. From (10), 5.293 (9), 5.294 (1), and 5.294 (2) it follows that
\[n_n(v)j_n(v) - n_n(v)j'_n(v) = v^{-2} \] (11)
\[(2n + 1)v^{-1}j_n = j_{n-1} + j_{n+1}, \quad j'_n = \pm j_{n+1} \mp (n + \frac{1}{2} \pm \frac{1}{2})v^{-1}j_n \] (12)
Similar formulas hold for \(n_n(v) \). Differentiation of (12) and elimination of \(j_{n-1}(v) \) give the differential equation for \(j_n(v) \) or \(n_n(v) \).
\[
v \frac{\partial}{\partial v} \left[v \frac{\partial}{\partial v} j_n(v) \right] + \left[v^2 - \frac{1}{4}(2n + 1)^2 \right] j_n(v) = 0 \] (13)

5.32. Modified Bessel Functions.—We can obtain a solution of 5.292 (1), the modified Bessel equation
\[
\frac{d^2R^0}{dv^2} + \frac{1}{v} \frac{dR^0}{dv} - \left(1 + \frac{n^2}{v^2} \right) R^0 = 0
\] (1)
by substituting \(jv \) for \(v \) in 5.293 (3). We see that the bracket is real but the coefficient \(j^* \) occurs. Since we wish a real solution, we define it to be
\[
I_+(v) = j^{-r}J_+(jv) = \sum_{r=0}^{\infty} \frac{\left(\frac{1}{2}v \right)^{r+2r}}{r! \Gamma(v + r + 1)}
\] (2)
When \(v \) is not an integer, a second solution is
\[
I_-(v) = \sum_{r=0}^{\infty} \frac{\left(\frac{1}{2}v \right)^{-r+2r}}{r! \Gamma(-v + r + 1)}
\] (3)
When \(v \) is an integer, we may write \((n + r)! \) for \(\Gamma(v + r + 1) \) and find that \(I_+(v) \) equals \(I_-(v) \) so that we need a solution which we may define by
\[
K_n(v) = \frac{1}{\pi} j^{n+1}[J_n(jv) + jY_n(jv)]
\] (4)
This with the aid of 5.293 (3), 5.293 (5), and (2) becomes
\[
K_n(v) = (-1)^{n+1} I_n(v) \ln \alpha + \sum_{r=0}^{n-1} (-1)^r \frac{\left(\frac{1}{2}v \right)^{-n+2r}}{2r!} (n - r - 1)!
\]
\[+ (-1)^n \sum_{r=0}^{\infty} \frac{\left(\frac{1}{2}v \right)^{n+2r}}{2r! (n + r)!} \left(\sum_{m=1}^{r} \frac{1}{m} + \sum_{m=1}^{n+r} \frac{1}{m} \right)
\] (5)
where \(\ln \alpha = -0.11593 \). A complete solution of (1) when \(n \) is integral is
\[
R^0_n(v) = AI_n(v) + BK_n(v)
\] (6)
From (2), (4), and 5.293 (9), we have
\[
I'_n(v)K_n(v) - K'_n(v)I_n(v) = \frac{1}{2} j \pi [Y'_n(jv)Y_n(jv) - J'_n(jv)J_n(jv)] = v^{-1}
\] (7)
We observe from (4) and 5.293 (10) and from (2) that

\[
\frac{2}{\pi}K_n(v) = j^{n+1}H^{(1)}_n(jv) = (-j)^{n+1}H^{(2)}_n(-jv) \quad I_n(v) = j^{-n}J_n(jv)
\]

These are the functions tabulated in Jahnke and Emde.

5.321. Recurrence Formulas for Modified Bessel Functions.—Equation 5.294 (1) may be written

\[
\frac{dJ_n(jv)}{dv} = J_{n-1}(jv) - \frac{n}{jv}J_n(jv)
\]

Substituting \(j^nI_n(v)\) for \(J_n(jv)\) and dividing out \(j^{n-1}\) give

\[
I'_n = I_{n-1} - \frac{n}{v}I_n
\]

and similarly from 5.294 (2) we get

\[
I'_n = I_{n+1} + \frac{n}{v}I_n
\]

Subtracting (1) from (2) gives

\[
\frac{2n}{v}I_n = I_{n-1} - I_{n+1}
\]

Substitution of the recurrence formulas of 5.294 in 5.32 (4) gives

\[
-K'_n = K_{n-1} + \frac{n}{v}K_n
\]

\[
-K'_n = K_{n+1} - \frac{n}{v}K_n
\]

\[
-\frac{2n}{v}K_n = K_{n-1} - K_{n+1}
\]

We use the notation of Watson and of Gray, Mathews, and MacRobert. Some authors omit the \((-1)^n\) in 5.32 (5) in which case the recurrence formulas for \(I_n\) and \(K_n\) are identical.

Two integral formulas that are sometimes useful can be obtained by integrating (1) and (4), as in 5.294. These integrals are

\[
\int v^nI_{n-1}(v) \, dv = v^nI_n(v)
\]

\[
\int v^nK_{n-1}(v) \, dv = -v^nK_n(v)
\]

A similar integration of (2) and (5) gives

\[
\int v^{-n}I_{n+1}(v) \, dv = v^{-n}I_n(v)
\]

\[
\int v^{-n}K_{n+1}(v) \, dv = -v^{-n}K_n(v)
\]

5.322. Values of Modified Bessel Functions at Infinity.—We can obtain the values of \(I_n(v)\) and \(K_n(v)\) as \(v \to \infty\) from those for \(J_n(v)\) in 5.295 by substituting \(jv\) for \(v\). The results are good to the same order, i.e., neglecting \(v^{-1}\) compared with \(v^{-1}\). Putting \(jv\) for \(v\) in 5.295 (6),
writing e^{-ix} for j^{-1}, using the exponential form Dw 408.02 or Pc 613, and neglecting the $e^{-\nu}$ term, we have

$$I_n(v) = j^{-n}J_n(jv) \xrightarrow{v \to \infty} \left(\frac{1}{2\pi v}\right)^{\frac{1}{2}} e^{j-\nu j^{1/4}}$$

Evaluating the last term, n being an integer, by Dw 409.04 and 409.05 or Pc 609 we have

$$I_n(v) \xrightarrow{v \to \infty} \left(\frac{1}{2\pi v}\right)^{\frac{1}{2}} e^{\nu} \hspace{1cm} (1)$$

From 5.32 (8) and 5.295 (9), we have

$$K_n(v) \xrightarrow{v \to \infty} \left(\frac{\pi}{2v}\right)^{\frac{1}{2}} e^{-\nu} \hspace{1cm} (2)$$

Although we have derived these equations assuming n to be an integer, we see, by substitution in 5.32 (1), that they hold for any value of n.

5.323. Integral of a Product of Complex Modified Bessel Functions. In Chap. XI, when we calculate the power dissipated by eddy currents, we frequently find it necessary to evaluate the integral of the product of a modified Bessel function $R_n^0((jp)x)$ by its conjugate complex $R_n^0((-jp)x)$, where $(j)^\dagger = 2^{-\dagger}(1 + j)$ and $(-j)^\dagger = 2^{-\dagger}(1 - j)$. In cylindrical problems, n is usually an integer, and in spherical problems it is usually half an odd integer. We may evaluate this integral, for any value of n, by using the equations of 5.296. Let us take

$$k_p = -jp^\dagger = (-jp)^{\dagger} \quad \text{and} \quad k_q = j(-jp)^{\dagger} = (jp)^{\dagger}$$

$$u = R_n[-(jp)^{\dagger}x] = (-j)^n R_n^0((jp)x)$$

$$v = R_n[j(-jp)^{\dagger}x] = j^n R_n^0((-jp)x)$$

$$R_n^0[-(jp)^{\dagger}x] = (-j)^{-1} R_n^0((jp)x)$$

$$R_n^0[j(-jp)^{\dagger}x] = j^{-1} R_n^0((-jp)x)$$

Substituting these values in the equation preceding 5.296 (1), we obtain, writing x for ρ,

$$\int_0^a \! x R_n^0((jp)x) R_n^0((-jp)x) \, dx = \int_0^a \! x R_n^0(k_q x) R_n^0(k_p x) \, dx$$

$$= \frac{1}{2} a j^{-1} p^{-1} [k_p R_n^0(k_p a) R_n^0(k_q a) - (-j)^1 R_n^0(k_q a) R_n^0(k_p a)]$$

$$= (2p)^{-1} [k_p a R_n^0(k_p a) R_n^{0-1}(k_q a) + k_q a R_n^0(k_q a) R_n^{0-1}(k_p a)]$$

$$= (2p)^{-1} [k_p a R_n^{0-2}(k_p a) R_n^{0-1}(k_q a) + k_q a R_n^{0-2}(k_q a) R_n^{0-1}(k_p a)]$$

$$- 4(n - 1) R_n^{0-1}(k_p a) R_n^{0-1}(k_q a)$$

5.324. Green's Function for a Hollow Cylindrical Ring.—As an example of the use of modified Bessel functions, we shall find the potential due to a small charge q at $z = c$, $\rho = b$, and $\phi = \phi_0$ inside the hollow conducting ring whose walls are given by $z = 0$, $z = L$, $\rho = d$, and $\rho = a$ where $a > d$. The special case, when $d = 0$, gives us the cylindrical box which we have already solved in terms of Bessel functions in 5.299.
Since neither \(I_0(v) \) nor \(K_0(v) \) has any real roots, it is evident that we shall need a combination of the two to get a function that is zero for a given value of \(\rho \). Clearly, such a function is

\[
R_m^0(k, s, t) = K_m(ks)I_m(kt) - I_m(ks)K_m(kt) \tag{1}
\]

Since, in general, this function is zero for only one value \(t = s \) of \(t \), we must use different functions for the region near the inner face and that near the outer, but they must have the same value at \(\rho = b \), where the regions meet. We can now write down, by inspection, two functions that are zero over the conducting surfaces and identical when \(\rho = b \). These are

\[
d \leq \rho < b \quad \text{or} \quad \rho = b, \quad \phi \neq \phi_0
\]

\[
V' = \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} C_{mn} R_m^0 \left(\frac{n\pi}{L}, a, b \right) R_m^0 \left(\frac{m\pi}{L}, \rho \right) \sin \frac{n\pi z}{L} \cos m(\phi - \phi_0) \tag{2}
\]

\[
b < \rho \leq a \quad \text{or} \quad \rho = b, \quad \phi \neq \phi_0
\]

\[
V'' = \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} C_{mn} R_m^0 \left(\frac{n\pi}{L}, \rho \right) R_m^0 \left(\frac{n\pi}{L}, a, b \right) \sin \frac{n\pi z}{L} \cos m(\phi - \phi_0) \tag{3}
\]

These solutions have the proper symmetry about \(\phi = \phi_0 \). To determine \(C_{mn} \), we shall apply Gauss's electric flux theorem to the region surrounding the charge.

Consider the charge \(q \) concentrated in a small area of the cylinder \(\rho = b \) at \(z = c, \phi = \phi_0 \). This area is taken too small to measure physically but not a mathematical point, so that the potential and intensity functions are everywhere bounded. By 1.10 (1), the integral over the two faces \(S_2 \) of this cylinder is

\[
-\int_{S_2} \frac{\partial V}{\partial \rho} \, dS = \int_{S} \left(\frac{\partial V'}{\partial \rho} - \frac{\partial V''}{\partial \rho} \right) \, dS = \frac{q}{\epsilon} \tag{4}
\]

By (2) and (3), we have

\[
\frac{\partial V'}{\partial \rho} - \frac{\partial V''}{\partial \rho} = -\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} C_{mn} \frac{n\pi}{L} \left[R_m^0 \left(\frac{n\pi}{L}, d, b \right) R_m^0 \left(\frac{n\pi}{L}, a, b \right) - R_m^0 \left(\frac{n\pi}{L}, a, b \right) R_m^0 \left(\frac{n\pi}{L}, d, b \right) \right] \sin \frac{n\pi z}{L} \cos m(\phi - \phi_0)
\]

With the aid of 5.32 (4), this may be written

\[
\frac{\partial V'}{\partial \rho} - \frac{\partial V''}{\partial \rho} = -\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} C_{mn} \frac{1}{R_m^0 \left(\frac{n\pi}{L}, d, a \right)} \sin \frac{n\pi z}{L} \cos m(\phi - \phi_0) \tag{5}
\]
§ 5.324 GREEN'S FUNCTION FOR A HOLLOW CYLINDRICAL RING

Now let \(\phi - \phi_0 = \phi' \), multiply both sides by \(\sin \left(\frac{p\pi z}{L} \right) \cos q\phi' b d\phi' dz \), and integrate over the cylinder \(\rho = b \). On the right, all terms go out except those for which \(p = n \) and \(q = m \), by \(Pc 488 \) or \(Dw 858.1 \) and \(858.2 \). For these terms, the integrals are evaluated by \(Pc 489 \) or \(Dw 858.4 \), except when \(q = m = 0 \). On the left, we notice that, since \(dS = b d\phi' dz \), we have exactly the integral of (4) if we take the charge so small that \(\cos m\phi' \) and \(\sin \left(\frac{p\pi z}{L} \right) \) have the constant values one and \(\sin \left(\frac{n\pi c}{L} \right) \), respectively, and may be taken out of the integral. We then obtain, by (4), if \(m \neq 0 \),

\[
\frac{q}{\epsilon} \sin \frac{n\pi c}{L} = -\frac{1}{2} C_{mn} L \pi R_m^0 \left(\frac{n\pi}{L}, d, a \right)
\]

(6)

If \(m = 0 \), the \(\frac{1}{b} \) is omitted on the right since \(\int_0^{2\pi} d\phi = 2\pi \). Solving for \(C_{mn} \) and substituting in (2) and (3), we have

\[
V' = -\frac{q}{\pi \epsilon L} \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} (2 - \delta_m^0) R_m^0 \left(\frac{n\pi}{L}, a, b \right) R_m^0 \left(\frac{n\pi}{L}, d, \rho \right) \sin \frac{n\pi c}{L} \sin \frac{n\pi z}{L} \cos m(\phi - \phi_0)
\]

(7)

\[
V'' = -\frac{q}{\pi \epsilon L} \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} (2 - \delta_m^0) R_m^0 \left(\frac{n\pi}{L}, d, b \right) R_m^0 \left(\frac{n\pi}{L}, a, \rho \right) \sin \frac{n\pi c}{L} \sin \frac{n\pi z}{L} \cos m(\phi - \phi_0)
\]

(8)

where \(\delta_m^0 = 0 \) if \(m \neq 0 \) and \(\delta_m^0 = 1 \) if \(m = 0 \).

For the cylindrical box, solved in terms of Bessel functions in 5.299, we have \(d = 0 \) and the above potentials become

\[
V' = -\frac{q}{\pi \epsilon L} \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} (2 - \delta_m^0) R_m^0 \left(\frac{n\pi}{L}, a, b \right) I_m \left(\frac{n\pi \rho}{L} \right) \sin \frac{n\pi c}{L} \sin \frac{n\pi z}{L} \cos m(\phi - \phi_0)
\]

(9)

\[
V'' = -\frac{q}{\pi \epsilon L} \sum_{n=1}^{\infty} \sum_{m=0}^{\infty} (2 - \delta_m^0) I_m \left(\frac{n\pi \rho}{L} \right) R_m^0 \left(\frac{n\pi}{L}, a, \rho \right) \sin \frac{n\pi c}{L} \sin \frac{n\pi z}{L} \cos m(\phi - \phi_0)
\]

(10)

Inspection of \(V' \) shows that it satisfies all the boundary conditions, being finite, but not zero, on the axis. If the charge is on the axis, we use (10), dropping the summation with respect to \(m \) and setting \(m = 0 \).
5.33. Modified Bessel Functions of Zero Order.—When \(n = 0 \), 5.32 (2) becomes
\[
I_0(v) = 1 + \frac{v^2}{2^2} + \frac{v^4}{2^4(2!)^2} + \frac{v^6}{2^6(3!)^2} + \cdots \tag{1}
\]
Thus \(I_0(v) \) is real but has no real roots and
\[
I_0(0) = 1 \quad \text{and} \quad I_0(\infty) = \infty \tag{2}
\]
When \(n = 0 \), 5.32 (5) becomes
\[
K_0(v) = -I_0(v) \ln \alpha v + \frac{v^2}{2^2} + \frac{v^4(1 + \frac{1}{2})}{2^4(2!)^2} + \frac{v^6(1 + \frac{1}{2} + \frac{1}{3})}{2^6(3!)^2} + \cdots \tag{3}
\]
The derivatives of \(I_0(v) \) and \(K_0(v) \) are given by 5.321 (2) and (5) to be
\[
I'_0 = I_1 \quad \text{and} \quad K'_0 = -K_1 \tag{4}
\]
From 5.321 (7) and (8), we have
\[
\int_0^\infty v I_0(v) \, dv = v I_1(v) \tag{5}
\]
\[
\int_0^\infty v K_0(v) \, dv = -v K_1(v) \tag{6}
\]
5.331. Definite Integrals for the Modified Bessel Function of the
Second Kind. Value at Infinity.—Substitute \(R_0 = \int_0^\infty e^{-\nu \cosh \phi} \, d\phi \) in the left side of 5.32 (1), setting \(n = 0 \), and it becomes
\[
\int_0^\infty \cosh^2 \phi e^{-\nu \cosh \phi} \, d\phi - \frac{1}{\nu} \int_0^\infty \cosh \phi e^{-\nu \cosh \phi} \, d\phi - \int_0^\infty e^{-\nu \cosh \phi} \, d\phi
\]
Combining first and third terms by Dw 650.01 or Pc 657 and integrating the result by parts give
\[
\int_0^\infty (\sinh \phi)[e^{-\nu \cosh \phi} \, d(\cosh \phi)] = \int u \, dv
\]
\[
= \left[-\sinh \frac{\phi e^{-\nu \cosh \phi}}{v} \right]_0^\infty + \frac{1}{v} \int_0^\infty \cosh \phi e^{-\nu \cosh \phi} \, d\phi
\]
which cancels the second term so that the integral satisfies 5.32 (1).
Since any solution of 5.32 (1) must be of the form \(\hat{R}_0 = A I_0(v) + B K_0(v) \) and since the integral is zero when \(v = \infty \), it cannot contain \(I_0(v) \) and must be of the form \(B K_0(v) \). In 5.35, we shall show that to agree with 5.33 (3) we must take \(B = 1 \), giving
\[
K_0(v) = \int_0^\infty e^{-\nu \cosh \phi} \, d\phi = \frac{1}{2j\pi} H_0^{(1)}(jv) = -\frac{1}{2j\pi} H_0^{(2)}(-jv) \tag{1}
\]
We see that
\[
v^m \frac{d^n K_0(v)}{dv^n} = (-1)^n \int_0^\infty v^m \cosh^n \phi e^{-\nu \cosh \phi} \, d\phi
\]
is also zero when \(v = \infty \) because \(v \) appears in the integrand in the form \(v^a e^{-av} \) and \(a > 1 \). From the recurrence formulas 5.321 (5) and (6), we see that

\[
K_1 = -K'_0 \quad \text{so that} \quad K_1(\infty) = 0
\]

Thus we get from 5.321 (6)

\[
K_n(\infty) = K_{n-2}(\infty) = \cdots = K_p(\infty) = 0
\]

where \(p = 1 \) if \(n \) is odd and \(p = 0 \) if \(n \) is even. It follows now from 5.321 (4) that \(K'_n(\infty) = 0 \), etc.

Another definite integral for \(K_0(v) \) is

\[
K_0(v) = \int_0^\infty \cos (v \sin \phi) \, d\phi \quad (2)
\]

Prof. H. Bateman proves this relation as follows: Consider the function

\[
W = \int_0^\infty e^{-x \cosh \phi} \cos (y \sin \phi) \, d\phi
\]

where \(x = r \cos \theta \) and \(y = r \sin \theta \). Differentiate,

\[
\frac{\partial W}{\partial \theta} = x \frac{\partial W}{\partial y} - y \frac{\partial W}{\partial x}
\]

\[
= -\int_0^\infty e^{-x \cosh \phi} [x \sinh \phi \sin (y \sin \phi) - y \cosh \phi \cos (y \sin \phi)] \, d\phi
\]

\[
= \int_0^\infty \frac{d}{d\phi} [e^{-x \cosh \phi} \sin (y \sin \phi)] \, d\phi = -\mid e^{-x \cosh \phi} \sin (y \sin \phi) \mid_0^\infty = 0
\]

Therefore \(W \) is independent of \(\theta \). Putting \(\theta = 0 \) gives \(x = r, \, y = 0 \) so that \(W = K_0(r) \) by (1), and putting \(\theta = \frac{1}{2} \pi \) gives \(x = 0, \, y = r \) so that \(W \) is the integral of (2). Thus (2) is proved.

To get an integral useful in slit diffraction theory, we insert (1) in 5.33 (6), replace the 0 to \(\infty \) integral by half the \(-\infty \) to \(\infty \) integral, and interchange the integration order. This gives, by \(Pc \) 402 or \(Dw \) 567.1,

\[
2vK_1(v) = \pi v H_{1}^{(2)}(-jv) = \int_{-\infty}^{\infty} e^{-r \cosh \phi} (1 + r \cosh \phi) \, \text{sech}^2 \phi \, d\phi \quad (3)
\]

5.34. Definite Integrals for Bessel Functions of Zero Order.—Substituting \(v/j \) for \(v \) in 5.331 (1), we have

\[
K_0\left(\frac{v}{j}\right) = \int_0^\infty e^{jv \cosh \phi} \, d\phi = \int_0^\infty \cos (v \cosh \phi) \, d\phi + j \int_0^\infty \sin (v \cosh \phi) \, d\phi
\]

Making the same substitution in 5.32 (4) and equating real and imaginary parts gives for \(J_0(v) \) and \(Y_0(v) \), if we use Watson's notation, see 5.293,

\[
J_0(v) = \frac{2}{\pi} \int_0^\infty \sin (v \cosh \phi) \, d\phi \quad (1)
\]

\[
Y_0(v) = -\frac{2}{\pi} \int_0^\infty \cos (v \cosh \phi) \, d\phi \quad (2)
\]
5.35. Inverse Distance in Terms of Modified Bessel Functions.—We now derive an expression for the inverse distance between two points of which the cylindrical coordinates are \(\rho_0, \phi_0, z_0 \) and \(\rho, \phi, z \). This could be done by the method of 5.304, but it is shorter to start with the expression for the potential of a point charge midway between two plates at a distance \(L \) apart. To obtain this potential, let \(a = \infty \) in 5.324 (9) and shift the origin to \(L/2 \). Only odd values of \(n \) survive so that, when \(\rho < \rho_0 \),

\[
V = \frac{q}{\pi \varepsilon L} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} (2 - \delta_n^m) K_m(N \rho_0) I_m(N \rho) \cos [N(z-z_0)] \cos m(\phi-\phi_0) \tag{1}
\]

where \(N = (2n + 1)\pi/L \). Now let \(2n\pi/L = u_n \) and \(2\pi/L = \Delta u \), and this becomes

\[
\frac{q}{4\pi \varepsilon} \sum_{m=0}^{\infty} \left[(2 - \delta_m^m) \cos m(\phi - \phi_0) \sum_{n=0}^{\infty} K_m \left(u_n + \frac{\Delta u}{2} \right) \rho_0 \right] I_m \left(u_n + \frac{\Delta u}{2} \right) \rho \cos \left[\left(u_n + \frac{\Delta u}{2} \right) z \right] \Delta u \tag{2}
\]

Next let \(L \to \infty \) so that \(\Delta u \to 0 \), and from the basic definition of an integral the \(n \)-summation, \(0 \leq n < \infty \), becomes the \(u \)-integral, \(0 \leq u < \infty \). Thus we have

\[
V = \frac{q}{4\pi \varepsilon LR} \sum_{m=0}^{\infty} (2 - \delta_m^m) \left[\int_0^\infty K_m(u \rho_0) I_m(u \rho) \cos uz du \right] \cos m(\phi - \phi_0) \tag{2}
\]

If \(\rho > \rho_0 \) interchange \(\rho \) and \(\rho_0 \). At \(\rho = 0 \) the summation disappears so that

\[
r^{-1} = (\rho^2 + z^2)^{-\frac{3}{2}} = 2\pi^{-1} \int_0^\infty \cos kzK_0(k \rho) dk \tag{3}
\]

With \(z \) and \(\phi_0 \) zero, write \(R \) for \(\rho \) in (3) and compare with (2). Thus we get when \(\rho < \rho_0 \)

\[
K_0[(\rho^2 + \rho_0^2 - 2\rho \rho_0 \cos \phi)^\frac{1}{2}] = \sum_{m=0}^{\infty} (2 - \delta_m^m) K_m(\rho_0) I_m(\rho) \cos m\phi \tag{4}
\]

To verify the choice of constant in 5.331 (1) substitute it for \(K_0(k \rho) \) in (3), integrate first with respect to \(k \) using Dw 577.2 or Pc 415, and then with respect to \(\phi \) using Dw 120.01 or Pc 99, and so get the left side.

5.351. Cylindrical Dielectric Boundaries.—The integral for the reciprocal distance just derived may be used to solve problems involving cylindrical boundaries when the fields extend to infinity. In such cases,
expansion in a series of Bessel functions is not feasible since the integrals of 5.287 are infinite at \(a = \infty \) as can be seen by inspection of the asymptotic values in 5.295. In such cases, we can usually obtain the solution as a definite integral which can be evaluated numerically by graphical integration.

As a specific example, let us calculate the field of a point charge \(q \) placed on the axis of an infinite cylindrical hole of radius \(a \) in an infinite block of dielectric of coefficient \(K \). Let \(V \) be the potential in the hole and \(V_K \) that outside. We use a method similar to that used in 5.304. We consider \(V \) to consist of two parts: first, that part due to the charge alone, given by 5.35 (3) and second, that due to the polarization of the dielectric, which must be finite on the axis. Thus \(V \) is of the form

\[
V = \frac{q}{2\pi \varepsilon_0} \int_0^\infty \left[K_0(kp) + \Psi(k)I_0(kp) \right] \cos kz \, dk
\] \hspace{1cm} (1)

In the dielectric the potential must be finite at infinity and can have only the form

![Fig. 5.351.—Equipotentials of point charge at center of cylindrical hole in dielectric for which \(K = 5 \). Calculated from 5.351 (1) and (2) by Dr. A. E. Harrison.](image-url)
$$V_K = \frac{q}{2\pi^2\epsilon_0} \int_0^\infty \Phi(k)K_0(k\rho) \cos k\rho \, dk$$ \hspace{1cm} (2)

The boundary condition \(V = V_K \) when \(\rho = a \) requires that

$$K_0(ka) + \Phi(k)I_0(ka) = \Phi(k)K_0(ka)$$ \hspace{1cm} (3)

The boundary condition \(\partial V/\partial \rho = K \partial V_K/\partial \rho \) at \(\rho = a \) gives

$$K'_0(ka) + \Phi(k)I'_0(ka) = K\Phi(k)K'_0(ka)$$ \hspace{1cm} (4)

Eliminating \(\Phi(k) \) from (3) and (4) and simplifying by the use of 5.32 (7), we obtain

$$\Phi(k) = \frac{1}{1 - ka(K - 1)I_0(ka)K'_0(ka)}$$ \hspace{1cm} (5)

Substituting (5) in (3) and solving for \(\Psi(k) \) give

$$\Psi(k) = \frac{ka(K - 1)K_0(ka)K'_0(ka)}{1 - ka(K - 1)I_0(ka)K'_0(ka)}$$ \hspace{1cm} (6)

The field when \(K = 5 \), obtained by plotting the integrands in (1) and (2) and integrating with a planimeter, is shown in Fig. 5.351.

5.36. Potential inside Hollow Cylindrical Ring.—The most important electrical applications of the modified Bessel functions occur in connection with alternating currents in cylindrical conductors. There are, however, a few applications in electrostatics. Let us, as an example, consider the potential in the region bounded by \(\rho = a \), \(\rho = b \), \(z = 0 \) and \(z = c \). Let the potential be zero on all these boundaries except the first. When \(\rho = a \), let \(V = f(z) \). Let us expand \(f(z) \) as a Fourier's series in the interval \(0 < z < c \). Since \(f(z) = 0 \) when \(z = 0 \) or \(z = c \), we have the well-known expansion, *Pc* 815,

$$f(z) = \sum_{k=1}^\infty A_k \frac{\cos \left(\frac{k\pi z}{c} \right)}{\sin \left(\frac{k\pi}{c} \right)}$$

$$A_k = \frac{2}{c} \int_0^c f(z) \frac{\cos \left(\frac{k\pi z}{c} \right)}{\sin \left(\frac{k\pi}{c} \right)} \, dz$$ \hspace{1cm} (1)

Consulting 5.292 (2), 5.292 (3), and 5.32 (6), we see that a solution of Laplace's equation satisfying all boundary conditions is

$$V = \sum_{k=1}^\infty A_k \frac{\cos \left(\frac{k\pi z}{c} \right)}{\sin \left(\frac{k\pi}{c} \right)} \left[\frac{I_0(k\pi \rho/c)}{I_0(k\pi b/c)} - \frac{K_0(k\pi \rho/c)}{K_0(k\pi b/c)} \right]$$ \hspace{1cm} (2)

If we wish the potential inside the cylinder \(\rho = a \), on which the potential is \(V = f(z) \), and between the two earthed planes \(z = 0 \) and \(z = c \), this expression becomes

$$V = \sum_{k=1}^\infty A_k \sin \frac{k\pi z}{c} \frac{I_0(k\pi \rho/c)}{I_0(k\pi a/c)}$$ \hspace{1cm} (3)
§5.37 MODIFIED BESSEL FUNCTIONS OF NONINTEGRAL ORDER 197

If we wish the potential outside the cylinder \(\rho = a \), on which the potential is \(V = f(z) \), and between the two earthed planes \(z = 0 \) and \(z = c \), we have

\[
V = \sum_{k=1}^{\infty} A_k \sin \frac{k\pi z}{c} \frac{K_0(k\pi \rho/c)}{K_0(k\pi a/c)}
\]

(4)

5.37. Modified Bessel Functions of Nonintegral Order.—From 5.31 (1), putting \(I_n(v) = j^{-n}J_n(jv) \), we see that a general solution of Bessel’s modified equation, when \(n \) is not an integer, is given by

\[
R_n^m(v) = AI_n(v) + BI_{-n}(v)
\]

(1)

\(K_n(v) \) is a linear combination of \(I_n(v) \) and \(I_{-n}(v) \). The recurrence formulas are equally valid for these values. The Eqs. 5.31 (2), (3), (4), (5), and (6) lead to

\[
I_\pm(v) = \left(\frac{2}{\pi v} \right)^{1/2} \sinh v
\]

(2)

\[
I_{-\pm}(v) = \left(\frac{2}{\pi v} \right)^{1/2} \cosh v
\]

(3)

\[
I_\pm(v) = \left(\frac{2}{\pi v} \right)^{1/2} \left(\cosh v - \frac{1}{v} \sinh v \right)
\]

(4)

\[
I_{-\pm}(v) = \left(\frac{2}{\pi v} \right)^{1/2} \left(\sinh v - \frac{1}{v} \cosh v \right)
\]

(5)

\[
I_\pm(v) = \left(\frac{2}{\pi v} \right)^{1/2} \left[\left(1 + \frac{3}{v^2} \right) \sinh v - \frac{3}{v} \cosh v \right]
\]

(6)

\[
I_{-\pm}(v) = \left(\frac{2}{\pi v} \right)^{1/2} \left[\left(1 + \frac{3}{v^2} \right) \cosh v - \frac{3}{v} \sinh v \right]
\]

(7)

The general formula is simplest in exponential form

\[
I_{\pm(n+\frac{1}{2})}(v) = \frac{1}{(2\pi v)^{1/2}} \sum_{s=0}^{n} \frac{[(-1)^s e^v \mp (-1)^s e^{-v}] (n + s)!}{s!(n - s)! (2v)^s}
\]

(8)

where the upper or lower sign is used throughout.

Both \(I_{n+\frac{1}{2}}(v) \) and \(I_{-n-\frac{1}{2}}(v) \) are infinite when \(v = \infty \). A solution that is zero at \(\infty \) is \(K_{n+\frac{1}{2}}(v) \) as defined in 5.32 (4) when \(n + \frac{1}{2} \) replaces \(n \). By 5.31 (8), eliminate \(Y_{n+\frac{1}{2}}(jv) \) then write in terms of \(I_{\pm(n+\frac{1}{2})}(v) \) by 5.32 (2) and substitute (8). The positive exponential disappears and leaves

\[
K_{n+\frac{1}{2}}(v) = \frac{1}{2\pi} (-1)^n [I_{n-\frac{1}{2}}(v) - I_{n+\frac{1}{2}}(v)] = \left(\frac{\pi}{2v} \right)^{1/2} \sum_{s=0}^{n} \frac{(n + s)! e^{-v}}{s!(n - s)! (2v)^s}
\]

(9)

The simplest cases are

\[
K_\frac{1}{2}(v) = \left(\frac{\pi}{2v} \right)^{1/2} e^{-v} \quad K_\frac{3}{2}(v) = \left(\frac{\pi}{2v} \right)^{1/2} \left(1 + \frac{1}{v} \right) e^{-v}
\]

(10)
If $v = 0$ in (9), the $s = n$ term of the summation dominates so that

$$K_{n+4}(v) \rightarrow \left(\frac{\pi}{2v}\right)^{\frac{1}{2}}(2n - 1)!!$$

(11)

The spherical Bessel function $k_n(v)$ may be defined by

$$k_n(v) = \left(\frac{2}{\pi v}\right)^{\frac{1}{2}}K_{n+4}(v) = \frac{1}{v} \sum_{s=0}^{n} \frac{(n + s)!}{s!(n - s)!}(2v)^s$$

(12)

With the aid of 5.32 (4) and 5.31 (8), we obtain

$$k_n(jv) = -j^n[j_n(v) - jn_n(v)]$$

(13)

From this equation and 5.31 (11)

$$k_n(jv)j'_n(v) - jk'_n(jv)j_n(v) = -j^{-n+1}v^{-2}$$

(14)

The relations with Schelkunoff's $\tilde{K}_n(v)$ and Stratton's $h_n^{(1)}(v)$ are

$$k_n(v) = v^{-1}\tilde{K}_n(v) = -j^n h_n^{(1)}(jv) = -j^n[j_n(jv) + jn_n(jv)]$$

(15)

From (12) and 5.321, the recurrence relations are

$$-(2n + 1)v^{-1}k_n = k_{n-1} - k_{n+1}, \quad -k'_n = k_{n+1} \pm (n + \frac{1}{2} \pm \frac{1}{2})v^{-1}k_n$$

(16)

§5.38. Approximate Solutions. Electrostatic Lens.—In many practical problems, when exact solutions are difficult or impossible, approximations can be found that are as accurate as the experimental precision justifies. One often effective method is to fit boundary conditions, not everywhere, but at a finite number of points. Ramo and Whinnery take as an example the axially symmetrical electrostatic electron lens shown in Fig. 5.38. It consists of a plane conducting plate of thickness $2b$ at potential V_0 pierced by a hole of radius a and lying midway between two parallel planes at potential zero spaced a distance $2c$ apart. As the focusing properties of such a lens are usually expressed in terms of the field along the axis, this is the desired datum. From 5.292 (3) and 5.33, a solution with the proper symmetry which is zero on the planes is

$$V = V_0 \sum_{n=0}^{\infty} A_n J_0 \left[\frac{(2n + 1)\pi \rho}{c}\right] \sin \left[\frac{(2n + 1)\pi z}{c}\right]$$

(1)

If all terms for which $n > 4$ are neglected, the solution can be fitted to the V_0 boundary at four points. If $a = b = 0.3c$ and these are $z = 0$ and $z = b$ when $r = a$, $z = b$ when $r = 1.5a$, and $z = b$ when $r = 3a$,
the constants are
\[A_1 = 1.15, \quad A_2 = -0.172, \quad A_3 = 0.0211, \quad A_4 = 0.00098 \]
(2)

Clearly this gives useful accuracy on the axis where \(I_0(0) \) is one.

§5.39 Wedge Functions.

The functions of 5.291 and 5.292 are inadequate when the potential vanishes on the cylinders \(\rho = \rho_1, \rho = \rho_2 \) and on the planes \(z = z_1, z = z_2 \) and has arbitrary values over the planes \(\phi = \phi_1, \phi = \phi_2 \). This problem requires functions orthogonal in \(\rho \) and \(z \) obtained by substitution of \(jv \) for \(n \) and \(jk \) for \(k \) in 5.291 (1), (2), and (3). Thus,

\[\Phi(v\phi) = C \cosh v\phi + D \sinh v\phi = C'e^{v\phi} + D'e^{-v\phi} \]
(1)

\[Z(kz) = E \sin kz + F \cos kz \]
(2)

\[R_s(k\rho) = AF_s(k\rho) + BG_s(k\rho) \]
(3)

where \(R_s(v) \) satisfies the differential equation

\[\frac{d^2R}{dz^2} + \frac{1}{v} \frac{dR}{dv} - \left(1 - \frac{v^2}{v_0^2} \right) R = 0 \]
(4)

The function \(F_s(v) \to \infty \) as \(v \to \infty \) and is defined by

\[F_s(v) = \cosh \sqrt{v} \int_0^\infty e^{v \cos \theta} \sin \theta d\theta = \int_0^\infty e^{-v \cosh t} \sin vt dt \]
(5)

The function \(G_s(v) \to 0 \) as \(v \to \infty \) and is defined by

\[G_s(v) = \int_0^\infty e^{-v \cosh t} \cos vt dt = K_{ju}(v) \]
(6)

Below a certain value of \(v \), which increases with \(\nu \), both functions are periodic and oscillate as \(\sin [\nu \ln (\frac{3}{2}v)] \) and \(\cos [\nu \ln (\frac{3}{2}v)] \) as \(v \) approaches zero. The integral with respect to \(v \) of \(v \) times a product vanishes unless the factors have the same \(v \) so that an arbitrary function of \(v \) suitable for expansion in Fourier series can be expanded in terms of \(R_s(k\rho) \). The three-dimensional dielectric wedge problem is solved by methods similar to those used for the two-dimensional wedge in Art. 4.07.

Problems

Problems marked C are taken from the Cambridge examination questions as reprinted by Jeans by permission of the Cambridge University Press.

1. Two similar charges are placed at a distance \(2b \) apart. Show that a grounded conducting sphere placed midway between them must have a radius of approximately \(b/8 \) cm to neutralize their mutual repulsion.

2. The radius vector from the center of a conducting sphere of radius \(a \), carrying a charge \(Q \), to a point charge \(q \) is \(c \). When the system is placed in a uniform field \(E \) along the direction of \(c \) show that, in order that no force act on \(q \), \(Q \) must have the value

\[-e^2 \left[4\pi eE \left(1 + 2 \left(\frac{a}{c} \right)^3 \right) - q \left(\frac{a}{c} \right)^3 \left(\frac{2c^3 - a^3}{(c^3 - a^2)^2} \right) \right] \]

3. An infinite conducting plane forms one boundary of a uniform field of unknown strength \(X \). A known charge \(q \), when placed at a distance \(r \) from the plane, experi-
THREE-DIMENSIONAL POTENTIAL DISTRIBUTIONS

ences an unknown force F. It is found that if a hemispherical piece of conducting material, of radius a, is placed flat against the plane opposite the charge the force is unchanged. Show that

$$X = \frac{qr^4}{2\pi \varepsilon (r^4 - a^4)^2} \quad F = \frac{q^2}{4\pi \varepsilon \left[\frac{2r^6}{(r^4 - a^4)^2} - \frac{1}{4r^2} \right]}$$

4. A hollow conducting sphere of radius a is half filled with a dielectric. On the axis of symmetry at a distance $a/3$ from the plane dielectric surface, a charge experiences no image force. Show that the capacitvity is $1.541\varepsilon_0$.

5C. An infinite conducting plane at zero potential is under the influence of a charge of electricity at a point O. Show that the charge on any area of the plane is proportional to the angle it subtends at O.

6C. If two infinite plane uninsulated conductors meet at an angle of 60° and there is a charge e at a point equidistant from each and distant r from the line of intersection, find the electrification at any point of the planes. Show that at a point in a principal plane through the charged point at a distance $3^1/2$ from the line of intersection, the surface density is

$$\frac{-e}{4\pi r^2} \left(\frac{3}{4} + \frac{1}{7^2} \right)$$

7C. What is the least positive charge that must be given to a spherical conductor, insulated and influenced by an external point charge e at distance r from its center, in order that the surface density may be everywhere positive?

8C. An uninsulated conducting sphere is under the influence of an external electric charge. Find the ratio in which the induced charge is divided between the part of its surface in direct view of the external charge and the remaining part.

9C. A point charge e is brought near to a spherical conductor of radius a having a charge E. Show that the particle will be repelled by the sphere, unless its distance from the nearest point of its surface is less than $\frac{1}{2}a(e/E)^{1/4}$, approximately (take $e \ll E$).

10C. A hollow conductor has the form of a quarter of a sphere bounded by two perpendicular diametral planes. Find the images of a charge placed at any point inside.

11C. A conducting surface consists of two infinite planes which meet at right angles and a quarter of a sphere of radius a fitted into the right angle. If the conductor is at zero potential and a point charge e is symmetrically placed with regard to the planes and the spherical surface at a great distance f from the center, show that the charge induced on the spherical portion is approximately $-5e a^2/(\pi f^2)$.

12C. A thin plane conducting lamina of any shape and size is under the influence of a fixed electrical distribution on one side of it. If σ_1 is the density of the induced charge at a point P on the side of the lamina facing the fixed distribution and σ_2 that at the corresponding point on the other side, prove that $\sigma_1 - \sigma_2 = \alpha_0$ where σ_0 is the density at P of the distribution induced on an infinite plane conductor coinciding with the lamina.

13C. A conducting plane has a hemispherical boss of radius a, and at a distance f from the center of the boss and along its axis there is a point charge e. If the plane and the boss are kept at zero potential, prove that the charge induced on the boss is

$$-e \left(1 - \frac{f^2 - a^2}{f^2 + a^2} \right)$$

14C. Electricity is induced on an uninsulated spherical conductor of radius a by a uniform surface distribution, density σ, over an external concentric nonconducting
spherical segment of radius \(c \). Prove that the surface density at the point \(A \) of the conductor at the nearer end of the axis of the segment is

\[
-\frac{\sigma c}{2a^2}(c + a) \left(1 - \frac{AB}{AD} \right)
\]

where \(B \) is the point of the segment on its axis and \(D \) is any point on its edge.

15C. Two conducting disks of radii \(a \), \(a' \) are fixed at right angles to the line that joins their centers, the length of this line being \(r \) large compared with \(a \). If the first has potential \(V \) and the second is uninsulated, prove that the charge on the first is

\[
\frac{8\pi^2\sigma a^2r^2V}{(\pi r^2 - 4aa')}
\]

16C. A spherical conductor of diameter \(a \) is kept at zero potential in the presence of a fine uniform wire in the form of a circle of radius \(c \) in a tangent plane to the sphere with its center at the point of contact, which has a charge \(Q \) of electricity. Prove that the electrical density induced on the sphere at a point whose direction from the center of the ring makes an angle \(\psi \) with the normal to the plane is

\[
-\frac{eQ}{4\pi a} \int_0^{2\pi} (a^2 + c^2 \sec^2 \psi - 2ac \tan \psi \cos \theta)^{-1} d\theta
\]

17. A stationary ion with charge \(q \) and mass \(m \) is formed in a highly evacuated conducting bulb of radius \(a \) at a distance \(c \) from its center. Show that the time for this ion to reach the wall is

\[
t = q^{-1}k(4\pi m a^2)^{\frac{1}{2}}(K - E)
\]

where \(k^2 = (a^2 - c^2)a^{-2} \)

\(K \) and \(E \) are complete elliptic integrals of modulus \(k \).

18. An earthed conducting sphere of radius \(a \) has its center on the axis of a charged circular ring, any radius vector \(c \) from its center to the ring making an angle \(\alpha \) with the axis. Show that the force sucking the sphere into the ring is

\[
\frac{Q^2E(c^2 - a^2)k^2 \cos \alpha}{16\pi^2c^3a^3 \sin^3 \alpha(1 - k^2)}\]

where \(k^2 = \frac{4a^2c^2 \sin^2 \alpha}{a^4 + c^4 - 2a^2c^2 \cos 2\alpha} \)

\(E \) is the complete elliptic integral of modulus \(k \).

19C. If a particle charged with a quantity \(e \) of electricity is placed at the middle point of the line joining the centers of two equal spherical conductors kept at zero potential, show that the charge induced on each sphere is

\[-2em(1 - m + m^2 - 3m^3 + 4m^4)\]

neglecting higher powers of \(m \), which is the ratio of the radius of the distance to the distance between the centers of the spheres.

20C. Two insulated conducting spheres of radii \(a, b \), the distance \(c \) of whose centers is large compared with \(a \) and \(b \), have charges \(Q_1, Q_2 \), respectively. Show that the potential energy is approximately

\[
(8\pi e)^{-1}[(a^{-1} - b^{-1})Q_1^2 + 2e^{-1}Q_1Q_2 + (b^{-1} - a^{-1})Q_2^2]
\]

21C. Show that the force between two insulated spherical conductors of radius \(a \) placed in an electric field of uniform intensity \(E \) perpendicular to their line of centers is

\[
12\pi eEa^{-1}(1 - 2ae^{-1} - 8a^2e^{-2} + \cdots), \quad c \text{ being the distance between their centers.}
\]

22C. Two uncharged insulated spheres, radii \(a, b \), are placed in a uniform field of force so that their line of centers is parallel to the lines of force, the distance \(c \) between
their centers being great compared with a and b. Prove that the surface density at the point at which the line of centers cuts the first sphere a is approximately
\[\eta E(3 + 6b^2c^{-3} + 15ab^3c^{-4} + 28a^2b^2c^{-5} + 57a^3b^3c^{-6} + \cdots) \]

23C. Two equal spheres each of radius a are in contact. Show that the capacity of the conductor so formed is \(8\pi a \ln 2 \).

24C. Two spheres of radii \(a, b \) are in contact, \(a \) being large compared with \(b \). Show that if the conductor so formed is raised to potential \(V \), the charges on the two spheres are
\[4\pi V a \left(1 - \frac{\pi^2 b^2}{6(a + b)^2} \right) \quad \text{and} \quad \frac{2\pi^2 ab^2 V}{3(a + b)^2} \]

25C. A conducting sphere of radius \(a \) is in contact with an infinite conducting plane. Show that if a unit point charge is placed beyond the sphere and on the diameter through the point of contact at distance \(c \) from that point, the charges induced on the plane and sphere are
\[-\frac{\pi a}{c} \cot \left(\frac{\pi a}{c} \right) \quad \text{and} \quad \frac{\pi a}{c} \cot \left(\frac{\pi a}{c} \right) - 1 \]

26C. Prove that if the centers of two equal uninsulated spherical conductors of radius \(a \) are at a distance \(2c \) apart, the charge induced on each by a unit charge at a point midway between them is
\[\sum_{n=1}^{\infty} (-1)^n \tanh n\alpha \quad \text{where} \quad c = a \cosh \alpha. \]

27. Two equal spheres, of radius \(a \), with their centers a distance \(c \) apart are connected by a thin wire. Show that the capacitance of the system is
\[8\pi a \sinh \beta \sum_{n=1}^{\infty} (-1)^{n+1} \coth n\beta \]
where \(\cosh \beta = \frac{1}{2}c/a \).

28. Two equal spheres, of radius \(a \), with their centers a distance \(c \) apart, are charged to the same potential \(V \). Show that the repulsion between them is
\[2\pi V^2 \sum_{n=1}^{\infty} (-1)^{n+1} (\coth \beta - n \coth n\beta) \coth n\beta \]
where \(\cosh \beta = \frac{1}{2}c/a \).

29C. An insulated conducting sphere of radius \(a \) is placed midway between two parallel infinite uninsulated planes at a great distance \(2c \) apart. If \((a/c)^2 \) is neglected, show that the capacity of the sphere is approximately \(4\pi a[1 + (a/c) \log 2] \).

30C. Two spheres of radii \(r_1, r_2 \) touch each other, and their capacities in this position are \(c_1, c_2 \). Show that
\[c_1 = 4\pi r_1 \left(f^2 \sum_{n=1}^{\infty} n^{-2} + f^3 \sum_{n=1}^{\infty} n^{-3} + f^4 \sum_{n=1}^{\infty} n^{-4} + \cdots \right) \]
where \(f = r_1(r_1 + r_2)^{-1} \).
31C. A point charge e is placed between two parallel uninsulated infinite conducting planes, at distances a and b from them, respectively. Show that the potential at a point between the planes which is at a distance z from the charge and is on the line through the charge perpendicular to the planes is

$$\frac{e}{8\pi\epsilon(a+b)}\left[-\Psi\left(\frac{z}{2a+2b}\right) + \Psi\left(\frac{2a-z}{2a+2b}\right) + \Psi\left(\frac{2b+z}{2a+2b}\right) - \Psi\left(\frac{2a+2b-z}{2a+2b}\right)\right]$$

where $\Psi(x) = [\Gamma'(x)]/[\Gamma(x)]$.

32. An electron, a charge e, mass m, traveling horizontally in a high vacuum with a velocity v, must pass over an uncharged horizontal dielectric plate of length d. Show that, if it comes within a distance a of the front edge of the plate, it will be drawn into it by image forces before clearing the back edge, where, if edge effects are neglected,

$$a^2 = \frac{(K - 1)e^2d^2}{2m^2\epsilon_0(K + 1)v^2}$$

33C. A point charge is placed in front of an infinite slab of dielectric, bounded by a plane face. The angle between a line of force in the dielectric and the normal to the face of the slab is α; the angle between the same two lines in the immediate neighbourhood of the charge is β. Prove that α, β are connected by the relation

$$\sin \frac{1}{2}\beta = \left(\frac{2K}{1+K}\right)^{1/2} \sin \frac{1}{2}\alpha$$

34C. Two dielectrics of inductive capacities K_1 and K_2 are separated by an infinite plane face. Charges e_1, e_2 are placed at points on a line at right angles to the plane, each at a distance a from the plane. Find the forces on the two charges, and explain why they are unequal.

35C. Two conductors of capacities c_1, c_2 in air are on the same normal to the plane boundary between two dielectrics with coefficients k_1, k_3, at great distances a, b from the boundary. They are connected by a thin wire and charged. Prove that the charge is distributed between them approximately in the ratio

$$k_1 \left[\frac{4\pi}{c_1} - \frac{k_1 - k_2}{2b(k_1 + k_2)} - \frac{2k_2}{(k_1 + k_2)(a + b)}\right] : k_2 \left[\frac{4\pi}{c_1} + \frac{k_1 - k_2}{2a(k_1 + k_2)} - \frac{2k_1}{(k_1 + k_2)(a + b)}\right]$$

36C. A conducting sphere of radius a is placed in air, with its center at a distance c from the plane face of an infinite dielectric. Show that its capacity is

$$4\pi\epsilon_0 a \sinh a \sum_{n=1}^{\infty} [(K - 1)/(1 + K)]^{n-1} \cosh n(a)$$

where $\cosh a = c/a$.

37. Show that the charge induced on an earthed conductor consisting of two similar spheres of radius a, intersecting orthogonally, by a charge q in their plane of intersection, at a distance $3a2^{-1}$ from the axis of symmetry is $(1/3 - 2/5^2)q$.

38. A charge q is at a distance b from the center of a circular hole of radius a in an infinite earthed flat conducting sheet and lies in the same plane. Show that the charge density induced on the sheet at a distance r from the charge and c from the center of the hole is $-q(a^2 - b^2)^{1/2}/[2\pi r^3(c^2 - a^2)^{1/2}]$.

39. Show that, if in the preceding problem the charge is distributed around a ring of radius b concentric with the hole and coplanar with the sheet, the induced charge density at P is $-q(a^2 - b^2)^{1/2}/[2\pi r^3(c^2 - b^2)(c^2 - a^2)^{1/2}]$.

PROBLEMS 203
39. Invert the preceding problem, apply Green’s reciprocity theorem, and show that the potential at a point \(P \) on a sphere, part of whose surface is occupied by a thin conducting bowl at potential \(V_r \), is
\[(2V_r/\pi) \sin^{-1} (\cos \alpha/\cos \theta) \]
where \(\theta \) is the angle, measured at the bowl end of the rotational symmetry axis, between this axis and \(P \) and \(\alpha \) that between this axis and the edge of the bowl.

40. Starting with the preceding result find the first term in the spherical harmonic expansion for the potential of a freely charged spherical bowl all elements of which are at a distance \(a \) from the origin where its radius subtends an angle \(\beta \). From this show that its capacitance is \(4\alpha(\beta + \sin \beta) \).

41. Invert the result of problem 39 and find the charge density induced on a spherical earthed conducting bowl by a uniform charge distribution \(-\delta_1 \) over the remainder of the sphere. By superimposing a uniform spherical surface charge of density \(\sigma_i \) show that the charge density at \(P \) on the inside or outside, respectively, of a freely charged conducting spherical bowl at potential \(V_0 \) is
\[\sigma_i = \frac{\epsilon V_0}{\pi a} \left[\frac{\sin \alpha}{(\sin^2 \theta - \sin^2 \alpha)^{1/2}} - \sin^{-1} \frac{\sin \alpha}{\sin \theta} \right], \quad \sigma_o = \frac{\epsilon V_0}{a} + \sigma_i \]
where the angles are defined as in problem 40.

42. A conductor is formed by the outer surfaces of two equal spheres, the angle between their radii at a point of intersection being \(2\pi/3 \). Show that the capacity of the conductor so formed is \(2\pi a e(5 - 3^{1/2}) \), where \(a \) is the radius of either sphere.

43. An uncharged insulated conductor formed of two equal spheres of radius \(a \), cutting one another at right angles, is placed in a uniform field of force of intensity \(E \), with the line joining the centers parallel to the lines of force. Prove that the charges induced on the two spheres are \(\pm 11\pi a^2 E/2 \).

44. A conductor is bounded by the larger portions of two equal spheres of radius \(a \) cutting at an angle \(\pi/3 \) and of a third sphere of radius \(c \) cutting the two former orthogonally. Show that the capacity of the conductor is
\[4\pi e[c + a(\frac{1}{2} - \frac{3^{1/2}}{2}) - ac(2(a^2 + c^2)^{-1} - 2(a^2 + 3c^2)^{-1} + (a^2 + 4c^2)^{-1})] \]

45. A spherical shell of radius \(a \) with a little hole in it is freely electrified to potential \(V \). Prove that the charge on its inner surface is less than \(\frac{1}{\epsilon} VS/a \), where \(S \) is the area of the hole.

46. A thin spherical conducting shell from which any portions have been removed is freely electrified. Prove that the difference of densities inside and outside at any point is constant.

47. Prove that the capacity of an elliptic plate of small eccentricity \(e \) and area \(A \) is approximately
\[8e \left(\frac{A}{a^2} \right)^{1/4} \left(1 + \frac{e^2}{64} + \frac{e^4}{64} \right) \]

48. An ellipsoidal conductor differs but little from a sphere. Its volume is equal to that of a sphere of radius \(r \), its axes are \(2r(1 + \alpha), 2r(1 + \beta), 2r(1 + \gamma) \). Show that neglecting cubes of \(\alpha, \beta, \gamma \), its capacity is \(4\pi r [1 + (\gamma/a)(a^2 + \beta^2 + \gamma^2)] \).

49. An oblate conducting spheroid with semiaxes \(a \) and \(b \) has a charge \(Q \). Show that the repulsion between the two halves into which it is divided by its diametral plane is \(Q^2/16\pi(b^3 - a^3) \) for \(b > a \).

50. A prolate conducting spheroid, semiaxes \(a, b \), has a charge \(Q \) of electricity. Show that repulsion between the two halves into which it is divided by its diametral plane is \(Q^2/16\pi(a^3 - b^3) \) for \(a > b \). Determine the value of the force in the case of a sphere.
52C. A thin circular disk of radius \(a \) is electrified with charge \(Q \) and surrounded by a spheroidal conductor with charge \(Q_1 \), placed so that the edge of the disk is the locus of the focus \(S \) of the generating ellipse. Show that the energy of the system is

\[
\frac{Q^2}{2} \leq BSC + (Q + Q_1)^2 \leq SBC/(8\pi\epsilon a),
\]

\(B \) being an extremity of the polar axis of the spheroid and \(C \) the center.

53C. If the two surfaces of a condenser are concentric and coaxial oblate spheroids of small ellipticities \(\delta \) and \(\delta' \) and polar axes \(2c \) and \(2c' \), prove that the capacity is

\[
4\pi\epsilon c(c' - c) - [c' - c + \frac{1}{2}(3c' - \delta c)],
\]

electing squares of the ellipticities. Find the distribution of electricity on each surface to the same order of approximation.

54C. An accumulator is formed of two confocal prolate spheroids, and the specific inductive capacity of the dielectric is \(K\ell/\omega \), where \(\omega \) is the distance of any point from the axis. Prove that the capacity of the accumulator is

\[
\frac{2\pi^2\epsilon_0 Kl}{\ln \left(\frac{a_1 + b_1}{a + b} \right)}
\]

where \(a, b \) and \(a_1, b_1 \) are the semi-axes of the generating ellipses.

55C. A thin spherical bowl is made by the part of the sphere \(x^2 + y^2 + z^2 = c^2 \) bounded by and lying within the cone \(\left(x/a \right)^2 + \left(y/b \right)^2 = \left(z/c \right)^2 \) and is put in connection with the earth by a fine wire. \(O \) is the origin, and \(C \), diametrically opposite to \(O \), is the vertex of the bowl; \(Q \) is any point on the rim, and \(P \) is any point on the great circle arc \(CQ \). Show that the surface density induced at \(P \) by a charge \(E \) placed at \(O \) is

\[
-\frac{Ec}{4\pi abI} \frac{CQ}{OP^2(PO^2 - OQ^2)^{3/2}}, \quad \text{where} \quad I = \int_0^{1r} \frac{d\theta}{(a^2 \sin^2 \theta + b^2 \cos^2 \theta)^{3/2}}.
\]

56. A charge \(q \) is placed at a distance \(c \) from the center of a spherical hollow of radius \(a \) in an infinite dielectric of relative capacitivity \(K \). Show that the force acting on the charge is

\[
\frac{(K - 1)q^2}{4\pi\epsilon c^2} \sum_{n=0}^{\infty} \frac{n(n+1)}{n + K(n+1)} \left(\frac{c}{a} \right)^{2n+1}
\]

57. An earthed conducting sphere of radius \(a \) has its center on the axis of a charged circular ring, any radius vector \(c \) from this center to the ring making an angle \(\alpha \) with the axis. Show that the force sucking the sphere into the ring is

\[
-\frac{Q^2}{4\pi\epsilon c^2} \sum_{n=0}^{\infty} (n+1)P_{n+1}(\cos \alpha)P_n(\cos \alpha) \left(\frac{a}{c} \right)^{2n+1}
\]

58. The spherical coordinates of a circular ring are \(a, \alpha \). A sphere of relative capacitivity \(K \) and radius \(b \) has its center at the origin. If the ring carries a charge of linear density \(\tau \), show that the potential between the sphere and the ring is

\[
\frac{\tau}{2\epsilon_0} \sum_{n=0}^{\infty} P_n(\cos \alpha) \sin \left(\frac{n(K-1)b^{2n+1}}{a^n(n+1)\pi^{n+1}} \right) P_n(\cos \theta)
\]

59. That portion of a sphere of radius \(a \), lying between \(\theta = \alpha \) and \(\theta = \pi - \alpha \) is uniformly electrified with a surface density \(\sigma \). Show that the potential at an external
THREE-DIMENSIONAL POTENTIAL DISTRIBUTIONS

The point is

\[
\frac{a}{r} \cos \alpha + \sum_{n=1}^{\infty} \frac{1}{4n+1} \left[P_{2n+1}(\cos \alpha) - P_{2n-1}(\cos \alpha) \right] \left(\frac{a}{r} \right)^{2n+1} P_{2n}(\mu) \]

60. A circular ring of radius \(a \) and charge \(Q \) is used as a collector at the center of an earthed spherical photoelectric cell of radius \(b \). Show that the field strength at the spherical surface is

\[
\frac{Q}{4\pi \varepsilon} \sum_{n=0}^{\infty} (-1)^n \frac{3 \cdots (2n-1) 4n + 1}{2 \cdot 4 \cdots 2n} \left(\frac{a}{b} \right)^{2n} P_{2n}(\cos \theta) \]

61. A point charge \(q \) is placed at a distance \(b \) from the center of two concentric earthed conducting spheres of radii \(a \) and \(c \), where \(a < b < c \). Show that when \(a < r < b \), the potential is

\[
V = \frac{q}{4\pi \varepsilon} \sum_{n=0}^{\infty} b^{2n+1} - c^{2n+1} \left(r^n - \frac{a^{2n+1}}{r^{n+1}} \right) P_n(\cos \theta) \]

62. An infinite flat conducting plate is influenced by a charge \(q \) at a distance \(b \) from it, and there is a solid dielectric hemisphere of radius \(a \) flat against the plate opposite the charge. Show that the surface density induced on that part of the plate lying outside the dielectric is

\[
\frac{-q b}{2\pi (b^2 + r^2)^{3/2}} + \sum_{n=0}^{\infty} (-1)^{n+1} \frac{(1-K)(2n+1)(2n+2) 1 \cdot 3 \cdots (2n+1)}{1 + (2n+1)(K+1) 2 \cdot 4 \cdots (2n+2)} \left(\frac{a}{b} \right)^{2n+2} P_{2n+2}(\cos \theta) \]

63. Show that the potential at any point due to a circular disk of radius \(c \) raised to a potential \(V_1 \) is \((2V_1/\pi) \Sigma (-1)^n (2n + 1)^{-1}(c/r)^{2n+1} P_{2n}(\cos \theta)\) where \(r > c \). Find the value for \(r < c \).

64. Two similar rings of radius \(a \) lie opposite each other in parallel planes, so spaced that the radius of one ring subtends an angle \(\alpha \) at the center of the other. Show that when they carry charges \(Q \) and \(Q' \), the repulsion between them is

\[
\frac{QQ'}{4\pi \varepsilon a^2} \sum_{n=0}^{\infty} (-1)^n \frac{3 \cdot 5 \cdots (2n+1)}{2 \cdot 4 \cdot 6 \cdots 2n} \left(\sin \alpha \right)^{2n+2} P_{2n+4}(\cos \alpha) \]

65. The inside of a conducting sphere of inner radius \(a \) is coated with a uniform layer of dielectric of inner radius \(b \). Show that the force on a point charge \(q \), in the cavity at a distance \(c \) from the center, is

\[
\frac{q^2}{4\pi \varepsilon a} \sum_{n=0}^{\infty} n c^{2n-1} \left[(K-1)(n+1)a^{2n+1} + [(K+1)n+1]b^{2n+1} \right] \]

66. A point charge \(q \) is placed at a distance \(c \) from the center of an earthed conducting sphere of radius \(a \) on which is a dielectric layer of outer radius \(b \) and relative capacitance \(K \). Show that the potential in this layer is

\[
\frac{q}{4\pi \varepsilon a} \sum_{n=0}^{\infty} \left[(2n+1)b^{2n+1}(r^n - a^{2n+1}r^{-n-1}) \right] \left[[(K+1)n+1]b^{2n+1} + (n+1)(K-1)a^{2n+1} \right] P_n(\cos \theta) \]

PROBLEMS

67C. A conducting spherical shell of radius \(a \) is placed, insulated and without charge, in a uniform field of electric force of intensity \(F \). Show that, if the sphere is cut into two hemispheres by a plane perpendicular to the field, these hemispheres tend to separate and require forces equal to \(\frac{1}{2}\pi\varepsilon\alpha F^2 \) to keep them together.

68C. A spherical conductor of internal radius \(b \), which is uncharged and insulated, surrounds a spherical conductor of radius \(a \), the distance between their centers being \(c \), which is small. The charge on the inner conductor is \(Q \). Find the potential function for points between the conductors, and show that the surface density at a point \(P \) on the inner conductor is

\[
Q \left(\frac{1}{4\pi \frac{1}{a^2} - \frac{3c \cos \theta}{b^2 - a^2}} \right)
\]

where \(\theta \) is the angle that the radius through \(P \) makes with the line of centers and terms in \(c^2 \) are neglected.

69C. The equation of the surface of a conductor is \(r = a(1 + \delta P_n) \), where \(\delta \) is very small, and the conductor is placed in a uniform field of force \(F \) parallel to the axis of harmonics. Show that the surface density of the induced charge at any point is greater than would it be if the surface were perfectly spherical by the amount

\[
\left[\frac{3neF\delta}{2n + 1} \right] ((n + 1)P_{n+1} + (n - 2)P_{n-1})
\]

70C. A conductor at potential \(V \) whose surface is of the form \(r = a(1 + \delta P_n) \) is surrounded by a dielectric (\(K \)) whose boundary is the surface \(r = b(1 + \eta P_n) \), and outside this the dielectric is air. Show that the potential in the air at a distance \(r \) from the origin is

\[
\frac{KabV}{(K - 1)a + b} \left\{ \frac{1}{r} + \frac{(2n + 1)\delta a^{n+1}b^{n+1} + (K - 1)\eta b^n(nb^{n+1} + (n + 1)a^{n+1})}{(1 + n + nK)b^{n+1} + (K - 1)(n + 1)a^{n+1}} \right\} P_n
\]

where squares and higher powers of \(\delta \) and \(\eta \) are neglected.

71C. The surface of a conductor is nearly spherical, its equation being

\[r = a(1 + \eta S_n) \]

where \(\eta \) is small. Show that if the conductor is uninsulated, the charge induced on it by a unit charge at a distance \(f \) from the origin and of angular coordinates \(\theta, \phi \) is approximately

\[
-\frac{e}{f} \left[1 + \left(\frac{a}{f} \right)^n \eta S_n(\theta, \phi) \right]
\]

72C. A uniform circular wire of radius \(a \) charged with electricity of line density \(e \) surrounds an uninsulated concentric spherical conductor of radius \(c \). Prove that the electrical density at any point of the surface of the conductor is

\[
-\frac{e}{2c} \left[1 - \frac{5}{2} \left(\frac{c}{a} \right)^2 P_2 + \frac{1 \cdot 3}{2 \cdot 4} \left(\frac{c}{a} \right)^4 P_4 - 13 \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \left(\frac{c}{a} \right)^6 P_6 + \cdots \right]
\]

73C. A dielectric sphere is surrounded by a thin circular wire of larger radius \(b \) carrying a charge \(Q \). Prove that the potential within the sphere is

\[
\frac{Q}{4\pi\varepsilon_0 \beta} \left[1 + \sum_{n=1}^{\infty} (-1)^n \frac{1 + 4n}{1 + 2n(1 + K)} \frac{1 \cdot 3 \cdot 5 \cdots (2n - 1)}{2 \cdot 4 \cdot 6 \cdots 2n} \left(\frac{r}{\beta} \right)^{2n} P_{2n} \right]
\]
74C. A conducting sphere of radius a is embedded in a dielectric (K) whose outer boundary is a concentric sphere of radius $2a$. Show that, if the system is placed in a uniform field of force F, equal quantities of positive and negative electricity are separated of amount $36\pi a^2 F K / (5K - 7)$.

75C. A spherical conductor of radius a is surrounded by a uniform dielectric K, which is bounded by a sphere of radius b having its center at a small distance γ from the center of the conductor. Prove that, if the potential of the conductor is V and there are no other conductors in the field, the surface density at a point where the radius makes an angle θ with the line of centers is, approximately,

$$
\frac{\varepsilon_K V b}{a(K - 1)a + b} \left[1 + \frac{6(K - 1)\gamma a^2 \cos \theta}{2(K - 1)a^3 + (K + 2)b^3} \right]
$$

76C. A shell of glass of inductive capacity K, which is bounded by concentric spherical surfaces of radii a, b ($a < b$), surrounds an electrified particle with charge q which is at a point Q at a small distance c from O, the center of the spheres. Show that the potential at a point P outside the shell at a distance r from Q is approximately

$$
\frac{q}{4\pi \varepsilon_0} \left[\frac{1}{r} + \frac{2c(b^2 - a^2)(K - 1)^2}{2a^2(K - 1)^2 - b^2(K + 2)(2K + 1)} \right] \cos \theta
$$

where θ is the angle which QP makes with OQ produced.

77. Show that the attraction between a sphere of radius a and relative capacity K, and a point charge q at a distance c from its center is

$$
\frac{(1 - K)q^2}{4\pi \varepsilon_0 a} \sum_{n=1}^{\infty} \frac{n(n + 1)}{1 + (K + 1)n} \left(\frac{a}{c} \right)^{2n+1}
$$

78. A conducting sphere of radius a is supported by an orthogonal conducting cone whose exterior half angle is α. Show that, if this system is charged, the potential is $A(r^n - a^{2n+1} r^{-n-1}) P_n(\cos \theta)$ where $0 < n < 1$ if $\frac{1}{\alpha} < \alpha$ and $P_n(\cos \alpha) = 0$.

79. Two conducting coaxial cones whose half angles, measured from the positive axis, are α and β intersect a conducting sphere of radius a orthogonally. If the system is charged, show that the potential outside the sphere between the cones is

$$
A(r^n - a^{2n+1} r^{-n-1})[Q_n(\cos \beta)P_n(\cos \theta) - P_n(\cos \beta)Q_n(\cos \theta)]
$$

where n is the smallest number for which

$$
Q_n(\cos \beta)P_n(\cos \alpha) - P_n(\cos \beta)Q_n(\cos \alpha) = 0
$$

80. An oblate dielectric spheroid whose surface is ξ_0 is placed in a uniform electric field E parallel to the axis $\xi = 1$. Show that the resultant field inside is uniform and that its strength is $-E / [(K - 1)\xi_0(1 + \xi_0) \cot^{-1} \xi_0 - \xi_0] - K$.

81. The spheroid of the last problem is placed in a uniform field E normal to the axis $\xi = 1$. Show that the electrical intensity inside is uniform and of magnitude

$$
2E / [2 + (K - 1)\xi_0(1 + \xi_0) \cot^{-1} \xi_0 - \xi_0]
$$

82. A prolate dielectric spheroid whose surface is η_0 is placed in a uniform electric field E parallel to the axis $\xi = 1$. Show that the resultant field inside is uniform and that its strength is $-E / [(K - 1)\eta_0(1 - \eta_0) \coth^{-1} \eta_0 + \eta_0] - K$.

83. The spheroid of the last problem is placed in a uniform field E normal to the axis $\xi = 1$. Show that the electrical intensity inside is uniform and of magnitude

$$
2E / [2 + (K - 1)\eta_0(1 - \eta_0) \coth^{-1} \eta_0 + \eta_0]]
$$
84. A spheroid of relative capacitvity K is placed in an electric field E, its axis of revolution making an angle α with the field. Show that the torque acting on it is

$$3\pi e_2 (K - 1) m^2 n E (E_1 - E_2) \sin 2\alpha$$

where n is the semiaxis in the direction of the axis of revolution and m is the semiaxis normal to it. For an oblate spheroid, E_1 and E_2 are the results of problems 80 and 81, respectively, where $\xi_0 = n (m^2 - n^2)^{-1}$. For the prolate spheroid, E_1 and E_2 are the results of problems 82 and 83, respectively, where $\eta_0 = n (n^2 - m^2)^{-1}$.

85. An earthed conducting disk of radius a whose equation is $f = \pm a$ is influenced by a point charge q at 1, ξ_0, 0. Show that the potential due to the induced charge on the disk is

$$V_i = \frac{q}{2\pi \epsilon_0 a} \sum_{n=0}^{\infty} (4n + 1) Q_{2n} (j \xi_0) Q_{2n} (j \eta) P_{2n} (\xi)$$

86. Show, using 5.275 and Green's reciprocation theorem, that the potential due to a charged ring whose equations are $\xi = \xi_0$, $\eta = \eta_0$ is

$$V_i = \frac{jQ}{4\pi \epsilon_0} \sum_{n=0}^{\infty} (2n + 1) P_n (j \xi_0) P_n (j \eta) Q_n (j \eta) P_n (\xi)$$

when $\xi < \xi_0$ and the charge on the ring is Q. Write the expression valid when $\xi > \xi_0$.

87. An earthed conducting disk of radius a is influenced by a ring carrying a charge Q whose equation is $\xi = \xi_0$, $\eta = \eta_0$. Show that the potential due to the induced charge is

$$V_i = \frac{Q}{2\pi \epsilon_0 a} \sum_{n=0}^{\infty} (4n + 1) Q_{2n} (j \xi_0) Q_{2n} (j \eta) P_{2n} (\xi)$$

88. The upper and lower halves of an oblate spheroidal shell $\xi = \xi_0$ are insulated from each other and charged to potentials $+V_o$ and $-V_o$, respectively. Show that the potential at any external point is

$$V = V_o \sum_{n=0}^{\infty} (-1)^n \frac{1 \cdot 3 \cdot \cdots \cdot (2n + 1)}{2 \cdot 4 \cdot \cdots \cdot [2(n + 1)]} (4n + 3) Q_{2n+1} (j \eta) P_{2n+1} (\xi)$$

Write down the potential for the region inside.

89. Show, by the method used in 5.274, that if the density of electric charge on a prolate spheroid $\eta = \eta_0$ is $\sigma(\xi, \phi)$ then the potential inside is

$$V = \sum_{n=0}^{\infty} \sum_{m=0}^{n} M_{mn} P_n^m (\eta) P_n^m (\xi) \cos (m(\phi - \phi_m))$$

where M_{mn} is

$$(-1)^n (2 - \delta_m^0) (2n + 1) \int_{\eta_0}^{\eta} \left[\frac{(n - m)!}{(n + m)!} \right]^2 Q_m^m (\eta) \int_{1}^{+1} \int_{0}^{2\pi} \sigma P_m^m (\xi) \cos (m(\phi - \phi_m)) h_1 h_3 d\xi d\phi$$

where $h_1 h_3$ are given by 5.28 (6) and (7). Write the analogous formula for the potential outside.
THREE-DIMENSIONAL POTENTIAL DISTRIBUTIONS

90. Using the results of the last problem, show that the potential due to a point charge \(q \) at \(\xi_0, \eta_0, \phi_0 \) is given by

\[
\frac{q}{4\pi \epsilon_0} \sum_{n=0}^{\infty} \sum_{m=0}^{n} (2-\delta_m^n)(-1)^m(2n+1) \left[\frac{(n-m)!}{(n+m)!} \right]^2 \left(P_n^{(\xi_0)}(\eta)P_n^{(\eta_0)}(\xi_0) \cos m(\phi - \phi_0) \right)
\]

when \(\eta > \eta_0 \). Write out the result when \(\eta < \eta_0 \).

91. Starting with the potential inside an earthed cylindrical box of radius \(a \) due to a point charge \(q \) on the axis and using Green's reciprocity theorem, find the potential on the axis of a ring of radius \(b \) coaxial with and inside the box. Hence, show that the potential anywhere inside the box due to this ring is

\[
\frac{q^2}{2\pi \epsilon_0^2} \sum_{k=1}^{\infty} \frac{\sinh \mu_b(L - c)}{\sinh \mu_bL} \left[\frac{J_0(\mu_b)}{J_1(\mu_b)} \right]^2
\]

where \(z < c \) and the coordinates of the bottom and top of the box and the plane of the ring are, respectively, \(z = 0, z = L \), and \(z = c \). Take \(\mu_b \) so that \(J_0(\mu_ba) = 0 \).

Show by 3.08 (2) that the force toward the bottom of the box is

\[
\frac{q^2}{2\pi \epsilon_0^2} \sum_{k=1}^{\infty} \frac{\sinh \mu_b(L - 2c)}{\sinh \mu_bL} \left[\frac{J_0(\mu_b)}{J_1(\mu_b)} \right]^2
\]

92. The walls of a conducting box are given by \(z = \pm c, \rho = a. \) The halves above and below the plane \(z = 0 \) are insulated from each other and charged to potentials \(+V_0 \) and \(-V_0 \), respectively. Show that the potential anywhere inside is given by

\[
V = \pm V_0 \left\{ 1 - 2 \sum_{k=1}^{\infty} \frac{\sinh \mu_b(c - |z|)}{\mu_b \sinh \mu_bc} \right\}
\]

where \(J_0(\mu_ba) = 0 \) and the sign is that of \(z \), and also by

\[
V = V_0 \left[\frac{z}{c} + 2 \sum_{n=1}^{\infty} \frac{I_0(n\pi b/c)}{nI_0(n\pi a/c)} \sin \left(\frac{n\pi z}{c} \right) \right]
\]

93. The walls of a conducting box, which are given by \(z = \pm c, \rho = a, \) are earthed with the exception of two disk-shaped areas at the top and bottom bounded by \(\rho = b \), which are charged to potentials \(+V_0 \) and \(-V_0 \), respectively. Show that the potential inside is given by

\[
\frac{2bV_0}{\epsilon_0} \sum_{k=1}^{\infty} \frac{\sinh \mu_b \sinh \mu_c \mu_b J_1(\mu_b) J_0(\mu_b) \mu_c J_0(\mu_c) \mu_c}{\sinh \mu_b \sinh \mu_c \mu_b J_1(\mu_c) J_0(\mu_c) \mu_c}
\]

where \(J_0(\mu_c) = 0 \), and also by

\[
\frac{2bV_0}{c} \sum_{n=1}^{\infty} \frac{(-1)^n K_0(n\pi a/c) I_0(n\pi b/c) - I_0(n\pi a/c) K_0(n\pi b/c) I_0(n\pi b/c) \sin \pi x}{I_0(n\pi a/c) I_0(n\pi b/c) \sin \pi x/c}
\]

when \(\rho > b \) and when \(\rho < b \) by

\[
\frac{V_0}{c} \left[\frac{z}{c} + 2b \sum_{n=1}^{\infty} \frac{(-1)^n K_0(n\pi a/c) I_1(n\pi b/c) + I_0(n\pi a/c) K_1(n\pi b/c) I_0(n\pi b/c) \sin \pi x}{I_0(n\pi a/c) I_0(n\pi b/c) \sin \pi x/c} \right]
\]
94. A semi-infinite conducting cylindrical shell of radius \(a \) is closed at one end by a plane conducting plate normal to its axis and at the same potential. Show that the image force on a charge \(q \) placed on the axis at a distance \(b \) from the plate is

\[
\frac{q^2}{2 \pi \varepsilon a^2} \sum_{k=1}^{\infty} \left[\frac{e^{-\mu_k b}}{J_1(\mu_k a)} \right]^2 \quad \text{where } J_0(\mu_k a) = 0
\]

95. The infinite conducting cylinder \(\rho = a \) is filled below the \(z = 0 \) plane with a dielectric of relative permittivity \(K \). There is a charge \(q \) on the axis at \(z = b \). Show that the potential above the dielectric is

\[
\frac{q}{2 \pi \varepsilon a^2} \sum_{k=1}^{\infty} \left[\frac{e^{-\mu_k |t-b|} - \frac{K-1}{K+1} e^{-\mu_k (t+b)}}{\mu_k [J_1(\mu_k a)]^2} \right]
\]

where \(J_0(\mu_k a) = 0 \). Find the potential in the dielectric.

96. The surface of a conductor is generated by rotating a circle of diameter \(a \) about one of its tangents. Show that the capacitance of the conductor is

\[
8 \pi \varepsilon a \sum_{k=1}^{\infty} [J_1(\mu_k a)]^{-1} \int_0^\infty e^{-\mu_k \alpha \sin \phi} \, d\phi
\]

where \(J_0(\mu_k a) = 0 \).

97. The conductor in the last problem is placed, uncharged, in a uniform field \(E \) parallel to its axis of rotational symmetry. Show that, in polar coordinates, the potential at any point is

\[
\frac{2 E a^2}{r} \sum_{k=1}^{\infty} e^{-\mu_k a r^{-1} \cos \alpha} J_0(\mu_k a r^{-1} \sin \theta) \frac{J_0(\mu_k a)}{[J_1(\mu_k a)]^2}
\]

where \(J_0(\mu_k a) = 0 \).

98. The conductor in the last problem is rotated to make \(E \) normal to its axis. Show that, if \(J_0(\mu_k a) = 0 \), the potential at any point is

\[
\frac{4 E a^2}{r} \sum_{k=1}^{\infty} e^{-\mu_k a r^{-1} \cos \alpha} J_1(\mu_k a r^{-1} \sin \theta) \frac{\cos \phi}{[J_1(\mu_k a)]^2}
\]

99. Show that the potential due to a ring of radius \(a \) carrying a charge \(Q \) is

\[
\frac{Q}{2 \pi \varepsilon a} \int_0^\infty K_0(ka) I_0(k \rho) \cos k z \, dk \quad \text{if } \rho < a
\]

or

\[
\frac{Q}{2 \pi \varepsilon a} \int_0^\infty I_0(ka) K_0(k \rho) \cos k z \, dk \quad \text{if } \rho > a
\]

100. A ring of radius \(a \) carrying a charge \(Q \) is coaxial with an infinite dielectric cylinder of radius \(b \). Show that the potential in the dielectric is

\[
\frac{Q}{2 \pi \varepsilon} \int_0^\infty \Psi(k) I_0(k \rho) K_0(ka) \cos k z \, dk
\]

where \(\Psi(k) = [1 + kb(K - 1)] I_0(kb) K_0(kb)]^{-1} \).
101. The earthed toroidal ring generated by rotating a circle of radius a centered at $\rho = b$ about the coplanar z-axis lies halfway between the plane $z = c$ at potential Ec and the plane $z = -c$ at $-Ec$. Observe that ring multipoles at $\rho = b$, $z = 0$, which give fields normal to the planes and zero potential halfway between them, have potentials $\partial^2 V / \partial z^2$ where V_1 is the potential of a ring dipole of strength M given by

$$\frac{M}{2\pi c^2} \sum_{n=1}^{\infty} nK_0\left(\frac{n\pi b}{c}\right) I_0\left(\frac{n\pi \rho}{c}\right) \sin \frac{n\pi z}{c}$$

or

$$\frac{M}{2\pi c^2} \sum_{n=1}^{\infty} nI_0\left(\frac{n\pi b}{c}\right) K_0\left(\frac{n\pi \rho}{c}\right) \sin \frac{n\pi z}{c}$$

according as $\rho < b$ or $\rho > b$. Hence show that a potential function that gives $V = 0$ on the ring at $2m$ lines $\rho = \rho_z$, $z = \pm z$, where $0 < s < m$ and $(\rho - b)^2 + z^2 = a^2$ is

$$V = Ez + \sum_{n=1}^{\infty} \left(A_1 n + A_2 n^3 + \cdots + A_{m} n^{2m+1} \right) K_0\left(\frac{n\pi b}{c}\right) I_0\left(\frac{n\pi \rho}{c}\right) \sin \frac{n\pi z}{c}$$

This holds if $\rho < b$. If $\rho > b$, interchange ρ and b. The coefficient A_r is given by

$$A_r = \begin{vmatrix} V_{11} & \cdots & V_{1m} \\ V_{12} & \cdots & V_{2m} \\ \vdots & \vdots & \vdots \\ V_{1m} & \cdots & V_{mm} \end{vmatrix} \begin{vmatrix} V_{11} & V_{21} & \cdots & V_{m1} \\ V_{12} & V_{22} & \cdots & V_{m2} \\ \vdots & \vdots & \vdots & \vdots \end{vmatrix}$$

$$V_{rs} = \sum_{n=1}^{\infty} n^{2r+1} K_0\left(\frac{n\pi b}{c}\right) I_0\left(\frac{n\pi \rho_z}{c}\right) \sin \frac{n\pi z}{c}$$

If $\rho_z > b$, interchange ρ_z and b. Using only A_1 fitted at $\rho = b$, $z = \pm a$ gives excellent results when $a \ll c$ and $a \ll b$. This is a typical approximate method.

102. Referring to 5.03 (3), 5.302 (7), and 5.302 (9), show that the potential due to a disk of radius a, carrying a charge Q, is

$$\frac{Q}{4\pi \epsilon_0} \int_0^{\infty} e^{-k|z|} J_0(k\rho) \frac{\sin ka}{k} \, dk$$

103. If V_0 is the potential due to an infinite plane conducting sheet having a uniform charge density σ_0 on each side, show, by referring to 5.272 and 5.302, that the potential due to the same sheet when it has a hole of radius a in it is

$$V_0 - \frac{2\sigma_0}{\pi \epsilon} \int_0^{\infty} e^{-k|z|} J_0(k\rho) \left(\frac{a \cos ka}{k} \frac{\sin ka}{k^2} \right) \, dk$$

104. A cylinder $\rho = a$ makes contact with the earthed plane $z = 0$. There is a uniform potential gradient along the cylinder which has the potential V_0 where it passes through a second earthed plane $z = c$, from which it is insulated. Show that the potential between the planes outside the cylinder is

$$V = \frac{2V_0}{\pi} \sum_{n=1}^{\infty} (-1)^{n+1} \sin \left(\frac{n\pi z}{c}\right) K_0\left(\frac{n\pi \rho}{c}\right)$$

105. The potential on the walls of a hollow ring bounded by $\rho = a$, $\rho = b$, $z = 0$, $z = c$ is given by $f_1(z), f_2(z), f_3(\rho), f_4(\rho)$, respectively. Show that the potential at any point inside is given by the superposition of four potentials, two of the type of 5.305 and two of the type of 5.36.
106. A point charge \(q \) is placed at \(z = z_0, \rho = b, \phi = \beta \). The planes \(\phi = 0 \) and \(\phi = \alpha \) and the cylinder \(\rho = a \) are at zero potential where \(0 < \beta < \alpha \) and \(0 < b < a \). Show that the potential is given by

\[
V = \frac{2q}{\varepsilon \alpha^2} \sum_{s=1}^{\infty} \sum_{r=1}^{\infty} \frac{J_{s\pi}(\mu b)}{\mu [J_{s\pi}(\mu a)]^2} \frac{e^{-\mu r}}{\alpha} \sin \frac{s \pi \rho}{\alpha} \sin \frac{s \pi \phi}{\alpha}
\]

where \(J_{s\pi}(\mu a) = 0 \).

107. A charged semi-infinite conducting sheet has an oblate spheroidal boss whose axis coincides with its edge and whose equation is \(\zeta = \zeta_0 \). Show that the potential is

\[
V = C \left\{ \frac{(1 + \zeta^2)^{\frac{3}{2}}}{(1 + \zeta^2)^{\frac{1}{2}}(1 + \zeta_0^2)^{\frac{1}{2}}} \right\} (1 - \zeta^2) \cos \frac{\pi}{2} \phi
\]

108. A solid dielectric sphere of radius \(a \) has a sector removed so that it fits the edge of an infinite conducting wedge of external angle \(\alpha \), its surface meeting the wedge faces orthogonally. If the wedge is charged, show that the potentials inside and outside the sphere are

\[
V_i = C \left[\frac{\alpha + 2\pi}{\alpha + \pi(1 + K)} (r \sin \theta)^{\alpha} \cos \frac{\pi \rho}{\alpha} \right] \frac{\pi \phi}{\alpha}
\]

\[
V_o = C \left[\frac{\pi \rho}{r^{\alpha}} - \pi(K - 1) \alpha^{\alpha} \left(a \right)^{\alpha} \left(\frac{\sin \theta}{\alpha} \right)^{\alpha} \right] \frac{\pi \phi}{\alpha}
\]

109. The conducting wedge whose faces are \(\phi = +\alpha \) and \(\phi = -\alpha \) and the conducting plane, \(z = 0 \), which intersects it orthogonally, are charged. Show that the potential in the space \(-\alpha < \phi < +\alpha \) and \(0 < z \) is given by \(C z^m \cos m \phi \), where \(m \) is the smallest number for which \(\cos m \alpha = 0 \).

110. Three orthogonal conducting surfaces, the wedge \(\phi = +\alpha \) and \(\phi = -\alpha \), the plane \(z = 0 \), and the cylinder \(\rho = a \), are charged. Show that in the space \(-\alpha < \phi < +\alpha, z > 0 \) and \(\rho > a \) the potential is given by \(C z^m - a^m \cos m \phi \), where \(m \) is the smallest number for which \(\cos m \alpha = 0 \).

111. Three orthogonal conducting surfaces, the wedge \(\phi = +\alpha \) and \(\phi = -\alpha \), the plane \(\theta = \frac{\pi}{2} \), and the sphere \(r = a \), are charged. Show that when \(-\alpha < \phi < +\alpha, z > 0 \) and \(r > a \) the potential is given by

\[
C(r_m+1 - a^m + b^m - m^2) \cos \theta \sin^m \theta \cos m \phi
\]

where \(m \) is the smallest number for which \(\cos m \alpha = 0 \).

112. A charged conducting body has a deep rectangular hole whose boundaries are given by \(x = 0, x = a, y = 0, y = b \), and \(z = 0 \). Show that, far from the opening, the potential is given by

\[
V = C \sin \frac{\pi x}{a} \sin \frac{\pi y}{b} \sin \left(\frac{a^2 + b^2 + \pi z}{ab} \right)
\]

113. The walls of an earthed rectangular conducting tube of infinite length are given by \(x = 0, x = a \) and \(y = 0, y = b \). A point charge is placed at \(x = x_0, y = y_0 \), and \(z = z_0 \) inside it. Show that the potential is given by

\[
V = \frac{2q}{\pi \varepsilon} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{(m \pi a + n \pi b)^2}{m^2 a^2 + n^2 b^2} \frac{1}{e^{ab}} \sin \frac{n \pi x_0}{a} \sin \frac{n \pi y_0}{b} \sin \frac{m \pi x}{a} \sin \frac{m \pi y}{b}
\]
114. The walls of an earthed conducting potential box are given by \(x = 0, \ y = a, \ y = b, \) and \(z = 0, \ z = c. \) A point charge \(q\) is placed at \(x_0, y_0, z_0. \) Show that the potential inside the box is given by

\[
V = \frac{4q}{ea} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\sinh A_{mn}(c - z_0) \sin A_{m} \sin \frac{n \pi x_0}{a} \sin \frac{n \pi y_0}{b} \sin \frac{m \pi y}{b}}{A_{mn} \sinh A_{m}c}
\]

where \(A_{mn} = \frac{(m^2 a^2 + n^2 b^2)^{1/2}}{ab} \) and \(z < z_0. \) If \(z > z_0, \) we interchange \(z \) and \(z_0. \) Show that the \(z \)-component of the force on the charge is

\[
F_z = -\frac{2q}{ea} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\operatorname{csch} A_{mn}c \sinh A_{mn}(c - 2z_0) \sin^2 \frac{n \pi x_0}{a} \sin^2 \frac{m \pi y_0}{b}}{\sinh A_{m}c}
\]

For \(F_z, \) substitute \(c \) for \(a, \) for \(c, \) \(z_0 \) for \(x_0 \) in \(F_z \) and \(A_{mn}. \) For \(F_y, \) substitute \(c \) for \(b, \) for \(c, \) \(y_0 \) for \(z_0 \) and \(z_0 \) for \(y_0 \) in \(F_z \) and \(A_{mn}. \)

115. Show that the potential of a dipole \(M \) parallel to the \(\theta \)-axis at \(\phi, \) is 0 is

\[
\frac{M}{4\pi \epsilon r^3} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} (2 - \delta_m^0)(m - n - 1) \frac{(n - m)!}{(n + m)!} \left(\frac{r}{b} \right)^n P_{n+1}^m(\cos \alpha) P_n^m(\cos \theta) \cos m\phi
\]

when \(r < b. \) If \(r > b, \) write \((b/r)^{n+1} \) for \((r/b)^n. \)

116. Show that the torque exerted by a sphere of radius \(a \) and relative capacitivity \(K \) at the origin on a dipole \(M \) at \(r, \) is, if the angle between \(M \) and \(r \) is \(\alpha, \)

\[
\frac{(K - 1)M^2}{4\pi \epsilon r^4} \sin \alpha \sum_{n=0}^{\infty} \sum_{m=0}^{n} (2 - \delta_m^0) n(m - n - 1) \frac{(n - m)!}{(n + m)!} \left(\frac{a}{r} \right)^{2n+1} \langle n+1 \rangle_{P_n^m} + (n - m + 1) \langle n+1 \rangle_{P_n^m} P_{n+1}^m
\]

where the Legendre function argument \(\cos \alpha \) is omitted. Show that the force is

\[
\frac{(K - 1)M^2 \cos \alpha}{4\pi \epsilon r^4} \sum_{n=0}^{\infty} \sum_{m=0}^{n} (2 - \delta_m^0) n(n+1)(n+2)(m-n-1)(n+m)! \frac{a}{r} \left(\frac{1}{nK + n + 1} + \frac{1}{nK + n + 1} \right) P_{n+1}^m P_n^m
\]

117. Rotate the transformation of Art. 4.13 about the \(z \)-axis letting \(u_1 = U \) and \(u_2 = V \) and set up 5.11 (6) for this case. Substitute \(\cosh u_1 - \cos u_2 \) \(U_1(u_1) U_2(u_2) \) for \(U \) in 5.11 (6) and show that the differential equations for \(U_2 \) and \(U_1 \) are

\[
\frac{d^2 U_2}{du_2^2} = -n^2 U_2, \quad \frac{d^2 U_1}{du_1^2} + \coth u_1 \frac{dU_1}{du_1} - \left(n^2 - \frac{1}{4} + \frac{m^2}{\sinh^2 u_1} \right) U_1 = 0
\]

The latter is identical with 5.23 (3) if \(n - \frac{1}{2} \) is written for \(n \) and \(\cosh u_1 \) for \(\mu. \)

118. The torus generated by the circle of radius \(b \) given by \(u_1 = u_0 \) in the last problem is charged to a potential \(V_0. \) Show that the potential outside it is

\[
2V_0(\cosh u_1 - \cos u_2) \sum_{n=0}^{\infty} \frac{(-2)^n(2n + 1)P_{n+1}^0(\cosh u_0)P_{n+1}^0(\cosh u_1)}{(2n + 1)!!(\sinh u_0)P_{n+1}^0(\sinh u_0)} \cos nu_2
\]

where \(\cosh u_0 = c/b, \) \(c \) being the distance from the center of \(u_0, \) to the line \(u_1 = 0. \)
PROBLEMS

119. Find the total charge on the torus of the last problem by comparing the potential at \(u_1 = 0, u_2 = 0 \) with \(1/(4\pi r) \) and thus show that its capacitance is

\[
8\pi e^{2b}(\sinh u_0)^{1/2} \sum_{n=0}^{\infty} \frac{(-2)^n(2n+1)P_n(c\coth u_0)}{(2n+1)!!P_{n-1}(c\coth u_0)}
\]

120. The torus of the last problem lies in a uniform field \(E \) parallel to its axis of rotational symmetry. Show that the potential of the field is

\[
V = Ex + (\cosh u_1 - \cos u_2)^{1/2} \sum_{n=1}^{\infty} A_n P_n(c\coth u_0) \sin nu_2
\]

where, if \(a \) is defined by 4.13 (3), \(U = u_0, \)

\[
A_n = \frac{4(2n+1)(-2)^n a E_n P_n(c\coth u_0)}{(2n+1)!!(\sinh u_0)^{1/2} P_{n-1}(c\coth u_0)}
\]

121. The torus of problem 118 is placed in a uniform electric field \(E \) normal to its axis of rotational symmetry. Show that the potential outside it is

\[
E \cos \phi + (\cosh u_1 - \cos u_2)^{1/2} \sum_{n=0}^{\infty} A_n P_n(c\coth u_0) \cos nu_2
\]

where

\[
A_n = -\frac{(2n-1)(2n+1)(-2)^n b\sinh u_0^{1/2} P_{n+1}(c\coth u_0)}{(2n+1)!!(\sinh u_0)^{1/2} P_{n-1}(c\coth u_0)}
\]

122. Rotate the transformation of 4.13 about the \(y \)-axis letting \(u_1 = U \) and \(u_2 = V \), and set up 5.11 (6) for this case. Substitute \((\cosh u_1 - \cos u_2)^{1/2} U_1(u_1) U_2(u_2) \) for \(U \) in 5.11 (6) and show that the differential equations for \(U_2 \) and \(U_1 \) are

\[
d^2U_1 = \left(n + \frac{1}{2} \right)^2 U_1, \quad d^2U_2 + \cot u_2 \frac{dU_2}{du_2} + \left[n(n+1) - \frac{m^2}{\sin^2 u_2} \right] U_2 = 0
\]

The latter is identical with 5.14 (2) with \(u_2 \) in place of \(\theta \).

123. The two spheres \(u_1 = u_0 \) and \(u_1 = -u_0 \) of radius \(b \) generated in the last problem are aligned with a uniform field of potential \(Ez \) so that their potentials are \(V_0 \) and \(-V_0 \), respectively. Show that the potential outside them is

\[
Ez + (\cosh u_1 - \cos u_2)^{1/2} \sum_{n=0}^{\infty} A_n \sinh (n + \frac{1}{2}) u_1 P_n(\cos u_2)
\]

\[
A_n = 2[1/(V_0 - (2n+1)Eb \sinh u_0)(e^{(2n+1)u_0} - 1)]^{-1}
\]

where \(\cosh u_0 \) is \(c/b, c \) being the distance between the centers of the spheres.

124. If the spheres in the last problem are uncharged, show that

\[
V_0 = Eb \sinh u_0 \sum_{n=0}^{\infty} \frac{2n+1}{e^{(2n+1)u_0} - 1} \left[\sum_{n=0}^{\infty} \frac{1}{e^{(2n+1)u_0} - 1} \right]^{-1}
\]
125. Show that the force between the spheres in the last problem is

\[F = \frac{\pi \varepsilon}{2} \sum_{n=0}^{\infty} [(2n + 1)A_n - 2(n + 1)A_{n+1}]A_n \]

where \(A_n \) is found by substitution of \(V_0 \) from problem 124 into \(A_n \) in problem 123.

126. The potential on the surface of a sphere of radius \(a \) due to external sources is \(f(\theta) \), where \(\theta \) is the polar angle. Show by expanding as in 5.156 and summing the harmonic series under the integral by comparison with 5.16 that, when \(r < a \),

\[V(r, \theta) = \frac{a^2}{\pi} \frac{\partial}{\partial r} \int_{-x}^{+x} \int_{0}^{\pi} \frac{r^2 f(\alpha) \sin \alpha \, d\alpha \, d\phi}{[a^2 + r^2 - 2ar(\cos \alpha \cos \theta + \sin \alpha \sin \theta \cos \phi)]^\frac{3}{2}} \]

References

The author has found the following books useful in preparing this chapter:

A. Electrical

B. Mathematical

British Association: "Bessel Functions, Part I," Cambridge, 1937. Very extensive numerical tables of \(J_0, J_1, Y_0, Y_1, I_0, I_1, K_0, \) and \(K_1 \).
PROBLEMS

Carslaw, H. S.: "Mathematical Theory of the Conduction of Heat in Solids," Macmillan, 1921. This book includes applications of Bessel functions and spherical harmonics to many problems in the conduction of heat that are identical, as regards boundary conditions, with problems in electricity.

Harvard University Computation Laboratory: "Tables of Bessel Functions of the First Kind of Orders 0 to 78," Harvard University Press, 1946 to 1950. Eleven volumes.

Heine, E.: "Anwendungen der Kugelfunctionen," Berlin, 1881. Gives theory and applications of spherical and ellipsoidal harmonics and Bessel functions to potential theory. The notation is somewhat different from that now used, and it is necessary to check the results.

Jahnke-Emde: "Tables of Functions," Dover, 1943. Includes formulas, extensive numerical tables, and useful graphs with explanations in both English and German.

Magnus, W., and F. Oberhettinger: "Formulas and Theorems for the Special Functions of Mathematical Physics," Chelsea, 1949. This is by far the best collection of formulas for the special functions of this chapter.

CHAPTER VI

ELECTRIC CURRENT

6.00. Electric Current Density. Equation of Continuity.—If we touch two conductors A and B, charged to potentials V_A and V_B, respectively, to two points in a third conducting body, we have seen in 1.00 that electric charge flows from one to the other until the potential of A equals that of B. We observe two phenomena associated with this transfer; one is the heating of the conductor and the other is the existence of a magnetic field in the neighborhood, while the flow is taking place. The second phenomenon will be considered in the next chapter. The rate of transfer of electric charge between A and B at any instant is called the electric current, which is therefore defined, in any system of units, by

$$I = \frac{dQ}{dt}$$

(1)

When Q is measured in coulombs and t in seconds, I is measured in amperes. If, by some mechanical electrostatic means, such as a moving insulated belt, we transfer, continuously, a charge from the point of contact of B to that of A at such a rate that the difference of potential $V_A - V_B$ is kept constant and at the same time cool the conductor so that its temperature has a fixed value, we find that the current and the magnetic field remain constant. The latter, therefore, need not enter into our considerations of steady currents. Electric current, at any point, is evidently a directed quantity. If, at the point P in a conducting medium, we take an element of area dS, which is normal to the direction of the electric current at P, and if the current flowing through this element of area is dI, then we define the current density at P to be

$$i = \frac{dI}{dS}$$

(2)

When a steady current flows, the amount of electricity entering any element of volume must equal that leaving it. Thus, the surface integral of the normal component of the current density over this elementary volume is zero. This gives, by Gauss’s theorem, 3.00 (2),

$$\int_S \mathbf{i} \cdot \mathbf{n} \, dS = \int_V \nabla \cdot \mathbf{i} \, dv = 0$$

Since this holds for all volume elements

$$\nabla \cdot \mathbf{i} = \text{div } \mathbf{i} = 0$$

(3)
This is known as the equation of continuity, and a vector which satisfies this equation everywhere is said to be solenoidal.

6.01. Electromotance.—In the experiment considered, the belt is an agent, known as an electromotance, which exerts a mechanical force on the electric charges carried by it just sufficient to overcome the electrostatic forces between A and B. The work in joules which the belt does in moving 1 coulomb of positive charge from B to A, after eliminating friction losses in the driving mechanism, etc., measures the magnitude, \(\mathcal{E} \), of the electromotance in volts. If the force driving the belt is increased, it will accelerate until the additional charge conveyed increases \(V_A - V_B \) so that the electrostatic forces on the charged belt just balance the driving force. If the contact between A and B is broken, the belt stops, since it cannot drive against increased electrostatic forces, and work against belt friction ceases, so that the electromotance \(\mathcal{E} \) exactly equals \(V_A - V_B \).

In order to maintain an electric current, at ordinary temperatures, it is necessary to have some source of electromotance in the circuit. In the present case, the location of the electromotance is perfectly clear. It is distributed along the belt between A and B. In chemical sources of electromotance, such as storage batteries and primary cells, it is located at the surfaces of the electrodes. In thermocouples, it lies in the interface between the members. When a whole metallic circuit is placed in a varying magnetic field, the induced electromotance, discussed in Chap. VIII, may be distributed over all the elements of the circuit. When a dynamo supplies power to a circuit, the electromotance is spread over its coils. In all these cases, if the circuit is opened and the difference of potential across the opening is measured by some device drawing no current, such as an electrostatic instrument or a potentiometer which is screened from induced effects, the result equals the sum of the electromotances around the circuit.

We usually define the electromotance around any given path in a different way. We defined the electrostatic field intensity at a point as the force acting on a stationary unit positive charge placed there. The nature of the force was not specified, except that it was taken proportional to the charge. As we shall see in subsequent sections, this measurement is not affected by the electrical resistance of the medium, as the latter, like viscous friction, acts on moving bodies only. Thus, if we examine the force acting on a charge on the belt, we find it to be zero, since the mechanical and electrostatic forces balance. In the part of the circuit where the current is flowing, only the electrostatic forces are present. Thus the line integral of \(E \) around the circuit just equals the potential difference between A and B, which, as we have seen, equals \(\mathcal{E} \). Thus we find

\[
\mathcal{E} = \oint E \cdot ds
\]
ELECTRIC CURRENT §6.02

which defines the electromotance around the path of integration. It is sometimes instructive to consider the electric field intensity \(E \), as made up of two parts, viz., the electrostatic part \(E' \), which can be derived from a scalar potential, and for which the line integral around any closed path vanishes; and a part \(E'' \) due to the electromotance, which is solenoidal in nature and does not necessarily vanish when integrated around a closed path. The intensity \(E'' \) helps to visualize the case of a distributed electromotance but is not so satisfactory when the electromotance is located in a surface layer, since, in the latter case, it is infinite in these layers and zero everywhere else. The value of the integral of \(E'' \) will be different around different paths. This is illustrated, in the example given, by the fact that if the path is chosen entirely on the belt or entirely off it the integral is zero.

In many cases, it is possible to place barriers in the path of integration so as to exclude the sources of electromotance, such as the belt in the example given. The line integral of \(E \) over all permitted closed paths is then zero so that we can use a scalar potential throughout this region. Even when the electromotance is distributed, a barrier may exist such that, for permitted paths, the integral of (1) is zero. In this case, we are unable to distinguish between \(E' \) and \(E'' \) and can use the terms electromotance and potential interchangeably. This is the sense in which \(\mathcal{E} \) appears in the next article except in Eq. (4). We may write, in this case,

\[
E = -\nabla V = \nabla \mathcal{E} \quad (2)
\]

6.02. Ohm’s Law. Resistivity.—If, in the experiment of 6.00, all physical conditions, such as temperature and working efficiency, are kept constant and the electromotance is increased we find that when equilibrium is reached the current has increased in the same ratio. This is Ohm’s law. For a perfectly efficient machine the ratio of the electromotance between \(A \) and \(B \) to the current flowing is called the electrical resistance \(R_{AB} \) between these two points, and so we have

\[
R_{AB} = \frac{V_A - V_B}{I_{AB}} = \frac{\mathcal{E}_{AB}}{I_{AB}} \quad (1)
\]

Let us consider an elementary cylinder at the point \(P \) in a conducting medium whose ends, of area \(dS \), are normal to the direction of the current at \(P \) and whose walls, of length \(ds \), are parallel to it. The electromotance between the ends is then \((\partial \mathcal{E}/\partial s) \, ds = \nabla \mathcal{E} \cdot ds \), and the current flowing through them is \(i \, ds \). Assuming that Ohm’s law applies to this cylinder, we may write (1) in the form

\[
R_{P} = \frac{\nabla \mathcal{E} \cdot ds}{i \, ds} = \frac{|\nabla \mathcal{E}| \cos \alpha \, ds}{i \, ds}
\]

where \(\alpha \) is the angle between \(\nabla \mathcal{E} \) and \(ds \). If we take \(ds \) numerically
equal to dS, we write τ for R_P and call it the resistivity or specific resistance of the medium at the point P. Thus

$$\tau = \frac{\nabla \mathcal{E}}{i} \cos \alpha \tag{2}$$

If τ is to be independent of the direction of the current, then $\alpha = 0$ so that the potential gradient and the current must be in the same direction. In this case, we say the conductor is isotropic. The conductivity γ is defined as the reciprocal of the resistivity τ, so that for an isotropic medium (2) becomes

$$i = \frac{\nabla \mathcal{E}}{\tau} = \gamma \nabla \mathcal{E} \tag{3}$$

For a closed path in a conducting medium, we have from (3) and 6.01 (1)

$$\oint i \cdot ds = \gamma \mathcal{E} \tag{4}$$

6.03. Heating Effect of Electric Current.—We mentioned in 6.00 that the passage of an electric current heats a conductor. To keep the temperature of the conductor constant, we must remove this heat by some cooling device. If no changes are taking place in the conductor, then the energy which we thus obtain must enter the system in some way. Evidently, we do mechanical work against electrostatic forces in carrying the charges from B to A on our insulating belt. From the definition of potential, this work is $W = Q(V_A - V_B)$, so that the power supplied is

$$P = \frac{dW}{dt} = (V_A - V_B)\left(\frac{dQ}{dt}\right) = (V_A - V_B)I_{AB} \tag{1}$$

Substituting from 6.02 (1), we have

$$P = I_{AB}^2 R_{AB} \tag{2}$$

If I, V, and R are all in esu or if they are all in absolute emu, then P is in ergs per second. If I is in amperes, V in volts, and R in ohms, which is the practical mks system of units, then P is in watts. A complete table of these units appears in the Appendix. The heat that is generated in this manner is called Joule heat.

6.04. Linear Conductors. Kirchhoff's Laws. Conductors in Series and Parallel.—We shall now consider the distribution of current in a system of conductors whose cross section is sufficiently small compared with their lengths so that the variation of potential over the region where two or more make contact is negligible compared with the potential differences between junctions. We call such a system a network of linear conductors. The current density is no longer significant; so the term current will be used to designate the total current passing any cross section of the conductor. The two very important rules known as Kirchhoff's laws follow from 6.00 and 6.01. If we apply the equation
of continuity to any junction in a network and consider all currents going into the junction as positive and those leaving as negative, we have the first law.

1. The algebraic sum of the currents entering a junction is zero.

From the definition of electromotance in 6.01 and from Ohm’s law, it follows that, if we pass from junction to junction along conductors in a network until we return to our starting point and consider currents in the direction of our path positive and opposite currents negative and sources of electromotance trying to drive current with the path positive and those opposed negative, we have

2. The algebraic sum of the IR products along any closed path in a network equals the algebraic sum of the electromotance sources in the path.

When a number \(n \) of conductors are connected in such a way that current passes through them in succession, they are said to be connected in series. From Ohm’s law, the potential difference between the ends will be

\[
IR_1 + IR_2 + \cdots + IR_n
\]

but if the whole group are to be considered as a single conductor of resistance \(R \), it will be \(IR \). Equating, we have

\[
R = R_1 + R_2 + \cdots + R_n
\] (1)

Thus, when a new conductor is formed by connecting a number of conductors in series, its resistance equals the sum of the resistances of the constituent conductors.

When several conductors are connected in such a way that the current entering the system divides between them, no part of it passing through more than one of them, the conductors are said to be connected in parallel. In this case, the potential across each conductor is the same and equal to

\[
I_1R_1 = I_2R_2 = \cdots = I_nR_n
\]

If \(I \) is the total current and \(R \) the effective resistance of the network, then this equals \(IR \). The current carried by conductor \(R_s \) is, therefore,

\[
I_s = \frac{R}{R_s}I
\] (2)

Putting the sum of these currents equal to \(I \) and dividing through by \(IR \), we have

\[
\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots + \frac{1}{R_n}
\] (3)

Thus, when a new conductor is formed by connecting a number of conductors in parallel, the reciprocal of its resistance equals the sum of the reciprocals of the resistances of the constituent conductors.
6.05. Solution of Networks. Circulating Currents. Wheatstone Bridge.—The usual problem encountered in resistance networks is: given the resistances of all the branches and the magnitude and direction of all the applied electromotances, find the current in any branch. It is sometimes possible to break up a network into series and parallel groups and solve by the formulas of the last article. The general solution of this problem can be obtained by designating the current in each branch by a separate symbol, writing down Kirchhoff's first law for each of the \(q \) junctions, giving \(q \) equations, and then writing down Kirchhoff's second law for \(n \) independent circuits giving \(n \) equations. Thus we have \(n + q \) equations to solve for the \(n + q \) currents. We can greatly reduce the labor involved by the use of what are known as circulating currents, which automatically satisfy the first law and give us only \(n \) equations to solve simultaneously. The current in any branch may then be written down as a sum of these circulating currents. Let us take as an example the network shown in Fig. 6.05, which is called a Wheatstone bridge and is frequently used to compare the value of an unknown resistance with that of a known one. The "external" circuit contains a source of electromotance \(\mathcal{E} \), and the resistance of this branch is \(r \). We may choose the circulating currents in many ways. Any choice that permits a different current in each branch is satisfactory. Choosing them as shown and writing down Kirchhoff's second law for the circuits \(DBA \), \(BCD \), and \(ABC \mathcal{E} \) give

\[
\begin{align*}
 i_1R_g - i_2(R_1 + R_2) + IR_3 &= 0 \quad (1) \\
 i_1(R_g + R_2 + R_4) + i_2(R_2 + R_4) - IR_4 &= 0 \quad (2) \\
 i_1R_2 + i_2(R_1 + R_2) + Ir &= \mathcal{E} \quad (3)
\end{align*}
\]

If we wish any current \(i_1 \), for example, in terms of any other, say \(I \), we need only two of these equations. Thus, from (1) and (2), we have

\[
i_1 = \frac{R_1R_4 - R_2R_3}{R_g(R_1 + R_2 + R_3 + R_4) + (R_1 + R_3)(R_2 + R_4)}I
\]

If, however, we are given only the electromotance and all the resist-
ances we must solve (1), (2), and (3) simultaneously for the desired current. This is easily done by determinants, giving for i_1

$$
\frac{(R_4 - R_2 R_3) \varepsilon}{[R_2 (R_1 + R_2) (R_3 + R_4) + R_2 r (R_1 + R_2 + R_3 + R_4) + r (R_1 + R_3) + (R_2 + R_4) + R_1 R_2 R_3 + R_2 R_3 R_4 + R_3 R_4 R_1 + R_4 R_1 R_2]}
$$

The current in any other branch is the algebraic sum of the circulating currents in that branch. In BC, for example, the current is $i_1 + i_2$. In using this network, one of the resistances R_1, R_2, R_3, and R_4 is the unknown and the other three, at least one of which is adjustable, are known. This one is adjusted until i_1 is zero as indicated by a current measuring device, such as a galvanometer, which replaces R_g. We then see that $R_1 R_4 = R_2 R_3$, enabling us to compute the value of the unknown resistance.

6.06. Network with Repeating Members.—It sometimes happens that we have a network that can be broken up into a large number of identical parts, the relation of each part to the preceding and following part being the same. In this case, instead of setting up a large number of equations to be solved simultaneously, we may formulate this relationship in a difference equation that can be solved and fitted to the terminal conditions. As an example of this method, let us suppose that the current for a load of resistance R is carried from the generator to the load by a single wire with an earth return. The wire is supported by n equally spaced identical insulators. The resistances of the sections of the wire between the generator and the first insulator, between two adjacent insulators, and between the last insulator and the load are ρ. The resistance of the earth return is negligible. In dry weather, when the insulators are perfect, the current supplied by the generator is I_1, but in wet weather it is necessary to supply a current I_2 for the same results. Assuming the leakage of all insulators is the same, we wish to find the resistance of each.

To solve this problem, let us draw the diagram shown in Fig. 6.06, numbering the insulators from 1 to n and drawing the circulating currents as shown. Writing Kirchhoff’s law for the loop s, we have

$$
i_{s-1}r - i_s(2r + \rho) + i_{s+1}r = 0
$$
or

\[i_{s-1} + i_{s+1} = \left(2 + \frac{\rho}{r} \right) i_s \]

(1)

From Dw 651.03, we see that a solution of (1) is

\[i_s = A \cosh s\theta + B \sinh s\theta \]

(2)

if we choose \(\cosh \theta = 1 + \frac{1}{2}\rho/r \) or

\[r = \frac{\rho}{2(\cosh \theta - 1)} = \frac{\rho}{4 \sinh^2 \frac{1}{2}\theta} \]

(3)

To determine \(A \) and \(B \), we notice that in the first loop

\[I_2 = i_1 = A \cosh \theta + B \sinh \theta \]

and that, in loop \(n + 1 \), \(I_1 = A \cosh (n + 1) \theta + B \sinh (n + 1)\theta \).

Solving these equations for \(A \) and \(B \) gives

\[A = \frac{I_2 \sinh (n + 1)\theta - I_1 \sinh \theta}{\sinh n\theta} \]

\[B = \frac{-I_2 \cosh (n + 1)\theta + I_1 \cosh \theta}{\sinh n\theta} \]

Substituting in (2) gives

\[i_s = \frac{I_2 \sinh (n - s + 1)\theta + I_1 \sinh (s - 1)\theta}{\sinh n\theta} \]

(4)

Around the last loop, we have

\[I_1 \left(1 + \frac{\rho + R}{r} \right) = i_n \]

Substituting for \(r \) from (3) and for \(i_n \) from (4) and simplifying give

\[2I_1R \sinh n\theta \sinh \frac{1}{2}\theta + \rho I_1 \cosh \left[\frac{1}{2}(2n + 1)\theta \right] - \rho I_2 \cosh \frac{1}{2}\theta = 0 \]

(5)

We can solve this equation numerically for \(\theta \) by plotting the left side as a function of \(\theta \) and finding the point where it intersects the \(\theta \)-axis. Putting this value of \(\theta \) in (3) gives \(r \). If the line resistance is small compared with the insulator resistance, then \(4 \sinh^2 \frac{1}{2}\theta \to \theta^2 \) so that \(n\theta \to n(\rho/r)^4 \).

If this is small, we may write, by Dw 657.2 or Pc 791, \(\cosh x = 1 + \frac{1}{2}x^2 \) and \(\sinh x = x \). Solving for \(\theta^2 \) gives

\[\theta^2 = \frac{8\rho(I_2 - I_1)}{8nRI_1 + \rho[I_1(2n + 1)^2 - I_2]} \]

Since \(I_1 - I_2 \) is small compared with \(I_1 \), we neglect this in the denominator; and since, from (3), \(r = \rho \theta^{-2} \), we have

\[r = \frac{n(2R + (n + 1)\rho I_1)}{2(I_2 - I_1)} = \frac{n(2R + R_1)I_1}{2(I_2 - I_1)} \]

(6)

where \(R_1 \) is the resistance of the line alone.
6.07. Line with Continuous Leak.—We can easily pass from the case of isolated insulators to that of continuous insulation. The distance between insulators is infinitesimal so that, if T is the resistance per unit length, along the line, $\rho = T \, dx$ and, if S is the leakage resistance of unit length, then $S = \frac{r}{dx}$. Also, we have

\[
(i_{s+1} - i_s) - (i_s - i_{s-1}) = \left[\left(\frac{di}{dx} \right)_{x+dx} - \left(\frac{di}{dx} \right)_{x} \right] \, dx = \frac{d^2i}{dx^2} \, dx^2 = \left(\frac{\rho}{r} \right) i_s = \left(\frac{T}{S} \right) i \, dx^2
\]

The difference equation 6.06 (1) now becomes the differential equation

\[
\frac{d^2i}{dx^2} = \left(\frac{T}{S} \right) i
\]

Integrating this equation gives

\[
i = A \cosh \left(\frac{T}{S} \right) x - B \sinh \left(\frac{T}{S} \right) x
\]

Taking the boundary conditions as before to be $i = I_2$ when $x = 0$ and $i = I_1$ when $x = L$, we have

\[
i = \left\{ I_2 \sinh \left[\left(\frac{T}{S} \right) (L - x) \right] + I_1 \sinh \left[\left(\frac{T}{S} \right) x \right] \right\} \bigg/ \sinh \left[\left(\frac{T}{S} \right) L \right] \quad (2)
\]

This corresponds to 6.06 (4) and gives the current at any point in the line. The potential across the insulation at any point in the line is $-S \, di/dx$ by Ohm’s law since the current leaking out between x and $x + dx$ is $-(di/dx) \, dx$ and the resistance through which it leaks is S/dx.

Let us assume, as before, that the insulation is perfect when the cable is dry but that, when the cable is wet, we must send in a current I_2 to get out the current I_1. We wish, from these data, to determine S. If R is the resistance of the load, then the potential at that end of the line is $I_1R = -S(di/dx)_{x=L}$. Putting in the value of di/dx from (2) gives

\[
i_1R \sinh \left[\left(\frac{T}{S} \right) L \right] + (TS)I_1 \cosh \left[\left(\frac{T}{S} \right) L \right] - (TS)I_2 = 0 \quad (3)
\]

This corresponds to 6.06 (5) and may be solved graphically for S in the same way. If S is large compared with T, we may make the same approximations as in 6.06 (6) and obtain

\[
S = \frac{(2R + LT)LI_1}{2(I_2 - I_1)} = \frac{(2R + R_1)LI_1}{2(I_2 - I_1)} \quad (4)
\]

This corresponds to 6.06 (6) and shows that this leakage is equivalent to a single leak of resistance S/L at the center of the line.
§6.08. General Network.—We have seen in 6.05 that it is possible to choose suitable circulating currents in a network in many ways, but that such currents must be independent and must permit a different current in each branch of the network. If the number of junctions in the network is \(q \) and the number of branches is \(p \), then the total number of independent circulating currents \(n \), which may be drawn, is given by

\[
n = p - q + 1 \tag{1}
\]

In the Wheatstone bridge, 6.05, \(p = 6, q = 4 \) and \(n = 3 \). The resistance of any branch of a network traversed by \(i_p \) only is written \(R_p \) and that of a branch traversed by two or more currents is written \(R_{pq} \) where \(i_p \) and \(i_q \) are two of these currents. The sum of the resistances of all the branches traversed by \(i_p \) is written \(R_{pp} \), so that if none has more than two currents

\[
R_{pp} = R_p + R_{p1} + \cdots + R_{pn} \tag{2}
\]

If any current \(i_s \) nowhere follows a branch traversed by \(i_p \), then terms with the subscript \(s \) will not appear in (2).

Choosing independent circulating currents and using the notation already set up, we may write down Kirchhoff’s laws for the \(n \) independent circuits in a network in the form

\[
\begin{align*}
R_{11}i_1 & \pm R_{12}i_2 \pm R_{13}i_3 \pm \cdots \pm R_{1n}i_n = \pm \mathcal{E}_1, \\
\pm R_{21}i_1 & + R_{22}i_2 \pm R_{23}i_3 \pm \cdots \pm R_{2n}i_n = \pm \mathcal{E}_2, \\
\vdots & \vdots \\
\pm R_{n1}i_1 & \pm R_{n2}i_2 \pm R_{n3}i_3 \pm \cdots + R_{nn}i_n = \pm \mathcal{E}_n \\
\end{align*} \tag{3}
\]

\(R_{pp} \) is always taken positive in these equations; and, in the equation where \(R_{pp} \) occurs, \(R_{pq} \) is to be taken positive when \(i_p \) and \(i_q \) traverse their common branch in the same direction and negative when they do not. The sign before \(\mathcal{E}_p \) is plus if it aids \(i_p \) and minus if it opposes \(i_p \). If the two currents \(i_j \) and \(i_k \) nowhere follow the same branch, then the \(R_{jk} \) term is missing in these equations, so we may write zero in place of \(R_{jk} \). We notice by definition that

\[
R_{pq} = R_{qp} \tag{4}
\]

We may always draw our currents in such a way that only one flows in each of the two branches we wish to investigate, provided that they have no common junction, although this will necessitate, in general, three or more currents in some other branch or branches. When so drawn let us write \(\Delta_{pq} \) for the cofactor of \(R_{pq} \) in the determinant

\[
\Delta = \begin{vmatrix}
R_{11} & \cdots & \pm R_{1q} & \cdots & \pm R_{1n} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\pm R_{p1} & \cdots & \pm R_{pq} & \cdots & \pm R_{pn} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\pm R_{n1} & \cdots & \pm R_{nq} & \cdots & \pm R_{nn}
\end{vmatrix} \tag{5}
\]
Then we notice that, because of (4),

\[\Delta_{pq} = \Delta_{qp} \]

We now solve (3) for the current \(i_q \) in one branch when the only source of electromotance \(\mathcal{E}_q \) lies in a branch traversed only by \(i_p \), and vice versa. Thus, we obtain

\[i_q = \frac{\mathcal{E}_r \Delta_{pq}}{\Delta} \quad \text{and} \quad i_p = \frac{\mathcal{E}_r \Delta_{pq}}{\Delta} \]

From (6) and (7), we have the important reciprocal relation that; if \(\mathcal{E}_p = \mathcal{E}_q \) then \(i_p = i_q \). In other words, the current produced in one branch of a network by inserting a source of electromotance in a second branch equals the current produced in the second branch when the same electromotance is inserted in the first.

If \(\mathcal{E} \) is placed in the \(r \)th circuit, we have, in place of (7),

\[i_q = \frac{\mathcal{E}_r \Delta_{rq}}{\Delta} \quad \text{and} \quad i_p = \frac{\mathcal{E}_r \Delta_{rp}}{\Delta} \]

and taking the ratios, we have

\[\frac{i_q}{i_p} = \frac{\Delta_{rq}}{\Delta_{rp}} \]

This enables us to get the ratio of any two currents in terms of the network resistances.

We shall now prove Thévenin's theorem, which is sometimes useful in dealing with networks. This theorem states that if the open circuit potential across two terminals \(A \) and \(B \) of a network is \(V_o \) and if, when \(A \) and \(B \) are short-circuited, a current \(I \) flows, then the resistance of the network, measured between \(A \) and \(B \), after all electromotance sources are removed without altering the resistances, is \(R = V_o/I \). Thus the terminals \(A \) and \(B \) may be connected into any other network with the same result as if they belonged to a battery having an electromotance \(V_o \) and internal resistance \(R \). To prove this theorem, let us suppose a very large resistance \(R_p \) connected between \(A \) and \(B \). Then terms in (5) which do not contain \(R_p \) are negligible compared with those which do, so that, referring to (2), as \(R_p \to \infty \) we have \(\Delta \to R_p \Delta_{pp} \). The potential across \(AB \) due to all electromotances in the network is given by (7) to be

\[R_p \Delta_{pp} = \frac{R_p}{\Delta} \sum \mathcal{E}_q \Delta_{pq} \to V_o = \frac{1}{\Delta_{pp}} \sum \mathcal{E}_q \Delta_{pq} \]

If we short-circuit \(AB \), we have, combining this equation with (7),

\[I = \frac{1}{\Delta} \sum \mathcal{E}_q \Delta_{pq} = \frac{V_o}{\Delta} \Delta_{pp} \]
Combining this equation with the expression for the resistance of the network between \(A \) and \(B \) obtained from (7), we have

\[
R = \frac{E_p}{i_p} = \frac{\Delta}{\Delta_{pp}} = \frac{V}{I}
\]

This proves the theorem.

There is one type of network, of great practical importance, in which it is possible to draw the circulating currents to satisfy the following conditions: \textit{viz.}, that at least one branch is traversed by only one current, that in branches in which only two currents circulate these are oppositely directed, and that not more than two currents traverse any one branch.

In this case, all the terms in (5) and on the left side of (3) of the form \(R_{pp} \) are positive and all of the form \(R_{pq} \) are negative. We are free to number our currents in any order we please so that we can always arrange to solve for \(i_1 \) and to have the currents \(i_2 \) and \(i_3 \) traverse the branch in which \(E \) is placed. On the right side of (3), we write \(-E_{23}\) for \(E_2 \) and \(+E_{23}\) for \(E_3 \) and 0 for \(E_p \) when \(p \neq 2 \) or 3. In place of (7), we then have

\[
i_1 = \frac{\Delta_{23}E_2 + \Delta_{31}E_3}{\Delta}
\]

Since these two determinants differ only in the second row, their sum is obtained by adding to each term in this row, in one of them, the corresponding term in the other so that the second row now becomes

\[-R_{32} + R_{22} + R_{33} - R_{23} - R_{34} - R_{24}, \ldots, -R_{3n} - R_{2n}\]

The value of a determinant is not changed by adding to every term of a given row the corresponding term in another specified row. We can therefore replace the second row by the sum of all the rows so that the final expression becomes, by virtue of (2) and (4),

\[
i_1 = \begin{vmatrix} -R_{12} - R_{13} - R_{14} \cdots - R_{1n} \\ +R_2 + R_3 + R_4 \cdots + R_n \\ -R_{42} - R_{43} + R_{44} \cdots - R_{4n} \\ \vdots \vdots \vdots \vdots \\ -R_{n2} - R_{n3} - R_{n4} \cdots + R_{nn} \end{vmatrix} \frac{E_{23}}{\Delta}
\]

If we designate this determinant by \(\Delta_{123} \), the equation analogous to (7) for this arrangement is

\[
i_1 = \frac{\Delta_{123}E_{23}}{\Delta} \quad \text{and} \quad i_{23} = \frac{\Delta_{123}E_1}{\Delta}
\]
These are usually more convenient for computation than (7) since the signs are already taken care of in arranging the currents.

6.09. Conjugate Conductors. Kelvin Double Bridge.—Two conductors in a network are said to be conjugate if a source of electromotance when placed in one produces no current in the other, and vice versa. If the conductors in question are R_p and R_q, the condition that they will be conjugate is, from 6.08 (7),

$$\Delta_{pq} = 0$$

(1)

If the circulating currents can be drawn so that (9) applies, then the condition that R_1 and R_{23} will be conjugate is

$$\Delta_{123} = 0$$

(2)

In the Wheatstone bridge, worked out in 6.05, we may write down the balance condition by inspection of (2) if we put i_1 for I in Fig. 6.05 and take i_2 and i_3 around the triangles ABD and BCD, respectively. This bridge is not suitable for the measurement of very low resistances because the resistance of the contacts becomes comparable with that to be measured. This difficulty is eliminated by using the network shown in Fig. 6.09 in which we are to measure the resistance between A and B, the current terminals for which are at C and D. The resistances $R_{12} + R_{13}$ and $R_{24} + R_{34}$ are large compared with the resistance of the contacts at A and B. We wish to find the condition that no current will flow through the galvanometer or that R_1 and R_{23} will be conjugate. We replace R_{14} by zero since i_1 and i_4 have no path in common. Our condition for balance is therefore, from (2) and 6.08 (9),

$$\Delta_{123} = \begin{vmatrix} -R_{12} - R_{13} & 0 \\ +R_2 + R_3 + R_4 \\ -R_{42} - R_{43} + R_{44} \end{vmatrix} = 0$$

(3)

The result is already independent of R_1 and hence of the contact C, but we wish it also to be independent of the contact D and hence of R_4. Thus, the coefficient of the terms not involving R_4, and of R_4, must vanish separately in (3). The former are all in the term R_{44}, by 6.08 (2), so that the minor of R_{44} must vanish, giving $-R_{12}R_3 + R_{13}R_2 = 0$. Similarly, the minor of R_4 must vanish, giving $-R_{12}R_{43} + R_{13}R_{42} = 0$. Combining these two expressions, we have

$$\frac{R_{12}}{R_{13}} = \frac{R_{24}}{R_{34}} = \frac{R_2}{R_3}$$

(4)
Thus when there is no current in R_{23}, the value of R_2 can be obtained in terms of R_3 if the other ratios are maintained equal and are known.

6.10. *Steady Currents in Extended Mediums.*—In 6.00 (3), we showed that if, in the steady state, no charge is to accumulate at any point in a conducting medium, the divergence of the current density \mathbf{i} must be zero at all points. In 6.02 (3), we found that Ohm's law, in an isotropic medium, requires that \mathbf{i} be proportional to the potential gradient and inversely proportional to the resistivity. Combining these two equations, we have

$$\nabla \cdot \mathbf{i} = \nabla \cdot \left(\frac{1}{\tau} \nabla V \right) = 0 \quad (1)$$

If the medium is homogeneous, τ is constant throughout it so that this becomes

$$\nabla^2 V = 0 \quad (2)$$

Comparing (1) and (2) with 3.02 (2) and (3), we see that these equations are identical with Laplace's equation and that the reciprocal of τ, called the conductivity, plays exactly the same role as the capacitivity does in electrostatics. It follows that all mathematical technique used in electrostatics also applies here. The tubes of flow here bear the same relation to the equipotential surfaces as the tubes of force do in electrostatics. At the boundary between two conducting mediums, both the potential and the normal component of the current density must be continuous so that, from 1.17 (5) and (6), the conditions are

$$\frac{1}{\tau'} \frac{\partial V'}{\partial n} = \frac{1}{\tau''} \frac{\partial V''}{\partial n} \quad (3)$$
$$V' = V'' \quad (4)$$

These two equations determine completely the relations between the potential gradients on the two sides of the boundary, so that if the relative capacitivities of the two mediums also differ and are not proportional to the conductivities, another variable is required to satisfy this additional condition. By taking a charge density σ on the boundary, this can be done, giving, by (1),

$$\frac{\sigma}{\varepsilon_0} = K_1 \frac{\partial V_1}{\partial n} - K_2 \frac{\partial V_2}{\partial n} = -(K_1 \tau_1 - K_2 \tau_2) i_n \quad (5)$$

Anyone observing the magnetic forces between conductors carrying currents, which is the subject of the next chapter, might be led to believe that the current distributions computed by solving (1) or (2) would be erroneous owing to the mutual displacement of current elements by magnetic interaction. Such is not the case. It is true that, in isotropic nonferromagnetic conductors, there is always an increase of resistance
in a magnetic field, sometimes known as the "longitudinal Hall effect." The resistance of those portions of an extended conductor where the magnetic field is most intense is therefore increased relative to that of other portions, producing a decrease in the relative current density. Thus when a steady current flows in a cylindrical conductor, the current density is slightly larger near the axis. If this conductor is placed in an external uniform transverse magnetic field, which adds to the field of the current on one side of the cylinder and subtracts from it on the other, we obtain a lateral displacement of the current in the same direction as the force on the conductor. This does not change the orientation of the equipotential surfaces and does not imply any transverse force on the current carriers. Although the change of resistance can be measured, the resultant current displacement is too small to observe at ordinary temperatures. The usual transverse Hall effect changes the orientation of the equipotential surfaces in either direction, depending on the material, without, in this example, affecting the current distribution. It is possible, however, to arrange a circuit so that the latter is changed. This effect can be observed only by using very strong magnetic fields and sensitive instruments. Thus, we may conclude that the distortion of the current distribution in extended conductors caused by magnetic interactions is negligible, and the results obtained by fitting solutions of (1) and (2) to the given boundary conditions may be considered rigorous, as far as such effects are concerned.

Since, as we have seen, heat is generated by the passage of electric current and since, in general, the resistivity depends on the temperature, there will actually be deviations from the solutions obtained where heavy currents heat those portions of the conductor where the current density is highest. The solutions are therefore strictly true only when the temperature coefficient of resistance of the medium is small, when the current density is small, or when the current has been circulating only a short time.

6.11. General Theorems.—The general theorems derived from Green’s theorem in Chap. III may now be restated in a form suitable for the present subject.

1. If the value of the potential \(V \) is given over all boundaries of a conductor as well as the size and location of all sources or sinks of current inside, then the value of \(V \) is uniquely determined at all points in the conductor.

2. If the normal component of the current density is given over all boundaries of a conductor as well as the size and location of all sources or sinks of current inside, then the value of the potential difference between any two points in the conductor is known.
3. If the resistivity of any element in a conductor is increased, then the resistance of the whole conductor will be increased or remain unaltered.

4. If the resistivity of any element in a conductor is decreased, then the resistance of the whole conductor will be decreased or remain unaltered.

To these we may add another theorem which we shall then prove. This is

5. The current density in a conductor distributes itself in such a way that the generation of heat is a minimum.

To prove this, let us suppose that there is a deviation from the distribution given by Ohm's law [6.02 (3)], the additional current density being \(j \). In order that there may be no accumulation of electricity, \(j \) has to satisfy the equation of continuity \(\nabla \cdot j = 0 \). Applying 6.03 to an element of a tube of flow in the conductor, we have, for the heat generated in it, from 6.02 (3) and 6.03 (2),

\[
dP = \left[\left(\frac{1}{\tau} \nabla V + j \right) dS \right]^2 \tau \left(\frac{ds}{dS} \right) = \tau \left(\frac{1}{\tau} \nabla V + j \right)^2 dv
\]

where \(dS \) is the cross section of the elementary tube and \(ds \) is its length. Integrating gives

\[
P = \int_V \left[\frac{1}{\tau} (\nabla V)^2 + 2j \cdot \nabla V + \tau j^2 \right] dv \tag{1}
\]

Applying Green's theorem [3.06 (3)] to the second term, where \(j = \nabla \Phi \) and \(\Psi = V \), we have

\[
\int_V j \cdot \nabla V \, dv = -\int_V V \nabla \cdot j \, dv + \int_S V n \cdot j \, ds
\]

The first term on the right is zero since \(\nabla \cdot j = 0 \). The second term is zero since the total electrode current is fixed. Thus, the first and third terms in (1) remain. The first gives the rate of heat generation when Ohm's law is followed, and the third, being positive, shows that any deviation from this law increases the rate of generation of heat.

6.12. Current Flow in Two Dimensions.—As pointed out in 4.00, there are, strictly speaking, no two-dimensional problems in electrostatics, since all cylindrical conductors are finite in length and there is no way to terminate the electric field sharply at the end, there being no known medium whose capacitivy is zero. In the case of current flow in conductors, we have, however, many rigorously two-dimensional problems, since the current may be confined to a finite region by an insulating boundary. All cases of flow in thin plane conducting sheets are of this type. We thus have available all the methods of Chap. IV for treating these problems. The most powerful of these is that of conjugate functions.
We saw in 4.09 that a solution of 6.10 (2), when the potential is a function of \(x \) and \(y \) only, is

\[
U(x, y) \quad \text{or} \quad V(x, y)
\]

where

\[
W = U + jV = f(z) = f(x + jy)
\]

The current density \(i \) at any point is, from 4.11 (2) and 6.02 (2), if \(V \) is the potential function,

\[
i = \frac{1}{\tau} \frac{\partial W}{\partial z} = \frac{1}{\tau} \frac{\partial V}{\partial n} = -\frac{1}{\tau} \frac{\partial U}{\partial s}
\]

If \(U \) is the potential function, this becomes

\[
i = \frac{1}{\tau} \frac{\partial W}{\partial z} = \frac{1}{\tau} \frac{\partial U}{\partial n} = \frac{1}{\tau} \frac{\partial V}{\partial s}
\]

the same sign convention being used as in 4.11 (2).

Thus, if the conductor is bounded by the equipotentials \(U_1 \) and \(U_2 \) and by the lines of force \(V_1 \) and \(V_2 \), the current flowing through it will be

\[
I = \int_{V_1}^{V_2} i \, ds = \frac{1}{\tau} \int_{V_1}^{V_2} \frac{\partial U}{\partial n} \, ds = \frac{1}{\tau} \int_{V_1}^{V_2} \frac{\partial V}{\partial s} \, ds = \frac{V_2 - V_1}{\tau}
\]

By Ohm's law, the resistance of the conductor is

\[
R = \frac{|U_2 - U_1|}{|I|} = \frac{|U_2 - U_1|}{|V_2 - V_1|}
\]

If the equipotentials \(U_1 \) and \(U_2 \) in (5) are closed curves, then the electrostatic capacitance between the electrodes, \textit{in vacuo}, is, from 4.11,

\[
C = \frac{\epsilon_0 |V|}{|U_2 - U_1|}
\]

where \([V]\) is the integral of \(V \) around \(U_1 \) or \(U_2 \). So that if \(C \) is known, we may find the resistance between \(U_1 \) and \(U_2 \), if the resisting medium fills the same space as the electrostatic field would, by combining (5) and (6), giving

\[
R = \frac{\tau \epsilon_0}{C}
\]

Thus, from 4.13 (5), we see that the resistance per unit length between two parallel cylindrical electrodes of radii \(R_1 \) and \(R_2 \) with a distance \(D \) between their centers is

\[
R = \frac{\tau}{2\pi} \cosh^{-1} \left(\pm \frac{D^2 - R_1^2 - R_2^2}{2R_1R_2} \right)
\]

where \(\tau \) is the resistivity of the medium between them, and we use the positive sign if they are outside each other and the negative sign if one is inside the other.
§6.13 LONG STRIP WITH ABRUPT CHANGE IN WIDTH 235

6.13. Long Strip with Abrupt Change in Width.—Let us apply the theory just developed by computing the current distribution in a long straight strip of conducting material of uniform thickness whose half-width changes abruptly from \(h \) to \(k \). The region near the junction is shown in Fig. 6.13a. Such a boundary can evidently be obtained by bending the real axis in the \(z_1 \)-plane, the angles being \(\pi/2, 3\pi/2, 0, 3\pi/2 \), and \(\pi/2 \) at \(-1, -a, 0, +a, \) and \(+1\), respectively. To have a finite distance between the points \(-a\) and \(+a\) after the bending, it will be necessary to put the origin in the \(z_1 \)-plane at \(z = -j \infty \) in the \(z \)-plane. Putting these values for the \(\alpha \)'s and the \(u \)'s in 4.18 (7), we have

\[
\frac{dz}{dz_1} = c \frac{(z_1^2 - a^2)^{\frac{1}{2}}}{z_1(z_1^2 - 1)^{\frac{1}{2}}} = \frac{cz_1}{[(z_1^2 - 1)(z_1^2 - a^2)]^{\frac{1}{2}}} - \frac{ca^2}{z_1[(z_1^2 - 1)(z_1^2 - a^2)]^{\frac{1}{2}}} \tag{1}
\]

We shall evaluate the constants \(c \) and \(a \) by the method of 4.28 before performing the main integration. As in 4.28, when \(r_1 \) is constant, we have \(dz_1 = j r_1 e^{i \theta_1} d \theta_1 = j z_1 d \theta_1 \). When \(r_1 \) is a very small constant and \(\theta_1 \) goes from 0 to \(\pi \) in the \(z_1 \) plane, then \(y \) is a large negative constant and \(x \) goes from +\(h \) to -\(h \) in the \(z \)-plane. Thus, substituting in (1), we have

\[
\int_{-h}^{+h} dz = j c \left[\int_{0}^{\pi} \left(\frac{r_1^2 e^{i \theta_1} - a^2}{r_1^2 e^{i \theta_1} - 1} \right)^{\frac{1}{2}} d \theta_1 \right] \bigg|_{r_1 \to 0} = \pm j c \int_{0}^{\pi} a d \theta_1
\]

giving \(h = \pm \frac{1}{2} j c \pi a \). Similarly, when \(r_1 \to \infty \), \(y \) is a large positive constant so that
\[
\int_{-k}^{+k} dz = jc \left[\int_{0}^{\pi} \left(\frac{r_1^2 e^{2i\theta_1} - a^2}{r_1^2 e^{2i\theta_1} - 1} \right)^i d\theta_1 \right] \right|_{\theta_1 = 0}^{\theta_1 = \pi} = \pm jc \int_{0}^{\pi} d\theta_1
\]
giving \(k = \pm \frac{1}{2} jc \pi \). Solving for \(c \) and \(a \) gives
\[
a = \frac{h}{k} \quad \text{and} \quad c = \mp \frac{2jk}{\pi} \quad (2)
\]
Putting these values into (1) and substituting \((u^2 + a^2)/(1 + u^2)\) for \(z_1^2 \) and \(a^2/z_1^2 \) in the first and second terms of (1), respectively, we may integrate by parts giving
\[
z = 2 \left\{ k \tan^{-1} \left[\frac{(z_1^2 - a^2)}{(1 - z_1^2)} \right] + h \tan^{-1} \left[a \left(\frac{1 - z_1^2}{(z_1^2 - a^2)} \right)^i \right] \right\}
\]
No integration constants are added since this gives, when \(y_1 = 0 \) and \(x_1 = \pm a \), \(z = \pm h \), and when \(y_1 = 0 \) and \(x_1 = \pm 1 \), \(z = \pm k \).

The electrical conditions require that we have a different line of flow on each boundary. Clearly, if we take \(W = \ln z_1 \) or \(z_1 = e^w \), where \(U \) is the potential function, then the line of flow \(V = 0 \) passes from \(x_1 = +\infty \) to \(x_1 = 0 \) in Fig. 6.13a and the line of flow \(V = \pi \) passes from \(x_1 = -\infty \) to \(x_1 = 0 \). In Fig. 6.13b, therefore, these lines follow the right and left boundaries of the strip, respectively, from top to bottom, giving a total current \(I = \pi/s \) in the strip. Substituting for \(z \), we have
\[
z = 2 \left\{ k \tan^{-1} \left[\frac{(e^{2w} - a^2)}{1 - e^{2w}} \right] + h \tan^{-1} \left[a \left(\frac{1 - e^{2w}}{e^{2w} - a^2} \right)^i \right] \right\} \quad (3)
\]
where the real part of \(z \) is positive when the real part of \(z_1 \) is positive.

If \(s \) is the resistance between opposite sides of a one meter square cut from the same piece as the strip, then the resistance of the length \(y_k \) of the wide part of the strip is \(R_k = s|y_k|/2k \) and that of the narrow part alone is \(R_h = s|y_h|/2h \). When they are joined as in Fig. 6.13b, the resistance between the ends is not \(R_k + R_h \) but there is an additional resistance \(\Delta R \) due to the distortion of the lines of flow near the junction. When \(y_k \gg k \) and \(y_h \gg h \), equipotentials are parallel to the axis in Fig. 6.13b. Let us compute \(\Delta R \) in this case. On the \(y \)-axis, \(V = \frac{1}{2} \pi \) so that \(e^{2w} = -e^{2u} \) and (3) becomes, writing \(j \tanh^{-1} u \) for \(\tan^{-1} ju \), \(x = 0 \) and
\[
y = 2 \left\{ k \tanh^{-1} \left(\frac{e^{2u} + a^2}{1 + e^{2u}} \right) - h \tan^{-1} a \left(\frac{1 + e^{2u}}{e^{2u} + a^2} \right)^i \right\} \quad (4)
\]
Let \(U = U_1 \to + \infty \), then \(e^{2u} \) is very large and from \(Pc \ 753 \) or \(Dw \ 4 \) and 5.3
\[
y_k = \frac{2}{\pi} \left(k \tan^{-1} \frac{2e^{2u_1} + a^2}{2e^{2u_1} + 1} - h \tan^{-1} a \left(\frac{2e^{2u_1} + 1}{2e^{2u_1} + a^2} \right) \right)
\]
Using Pc 681 or Dw 702 and neglecting 1, a, and a^2 compared with e^{2v} give

\[y_k = \frac{1}{\pi} \left(k \ln \frac{4e^{2v_1}}{1-a^2} - h \ln \frac{1+a}{1-a} \right) \]

\[= \frac{2kU_1}{\pi} + \frac{1}{\pi} \left(k \ln \frac{4k^2}{k^2-h^2} - h \ln \frac{k+h}{k-h} \right) = \frac{2kU_1}{\pi} + A \]

Let $U = U_2 \to -\infty$, then e^{2v} is very small and, as before,

\[y_h = \frac{2}{\pi} \left[k \tanh^{-1} \frac{2a^2 + e^{2v_1}}{a(2 + e^{2v_1})} - h \tanh^{-1} \frac{a^2(2 + e^{2v_2})}{2a^2 + e^{2v_2}} \right] \]

\[= \frac{1}{\pi} \left[k \ln \frac{1+a}{1-a} - h \ln \frac{4a^2}{(1-a^2)e^{2v_2}} \right] \]

\[= \frac{2hU_2}{\pi} + \frac{1}{\pi} \left(k \ln \frac{k+h}{k-h} - h \ln \frac{4h^2}{k^2-h^2} \right) = \frac{2hU_2}{\pi} + B \]

Subtracting and solving for $U_1 - U_2$ give

\[U_1 - U_2 = \frac{\pi y_k}{2k} - \frac{\pi y_h}{2h} - \pi \left(\frac{A}{2k} - \frac{B}{2h} \right) \]

By 6.12 (5),

\[R = s \frac{U_1 - U_2}{\pi} = - \frac{s}{2} \left(\frac{A}{k} - \frac{B}{h} \right) + \frac{s}{2} \left(\frac{y_k}{2k} + \frac{y_h}{2h} \right) = \Delta R + R_k + R_h \]

Substituting for A and B, solving for ΔR, and simplifying give

\[\Delta R = \frac{s}{2\pi} \left[\frac{h^2 + k^2}{hk} \ln \frac{k+h}{k-h} + 2 \ln \frac{k^2-h^2}{4hk} \right] \]

Other examples of this method will be found in the problems at the end of this chapter.

6.14. Current Flow in Three Dimensions.—If the entire volume between two electrodes is filled with a uniform isotropic conducting medium, then we may obtain the current distribution and the resistance between the electrodes from the solution of the electrostatic problem for the capacitance between the same electrodes when the medium is insulating. In both cases, the equation to be solved is

\[\nabla^2 V = 0 \]

(1)

In the electrostatic case, the boundary conditions on the electrode a in $vacuo$ are, from 1.15 (1),

\[V = V_a \quad Q_a = - \int_{S_a} \varepsilon \frac{\partial V}{\partial n} \, dS_a \]

(2)

In the current case, they are, from 6.01 (2),

\[V = V_a \quad I_a = - \int_{S_a} \frac{1}{\sigma} \frac{\partial V}{\partial n} \, dS_a \]

(3)
The equipotential surfaces correspond exactly in the two cases, since the boundary conditions are identical. From Ohm’s law, the resistance is

\[R = \frac{|V_b - V_a|}{|I_a|} = \tau \varepsilon \frac{|V_b - V_a|}{|Q_a|} = \frac{\tau \varepsilon}{C} \]

(4)

where \(C \) is the capacitance in vacuo in the electrostatic case. If an electrostatic case can be found such that the walls of a tube of force are identical in shape with the insulating boundary of a conductor of resistivity \(\tau \) and the equipotential ends of the tube have the same shape as the perfectly conducting terminals of this conductor, then the resistance between these terminals can be computed by (4) from the “capacitance” of the tube of force. By the capacitance, we mean the ratio of the charge on an end to the difference of potential between the ends.

When \(n \) perfectly conducting electrodes are immersed in a homogeneous isotropic conducting medium of resistivity \(\tau \), we may find all the relations between the currents entering and leaving the electrodes and their potentials by the methods of Arts. 2.13 to 2.18. It is necessary only to write the current \(I_s \) from the \(st \)th electrode in place of \(Q_n \) in the electrostatic case and to multiply the capacitances by \((\tau \varepsilon)^{-1}\) and the elastances by \(\tau \varepsilon \).

Thus, to find the resistance between two spheres of radii \(a \) and \(b \), internal or external to each other, having a distance \(c \) between their centers, we have, from 2.15 (1), since \(I_1 = -I_2 \),

\[V_1 - V_2 = \tau \varepsilon (s_{11} - 2s_{12} + s_{22})I_1 \]

so that the resistance is

\[R = \frac{|V_1 - V_2|}{I_1} = \tau \varepsilon (s_{11} - 2s_{12} + s_{22}) \]

(1)

In 5.08, we computed by images the values of \(c_{11}, c_{12}, \) and \(c_{22} \) in this case. In terms of these, by 2.16 (2), we have

\[R = \tau \varepsilon \frac{c_{11} + 2c_{12} + c_{22}}{c_{12}^2 - c_{11}c_{22}} \]

(2)

If one sphere is inside the other, this formula is of little use and the method of 5.19 can be used.

If two electrodes are at a great distance from each other in an infinite conducting medium, we have, from (1) and 2.18 (1), the result

\[R = \tau \left(\frac{\varepsilon}{C_a} - \frac{1}{2\pi r} + \frac{\varepsilon}{C_b} \right) \]

(3)

where \(r \) is the distance between them and \(C_a \) and \(C_b \) are the electrostatic capacitances of \(a \) and \(b \) alone.
6.16. Solid Conducting Sphere.—To illustrate the method of applying spherical harmonics when insulating boundaries are involved, we shall compute the potential at all points in a solid conducting sphere of resistivity \(\tau \) when a current \(I \) enters at one pole \(\theta = 0 \) and leaves at the other \(\theta = \pi \). Clearly, from symmetry, the equatorial plane can be taken at potential zero so that, from 5.157, odd harmonics only can appear in the expansion of the potential, which must be finite at the origin, giving

\[
V = \sum_{n=0}^{\infty} A_{2n+1} r^{2n+1} P_{2n+1}(\cos \theta) \tag{1}
\]

To determine \(A_{2n+1} \), we differentiate (1) with respect to \(r \), put \(r = a \), multiply by \(P_{2n+1}(\mu) \) \(d\mu \), and integrate from \(\mu = 0 \) to \(\mu = 1 \). By 5.13 (2), the only term left on the right is that for which \(m = n \) so that we have, writing \(n \) for \(m \),

\[
\int_0^1 \frac{\partial V}{\partial r} P_{2n+1}(\mu) \, d\mu = (2n + 1) A_{2n+1} a^{2n} \int_0^1 [P_{2n+1}(\mu)]^2 \, d\mu \tag{2}
\]

We use 5.155 (3) for the right-hand integral. When \(r = a \), \(\frac{\partial V}{\partial r} \) is zero except in the area \(\Delta S \), at \(\mu = 1 \), covered by the electrode, which is so small that we may write \(P_{2n+1}(1) = 1 \) for \(P_{2n+1}(\mu) \) in it. Writing \(\frac{\partial V}{\partial r} = |\nabla V| = \tau i_r \) from 6.02 (3) and \(dS = -2\pi a^2 \, d\mu \) and solving for \(A_{2n+1} \), we have

\[
A_{2n+1} = \frac{4n + 3}{2n + 1} \frac{a^{-2n}}{2\pi a^2} \int_{\Delta S} (-i_r) \, dS = \frac{\tau I}{2\pi a^2} \frac{4n + 3}{2n + 1} \frac{1}{a^{2n}}
\]

so that from (1)

\[
V = \frac{\tau I}{2\pi a} \sum_{n=0}^{\infty} \frac{4n + 3}{2n + 1} \left(\frac{r}{a} \right)^{2n+1} P_{2n+1}(\cos \theta) \tag{3}
\]

We may break this series up into four simple series and write \(m \) for \(2n + 1 \); thus,

\[
V = \frac{\tau I}{2\pi a} \sum_{m=0}^{\infty} \left[\left(1 + \frac{1}{2m} \right) P_{m}(\mu) - \left(1 + \frac{1}{2m} \right) P_{m}(\mu) \right] \left(\frac{r}{a} \right)^m
\]

If \(R_0 \) and \(R_\pi \) are the distances to the poles, we may then sum by 5.153 (1) and write

\[
V = \frac{\tau I}{2\pi} \left(\frac{1}{R_0} + \frac{1}{2} \int \frac{dr}{r R_0} - \frac{1}{R_\pi} - \frac{1}{2} \int \frac{dr}{r R_\pi} \right) \tag{4}
\]

Let \(\alpha_0 \) and \(\alpha_\pi \) be the angles that \(R_0 \) and \(R_\pi \) make with the axis, so that \(R_0 \cos \alpha_0 = a - r \cos \theta \) and \(R_\pi \cos \alpha_\pi = a + r \cos \theta \), and carry out the
integrations by Pc 182, and we have, after canceling the $\ln r$ from the two integrals,

$$V = \frac{\tau I}{2\pi} \left\{ \frac{1}{R_0} - \frac{1}{a} \ln [R_0(1 + \cos \alpha_0)] - \frac{1}{R_\pi} + \frac{1}{a} \ln [R_\pi(1 + \cos \alpha_\pi)] \right\}$$

(5)

It is clear that

$$V \rightarrow \frac{\tau I}{2\pi R_0} \quad \text{and} \quad V \rightarrow -\frac{\tau I}{2\pi R_\pi}$$

so that the original expansion (3) is valid near the poles.

From symmetry, we see that the tubes of flow in this case are surfaces of revolution. The equation of such a tube through which the current is I_1 can be obtained by integrating the normal component of the current density $-(1/\tau)(\partial V/\partial r)$ over the spherical cap bounded by the tube and equating it to $+I_1$. For this purpose, (4) is more convenient than (5).

The integral of the reciprocal distance terms can be written down from 1.101 and, since our element of area is $2\pi r^2 \sin \theta \, d\theta$, we have

$$I_1 = 2I \left(\frac{1 - \cos \alpha_0}{2} + \frac{1 - \cos \alpha_\pi}{2} \right) + \frac{\tau I}{2} \left(\int_0^\theta \frac{\sin \theta \, d\theta}{R_0} - \int_0^\theta \frac{\sin \theta \, d\theta}{R_\pi} \right)$$

Let $x = \cos \theta$, and integrate by Dw 191.01 or Pc 95, and we have

$$I_1 = I \left[2 - \cos \alpha_0 - \cos \alpha_\pi + \frac{1}{2a}(R_0 + R_\pi - 2a) \right]$$

But if β is the obtuse angle between R_0 and R_π, we have

$$R_\pi - 2a \cos \alpha_\pi = R_0 \cos \beta, \quad R_0 - 2a \cos \alpha_0 = R_\pi \cos \beta$$

so that the equation for the tubes of flow is

$$I_1 = I \left(1 + \frac{R_0 + R_\pi}{2a} \cos \beta \right)$$

(6)

This formula checks the rest of the boundary conditions since the second term is zero at the surface of the sphere giving $I_1 = I$ there.

6.17. Solid Conducting Cylinder.—To illustrate the application of Bessel functions to insulating cylindrical boundaries, we shall compute the potential anywhere inside a solid circular conducting cylinder of length $2c$, radius a, and resistivity τ when the current I enters and leaves by thin band electrodes at a distance b on either side of the equator. We take the width of the band too small to measure physically but mathematically not zero so that the current density and potential functions are everywhere bounded. Taking the equatorial plane at potential zero, we see that a solution of the equation of continuity which is finite on the axis is, from 5.292 (3) and 5.32,

$$V = \sum_n A_n I_0(k_n r) \sin k_n \varphi$$

(1)
§6.18

EARTH RESISTANCE 241

Since \(z = c \) is to be an insulating boundary, we must make \(\partial V / \partial z = 0 \) there. Since \(\cos (2n + 1)\frac{1}{2} \pi = 0 \), we satisfy this boundary condition by taking

\[
k_n = \frac{(2n + 1)\pi}{2c}
\]

To determine \(A_n \), we differentiate (1) with respect to \(\rho \) by 5.33 (4), put \(r = a \), multiply by \(\sin k_n z \), and integrate from 0 to \(c \). By Dw 435 or Pc 359, the only term left on the right is that for which \(k_p = k_n \) so we have, writing \(n \) for \(p \),

\[
\int_0^c \frac{\partial V}{\partial \rho} \sin k_n z \, dz = A_n I_1(k_n a) \int_0^c \sin^2 k_n z \, d(k_n z)
\]

We use Dw 430.20 or Pc 362 for the right-hand integral. On the boundary, \(\rho = a \), \(\partial V / \partial \rho \) is zero except in the area \(\Delta S \), at \(z = b \), covered by the electrode, which is so small that we may give \(k_n z \) the constant value \(k_n b \) therein. From 6.02 (3), setting \(2\pi a \, dz = dS \), the left-hand integral becomes

\[
\frac{\sin k_n b}{2\pi a} \tau \int_{\Delta S} i \, dS = \frac{\tau I}{2\pi a} \sin k_n b
\]

Solving for \(A_n \) gives

\[
A_n = \frac{2\tau I}{(2n + 1)\pi^2 a} \frac{\sin k_n b}{I_1(k_n a)} \tag{3}
\]

The desired solution is given by (1), (2), and (3).

The boundaries of the tubes of flow, in this case, are surfaces of revolution. The equation of the tube through which a current \(I' \) flows can be obtained by integrating the current density \(-(1/\tau)(\partial V / \partial z) \) over a disk bounded by the tube and equating it to \(-I' \), giving

\[
I' = -\frac{1}{\tau} \sum_{n=0}^{\infty} 2\pi k_n A_n \cos k_n z \int_0^\rho I_0(k_n \rho) \rho \, d\rho
\]

Integrating by 5.33 (5), we have, substituting for \(A_n \) from (3),

\[
I' = \frac{4I \rho}{\pi a} \sum_{n=0}^{\infty} \frac{\sin k_n b \cos k_n z I_1(k_n \rho)}{(2n + 1)I_1(k_n a)} \tag{4}
\]

where \(k_n \) is given by (2).

6.18. Earth Resistance.—Geophysicists sometimes investigate the structure below the earth's surface by observing the distribution of potential on the surface when current is passed through the soil between two or more surface electrodes. Let us investigate the simplest case, in which to a depth \(a \) the resistivity is \(\tau_1 \) and below this depth it is \(\tau_2 \). We shall use the method of 5.303 to find the distribution about a single-
point electrode. The case of two or more electrodes may then be found by superposition. The potential due to the electrode alone may be written down from 5.303 (1), by substituting for \(q \), from 6.14, the value \(2\pi e I \). It should be remembered that \(2I \), in this case, corresponds to \(I \) in 6.14, since all the current flows in half the field. Then, we have

\[
V = \frac{\tau_1 I}{2\pi r} = \frac{\tau_1 I}{2\pi} \int_0^\infty J_0(kp)e^{-kz} \, dk
\]

(1)

owing to the electrode alone. As in 5.303 in the region of \(\tau_1 \), we shall superimpose a second potential due to the discontinuity at \(z = a \) that may contain both the \(e^{-kz} \) and \(e^{kz} \) terms since \(z \) is finite in this region, thus we have

\[
V_1 = \frac{\tau_1 I}{2\pi} \left[\int_0^\infty \Phi(k)J_0(kp)e^{-kz} \, dk + \int_0^\infty \Psi(k)J_0(kp)e^{kz} \, dk \right]
\]

(2)

Since the earth’s surface \(z = 0 \) must be a line of flow and since the last term already meets this condition, the remaining terms must satisfy it independently so that, if \(\partial V_1/\partial z = 0 \) when \(z = 0 \),

\[
-\Phi(k) + \Psi(k) = 0
\]

(3)

The potential in the region \(\tau_2 \) must vanish at infinity and so can have only the form

\[
V_2 = \frac{\tau_1 I}{2\pi} \int_0^\infty \Theta(k)J_0(kp)e^{-kz} \, dk
\]

(4)

At \(z = a \), the boundary conditions are, from 6.10 (3) and (4),

\[
V_1 = V_2 \quad \text{and} \quad \frac{1}{\tau_1} \frac{\partial V_1}{\partial z} = \frac{1}{\tau_2} \frac{\partial V_2}{\partial z}
\]

Substituting from (2), (3), and (4) and canceling out \(J_0(kp) \) give

\[
e^{-ka} + \Phi(k)(e^{ka} + e^{-ka}) - \Theta(k)e^{-ka} = 0
\]

(5)

\[
-\tau_2 e^{-ka} + \tau_2 \Phi(k)(e^{ka} - e^{-ka}) + \tau_1 \Theta(k)e^{-ka} = 0
\]

(6)

Eliminating \(\Theta(k) \) and substituting in (2), we have, on the earth’s surface where \(z = 0 \) and setting \((\tau_1 - \tau_2)/\tau_1 + \tau_2 = \beta \), the result

\[
V_s = \frac{\tau_1 I}{2\pi} \int_0^\infty \frac{1 - \beta e^{-2ka}}{1 + \beta e^{-2ka}} J_0(kp) \, dk
\]

(7)

Expanding the denominator by \(P e 755 \) or \(D w \) 9.04 and interchanging the integral and summation, we have

\[
V_s = \frac{\tau_1 I}{2\pi} \left[\int_0^\infty J_0(kp) \, dk + 2 \sum_{n=1}^\infty (-1)^n \beta^n \int_0^\infty e^{-2nka} J_0(kp) \, dk \right]
\]
§6.20 CURRENT DISTRIBUTION ON SPHERICAL SHELL

Substituting for the integral, from 5.302 (4), gives

\[V_p = \frac{\tau_1 I_1}{2\pi} \left[\frac{1}{\rho} + 2 \sum_{n=1}^{\infty} \frac{(-1)^n \beta^n}{(4n^2 \alpha^2 + \rho^2)^{1/2}} \right] \] (8)

Now if we take the earth's surface as the xy-plane and the current I passes from an electrode at \(x = +b \) to one at \(x = -b \), the potential at the surface is, since \(\rho_+ = [(x - b)^2 + y^2]^{1/2} \) and \(\rho_- = [(x + b)^2 + y^2]^{1/2} \),

\[V_p = \frac{\tau_1 I_1}{2\pi} \left[\frac{1}{\rho_+} - \frac{1}{\rho_-} + 2 \sum_{n=1}^{\infty} (-\beta)^n \left((4n^2 \alpha^2 + \rho_+^2)^{1/2} - (4n^2 \alpha^2 + \rho_-^2)^{1/2} \right) \right] \] (9)

The case for any number of layers has been worked out by Stefanescu and Schlumberger, *Journal de Physique*, Vol. I, p. 132, 1930.

6.19. Currents in Thin Curved Sheets.—If a thin curved sheet of uniform thickness can be developed into a plane, then, by so doing, the current distribution in such a sheet can be reduced to two dimensions and 6.12 applied. If, however, the surface cannot be so developed, other treatment is necessary. From 3.03 (4) and 6.10 (2), the equation of continuity in orthogonal curvilinear coordinates is

\[\frac{\partial}{\partial u_1} \left(h_3 h_1 \frac{\partial V}{\partial u_1} \right) + \frac{\partial}{\partial u_2} \left(h_3 h_2 \frac{\partial V}{\partial u_2} \right) + \frac{\partial}{\partial u_3} \left(h_3 h_3 \frac{\partial V}{\partial u_3} \right) = 0 \] (1)

Let us suppose that \(u_1 \) and \(u_2 \) are a set of orthogonal curvilinear coordinates drawn on the surface and let \(u_3 \) be a distance measured normal to it. The surface is so thin that the current distribution on each side is the same, making \(\partial V / \partial u_3 = 0 \). The thickness of the surface is uniform so that \(h_3 \) is independent of \(u_1 \) and \(u_2 \). Under these conditions, (1) takes the form

\[\frac{\partial}{\partial u_1} \left(h_3 \frac{\partial V}{\partial u_1} \right) + \frac{\partial}{\partial u_2} \left(h_3 \frac{\partial V}{\partial u_2} \right) = 0 \] (2)

This is the equation that we must solve to get the current distribution.

6.20. Current Distribution on Spherical Shell.—From 3.05 (1), letting \(V \) be independent of \(r \), we get 6.19 (2) for a spherical shell to be

\[\sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{\partial^2 V}{\partial \phi^2} = 0 \] (1)

where \(\theta \) is the colatitude angle and \(\phi \) is the longitude angle. Although a spherical shell cannot be developed in a plane, it is possible to represent every point of a spherical surface on an infinite plane in such a way that angles are preserved. This process is known as stereographic projection and closely resembles inversion. A plane is taken tangent to the sphere.
at one end of a diameter. A line passing through the other end O of this diameter and the point P (Fig. 6.20) intersects the plane at P' which is called the projection of P. Let Ψ be a solution of the equation of continuity in the plane, where, from 4.01 (2), it takes the form

$$r \frac{\partial}{\partial r} \left(\frac{r \partial \Psi}{\partial r} \right) + \frac{\partial^2 \Psi}{\partial \phi^2} = 0 \quad (2)$$

In projecting the system of curves, which Ψ represents, onto the sphere, the longitude angle will be unchanged. From Fig. 6.20, we see that r and θ are connected by the relation

$$r = 2a \tan \theta_1 = 2a \tan \frac{1}{2} \theta$$

The equation that the projected curves satisfy is obtained by substituting θ and ϕ for r and ϕ in (2).

$$r \frac{\partial}{\partial r} = r \frac{d\theta}{dr} \frac{\partial}{\partial \theta} = \sin \theta \frac{\partial}{\partial \theta}$$

so that, from (2),

$$\sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Psi}{\partial \theta} \right) + \frac{\partial^2 \Psi}{\partial \phi^2} = 0$$

This is identical with (1) so that the stereographic projection of a solution of the equation of continuity in a plane gives the solution of this equation for a thin uniform spherical shell.

We found, in 4.09, that both U and V are solutions of $\nabla^2 V = 0$ where

$$U + jV = f(x + jy) = f(r \cos \phi + jr \sin \phi)$$

if $f(z)$ is an analytic function. It follows from the preceding that if

$$U + jV = f[2a \tan \frac{1}{2} \theta (\cos \phi + j \sin \phi)] \quad (3)$$

then both U and V are solutions of the equation of continuity on the surface of a sphere of radius a and that if U is the potential function then V is the stream function, and vice versa. From the laws of inversion, it follows that lines in the plane project into circles through O on the sphere and circles project into circles.

As an example, let us find the potential at any point on a spherical shell of radius a and surface resistivity s when a current I enters at $\theta = \alpha, \phi = \frac{1}{2} \pi$ and leaves at $\theta = \alpha, \phi = -\frac{1}{2} \pi$. From 4.13 (2.1), writing from 6.14, $\epsilon_s s I$ for the charge which, in 4.13, is $2\pi \epsilon_s$, we have for the potential U at any point on a plane sheet

$$\coth \frac{2\pi U}{sI} = \frac{x^2 + y^2 + b^2}{2by} = \frac{r^2 + b^2}{2br \sin \phi}$$
§6.21 SURFACE OF REVOLUTION

But from Fig. 6.20, we have \(r = 2a \tan \frac{1}{3} \theta \) so that

\[
\coth \frac{2\pi U}{sI} = \frac{\tan \frac{1}{3} \theta + \tan^2 \frac{1}{3} \alpha}{2 \tan \frac{1}{3} \theta \tan \frac{1}{3} \alpha \sin \phi} = \frac{1 - \cos \alpha \cos \theta}{\sin \alpha \sin \theta \sin \phi}
\]

(4)

In a similar fashion, the equation of the lines of flow is, from 4.13 (4),

\[
\cot \frac{2\pi V}{sI} = \frac{r^2 - b^2}{2br \cos \phi} = \frac{\cos \alpha - \cos \theta}{\sin \alpha \sin \theta \cos \phi}
\]

(5)

6.21. Surface of Revolution.—As another example, let us solve 6.19 (2) for the surface of revolution formed by rotating the curve \(y = f(z) \), where \(f(z) \) is a single-valued function, about the \(z \)-axis. Clearly, on such a surface, any point \(P \) can be located by the orthogonal coordinates \(z \) and \(\phi \), where \(\phi \) is the longitude angle about \(z \). In 6.19, let \(u_1 \), which lies along the surface, equal \(z \) numerically and let \(u_2 = \phi \). From symmetry, \(h_1 \) and \(h_2 \) are independent of \(\phi \); so 6.19 (2) becomes

\[
\frac{h_2}{h_1} \frac{\partial}{\partial z} \left(h_2 \frac{\partial V}{\partial z} \right) + \frac{\partial^2 V}{\partial \phi^2} = 0
\]

(1)

To solve this equation, let us take a new variable \(u \) that is zero when \(z \) is \(z_0 \) and satisfies the relation

\[
\frac{\partial}{\partial u} = \frac{h_2}{h_1} \frac{\partial}{\partial z} \quad \text{or} \quad u = \int_{z_0}^{z} \frac{h_1}{h_2} \, dz
\]

(2)

Then (1) becomes

\[
\frac{\partial^2 V}{\partial u^2} + \frac{\partial^2 V}{\partial \phi^2} = 0
\]

(3)

From 4.09, a solution of this equation is known to be either \(U(u, \phi) \) or \(V(u, \phi) \) where

\[
U + jV = F(u + j\phi)
\]

(4)

To evaluate \(u \) in terms of given quantities, we must calculate \(h_1 \) and \(h_2 \). The equation of the surface is

\[
\rho = f(z) \quad \text{so that} \quad d\rho = f'(z) \, dz
\]

(5)

and we have

\[
ds^2 = d\rho^2 + dz^2 + \rho^2 d\phi^2 = \left\{ [f'(z)]^2 + 1 \right\} \, dz^2 + [f(z)]^2 \, d\phi^2
\]

giving

\[
h_1 = \left\{ [f'(z)]^2 + 1 \right\}^\frac{1}{4}, \quad h_2 = f(z)
\]

(6)

Putting these values in (2), we obtain

\[
u = \int_{z_0}^{z} \frac{\left\{ [f'(z)]^2 + 1 \right\}^\frac{1}{4}}{f(z)} \, dz
\]

(7)

Since an increase of \(2n\pi \) in \(\phi \) returns us to the same line on the surface, it is necessary, in order to have single-valued solutions for the potential,
that \(F(u + j\phi) \) be periodic in \(\phi \) with a period \(2\pi \). The solution is identical in form with the solution for a cylindrical surface which can be unrolled into a flat strip. If one end of the surface is closed, as in Fig. 6.21, then \(f(z) \) is zero at this point and, from (7), the equivalent cylinder will extend to \(u = -\infty \). If one end is open, as in Fig. 6.21, then the equivalent cylinder will terminate at some positive value of \(u \) and the boundary conditions on the edge of the cylinder will be the same function of \(\phi \) as on the edge of the surface illustrated in the figure.

6.22. Limits of Resistance.—The general theorems of 6.11 frequently enable us to compute limits between which the resistance of a conductor must lie, even when we cannot compute the rigorous value. To get a lower limit, we endeavor to insert into the conductor thin sheets of perfectly conducting material in such a way that they coincide as nearly as possible with the actual equipotentials but, at the same time, enable us to compute the resistance. In this case, we know, from 6.11, that the result is equal to or less than the actual resistance. To compute the upper limit, we insert thin insulating sheets as nearly as possible along the actual lines of flow, in such a way as to enable us to carry out the resistance computation. We know, from 6.11, that this resistance equals or exceeds the actual resistance.

For example, the resistance between two electrodes of a given shape lies between that of two circumscribed electrodes and that of two inscribed electrodes. As a specific example, let us compute the resistance between perfectly conducting electrodes applied at the ends \(A \) and \(B \) of the horseshoe-shaped conductor of triangular section, shown in Fig. 6.22. To get an upper limit for the resistance, we insert infinitely thin insulating layers very close together which require the current to flow only in straight lines and a semicircle. The length of such a layer, from the
§6.22 LIMITS OF RESISTANCE

figure, is $2c + \pi(b + x)$. The area is $x \, dx$ so that the resistance is

$$dR_u = \frac{\tau[2c + \pi(b + x)]}{x \, dx}$$

All these layers are in parallel so that, from 6.04 (3), the upper limit of the resistance is, if Pc 29 or Dw 91.1 is used, given by (1),

$$R_u = \left(\int \frac{1}{dR_u} \right)^{-1} = \left(\int_0^a \frac{x \, dx}{2c + \pi b + \pi x} \right)^{-1}$$

$$= \pi^2 \left[\pi a - (2c + \pi b) \ln \frac{2c + \pi(a + b)}{2c + \pi b} \right]^{-1}$$

To get a lower limit of resistance, we insert perfectly conducting sheets across each leg of the horseshoe at M and N. The current in each leg

![Diagram](image)

then is uniformly distributed, and so the resistance of the legs is $4\pi r/a^2$. In the semicircular part, the conductor has the shape of a triangular tube of force in the two-dimensional electrostatic field given by $W = \ln z$. This gives, for the stream function and the potential function the values, respectively,

$$U = \ln r \quad \text{and} \quad V = \theta$$

(2)

The resistance of the strip at y in Fig. 6.22 is then, from 6.12 (5),

$$dR''_i = \tau \pi \left(\ln \frac{a + b}{b + 2y} \right)^{-1}$$

The strips are in parallel so that, when Pc 426 or Dw 620 is used,

$$R''_i = \left(\int \frac{1}{dR''_i} \right)^{-1} = \pi \tau \left(2 \int_0^a \ln \frac{a + b}{b + 2y} \, dy \right)^{-1} = \frac{-\pi \tau}{b \ln (a + b) - b \ln b - a}$$

The legs and the curves are in series, so that

$$R_l = \tau \left[\frac{4c}{a^2} - \frac{\pi}{b \ln (a + b) - b \ln b - a} \right]$$

(3)
6.23. Currents in Nonisotropic Mediums. Earth Strata.—Taking the divergence of 6.02 (3), we have
\[\nabla \cdot (\gamma \nabla V) = -\nabla \cdot i = 0 \] (1)
If the medium is not isotropic, the conductivity in different directions varies so that \(\gamma \) cannot be factored out. If, however, the medium is homogeneous, the conductivity in any direction remains unchanged throughout it. In this case, we may choose a set of rectangular axes as in 1.19 (7) and 3.02 (5) so that (1) becomes
\[\gamma_x \frac{\partial^2 V}{\partial x^2} + \gamma_y \frac{\partial^2 V}{\partial y^2} + \gamma_z \frac{\partial^2 V}{\partial z^2} = 0 \] (2)
Owing to the method of formation of the soil it frequently happens that the conductivity in the horizontal direction is greater than that in the vertical direction. If we take the z-axis vertical, (2) becomes
\[\gamma_0 \left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} \right) + \gamma_v \frac{\partial^2 V}{\partial z^2} = 0 \] (3)
If we choose a new variable defined by
\[u = \left(\frac{\gamma_0}{\gamma_v} \right) z = \alpha z \] (4)
this becomes
\[\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial u^2} = 0 \] (5)
We have all the methods of Chap. V available for solving this equation but we must translate the boundary conditions into the \(x, y, u \) system and fit the solution to them, or vice versa. Suppose we have a spherical electrode of radius \(R \) half-buried in the earth. The boundary condition is then that \(V = V_0 \) when \(x^2 + y^2 + z^2 = x^2 + y^2 + \left(\frac{u}{\alpha} \right)^2 = R^2 \). Thus, in the \(x, y, u \) system, our boundary condition is that for a spheroid whose equation is
\[\frac{x^2 + y^2}{R^2} + \frac{u^2}{\alpha^2 R^2} = 1 \]
From 5.02 (1) and (2), taking \(a^2 = b^2 = R^2 \) and \(c^2 = \alpha^2 R^2 \), the solution is
\[V = V_0 \left[\int_0^\pi \frac{d\theta}{(a^2 + \theta)(c^2 + \theta)} \right] / \left[\int_0^\pi \frac{d\theta}{(a^2 + \theta)(c^2 + \theta)} \right] \]
Using \(P_{c 114} \) or letting \(x = a^2 + \theta \) and using \(D_{w 192.11} \), we have, since \(\alpha > 1 \),
\[V = V_0 \frac{\tanh^{-1} \left[(c^2 - a^2)/(c^2 + \theta) \right]}{\tanh^{-1} \left[(c^2 - a^2)/(c^2) \right]} \]
But from 5.28 (1) and (2)
\[c^2 + \theta = (c^2 - a^2)\eta^2 \]
so, on substituting for \(a\) and \(c\), this becomes
\[V = V_0 \left[\frac{\log\left(\frac{\gamma_v}{\gamma_s} \right) - \gamma_v}{\gamma_v} \right] \sinh^{-1} \frac{1}{\eta} \]
\[= V_0 \left[\frac{\log\left(\frac{\gamma_v}{\gamma_s} \right) - \gamma_v}{\gamma_v} \right] \sinh^{-1} (\eta^2 - 1) - i \]
and from 5.28 (4) and (5)
\[u = \alpha z = R(\alpha z - 1)^i \eta \xi \]
\[x^2 + y^2 = R^2(\alpha z - 1)(1 - \xi^2)(\eta^2 - 1) \]
Eliminating \(\xi\), we have
\[\frac{x^2 + y^2}{R^2(\alpha z - 1)(\eta^2 - 1)} + \frac{\alpha^2 z^2}{R^2(\alpha z - 1)\eta^2} = 1 \]

The smallest value of \(\eta\) is on the electrode where \(\eta = \alpha/(\alpha - 1)\). Hence, the denominator of the first term is always larger than that of the second so that the equipotential surfaces are nonconfocal oblate spheroids. On the earth’s surface, where \(z = 0\), the equipotentials become
\[V = V_0 \left[\frac{\log\left(\frac{\gamma_v}{\gamma_s} \right) - \gamma_v}{\gamma_v} \right] \sinh^{-1} R \left[\frac{\gamma_v}{\gamma_v(x^2 + y^2)} \right] \]
If \(R\) is very small, we have a point electrode. Writing the angle for the arc sinh and putting a constant times the current \(I\), for the remainder, (8) becomes
\[V = CI(x^2 + y^2)^{-i} \]
These curves thus have the same form as for an isotropic medium.

6.24. Space-charge Current. Child’s Equation.—So far, we have considered currents in conductors where the net charge is zero. Let us now consider currents in which charges of only one sign are present so that the net charge is not zero. We must assume the motion of the charges sufficiently slow so that the formulas of electrostatics are valid. In this case, Poisson’s equation [3.02 (3)] must be satisfied so that
\[\nabla^2 V = -\frac{\rho}{\epsilon_0} \]
where \(V\) is the potential and \(\rho\) the charge density. The charges are supposed to be similar and associated with a mass \(m\) and to acquire their energy entirely from a superimposed field. Thus, if their velocity is \(v\) and charge \(q\), their energy at a point where the potential is \(V\) will be
\[mv^2 = 2q(V_0 - V) \]
where \(V_0 \) is the potential of their point of origin. The current density at any point is given by

\[i = \rho v \quad (3) \]

The simplest case is the one in which the charges are freed in unlimited quantity at the plane \(x = 0 \) and accelerated with a total potential \(V_0 \) to a plane \(x = b \). At the surface \(x = 0 \), charges will be freed until there is no longer an electric field to move them away so that the boundary condition there is

\[\left(\frac{\partial V}{\partial x} \right)_{x=0} = 0 \quad (4) \]

Here, all the velocities are in the \(x \)-direction so that, eliminating \(\rho \) and \(v \) from (1) by means of (2) and (3), we have

\[\frac{\partial^2 V}{\partial x^2} = -\frac{i}{\epsilon_0} \left[\frac{m}{2q(V_0 - V)} \right]^4 \]

Multiplying through by \(dV/dx \) and integrating from \(V = V_0 \) and \(dV/dx = 0 \) to \(V \) and \(dV/dx \), we have

\[\left(\frac{dV}{dx} \right)^2 = \frac{4i}{\epsilon_0} \left[\frac{m(V_0 - V)}{2q} \right]^4 \quad (5) \]

Taking the square root of both sides, integrating from \(V = V_0 \), \(x = 0 \) to \(V = 0 \) and \(x = b \), and solving for \(i \), we have

\[i = \frac{4\epsilon_0}{q} \left(\frac{2q}{m} \right)^{1/4} V_0^{3/4} b^2 \quad (6) \]

This is known as Child’s equation. It shows that, with an unlimited supply of charges at one plate, the current between the plates varies as the three halves power of the potential. Such a current is said to be “space-charge limited.” We see from (6) that the space-charge limitation is much more serious for charged atoms than for electrons, because of their greater mass.

In practice, we frequently have the emitter in the form of a small circular cylinder and accelerate the charges to a larger concentric cylinder. In this case, we use cylindrical coordinates, and if \(I \) is the total current per unit length of the cylinders, (3) becomes

\[I = 2\pi \rho v \quad (7) \]

Writing (1) in cylindrical coordinates by 3.05 (2), eliminating \(\rho \) and \(v \) by (2) and (7), and writing \(V \) for \(V_0 - V \), we have

\[\frac{d^2 V}{dr^2} + \frac{dV}{dr} = \frac{I}{2\pi \epsilon_0} \left(\frac{m}{2q} \right)^{1/4} \quad (8) \]

The direct solution of this equation in finite terms is difficult, if not
impossible. We may, however, obtain a solution in series as follows: Let us see if the assumption that \(q, m, \) and \(V \) enter into this solution in the same way as into (6) leads to a solution of (8). Try the solution

\[
I = \frac{8\pi\varepsilon_0}{9} \left(\frac{2g}{m} \right)^{\frac{1}{4}} V^4 \frac{1}{r\beta^2}
\]

(9)

and see if \(\beta^2 \) can be determined to satisfy (8). Substituting (9) in (8) gives the equation

\[
3\beta^2 \frac{d^2\beta}{d\gamma^2} + \left(\frac{d\beta}{d\gamma} \right)^2 + 4\beta \frac{d\beta}{d\gamma} + \beta^2 - 1 = 0
\]

(10)

where

\[
\gamma = \ln \left(\frac{r}{a} \right)
\]

(11)

This equation can be solved in the regular way in series which gives

\[
\beta = \gamma - \frac{\gamma^3}{3} + \frac{1}{12} \gamma^5 - \frac{1}{180} \gamma^7 + \cdots
\]

(12)

Here \(a \) is the radius of the inner cylinder. Tables of \(\beta \) as a function of \(r/a \) have been published by Langmuir.

Problems

The problems marked C in the following list are taken from the Cambridge examinations as reprinted by Jeans, with the permission of the Cambridge University Press.

1. A certain apparatus is designed to operate on a 6-volt storage battery. The battery available, although of negligible resistance, will not supply the required current for a sufficiently long time. To avoid this difficulty, a d-c generator, whose electromotance may fluctuate from 100 to 120 volts, is placed in series with a resistance of such size that, when the combination is placed in parallel with the battery, the battery supplies none of the current to the apparatus, at the higher value. What fraction of the current does it supply at the lower value?

2. It is necessary to keep the temperature of a furnace adjusted within a certain range in spite of fluctuations of the line potential between 100 and 120 volts. At the higher temperature, the furnace takes 1.5 amp at 60 volts, and at the lower it takes 1 amp at 30 volts. A “ballast lamp” is available which passes exactly 2 amp at any voltage between 30 and 50. Show that, using two variable resistors, there are at least two ways of doing this and that the resistance ranges required in one case are 70 to 140 ohms and 6.67 to 40 ohms, and in the other case, 5 to 20 ohms and 30 to 120 ohms.

3. A certain apparatus passes a current \(i_1 \) regardless of the applied potential. The potential is obtained by connecting to one terminal of a battery of electromotance \(E \) and resistance \(R \) and to a movable contact on a resistance \(R \) connected across the battery. A voltmeter of resistance \(R_1 \) is connected across the apparatus. Find the current drawn from the battery as a function of the voltmeter reading.

4. A battery with an electromotance \(E_1 \) is connected between \(A \) and \(B \). In \(AD \), \(AC, CD, BC, CE \), and \(BE \) are resistances \(r, 2r, r, 2R, R \), respectively. A second battery is now connected in \(DE \), and no current is found to flow in the first battery. Show that the electromotance of the second battery is \((4R + 3r)E_1/[2(r + R)] \).

5. The potential on an electrometer needle is regulated by connecting to a fixed and movable contact \(A \) and \(B \) in a high-resistance \(AC \), which is connected across a battery. A voltmeter of high, but unknown, resistance reads \(V \), \(V_1 \), and \(V_2 \) across
AC, BC, and AB, respectively. Show that the true potential across the electrometer needle with the voltmeter removed is $V_2V/(V_1 + V_2)$.

6. Two wires of length D and resistance ρ per unit length are connected in parallel across a battery of electromotance \mathcal{E} and resistance r. There are two movable contacts, one on each wire, at distances x and y from the same end. Between these contacts is connected a load of resistance R. Show that the current through R is

$$2D\rho(y - x)\mathcal{E}$$

$$\frac{\rho^2D(x - y)^2 - (2r + \rho D)[2\rho D(x + y) + 2RD - \rho(x + y)^2]}$$

7. The four corners A, B, C, D of a square are connected to each other and to the center by wires of the same resistance per unit length, the resistance of one side being r. A galvanometer is inserted in the side AB and a battery in the C half of the diagonal AC. Show that the resistance that must replace the wire in the B half of BD, in order that no current flow through the galvanometer, is $r(2 + 2^{1/3})^{-1}$.

8C. A length $4a$ of uniform wire is bent into the form of a square, and the opposite angular points are joined with straight pieces of the same wire, which are in contact at their intersection. A given current enters at the intersection of the diagonals and leaves at an angular point. Find the current strength in the various parts of the network, and show that its whole resistance is equal to that of a length $21a/(2^{1/2} + 1)$ of the wire.

9C. A network is formed of a uniform wire in the shape of a rectangle of sides $2a$, $3a$, with parallel wires arranged so as to divide the internal space into squares of sides a, the contact at points of intersection being perfect. Show that if a current enters the framework by one corner and leaves it by the opposite, the resistance is equivalent to that of a length $121a/69$ of the wire.

10C. A fault of given earth resistance develops in a telegraph line. Prove that the current at the receiving end, generated by an assigned battery at the signaling end, is least when the fault is at the middle of the line.

11C. The resistances of three wires BC, CA, AB, of the same uniform section and material, are a, b, c, respectively. Another wire from A of constant resistance d can make a sliding contact with BC. If current enters at A and leaves at the point of contact with BC, show that the maximum resistance of the network is $(a + b + c)d/(a + b + c + 4d)$, and determine the least resistance.

12C. A certain kind of cell has a resistance of 10 ohms and an electromotive force of .85 of a volt. Show that the greatest current that can be produced in a wire whose resistance is 22.5 ohms, by a battery of five such cells arranged in a single series, of which any element is either one cell or a set of cells in parallel, is exactly .06 amp.

13C. Six points A, A', B, B', C, C' are connected to one another by copper wire whose lengths in yards are as follows: $AA' = 16$, $BC = B'C = 1$, $BC' = B'C' = 2$, $AB = A'B' = 6$, $AC' = A'C' = 8$. Also B and B' are joined by wires, each a yard in length, to the terminals of a battery whose internal resistance is equal to that of r yards of the wire, and all the wires are of the same thickness. Show that the current in the wire AA' is equal to that which the battery would maintain in a simple circuit consisting of $31r + 104$ yards of the wire.

14C. Two places A, B are connected by a telegraph line of which the end at A is connected to one terminal of a battery, and the end at B to one terminal of a receiver, the other terminals of the battery and receiver being connected to earth. At a point C of the line, a fault is developed, of which the resistance is r. If the resistances of AC, CB are p, q, respectively, show that the current in the receiver is diminished in the ratio $r(p + q):qr + rp + pq$, the resistances of the battery, receiver, and earth circuit being neglected.
15C. Two cells of electromotive forces \(e_1, e_2 \) and resistances \(r_1, r_2 \) are connected in parallel to the ends of a wire of resistance \(R \). Show that the current in the wire is \((e_1r_2 + e_2r_1)/(r_1R + r_2R + r_1r_2)\), and find the rates at which the cells are working.

16C. A network of conductors is in the form of a tetrahedron \(PQRS \); there is a battery of electromotive force \(E \) in \(PQ \), and the resistance of \(PQ \), including the battery, is \(R \). If the resistances in \(QR, RP \) are each equal to \(r \), and the resistances in \(PS, RS \) are each equal to \(\frac{1}{3}r \), find the current in each branch.

17C. \(A, B, C, D \) are the four junction points of a Wheatstone's bridge, and the resistances \(c, \beta, b, \gamma \) in \(AB, BD, AC, CD \), respectively, are such that the battery sends no current through the galvanometer in \(BC \). If now a new battery of electromotive force \(E \) is introduced into the galvanometer circuit, and so raises the total resistance in that circuit to \(a \), find the current that will flow through the galvanometer.

18C. A cable \(AB \), 50 miles in length, is known to have one fault, and it is necessary to localize it. If the end \(A \) is attached to a battery and has its potential maintained at 200 volts, whereas the other end \(B \) is insulated, it is found that the potential of \(B \) when steady is 40 volts. Similarly, when \(A \) is insulated, the potential to which \(B \) must be raised to give \(A \) a steady potential of 40 volts is 300 volts. Show that the distance of the fault from \(A \) is 19.05 miles.

19C. A wire is interpolated in a circuit of given resistance and electromotive force. Find the resistance of the interpolated wire in order that the rate of generation of heat is a maximum.

20C. The resistances of the opposite sides of a Wheatstone's bridge are \(a, a' \) and \(b, b' \), respectively. Show that, when the two diagonals which contain the battery and galvanometer are interchanged

\[
E \left(\frac{1}{C} - \frac{1}{C'} \right) = \frac{(a - a')(b - b')(G - R)}{(aa' - bb')}
\]

where \(C \) and \(C' \) are the currents through the galvanometer in the two cases, \(G \) and \(R \) are the resistances of the galvanometer and battery conductors and \(E \) the electromotive force of the battery.

21C (Modified). A number \(N \) of incandescent lamps, each of resistance \(r \), are fed by a generator of fixed electromotive force and resistance \(R \), including the leads. If the light emitted by any lamp is proportional to the square of the heat produced, show that, in order to obtain a maximum amount of light for a given amount of engine fuel, the lamps must be placed in parallel arc, each arc containing \(n \) lamps, where \(n \) is the integer nearest to \((2NR/r)^\frac{1}{4}\).

22C. A battery of electromotive force \(E \) and of resistance \(B \) is connected with the two terminals of two wires arranged in parallel. The first wire includes a voltameter that contains discontinuities of potential such that a unit current passing through it for a unit time does \(p \) units of work. The resistance of the first wire, including the voltameter, is \(R \); that of the second is \(r \). Show that if \(E \) is greater than \(p(B + r)/r \), the current through the battery is \[E(R + r) - pr]/[Rr + B(R + r)].

23C. A system of 30 conductors of equal resistance are connected in the same way as the edges of a dodecahedron. Show that the resistance of the network between a pair of opposite corners is \(\frac{1}{5} \) of the resistance of a single conductor.

24C. In a network \(PA, PB, PC, PD, AB, BC, CD, DA \), the resistances are \(\alpha, \beta, \gamma, \delta, \gamma + \delta, \delta + \alpha, \alpha + \beta, \beta + \gamma \), respectively. Show that, if \(AD \) contains a battery of electromotive force \(E \), the current in \(BC \) is \(P(\alpha\beta + \gamma\delta)E/[2P^2Q + (\beta\delta - \alpha\gamma)^2] \), where \(P = \alpha + \beta + \gamma + \delta, Q = \beta\gamma + \gamma\alpha + \alpha\delta + \delta\beta + \beta\gamma + \gamma\delta \).

25C. A wire forms a regular hexagon, and the angular points are joined to the center by wires each of which has a resistance \(1/n \) of the resistance of a side of the hexagon.
Show that the resistance to a current entering at one angular point of the hexagon and leaving by the opposite point is $2(n + 3)/((n + 1)(n + 4))$ times the resistance of a side of the hexagon.

26C. Two long equal parallel wires $AB, A'B'$, of length l, have their ends B, B' joined by a wire of negligible resistance, whereas A, A' are joined to the poles of a cell whose resistance is equal to that of a length r of the wire. A similar cell is placed as a bridge across the wires at a distance x from A, A'. Show that the effect of the second cell is to increase the current in B, B' in the ratio

$$\frac{2(2l + r)(x + r)}{r(4l + r) + 2x(2l - r) - 4x^2}$$

27C. A, B, C are three stations on the same telegraph wire. An operator at A knows that there is a fault between A and B and observes that the current at A when he uses a given battery is i, i'', or i''', according to whether B is insulated and C to earth, B to earth, or B and C are both insulated. Show that the distance of the fault from A is

$$ka - k'b + (b - a)\frac{1}{3}(ka - k'b)\frac{1}{3}$$

where $AB = a, BC = b - a, k = i''/(i - i'''), k' = i''/(i' - i''').$

28C. Six conductors join four points A, B, C, D in pairs and have resistances a, b, c, d, e, f, where a, α refer to BC, AD, respectively, and so on. If this network is used as a resistance coil with A, B as electrodes, show that the resistance cannot lie outside the limits $[c^{-1} + (a + b)^{-1} + (\alpha + \beta)^{-1}]^{-1}$ and

$$[c^{-1} + [(\alpha^{-1} + b^{-1})^{-1} + (a^{-1} + \beta^{-1})^{-1}]^{-1}]$$

29C. Two equal straight pieces of wire A_1, A_n, B_1, B_n are divided into n equal parts at the points A_1, \ldots, A_{n-1} and B_1, \ldots, B_{n-1}, respectively, the resistance of each part and that of A_nB_n being R. The corresponding points of each wire from 1 to n inclusive are joined by cross wires, and a battery is placed in A_1B_n. Show that, if the current through each cross wire is the same, the resistance of the cross wire A_nB_n is $[(n - s)^{-1} + (n - s) + 1]R$.

30C. If n points are joined two and two by wires of equal resistance r and two of them are connected to the electrodes of a battery of electromotive force E and resistance R, show that the current in the wire joining the two points is $2E/(2r + nR)$.

31C. Six points A, B, C, D, P, Q are joined by nine conductors $AB, AP, BC, BQ, PQ, QC, PD, DC, AD$. An electromotive force is inserted in the conductor AD and a galvanometer in PQ. Denoting the resistance of any conductor XY by r_{XY} show that, if no current passes through the galvanometer,

$$(r_{BC} + r_{BQ} + r_{CQ})(r_{ABP} - r_{APD}) + r_{BC}(r_{BQP} - r_{APC}) = 0$$

32C. A network is made by joining the five points 1, 2, 3, 4, 5 by conductors in every possible way. Show that the condition that conductors 23 and 14 are conjugate is

$$(K_{16} + K_{25} + K_{26} + K_{45})(K_{12}K_{24} - K_{13}K_{24}) = K_{56}(K_{54}K_{12} - K_{54}K_{15}) + K_{63}(K_{34}K_{51} - K_{54}K_{12})$$

where K_{pq} is the conductivity between p and q.

33C. Two endless wires are each divided into mn equal parts by the successive terminals of mn connecting wires, the resistance of each part being R. There is an identically similar battery in every mth connecting wire, the total resistance of each
PROBLEMS

being the same, and the resistance of each of the other \(mn - n \) connecting wires is \(k \).

Prove that the current through a connecting wire which is the \(r \)th from the nearest battery is

\[
\frac{1}{2}C(1 - \tan \alpha)(\tan^r \alpha + \tan^{m-r} \alpha)
\]

\[
\tan \alpha - \tan^m \alpha
\]

where \(C \) is the current through each battery and sin \(2\alpha = h/(h + R) \).

34C. A long line of telegraph wire \(A_1A_2 \ldots A_nA_{n+1} \) is supported by \(n \) equidistant insulators at \(A_1, A_2, \ldots, A_n \). The end \(A \) is connected to one pole of a battery of electromotive force \(E \) and resistance \(B \), and the other pole of this battery is put to earth, as also the other end \(A_{n+1} \) of the wire. The resistance of each portion \(AA_1, A_1A_2, \ldots, A_nA_{n+1} \) is the same \(R \). In wet weather, there is a leakage to earth at each insulator, whose resistance may be taken equal to \(r \). Show that the current strength in \(A_pA_{p+1} \) is

\[
\frac{E \cosh (2n - 2p + 1)\alpha}{B \cosh (2n + 1)\alpha + (Rr)^{1/3} \sinh (2n + 2)\alpha}
\]

where \(2 \sinh \alpha = (R/r)^{1/3} \).

35C. A regular polygon \(A_1A_2 \ldots A_n \) is formed of \(n \) pieces of uniform wire, each of resistance \(\sigma \), and the center 0 is joined to each angular point by a straight piece of the same wire. Show that, if the point 0 is maintained at zero potential and the point \(A_1 \) at potential \(V \), the current that flows in the conductor \(A_rA_{r+1} \) is

\[
\frac{2V \sinh \alpha \sinh (n - 2r + 1)\alpha}{\sigma \cosh n\alpha}
\]

where \(\alpha \) is given by the equation \(\cosh 2\alpha = 1 + \sin (\pi/n) \).

36C. A resistance network is constructed of \(2n \) rectangular meshes forming a truncated cylinder of \(2n \) faces, with two ends each in the form of a regular polygon of \(2n \) sides. Each of these sides is of resistance \(r \) and the other edges of resistance \(R \). If the electrodes are two opposite corners, then the resistance is

\[
\frac{nr}{4} + \frac{R \tanh \theta}{2 \tanh n\theta} \quad \text{where} \quad \sinh^2 \theta = \frac{1}{R} \frac{3r}{R}
\]

37C. A network is formed by a system of conductors joining every pair of a set of \(n \) points, the resistances of the conductors being all equal, and there is an electromotive force in the conductor joining the points \(A_1, A_2 \). Show that there is no current in any conductor except those which pass through \(A_1 \) or \(A_2 \), and find the current in these conductors.

38C. Each member of the series of \(n \) points \(A_1, A_2, \ldots, A_n \) is united to its successor by a wire of resistance \(\rho \), and similarly for the series of \(n \) points \(B_1, B_2, \ldots, B_n \). Each pair of points corresponding in the two series, such as \(A_1 \) and \(B_1 \), is united by a wire resistance \(R \). A steady current \(i \) enters the network at \(A_1 \) and leaves it at \(B_n \). Show that the current at \(A_1 \) divides itself between \(A_1A_2 \) and \(A_1B_1 \) in the ratio \(\sinh n\alpha - \sinh (n - 2)\alpha = 2 \sinh \alpha : \sinh n\alpha + \sinh (n - 2)\alpha = 2 \sinh (n - 1)\alpha \) where \(\cosh \alpha = (R + \rho)/R \).

39C. An underground cable of length \(a \) is badly insulated so that it has faults throughout its length indefinitely near to one another and uniformly distributed. The conductivity of the faults is \(1/\rho' \) per unit length of cable, and the resistance of the cable is \(\rho \) per unit length. One pole of a battery is connected to one end of the cable and the other pole is earthed. Prove that the current at the farther end is the same as if the cable were free from faults and of total resistance \(\rho(\rho')^{1/3} \sinh [\alpha(\rho/\rho')^{1/3}] \).
40. Two straight wires of resistance r per unit length intersect at one end. The points A_1, A_2, \ldots, A_m on one wire are connected to corresponding points B_1, B_2, \ldots, B_m on the other by means of resistances R, $2R$, \ldots, mR. A_n and B_n are at distances n^2x and n^2y, respectively, from the intersection. The potential difference between A_n and B_m is E. If $\mu = 1 + \tau(x + y)/R$ show that the current between A_n and B_n is

$$i_n = \frac{EP_n(\mu)}{(m + 1)R[P_m(\mu) - P_{m+1}(\mu)]}$$

41. In the preceding problem, the wires are cut between A_{n-1} and A_n and between B_{n-1} and B_n. If $s < n < m$, show that the current i_n is now

$$i_n = \frac{E[(Q_{n-1}P_n - P_{n-1}Q_n)]}{(m + 1)R[(P_m - P_{m+1})Q_{n-1} + (Q_n - Q_{n+1})P_{n-1}]}$$

where the argument of the Legendre functions is $1 + \tau(x + y)/R$.

42. A cylindrical column of length l and radius a of material of resistivity τ connects normally the parallel plane faces of two semi-infinite masses of the same material. Show that, if R is the resistance between the masses,

$$\frac{\tau l}{\pi a^2} + \frac{\tau}{2a} < R < \frac{\pi}{2(\pi - l \ln (1 + \pi a/l))}

$$

Observe that, when $l = 0$, both limits give the exact value.

43C. A cylindrical cable consists of a conducting core of copper surrounded by a thin insulating sheath of material of given specific resistance. Show that, if the sectional areas of the core and sheath are given, the resistance to lateral leakage is greatest when the surfaces of the two materials are coaxial right circular cylinders.

44C (Modified). Current enters and leaves a uniform circular disk through two circular perfectly conducting wires, of radius a, whose centers are a distance d apart and which intersect the edge of the disk orthogonally. Show that the resistance between the wires is $2(\tau/\pi) \cosh^{-1}(d/2a)$, where τ is the resistivity.

45. Two electrodes each of small radius δ are situated at a distance $2a$ apart on a line lying midway between the edges of an infinite strip of width π and resistivity τ with insulated boundaries. Show that the resistance between them is, approximately,

$$\frac{s}{\pi} \ln \frac{\sinh 2a}{\delta}

$$

46. Instead of being situated as in the last problem, the two electrodes lie symmetrically on a line normal to the edges of the strip. Show that the resistance between them is, approximately,

$$\frac{s}{\pi} \ln \left(\frac{2 \tan a}{\delta}\right)

$$

47. The electrodes are situated as in problem 45 but the edges of the strip are perfectly conducting. Show that the resistance is, approximately,

$$\frac{s}{\pi} \ln \left(\frac{2 \tanh a}{\delta}\right)

$$

48C. A circular sheet of copper, of specific resistance τ_1 per unit area, is inserted in a very large sheet of tinfoil (τ_0), and currents flow in the composite sheet, entering and
leaving at electrodes. Prove that the current function in the tinfoil, corresponding to an electrode at which a current ϵ enters the tinfoil, is the coefficient of i in the imaginary part of

$$\frac{s\epsilon}{2\pi} \left[\ln(z - c) + \frac{s_0 - s_1}{s_0 + s_1} \ln \frac{cz}{cz - a^2} \right]$$

where a is the radius of the copper sheet, z is a complex variable with its origin at the center of the sheet, and c is the distance of the electrode from the origin, the real axis passing through the electrode.

49C. A uniform conducting sheet has the form of the catenary of revolution $y^2 + z^2 = c^2 \cosh^2 (x/c)$. Prove that the potential at any point due to an electrode at x_0, y_0, z_0, introducing a current C, is

$$\text{constant} \cdot \frac{C}{4\pi} \ln \left\{ \cosh \frac{x - x_0}{c} - \frac{yy_0 + z z_0}{(y_0^2 + z_0^2)^{1/2}} \right\}$$

50. The edges of two thin sheet electrodes are held in a circular cylinder of resisting material of length L. Both electrodes and the axis of the cylinder lie in the same plane and their edges are parallel to, and at a distance c from, this axis. Take c small compared with R, the radius of the cylinder. If τ is the resistivity, show that the resistance between electrodes is, approximately,

$$\frac{(\pi \tau/2L)}{\ln 2R/c}$$

51. Current enters an infinite plane conducting sheet at some point P and leaves at infinity. A circular hole, which does not include P, is cut anywhere in the sheet. Show that the potential difference between any two points on the edge of the hole is twice what it was between the same two points before the hole was cut.

52. An insulator has the form of a truncated cone of height h, base radius a_1, and top radius a_2. The base rests on a metal plate, and the top supports a concentric metal post of radius a_3. If the specific surface resistance is s, show that the surface resistance between the plate and the post is

$$\frac{s}{2\pi} \left\{ \frac{[h^2 + (a_1 - a_3)^2]^3}{a_1 - a_2} \ln \left(\frac{a_1}{a_2} \right) + \ln \left(\frac{a_3}{a_3} \right) \right\}$$

53. On a spherical conducting shell, current is introduced at the point $\theta = \alpha$, $\phi = 0$ and taken out at the point $\theta = \alpha$, $\phi = \pi$, where θ is the colatitude angle and ϕ the longitude angle. Show that the potential on the surface is of the form

$$A \ln \left(\frac{1 - \cos \alpha \cos \theta - \sin \alpha \sin \theta \cos \phi}{1 - \cos \alpha \cos \theta + \sin \alpha \sin \theta \cos \phi} \right) + C$$

54. The ends of two metal rods of radius b are embedded in a sphere of insulating material of radius a whose body resistance is very high but whose surface resistance is s. If the axes of the rods were extended, they would intersect at the center of the sphere at an angle α. Show that the surface resistance between the rods is

$$\frac{s}{\pi} \cosh^{-1} \left(\frac{a}{b} \sin \frac{\alpha}{2} \right)$$
55. A current flows in a thin shell whose equation is \((z/a)^2 + (r/b)^2 = 1\), where \(\rho^2 = x^2 + y^2\) and \(a > b\). Show that the potential \(V\) on the shell is either \(U_1\) or \(U_2\) where \(U_1 + jU_2 = f(a + j\phi), \tan \phi = y/z\) and

\[
\alpha = \tanh^{-1} \left(\frac{b z}{\left[a^4 - (a^2 - b^2) z^2 \right]^{1/2}} \right) + \frac{a^2 - b^2}{b} \sinh^{-1} \left[\frac{z(a^2 - b^2)^{1/2}}{a^2} \right]
\]

The function \(f(a + j\phi)\) is periodic in \(\phi\) with a period of \(2\pi\), and we must also have \(\partial V/\partial \alpha = 0\) at \(z = \pm a\) or \(\alpha = \pm \infty\) if there are no sources or sinks of current there, otherwise \(\partial V/\partial \phi = 0\) there.

56. If we have an oblate spheroidal shell carrying current instead of the prolate one treated above, so that \(a < b\), show that the preceding considerations apply except that

\[
\alpha = \tanh^{-1} \left(\frac{b z}{\left[a^4 + (b^2 - a^2) z^2 \right]^{1/2}} \right) - \frac{b^2 - a^2}{b} \sinh^{-1} \left[\frac{z(b^2 - a^2)^{1/2}}{a^2} \right]
\]

57. Consider the surface of the earth as plane and its resistivity to be \(\tau_0\) except for a region in the shape of a semi-infinite vertical cone with its apex at the surface which has the resistivity \(\tau_1\). A current \(I\) is introduced at the surface at \(\phi = 0\), at a distance \(r = a\) from the apex. Show that the potential at any point \(r < a\) outside the cone is given by

\[
V_0 = I(ar)^{-1} \pi^{-2} \sum_{m = 0}^\infty \cos m\phi \int_0^\infty \left[A_m(p)P_{2p-4}(\mu) + B_m(p)P_{2p-4}(-\mu) \right] \cos (p \ln r) \, dp
\]

\[
A_m(p) = \frac{(\tau_1 - \tau_2)B_m(p)}{\tau_2 S' - \tau_1 S} = \frac{\tau_1(\tau_1 - \tau_2)(2 - \delta_m^0) \cos (p \ln a)}{P_{2p-4}(0)[\tau_1 - \tau_2 + (-1)^m(\tau_1 S - \tau_2 S')]}\]

\[
S' = \frac{\partial[P_{2p-4}(\cos \alpha)]/\partial(\cos \alpha)}{\partial[P_{2p-4}(-\cos \alpha)]/\partial(\cos \alpha)} \quad S = \frac{P_{2p-4}(\cos \alpha)}{P_{2p-4}(-\cos \alpha)}
\]

58. A thin circular loop current source \(I\) is coaxial with, and immersed in, a solid cylinder of resisting material of radius \(a\) and length \(L\) with perfectly conducting earthed ends. Show that the potential distribution in the cylinder is, if \(z < c\),

\[
\frac{\tau I}{\pi a^2} \sum_{k = 1}^\infty \frac{\sinh \mu_k z \sinh \mu_k (L - c) J_0(\mu_k b)J_0(\mu_k p)}{\sinh \mu_k L \mu_k J_0(\mu_k a)^2}
\]

where \(\mu_k\) is so chosen that \(J_1(\mu_k a) = 0\) and the loop is at \(\rho = b, z = c\).

59. Two rings made of wire of small radius \(d\) are coaxial with an infinite circular cylinder of resisting material of radius \(a\) and embedded in its surface to a depth \(d\). Show that, if \(\mu_k\) is chosen so that \(J_1(\mu_k a) = 0\), the resistance between them when their centers are at a distance \(c\) apart is, approximately,

\[
R = \frac{\tau}{\pi a^2} \sum_{k = 1}^\infty \frac{1}{\mu_k} \ln \left[1 - e^{-\mu_k (c-2d)} \right] e^{-\mu_k d}
\]

60. A conducting circular cylinder with inner and outer radii \(a\) and \(b\) is cut on one side longitudinally, the edges of the cut being maintained at potentials of \(\pm \frac{1}{2}V_0\) and \(-\frac{1}{2}V_0\), so that current flows around the cylinder. Show that the electrostatic fields, when \(r < a\) and \(r > b\), are given, respectively, by the transformations

\[
W = \frac{V_0}{\pi} \ln (a + z) \quad \text{and} \quad W = \frac{V_0}{\pi} \ln \frac{z}{z + b}
\]
61. A current i is introduced at one pole of a thin conducting spherical shell of radius a and uniform area resistivity σ and removed at the other. Show that the electrostatic potential at any point inside the shell is

$$V = \frac{i}{2\pi} \sum_{n=0}^{\infty} \frac{4n + 3}{(2n + 1)(2n + 2)} \left(\frac{r}{a} \right)^{2n+1} P_{2n+1}(\mu)$$

62. A wire of radius a and resistivity τ_1 is coaxial with the z-axis. The medium outside the wire is insulating except for that portion lying between $z = -c$ and $z = c$, which has a resistivity τ_2. If $\tau_2 \gg \tau_1$, show that the ratio of the resistance across the gap of a perfectly insulated wire to that of the actual wire is, approximately,

$$\frac{R_\infty}{R} = 1 + \frac{16\pi \tau_1}{\pi^2 a \tau_2} \sum_{n=0}^{\infty} \frac{1}{(2n + 1)^2} \frac{K_1 \left[\frac{1}{2}(2n + 1)\tau a/c \right]}{K_0 \left[\frac{1}{2}(2n + 1)\tau a/c \right]}$$

63. The corners of the wider strip in Fig. 6.13b are cut off at 45° so that the half width of the strip increases linearly from h to k. Show that the presence of the tapered section near the center of a long strip increases its resistance over the sum of the resistances of the straight sections by an amount

$$s \frac{\pi}{\pi h^k} \left[(h^2 + k^2) \tanh^{-1} \frac{h}{k} + (k^2 - h^2) \tan^{-1} \frac{h}{k} + k h \ln \frac{k^4 - h^4}{8h^2 k^2} \right]$$

References

The author has found helpful treatments of the subject matter of this chapter in the following books:

CHAPTER VII

MAGNETIC INTERACTION OF CURRENTS

7.00. Definition of the Ampere in Terms of the Magnetic Moment.—As mentioned in the last chapter, electric currents flowing in neighboring conductors exert forces on each other known as magnetic forces. This magnetic interaction was carefully investigated by Ampère. One of his experiments showed that, when two wires carrying equal currents in opposite directions lie sufficiently close together, their power of interacting magnetically with other circuits is destroyed. Let us now construct several small plane loops of wire, twisting together the thin wires by which the current is to enter and leave the loops so that any magnetic forces observed will be due to the loop alone. Keeping them at distances great compared with their dimensions, we see that, when carrying steady currents, the forces and torques that they produce on each other are in every way like those between electric dipoles, provided that we orient the normal to the plane of the loop as we would the axis of an electric dipole. Thus, using three small loops carrying fixed currents, we can, by taking them two at a time and measuring the forces and distances between them, determine by 1.071 (6) the products \(m_1 m_2 = A \), \(m_1 m_3 = B \) and \(m_2 m_3 = C \) and so find \(m_1^2 = AB/C \), \(m_2^2 = AC/B \), and \(m_3^2 = BC/A \). If the experiment is done in vacuo and \(1/\varepsilon \) is replaced by \(\mu_v = 4\pi \times 10^{-7} \), then \(m \) for each loop equals the product of its area in square meters by its current in amperes and is the magnitude of its "magnetic moment." Thus an ampere may be defined as that current which, flowing in a small plane loop of wire, gives it a magnetic moment equal to its area. In a medium other than a vacuum the forces and torques are different and the factor \(\mu \) which replaces \(\mu_v \) is called the permeability of the medium.

7.01. Magnetic Induction and Permeability.—If a conductor, carrying a current, when placed in a certain region, experiences a magnetic force we say a magnetic field exists in that region. We shall map the magnetic field by means of a small exploring loop just as we could map the electric field by means of a small electric dipole. When free to move, the loop assumes a certain orientation. We shall define the positive direction of the magnetic field to be normal to the loop and directed as a right-handed screw moves when rotated in the sense in which the current traverses the loop. As in the electrostatic case, we can measure the strength of the magnetic field in terms of the torque acting on the loop.
Thus, we define the magnetic induction or flux density \(B \) to be a vector in the magnetic field direction whose magnitude, in webers per square meter, is the torque in newton meters on a loop of moment one whose axis is set normal to this direction. This torque, and hence \(B \), depends on the medium in which the experiment is performed. We define the relative magnetic permeability \(K_m \) of a substance to be the ratio of the magnetic induction when all space is occupied by the substance to its value at the same point \textit{in vacuo}, the configuration of all circuits and the magnitude of all currents being the same. The permeability \(\mu \) is the product \(\mu_0 K_m \).

The experiments on which the definition of \(\mu \) and \(B \) depend involve no theoretical difficulty in the case of liquid and gaseous mediums. It is obviously impossible, however, to manipulate a loop of wire in a solid medium. If all space outside the small region in which our loop is situated is filled with one liquid and this region is filled with another, then we find that the measured value of \(B \) is independent of the shape and size of this region only when the liquids have the same permeability. Thus, to determine \(B \) and \(\mu \) at a point in a homogeneous isotropic solid, we excavate a cavity at \(P \) and fill it with a liquid such that the measurement at \(P \) is independent of the shape and size of the cavity. The value of \(B \) and \(\mu \) at \(P \), so determined, is the same as before the cavity was created. In 7.24, by using the boundary conditions derived in 7.21, we shall describe an experimental method of defining \(B \) and \(\mu \) which includes the case of magnetically anisotropic crystals.

Suppose that we take a great number of small loops, each carrying a current \(I \) and, without changing the area, fit them together into a mesh always keeping the direction of the induction due to adjacent loops parallel. From Ampère's experiment, the magnetic effect of all loop boundaries, except those forming the outer edge of the mesh, disappears, so that the resultant magnetic effect is exactly the same as if the current \(I \) circulated around the boundary alone and, hence, is independent of the shape of the surface of the mesh. But we know that the magnetic induction due to any elementary loop of area \(dS \) is identical with the electric field due to an electric dipole of moment \(\mu I \, dS \). The magnetic induction due to the whole circuit is therefore the same as the electric field due to a uniform electric double layer of strength \(\mu I \), whose boundary coincides with the circuit and which we discussed in 1.12. This magnetic equivalent of a double layer is called a magnetic shell. If we look for this shell by following a magnetic line of force produced by an electric circuit, we find ourselves retracing the same path repeatedly, without arriving at any magnetic discontinuity corresponding to the electric double layer. Thus, the magnetic shell has no physical existence and is merely a convenient device of use in computing magnetic fields. Furthermore, this
shows that there are neither sources nor sinks of a magnetic nature corresponding to the electrostatic charge so that

$$\text{div } B = \nabla \cdot B = 0 \tag{1}$$

The work required to take a unit electric charge from one face of a uniform electric double layer of strength μI to the other, by a path passing around its edges is μI, by 1.12 (3), since the difference in the solid angle subtended by the layer at the two ends of the path is 4π. Thus, if the electric intensity is E, we have

$$\int E \cdot ds = \mu I$$

when ds is an element of the path. As we have seen, the magnetic induction due to a current I is everywhere the same as the electric intensity due to a uniform electric double layer of strength μI, having the circuit as a boundary, so that, in vacuo, $\mathcal{J} B \cdot ds = \mu \mu I$, and in a medium of uniform permeability μ we would have

$$\mathcal{J} B \cdot ds = \mu I \tag{2}$$

But from 6.00 (2), we have $I = \int i \cdot n \, dS$ where i is the current density and S is the area inside the path s, thus we have $\mathcal{J} B \cdot ds = \mu |i \cdot n| \, dS$. We can transform the left side by Stokes's theorem \[3.01\] (1), giving

$$\int_S \nabla \times B \cdot n \, dS = \mu \int_S i \cdot n \, dS \tag{2.1}$$

It is easy to see that this holds for any path, even if it includes only part of the current; for in that case either that part of the shell due to currents not encircled will be crossed twice, once in the positive and once in the negative direction, or it will not be crossed at all. In either case, it contributes nothing to the integral. Thus, this relation holds for the integrands alone, giving in a region of uniform permeability,

$$\nabla \times B = \mu i \tag{3}$$

7.02. Magnetic Vector Potential. Uniform Field.—It is well known that the divergence of a vector which is itself the curl of another vector is zero and so satisfies 7.01 (1). Thus, we may define a new vector A, which we shall call the magnetostatic vector potential as a vector whose divergence is zero and whose curl is B, thus

$$\nabla \times A = B \quad \nabla \cdot A = 0 \tag{1}$$

The standard formula for curl curl A now becomes

$$\nabla \times [\nabla \times A] = \nabla(\nabla \cdot A) - (\nabla \cdot \nabla)A = -\nabla^2 A$$

Substituting in 7.01 (3), we have, in a region of uniform permeability,

$$\nabla^2 A = \mu i \tag{2}$$
On writing out the components, this is
\[\mathbf{r} \nabla^2 A_z + \mathbf{r} \nabla^2 A_y + \mathbf{r} \nabla^2 A_z = -\mu (\mathbf{i}_z + \mathbf{j}_y + \mathbf{k}_z) \]
(3)
Thus \(A_z, A_y, \) and \(A_z \) all satisfy Poisson's equation \([3.02 (3)].\) We have found a solution of this equation in \(3.09\) (1) to be
\[A_z = \frac{\mu}{4\pi} \int_\mathbf{r} i_z \, dv, \quad A_y = \frac{\mu}{4\pi} \int_\mathbf{r} i_y \, dv, \quad A_z = \frac{\mu}{4\pi} \int_\mathbf{r} i_z \, dv \]
(4)
Adding components gives
\[A = \frac{\mu}{4\pi} \oint_\mathbf{r} i \, dv \]
(4.1)
In the region outside the wire, \(i \) is zero and since, in a thin wire of cross-sectional area \(dS, \) we have \(i_z \, dv = i \, dS \, dx = I \, dx, \) we may write, summing up the vector components,
\[A = \frac{\mu}{4\pi} \oint_\mathbf{r} I \, ds \]
(5)
Physically, this is a more satisfactory concept than the magnetic shell since it depends only on the configuration of the circuit, the current strength, and the location of the point of measurement and involves no artificial discontinuities. It will give the correct value for the line integral of \(B \) for any path. Evidently, we can consider the vector contribution to \(A \) by any element of the closed circuit as parallel to that element.

The vector potential in rectangular coordinates associated with a uniform magnetic induction \(B \) in the \(x \)-direction has only two components \(A_y \) and \(A_z, \) and their values are
\[A_y = -\alpha z B \quad A_z = (1 - \alpha) y B \]
(6)
where \(\alpha \) is an arbitrary number. Obviously, the \(x \)-component of the curl is \(B \) and the other components are zero. In spherical coordinates, the vector potential of a uniform field parallel to the \(\theta = 0 \) axis is
\[A_\phi = \frac{1}{2} B r \sin \theta \]
(7)
In cylindrical coordinates, the vector potential of a uniform field parallel to the \(z \)-axis is
\[A_\phi = \frac{1}{2} B \rho \]
(8)
In oblate spheroidal coordinates, the vector potential of a uniform field parallel to the \(\xi = 1 \) axis is
\[A_\phi = \frac{c_1 B}{2 j} P_1^1(\xi) P_1^1(\eta) \]
(9)
In prolate spheroidal harmonics, it is
\[A_\phi = \frac{c_2 B}{2} P_1^1(\xi) P_1^1(\eta) \]
(10)
The forms of \(A \) given in the last five formulas are not, of course, the most general forms that give the required \(B \). We could add to each the gradient of a scalar without affecting \(B \).

7.03. Uniqueness Theorems for Magnetostatics.—In 3.10 we found just what information concerning the interior and boundary surface of a region is necessary to determine uniquely the electrostatic potential inside it. This proof applies without change to the magnetomotance discussed in 7.28, provided there are no electric currents within the region which would make it multiple valued. The vector potential requires a different proof. We shall show that, if the location and magnitude of all fixed currents inside a closed surface are specified as well as the value of the tangential component of either the vector potential or the magnetic induction over this surface, then the value of the magnetic induction everywhere inside it is uniquely determined. The contribution of internal sources given by 7.02 (1) and (5) is unique. Suppose there were two internal values \(B \) and \(B' \) having identical external sources and boundary values and derived from \(A \) and \(A' \). If \(\nabla \cdot A = \nabla \cdot A' = 0 \), then \(\nabla^2 (A - A') \) vanishes throughout the volume so that putting

\[
\Phi = A - A'
\]

in 3.06 (5) gives

\[
\int_V (B - B')^2 \, dv = \sum_{j=1}^{n} \int_{S_j} \langle A - A' \rangle \cdot \left((B - B') \times n \right) \, dS_j
\]

If, on \(S \), \(n \times A = n \times A' \) or \(B \times n = B' \times n \), then the surface integral is zero so that in either case \(B = B' \) throughout \(v \) because \((B - B')^2\) is positive.

If \(B - B' \) is zero throughout the volume, then \(A \) and \(A' \) can differ therein only by the gradient of a scalar. By 3.10, if the gradient of a scalar is zero over \(S \), it vanishes in \(v \) so that if \(A - A' \) vanishes over \(S \) it vanishes in \(v \) and \(A \) is uniquely determined therein by its value over \(S \).

7.04. Orthogonal Expansions for Vector Potential.—In electrostatics, after finding the potential due to a fixed charge distribution, we superimpose suitable perturbing potentials to satisfy the conditions at dielectric or conducting boundaries. To use the same method with vector potentials, it is necessary that, having found by 7.02 (4.1) that part of the vector potential due to the given current distribution, we know suitable forms of perturbing potentials to superimpose to meet magnetic boundary conditions.

The direct method of solving Laplace’s equation for the vector potential is not easy for, where Laplace’s operator is applied to a vector, it operates not only upon the magnitudes of the components of the vector, but also upon the unit vectors themselves, as illustrated in 11.05 (2) and (3). Except in rectangular coordinates, this gives rise to a set of three
simultaneous partial differential equations whose solution may be very complicated. We are led, therefore, to look for a simpler method.

We have seen [3.02 (1)] that in free space where there are no electric charges the divergence of the electric field is zero and, since from 1.06 (4) it is the gradient of a scalar, its curl is also zero. Similarly, from 7.01 (1) and (3), in free space, where there are no electric currents, the divergence and curl of the magnetic induction are zero. We would expect, in such regions, to write expansions for the two fields in terms of orthogonal functions, in the same form. In Chap. V, we obtained these expansions by solving Laplace's second-order partial differential equation. This equation was broken up into three total differential equations, each involving a single coordinate, connected by two indices. Thus, each term in the expansion involves two indices and six integration constants. As just pointed out, owing to the mathematical similarity of electric and magnetic fields, we should expect that part of the vector potential which contributes to the magnetic induction to have the same number of indices and constants.

This potential should be derivable from three scalar potential functions because, in rectangular coordinates, each component of the vector potential satisfies Laplace's equation. These components are not, however, independent, but are connected by the relation \(\nabla \cdot A = 0 \), so that only two independent scalar functions, at most, can be used. Furthermore, as just pointed out, when properly chosen, only one of these will contribute to the magnetostatic field. The general expression for the vector potential, giving zero divergence, is

\[
A = \nabla \times W
\]

(1)

where \(W \) is a vector which should be derivable from two scalar potential functions. To fit boundary conditions, when dealing with eddy currents and electromagnetic radiation, we shall find it convenient to split \(W \) into two components, normal to each other, each of which is derivable from a different scalar potential function. Thus we shall write

\[
W = uW_1 + u \times \nabla W_2
\]

(2)

where \(u \) is an arbitrary vector to be chosen so that

\[
\nabla^2 A = \nabla^2 (\nabla \times W) = \nabla \times (\nabla^2 W) = 0
\]

(3)

\[
\nabla^2 W_1 = 0, \quad \text{and} \quad \nabla^2 W_2 = 0
\]

Now it is easily verified, by writing out in rectangular coordinates, that

\[
\nabla^2 u W_1 = u \nabla^2 W_1 \quad \text{or} \quad u \nabla^2 W_1 + 2 \nabla W_1 \quad \text{and} \quad \nabla^2 (u \times \nabla W_2) = u \times \nabla (\nabla^2 W_2)
\]

(4)

where \(u = i, j, k, \) or \(r \), so that these are suitable choices of \(u \). From the similarity of \(B \) and \(E \), we suspect that \(B \), like \(E \), can be obtained from a single scalar potential function. This surmise is confirmed by examining
the contribution of W_2 to A. Thus we have
\[u = i, j, \text{ or } k, \quad \nabla \times (u \times \nabla W_2) = u(\nabla^2 W_2) - \nabla (u \cdot \nabla W_2) \] \[u = r, \quad \nabla \times (u \times \nabla W_2) = u(\nabla^2 W_2) - \nabla (u \cdot \nabla W_2) - \nabla W_2 \]

Since $\nabla^2 W_2 = 0$, the part of A derived from W_2 is the gradient of a scalar and contributes nothing to B in the magnetostatic case.

If u_1, u_2 and u_3 are orthogonal curvilinear coordinates, if the u specified above lies in the direction of u_1, and if W_1 is of the form $U(u_1)F(u_2, u_3)$, then $B \cdot A = 0$. This is proved in Lass, pp. 48 and 57.

In the following articles, we shall use the theory just developed to obtain solutions of the equation
\[\nabla^2 A = 0 \]

in the form
\[A = u'_1 U_{11} U_{12} U_{13} + u'_2 U_{21} U_{22} U_{23} + u'_3 U_{31} U_{32} U_{33} \]

where u'_1, u'_2, and u'_3 are unit vectors in the directions of the coordinates u_1, u_2, and u_3, and U_{rs} is a function of u_s only. The solution should be in such a form that the vector potential anywhere inside a volume containing no sources and bounded by a set of surfaces, on each of which one of the coordinates is constant, can be calculated when the value of its tangential components on these surfaces is given.

7.05. Vector Potential in Cylindrical Coordinates.—In Chap. V we found that the general solution of Laplace’s equation in cylindrical coordinates could be built up of a sum of terms involving, except in particular cases, Bessel functions. We now wish to find analogous solutions for the vector potential which possess orthogonal properties on the surfaces of a right circular cylinder so that we can express the tangential components of the vector potential thereon as a sum of such solutions and thus determine its value at any interior point. Choosing the Bessel function solution of $\nabla^2 W_1 = 0$ given in 5.291 and setting $u = r$, the W of 7.04 (1) becomes
\[W = \kappa k^{-1}(Ae^{\kappa z} + Be^{-\kappa z}) [Cj_n(k\rho) + D\gamma_n(k\rho)] \sin (n\phi + \delta_n) \] (1)

The vector potential derived from this by 7.04 (1) is
\[A_\phi = -(Ae^{\kappa z} + Be^{-\kappa z}) [Cj_n(k\rho) + D\gamma_n(k\rho)] n(k\rho)^{-1} \cos (n\phi + \delta_n) \]
\[A_\rho = (Ae^{\kappa z} + Be^{-\kappa z}) [Cj'_n(k\rho) + D\gamma'_n(k\rho)] \sin (n\phi + \delta_n) \] (2)

This is the orthogonal surface vector function defined by 5.296 (8). If, for a given z-value, either component of $r \times A$ vanishes when $\rho = a$ then at this z-value $r \times A$ may be expressed as a sum of such functions. A rarely used form containing ϕ is obtained by setting $\delta_n = 0$, letting $n \to 0$ and keeping the products of nA and nB finite.

In order to obtain suitable solutions for expressing the tangential components of A over the curved surfaces, we use the forms of 5.292 (3)
which are orthogonal in z and ϕ. This gives in place of (2)
\begin{align*}
A_\rho &= -[CI_n(k\rho) + DK_n(k\rho)]n(k\rho)^{-1}\cos(kz + \gamma_k) \cos(n\phi + \delta_n) \\
A_\phi &= [CI_n'(k\rho) + DK_n'(k\rho)] \cos(kz + \gamma_k) \sin(n\phi + \delta_n)
\end{align*}
(3)
The z-component satisfies the scalar Laplace equation and is written
\begin{align*}
A_z &= [C'I_n(k\rho) + D'K_n(k\rho)] \cos(kz + \gamma_k) \cos(n\phi + \delta_n)
\end{align*}
(4)
The above solutions are inadequate when $k = 0$ and $n \neq 0$. For the curved surface, solutions corresponding to (3) and (4) are
\begin{align*}
A_\rho &= (\rho^{n+1} + B\rho^{-n-1})(Cz + D) \sin(n\phi + \delta_n) \\
A_\phi &= (-\rho^{n+1} + B\rho^{-n-1})(Cz + D) \cos(n\phi + \delta_n) \\
A_z &= (A'\rho^n + B'\rho^{-n})(C'z + D') \cos(n\phi + \delta_n)
\end{align*}
(5)
When $k = 0$, there are no solutions orthogonal in both ρ and ϕ suitable for the end surfaces. When both k and n are zero, some forms of interest can be found from 5.291 (9) by taking
\begin{align*}
W &= k[(Az\phi + Bz\phi + Cz + D) \ln \rho + (Ez + F)\phi] \\
A_\rho &= A\rho^{-1}z \ln \rho + B\rho^{-1} \ln \rho + E\rho^{-1}z + F \\
A_\phi &= -A\rho^{-1}z\phi - B\rho^{-1}\phi - C\rho^{-1}z - D\rho^{-1} \\
A_z &= (G\phi + H) \ln \rho + I\phi
\end{align*}
(7)
Other solutions not often needed are found by using $i, j,$ or r in W.

7.06. Vector Potential in Spherical Coordinates.—In Chap. V the general solution of Laplace's equation in polar spherical coordinates was built up of a sum of terms involving spherical harmonics. We need analogous solutions for the vector potential which possess orthogonal properties on the surface of a sphere so that we can express the tangential components of the vector potential thereon as a sum of such solutions and thus determine its value at any interior point. Choosing the spherical harmonic solution of $\nabla^2 W_1 = 0$ given in 5.23 and setting $u = r$, the W and A of 7.04 become
\begin{align*}
W &= r(Ar^n + Br^{-n-1})[CP_n^m(\cos \theta) + DQ_n^m(\cos \theta)] \sin(m\phi + \delta_m) \\
A_\theta &= (Ar^n + Br^{-n-1})[CP_n^m(\cos \theta) + DQ_n^m(\cos \theta)]m \csc \theta \cos(m\phi + \delta_m) \\
A_\phi &= (Ar^n + Br^{-n-1})[CP_n^m(\cos \theta) + DQ_n^m(\cos \theta)] \sin \theta \sin(m\phi + \delta_m)
\end{align*}
(1)
This A is the orthogonal surface vector function mentioned in 5.231. When $m = 0$ and $\delta_m = \frac{1}{2} \pi$, this equation becomes
\begin{align*}
A_\phi &= (Ar^n + Br^{-n-1})[CP_n^0(\cos \theta) + DQ_n^0(\cos \theta)]
\end{align*}
(3)
It is often useful to have B in terms of W. If $u = r$ we have
\begin{align*}
B &= \nabla \times (\nabla \times rW) = -\nabla \times (r \times \nabla W) = \frac{\partial}{\partial r}(\nabla W) + 2\nabla W
\end{align*}
Writing out the components of this equation gives
\begin{align*}
B_r &= \frac{\partial^2(rW)}{\partial r^2}, \\
B_\theta &= \frac{\partial}{\partial r}(r \frac{\partial}{\partial \theta}(rW)), \\
B_\phi &= \frac{1}{r} \frac{\partial}{\partial \theta}(r \frac{\partial}{\partial \phi}(rW))
\end{align*}
(4)
7.07. Vector Potential in Terms of Magnetic Induction on Axis.—
Magnetic lenses for focusing electron beams are usually constructed from coaxial current coils or equivalent magnets so that the vector potential has only a ϕ-component. To calculate the focusing properties of such lenses, it is convenient to have the vector potential expressed in terms of the magnetic induction and its derivatives along the axis. If $W = kW$, where W is the solution of Laplace’s equation given in 3.15 (1), 7.04 (1) yields

$$ A_\phi = \frac{\partial W}{\partial \rho} = \frac{j}{2\pi} \int_0^{2\pi} \Phi(z + j\rho \sin \theta) \sin \theta \, d\theta $$

(1)

where $\Phi(z)$ is a real function whose Taylor expansion is, by $Dw 39$,

$$ \Phi(z, \rho) = \Phi(z) + \frac{\partial \Phi(z)}{\partial z} \rho \sin \theta + \frac{1}{2!} \frac{\partial^2 \Phi(z)}{\partial z^2} (\rho \sin \theta)^2 + \cdots $$

(2)

Substitution of (2) in (1) and integration from 0 to 2π give

$$ A_\phi = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n!(n+1)!} \frac{\partial^{2n+1} \Phi(z)}{\partial z^{2n+1}} \left(\frac{\rho}{2} \right)^{2n+1} $$

(3)

The magnetic induction $\nabla \times A_\phi$ on the axis where $\rho = 0$ is

$$ B_\theta(z) = \left[\frac{1}{\rho} \frac{\partial (\rho A_\phi)}{\partial \rho} \right]_{\rho=0} = -\frac{\partial \Phi(z)}{\partial z} $$

(4)

This, when put in (3), gives $A_\phi(\rho, z)$ in terms of $B_\theta(z)$ and its derivatives.

$$ A_\phi = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+1)!} \frac{\partial^{2n} B_\theta(z)}{\partial z^{2n}} \left(\frac{\rho}{2} \right)^{2n+1} $$

(5)

The current elements that generate fields of this type are coaxial circular current loops so the range of ρ and z over which (5) holds are the same as for such loops. To find the range insert $B_\theta(z)$ from 7.10 (8) into (5) and compare the result with that obtained from problem 27, which holds for all values of ρ and z, when $J_i(k\rho)$ is expanded by 5.293 (3), the summation and integration are interchanged, and the integrals are replaced by derivatives of 5.297 (6). The identity of the results shows that (5) gives a unique vector potential at all values of ρ and z which can be reached from the axis without crossing a current sheet. The restriction is needed because the external fields of any currents inside a closed surface are unaffected if these currents are removed, provided suitable currents are set up in the surface.

7.08. Equation of Axially Symmetrical Tubes of Induction.—A magnetic field is most easily visualized by mapping the stream lines or lines of magnetic induction. When we have axial symmetry so that all
sections of the field made by planes passing through the axis look the same and all currents are normal to these planes, we can obtain the equation of these lines very simply from the vector potential which, in this case, has only the component A_{ϕ}. When rotated about the axis, each stream line generates the surface of a tube of induction. Any particular tube may be specified by stating the flux N through it. This is obtained by integrating the normal component of the induction over any cross section S of the tube. Thus the equation of the surface of such a tube is given by

$$ N = \int_S \mathbf{B} \cdot \mathbf{n} \, dS = f(\rho, z) $$

(1)

By means of Stokes’s theorem [3.01 (1)], this becomes

$$ N = \int_S \mathbf{v} \times \mathbf{A} \cdot \mathbf{n} \, dS = \oint \mathbf{A} \cdot ds $$

(2)

If the section is taken by a plane normal to the z-axis, then the path s is a circle on which A_{ϕ} is constant and its length is $2\pi \rho$ so that the equation of the tube of force becomes

$$ N = 2\pi \rho A_{\phi}(\rho, z) $$

(3)

In an axially symmetrical system of orthogonal curvilinear coordinates u_1, u_2, and ϕ, the distance ρ will be a function of u_1 and u_2 so that the equation of the tubes of force is

$$ N = 2\pi \rho(u_1, u_2) A_{\phi}(u_1, u_2) $$

(4)

7.09. Vector Potential and Field of Bifilar Circuit.—We shall first apply 7.02 (5) to finding the magnetic field due to a long straight wire with a parallel return at a distance a from it. Since all elements of the wire lie in the x-direction in Fig. 7.09, the vector \mathbf{A} has only the component A_x. Thus, we have, from 7.02 (5),

$$ A_x = \frac{\mu I}{4\pi} \int_{-\infty}^{+\infty} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) dx = \frac{\mu I}{2\pi} \int_0^{\infty} [(a_1^2 + x^2)^{-\frac{1}{2}} - (a_2^2 + x^2)^{-\frac{1}{2}}] \, dx $$

$$ = \frac{\mu I}{2\pi} \ln \frac{r_1 + x}{r_2 + x} \bigg|_0^\infty = \frac{\mu I}{2\pi} \ln \frac{a_2}{a_1} $$

(1)
This shows the surfaces of constant vector potential to be circular cylinders coinciding exactly with the equipotentials in the electrostatic case where \(V = -q(2\pi e)^{-1}\ln(a_2/a_1) \) if the two wires carry charges \(+\mu eI\) and \(-\mu eI\). For \(\mu I = 2\pi \), the equation of these cylinders is given by 4.13 (3), where \(A_z \) is substituted for \(U \) and \(z \) for \(x \). The magnetic field which is given by \(\nabla \times \mathbf{A} \) is at right angles to the electric field given by \(\nabla V \) but has the same numerical value. From 3.04 (1), (2), and (3), the components of the magnetic induction, are, in vacuo, since \(h_1 = h_2 = h_3 = 1 \),

\[
B_x = \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} = 0, \quad B_y = \frac{\partial A_z}{\partial z}, \quad B_z = -\frac{\partial A_x}{\partial y} \quad (2)
\]

Since \(a_1 = [(y - \frac{1}{2}a)^2 + z^2]^\frac{1}{2} \) and \(a_2 = [(y + \frac{1}{2}a)^2 + z^2]^\frac{1}{2} \), this gives

\[
B_y = \frac{\mu I z}{2\pi} \left(\frac{1}{a_2^2} - \frac{1}{a_1^2} \right) \quad (3)
\]

\[
B_z = -\frac{\mu I}{2\pi} \left(y + \frac{1}{2}a \right) - \frac{y - \frac{1}{2}a}{a_2^2} \quad (4)
\]

7.10. Vector Potential and Field of Circular Loop.—Let us compute the vector potential at the point \(P \) shown in Fig. 7.10. From symmetry, we know that in spherical polar coordinates the magnitude of \(A \) is independent of \(\phi \). Therefore, for simplicity, we choose the point \(P \) in the \(xx \)-plane where \(\phi = 0 \). We notice that when equidistant elements of length \(ds \) at \(+\phi \) and \(-\phi \) are paired, the resultant is normal to \(rz \). Thus, \(A \) has only the single component \(A_\phi \). Let \(ds_\phi \) be the component of \(ds \) in this direction, and 7.02 (5) becomes

\[
A_\phi = \frac{\mu I}{4\pi} \int \frac{ds_\phi}{r} = \frac{\mu I}{2\pi} \int_0^\pi \frac{a \cos \phi}{r} \, d\phi = \frac{\mu I}{4\pi r} \int_0^\pi \frac{a \cos \phi}{r^2} \, d\phi \quad (5)
\]

If our loop is very small, this becomes, since \(r_o = (\rho^2 + z^2)^\frac{1}{2} \gg a \),

\[
A_\phi = \frac{\mu I}{2\pi} \int_0^\pi \frac{a \cos \phi}{r_o} \left(1 + \frac{a \rho \cos \phi}{r_o^2} \right) \, d\phi \approx \frac{a^2 \mu I \rho}{4r^3} = \frac{a^2 \mu I \sin \theta}{4r^2} \quad (1)
\]

By taking, from 7.00 the magnetic moment \(\mathbf{M} \) of the loop equal to \(\pi a^2 I \) and directed upward, this may be written

\[
A = \mu (\mathbf{M} \times \mathbf{r}) (4\pi r^3)^{-1} \quad (2)
\]

If this approximation does not hold, let \(\phi = \pi + 2\theta \) so that \(d\phi = 2 \, d\theta \).
and \(\cos \phi = 2 \sin^2 \theta - 1 \), then this becomes

\[
A_\phi = \frac{\mu a I}{\pi} \int_0^{\pi} \frac{(2 \sin^2 \theta - 1) \, d\theta}{[(a + \rho)^2 + z^2 - 4a \rho \sin^2 \theta]^{1/2}}
\]

Let

\[
k^2 = 4a \rho [(a + \rho)^2 + z^2]^{-1}
\]

and rearrange, and we get

\[
A_\phi = \frac{\mu I}{2\pi} \left(\frac{a}{\rho} \right)^4 \left[\left(\frac{2}{k^2} - 1 \right) \int_0^{\pi} \frac{d\theta}{(1 - k^2 \sin^2 \theta)^{1/2}} - \frac{2}{k^2} \int_0^{\pi} (1 - k^2 \sin^2 \theta)^{1/2} \, d\theta \right] = \frac{\mu I}{2\pi k} \left(\frac{a}{\rho} \right)^4 [(1 - \frac{1}{2}k^2)K - E] = \frac{\mu I}{32} \left(\frac{a}{\rho} \right)^4 k^2 \left[1 + \frac{3}{4} k^2 + \frac{75}{128} k^4 + \cdots \right]
\]

where \(K \) and \(E \) are complete elliptic integrals of the first and second kind.

To determine the magnetic induction, we must write, from 3.04 (1), (2), and (3), the components of the curl in cylindrical coordinates. From 3.05, this gives \(h_1 = 1, h_2 = \rho \), and \(h_1 = 1 \) so that

\[
B_\rho = -\frac{1}{\rho} \frac{\partial}{\partial z} (\rho A_\phi) + \frac{1}{\rho} \frac{\partial}{\partial \phi} (A_\rho) = -\frac{\partial A_\phi}{\partial z}
\]

\[
B_\phi = \frac{\partial}{\partial z} (A_\rho) - \frac{\partial}{\partial \rho} (A_\rho) = 0
\]

\[
B_z = -\frac{1}{\rho} \frac{\partial}{\partial \phi} (A_\rho) + \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho A_\phi) = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho A_\phi)
\]

For the derivatives of \(K \) and \(E \), we use the formulas Dw 789.1 and 789.2

\[
\frac{\partial K}{\partial k} = \frac{E}{k(1 - k^2)} \cdot \frac{K}{k} \quad \text{and} \quad \frac{\partial E}{\partial k} = \frac{E}{k} - \frac{K}{k}
\]

We also have, from (3), that

\[
\frac{\partial k}{\partial z} = -\frac{zk^3}{4a \rho} \quad \text{and} \quad \frac{\partial k}{\partial \rho} = \frac{k}{2\rho} - \frac{k^3}{4 \rho^2} - \frac{k^3}{4a}
\]

Carrying out the differentiation, collecting terms, and substituting for \(k \) give

\[
B_\rho = \frac{\mu I}{2\pi} \frac{z}{\rho [(a + \rho)^2 + z^2]^{1/2}} \left[-K + \frac{a^2 + \rho^2 + z^2}{(a - \rho)^2 + z^2} E \right]
\]

\[
B_z = \frac{\mu I}{2\pi} \frac{1}{[(a + \rho)^2 + z^2]^{1/2}} \left[K + \frac{a^2 - \rho^2 - z^2}{(a - \rho)^2 + z^2} E \right]
\]

Numerical values of \(B_\rho \) and \(B_z \) can be computed for any values of \(\rho \) and \(z \) by finding \(k \) from (3) and looking up the corresponding values of \(K \) and \(E \) in a table (Dw pp. 208–210 or Pc p. 121). On the axis \(\rho = 0 \) we have

\[
B_\rho = \frac{0}{0} \rightarrow 0 \quad \text{and} \quad B_z = \frac{\frac{1}{2} \mu a^2 I}{(a^2 + z^2)^{1/2}}
\]
7.11. Field of Currents in Spherical Shell.—We define the value of the stream function \(\psi \), at any point \(P \) on a thin spherical shell of radius \(a \), to be the total current flowing across any line drawn on the surface of the shell between \(P \) and a point where \(\psi \) is zero. The components of the current density are therefore related to \(\psi \) by the equation

\[
i_\phi = \frac{-1}{a \sin \theta} \frac{\partial \psi}{\partial \phi}, \quad i_\phi = \frac{1}{a} \frac{\partial \psi}{\partial \theta}
\]

(1)

We wish to find the vector potential and magnetic field due to these currents. Since any possible \(\psi \) can be expressed as a sum of surface harmonics, it will suffice to calculate the field of the distribution \(\psi_n^m = S_n^m(\theta, \phi) \), for we can then, by superimposing, obtain that due to any \(\psi \). We shall designate the induction outside the shell by \(B_o \) and that inside by \(B_i \).

Let us apply 7.01 (2) to a small circuit around an element of shell of length \(\Delta \theta \), lying in a constant \(\phi \) plane. We obtain

\[
\mu i \phi \Delta \theta = [(B_o)_\phi - (B_i)_\phi] a \Delta \theta
\]

Using (1) and introducing the scalar function \(W \), of 7.06 (4), we have

\[
\frac{\partial \psi}{\partial \theta} = \frac{\partial^2 (rW_o)}{\partial r \partial \theta} - \frac{\partial^2 (rW_i)}{\partial r \partial \phi}
\]

Similarly, taking a circuit in the \(\phi \) direction gives

\[
-\frac{\mu}{\sin \theta} \frac{\partial \psi}{\partial \phi} = -\frac{1}{\sin \theta} \frac{\partial^2 (rW_o)}{\partial r \partial \phi} + \frac{1}{\sin \theta} \frac{\partial^2 (rW_i)}{\partial r \partial \phi}
\]

If we multiply the first equation through by \(d\theta \) and the second by \(\sin \theta \) \(d\phi \) and subtract, both sides are total differentials so that, if we integrate and remember that \(W_o = W_i \) when \(r = a \), we obtain

\[
\mu \psi = \frac{\partial}{\partial r}(rW_o - rW_i) = a \left(\frac{\partial W_o}{\partial r} - \frac{\partial W_i}{\partial r} \right)
\]

(2)

To give \(\psi \) the harmonic form \(S_n^m(\theta, \phi) \), to make \(W_o = W_i \) at \(r = a \), and to have \(W_o \) finite at infinity and \(W_i \) finite at the origin, we must choose, from 7.06 (1), the forms

\[
W_o = \frac{-\mu}{2n + 1} \left(\frac{a}{r} \right)^{n+1} S_n^m(\theta, \phi), \quad W_i = \frac{-\mu}{2n + 1} \left(\frac{r}{a} \right)^n S_n^m(\theta, \phi)
\]

(3)

Hence, from 7.04 (1), the vector potential has the form

\[
(A_r)_o = 0, \quad (A_\theta)_o = \frac{-\mu}{(2n + 1) \sin \theta} \left(\frac{a}{r} \right)^{n+1} \frac{\partial}{\partial \phi} [S_n^m(\theta, \phi)]
\]

\[
(A_\phi)_o = \frac{\mu}{2n + 1} \left(\frac{a}{r} \right)^{n+1} \frac{\partial}{\partial \theta} [S_n^m(\theta, \phi)]
\]

\[
(A_r)_i = 0, \quad (A_\theta)_i = \frac{-\mu}{(2n + 1) \sin \theta} \left(\frac{r}{a} \right)^n \frac{\partial}{\partial \phi} [S_n^m(\theta, \phi)]
\]

\[
(A_\phi)_i = \frac{\mu}{2n + 1} \left(\frac{r}{a} \right)^n \frac{\partial}{\partial \theta} [S_n^m(\theta, \phi)]
\]

(4)
Zonal Currents in Spherical Shell.—When the currents in a spherical shell flow along parallels of latitude, we have the most important practical case. In this case, axial symmetry makes all quantities independent of ϕ. The stream function may then be written

$$\psi = \sum_{n=1}^{\infty} C_n P_n(\cos \theta)$$

The current density having only a ϕ component, becomes

$$i_\phi = \frac{1}{a} \frac{\partial \psi}{\partial \theta} = \sum_{n=1}^{\infty} \frac{C_n}{a} \frac{\partial P_n(u)}{\partial \theta} = -\sum_{n=1}^{\infty} \frac{C_n \sin \theta}{a} \frac{\partial P_n(u)}{\partial u} = -\sum_{n=1}^{\infty} \frac{C_n P_n^1(u)}{a}$$

where $u = \cos \theta$. The function W, if all space has the permeability μ, takes, from 7.11 (3), the form

$$W_o = \sum_{n=1}^{\infty} \frac{-\mu C_n}{2n + 1} P_n(u), \quad W_i = \sum_{n=1}^{\infty} \frac{-\mu C_n}{2n + 1} \left(\frac{r}{a}\right)^n P_n(u)$$

The vector potential, from 7.11 (4), may be written

$$r < a \quad A = \phi \mu \sum_{n=1}^{\infty} \frac{-C_n}{2n + 1} \left(\frac{r}{a}\right)^n P_n^1(u)$$

$$r > a \quad A = \phi \mu \sum_{n=1}^{\infty} \frac{-C_n}{2n + 1} \left(\frac{a}{r}\right)^n P_n^1(u)$$

We may note here that $(\phi)_x = -\sin \phi$ and $(\phi)_y = \cos \phi$ so that A_x and A_y satisfy 7.02 (3) in free space where $i = 0$. We also see that A has the form given in 7.06 (3). The components of the magnetic induction may be obtained from (3) or (4) and (5). Thus, by 7.06 (4),

$$r < a \quad B_r = \frac{\partial^2 (r W_o)}{\partial r^2} = -\frac{\mu}{a} \sum_{n=1}^{\infty} \frac{n(n + 1) C_n}{2n + 1} \left(\frac{r}{a}\right)^{n-1} P_n(u)$$

$$r > a \quad B_r = \frac{\partial^2 (r W_o)}{\partial r^2} = -\frac{\mu}{a} \sum_{n=1}^{\infty} \frac{n(n + 1) C_n}{2n + 1} \left(\frac{a}{r}\right)^{n+2} P_n(u)$$

From (4) and (5), we have

$$r < a \quad B_\theta = \frac{1}{r} \frac{\partial (r A_\phi)}{\partial r} = +\frac{\mu}{a} \sum_{n=1}^{\infty} \frac{(n + 1) C_n}{2n + 1} \left(\frac{r}{a}\right)^{n-1} P_n^1(u)$$
These equations show us how to find not only the induction due to wires wound with any density on the sphere, but also how to wind the wires to produce a given field. For a uniform field inside, we have \(B_r = B \cos \theta \) and \(B_\theta = -B \sin \theta \) so that, from (6) and (8), \(C_n = 0 \) except for \(n = 1 \). Thus, from (2), the density of winding is proportional to \(d[P_n(\cos \theta)]/d\theta = -\sin \theta \). By 7.08 (3), the equations of the tubes of force, if we use (4) and (5), are

\[
N = 2\pi r \sin \theta A_\phi
\]

7.13. Field of Circular Loop in Spherical Harmonics.—Suppose that the current density is zero on the surface of the sphere except in a band at \(\theta = \alpha \) whose width is too small to measure physically but is different from zero so that the current density function and vector potential are everywhere bounded. From 7.12 (2) and (3), \(i \) may be written

\[
i = -\frac{1}{a} \sum_{n=1}^{\infty} C_n P_n^1(u)
\]

We determine \(C_n \) as in Chap. V by multiplying by \(P_n^1(u) \) and integrating from \(u = -1 \) to \(u = 1 \). By 5.13 (2), all terms on the right drop out except when \(n = m \), and by 5.231 (3) this gives

\[
C_n = -\frac{(n-1)! 2n+1}{(n+1)! 2} \int_{-1}^{1} du \sin P_n^1(u)\]

The current density \(i \) is zero except in a band of width \(\Delta s \) at \(\theta = \alpha \), which is so narrow that \(P_n^1(\cos \theta) \) has the constant value \(P_n^1(\cos \alpha) \) on it. Then the integral becomes

\[
P_n^1(\cos \alpha) \int i \sin \theta d\theta = P_n^1(\cos \alpha) \sin \alpha \int_{\Delta s} i ds = I \sin \alpha P_n^1(\cos \alpha)
\]

so that we have

\[
C_n = -\frac{(2n+1)I \sin \alpha}{2n(n+1)} P_n^1(\cos \alpha)
\]

The vector potential becomes, from 7.12 (4), if \(r < a \),

\[
A = \phi \frac{\mu I}{2} \sum_{n=1}^{\infty} \frac{\sin \alpha}{n(n+1)} \left(\frac{r}{a} \right)^n P_n^1(\cos \alpha) P_n^1(\cos \theta)
\]

and the components of the induction are, from 7.12 (6) and (8),
\[B_r = \frac{\mu I \sin \alpha}{2a} \sum_{n=1}^{\infty} \left(\frac{r}{a} \right)^{n-1} P_n^1(\cos \alpha) P_n(\cos \theta) \]
(3)

\[B_\theta = -\frac{\mu I \sin \alpha}{2a} \sum_{n=1}^{\infty} \left(\frac{r}{a} \right)^{n-1} P_n^1(\cos \alpha) P_n(\cos \theta) \]
(4)

where \(u = \cos \theta \). The expression for \(r > a \) may be obtained from this as before with 7.12 (7) and (9). When the origin is at the center of the loop, \(\alpha = \frac{\pi}{2} \), \(\cos \alpha = 0 \), and \(P_n^1(0) = -(n + 1)P_{n+1}(0) \) so that even values of \(n \) are out and by 5.157 we have, when \(r < a \),

\[B_r = \frac{\mu I}{2a} \sum_{n \text{ odd}}^{1 \to \infty} (-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdots n \cdot (n + 1)}{2 \cdot 4 \cdot 6 \cdots (n-1)(n+1)} \left(\frac{r}{a} \right)^{n-1} P_n(\cos \theta) \]
(5)

\[B_\theta = \frac{\mu I}{2a} \sum_{n \text{ odd}}^{1 \to \infty} (-1)^{n+1} \frac{1 \cdot 3 \cdot 5 \cdots n \cdot (n + 1)}{2 \cdot 4 \cdot 6 \cdots (n-1)(n+1)} \left(\frac{r}{a} \right)^{n-1} P_n(\cos \theta) \]
(6)

When \(r \) is greater than \(a \), we must substitute \((a/r)^{n+2}\) for \((r/a)^{n-1}\) in (5) and \(-n(a/r)^{n+2}/(n + 1)\) for \((r/a)^{n-1}\) in (6).

By 7.08 (3), the equations of the tubes of force, using (2), are

\[N = 2\pi r \sin \theta A_\phi \]
(7)

7.14. Biot and Savart's Law. Field of Straight Wire.—Taking the curl of both sides of 7.02 (5) we have

\[B = \nabla \times A = \frac{\mu I}{4\pi} \oint \nabla \times \frac{ds}{r} \]

but

\[\nabla \times \frac{ds}{r} = \frac{1}{r} \nabla \times ds + \nabla \left(\frac{1}{r} \right) \times ds \]

Since the coordinates of the point at which \(B \) is being computed do not appear in \(ds \), which depends only on the circuit configuration, \(ds \) is constant as far as \(\nabla \) is concerned and the first term on the right is zero. But \(\nabla(1/r) = -(r/r^3) \) so that

\[B = \frac{\mu I}{4\pi} \oint \frac{ds \times r}{r^3} \]
(1)

If \(\theta \) is the angle measured from \(ds \) to \(r \), this may be written

\[B = \frac{\mu I}{4\pi} \oint \frac{\sin \theta \, ds}{r^2} \]
(2)

\(B \) is normal to the plane containing \(ds \) and \(r \). If \(\theta \) is clockwise, \(B \) points
away from the observer. Biot and Savart established this law only for
straight currents.

In this case, if \(a \) is the distance of \(P \) from the wire
(Fig. 7.14), we have

\[r^2 = a^2 + s^2, \quad \sin \theta = \frac{a}{r} \]

so that (2) becomes, by \(P_c \) 138 or \(D_w \) 200.03,

\[B = \frac{\mu I}{2\pi} \int_0^\infty \frac{a \, ds}{(a^2 + s^2)^2} = \frac{\mu I}{2\pi a} \left(\frac{s}{a^2 + s^2} \right) \bigg|_0^\infty = \frac{\mu I}{2\pi a} \quad (3) \]

7.15. Field of Helical Solenoid.—A very frequently used form of electric circuit is the solenoid. This consists of wire wound in the form of a helix, shown in Fig. 7.15. Let the equation of this helix be

\[x = a \cos \phi, \quad y = a \sin \phi, \quad z = a\phi \tan \alpha \quad (1) \]

where \(\alpha \) is the pitch of the winding so that \(z \) increases by \(2\pi a \tan \alpha \) when \(\phi \) increases by \(2\pi \). The \(z \) component of \(B \) [7.14 (1)] is

\[B_z = \frac{\mu I}{4\pi} \oint \frac{[ds \times r]_z}{r^3} \]

The components of \(r \) and \(ds \) are, for a point on the axis,

\[r_z = -a \cos \phi, \quad ds_z = -a \sin \phi \, d\phi, \]
\[r_y = -a \sin \phi, \quad ds_y = a \cos \phi \, d\phi, \]
\[r_z = -a\phi \tan \alpha + C \quad ds_z = a \tan \alpha \, d\phi \]

We shall find the field on the axis of a solenoid having an integral number \(N \) of turns, neglecting the field of the leads, which may be calculated separately. Taking the origin at the point at which \(B_z \) is to be found, setting \(r = (x^2 + y^2 + z^2)^{1/2} = a(1 + \phi^2 \tan^2 \alpha)^{1/2} \) in (2), and choosing the limits

\[\phi_1 = -N\pi + b/(a \tan \alpha) \]

and \(\phi_2 = N\pi + b/(a \tan \alpha) \), we find, after integrating by \(P_c \) 138 or \(D_w \) 200.03, that \(B_z \) at a distance \(b \) from the center is

\[B_z = \frac{\mu I}{4\pi a} \int_{\phi_1}^{\phi_2} \frac{d\phi}{(1 + \phi^2 \tan^2 \alpha)^{1/2}} \]

\[= \frac{\mu I}{4\pi a \tan \alpha} \left\{ \frac{N\pi a \tan \alpha + b}{[a^2 + (N\pi a \tan \alpha + b)^2]^{1/2}} + \frac{N\pi a \tan \alpha - b}{[a^2 + (aN\pi \tan \alpha - b)^2]^{1/2}} \right\} \]

If \(\beta_1 \) and \(\beta_2 \) are the angles between the axis of the helix and the vectors
drawn from \(b \) to the extreme ends of the wire, this may be written

\[
B_z = \frac{\mu I}{4\pi a \tan \alpha} (\cos \beta_2 - \cos \beta_1)
\]

(3)

It should be noted that either \(\beta_1 \) or \(\beta_2 \) must be greater than \(\frac{1}{2} \pi \) if \(b \) lies inside the solenoid so that one cosine is negative. If the distance between the extreme ends of the wire in the solenoid is \(L \), then

\[
L = 2\pi N a \tan \alpha
\]

and if there are \(n \) turns per unit length, \(N = L n \), so we can write

\[
B_z = \frac{1}{2} \mu n I (\cos \beta_2 - \cos \beta_1)
\]

(4)

Formulas (3) and (4) are rigorous expressions for the axial component of the field on the axis. Unless \(\alpha = 0 \), this is not, however, the only component. Proceeding as before gives

\[
B_z = \frac{\mu I}{4\pi} \int_0^\infty \frac{r_s \sin \phi}{r^3} d\phi = \frac{\mu I}{4\pi} \int_0^\infty \frac{r_s - a^2 \tan \alpha (\cos \phi + \phi \sin \phi)}{r^3} d\phi
\]

(5)

This is not, in general, zero.

\[
B_y = \frac{\mu I}{4\pi} \int_0^\infty \frac{r_s \cos \phi}{r^3} d\phi = \frac{\mu I}{4\pi} \int_0^\infty \frac{r_s - a^2 \tan \alpha (\cos \phi + \phi \sin \phi)}{r^3} d\phi
\]

(6)

This integral is also not, in general, zero. Thus the lines of force are not straight but spiral.

In the important case of an infinitely long solenoid, (3) and (4) become

\[
B_z = \frac{\mu I}{2\pi a \tan \alpha} = n \mu I
\]

(7)

The \(x \)-component vanishes since (5) is the integral of an odd function, but (6) becomes

\[
B_y = -2\pi n^2 a \mu I \int_0^\infty \frac{\cos \phi + \phi \sin \phi}{[(2\pi a)^2 + \phi^2]^2} d\phi
\]

Integrate the second term under the integral by parts, letting \(u = \sin \phi \) and \(dv = \phi [(2\pi a)^2 + \phi^2]^{-2} d\phi \), and we have

\[
B_y = -2\pi n^2 a \mu I \left\{ \int_0^\infty \frac{\cos \phi d\phi}{[(2\pi a)^2 + \phi^2]^2} + \int_0^\infty \frac{\cos \phi d\phi}{[(2\pi a)^2 + \phi^2]^3} \right\}
\]

If we let \(\phi = 2\pi a \sinh \psi \), the second integral becomes, by 5.331 (2), \(K_0(2\pi a) \) which is the modified Bessel function of the second kind treated in 5.331. Evidently, the first integral can be obtained by differentiating the second with respect to \(2\pi a \) and dividing by \(-2\pi a\) so that, by 5.331 (2),

\[
B_y = -n \mu I [2\pi a K_0(2\pi a) + K_1(2\pi a)]
\]

(8)

When \(\alpha = 0 \) or \(n = \infty \), \(B_y = 0 \) so that the field is axial. If \(\alpha = \frac{1}{2} \pi \) or
$n = 0$, our solenoid becomes a straight wire parallel to and at a distance a from the z-axis. Then $B_z = 0$ and, from 5.33, $K_0 \to -\ln (2n\pi a)$ and $K_1 \to 1/(2n\pi a)$ so that

$$B_y \to \frac{-\mu I}{2\pi a}$$

which agrees with 7.14 (3).

7.16. Field in Cylindrical Hole in Conducting Rod.—The computation of the magnetic field due to a certain current density distribution can frequently be simply obtained by superimposing known solutions. As an example of this method, let us suppose conducting material of unit permeability occupies all the space between two infinite cylinders. We wish to find the induction inside the smaller cylinder of radius a, which lies entirely inside the larger cylinder, of radius b, the distance between axes being c (see Fig. 7.16). The current density i_a is taken as uniform and in the z-direction. If there were no hole, B_θ would be constant on the circle of radius r through P, and from 7.01 (2) its value would be

$$\mu_0 r^2 i = \oint B' \cdot ds = 2\pi r B'_\theta \quad \text{or} \quad B' = \frac{1}{2} \mu_0 i x$$

Addition of a similar expression for a current density $-i$ flowing only in the inner cylinder gives zero current density there so that

$$B = \frac{1}{2} \mu_0 i x (r - r') = \frac{1}{2} \mu_0 i x c = \frac{1}{2} \mu_0 ic (k \times i_x) = i_k \mu_0 ic$$

(1)

where i_x, i, k are unit vectors in the x, y, z directions. The total current I is $(\pi b^2 - \pi a^2)i$ so the uniform field in the hole is

$$B_v = \frac{\mu_0 I}{2\pi (b^2 - a^2)}$$

(2)

7.17. Field of Rectilinear Currents in Cylindrical Conducting Shell.—Suppose currents in an infinite circular cylindrical shell flow everywhere
parallel to the axis and that the z-directed current density i can be expressed in circular surface harmonics; thus,

$$i_z = \sum_{n=0}^{\infty} (C_n \cos n\alpha + D_n \sin n\alpha) \quad (1)$$

From 7.09, the vector potential at P due to a long straight wire carrying a current I is parallel to it and equals $(\frac{1}{2} \mu I / \pi) \ln R$ if the shortest distance from P to the wire is R. Thus, from 7.02 (4), the vector potential due to the cylinder is (see Fig. 7.17)

$$A_z = \frac{1}{2} \mu \pi^{-1} \int_0^{2\pi} i a \ln R \, d\alpha \quad (2)$$

4.02 (2) $\ln R = \ln a - \sum_{m=1}^{\infty} \frac{1}{m} \left(\frac{r}{a}\right)^m (\cos m\theta \cos m\alpha + \sin m\theta \sin m\alpha) \quad (3)$

Substitute (1) and (3) in (2), and we have integrals from 0 to 2π of the products $\cos mx \cos nx$, $\sin mx \sin nx$, and $\sin mx \cos nx$. From Dw 858.1 and 858.2 or Pc 488 and 360, these are all zero unless $m = n$. If $m = n$, the integral of $\sin 2m\alpha$ is $2 \sin m\alpha \cos m\alpha$ is still zero, but that of $\sin^2 m\alpha$ and $\cos^2 m\alpha$ is π by Pc 489 or Dw 858.4 so that (2) becomes

$$A_z = \mu a C_0 \ln a + \frac{\mu a}{2} \sum_{n=1}^{\infty} \left(\frac{r}{a}\right)^n (C_n \cos n\theta + D_n \sin n\theta) \quad (4)$$

7.18. Force on Electric Circuit in Magnetic Field.—We found experimentally in 7.00 that the forces acting on a small loop of wire in a magnetic field are exactly like those acting on an electric dipole in an electric field. We also saw that any electric circuit may be considered as a mesh of such loops. From 1.07 (3), we can therefore write the force on an element dS of the mesh of a circuit carrying a current I by substituting nI dS for M and B for E; thus

$$dF = I (n \cdot \nabla) B \, dS \quad (1)$$

We have the well-known relation

$$\nabla (n \cdot B) = (B \cdot \nabla)n + B \times (\nabla \times n) + (n \cdot \nabla)B + n \times (\nabla \times B) \quad (2)$$

The first two terms on the right are zero since ∇ does not operate on n. Since no current flows inside the loop, $\nabla \times B = \mu i = 0$ from 7.01 (3). We may therefore write for the total force on the circuit, substituting $\nabla \times A$ for B from 7.02 (1),
\[F = I \nabla \int_S n \cdot B \, dS = I \nabla \int_S n \cdot \nabla \times A \, dS \]

Applying Stokes's theorem [3.01 (1)], making use of (2) again where \(ds \) replaces \(n \) and \(A \) replaces \(B \), and noting that \(\nabla \) does not operate on \(ds \), we have

\[F = I \nabla \mathcal{F} A \cdot ds = I \mathcal{F}[(ds \cdot \nabla)A + ds \times (\nabla \times A)] \quad (3) \]

But we see that

\[\mathcal{F}(ds \cdot \nabla)A = \mathcal{F}(i \, dA_x + j \, dA_y + k \, dA_z) = 0 \]

since \(dA_x, dA_y, \) and \(dA_z \) are total differentials and \(A_x, A_y, \) and \(A_z \) are single-valued functions. From (1), \(\nabla \times A = B \) so that

\[F = I \mathcal{F} ds \times B \quad \text{or} \quad I \mathcal{F}B \sin \theta \, ds = \mathcal{F} \, dF \quad (4) \]

where \(\theta \), which is less than \(\pi \), is the angle from \(ds \) to \(B \). If, when the line of observation is normal to \(ds \) and \(B \), \(\theta \) appears clockwise the force is away from the observer.

Ampère's experiments give no unique law of force for circuit elements because (4) and 7.14 (1) give the force between two circuits to be

\[F = I \oint ds \times B = \mu I' \oint ds \frac{(ds' \times r)}{4\pi r^3} = \mu I' \oint ds \frac{(ds' \cdot r)}{4\pi r^3} - \tau(ds \cdot ds') \quad (5) \]

The line integral around the \(s \)-circuit of the first term of the second integral vanishes because \(r/r^3 \) is the gradient of the scalar \(1/r \). Thus Ampère's experiments give the force between circuit elements to be

\[C \frac{ds \times (ds' \times r)}{r^3} \quad \text{or} \quad -C \frac{r(ds \cdot ds')}{r^3} \quad (6) \]

Comparing (4) with 7.14 (1), we see that if we have two circuits nearly in coincidence, carrying equal currents in opposite directions so that, from Ampère's experiments, the magnetic field is nearly zero, then only those contributions to the force from portions of the range of integration for which \(r \) is small are important. These are in the positive \(r \) direction. The circuits therefore tend to separate, thus creating a magnetic field. This is exactly the reverse of the electric case where the force on equal and opposite charges tends to bring them together and destroy the electric field. Thus, there is a fundamental difference in the nature of the energy in electric and magnetic fields. We shall consider this in the next chapter, in connection with Faraday's law of induction. All these formulas for forces on circuits placed in magnetic fields have been well verified by experiment.

7.19. Examples of Forces between Electric Circuits.—When we have two parallel infinite wires at a distance \(a \) apart, carrying currents \(I \) and \(I' \), we have, from 7.14 (3) and 7.18 (4), since \(\sin \theta = 1 \), the result
§7.19 EXAMPLES OF FORCES BETWEEN ELECTRIC CIRCUITS

\[F_a = \frac{\mu II'}{2\pi a^2} \oint ds' \times [s_1 \times a] \]

so that there is an apparent repulsive force per unit length of amount

\[F_1 = \pm \frac{\mu II'}{2\pi a} \tag{1} \]

The positive sign is taken when \(I \) and \(I' \) are in opposite directions, and the negative sign when they are in the same direction.

Next, let us compute the force between two parallel coaxial loops of wire of radii \(a \) and \(b \), carrying currents \(I \) and \(I' \), as shown in Fig. 7.19. From symmetry, the force is one of attraction only so that, from 7.18 (4), the only effective component of the induction is \(B_\rho \), which is the same for all elements of either circuit. Thus, since the coordinates of the \(I' \) circuit are \(\rho = b, z = c \), we have for the force

\[F = I' B_\rho (a, b, c) \int_0^{2\pi} b \, d\theta = 2\pi b I' B_\rho (a, b, c) \]

Substituting from 7.10 (6), we have

\[F = \frac{\mu II' c}{[(a + b)^2 + c^2]} \left[-K + \frac{(a^2 + b^2 + c^2)E}{(a - b)^2 + c^2} \right] \tag{2} \]

where, from 7.10 (3), the modulus \(k \) is

\[k^2 = \frac{4ab}{(a + b)^2 + c^2} \]

The force reverses if either current reverses.

We may easily get this force in series form by combining 7.18 (4) with 7.13 (3), giving

\[F = -\pi \mu II' \sin \alpha \sum_{n=1}^{\infty} \left(\frac{a^2}{b^2 + c^2} \right)^n P_n^1(\cos \alpha)P_n(0) \tag{3} \]

when \(c^2 + b^2 > a^2 \), since \(u = 0 \) in the latter, \(r = a \) and \(\oint ds = 2\pi a \).

Another, more rapidly converging expression for the force can be obtained, if the two loops have different radii, by choosing the origin at the apex of the circular cone, of half angle \(\beta \), in which the two loops lie. If \(r \) is the radius vector to the smaller loop and \(s \) the radius vector to the larger, then the force between them is

\[F = 2\pi I' \sin \beta (B_r \sin \beta + B_\theta \cos \beta) \]
where B_r and B_θ are given by 7.13 (3) and (4). Thus, we have

$$F = \pi \mu I' \sin^2 \beta \sum_{n=2}^{\infty} \left(\frac{2n}{2n+1} \right) \frac{P_n'(\cos \beta) [n P_n(\cos \beta) - \cos \beta P'_n(\cos \beta)]}{n}$$

We start the summation from $n = 2$ since the $n = 1$ term is zero. The last term may be simplified by 5.154 (2) and (4.1) so that, writing $r/s = a/b$ if $b > a$, we obtain

$$F = -\pi \mu I' \sin^2 \beta \sum_{n=1}^{\infty} \frac{1}{n+1} \left(\frac{a}{b} \right)^{n+1} P_{n+1}(\cos \beta) P_n(\cos \beta)$$

7.20. Vector Potential and Magnetization.—The definition of the vector potential given in 7.02 (4.1) has proved adequate for all the cases so far treated in which the whole region is occupied by a medium of a single constant permeability. If μ is variable or discontinuous, it is necessary, in order to define a magnetic vector potential uniquely, to consider the nature of magnetization. In 12.06, we shall give experimental evidence that magnetization is due to circulating currents or spinning electric charges within the body. We define a vector M to be the magnetic moment per unit volume of such currents or spins and call it the magnetization. With the aid of 7.10 (2), setting $\mu = \mu_v$ and measuring r from the field point the vector potential of M becomes

$$A_M = \frac{-\mu_v}{4\pi} \int_V \frac{M \times r}{r^3} \, dv = \frac{\mu_v}{4\pi} \int_V M \times \nabla \left(\frac{1}{r} \right) \, dv$$

We can transform this equation by using the vector relations

$$\nabla \times pq = \nabla p \times q + p \nabla \times q \quad (2)$$

and

$$\int_V \nabla \times M \, dv = \int_S n \times M \, dS \quad (3)$$

where n is the unit outward normal vector to the surface S which encloses v. We prove (3) by putting $A = M \times a$ in Gauss's theorem [3.00 (2)] where a is a constant vector so that $\nabla \cdot (M \times a) = a \cdot \nabla \times M$, giving

$$a \cdot \int_V \nabla \times M \, dv = \int_S M \times a \cdot n \, dS = a \cdot \int_S n \times M \, dS$$

Since this is true for all values of a, Eq. (3) follows. Applying (2) and (3) to (1) gives

$$\frac{4\pi}{\mu_v} A_M = \int_V \frac{\nabla \times M}{r} \, dv - \int_V \nabla \times \left(\frac{M}{r} \right) \, dv = \int_V \frac{\nabla \times M}{r} \, dv + \int_S M \times \frac{n}{r} \, dS \quad (4)$$

When the magnetization is uniform in the interior of a body, (4) is more
MAGNETIC BOUNDARY CONDITIONS

useful than (1) since the volume integral is zero. If \(i \) is the actual current density, then the total vector potential is now given by

\[
A = \mu_0 \int_V \frac{i + \nabla \times M}{r} dV + \mu_0 \int_S \frac{M \times n}{r} dS
\]

(5)

In order to apply this formula in most cases where the data include only the current distributions and the permeabilities, we must express \(M \) in terms of \(\mu \) and \(B \). To do this, we note that, at great distances from closed circuits of finite extent, the induction and, hence, the magnetization are inversely proportional to the square or higher powers of \(r \) so that the surface integral in (4) vanishes. If \(\mu \) is constant in this region, and \(M \) is due entirely to \(i \) the vector potential must also be given by 7.02 (4.1) so that, comparing it with (5), we have

\[
\mu i = \mu_0 (i + \nabla \times M)
\]

(6)

In a medium that is isotropic but not homogeneous we define \(\mu \) so that this equation is still valid. With it we eliminate \(\mu i \) from 7.01 (3), and because the resultant equation must reduce to 7.01 (3) when \(\mu \) is constant and it is known experimentally that \(M \) is proportional to \(B \) and in the same direction, we have

\[
\nabla \times \left(\frac{B}{\mu_0} - M \right) = i = \nabla \times \frac{B}{\mu}
\]

(7)

\[
M = \left(\frac{1}{\mu_0} - \frac{1}{\mu} \right) B
\]

(8)

Just as we can get 7.01 (2) from 7.01 (3), we get from (7) the relation

\[
\oint \frac{B \cdot ds}{\mu} = I
\]

(9)

7.21. Magnetic Boundary Conditions.—In the last article, we defined the vector potential \(A \) for regions where the magnetization is not uniform and on surfaces where it is discontinuous. To find the boundary conditions that \(A \) must satisfy, we observe that each of the three components of \(A \) is defined by a scalar equation analytically identical with 1.06 (6), which may be written in vacuo

\[
4\pi \varepsilon_0 V = \int_V \frac{\rho \, dV}{r} + \int_S \frac{\sigma \, dS}{r}
\]

(1.06) (6)

This defines the electrostatic potential in free space due to a volume distribution of electric charge of density \(\rho \) and a surface distribution of density \(\sigma \). From electrostatic considerations, we know the value \(V_1 \) of these integrals just inside the surface \(S \) is the same as the value \(V_0 \) just outside. Furthermore, by applying Gauss's electric flux theorem
to a small disk-shaped volume fitting closely an area \(dS\) of the surface and so thin that \(dv\) is negligible compared with \(dS\), we have, after canceling out \(dS\), the relation

\[
\frac{\partial V_o}{\partial n} - \frac{\partial V_i}{\partial n} = -\frac{\sigma}{\varepsilon_o}
\]

Thus, we know the boundary conditions that apply to integrals of the form of 1.06 (6) and hence to each component of 7.20 (5). Adding the components and writing \(\mu_r\) for \(1/\varepsilon_r\), we have

\[
A_o = A_i
\]

and with the aid of 7.20 (8),

\[
\frac{\partial A_o}{\partial n} - \frac{\partial A_i}{\partial n} = -\mu_r(M \times n) = -\frac{\mu}{\mu_r}[\nabla \times A_i] \times n
\]

If there is a magnetization \(M'\) on one side of the boundary and \(M''\) on the other, we may find the boundary conditions by imagining a thin layer of permeability, one between the boundaries, writing down (1) and (2) for each boundary, referring them to the same normal, and eliminating \(A_o\) and \(\partial A_o/\partial n\), giving

\[
A' = A''
\]

and

\[
\frac{\partial A'}{\partial n} - \frac{\partial A''}{\partial n} = \mu_r[(M' - M'') \times n]
\]

To get the second boundary condition in terms of the permeability, we write \(n \cdot \nabla\) for \(\partial/\partial n\) and use the relation

\[
n \cdot \nabla (A' - A'') = \nabla [n \cdot (A' - A'')] - n \times [\nabla \times (A' - A'')] - (A' - A'') \cdot \nabla n - (A' - A'') \times (\nabla \times n)
\]

The last two terms drop out because of (3), so that, writing \(B' - B''\) for \(\nabla \times (A' - A'')\), by 7.02 (1), and rearranging, we have

\[
\nabla [n \cdot (A' - A'')] = n \times (B' - \mu_r M' - B'' + \mu_r M'')
\]

Substituting from 7.20 (8), we have

\[
\nabla (A'_n - A''_n) = \mu_r n \times \left(\frac{B'}{\mu_r} - \frac{B''}{\mu_r}\right)
\]

From (3) \(A'_n - A''_n\) is equal to zero over all the boundary so that its gradient along the boundary is zero. Thus \(\nabla (A'_n - A''_n)\) is a vector normal to the boundary. But the right side is a vector directed along the boundary surface so that writing out the tangential components of this equation gives

\[
n \times \left(\frac{B'}{\mu_r} - \frac{B''}{\mu_r}\right) = 0
\]
We may now write down the boundary conditions on the components of \(\mathbf{A} \) in the orthogonal curvilinear coordinate system \(u, u_s, \) and \(u_t \), treated in 3.03, 3.04, and 3.05. Let us take \(u_t \) to be constant on the boundary; then, from (3), we have

\[
A'_r = A''', \quad A'_s = A''', \quad \text{and} \quad A'_t = A'''
\]

Writing \(\nabla \times \mathbf{A} \) for \(\mathbf{B} \) in the left side of (5), we have, by 3.04 (1), 3.04 (2), and 3.04 (3), the two equations

\[
\frac{1}{\mu'} \left[\frac{\partial (h_{r,s} A'_{r,s})}{\partial u_{t,r}} - \frac{\partial (h_{t,r} A'_{t,r})}{\partial u_{r,s}} \right] = \frac{1}{\mu''} \left[\frac{\partial (h_{r,s} A''_{r,s})}{\partial u_{t,r}} - \frac{\partial (h_{t,r} A''_{t,r})}{\partial u_{r,s}} \right]
\]

These equations (6) and (7) give the required boundary conditions.

To obtain the boundary conditions on \(\mathbf{B} \), we note that (3) shows the differences in the vector potential between two points on the interface to be the same in either medium. Hence, the derivatives of the vector potential on the two sides of the interface, in the same direction parallel to it, are equal. The vector \(\mathbf{n} \times \mathbf{A} \) lies in the interface, and so \(\nabla \cdot \mathbf{n} \times \mathbf{A} \) involves only such derivatives. We have the well-known vector equation for the derivative of a cross product

\[
\nabla \cdot \mathbf{n} \times \mathbf{A} = \mathbf{n} \cdot \nabla \times \mathbf{A} + \mathbf{A} \cdot \nabla \times \mathbf{n}
\]

When we substitute \(\mathbf{A}' - \mathbf{A}'' \) for \(\mathbf{A} \), the last term vanishes by (3) giving

\[
\mathbf{n} \cdot \nabla \times \mathbf{A}' = \mathbf{n} \cdot \nabla \times \mathbf{A}''
\]

Writing \(\mathbf{B} \) for \(\nabla \times \mathbf{A} \) gives

\[
\mathbf{n} \cdot \mathbf{B}' = \mathbf{n} \cdot \mathbf{B}''
\]

Thus, the normal components of the induction are continuous. From (5), we have for the tangential components of the induction

\[
\frac{1}{\mu'} (\mathbf{n} \times \mathbf{B}') = \frac{1}{\mu''} (\mathbf{n} \times \mathbf{B}'')
\]

It is often possible to choose two vectors \(\mathbf{A}' \) and \(\mathbf{A}'' \), different from and simpler than \(\mathbf{A}' \) and \(\mathbf{A}'' \), whose curl gives the same induction at all points but which, as will be shown in 8.04, satisfy, instead of (3), the boundary conditions

\[
A'_{r,t} \neq A''_{r,t}, \quad \text{and} \quad A'_{s,t} = A''_{s,t}
\]

It is evident in the example considered in the next article that these vectors may be more convenient for computation than \(\mathbf{A}' \) and \(\mathbf{A}'' \). They are not uniquely defined, however, as are \(\mathbf{A}' \) and \(\mathbf{A}'' \), by integrals of the type of 7.20 (5). We shall refer to them as quasi-vector potentials.

\[\text{7.22. Example of the Use of A and A. — As an instructive example of the use of the boundary conditions in the last article, let us consider an infinite wire carrying a current I in the z-direction, positive and negative.}\]
tive values of z having permeabilities μ' and μ'', respectively. Clearly, from 7.02 (5), the simplest vectors A' and A'' that we can write which satisfy 7.21 (7) but not 7.21 (3) and whose curls give us the correct values of B' and B'' are

$$A' = -\kappa(\frac{1}{2}\pi^{-1}\mu' \ln \rho) \quad \text{and} \quad A'' = -\kappa(\frac{1}{2}\pi^{-1}\mu'' \ln \rho) \quad (1)$$

The vector defined by 7.20 (5) requires that $A' = A''$ at the boundary. The part of the volume integral involving I in 7.20 (5) is given by 7.02 (5). We must superimpose on this a potential to meet the new boundary condition. Inspection of the solutions available in cylindrical coordinates in 7.05 (7) shows that the suitable form is cz/ρ. Putting this in the evaluating the constants, we obtain

$$A' = \frac{1}{2}\pi^{-1}I\{ -\kappa\mu_e(\ln \rho + C_1) + \phi[(\mu' - \mu_e)z\rho^{-1} + C_2] \} \quad (2)$$

$$A'' = \frac{1}{2}\pi^{-1}I\{ -\kappa\mu_e(\ln \rho + C_1) + \phi[(\mu'' - \mu_e)z\rho^{-1} + C_2] \} \quad (3)$$

The constants C_1 and C_2 are arbitrary. The second terms represent the contribution from the integral of 7.20 (1). We get the same value of B' and B'' from (2) and (3) as from (1).

7.23. Current Images in Plane Face

The similarity of the boundary conditions for B in 7.21 to those for D in 1.17 suggests that the image method of 5.05 might be used in getting the magnetic field when an electric circuit is near the plane face of a semi-infinite block of material of permeability μ. Let the plane face be at $z = 0$, the circuit lie in the region of positive z, and the material of permeability μ occupy the entire region of negative z. Let A be the vector potential due to the circuit alone. The image law of 5.05 suggests that the quasi-vector potential above the interface can be given by $A + A'$ and that below by A'', where

$$A = if_1(x, y, z) + if_2(x, y, z) + \kappa f_3(x, y, z) \quad (1)$$

$$A' = iC'_1f_1(x, y, -z) + iC'_2f_2(x, y, -z) + \kappa C'_3f_3(x, y, -z) \quad (2)$$

$$A'' = iC''_1f_1(x, y, z) + iC''_2f_2(x, y, z) + \kappa C''_3f_3(x, y, z) \quad (3)$$

From 7.21 (12) at $z = 0 A_z + A'_z \neq A''_z$ and $A_{x,y} + A'_{x,y} = A''_{x,y}$, or

$$1 + C'_1 = C''_1, \quad 1 + C'_2 = C''_2, \quad 1 + C'_3 \neq C''_3 \quad (4)$$

The boundary conditions at $z = 0$ on the derivatives given by 7.21 (7) are satisfied if we have

$$\mu(1 - C'_1) = \mu_C'C''_1, \quad \mu(1 - C'_2) = \mu_C'C''_2, \quad \mu(1 + C'_3) = \mu_C'C''_3 \quad (5)$$

Solving, we obtain, since A'' and A have the same form,

$$C'_1 = C'_2 = -C'_3 = \frac{\mu - \mu_C}{\mu + \mu_C}, \quad C''_1 = C''_2 = C''_3 = \frac{2\mu}{\mu + \mu_C} \quad (6)$$

Thus, the magnetic induction outside the permeable medium appears to be caused by two circuits, the original carrying a current I, and an image circuit carrying a current $I' = \frac{\mu - \mu_C}{\mu + \mu_C}I$. The direction of I' is
such that the projections of I and I' on the interface coincide in position and direction. In the permeable medium, the magnetic induction appears to be due to the original circuit alone but carrying a current $I'' = 2I/\mu/(\mu + \mu_v)$ instead of I.

7.24. Magnetic Induction and Permeability in Crystals.—The similarity of the boundary conditions derived in 7.21 for B to those derived in 1.17 for D suggests that the method of measuring D and E in 1.18 may be applicable also to B and μ. Let us excavate a small disk-shaped cavity in the solid, whose thickness is very small compared with its radius so that the induction in the cavity, far from the edges, will be determined entirely by the boundary conditions over the flat surfaces. If we orient the cavity so that the induction inside is normal to the flat faces, then from 7.21 (10) this B equals that in the medium. Let us now excavate a long thin cylindrical cavity so that the induction inside, far from the ends, is determined entirely by the boundary conditions over the curved walls and orient it so that this induction is parallel to the axis. We now find, from 7.21 (11), that B'/μ_v inside equals B/μ in the solid. These two measurements give us both B and μ. If we perform this experiment in a magnetically anisotropic medium we shall find, in general, that B and B' are in different directions. There will be at least three orientations of the field with respect to the crystal for which B and B' have the same direction. These are the magnetic axes of the crystal, along each of which μ may have a different value. In the more common case, B and B' have the same direction for all orientations of the field in some plane, and for the field normal to it. This subject is further discussed in 12.02 and 12.03.

7.25. Two-dimensional Magnetic Fields.—In rectangular coordinates, the boundary conditions for the tangential component of the magnetostatic vector potential are identical with those for the electrostatic scalar potential when ε is replaced by $1/\mu$. In two-dimensional problems, involving only magnetic fields parallel to the xy-plane, the currents must flow in the z-direction and so the vector potential can have only one component A_z, which is, necessarily, tangential to all surfaces. When μ/μ_v becomes very large, we see, from 7.21 (7), that the surfaces on which A_z is constant, i.e., the equivector potential surfaces, are normal to the boundary. Thus, at this point, A_z behaves as the electrostatic stream function does at an electric equipotential boundary. We also obtain B from A_z in the same way as we obtain the electric field from the stream function; for, from 3.04 (2) and (3), we see that, in rectangular coordinates, where $h_1 = h_2 = h_3 = 1$ we have

$$B_x = \frac{\partial A_z}{\partial y}, \quad B_y = -\frac{\partial A_z}{\partial x}$$

These are the same as 4.11 (1).
Where there is no current, 7.02 (3) becomes
\[\nabla^2 A_s = 0 \] (2)
so that all the methods of Chap. IV are available for its solution.

7.26. Magnetic Shielding of Bifilar Circuit.—To illustrate the application of the results of the last article, let us compute the magnetic induction outside a cylindrical shield of permeability \(\mu \), with internal and external radii \(a \) and \(b \) which surrounds, symmetrically, two parallel conducting wires carrying currents in opposite directions. Evidently, the problem calls for the use of the circular harmonics of 4.01. In 7.09, the vector potential due to two wires carrying currents in opposite directions was found to be
\[A_z = \frac{\mu I}{2\pi} \ln \frac{r_2}{r_1} \] (1)
By 4.02 (1), setting \(\theta_0 = 0 \) and \(\theta_0 = \pi \) and \(\rho_0 = c \), we have the expansions, when \(\rho > c \),
\[\ln r_1 = -\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{c}{\rho} \right)^n \cos n\theta + \ln \rho \]
\[\ln r_2 = -\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{c}{\rho} \right)^n (-1)^n \cos n\theta + \ln \rho \]
When we take the difference, even terms go out so that, writing \(2n + 1 \) for \(n \), we get
\[\frac{\ln r_2}{\ln r_1} = 2 \sum_{n=0}^{\infty} \frac{1}{2n + 1} \left(\frac{c}{\rho} \right)^{2n+1} \cos (2n + 1)\theta \] (2)
Let us now superimpose a potential inside the shell, due to its influence, which is finite at the origin, giving in this region
\[A_{1z} = \frac{\mu I}{\pi} \sum_{n=0}^{\infty} \left[A_{2n+1}\rho^{2n+1} + \frac{1}{2n + 1} \left(\frac{c}{\rho} \right)^{2n+1} \right] \cos (2n + 1)\theta \] (3)
In the region 2, of permeability \(\mu \), \(\rho \) is neither zero nor infinity so we may have
\[A_{2z} = \frac{\mu I}{\pi} \sum_{n=0}^{\infty} (B_{2n+1}\rho^{2n+1} + C_{2n+1}\rho^{-2n-1}) \cos (2n + 1)\theta \] (4)
Outside the potential must vanish at infinity so that

\[A_{3z} = \frac{\mu_0 I}{\pi} \sum_{n=0}^{\infty} D_{2n+1} \rho^{-2n-1} \cos (2n + 1) \theta \]

(5)

These equations must be satisfied for all values of \(\theta \) so that each term separately must meet the boundary conditions 7.21 (6) and (7), giving after multiplying through by \(a^{2n+1} \) or \(b^{2n+1} \), when \(\rho = a \)

\[A_{2n+1} a^{4n+2} + \frac{1}{2n + 1} c^{2n+1} = B_{2n+1} a^{4n+2} + C_{2n+1} \]

(6)

and

\[\mu A_{2n+1} a^{4n+2} - \frac{\mu}{2n + 1} c^{2n+1} = \mu B_{2n+1} a^{4n+2} - \mu C_{2n+1} \]

(7)

when \(\rho = b \)

\[B_{2n+1} b^{4n+2} + C_{2n+1} = D_{2n+1} \]

(8)

and

\[\mu B_{2n+1} b^{4n+2} - \mu C_{2n+1} = -\mu D_{2n+1} \]

(9)

Solving for \(D_{2n+1} \), we have

\[A_{3z} = \frac{4\mu I}{\pi} \sum_{n=0}^{\infty} \left[(K_m + 1)^2 - (K_m - 1)^2 \left(\frac{a}{b} \right)^{4n+2} \right]^{-1} \frac{1}{2n+1} \left(\frac{c}{\rho} \right)^{2n+1} \cos (2n + 1) \theta \]

(10)

The field outside is given by 3.04 (2) and (3) where, from 3.05, \(h_1 = 1 \) and \(h_2 = \rho \) to be

\[B_\rho = \frac{1}{\rho} \frac{\partial A_z}{\partial \theta}, \quad B_\theta = -\frac{\partial A_z}{\partial \rho} \]

(11)

7.27. Current Images in Two Dimensions.—The vector potential due to a straight linear current \(I \) and the scalar potential due to a line charge \(q \) have exactly the same form. Furthermore, as we have seen, the magnetic vector potential and the electrostatic potential, in two dimensions, satisfy the same form of Laplace’s equation and the boundary conditions, if \(1/K_m \) is substituted for \(K \), are the same. It follows that the results of Art. 4.04 apply to a linear current \(I \) parallel to and at a distance \(b \) from a circular cylinder of permeability \(\mu \) and radius \(a \). Thus, the vector potential in the region outside the cylinder due to its presence is the same as if the cylinder were replaced by a parallel image current \(I' \) located between \(I \) and the axis, at a distance \(a^2/b \) from the latter, plus a current of strength \(-I'\) along the axis. The vector potential inside the cylinder is the same as if \(I \) were replaced by a linear current \(I'' \). \(I' \) and \(I'' \) are given by substituting \(1/K_m \) for \(K \) in 4.04 (7) to be
§7.28

\[I' = \frac{K_m - 1}{K_m + 1}I \quad \text{and} \quad I'' = \frac{2K_m}{K_m + 1}I \quad (1) \]

When \(K_m \to \infty \), \(I' \to I \) so that the laws for images of currents in boundaries of mediums of large relative permeability are exactly the same as the image laws for electric line charges in conductors, with the important difference that the current images have the same sign and the charge images the opposite sign. Thus, the image systems of 4.04, 4.05, and 4.06 can be used for currents with proper care as to signs and the substitution of \(1/K_m \) for \(K \).

7.28. Magnetomotance and Magnetic Intensity.—In dealing with the magnetic field, we are immediately struck by the many properties that the magnetic induction and the electric current have in common. In the first place, we have

\[6.00 \ (3) \ \nabla \cdot i = 0 \quad \text{and} \quad 7.01 \ (1) \ \nabla \cdot B = 0 \quad (1) \]

Then, for a simple closed path, we have

\[6.02 \ (4) \oint \frac{i \cdot ds}{\sigma} = \mathcal{E} \quad \text{and} \quad 7.20 \ (9) \oint \frac{B \cdot ds}{\mu} = I \quad (2) \]

The magnetic vector potential was derived on the basis of 7.20 (5). It is clear that we can proceed equally well along the lines of Chap. VI and define a new scalar quantity, analogous to \(\mathcal{E} \), which we shall call the magnetomotance \(\Omega \). Thus the magnetomotance in traversing once a path enclosing a current \(I \) is

\[\Omega = I \quad (3) \]

where \(I \) is in amperes and \(\Omega \) in ampere-turns. As both the magnetomotance and the electromotance are multiple-valued functions, their value depends on the path chosen. Using the method applied to \(\mathcal{E} \) in 6.01, we can often insert a suitable barrier so that the integral of (2) becomes zero for all permitted paths. \(\Omega \) then takes on the character of a scalar potential. In the simplest cases, the barrier erected is known as a magnetic shell. In (2), we see that the permeability \(\mu \) plays the role of the conductivity \(\sigma \) in Chap. VI, so that we may set up a relation equivalent to Ohm's law for magnetic circuits, which corresponds to 6.02 (3) and is

\[B = -\mu \nabla \Omega \quad (4) \]

It is convenient to have a symbol for the gradient of the magnetomotance. We shall call the negative of this quantity the magnetic field intensity and designate it by \(-H \), so that

\[H = -\nabla \Omega = \frac{B}{\mu} \quad (5) \]
The mks unit for H is ampere-turns per meter. In terms of H, (2) is

$$\oint H \cdot ds = I$$ \hspace{1cm} (6)

This equation is independent of the permeability of the medium. From (1) and (4), we get the relation analogous to 6.10 (2) which is

$$\nabla^2 \Omega = 0$$ \hspace{1cm} (7)

Starting with 6.00 (3), 6.02 (4), and 6.10 (2), we obtained the conditions that the electromotance must satisfy when at the boundary between two mediums of different conductivity. In the same way, we would get, from 7.28 (1), (2), and (7), the conditions Ω satisfies at the boundary between two mediums of different permeability. It is simpler, however, to start with 7.21 (10) and (11) and use (5). Thus from 7.21 (10)

$$\mu' H' \cdot n = \mu'' H'' \cdot n$$ \hspace{1cm} (8)

and from 7.21 (11)

$$H' \times n = H'' \times n$$ \hspace{1cm} (9)

In terms of the magnetomotance, these are

$$\mu \frac{\partial \Omega'}{\partial n} = \mu'' \frac{\partial \Omega''}{\partial n}$$ \hspace{1cm} (10)

and

$$\Omega' = \Omega''$$ \hspace{1cm} (11)

It is to be noted that the magnetomotance satisfies just the same equations (7), (10), and (11) as the electrostatic potential, 3.02 (3) and 1.17 (5) and (6). It differs from the latter, however, in being a multiple-valued function unless we erect a barrier in the field in such a way as to prevent our making a complete circuit of any currents in the field; then Ω is single-valued in the region outside the barrier and may be treated by the methods of electrostatics. When so restricted, Ω is called the scalar magnetic potential and we use it to obtain solutions of magnetic problems from electrostatic solutions.

For example, if we wish to find the shielding effect of a spherical shell of permeability μ and internal and external radii a and b when placed in a uniform magnetic field of induction B, we can use 5.18 (5). This shows us that the field inside the shell is still uniform and that its induction is

$$B_i = \frac{9K_m B}{9K_m - 2(K_m - 1)^2(a^3b^{-3} - 1)}$$ \hspace{1cm} (12)

Because (10) and (11) are identical in form with 1.17 (5) and (6), the law of refraction of magnetic lines of force at the boundary between two isotropic magnetic mediums, derived from the former, will be identical with that for electric lines of force derived from the latter and
expressed by 1.17 (8). Thus, at such a boundary, the magnetic lines of force or induction make an abrupt change in direction given by

$$\mu' \cot \alpha' = \mu'' \cot \alpha''$$

(13)

where α' is the angle that a line makes with the normal to the boundary in the medium of permeability μ' and α'' is the corresponding angle in the medium of permeability μ''.

7.29. The Magnetic Circuit. Anchor Ring.—In 7.28, we pointed out the close mathematical analogy between the magnetic induction and the electric current density. To use the technique of Chap. VI for the solution of magnetic problems analogous to electric current problems, it will be convenient to define several new magnetic quantities. The magnetic flux N, through a surface S, corresponds to the electric current I, the equations being

$$6.00 (2) \quad I = \int_S i \cdot n \, dS \quad N = \int_S B \cdot n \, dS$$

(1)

The mks unit of flux is the weber. The magnetic reluctance R' between two points in a circuit corresponds to the electric resistance, and the analogous equations are

$$6.02 (1) \quad R_{AB} = \frac{\mathcal{E}_{AB}}{I_{AB}} \quad R'_{AB} = \frac{\Omega_{AB}}{N_{AB}}$$

(2)

To illustrate the computation of such circuits, let us find the flux in a torus of permeability μ wound with n turns of wire carrying a current I. Let the radius of a section of the torus be b and the distance from its center to the axis of the torus a. From 7.28 (3), the magnetomotance around the torus from 0 to 2π is nI. Since, by symmetry, H is independent of θ, the magnetomotance around that portion of the path between 0 and θ is proportional to θ, which gives

$$\Omega = \frac{nI\theta}{2\pi}$$

(3)

Thus, from 7.28 (5),

$$H_\theta = -\frac{\partial \Omega}{\partial \theta} = -\frac{In}{2\pi r}$$

So, for a given value of r, H_θ is constant, and we may break up the torus into a set of cylindrical laminations, as shown in Fig. 7.29, without changing its reluctance. The reluctance of one of these laminas is

$$dR' = \frac{\text{length}}{\mu \text{ area}} = \frac{2\pi r}{\mu \, dS}$$
§7.31 FIELD IN SHELL-TYPE TRANSFORMER

But \(dS = 2(b^2 - (a - r)^2)^{1/2} \, dr \), and since the laminas are in parallel we have

\[
\frac{1}{R'} = \int \frac{1}{dR'} = \frac{\mu}{\pi} \int_{a-b}^{a+b} \frac{(b^2 - (a - r)^2)^{1/2}}{r} \, dr
\]

Integrating by \(Pc 187 \) and putting in limits give

\[
\frac{1}{R'} = \left(\frac{\mu}{\pi} \right) \pi [a - (a^2 - b^2)^{1/2}]
\]

By (2), the flux through the ring is then

\[
N = \frac{\Omega}{R'} = \mu n l [a - (a^2 - b^2)^{1/2}]
\]

7.30. Air Gaps in Magnetic Circuits.—It is evident that if there is a continuous path of high permeability and sufficient cross-sectional area at all points, the flux in the magnetic circuit will be confined almost entirely to the permeable medium. If, however, there is a break in the path, the flux must cross this gap and will distribute itself in such a way that the magnetomotance satisfies 7.28 (7) everywhere and 7.28 (10) and (11) at the gap boundaries. If the medium permeability \(\mu'' \) is very high compared with the gap permeability \(\mu' \), then \(\alpha' \to 0 \) from 7.28 (13), and the flux leaves it normally. If the product of \(\mu' \) by the length of that part of the magnetic circuit lying in the permeable medium is small compared with the product of \(\mu'' \) by the length of the air gap and if the cross section is nowhere too small, we may consider practically the entire reluctance of the circuit to lie in the gap. This is true in many electrical machines. When the faces of the gap are parallel and their area \(A \) is large compared with the distance apart \(d \), the field in the gap may be taken as uniform and the effect of the edges neglected so that its reluctance is \(d/A \).

To obtain rigorous solutions of other cases, we must use the vector potential or work with the induction, using Biot and Savart's law and the boundary conditions of 7.21. This frequently entails more mathematical labor than is justified by the accuracy required. In such cases, a sufficiently accurate result may be given by using the scalar magnetic potential which makes available the methods of Chaps. IV and V. As mentioned in 7.28, this necessitates the erection of an artificial barrier somewhere in the permeable part of the magnetic circuit. If the permeability is high, we then assign one value of the potential to that portion of the medium on one side of the barrier and another value to that portion on the other side. If the configuration is such that we can put the barrier far from the gap, the error introduced by its presence is negligible.

7.31. Field in Shell-type Transformer.—As an example of a case in which the approximate solution is obtained by assuming the permeability
infinite, let us calculate the field due to a thin, symmetrically placed, cylindrical layer of wire coaxial with the cylindrical core of a shell-type transformer. The equations of the walls of the “window,” in cylindrical coordinates, are \(z = -h, z = +h, \rho = a, \) and \(\rho = b. \) The winding at \(\rho = c \) extends from \(z = -k \) to \(z = +k \) and is so closely wound with \(n \) turns per unit length that, when carrying a current \(I \), we may consider it as a single uniform current sheet carrying a total current \(I_0 = 2nIk \) around the core parallel to the \(z \)-plane, as shown in Fig. 7.31a. We wish to find the magnetic induction in the window. From symmetry, the vector potential will have only one component \(A_\phi. \) From 7.05, we see that the solutions in cylindrical coordinates involve either Bessel functions or modified Bessel functions. For the former, the methods of 5.297 and 5.298 are used and the results are given in problems 31 and 32 at the end of this chapter.

We shall obtain the solution in terms of modified Bessel functions by the method of 5.36. The form of the solution when \(\phi \) has only a \(\phi \)-component whose magnitude is independent of \(\phi \) is obtained by putting \(n = 0 \) and \(\delta = \frac{1}{2}\pi \) in 7.05 (3). Both \(\rho = 0 \) and \(\rho = \infty \) lie outside the region under consideration so that neither \(I_1(\kappa \rho) \) nor \(K_1(\kappa \rho) \) can be excluded for becoming infinite. The solution therefore has the form

\[
A_\phi = \sum_{m = 1}^{\infty} \left[C_m I_1 \left(\frac{m\pi\rho}{h} \right) + D_m K_1 \left(\frac{m\pi\rho}{h} \right) \right] \cos \frac{m\pi z}{h} \quad (1)
\]

since we have symmetry about the \(z = 0 \) plane and \(B_\rho = -\partial A_\phi/\partial z \) is to be zero when \(z = \pm h. \) We shall find it convenient to use the following notation, after referring to 5.33 (5) and (6):

\[
R_1(m, s, t) = K_0 \left(\frac{m\pi s}{h} \right) I_1 \left(\frac{m\pi t}{h} \right) + I_0 \left(\frac{m\pi s}{h} \right) K_1 \left(\frac{m\pi t}{h} \right) \quad (2)
\]

\[
R_0(m, s, t) = \frac{h}{m\pi t} \frac{\partial (tR_1)}{\partial t} = K_0 \left(\frac{m\pi s}{h} \right) I_0 \left(\frac{m\pi t}{h} \right) - I_0 \left(\frac{m\pi s}{h} \right) K_0 \left(\frac{m\pi t}{h} \right) \quad (3)
\]
We note that
\[R_0(m, s, s) = 0 \] (4)

Let the vector potential be \(A'_\phi \) when \(a < \rho < c \) and \(A''_\phi \) when \(c < \rho < b \). Three of the four remaining boundary conditions are
\[
\begin{align*}
A'_\phi &= A''_\phi \quad \text{when} \quad \rho = c \\
B'_z &= \frac{1}{\rho} \frac{\partial (\rho A'_\phi)}{\partial \rho} = 0 \quad \text{when} \quad \rho = a \\
B''_z &= \frac{1}{\rho} \frac{\partial (\rho A''_\phi)}{\partial \rho} = 0 \quad \text{when} \quad \rho = b
\end{align*}
\]

Because of (3) and (4), it is evident that all these conditions are satisfied by choosing
\[
\begin{align*}
A'_\phi &= \sum_{m=1}^{\infty} C_m R_1(m, b, c) R_1(m, a, \rho) \cos \frac{m \pi z}{h} \\
A''_\phi &= \sum_{m=1}^{\infty} C_m R_1(m, a, c) R_1(m, b, \rho) \cos \frac{m \pi z}{h}
\end{align*}
\]

We determine \(C_m \) from the boundary condition on the surface of the coil. To find what this is, we observe that the line integral around a path enclosing the turns between \(z = 0 \) and \(z = z \) is independent of the induced magnetization and that if the path fits closely the cylinder \(\rho = c \) this integral is, by 7.01 (2),
\[\oint B \cdot ds = \int_{-k}^{+k} (B'_z - B''_z)_{\rho=c} \, dz = \mu_n I z \]

Differentiating this with respect to \(z \), we find
\[
\begin{align*}
(B'_z - B''_z)_{\rho=c} &= \mu_n I \quad \text{when} \quad -k < z < +k \\
(B'_z - B''_z)_{\rho=c} &= 0 \quad \text{when} \quad |z| < h
\end{align*}
\]

From (5), (6), (7), and (8), we obtain
\[B'_z - B''_z = \sum_{m=1}^{\infty} \frac{m \pi}{h} C_m [R_0(m, a, c) R_1(m, b, c) - R_1(m, a, c) R_0(m, b, c)] \cos \frac{m \pi z}{h} \]

With the aid of 5.32 (7), this reduces to
\[B'_z - B''_z = \sum_{m=1}^{\infty} \frac{C_m}{c} R_0(m, a, b) \cos \frac{m \pi z}{h} \]

To determine \(C_m \), multiply both sides by \(\cos (q \pi z/h) \, dz \), and integrate from \(-h\) to \(+h\). By Dw 858.2 or Pc 488, all terms on the right go out except the one for which \(m = q \). From (9) and (10), the integral on the left is zero except for \(-k < z < +k\), and so we have
\[\mu_0 n I \int_{-k}^{+k} \cos \frac{m \pi z}{h} \cos \frac{m \pi k}{h} \cos \frac{m \pi z}{h} = C_m R_0(m, a, b) \]

Solving for \(C_m \) and substituting in (7) and (8) give

\[a < \rho < c \quad A_\phi' = \frac{2 \mu_0 n I c}{\pi} \sum_{m=1}^{\infty} \frac{1}{R_0(m, a, b)} \frac{R_1(m, b, c) R_1(m, a, \rho)}{R_0(m, a, b)} \sin \frac{m \pi k}{h} \cos \frac{m \pi z}{h} \]

(11)

\[c < \rho < b \quad A_\phi'' = \frac{2 \mu_0 n I c}{\pi} \sum_{m=1}^{\infty} \frac{1}{R_0(m, a, b)} \frac{R_1(m, a, c) R_1(m, b, \rho)}{R_0(m, a, b)} \sin \frac{m \pi k}{h} \cos \frac{m \pi z}{h} \]

(12)

From 7.08 (4), the equation of a tube of force is

\[N = 2\pi \rho A_\phi \]

(13)

When the coil is in contact with the inner core, \(a = c \) and \(A_\phi'' \) covers the window. When the coil is against the outer wall, \(c = b \) and \(A_\phi' \) covers the window. In these cases, (11) and (12) simplify considerably since, by 5.32 (7) and 5.33 (4),

\[R_1(m, s, s) = \frac{h}{m \pi s} \]

(14)

Equations (11) and (12) show that if the winding extends the full height of the window so that \(h = k \) there is no leakage flux with the infinite permeability assumed.

Fig. 7.31b, c, and d.—Maps of the lines of induction of the leakage flux in a section of the window of the shell-type transformer shown in Fig. 7.31a as calculated from 7.31 (11), (12), and (13). The numerical values used are: \(a = 1, b = 2, h = \frac{1}{2} \pi, k = \frac{1}{2} \pi, \mu = \infty, \) and \(\mu_0 I = 10. \) The current sheet is taken at \(\rho = 1 \) in b, at \(\rho = 1.5 \) in c, and at \(\rho = 2 \) in d.

Figures 7.31b, c, and d show the leakage flux when the winding is against the inner core, halfway out, and against the outer wall. The
§7.32 SLOTTED POLE PIECE. EFFECTIVE AIR GAP

same number of ampere-turns is assumed in each case. The winding extends over the range from \(z = -\frac{1}{2} h \) to \(z = +\frac{1}{2} h \).

7.32. Slotted Pole Piece. Effective Air Gap.—Suppose that one of the plane faces of an air gap of length \(B \) has parallel slots of width \(2A \) spaced at intervals \(2C \) between centers. If \(C - A \) is sufficiently large compared with \(B \), the field near a slot is practically undisturbed by the adjacent slots and may be computed as if they were absent. If the depth of the slot is great compared with its width, the effect of its bottom is negligible and it can be treated as infinitely deep. Thus the section \(RS \) of Fig. 7.32a can be treated as section \(RS \) of Fig. 7.32b where the openings extend to infinity. We shall consider the permeability so high that the entire magnetomotance falls across the air gap as was discussed in 7.30. The opening has the shape of a polygon with interior angles zero at \(x = \pm \infty \) and \(3\pi/2 \) at \(x = \pm A \), \(y = B \). Thus, an inverse Schwarz transformation will unfold this boundary into the real axis in the \(z_1 \)-plane. Let us suppose that the \(3\pi/2 \) corners come to the points \(x_1 = \pm 1 \), then the 0 corners come to \(x_1 = \pm a \) where \(a^2 < 1 \). By 4.18 (7), the \(z \) and \(z_1 \) planes are connected by the relation

\[
\frac{dz}{dz_1} = C'(z_1^2 - 1)^{\frac{1}{2}} \left(\frac{z_1}{z_1^2 - a^2} \right) \tag{1}
\]

The magnetic circuit in the \(z_1 \)-plane is shown in Fig. 7.32c which is a section of the bifilar circuit of 7.09. Since the reluctance of the part of the magnetic circuit below the \(x_1 \)-axis is zero, the vector potential above the \(x_1 \)-axis is twice that of 7.09 (1) and is

\[
A_z = \frac{\mu I}{\pi} \ln \left(\frac{r_2}{r_1} \right) \tag{2}
\]

From 4.12 (3), this is the real part of

\[
W = \frac{\mu I}{\pi} \ln \frac{a + z_1}{a - z_1} \tag{3}
\]

Before we determine \(W \) in the \(z \)-plane, we must integrate (1), which may be written

\[
z = C' \int \frac{dz_1}{(z_1^2 - 1)^{\frac{1}{2}}} + C'(a^2 - 1) \int \frac{dz_1}{(z_1^2 - a^2)(z_1^2 - 1)^{\frac{1}{2}}}
\]
For the first integral, use Pc 127 or Dw 320.01 after taking out j, and for the second, use Pc 229 or substitute $z_1 = au(u^2 - 1)^{-1}$ and use Pc 126a or Dw 200.01. After writing jC for C', the integrals may be written in several equivalent forms. In each, the signs must be checked by differentiation and comparison with (1). These forms are

$$z = C \sin^{-1} z_1 + C \frac{1 - a^2}{a} \sin^{-1} \left\{ \frac{1 - a^2}{(a/z_1)^2 - 1} \right\}$$ \hspace{1cm} (4a)$$

$$= C \sin^{-1} z_1 + jC \frac{1 - a^2}{a} \sin^{-1} \left\{ \frac{1 - a^2}{z_1^2 - a^2} \right\}$$ \hspace{1cm} (4b)$$

$$= \frac{1}{2} \pi C + jC \cosh^{-1} z_1 + jC \frac{1 - a^2}{a} \sin^{-1} \left\{ \frac{1 - a^2}{1 - (a/z_1)^2} \right\}$$ \hspace{1cm} (4c)$$

$$= C \sin^{-1} z_1 + jC \frac{1}{2a} + C(1 - a^2)^{1/2} \sinh^{-1} \left\{ \frac{1 - a^2}{1 - (a/z_1)^2} \right\}$$ \hspace{1cm} (4d)$$

when $z_1 > 1$, $x = +A = \frac{1}{2}C \pi$ from (4c) so that $C = 2A/\pi$, and when $1 > z_1 > a$, $y = B = Aa^{-1}(1 - a^2)^{1/2}$ from (4d) so that $a = A(A^2 + B^2)^{-1}$. From (3) by Pc 681 or Dw 702,

$$W = \frac{\mu_v I}{\pi} \ln \frac{1 + \left(\frac{z_1}{a}\right)}{1 - \left(\frac{z_1}{a}\right)} = \frac{2\mu_v I}{\pi} \tanh^{-1} \frac{z_1}{a}, \text{ or } z_1 = a \tanh \frac{\pi W}{2\mu_v I}$$ \hspace{1cm} (5)$$

Then, by Pc 659 or Dw 650.08,

$$\frac{z_1}{(z_1^2 - a^2)^{1/2}} = \sinh \frac{\pi W}{2\mu_v I}$$

This substituted in (4a) gives

$$z = \frac{2}{\pi} A \sin^{-1} \left[\frac{A}{(A^2 + B^2)^{1/2}} \tanh \frac{\pi W}{2\mu_v I} \right]$$

$$+ B \sinh^{-1} \left[\frac{B}{(A^2 + B^2)^{1/2}} \sinh \frac{\pi W}{2\mu_v I} \right]$$ \hspace{1cm} (6)$$

We have equivalent forms for (4b), (4c), and (4d). To find the effect of the slot on the reluctance of the air gap, we must find the flux between R and S with and without the slot. From (5), we are on the real axis when W is real. For large values of $U = A_x$ on the x-axis, which will occur when $C - A$ is considerably greater than B, we have

$$\tanh \frac{\pi A_x}{2\mu_v I} \to 1 \quad \text{and} \quad \sinh \frac{\pi A_x}{2\mu_v I} \to \frac{1}{2} e^{2\mu_v I}$$

and, since $\sin^{-1} \frac{A}{(A^2 + B^2)^{1/2}} = \tan^{-1} \frac{A}{B} = \frac{1}{2} \pi - \tan^{-1} \frac{B}{A}$, (6) is

$$x = A + \frac{2}{\pi} \left\{ -A \tan^{-1} \frac{B}{A} + B \sinh^{-1} \left[\frac{B}{2(A^2 + B^2)^{1/2}} e^{2\mu_v I} \right] \right\}$$
or

\[A_z = \frac{2\mu_I}{\pi} \ln \left\{ \frac{2}{B} (A^2 + B^2)^{\frac{3}{2}} \sinh \left[\frac{\pi(x - A)}{2B} + \frac{A}{B} \tan^{-1} \frac{B}{A} \right] \right\} \]

(7)

and, if \((x - A) \gg B\), this becomes

\[A_z = \frac{\mu_0 I}{\pi} \ln \left(1 + \frac{A^2}{B^2} \right) + \frac{2\mu_0 I}{\pi} \left[\frac{A}{B} \tan^{-1} \frac{B}{A} + \frac{(x - A)\pi}{2B} \right] \]

Since \(A_z = 0\) at the origin from (3), its value at any point \(x\) is, from 7.25 (1),

\[A_z = \int_0^x \frac{\partial A_z}{\partial x} \, dx = - \int_0^x B_y \, dx \]

This is the flux leaving the lower face between \(x = 0\) and \(x = C\). If the same flux crossed the same interval with the same magnetomotance when there was no slot, \(i.e., A' = 0\), then the width \(B'\) of the air gap would be

\[B' = \frac{\mu_0 (A + C)}{A_z} = \frac{\pi (A + C)B}{\pi C + 2A \tan^{-1} \frac{B}{A} + B \ln \left(1 + \frac{(A/B)^2}{(A + C)^2} \right)} \]

(8)

Thus a gap of length \(B'\) without slots has the same reluctance as a gap of length \(B\) with slots of width \(2A\) spaced at intervals \(2C\).

Problems

The problems marked \(C\) in the following list are taken from the Cambridge examinations as reprinted by Jeans, with the permission of the Cambridge University Press.

1. Show that the magnetic induction at the center of a loop of wire carrying a current and shaped like a regular plane polygon of \(2n\) sides, the distance between parallel sides being \(2a\), is \([\mu_0 I/(\pi a)] \sin (\pi/2n)\), where \(I\) is the current.

2. A wire follows the circumference of a circle of radius \(a\) except for an arc of angular length \(2\phi\) across which it follows the chord. This loop is suspended from a point opposite the center of the chord so that its plane is perpendicular to a long straight wire that passes through its center. When the currents are \(i\) and \(i'\), show that the torque on the loop is \((\mu_0 a/\pi)(\sin \phi - \phi \cos \phi)\).

3. A filament is wound in a flat open spiral whose polar equation is \(r = R\theta/(2\pi N)\), where \(N\) is the total number of turns and \(R\) is the radius vector from the center to the outer end of the spiral. If this spiral carries a current \(I\), show rigorously that the axial component of the magnetic induction at a distance \(z\) along the axis from the coil is

\[i \mu_0 N I / (2\pi B \sin^2 \theta) \dfrac{1}{\sin \theta} \ln \left[\dfrac{R + (R^2 + z^2)^{1/2}}{R - (R^2 + z^2)^{1/2}} \right] \]

4. The plane of a circular loop of wire of radius \(b\), carrying a current \(i\), makes an angle \(\beta\) with a uniform magnetic field of induction \(B\). Show that, if a sphere of radius \(a\) and permeability \(\mu\) is placed inside the loop concentrically, the increase in torque is \([(K_m - 1)/(K_m + 2)]2\pi B a^2 b^{-1} \sin^2 \beta\).

5. A certain lead consists of two parallel conducting strips of width \(A\) at a distance \(B\) apart, forming opposite sides of a rectangular prism. A current \(I\) goes out on one and returns on the other. If the current is uniformly distributed, show that the repulsion per unit length between strips is

\[\mu I^2 (\pi A^2)^{-1} (A \tan^{-1} (A/B) - \frac{1}{2} B \ln [(A^2 + B^2)/B^2]) \]
6. An electrodynamometer consists of two square loops of wire, each side being of length \(a \), one of which is free to turn about an axis which bisects the top and bottom sides of both loops. Assuming the loops intersect on this axis, show that the torque on one when it makes an angle \(\frac{\theta}{2} \) with the other and both carry a current \(I \) is

\[
\frac{\mu I^2 a}{2\pi} \left[2^4 (3^3 - 1) + 2\ln \left(\frac{5^4 (1 + 2^2)}{(1 + 6^3)} \right) + 4\cot^{-1} (6^4 \cdot 2 - 2\cos^{-1} \frac{1}{5}) \right]
\]

7. Two circular cylinders lie with their axes at \(z = +c \) and \(z = -c \) and each carries a uniformly distributed current \(\frac{1}{4} I \) in the \(z \)-direction. Surrounding these is a circular cylindrical shell with its axis at \(z = 0 \), carrying a uniformly distributed current \(I \) in the reverse direction. Show that the force toward the center acting on one of the inner cylinders is \(\mu I^2/(16\pi) \).

8C. Show that, at any point along a line of force, the vector potential due to a current in a circle is inversely proportional to the distance between the center of the circle and the foot of the perpendicular from the point on to the plane of the circle. Hence, trace the lines of constant vector potential.

9C. A current \(i \) flows in a circuit in the shape of an ellipse of area \(A \) and length \(l \). Show that the force at the center is \(\frac{1}{2\mu i} l/A \).

10C. A current \(i \) flows around a circle of radius \(a \), and a current \(i' \) flows in a very long straight wire in the same plane. Show that the mutual attraction is

\[
\mu ii' (\sec \alpha - 1)
\]

where \(2\alpha \) is the angle subtended by the circle at the nearest point of the straight wire.

11C. Two circular wires of radii \(a \), \(b \) have a common center and are free to turn on an insulating axis which is a diameter of both. Show that when the wires carry currents \(i \), \(i' \), a couple, of magnitude \(\frac{1}{2} \pi \mu b^2 a^{-1} \left[1 - \frac{1}{3} \pi a^{-2} b^2 \right] ii' \), is required to hold them with their planes at right angles, it being assumed that \(b/a \) is so small that its fourth power can be neglected.

12C. Two currents \(i \), \(i' \) flow round two squares each of side \(a \), placed with their edges parallel to one another and at right angles to the distance \(c \) between their centers. Show that they attract with a force

\[
\frac{2\mu ii'}{\pi} \left(\frac{c(2a^2 + c^2)^{3/2}}{a^3 + c^2} + 1 - \frac{a^2 + 2c^2}{c(a^2 + c^2)^{3/2}} \right)
\]

13C. A current \(i \) flows in a rectangular circuit whose sides are of lengths \(2a \), \(2b \), and the circuit is free to rotate about an axis through its center parallel to the sides of length \(2a \). Another current \(i' \) flows in a long straight wire parallel to the axis and at a distance \(d \) from it. Prove that the couple required to keep the plane of the rectangle inclined at an angle \(\phi \) to the plane through its center and the straight current is \([2\mu ii'abd(b^2 + d^2) \sin \phi]/[\pi(b^4 + d^4 - 2b^2d^2 \cos 2\phi)] \).

14C. A circular wire of radius \(a \) is concentric with a spherical shell of soft iron of radii \(b \) and \(c \). If a steady current \(I \) flows around the wire, show that the presence of the iron increases the number of lines of induction through the wire by

\[
\frac{\pi I a^4 \mu \nu (K_m - 1)(K_m + 2)(c^3 - b^3)}{2b^3[(K_m + 2)(2K_m + 1)c^3 - 2(K_m - 1)b^3]}
\]

approximately, where \(a \) is small compared with \(b \) and \(c \).

15C. A right circular cylindrical cavity is made in an infinite mass of iron of permeability \(\mu \). In this cavity, a wire runs parallel to the axis of the cylinder, carrying a steady current of strength \(I \). Prove that the wire is attracted toward the nearest
part of the surface with a force \(\mu_i I^2 (K_m - 1)/(2\pi d(K_m + 1)) \) per unit length, where \(d \) is the distance of the wire from its electrostatic image in the cylinder.

16C. If the magnetic field within a body of permeability \(\mu \) is uniform, show that any spherical portion can be removed and the cavity filled up with a concentric spherical nucleus of permeability \(\mu_1 \) and a concentric shell of permeability \(\mu_2 \) without affecting the external field, provided that \(\mu \) lies between \(\mu_1 \) and \(\mu_2 \) and that the ratio of the volume of the nucleus to that of the shell is properly chosen. Prove also that the field inside the nucleus is uniform and that its intensity is greater or less than that outside according as \(\mu \) is greater or less than \(\mu_1 \).

17C. A sphere of soft iron of radius \(a \) is placed in a field of uniform magnetic force parallel to the axis of \(z \). Show that the lines of force external to the sphere lie on surfaces of revolution, the equation of which is of the form

\[
\left(1 + \frac{2(K_m - 1)}{K_m + 2} \right) \left(\frac{a}{r} \right)^2 (x^2 + y^2) = \text{constant}
\]

\(r \) being the distance from the center of the sphere.

18C. A sphere of soft iron of permeability \(\mu \) is introduced into a field of force in which the scalar potential is a homogeneous polynomial of degree \(n \) in \(x, y, z \). Show that the scalar potential inside the sphere is changed to its original value multiplied by \((2n + 1)/(nK_m + n + 1)\).

19C. If a shell of radii \(a, b \) is introduced in place of the sphere in the last question, show that the force inside the cavity is altered in the ratio

\[
(2n + 1)^2 K_m: (nK_m + n + 1)(nK_m + n + K_m) - n(n + 1)(K_m - 1)^2 (a/b)^{2n+1}
\]

20C. An infinitely long hollow iron cylinder of permeability \(\mu \), the cross section being concentric circles of radii \(a, b \), is placed in a uniform field of magnetic force, the direction of which is perpendicular to the generators of the cylinder. Show that the number of lines of induction through the space occupied by the cylinder is changed by inserting the cylinder in the field, in the ratio

\[
b^2(K_m + 1)^2 - a^2(K_m - 1)^2: 2K_m(b^2(K_m + 1) - a^2(K_m - 1))
\]

21. There is a zonal distribution of current flowing in an oblate spheroidal shell \(\xi = \xi_0 \) such that current between \(\xi = 1 \) and \(\xi = \xi_0 \) is given by \(\psi(\xi_0) = \Sigma C_n P_n(\xi_0) \).

Evaluating the integral of 7.10 by the result in 5.274, show that the vector potential due to this current, when \(\xi < \xi_0 \), is

\[
-\phi \mu I \left(1 + \frac{3}{\xi} \right) \frac{1}{n(n + 1)} \sum_{i=1}^{\infty} C_n P_n^1(j_0) P_n^1(j) P_n^1(\xi)
\]

22. Using the last problem, show that the vector potential due to a loop of wire at \(\xi_0, \xi_0 \), carrying a current \(I, \xi \), is

\[
-\phi \mu I \left(1 + \frac{3}{\xi} \right) \frac{1}{n(n + 1)} \sum_{i=1}^{\infty} C_n P_n^1(j\xi_0) P_n^1(j\xi) P_n^1(\xi)
\]

Write, by inspection, the result when \(\xi > \xi_0 \).

23. If the spheroid in 21 is prolate instead of oblate, show that, when \(\eta < \eta_0 \),

\[
A = -\phi \mu \left(\frac{3}{\eta} \right) \frac{1}{n(n + 1)} \sum_{i=1}^{\infty} C_n P_n^1(\eta_0) P_n^1(\eta) P_n^1(\xi)
\]

24. If the prolate spheroidal harmonics, the coordinates of a loop are \(\xi_0, \eta_0 \). Show that the vector potential due to such a loop carrying a current \(I \) is

\[
-\phi \mu I \left(\frac{3}{\eta_0} - 1 \right) \frac{1}{n(n + 1)} \sum_{i=1}^{\infty} C_n P_n^1(\eta_0) P_n^1(\eta) P_n^1(\xi)
\]
25. In the last problem, a prolate spheroid of permeability \(\mu \) whose surface is given by \(\eta = \eta_1 \) is inserted. Show that the additional vector potential due to its presence is given by

\[
-\Phi = \mu I \frac{1}{2} \left(K_m - 1 \right) \left(\frac{\eta^2}{n^2} - 1 \right) \left(1 - \frac{\eta}{n^2} \right) \sum_{1}^{\infty} \frac{2n+1}{n^2(n+1)^2} \frac{P_n^1(\xi_0)Q_n^1(\eta_0)P_n^1(\eta_1)Q_n^1(\eta)}{Q_n^1(\eta_1)P_n(\eta_1) - K_m Q_n(\eta_1)P_n^1(\eta_1)} - \frac{Q_n^1(\eta)}{Q_n^1(\eta_1)} P_n^1(\xi)
\]

where \(\eta > \eta_1 \).

26. Show that the vector potential due to a plane loop of wire of radius \(a \) at \(z = 0 \) and carrying a current \(I \) is, if \(\rho > a \),

\[
A_\phi = \mu a I \pi^{-1} \int_0^\infty I_1(ka)K_1(kp) \cos kz \, dk
\]

If \(\rho < a \), interchange \(\rho \) and \(a \) under the integral.

27. Show that the vector potential due to a plane loop of wire of radius \(a \), carrying a current \(I \), is

\[
A_\phi = \frac{1}{2} \mu a I \int_0^\infty J_1(ka)J_1(kp) \cos k \rho \, dk
\]

28. A loop of wire of radius \(a \) is coaxial with an infinite cylinder of radius \(b \) and permeability \(\mu \) and carries a current \(I \). Show that that part of the vector potential outside the cylinder due to its presence is

\[
\Phi(k) = \frac{(K_m - 1) kb I_0(kb) I_1(kb)}{(K_m - 1) kb K_0(kb) I_1(kb) + 1}
\]

Write out the vector potential for the region inside.

29. Show that the vector potential, due to a section of length \(2c \) of a circular cylinder of radius \(a \) around which circulates a uniformly distributed current \(I \), is, when \(\rho > a \)

\[
A_\phi = \mu a I \pi^{-1} \int_0^\infty \frac{1}{k} I_1(ka)K_1(kp) \cos kz \, dk
\]

30. The plane of a circular loop of wire of radius \(a \), carrying a current \(I \), is parallel to and at a distance \(b \) from the face of an infinite plate of material of permeability \(\mu \) and thickness \(t \). Show that the vector potentials on the loop side of the slab, in the slab, and on the other side of the slab are given, respectively, by

\[
A_1 = \frac{1}{2} \mu a I \int_0^\infty J_1(kp)J_1(ka) \left[e^{-kz} + C(K_m^2 - 1) \left(1 - e^{-kt} \right) e^{k(b+ct)} \right] \, dk
\]

\[
A_2 = \mu K_m a I \int_0^\infty J_1(kp)J_1(ka) \left(K_m + 1 \right) e^{-ks} - \left(K_m - 1 \right) e^{k(b+ct)} \, dk
\]

\[
A_3 = 2 \mu K_m a I \int_0^\infty J_1(kp)J_1(ka) C e^{-kt} \, dk
\]

where \(\rho \) is measured from the axis of the loop, \(z \) from the plane of the loop, and

\[
C = \left[(K_m + 1)^2 - (K_m - 1)^2 e^{-2kt} \right]^{-1}.
\]

31. An infinite solid circular cylinder of radius \(a_1 \) and permeability \(\mu = \infty \) is coaxial with an infinite cylindrical tube of the same material and internal radius \(a_2 \). In the space between is a coaxial conducting ring bounded by the cylinders \(\rho = b_1 \) and \(\rho = b_2 \) and the planes \(z = c_1 \) and \(z = c_2 \). The ring carries a current \(I \), the current density being given rigorously, see 6.22 (2), by \(i_\phi = I [\rho(c_2 - c_1) \ln b_2/b_1]^{-1} \). Show
that the vector potential when \(a_1 < \rho < a_2\) and \(z > c_2 > c_1\) is given by

\[
A_\phi = \sum_{n=1}^{\infty} C_n (e^{k_n c_2} - e^{k_n c_1}) e^{-k_n z} R_1(k_n \rho)
\]

where \(R_m(k_n \rho) = Y_0(k_n a_1) J_m(k_n \rho) - J_0(k_n a_1) Y_m(k_n \rho)\) and \(k_n\) is chosen in such a way that \(R_0(k_n a_2) = 0\) and

\[
C_n = \frac{\mu \pi I [R_0(k_n b_2) - R_0(k_n b_1)] [J_m(k_n a_2)]^2}{4k_n (c_2 - c_1) \ln (b_2/b_1) [J_m(k_n a_1)]^2 - [J_m(k_n a_2)]^2}
\]

32. Assuming the iron in a shell-type transformer to be infinitely permeable and the walls of the opening to be given by \(\rho = a_1, \rho = a_2, z = 0,\) and \(z = L,\) show, from the last problem and from 5.298, that the vector potential produced by a single conducting ring bounded by \(\rho = b_1, \rho = b_2, z = c_1\) and \(z = c_2\) is given, outside the conductor, by

\[
A'_\phi = 2 \sum_{n=1}^{\infty} C_n R_1(k_n \rho) [\sinh (k_n (L - c_2)) - \sinh (k_n (L - c_1))] \cosh (k_n z) \csch (k_n L)
\]

\(c_1 < c_2 < z,\)

\[
A''_\phi = -2 \sum_{n=1}^{\infty} C_n R_1(k_n \rho) [\sinh (k_n c_2) - \sinh (k_n c_1)] \cosh (k_n (L - z)) \csch (k_n L)
\]

where the constants are defined as in the last problem. When \(c_1 < z < c_2,\) we have

\[
A_\phi = \frac{c_2 - z}{c_2 - c_1} A'_\phi + \frac{z - c_1}{c_2 - c_1} A''_\phi
\]

33. The walls of an infinitely long conduit of infinite permeability are given by \(x = 0, x = a,\) and \(y = 0, y = b.\) A wire carrying a current \(I\) lies at \(x = c, y = d,\) where \(0 < c < a\) and \(0 < d < b.\) Show that the vector potential inside the conduit is

\[
0 < y < d, \quad A'_x = \frac{2 \mu I}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} \csch \frac{m \pi b}{a} \cosh \frac{m \pi x}{a} (b - d) \cosh \frac{m \pi y}{a} \cos \frac{m \pi c}{a} \cos \frac{m \pi x}{a}
\]

\[
d < y < b, \quad A''_x = \frac{2 \mu I}{\pi} \sum_{m=1}^{\infty} \frac{1}{m} \csch \frac{m \pi b}{a} \cosh \frac{m \pi d}{a} \cosh \frac{m \pi x}{a} (b - y) \cos \frac{m \pi c}{a} \cos \frac{m \pi x}{a}
\]

34. Show that the components of force per unit length in the last problem are

\[
F_y = \frac{\mu I^2}{a} \sum_{m=1}^{\infty} \csch \frac{m \pi b}{a} \sinh \frac{m \pi}{a} (2d - b) \cos^2 \frac{m \pi c}{a},
\]

\[
F_x = \frac{\mu I^2}{b} \sum_{m=1}^{\infty} \csch \frac{m \pi a}{b} \sinh \frac{m \pi}{b} (2c - a) \cos^2 \frac{m \pi d}{b}
\]

Note that unless \(c\) and \(d\) are very small the series converge very rapidly.

35. An infinite wire carrying a current \(I\) is situated at \(x = a, y = b,\) between two faces of infinite permeability \(y = 0\) and \(y = c.\) Show that the vector potential between the faces is
MAGNETIC INTERACTION OF CURRENTS

\[U = -\frac{\mu I}{4\pi} \ln \left[\left(\cos \frac{\pi b}{c} - \cosh \frac{\pi(x - a)}{c} \cos \frac{\pi y}{c} \right)^2 + \sinh^2 \frac{\pi(x - a)}{c} \sin^2 \frac{\pi y}{c} \right] \]

which is the real part of

\[W = -\frac{\mu I}{2\pi} \ln \left[\cos \frac{\pi b}{c} - \cosh \frac{\pi(z - a)}{c} \right] \]

Note that the field is uniform and oppositely directed when \(x \gg a \) and when \(x \ll a \).

36. An infinite wire carrying a current \(I \) lies at \(z_0 \) to the right of a semi-infinite block of material of infinite permeability whose face is the plane \(z = 0 \) except for a circular ridge or groove of radius \(b \) whose center is at \(x = c \). Show with the aid of problem 49, Chap. IV, that the vector potential is the real part of

\[W = -\frac{\mu I}{2\pi} \ln \left[|f(z) - f(z_0)| |f(z) + f(z_0)| \right] \]

where

\[f(z) = -\frac{\pi(b^2 - c^2)\{[z + j(b^2 - c^2)]/a + [z - j(b^2 - c^2)]/a\}}{a[|z + j(b^2 - c^2)|/a - |z - j(b^2 - c^2)|/a]} \]

and \(\cos \alpha = c/b \). For a ridge \(0 < \alpha < \pi \) and for a groove \(2\alpha < 2\pi \).

37. Using the relation \(-\ln (z - a) = \int_0^\infty k^{-1} [e^{-k(z-a)} - e^{-k}] dk \), where the real part of \(z - a \) is positive, show that the transformations giving the field of a wire at \(x = a \), carrying a current \(I \) between two semi-infinite blocks of material of permeability \(\mu \) whose faces are at \(z = 0 \) and \(z = b \), where \(0 < a < b \), are, when \(0 < z < b \),

\[W_1 = -\frac{\mu I}{2\pi} \ln(z - a) - 2\beta \int_0^\infty \frac{\{\cosh [k(z+a-b)] + \beta e^{ka} \cosh [k(z-a)] - e^{-k} \}}{1 - k^2} dk \]

when \(b < x \),

\[W_2 = -\frac{\mu I}{\pi(K + 1)} \int_0^\infty \frac{K_m}{k} \left(e^{kx} e^{ka} + \beta e^{-ka} \right) \frac{e^{-k}}{1 - 1^{-k}} dk \]

when \(x < 0 \),

\[W_3 = -\frac{\mu I}{\pi(K + 1)} \int_0^\infty \frac{K_m}{k} \left(e^{-kx} + \beta e^{k(x+2b)} \right) \frac{e^{-k}}{1 - 1^{-k}} dk \]

where \(U \) is the vector potential, \(\mu^{-1}V \) the scalar potential, \(W = U + jV \) and we have \(\beta = (K - 1)(K + 1)^{-1} \).

38. Show that the transformations giving the field of a wire at \(x = d \), carrying a current \(I \) between two semi-infinite blocks of material of permeability \(\mu \), whose faces are at \(x = -c \) and \(x = +c \), where \(-c < d < +c \), are

\[-c < z < c, \quad W_1 = -\frac{\mu I}{2\pi} \ln \left(\frac{z - d}{2c} + \sum_{n=1}^\infty \beta^n \ln \left(1 - \frac{4nc^2 + [z - (-1)^n d]^2}{4n(n+1)c^2} \right) \right) \]

\[c < z, \quad W_2 = -\frac{\mu I}{\pi(K + 1)} \left(\ln \frac{z - d}{2c} + \sum_{n=1}^\infty \beta^n \ln \left(1 + \frac{-2c + z - (-1)^n d}{2(n+1)c} \right) \right) \]

\[z < -c, \quad W_3 = -\frac{\mu I}{\pi(K + 1)} \left(\ln \frac{z - d}{2c} + \sum_{n=1}^\infty \beta^n \ln \left(1 + \frac{2c + z - (-1)^n d}{2(n+1)c} \right) \right) \]

where \(\beta = (K - 1)(K + 1)^{-1} \), \(U \) is the vector potential, \(\mu^{-1}V \) the scalar potential, and \(W = U + jV \). This can be done directly by images or by expanding the
PROBLEMS

305
denominator in the previous problem, integrating and writing \(z + c \) for \(z \), \(2c \) for \(b \), and \(d \) for \(a - c \). To make \(U \) finite near the origin, add the infinite constant

\[
\mu K_m I \pi (K_m + 1)^{-1} \sum_{n=1}^{\infty} b^n \ln [2(n + 1)c]
\]

39. Compare the first \(A_\phi \) integral of 7.10 with 5.23 (15) and thus show that the vector potential of a circular wire loop of radius \(a \) carrying a current \(I \) is

\[
A_\phi = 2^{-1} \mu I (\cosh u_1 - \cos u_2) P_{1-4}(\cosh u_2)
\]

where, from 4.13, \(2a \cosh \theta = r^2 + a^2 \) and \(2a \cot \theta = r^2 - a^2 \).

40. By reference to 4.13, 7.06 (2), 5.233 (5), problem 117 of Chap. V, etc., add terms to the \(A_\phi \) of the last problem such that the magnetic field is tangent to the torus, \(\cosh u_1 = c/b \), obtained by rotation of the circle of radius \(b \) about a line in its plane at a distance \(c \) from its center. Show that the sum is

\[
A_\phi = \mu I \left(\frac{\cosh u_1 - \cos u_2}{2} \right) P_{1-4}(c/b) \sum_{n=0}^{\infty} \frac{(2 - \delta_n^2) Q_{n-4}(c/b) P_{n-4}(\cosh u_2)}{Q_{n-4}(c/b)} \cos n u_1
\]

References

For this chapter the author has found the following books useful:

CHAPTER VIII

ELECTROMAGNETIC INDUCTION

8.00. Faraday’s Law of Induction.—A century ago Faraday and Henry discovered, independently, that when the magnetic flux \(N \), defined by 7.29 (1), through a closed conducting circuit changes, a current is generated in the circuit. The direction of this induced current is such as to set up a magnetic flux opposing the change. Thus if the flux through a circuit in a certain direction is increasing, the induced current sets up a flux in the opposite direction, and if the flux is decreasing, this current sets up a flux in the same direction. The induced currents always seek to maintain the status quo of the magnetic field. The induced electromotance in volts equals the negative rate of the change of flux in webers per second so that

\[
\mathcal{E} = -\frac{dN}{dt}
\]

with possible limitations mentioned later.

It is immaterial what means we use to change the flux. We may move the source of the flux with respect to our circuit, we may change its strength, or we may move or change the shape of our circuit. Faraday proved (1) for a closed metallic circuit, but since we know that the tangential component of \(\nabla \mathcal{E} = E \) is the same on either side of the wire surface, (1) must apply equally well to the electromotance around a path just outside the wire. We may therefore assert that (1) holds for any path whatever and write, from 7.29 (1), for a two-sided surface \(S \)

\[
\oint E \cdot ds = -\frac{d}{dt} \int_S B \cdot n \, dS
\]

Applying Stokes’s theorem [3.01 (1)] to the left side, we have

\[
\int_S n \cdot \nabla \times E \, dS = -\int_{sdt} \frac{dB}{dt} \cdot n \, dS
\]

Since this must hold for any arbitrary surface, we have

\[
\nabla \times E = -\frac{dB}{dt}
\]

in webers per square meter-second. If \(E \) is due entirely to electromagnetic induction, it is a special case of the \(E'' \) of 6.01 and possesses no
sources or sinks so that its divergence is zero. If A is obtained from 7.02 (5), its divergence is also zero. Let us now substitute $\nabla \times A$ for B in (3) and interchange d/dt and the curl, and we see that the curls of the vectors E and $-dA/dt$ are equal. If two vectors have everywhere the same curl and the same divergence, they are equal so that we obtain the relation

$$E = -\frac{dA}{dt}$$

which connects the electric intensity or electromotance per meter and the vector potential whose change induces it.

Equation (1) seems adequate to deal with all cases involving a change of flux in rigid circuits and also with those cases in which the flux is changed by distorting the shape of the circuit, provided that, during the process, all elements of the circuit initially adjoining, remain adjoining. Experiments can be devised, using sliding contacts, to which the application of (1) is obscure or ambiguous. These cases can be treated by focusing our attention, not upon the area surrounded by the circuit, but upon the elements of the circuit themselves, and then applying (4).

Another formulation of the law of induction is worked out in Chap. XVI, where it is shown, from the principle of special relativity, that when an observer moves relative to the fixed circuits producing a magnetic induction B he will observe, in general, an electromotance. If v is the velocity of the motion and E that part of the observed electric intensity which is due to the motion, we have, from 16.13 (11), if E is volts per meter, v meters per second, and B webers per square meter,

$$E = [v \times B]$$

8.01. Mutual Energy of Two Circuits.—Let us now consider the work required to bring near each other two circuits carrying steady currents I and I'. Each circuit contains a source of electromotance that supplies or absorbs energy at the proper rate to maintain the currents constant at all times. In circuit 1 we have, from Ohm’s law, 6.02 (1), and 8.00 (1),

$$IR = \mathcal{E} - \frac{dN}{dt}$$

where \mathcal{E} is the electromotance just described. The energy consumed in circuit 1 while bringing it up from infinity in time t is then, from 6.03 (2),

$$P^2R \int_0^t dt = I \int_0^t \mathcal{E} \, dt + I \int_0^N dN = I \int_0^t \mathcal{E} \, dt + NI$$

where N is the flux through the first circuit due to the second circuit in the final position. Evidently, the last term represents the work done in the first circuit due to the magnetic field of the second. At the same
time, work of amount \(\pm N'I' \) has been done in the second circuit to maintain its current constant. Thus, the total energy expended by the electromotance sources in the two circuits to maintain the currents constant while they are brought together is

\[
\pm (IN + I'N')
\]

Substituting the vector potential in 7.29 (1) and applying Stokes's theorem and 7.02 (5), we have

\[
N = \oint_S B' \cdot n \, dS = \oint_S \nabla \times A' \cdot n \, dS = \oint A' \cdot ds = \frac{\mu I'}{4\pi} \oint \frac{ds \cdot ds'}{r}
\]

and similarly

\[
N' = \frac{\mu I}{4\pi} \oint \frac{ds \cdot ds'}{r} \tag{1}
\]

so that the energy expended becomes

\[
W = \pm (IN + I'N') = \pm \frac{\mu I I'}{2\pi} \oint \frac{ds \cdot ds'}{r} \tag{2}
\]

Faraday's law shows that if the two circuits attract each other the induced electromotance sets up an opposing field which tries to reverse the current in each circuit so that the sources of electromotance must supply energy to maintain \(I \) and \(I' \). If they repel each other, the reverse is true.

Let us now consider the mechanical work done against magnetic forces in moving the two circuits. From 7.18 (5), the force on circuit 1 in newtons is

\[
F = I \oint ds \times B = \frac{\mu I I'}{4\pi} \oint \frac{ds \times (ds' \times r)}{r^3} \neq \frac{\mu I I'}{4\pi} \oint \frac{ds \cdot ds'(ds \cdot r) - r(ds \cdot ds')}{r^3}
\]

The first term vanishes when integrated around circuit 1 since the integrand \(r/r^3 \) can be written as the gradient of the scalar \(1/r \). The mechanical work done is then, for pure translation from \(r = \infty \) to \(r = r \),

\[
W_{me} = \int_{r}^{r} F \cdot dr = -\frac{\mu I I'}{4\pi} \oint \frac{ds \cdot ds' r \cdot dr}{r^3} = \frac{\mu I I'}{4\pi} \oint \frac{ds \cdot ds'}{r} \tag{3}
\]

Comparing (2) and (3), we see that half the energy supplied by the battery in the circuit is used in doing mechanical work. Since the only difference between the initial and final states is in the magnetic field surrounding the circuits, the remainder of the energy must be in the magnetic field. Thus, when two constant-current circuits are moved with respect to each other, the mechanical work done by the circuit and the energy in the magnetic field increase or decrease together and at the same rate. This explains the apparent anomaly mentioned in 7.18. It follows that if we know the energy \(W_B \) in the magnetic fields of
two circuits we can get the mechanical force or torque trying to increase any coordinate θ by taking the positive derivative of this energy with respect to θ, so that

$$F = +\frac{\partial W_B}{\partial \theta}$$

(4)

8.02. Energy in a Magnetic Field.—We shall now find the energy required to establish the magnetic field of a single circuit, utilizing the results obtained in the last article and assuming all space filled with a homogeneous, isotropic medium of permeability μ. Let us build up the field step by step by bringing together infinitesimal current filaments. If the final current density is nowhere infinite, the denominator in 8.01 (3) causes no difficulty because finite current filaments are a finite distance apart. When 8.01 (3) is applied to a single circuit, we must include the factor $\frac{1}{r}$ to get the correct energy since our integration includes not only the work done in bringing filament a up to b, but also that in bringing b to a. When we write in current densities in place of currents by 6.00 (2), and make this correction, 8.01 (3) becomes

$$W_B = \frac{\mu}{8\pi} \int_V \int_{V'} \frac{i \, dv \cdot i' \, dv'}{r}$$

(1)

where r is the distance between the volume elements dv and dv', i and i' are the current densities in these elements, and the integration is performed twice throughout space, where, as in 8.01, we have assumed that μ is constant in the region of integration. Substituting for i from 7.01 (3) and for $\int_{V'} (i'/r) \, dv'$ from 7.02 (4), we have

$$W_B = \frac{1}{2\mu} \int_V \nabla \times B \cdot A \, dv$$

(2)

From the formula for the divergence of a crossproduct, we have the relation

$$A \cdot \nabla \times B = B \cdot [\nabla \times A] - \nabla \cdot [A \times B] = B^2 - \nabla \cdot [A \times B]$$

which gives

$$W_B = \frac{1}{2\mu} \int_V B^2 \, dv - \frac{1}{2\mu} \int_V \nabla \cdot [A \times B] \, dv$$

where the integrals are over all space. By Gauss's theorem [3.00 (2)], we may transform the second integral into a surface integral over the sphere at infinity. This integral vanishes, since, from 7.02 (4), A goes to zero as $1/r$ whereas $B = \nabla \times A$ goes to zero as $1/r^2$, and the surface area increases only by r^2, so that

$$\int_V \nabla \cdot [A \times B] \, dv = \int_S [A \times B] \cdot n \, dS \rightarrow 0 \quad \text{as} \quad r \rightarrow \infty$$
Thus, the final expression for the energy becomes

$$ W_B = \frac{1}{2\mu} \int_B B^2 \, dv $$

This energy can be looked upon as residing in the space occupied by the magnetic field surrounding a current, the energy density being \(\frac{1}{2} B^2 / \mu \). This may be compared with 2.08 (2) which gives the energy in an electrostatic field. We see that the magnetic field, just as well as the electrostatic field, can be visualized in terms of a system of stresses.

8.03. Mutual Inductance

The coefficient of mutual inductance \(M_{12} \) between two circuits is defined as the flux \(N_{12} \) through circuit 1 produced by unit current in circuit 2. The mks mutual inductance unit is the henry. This is expressed mathematically by writing

$$ M_{12} = \oint_{S_1} B_2 \cdot n \, ds_1 = \oint A_2 \cdot ds_1 $$

where \(A_2 \) is the entire vector potential due to unit current in circuit 2. From 8.01 (1), we may write

$$ M_{12} = \frac{\mu}{4\pi} \oint \oint \frac{ds_1 \cdot ds_2}{r} = M_{21} $$

The flux through circuit 1 due to a current \(I_2 \) in circuit 2 is, from (1),

$$ N_{12} = M_{12} I_2 $$

From 8.00 (1), the electromotance in circuit 1 produced by a fluctuating current in 2 is

$$ E_1 = -M_{12} \frac{dI_2}{dt} $$

From 8.01 (3), the mutual energy of the two circuits is given by

$$ W_{12} = M_{12} I_1 I_2 $$

From 8.02 (3), the total energy of the two circuits is

$$ W_i = \frac{1}{2\mu} \int (B_1 + B_2) \cdot (B_1 + B_2) \, dv $$

$$ = \frac{1}{\mu} \left(\int B_1^2 \, dv + 2 \int B_1 \cdot B_2 \, dv + \int B_2^2 \, dv \right) $$

The first term is the energy required to establish \(I_1 \) alone and the last term that for \(I_2 \) alone so that the remaining term gives the energy used in bringing the two into interaction. Hence, from (6), we have

$$ M_{12} I_1 I_2 = \frac{1}{\mu} \int B_1 \cdot B_2 \, dv $$

From 8.01 (4), the force or torque tending to increase any coordinate of
position \(\theta \) of one circuit relative to the other is

\[
F = I_1I_2 \frac{\partial M_{12}}{\partial \theta}
\]

8.04. Boundary Conditions on \(A \).—In 7.21 appear the conditions that derivatives of the quasi-vector potential \(A \) satisfy at the boundary between two regions of different permeability. In 8.03 (2), we have, for the first time, a relation involving an integral of \(A \), and we must therefore consider what boundary conditions to impose on \(A \) itself in order that this equation will be valid where such discontinuities occur. Let us take a small rectangular circuit, the long sides of which are very close together but on opposite sides of the boundary between regions of different permeability. As these sides approach each other, the area of the rectangle approaches zero, so that the flux through this circuit, due to a current \(I_2 \) flowing in a second circuit, must become zero. But by 8.03 (2) and (4), this flux is

\[
N = I_2 \oint A_2 \cdot ds.
\]

The integral is taken around the rectangle, the ends of which are vanishingly small, so that the whole contribution must come from the sides, which are of equal length \(L \) and which are short enough so that the vector \(A \) is constant along a side.

From 7.21 (10) and (11), the tangential component of \(A \) has the same direction on both sides of the boundary, so orienting our rectangle along \(u_s \) and \(u_t \) we obtain for the corresponding components of \(A \), respectively,

\[
\oint A_{s,t} \cdot ds_{s,t} = L(A'_{s,t} - A''_{s,t}) = 0
\]

Thus, we have the two equations for the tangential components of \(A \).

\[
A'_{s,t} = A''_{s,t}
\]

8.05. Mutual Inductance of Simple Circuits.—As a simple example of the computation of a mutual inductance coefficient, consider the two closely wound coils \(A, B \), shown in Fig. 8.05. Coil \(B \) contains \(n \) turns and is wound on a ring of permeability \(\mu \). Coil \(A \) has \(m \) turns. All the flux goes through the ring so that, from 7.29 (4) and 8.03 (4), we have

\[
M_{12} = \mu nm[a - (a^2 - b^2)^{1/2}]
\]

If \(a \gg b \), we may factor \(a \) out of the radical and expand the remainder by \(P \alpha 753 \) or \(D \alpha 5.3 \), keeping only the square terms. This then becomes

\[
M_{12} = \frac{\mu nmb^2}{2a}
\]

If \(A = \pi b^2 \) and \(n_1 = n/(2\pi a) \) is the number of turns per unit length,
then this gives the mutual inductance between an infinite solenoid wound on a cylinder of area \(A \) and permeability \(\mu \) and a coil of \(m \) turns encircling it to be

\[
M_{12} = \mu I_n mA
\]

(3)

This could have been written down directly from 7.15 (7).

8.06. Mutual Inductance of Circular Loops.—The coefficient of mutual inductance for two coaxial loops of wire can be written down by

\[
M_{BA} = \oint A_A \cdot ds_B = 2\pi b |A_A|_{\varphi = c}^{\varphi = c}
\]

Thus, from 7.10 (4), we have

\[
M_{12} = 2\mu k^{-1}(ab)^l[(1 - \frac{1}{2}k^2)K - E]
\]

(1)

where, from 7.10 (3),

\[
k^2 = 4ab[(a + b)^2 + c^2]^{-1}
\]

(2)

Numerical values of \(K \) and \(E \) may be found in \(P \)c 121 or Dw 1040 and 1041. Another expression for \(M_{12} \) may be written down in the same way from 7.13 (2), letting \(\alpha = \frac{1}{2}\pi \) and \(\theta = \beta \), giving, by 5.157, if \(b^2 + c^2 < a^2 \),

\[
M_{12} = \pi \mu b \sum_{n \text{ odd}}^{1} (-1)^{\frac{n+1}{2}} \frac{1 \cdot 3 \cdot 5 \cdots n}{n \cdot 2 \cdot 4 \cdot 6 \cdots (n + 1)} (\frac{b^2 + c^2}{a^2})^{\frac{n+1}{2}} P_n^l(\cos \beta)
\]

(3)

When \(b^2 + c^2 > a^2 \), write \([a^2/(b^2 + c^2)]^{n+1} \) for \([(b^2 + c^2)/a^2]^{n+1}\).

We may compute the mutual inductance when the two loops are in any position, provided that their axes intersect, by means of 8.03 (2), 7.13 (3), and 5.24 (5). Thus if, in Fig. 8.06b, \(b > a \), we have, taking the origin at the point of intersection and measuring \(\theta \) from the \(a \)-loop axis,

\[
M_{12} = a^2 \int_0^{2\pi} \int_0^\alpha [B_r b \sin \theta \, d\theta \, d\phi]
\]

(4)
If \(\theta' \) is the angle measured from the \(b \)-loop axis, then substitution of 5.24 (5) for \(P_n(\cos \theta') \) in 7.13 (3), where \(\gamma = \Theta, a = r, \) and \(I = 1, \) give

\[
[B_r]_b = \frac{\mu \sin \beta}{2a} \sum_{n=1}^{\infty} \left(\frac{a}{b} \right)^n P_n^1(\cos \beta)
\]

\[
\sum_{m=0}^{\infty} (2 - \delta_m^0) \frac{(n - m)!}{(n + m)!} P_m^1(\cos \gamma) P_n^1(\cos \theta) \cos m\phi
\]

When this is inserted in (4), the \(\phi \)-integration eliminates all but the \(m = 0 \) terms. By 5.154 (1) the integration with respect to \(\theta \) gives

\[- \int_1^{\cos \alpha} P_n(\cos \theta) d(\cos \theta) = \frac{\sin^2 \alpha P_n^1(\cos \alpha)}{n(n + 1)} = \frac{\sin \alpha P_n^1(\cos \alpha)}{n(n + 1)}
\]

so that the mutual inductance is

\[
M_{12} = \pi \mu a \sin \alpha \sin \beta \sum_{n=1}^{\infty} \frac{1}{n(n + 1)} \left(\frac{a}{b} \right)^n P_n^1(\cos \alpha) P_n^1(\cos \beta) P_n(\cos \gamma)
\]

8.07. Variable Mutual Inductance.—Variable mutual inductors are frequently built in the form shown in Fig. 8.07. Each coil consists of a single layer of wire wound on a bobbin with a spherical surface. One coil rotates, relative to the other, about a common axis. Let the angle between the axes of the coils be \(\gamma, \) let the coils subtend angles \(2A \) and \(2B \) at the center, and let the radii of the two surfaces be \(a \) and \(b. \) Consider each coil as being made up of plane loops of wire, the planes being uniformly spaced with a number \(n \) per unit length. The number of turns \(n' \) per unit angle in each of the coils will then be \(n'_a = na \sin \alpha \) and \(n'_b = nb \sin \beta. \) The mutual inductance between elements of the two coils will then be, from 8.06 (5),

\[
dM_{ab} = \pi a^2 b \mu \alpha \sin^3 \alpha \sin^3 \beta \sum_{n=1}^{\infty} \frac{1}{n(n + 1)} \left(\frac{a^n}{b^n} \right) P_n^1(\mu_a) P_n^1(\mu_b) P_n(\cos \gamma) d\alpha d\beta
\]

The total mutual inductance will be obtained by integrating on both coils; thus,

\[
M_{ab} = \int_{\alpha=-\frac{1}{2}A}^{\alpha=\frac{1}{2}A} \int_{\beta=-\frac{1}{2}B}^{\beta=\frac{1}{2}B} dM_{ab}
\]
Writing \(u \) for \(\cos \alpha \) or \(\cos \beta \), each integral takes the form, when 5.154 (5) is used,

\[
\int (1 - u^2) \frac{dP_n(u)}{du} \, du = \frac{n(n + 1)}{2n + 1} \int [P_{n-1}(u) - P_{n+1}(u)] \, du \tag{1}
\]

Integrating by 5.154 (3) and simplifying by repeated application of 5.154 (1), this becomes

\[
f_n(A) = \frac{n}{(n-1)(n+2)} \left\{ [n(n+1) - (n-1)n^2]P_n(u) - 2uP_{n-1}(u) \right\} \sin^A \tag{2}
\]

When \(n \) is even, the value at both limits is the same by 5.157 so these values drop out and only odd values of \(n \) appear. Special treatment is required when \(n = 1 \). In this case, from (1), we have

\[
f_1(A) = \left[u\left(1 - \frac{u^2}{3}\right) \right]_{\sin A}^A = -\frac{2}{3} \sin A(3 - \sin^2 A) \tag{3}
\]

Similar expressions hold for \(B \) so that

\[
M_{ab} = \pi \mu a^2 b n_a n_b \sum_{n \text{ odd}} \frac{1}{n(n+1)} \left(\frac{a}{b} \right)^n f_n(A) f_n(B) P_n(\cos \gamma) \tag{4}
\]

From (2) and (4), the coefficients depending on the fixed dimensions of the coil can be computed and the formula then takes the form

\[
M_{ab} = \sum_{n \text{ odd}} M_n P_n(\cos \gamma) \tag{5}
\]

where \(\gamma \) is the angle between the axes.

8.08. Self-inductance.—From 8.02 (3), we see that the magnetic energy of a single circuit, carrying a current \(I_1 \), is proportional to \(B^2 \), and since \(B \) is proportional to \(I_1 \), we must have

\[
W_B = \frac{1}{2} \mu I_1^2 v^2 = \frac{1}{2} L_{11} I_1^2 \tag{1}
\]

We define the constant of proportionality \(L_{11} \) to be the self-inductance of the circuit. Another useful formula for self-inductance may be obtained by substituting 7.01 (3) in 8.02 (2), giving

\[
W_B = \frac{1}{2} \int B^2 \, dv = \frac{1}{2} L_{11} I^2 \tag{1.1}
\]

where the integration must be taken throughout the region in which the current flows.

In the mks system the inductance unit is the henry. If the circuit consisted of infinitely thin wire carrying a finite current, its self-inductance would be infinite. This is evident because \(B \) is inversely proportional to the distance from the wire when we are close to it. Thus, for a finite
length of wire, the integral in (1) is logarithmically infinite since dv may be written $r \, dr \, dt$. This means that in computing self-inductance we must consider the actual dimensions of the wire and take the current density i nowhere infinite. We may therefore treat the wire as a bundle of current filaments of infinitesimal cross-sectional area dS each carrying a current $i \, dS$. When the current is established in such a wire, the magnetic flux about each current filament cuts across neighboring filaments and, by Faraday's law [8.00 (1)], sets up in each an electromotive force opposing the current, of amount $\mathcal{E} = -dN/dt$ where dN/dt is the flux cutting the circuit in one second. To maintain the current I_1, the source of power must do, in each second, an amount of work equal to

$$\mathcal{E}I_1 = I_1 \frac{dN_1}{dt}$$

(2)

in addition to any work against resistance. This energy, stored in the magnetic field each second, equals dW/dt so that we have, from (1) and (2),

$$I_1 \frac{dN_3}{dt} = L_{11} I_1 \frac{dI_1}{dt}$$

Canceling out the I_1 and integrating from no current to final current, we have

$$N_{11} = L_{11} I_1$$

(3)

Thus we may also define the self-inductance of a circuit as the change in the flux linking the circuit when the current changes by one unit. The electromotive in the circuit caused by the changing current is

$$\mathcal{E}_1 = -\frac{dN_{11}}{dt} = -L_{11} \frac{dI_1}{dt}$$

(4)

From what has been said, it appears natural, when computing self-inductance, to treat separately the region lying outside the wire and that lying inside. The contribution of the latter is frequently negligible, and when it is not, but when the radius of the wire is small compared with other dimensions of the circuit, we may assume that the field outside is the same as if the current were concentrated at the axis of the wire and that inside the field is identical with that inside a long straight wire of the same size, carrying the same current. The lines of force near the surface are approximately circles about the axis of the wire so that all the flux outside it links the axial filament with any line drawn parallel to it on the surface of the wire. To get this part of the self-inductance we need, therefore, to find the mutual inductance between two parallel curvilinear circuits spaced a distance apart equal to the radius of the wire.

Inside the wire, the magnetomotance around any circle of radius r
about the axis depends, from 7.28 (3), only on the current inside the circle. Since, from symmetry, B depends only on r, we have, from 7.14,

$$B = \frac{\mu I_i}{2\pi r} = \frac{\mu rI}{2\pi a^2}$$

(1)

where I is the total current and a is the radius of the wire. The energy inside the wire is, from 8.08 (1),

$$W_i = \frac{1}{2}\int_V B^2 \, d\mathbf{v} = \frac{\mu I^2 L}{8\pi^2 a^4} \int r^2 2\pi r \, dr = \frac{\mu I^2 L}{16\pi} = \frac{1}{2}L'_{11}I^2$$

where L is the length of the wire. The internal self-inductance, per unit length, becomes then

$$L'_{11} = \frac{\mu'}{8\pi}$$

(2)

where μ' is the permeability of the wire.

8.10. Self-inductance of Circular Loop.—Using the method of the last article and the result of a previous example, we shall now compute the self-inductance of a loop of radius b of wire of permeability μ' and radius a. The length of the wire is $2\pi b$ so that that part of the self-inductance due to the interior of the wire is, from 8.09 (2),

$$L'_{11} = \frac{1}{4}\mu'b$$

(1)

As shown in 8.09, we can get the rest of the self-inductance by applying the result of 8.06 (1) to two circuits, one coinciding with the axis of the wire and one with its inner edge. In this case, from 8.06 (2), setting $c = 0$, and taking $a \ll b$, we have

$$1 - k^2 = 1 - \frac{4b(b - a)}{(b + b - a)^2} = \frac{a^2}{(2b - a)^2} \approx \left(\frac{a}{2b}\right)^2 = k'^2$$

So that k is approximately unity.

When $k \approx 1$, the E of 8.06 (1) becomes

$$E = \int_0^\frac{\pi}{2} (1 - \sin^2 \theta)^\frac{1}{4} \, d\theta = \int_0^\frac{\pi}{2} \cos \theta \, d\theta = 1$$

To get K, let $\phi = \frac{1}{2}\pi - \theta$, and split the integral into two parts

$$K = \int_0^{\phi} \frac{d\phi}{(1 - k^2 \sin^2 \theta)^\frac{1}{4}} = \int_0^{\phi} \frac{d\phi}{(1 - k^2 \cos^2 \phi)^\frac{1}{4}} + \int_0^{\phi} \frac{d\phi}{(1 - k^2 \cos^2 \phi)^\frac{1}{4}}$$

where $(1 - k^2) \ll \phi_0 \ll 1$. Now put $\sin \phi = \phi$ in the first integral where ϕ_0 is small, and then put $k = 1$ in both integrals, and we have

$$K = \int_0^{\phi_0} \frac{d\phi}{(k'^2 + \phi^2)^\frac{1}{4}} + \int_0^{\frac{\pi}{2}} \frac{d\phi}{\phi_0 \sin \phi}$$
Integrate by Pc 126a and 291 or by Dw 200.01 and 432.10; then put $\phi_0 = \tan \phi_0$, and neglect k'^2 compared with ϕ_0^2, and we have

$$K = \ln \left\{ \frac{\phi_0 + (\phi_0^2 + k'^2/4)^{1/2}}{k'} \right\} = \ln \tan \frac{1}{2} \phi_0 = \ln \frac{2\phi_0}{k'} \phi_0 = \ln \frac{4}{k'} = \ln \frac{8b}{a}$$

Substituting in 8.06 (1), and adding the internal inductance term (1), we get

$$L_{11} = b \left[\mu \left(\ln \frac{8b}{a} - 2 \right) + \frac{1}{4} \mu' \right]$$

(2)

where μ' is the permeability inside the wire and μ is that outside.

8.11. Self-inductance of Solenoid.—If we treat a solenoid as an infinitely thin cylindrical current sheet of uniform strength, all lines of flow lying in planes normal to its axis, we may compute the self-inductance rigorously by using 8.06 (1) to find the mutual inductance between elements of the shell and integrating over the shell. The result is complicated, so that where only rough values are necessary and the solenoid is long compared with its diameter, the following approximation is useful. We treat the field inside the solenoid as uniform across any section taken normal to the axis. To compute the self-inductance by 8.08 (3), we must know the flux linking any element of the shell and then integrate over the shell. From 7.15 (4), the flux through the $n \, dx$ turns in dx is, per unit current,

$$dN_1 = \frac{1}{2} \pi \mu a^2 n^2 \left\{ \frac{l - x}{[(l - x)^2 + a^2]^{1/2}} + \frac{l + x}{[(l + x)^2 + a^2]^{1/2}} \right\} \text{ } dx$$

Integrating by Pc 132 or Dw 201.01 from $-l$ to $+l$, we have

$$L_{11} = \pi \mu a^2 n^2 [(4l^2 + a^2)^{1/2} - a] = \pi \mu a^2 n^2 [(L^2 + a^2)^{1/2} - a]$$

(1)

8.12. Self-inductance of Bifilar Lead.—We shall now calculate rigorously, by the method of 8.08 (1.1), the self-inductance per unit length of a bifilar lead in which the current in one direction is uniformly distributed in a wire of radius a and the return current in a wire of radius c, parallel to the first, the axes of the wires being a distance b apart. The permeability of the wire and the region surrounding them will be taken as unity. Clearly, the vector potential and the current density have z components only. If I is the total current, then the current densities are

$$i_1 = \frac{I}{\pi a^2} \quad i_2 = \frac{-I}{\pi c^2}$$

(1)
To obtain the vector potential A' inside the wire due to its own current, we write 7.02 (2) in cylindrical coordinates with the aid of 3.05 (2) and

\[
\frac{\partial}{\partial \rho} \left(\rho \frac{\partial A'}{\partial \rho} \right) = -\mu i = -\frac{\mu I}{\pi a^2} \quad \text{or} \quad +\frac{\mu I}{\pi c^2}
\]

Integrating from 0 to ρ twice, we have

\[
\rho \frac{\partial A'_1}{\partial \rho_1} = -\frac{\mu I \rho_1^2}{2\pi a^2} \quad A'_1 = C_1 - \frac{\mu I \rho_1^2}{4\pi a^2}
\]

Outside the wire, putting $i = 0$ in (2), integrating twice from the outer boundary of the wire to ρ_1, and observing that the lower limit in each integration is obtained by putting $\rho_1 = a$ in (3), we have

\[
\rho_1 \frac{\partial A''_1}{\partial \rho_1} + \frac{\mu I}{2\pi} = 0 \quad A''_1 = C_1 - \frac{\mu I}{2\pi} \ln \frac{\rho_1}{a}
\]

Similarly,

\[
A'_2 = C_2 + \frac{\mu I \rho_2^2}{4\pi c^2} \quad A''_2 = C_2 + \frac{\mu I}{2\pi} \ln \frac{\rho_2}{c}
\]

To make (4) and (5) agree with 7.09 (1), we must take

\[
C_1 = -C_2
\]

From 8.08 (1.1), we have

\[
L_{11}I^2 = \int_{S_1} i_1(A'_1 + A'_2) \, dS_1 + \int_{S_1} i_2(A'_2 + A''_1) \, dS_2
\]

We shall calculate the first integral only and evaluate the second from symmetry. Thus we have, using PC 523 or Dw 868.4 and canceling out C_1,

\[
(L_{11} I^2)_{1} = \frac{\mu I^2}{4\pi a^2} \left[\int_{a}^{2a} \left[\left(\frac{\rho_1^3}{a^2} - \ln \left(\frac{b^2 + \rho_1^2 - 2b\rho_1 \cos \phi}{c^2} \right) \right] \rho_1 \, d\rho_1 \right]
\]

\[
= \frac{\mu I^2}{2\pi a^2} \left(-\int_{0}^{a} \rho_1^3 \, d\rho_1 + \int_{0}^{a} \rho_1 \, d\rho_1 + \ln \frac{b^2}{c^2} \int_{0}^{a} \rho_1 \, d\rho_1 \right)
\]

\[
= \frac{\mu I^2}{4\pi} \left(\frac{1}{2} + 2 \ln \frac{b}{c} \right)
\]
Similarly, for the second wire,

\[(L_1 I_2^2)_2 = \frac{\mu I_2^2}{4\pi} \left(\frac{1}{2} + 2 \ln \frac{b}{a} \right) \]

(9)

Adding (8) and (9), we obtain

\[L_{11} = \frac{\mu}{4\pi} \left(1 + 2 \ln \frac{b^2}{ac} \right) \]

(10)

If the wires are alike, \(a = c\), so that

\[L_{11} = \frac{\mu}{4\pi} \left(1 + 4 \ln \frac{b}{a} \right) \]

(11)

8.13. Energy of n Circuits.—If we have circuits carrying currents \(I_1, I_3, \ldots, I_n\) and the induction at any point due to each circuit alone is \(B_1, B_2, \ldots, B_n\), then the total resultant induction is the vector sum of these and the total energy in the field from 8.02 (3) is

\[W = \frac{1}{2\mu} \int_V B^2 \, dv = \frac{1}{2\mu} \int_V \left(\sum_{i=1}^{n} B_i \right) \cdot \left(\sum_{j=1}^{n} B_j \right) \, dv \]

(1)

in the double summation, both \(B_i \cdot B_j\) and \(B_j \cdot B_i\) occur so that, from 8.08 (1) and 8.03 (7), this may be written

\[W = \frac{1}{2} \left(\sum_{i=1}^{n} L_i I_i^2 + \sum_{i=1}^{n} \sum_{j=1}^{n} M_{ij} I_i I_j \right)
 = \frac{1}{2} \left(L_1 I_1^2 + 2M_{12} I_1 I_2 + L_2 I_2^2 + \ldots \right) \]

(2)

As we saw in 8.01 (4), the force or torque tending to increase any coordinate of position \(\theta\) of the \(i\)th circuit is obtained by taking the positive derivative of the field energy with respect to this coordinate; thus,

\[F_i = \frac{1}{2} I_i \left(I_i \frac{\partial L_i}{\partial \theta} + 2 \sum_{j=1}^{n} I_j \frac{\partial M_{ij}}{\partial \theta} \right) \]

(3)

8.14. Stresses in a Magnetic Field.—We saw in 8.02 (3) and 2.08 (2) that the energy densities \(dW/dv\) in magnetic and electric fields are given by

\[\left(\frac{dW}{dv} \right)_m = \frac{B^2}{2\mu} \quad \text{and} \quad \left(\frac{dW}{dv} \right)_e = \frac{D^2}{2\varepsilon} \]

(1)

From 7.01 (1), we know that \(\nabla \cdot B = 0\) is true everywhere, and from 3.02 (1) that \(\nabla \cdot D = 0\) is true in the absence of electric charges. It
follows that a system of stresses that will give equilibrium in an electric field will do the same in a magnetic field if we replace D by B and ε by μ. Thus we see, from 1.14, that we may visualize magnetic forces as transmitted by a tension T along the lines of force and a pressure P at right angles to them. Both T and P, per unit area, are given numerically by

$$|T| = |P| = \frac{B^2}{2\mu}$$

If the permeability is a function of the density τ, we proceed exactly as in 2.09 except that we deal with a section of permeable material in a magnetic circuit instead of with a dielectric slab in a capacitor. This leads to a conclusion, analogous to 2.09 (2), that there is required, in addition to the above stresses, a hydrostatic pressure of amount

$$P_h = -\frac{B^2}{2\mu}\frac{\partial\mu}{\partial\tau}$$

To find the force on the plane boundary between two materials of different permeabilities μ' and μ'' in a magnetic field, we add up the normal components of the stresses given by (2) and (3) and in the same way in which we obtained 1.17 (7) and 2.09 (3) we get

$$F_n = \frac{1}{2}\left[\frac{\mu'}{\mu'}\left(\frac{B'^2}{\mu'} + \frac{B''^2}{\mu''}\right) - \frac{B'\tau'}{\mu'} \frac{\partial\mu'}{\partial\tau'} + \frac{B''\tau''}{\mu''} \frac{\partial\mu''}{\partial\tau''}\right]$$

This is the normal stress directed from μ' to μ''. The normal and tangential components of the inductions B' and B'' in the two mediums are indicated by the subscripts n and t, respectively. For a boundary between the medium μ and a vacuum, we set $\mu'' = \mu_v$, $\mu' = \mu_v K_m$, and $\partial\mu''/\partial\tau'' = 0$ and obtain

$$F_n = \frac{B'^2}{2\mu_v K_m} \left[(K_m - 1) - \tau \frac{\partial K_m}{\partial\tau}\right] + \frac{(K_m - 1) B'^2}{2\mu_v K_m^2}$$

where

$$B'^2 = B'^2_n + B'^2_t$$

The formulas derived in this article hold fairly well for ordinary substances but break down for the ferromagnetic materials discussed in Chap. XII. The latter give many complicated effects, such as changes of shape without change of volume, which cannot all be included in any simple formula.

8.15. **Energy of a Permeable Body in a Magnetostatic Field.**—The last article shows that the force acting on a body of permeability μ placed in a medium of permeability μ_v in the presence of a magnetostatic field of induction B produced by currents fixed in magnitude and position is the same numerically as that calculated in 3.13 (6) for a dielectric body $\varepsilon_v = \mu_v$ placed in an electric field of displacement $D = B$ produced by
fixed electric charges. It appears in 8.01 (4) that, in the magnetic case, the force or torque acting in the direction \(\theta \) is obtained from the magnetic field energy by taking its positive derivative. Thus

\[
F = \pm \frac{\partial W_B}{\partial \theta}
\]

(1)

A comparison with 3.13 (5) shows that if the magnetic induction produced in a region of permeability \(\mu_v \) by a fixed set of currents is \(B \) inside a volume \(V \) before it is occupied by a body of permeability \(\mu \) and \(B_i \) after it is occupied then the energy required to place this body in position is given by the following integral over its volume

\[
W_B = \frac{1}{2} \int_V \left(\frac{1}{\mu_v} - \frac{1}{\mu} \right) B \cdot B_i \, dv
\]

(2)

It is assumed that the body is isotropic, that \(\mu \) is independent of the field strength, and that only induced magnetism is present. When written in terms of the magnetization by 7.20 (8), this becomes

\[
W_B = \frac{i}{2} \int_V M \cdot B \, dv
\]

(3)

Problems

Problems marked \(C \) in the following list are taken from the Cambridge examination questions as reprinted by Jeans, with permission of the Cambridge University Press.

1. Show that the coefficient of mutual inductance between a long straight wire and a coplanar equilateral triangular loop of wire is \(\mu_v/(3^4 \pi)(a + b) \ln (1 + a/b) - a \), where \(a \) is the altitude of the triangle and \(b \) is the distance from the straight wire to the side of the triangle parallel to and nearest it.

2. A circular loop of wire of radius \(a \) lies with its plane parallel to, and at a distance \(d \) from, the plane face of a semi-infinite block of material of relative permeability \(K_m \). Show that the increase in the self-inductance of the loop due to the presence of the block is, if \(c \) is written for \(a(a^2 + d^2)^{-1}, \)

\[
\mu_v \frac{K_m - 1}{K_m + 1} \left[\frac{2}{c} - c \right] K(c) - \frac{2}{c} E(c)
\]

3. A sphere of radius \(b \) and very large permeability is concentric with a wire loop of radius \(a \). Show that the additional self-inductance due to its presence is

\[
\mu_v \pi b \sum_{n=0}^{\infty} \left[\frac{1 \cdot 3 \cdot 5 \cdots (2n + 1)}{2 \cdot 4 \cdot 6 \cdots (2n + 2)} \right] \frac{2n + 2}{2n + 1} \left(\frac{b}{a} \right)^{2n+2}
\]

4. Show that the coefficient of mutual inductance between two coplanar concentric loops of wire whose radii are \(a \) and \(b \) is

\[
\mu_v \pi b \sum_{n=0}^{\infty} \left[\frac{1 \cdot 3 \cdot 5 \cdots (2n + 1)}{2 \cdot 4 \cdot 6 \cdots (2n + 2)} \right] \frac{2n + 2}{2n + 1} \left(\frac{b}{a} \right)^{2n+2}
\]

5. A circuit consists of a thin conducting cylindrical shell of radius \(a \) and a return wire of radius \(b \) inside. The axis of shell and wire are parallel but not coincident. Show that the self-inductance per unit length is \(\frac{i}{2} (\mu_v/\pi)(1 + 4 \ln (a/b)) \).
6. A plane circuit of any form is pressed into the face of a semi-infinite block of permeability \(\mu \) so that it is coplanar with the face. Neglecting the field inside the wire, show that the block increases the self-inductance by a factor \(2\mu / (\mu + \mu_s) \).

7C. A long straight current intersects at right angles a diameter of a circular current and the plane of the circle makes an acute angle \(\alpha \) with the plane through this diameter and the straight current. Show that the coefficient of mutual induction is \(\mu_s[c \sec \alpha - (c^2 \sec^2 \alpha - a^2)^{1/2}] \) or \(\mu_s \sec \alpha \tan (\alpha - \frac{1}{2} \alpha) \), according as the straight current passes without or within the circle, \(a \) being the radius of the circle and \(c \) the distance of the straight current from its center.

8. A cylindrical wire of permeability \(\mu \) is concentric with a thick layer of insulation of permeability \(\mu_1 \). This wire is placed in a liquid of permeability \(\mu_2 \) normal to a field of induction \(B \). Show that the transverse force per unit length on the surface of the insulation is \((\mu_2 - \mu_1)/(\mu_2 + \mu_1))IB \) and that it is \(2\mu_1IB/ (\mu_1 + \mu_2) \) on the metallic surface giving a resultant total force of \(IB \).

9. A small sphere of radius \(a \) and permeability \(\mu \) is placed near a circuit which, when carrying unit current, would produce a magnetic induction \(B \) at the point where the center of the sphere is placed. Show that the presence of the sphere increases the self-inductance of the circuit by approximately \(4\pi a^2 B^2 (K_m - 1)/[\mu_s (K_m + 2)] \).

10. A cylindrical shell of permeability \(\mu \) and internal and external radii \(a \) and \(b \) surrounded two parallel wires, carrying currents in opposite directions, which are coplanar with, parallel to, and each at a distance \(c \) from its axis. Show that the additional self-inductance per unit length of the circuit due to the shell is, if \(\mu = \mu_s K_m \),

\[
\frac{2\mu_s (K_m^2-1) I}{\pi} \sum_{n=0}^{\infty} \frac{(a^{2n+2} - b^{2n+2})(c/a)^{2n+2}}{(2n+1)((K_m - 1)^{2n+2} - (K_m + 1)^{2n+2})}
\]

11C (Modified). A circular loop of radius \(a \) is concentric with a spherical shell of permeability \(\mu \) and radii \(b \) and \(c \). Show that the additional self-inductance of the loop due to the presence of the shell is approximately, if \(\mu = \mu_s K_m \),

\[
\frac{\mu_s \pi a^4 (K_m - 1)(K_m + 2)(c^5 - b^5)}{2b^4((K_m + 2)(2K_m + 1)c^5 - (K_m - 1)^22b^5)}
\]

where \(a \) is very small compared with \(b \) and \(c \).

12. The coordinates of a loop of wire of radius \(a \) in the prolate spheroidal system are \(\xi = \xi_1 \) and \(\eta = \eta_1 \). A prolate spheroid of permeability \(\mu \) is inserted so that its surface is \(\eta = \eta_o \). Show that the additional self-inductance of the loop is, if \(\mu = \mu_s K_m \),

\[
\frac{\pi \mu_s a^2(K_m - 1)}{c_2} \sum_{n=1}^{\infty} \frac{2n + 1}{n^2(n + 1)^2} \frac{[P_n^1(\xi_1)]^2 [Q_n^1(\eta_1)]^2 [P_n^1(\eta_0)]^2 [P_n(\eta_0)]^2}{Q_n^1(\eta_0) P_n(\eta_0) - K_m Q_n(\eta_0) P_n^1(\eta_0)}
\]

13. The coordinates of two loops of wire of radii \(a_1 \) and \(a_2 \) in the prolate spheroidal system are \(\eta_1, \xi_1, \) and \(\eta_2, \xi_2 \). A prolate spheroid of permeability \(\mu \) is inserted in the loops so that its surface is \(\eta = \eta_o \). Show that the additional mutual inductance due to the spheroid is, if \(\mu = \mu_s K_m \),

\[
\frac{\pi \mu_s a_1 a_2 (K_m - 1)}{c_2} \sum_{n=1}^{\infty} \frac{2n + 1}{n^2(n + 1)^2} \frac{P_n^1(\xi_1) Q_n^1(\eta_1) P_n^1(\xi_2) Q_n(\eta_2) P_n^1(\eta_0)}{Q_n(\eta_0) P_n(\eta_0) - K_m Q_n(\eta_0) P_n^1(\eta_0)}
\]

14. Show that the additional mutual inductance between two parallel coaxial loops of wire of radii \(a \) and \(c \) with a distance \(s \) between centers, due to the insertion, coaxially, of an infinite cylinder of radius \(b \) and permeability \(\mu_s \), if \(\mu = \mu_s K_m \),

\[
\frac{\pi \mu_s a c (K_m - 1)}{c_2} \sum_{n=1}^{\infty} \frac{2n + 1}{n^2(n + 1)^2} \frac{P_n^1(\xi_1) Q_n^1(\eta_1) P_n^1(\xi_2) Q_n(\eta_2) P_n^1(\eta_0)}{Q_n(\eta_0) P_n(\eta_0) - K_m Q_n(\eta_0) P_n^1(\eta_0)}
\]
\[2\mu_0\sigma c \int_0^\infty \Phi(k) K_1(ka)K_1(kc) \cos ks \, dk \]

where \(\Phi(k) \) is given in problem 28, Chap. VII.

16. Show that the additional self-inductance of a loop of wire of radius \(a \), due to the insertion, coaxially, of an infinite cylinder of radius \(b \) and permeability \(\mu \), is

\[2\mu_0\sigma^2 \int_0^\infty \Phi(k)[K_1(ka)]^2 \, dk \]

where \(\Phi(k) \) is given in problem 28, Chap. VII.

16. Two circuits are formed by that part of the cylinder \(r = a_1 \) lying between \(z = +c_1 \) and \(z = -c_1 \) and that part of the cylinder \(r = a_2 \) lying between \(z = +c_2 \) and \(z = -c_2 \), where \(a_2 > a_1 \). Assuming that the currents will distribute themselves uniformly on the bands, show that the mutual inductance between them is

\[\frac{2\mu_0a_1a_2}{c_1c_2} \int_0^\infty k^{-2} I_1(ka_1)K_1(ka_2) \sin kc_1 \sin kc_2 \, dk \]

17. Using problem 30 of Chap. VII, show that if the plane of a circular loop of wire of radius \(a \) is parallel to, and at a distance \(b \) from, the face of an infinite plate of material of permeability \(\mu \) and thickness \(t \) the self-inductance of the loop is increased by the amount

\[\Delta L_{11} = \beta \left[M_0 - (1 - \beta^2) \sum_{n=1}^{\infty} \beta^{2n-1} M_n \right] \]

where \(M_n = \frac{2\mu_0\sigma}{k_n} \left[\left(1 - \frac{k_n^2}{2} \right) K_n - E_n \right] \), \(\beta = \frac{\mu - \mu_v}{\mu + \mu_v} \), \(k_n^2 = \frac{a^2}{a^2 + (nt + b)^2} \) and \(K_n \) and \(E_n \) are the complete elliptic integrals of the first and second kinds of modulus \(k_n \).

18. An infinite plate of thickness \(t \) and permeability \(\mu \) is inserted between the loops of Fig. 8.06a, with its faces parallel to them. Show that the mutual inductance between the loops is now given by

\[M = 2\mu_0(ab)^\frac{3}{2} (1 - \beta^2) \sum_{n=1}^{\infty} \frac{\beta^2}{k_n} \left[\left(1 - \frac{k_n^2}{2} \right) K_n - E_n \right] \]

\(K_n \) and \(E_n \) are complete elliptic integrals of modulus \(k_n \), where

\[k_n^2 = \frac{4ab}{(a + b)^2 + (c + 2nt)^2} \quad \text{and} \quad \beta = \frac{\mu - \mu_v}{\mu + \mu_v} \]

19. Show that the self-inductance of a solenoid of diameter \(d \), length \(c \), \(N \) turns, and small pitch is \(\frac{1}{2} \mu N^2 d \csc \alpha [\tan^2 \alpha - 1] E + K \) where \(d/c = \tan \alpha \) and \(E \) and \(K \) are complete elliptic integrals of modulus \(\sin \alpha \).

20. A wire loop of radius \(a \) is coaxial with a solenoid of radius \(b \) and \(n \) turns per unit length. If the greatest distance from a point on the loop to the near end of the solenoid is \(c \) and to the far end it is \(d \), show from 7.10 (4) without further integration that the force between loop and solenoid when they carry currents \(I \) and \(I' \) is

\[2\mu_0 n I' (ab)^\frac{3}{4} \left[|-k_1^{-1}(1 - \frac{4}{3} k_1^2)K_1 - E_1| - k_2^{-1}(1 - \frac{4}{3} k_2^2)K_2 - E_2| \right] \]

where the modulus of the complete elliptic integrals is \(k_1 = 2(ab)^\frac{3}{4}/c \) and \(k_2 = 2(ab)^\frac{3}{4}/d \).

21. Two coaxial solenoids of diameter \(d \) and small pitch, with \(n \) and \(m \) turns per unit length, are placed so that the distance between near ends is \(b \) and between far ends is \(c \). If one is of length \(a \), show that their mutual inductance is
\[\frac{1}{4} \mu n m d^2 \sum_{n=1}^{4} (-1)^n \sec \alpha_n [(1 - \tan^2 \alpha_n) E(k_n) + \tan^2 \alpha_n K(k_n)] \]

where \(\tan \alpha_1 = c/d, \tan \alpha_2 = (c - a)/d, \tan \alpha_3 = b/d, \tan \alpha_4 = (a + b)/d, \) and \(k_n = \cos \alpha_n. \)

22. Show that, if the currents in problem 21 are \(I \) and \(I' \), the force between the coils is

\[\frac{1}{2} \mu d^2 n m I I' \sum_{n=1}^{4} (-1)^n \sin \alpha_n \sec^2 \alpha_n [E(k_n) - K(k_n)] \]

23. Show by 5.35 (4) that the mutual inductance between two loops of radii \(a \) and \(b \) with parallel axes a distance \(c \) apart and planes a distance \(d \) apart is, if \(c > a + b, \)

\((\mu ab/\pi) \int_0^\infty I_1(ka)I_1(kb)K\phi(kc) \cos kd \, dk \)

24. Show that, if \(b > a + c, \) the mutual inductance in the last problem is

\((\mu ab/\pi) \int_0^\infty K_1(ka)I_1(kb)I\phi(kc) \cos kd \, dk \)

25. Show with the aid of 5.299 (7) that the results of problems 23 and 24 may be written

\[\frac{1}{2} \mu ab \int_0^\infty J_1(ka)J_1(kb)J\phi(kc)e^{-kd} \, dk \]

26. Show from problem 23 that the mutual inductance between two solenoids of radii \(a \) and \(b, \) length \(A \) and \(B, \) and \(m \) and \(n \) turns per unit length, with parallel axes a distance \(c \) apart and central loop planes a distance \(d \) apart is, when \(c > a + b, \)

\((4\mu ab mn/\pi) \int_0^\infty k^{-2}I_1(ka)I_1(kb)K\phi(kc) \sin kA \sin kB \cos kd \, dk \)

27. If coil \(a \) of the last problem lies inside coil \(b, \) show from problem 24 that

\(M = (4\mu ab mn/\pi) \int_0^\infty k^{-2}K_1(ka)I_1(kb)I\phi(kc) \sin kA \sin kB \cos kd \, dk \)

28. From problem 25 write the mutual inductances of problems 26 and 27 in the form

\[2\mu ab \int_0^\infty k^{-2}J_1(ka)J_1(kb)J\phi(kc) \sinh kA \sinh kB e^{-kd} \, dk \]

29. The most general position of a loop of radius \(a \) relative to one of radius \(b \) may be stated in terms of the shortest distance \(c \) between their axes, the distances \(A \) and \(B \) of the centers of each from \(c, \) and the angle \(\beta \) between their axes measured from each center toward \(c. \) Show that the mutual inductance is

\[\mu ab \int_0^\infty \int_0^\infty (\cos \phi \cos \phi' \cos \beta + \sin \phi \sin \phi') \, d\phi \, d\phi' \]

\[\left[D^2 + a^2 + b^2 + 2ab(\cos \phi \cos \phi' + \sin \phi \sin \phi' \cos \beta) - 2f(\phi, \phi') \right]^2 \]

where \(D = (c^2 + A^2 + B^2 - 2AB \cos \beta)^1/2 \) is the distance between their centers and

\(f(\phi, \phi') = a(c \cos \phi + B \sin \phi \sin \beta) + b(c \cos \phi' + A \sin \phi' \sin \beta) \)

30. A bifilar lead of two parallel wires with a spacing \(c \) is placed symmetrically in the gap of width \(a \) between two parallel sheets of infinite permeability with its plane normal to them. Show that the additional self-inductance per unit length due to the presence of the sheets is \((\mu I/\pi) \ln \left\{ \left[2a \tan \left(\frac{\pi c}{a} \right) \right]/(\pi c) \right\}. \)
References

The author has found the following books useful for this chapter:

CHAPTER IX
TRANSIENT PHENOMENA IN NETWORKS

9.00. Electrical Transients.—The term transient is used to designate the result produced by making any sudden change in an electrical circuit carrying current. Strictly speaking, such results are only transient when there is resistance present to dissipate energy. In practice, resistance is always present so that such effects rarely persist more than a few seconds even in extreme cases. Among the ways in which transients are produced may be mentioned the release of the charge on a capacitor, a sudden change in the magnetic flux linking a circuit, or the sudden removal or insertion of an electromotance source. We shall treat in this chapter transient effects in circuits possessing at least two of the properties of capacitance, inductance, and resistance, when electromotance sources, if present, are constant. In general, if a network is left to itself, i.e., if no energy is put into or removed from it, the currents in it will oscillate or decay in some fashion that may be described by a differential equation in which the dependent variables are the currents or charges and the independent variable is time. This will be a linear differential equation with constant coefficients in which the constant term is absent. The solution of this equation, containing a number of arbitrary constants equal to the order of the equation, is called the complementary function. The constants can be found from the initial conditions. When constant electromotance sources are present, the differential equation will contain a constant term. In this case, steady currents will flow or charges will remain on capacitors after enough time has elapsed for all the terms in the complementary function to become zero. These currents and charges, not included in the complementary function, represent what is termed the steady-state condition. They also constitute the particular integral of the differential equation. The sum of the complementary function and the particular integral, or, in electrical terminology, the sum of the transient and the steady-state solutions, gives the complete solution of the problem.

9.01. Energy Relations in a Network.—In an electric circuit, involving capacitance, resistance, and inductance, energy may be stored in the electrostatic fields of the stationary charges on the capacitors and kinetic energy in the magnetic fields produced by the moving charges in the inductors and energy may be dissipated as heat in the resistors. If left
alone, all the electrical energy will eventually be radiated or transformed into heat energy. Radiation losses are treated in connection with electromagnetic waves. There it will be seen that they are strongly dependent on the rate of change of current in the circuit. Usually for change rates up to 100,000 cycles per second, and often at still higher frequencies, these losses can be neglected compared with resistance losses as is done in this chapter. The potential energy of the circuit is \(W_c = \frac{1}{2} \Sigma q_s^2 / c_s \) joules, by 2.07 (4), where \(q_s \) is in coulombs and \(c_s \) is in farads. The kinetic energy of the circuit in joules is \(W_L = \frac{1}{2} \Sigma Lr_i^2 \), by 8.08 (1), where \(L_r \) is in henrys and \(i \), in amperes. The power dissipation in watts is \(P = \frac{1}{2} \Sigma i_q^2 R_q \), by 6.03 (2) where \(R_q \) is in ohms and \(i_q \) is in amperes. Thus the total supply of energy in the fields is

\[
W = \frac{1}{2} \left(\sum_{s=1}^{n} \frac{q_s^2}{c_s} + \sum_{r=1}^{m} L_r i_r^2 \right) \tag{1}
\]

and the rate at which this energy diminished must equal the rate at which heat is produced so that

\[
\sum_{q=1}^{v} R_q i_q^2 = -\frac{dW}{dt} \quad \text{and} \quad \sum_{s=1}^{n} \frac{q_s \dot{q}_s}{c_s} + \sum_{r=1}^{m} i_r i_r L_r + \sum_{q=1}^{v} R_q i_q^2 = 0 \tag{2}
\]

where the dot indicates differentiation with respect to time.

9.02. Circuit with Capacitance, Inductance, and Resistance.—The circuit shown in Fig. 9.02 has \(L, C \), and \(R \) in series so that \(\dot{q} = i \) and \(\ddot{q} = \dot{i} \). Dividing out the factor \(i \), 9.01 (2) becomes, in this case,

\[
L \ddot{q} + R \dot{q} + \frac{q}{C} = 0 \tag{1}
\]

From 8.08 (4), \(L \dot{i} = L \ddot{q} \) is the electromotance across the inductor. From Ohm’s law \[6.02 (1)] \(Ri = R \dot{q} \) is the electromotance across the resistor. From 2.01 (1), \(q/c \) is the electromotance across the capacitor so that (1) is a statement of Kirchhoff’s law (6.04) that the sum of the electromotances around a closed circuit is zero.

The general solution of (1) is

\[
q = C_1 e^{k_1 t} + C_2 e^{k_2 t} \tag{2}
\]

where \(C_1 \) and \(C_2 \) are constants of integration to be determined by the initial values of \(q \) and \(i \), and \(k_1 \) and \(k_2 \) are the quantities

\[
-\frac{R}{2L} + \left(\frac{R^2}{4L^2} - \frac{1}{LC} \right)^{\frac{1}{4}}, \quad -\frac{R}{2L} - \left(\frac{R^2}{4L^2} - \frac{1}{LC} \right)^{\frac{1}{4}}
\]
§9.03 DISCHARGE AND CHARGE OF A CAPACITOR

If \((R/2L) > (LC)^{-1}\), then \(k_1\) and \(k_2\) are real and the current is not periodic. When we substitute

\[
\omega = \left| \left(\frac{R^2}{4L^2} - \frac{1}{LC} \right) \right| ^{\frac{1}{2}} \tag{3}
\]

in Eq. (2), we obtain

\[
q = e^{-\frac{R}{2L}t} (C_1 e^{\omega t} + C_2 e^{-\omega t}) = e^{-\frac{R}{2L}t} (A \cosh \omega t + B \sinh \omega t)
\]

\[
= e^{-\frac{R}{2L}t} D \cosh (\omega t + \psi) \tag{4}
\]

where \(A = C_1 + C_2, B = C_1 - C_2, D = (A^2 - B^2)^{\frac{1}{2}}, \text{ and } \tanh \psi = B/A.\)

If \((R/2L) < (LC)^{-1}\), \(k_1\) and \(k_2\) are complex and the current is periodic. The solution then becomes, by writing \(j\omega\) for \(\omega\) in (4),

\[
q = e^{\frac{R}{2L}t} (C_1 e^{j\omega t} + C_2 e^{-j\omega t}) = e^{\frac{R}{2L}t} (A \cos \omega t + B' \sin \omega t)
\]

\[
= e^{\frac{R}{2L}t} D' \cos (\omega t + \phi) \tag{5}
\]

where \(A = C_1 + C_2, B' = j(C_1 - C_2), D' = (A^2 + B'^2)^{\frac{1}{2}}, \text{ and } \tan \phi = -B'/A.\)

The period of the oscillation is \(T = 2\pi/\omega\), and the natural or proper frequency of the circuit is \(\omega/2\pi\). The logarithmic decrement \(\alpha\) of the circuit is the logarithm of the ratio of the amplitude of two successive oscillations

\[
\alpha = \ln \left[\frac{e^{-\frac{R}{2L}t}}{e^{-\frac{R}{2L}(t+T)}} \right] = \frac{RT}{2L} = \frac{\pi R}{\omega L} \tag{6}
\]

If \(\omega = 0\), the circuit is said to be critically damped. Expanding the cosine and sine terms in (5) by \(Pc 772\) and \(773\) or \(Dw 415.01\) and \(415.02\), keeping the first term in each, since the relative magnitudes of \(A\) and \(B'\) are unknown, neglecting higher powers of \(\omega t\), and writing \(B''\) for \(\omega B'\), we have, for the solution in this case,

\[
q = e^{-\frac{R}{2L}t} (A + B''t) \tag{7}
\]

9.03. Discharge and Charge of a Capacitor.—If the switch \(S\) in Fig. 9.02 is closed at the time \(t = 0\) when there is a charge \(q_0\) on the capacitor, then, putting \(q = q_0\) and \(t = 0\) in 9.02 (4), (5), or (7), we have

\[
A = q_0 \tag{1}
\]

The electromotance across the inductor \(L(d\dot{i}/dt) = L(d^2q/dt^2)\) must be finite at all times, including the initial instant. Therefore \(\dot{i} = \ddot{i} = 0\) when \(t = 0\). Differentiating 9.02 (4), (5), or (7) with respect to \(t\) and putting in these values give

\[
B = B' = \frac{B''}{\omega} = \frac{R}{2\omega L} A \tag{2}
\]
The charge at any time on the capacitor is then
\[\frac{R}{2L} > (LC)^{-1} \quad q = q_0 e^{-\frac{R_l}{2L} t} \left(\cosh \omega t + \frac{R}{2\omega L} \sinh \omega t \right) \] (3)
\[\frac{R}{2L} = (LC)^{-1} \quad q = q_0 e^{-\frac{R_l}{2L} t} \left(1 + \frac{R}{2L} t \right) \] (4)
\[\frac{R}{2L} < (LC)^{-1} \quad q = q_0 e^{-\frac{R_l}{2L} t} \left(\cos \omega t + \frac{R}{2\omega L} \sin \omega t \right) \] (5)

The current in each case is given by \(i = \dot{q} \). Curves showing \(q \) as a function of \(t \) as given by (3), (4), and (5) are marked \(A \), \(B \), and \(C \), respectively, in Fig. 9.03b.

The circuit for charging a capacitor is shown in Fig. 9.03a. The equation expressing Kirchhoff's law is exactly like 9.02 (1) except that we have the battery electromotive \(E \) on the right side. We can solve this in two ways: first, we may substitute a new variable \(y = q - CE \) and thereby reduce the new equation to the same form, exactly, as 9.02 (1); second, we may add to the complementary solutions 9.02 (4), (5), and (7) the particular integral or steady-state solution which we see by inspection to be \(q = CE \). In either case, putting \(q = 0 \) when \(t = 0 \) gives
\[A = -CE \] (6)
Differentiating gives the same expression for \(i \) as before so that putting \(i = 0 \) when \(t = 0 \) gives, as before,
\[B = B' = \frac{B''}{\omega} = \frac{R}{2\omega L} A \] (7)

The complete solution then becomes, for the cases corresponding to (3), (4), and (5), respectively,
\[q = CE \left[1 - e^{-\frac{R_l}{2L} t} \left(\cosh \omega t + \frac{R}{2\omega L} \sinh \omega t \right) \right] \] (8)
\[q = CE \left[1 - e^{-\frac{R_l}{2L} t} \left(1 + \frac{R_l}{2L} t \right) \right] \] (9)
\[q = CE \left[1 - e^{-\frac{R_l}{2L} t} \left(\cos \omega t + \frac{R}{2\omega L} \sin \omega t \right) \right] \] (10)

The current in each case is given by \(i = \dot{q} \). Curves showing \(q \) as a function of \(t \) as given by (8), (9), and (10) are marked \(A \), \(B \), and \(C \), respectively, in Fig. 9.03c. If \(R = 0 \), we note that (5) and (10) become
§9.04 GROWTH AND DECAY OF CURRENT IN AN INDUCTOR

Discharge

\[q = q_0 \cos [(t/LC)^{-1}] \]

Charge

\[q = C \mathcal{E} \left[1 - \cos [(t/LC)^{-1}] \right] \]

so that in both cases, oscillations continue indefinitely with the frequency \([2\pi(LC)^{1/2}]^{-1}\).

![Diagram](b)

![Diagram](c)

Fig. 9.036 and c.—Discharge (b) and charge (c) of a capacitor in series with a resistor and an inductor when circuit is overdamped (A), critically damped (B), and underdamped (C).

If \(L = 0 \), we see that \(\omega \to \infty \) so that \(2 \cosh \omega t \approx e^{\omega t} \) and also, expanding 9.02 (3) by \(Pc \) 749 or \(Dw \) 5.3 and neglecting terms with \(L \) in the numerator,

\[\omega = \frac{R}{2L} \left(1 - \frac{4L}{R^2C} \right)^{1/2} \approx \frac{R}{2L} - \frac{1}{RC} \]

so that (3) and (8) become, respectively,

Discharge

\[q = q_0 e^{-t/LC} \]

Charge

\[q = C \mathcal{E} (1 - e^{-t/RC}) \]

Thus, the capacitor discharges through a pure resistor exponentially.

9.04. Growth and Decay of Current in an Inductor.—If the circuits of Figs. 9.02 and 9.03a contain no capacitor, the equations expressing Kirchhoff’s law in the two cases are

\[\frac{di}{dt} + \frac{R}{L}i = 0 \]

(1)

\[\frac{di}{dt} + \frac{R}{L}i = \mathcal{E} \]

(2)

Substitute \(x = i - (\mathcal{E}/R) \) in (2), and both (1) and (2) are of the form

\[\frac{dx}{dt} + \frac{R}{L}x = 0 \quad \text{or} \quad \frac{dx}{x} = -\frac{R}{L} \, dt \]
Integrating, we have
\[\ln x = -\frac{R}{L}t + C_1 \quad \text{or} \quad x = Ae^{-\frac{R}{L}t} \] (3)
Thus if \(i = i_0 \) when \(t = 0 \), the current decays by (1) and (3), according to the equation
\[i = i_0 e^{-\frac{R}{L}t} \] (4)
If the circuit is closed through a battery, a resistor, and an inductor in series, so that \(i = 0 \) when \(t = 0 \), the building up of the current is given, when (2) and (3) are used, by the equation
\[i = \frac{\mathcal{E}}{R}(1 - e^{-\frac{R}{L}t}) \] (5)
We define the time constant of a circuit to be
\[\lambda = \frac{L}{R} \] (6)
For a decaying current, this is the time required for the current to fall to \(1/e \) of its initial value.

9.041. Circuits with Mutual Inductance.—We have seen in 8.03 (5) that, if the magnetic field of one circuit links a second circuit, any change in the current in either circuit produces an electromotance in the other one. Thus, if we write down Kirchhoff’s law for the circuits shown in Fig. 9.041, we must include the term given by 8.03 (5), which gives the equations
\[L_1 \frac{di_1}{dt} \pm M \frac{di_2}{dt} + R_1 i_1 = \mathcal{E} \] (1)
\[L_2 \frac{di_2}{dt} \pm M \frac{di_1}{dt} + R_2 i_2 = 0 \] (2)
If, in the mutual inductors, the magnetic fields of \(i_1 \) and \(i_2 \) add, the positive sign is used with \(M \). If they are opposed, we use the negative sign. We must eliminate \(i_2 \) from (1). Solving (1) for \(di_2/dt \), substituting in (2), solving for \(R_2 i_2 \), and multiplying by \(M \) give
\[\pm MR_2 i_2 = (L_1 L_2 - M^2) \frac{d^2i_1}{dt^2} + L_2 R_1 i_1 - L_2 \mathcal{E} \] (3)
Obtain \(di_2/dt \) by differentiating this, substitute in (1), multiply by \(R_2 \), and we have
\[(L_1 L_2 - M^2) \frac{d^2i_1}{dt^2} + (R_1 L_2 + R_3 L_1) \frac{di_1}{dt} + R_1 R_2 i_1 = R_2 \mathcal{E} \] (4)
As in 9.03, we can make the right side of this equation zero by using a new variable \(i_1' = i_1 - (E/R_1) \) or we can add the particular integral or steady-state solution, which is \(i_1 = E/R_1 \), to the complementary or transient solution of (4), which is obtained by taking the right side zero. As with 9.02 (2), the complete solution is then

\[
i_1 = C_1 e^{bt} + C_2 e^{bt} + \frac{E}{R_1} = e^{-at}(A \cosh \beta t + B \sinh \beta t) + \frac{E}{R_1}
\]

Here \(k_1 \) and \(k_2 \) are the real quantities \(-\alpha \pm \beta\), where

\[
\alpha = \frac{R_1L_2 + R_2L_1}{2(L_1L_2 - M^2)}
\]

\[
\beta = \frac{[(R_1L_2 - R_2L_1)^2 + 4M^2R_1R_2]^{1/2}}{2(L_1L_2 - M^2)}
\]

When \(t = 0 \), \(i_1 = 0 \) so that \(A = -E/R_1 \).

Obviously, the transient solutions of (1) and (2) are identical, but the steady state for \(i_2 \) is \(i_2 = 0 \), so that the solution for \(i_2 \) is

\[
i_2 = e^{-at}(C \cosh \beta t + D \sinh \beta t)
\]

When \(t = 0 \), \(i_2 = 0 \) so that \(C = 0 \). Putting the values found for \(A \) and \(C \) in (5) and (8) and substituting in (2), we have, after dividing out \(e^{-at} \),

\[
P \sinh \beta t + Q \cosh \beta t = 0
\]

where

\[
P = \mp M(\alpha R_1B + \beta E) + DR_1(R_2 - \alpha L_2)
\]

and

\[
Q = \pm M(\beta R_1B + \alpha E) + DR_1\beta L_2
\]

Since (2) is satisfied for all values of \(t \), \(P \) and \(Q \) may be equated to zero separately. Doing this, and solving (9) and (10) for \(B \) and \(D \), and substituting for \(A, B, C, \) and \(D \) in (5) and (8), we obtain

\[
i_1 = \frac{E}{R_1} \left(1 - e^{-at} \cosh \beta t + \frac{(\alpha^2 - \beta^2)L_2 - \alpha R_2 e^{-at} \sinh \beta t}{\beta R_2} \right)
\]

\[
i_2 = \mp \frac{(\alpha^2 - \beta^2)ME}{\beta R_1R_2} e^{-at} \sinh \beta t
\]

From (11), we see that \(i_1 \) approaches asymptotically its final value \(E/R_1 \). By setting \(di_2/dt = 0 \) and solving for \(t \), we see that \(i_2 \) rises to a maximum value when

\[
t = \frac{1}{\beta} \tanh^{-1} \frac{\beta}{\alpha}
\]

and then approaches zero asymptotically.

Let us now examine the effect of opening the switch in Fig. 9.041, when \(i_2 = 0 \) and \(i_1 = E/R_1 \). If it were opened instantaneously, stopping \(i_1 \) in zero time, then \(di_1/dt \) would be infinite at this instant and, from
8.08 (4), the potential across the switch would become infinite. Since no physical system can withstand infinite potentials, this value can never be reached. Actually, as the switch opens, the small capacitance, always existing between the contacts and elsewhere in the circuit, charges up until the potential drops. It is therefore very difficult to know exactly the initial conditions for \(i_1 \).

Normally, the instantaneous stoppage of \(i_1 \) would induce an infinite electromotance in the inductors of the second circuit, producing sparking unless the distributed capacitance is large enough to absorb the energy. There is one important practical case where this is not true. Suppose the entire self-inductance \(L_2 \) of the second circuit lies in the same coil as the mutual inductance \(M \) and that it is possible to find a ratio of \(i'_1 \) to \(i'_2 \) such that when either \(i'_1 \) or \(i'_2 \) flows alone the same flux links every turn in \(L_2 \). It is then possible to establish, instantaneously, a current \(i_2 \) in the second circuit such that the flux linkage \(L_2 i_2 \) in this circuit is identical with the linkage \(M \mathcal{E}/R_1 \) existing before \(i_1 \) was stopped. In this case, the electromotance in the second circuit is everywhere finite and the initial value of \(i_2 \), obtained by equating the flux linkages, is

\[
(i_2)_0 = \frac{M \mathcal{E}}{L_2 R_1} \tag{14}
\]

This situation could nearly be realized in practice if \(L_1 \) and \(L_2 \) were single-layer solenoids of the same length wound closely over each other.

Writing down Kirchhoff's laws for \(i_2 \), we obtain the equation

\[
L_2 \frac{di_2}{dt} + R_2 i_2 = 0 \tag{15}
\]

A solution of this equation, giving the correct initial value of \(i_2 \), is seen by inspection to be

\[
i_2 = \frac{M \mathcal{E}}{L_2 R_1} - \frac{R_2 i_1}{L_1} \tag{16}
\]

9.05. Kinetic Energy and Electrokinetic Momentum.—From 8.08 (4), we know that an instantaneous change in the flux \(L_1 i_1 \) would produce an infinite electromotance across the inductor. As we saw in the last article, this is physically impossible, so that \(L_1 i_1 \) must have the same value just before and just after a sudden change in an electric circuit. This quantity \(L_1 i_1 \) is called the electrokinetic momentum because it bears the same relation to the kinetic energy \(L_1 i_1^2/2 \) that the mechanical momentum \(mv \) bears to the mechanical kinetic energy \(\frac{1}{2}mv^2 \). The principle of constant flux linkage, just stated, is also known as the conservation of electrokinetic momentum. Since it takes a finite time for a finite current to dissipate a finite amount of energy in a resistor or to increase the charge on a capacitor by a finite amount, the kinetic
energy $\frac{1}{2}L_1i_1^2$ in a circuit must be the same just before and just after a sudden change is made. These conservation laws sometimes enable us to write down the initial values of a transient current by inspection. In a network on which there is no dissipation of energy, both the total electrokinetic momentum and the total energy remain constant. We can obtain considerable information from this fact without writing down and solving any differential equations. For example, consider the system shown in Fig. 9.05.

The capacitor initially has a charge Q_0, the switch is closed, and we wish to find the maximum value of the currents i_1 and i_2. The electrokinetic momentum remains zero so that

$$L_1i_1 + L_2i_2 = 0$$

(1)

The total energy remains $Q_0^2/(2C)$ so that when the capacitor is uncharged the kinetic energy is

$$L_1(i_1^2)_m + L_2(i_2^2)_m = \frac{Q_0^2}{C}$$

(2)

Solving for the maximum values of i_1 and i_2, we have

$$(i_1)_m = Q_0\left[\frac{L_2}{L_1C(L_1 + L_2)}\right]^{\frac{1}{2}}, \quad (i_2)_m = Q_0\left[\frac{L_1}{L_2C(L_1 + L_2)}\right]^{\frac{1}{2}}$$

(3)

9.06. Equation for Transients in General Network.—We can treat this subject by a method similar to that used for a resistance network in 6.08 and 6.09. We may draw our n independent circulating currents as in 6.08 so that they permit a different current in each branch of the network. We should note in this connection that a mutual inductance between two circuits is treated as a single conductor common to both circuits. With this convention, if there are q junctions and p branches, n is given as before by

$$n = p - q + 1$$

(1)

The notation for resistance in this case will be identical with that used in 6.08, viz., R_r is the resistance common to the i_r and i_s circuits, R_r is that traversed by i_r alone, and R_{rs} is the total resistance in the i_r circuit. The inductance notation is complicated by the possibility of mutual inductance. Thus, if L'_{rs} is the total self-inductance common to i_r and i_s and M_{rs} is the mutual inductance between the i_r and i_s circuits, then we define L_{rs} to be

$$L_{rs} = L'_{rs} \pm M_{rs}$$

(2)

We use the negative sign if M_{rs} opposes L'_{rs}. We define L'_r to be the self-inductance traversed by i_r alone, and L_{rr} is the total self-inductance in
the \(i_r\) circuit so that if no circuit has more than two currents,

\[
L_{rr} = L'_r + L'_{1r} + L'_{2r} + \cdots + L'_{nr} = L_r + L_{1r} + L_{2r} + \cdots + L_{nr}
\]

(3)

Note that \(L_r\), as here defined, involves the mutual inductances.

In the circuits we are considering, every capacitor will be traversed by one or more circulating currents. For a given current, capacitors may appear in series but never in parallel. From 2.02 (2), we know that, when several capacitors are connected in series, the reciprocal of the resultant capacitance equals the sum of the reciprocals of the capacitances of the constituent capacitors. Thus, our notation will be simplified if we introduce a new quantity, elastance, which is the reciprocal of capacitance and is denoted by the symbol \(S\). We shall denote by \(S_{rs}\) the elastance common to the \(i_r\) and \(i_s\) circuits, by \(S_r\) that traversed by \(i_r\) alone, and by \(S_{rr}\) the sum of the elastances in the \(i_r\) circuit so that

\[
S_{rr} = S_r + S_{1r} + S_{2r} + \cdots + S_{nr}
\]

(4)

If no circuit has more than two currents, we see that, when so defined,

\[
R_{rs} = R_{sr}, \quad L_{rs} = L_{sr}, \quad \text{and} \quad S_{rs} = S_{sr}
\]

(5)

These are called the mutual parameters of the network, and \(R_{rr}, L_{rr}\) and \(S_{rr}\) are called the mesh parameters.

From 9.02 (1), we see that the electromotance around circuit \(r\) which depends on \(i_r\) is

\[
\left(L_{rr} \frac{d^2}{dt^2} + R_{rr} \frac{d}{dt} + S_{rr} \right) q_r = a_{rr} q_r
\]

(6)

where \(i_r = dq_r/dt\) and \(a_{rr}\) is a differential operator which operates on \(q_r\) and thus has a meaning only when written in front of \(q_r\). The electromotance introduced into the \(r\)th circuit by the presence of \(i_s\) in some common branch or branches is

\[
\pm \left(L_{rs} \frac{d^2}{dt^2} + R_{rs} \frac{d}{dt} + S_{rs} \right) q_s = a_{rs} q_s
\]

(7)

The sign is to be taken positive if \(i_r\) and \(i_s\) traverse their common branches in the same direction, otherwise it is negative.

If there are no electromotances in the circuit, Kirchhoff’s law may be written down for the network in terms of the operators just defined

\[
a_{11}q_1 + a_{12}q_2 + \cdots + a_{1n}q_n = 0
\]

\[
a_{21}q_1 + a_{22}q_2 + \cdots + a_{2n}q_n = 0
\]

\[
\vdots
\]

\[
a_{n1}q_1 + a_{n2}q_2 + \cdots + a_{nn}q_n = 0
\]

(8)

9.07. Solution for General Network.—We have seen in 9.02 (1) and (4) that, for a single mesh with the operator \(a_{11}\), the solution is of the form
\[q_1 = Q_1^{(1)} e^{pt} + Q_1^{(2)} e^{pt} \]

where \(p_1 \) and \(p_2 \) are the two values obtained for \(p \) by substituting \(Q e^{pt} \) in the differential equation 9.02 (1) and solving the resultant algebraic equation. The amplitudes \(Q_1^{(1)} \) and \(Q_1^{(2)} \) are the constants of integration to be evaluated to fit the given initial conditions, which are, first, the initial energy in the magnetic field determined by the currents in the inductors and, second, the energy in the electric fields determined by the charges on the capacitors. It is logical to try a similar substitution in the set of simultaneous differential equations 9.06 (8). This substitution will be justified if we can evaluate the \(p \)'s so as to satisfy the differential equation and also come out with a number of arbitrary constants equal to the maximum number of initial conditions which we are able to specify. This equals the number of independent electric and magnetic fields that can supply energy in the system. A current traversing resistance only need not be specified since it possesses no energy and stops instantly when the driving electromotance is removed. If there are \(n \) independent circulating currents, there can be at most \(2n \) integration constants. The substitution to be made is therefore

\[q_r = Q_r e^{pt} \]

We now find it convenient to define a new algebraic quantity \(c_{rs} \) by the relation

\[a_{rs}q_s = \pm (L_{rs}p^2 + R_{rs}p + S_{rs})Q_i e^{pt} = c_{rs}Q_i e^{pt} \]

Equations 9.06 (8) now become, by dividing out the terms \(e^{pt} \),

\[
\begin{align*}
c_{11}Q_1 &+ c_{12}Q_2 + \cdots + c_{1n}Q_n = 0 \\
c_{21}Q_1 &+ c_{22}Q_2 + \cdots + c_{2n}Q_n = 0 \\
&\vdots \ \\
c_{n1}Q_1 &+ c_{n2}Q_2 + \cdots + c_{nn}Q_n = 0
\end{align*}
\]

As in 6.08, let us write

\[\Delta = \begin{vmatrix} c_{11} & \cdots & c_{1n} \\ c_{21} & \cdots & c_{2n} \\ \cdots & \cdots & \cdots \\ c_{n1} & \cdots & c_{nn} \end{vmatrix} \]

Since the initial conditions that determine the \(Q \)'s have not been put into (3), we cannot expect to solve these equations for \(Q_1, Q_2, \ldots, Q_n \). Because all the right sides are zero, we obtain, if we attempt the solution by the regular determinant method, the result

\[Q_r = \frac{0}{\Delta} \]

This trivial solution \(Q_r = 0 \), obviously, satisfies (3) but not our initial
conditions. The only way the latter can be satisfied simultaneously with (5) is to have

$$\Delta = 0$$

(6)

This is called the modular determinant. When expanded, it gives an algebraic equation of degree $2n$, at most, in p, because c_{rs} is, at most, a quadratic expression in p. Solving this gives us the possible values of p in terms of the network parameters. Each value of p thus obtained represents a natural mode of oscillation or decay of the system and may be substituted in (1), giving, for the vth mode,

$$q_r = Q_r^{(v)} e^{pt}$$

(7)

For this mode, Eq. (3) becomes

$$c_{11}^{(v)} Q_1^{(v)} + c_{12}^{(v)} Q_2^{(v)} + \cdots + c_{1n}^{(v)} Q_n^{(v)} = 0$$

$$c_{21}^{(v)} Q_1^{(v)} + c_{22}^{(v)} Q_2^{(v)} + \cdots + c_{2n}^{(v)} Q_n^{(v)} = 0$$

$$\cdots$$

$$c_{n1}^{(v)} Q_1^{(v)} + c_{n2}^{(v)} Q_2^{(v)} + \cdots + c_{nn}^{(v)} Q_n^{(v)} = 0$$

(7.1)

These equations are of exactly the same form, except that the right side is zero, as 6.08 (3), and the relation corresponding to 6.08 (8), which is independent of the right side, therefore is valid. Thus if $\Delta_{k}^{(v)}$ is the co-factor of $c_{ik}^{(v)}$ in (4), we have

$$\frac{Q_r^{(v)}}{Q_s^{(v)}} = \frac{\Delta_{k}^{(v)}}{\Delta_{i}^{(v)}}$$

Evidently, this equation is satisfied by

$$Q_r^{(v)} = \Delta_{k}^{(v)} G^{(v)}$$

and

$$Q_s^{(v)} = \Delta_{i}^{(v)} G^{(v)}$$

(8)

where $G^{(v)}$ is a constant for the mode v. We can use any convenient value of k from 1 to n.

The complete expression for q_r involves a sum of, at most, $2n$ terms of the form of (7).

$$q_r = Q_r^{(1)} e^{pt} + Q_r^{(2)} e^{pt} + \cdots + Q_r^{(2n)} e^{pt} t$$

(9)

Let us substitute from (8) in (9), and we have, at most, n equations involving q_1, q_2, \ldots, q_n. By differentiation, we obtain, at most, n additional equations involving i_1, i_2, \ldots, i_n. Thus, we have

$$q_1 = \Delta_{i1}^{(1)} G^{(1)} e^{pt} + \Delta_{i1}^{(2)} G^{(2)} e^{pt} + \cdots + \Delta_{i1}^{(2n)} G^{(2n)} e^{pt}$$

$$q_2 = \Delta_{i2}^{(1)} G^{(1)} e^{pt} + \Delta_{i2}^{(2)} G^{(2)} e^{pt} + \cdots + \Delta_{i2}^{(2n)} G^{(2n)} e^{pt}$$

$$\cdots$$

$$q_n = \Delta_{in}^{(1)} G^{(1)} e^{pt} + \Delta_{in}^{(2)} G^{(2)} e^{pt} + \cdots + \Delta_{in}^{(2n)} G^{(2n)} e^{pt}$$

(10)

$$i_1 = p_1 \Delta_{i1}^{(1)} G^{(1)} e^{pt} + p_2 \Delta_{i1}^{(2)} G^{(2)} e^{pt} + \cdots + p_{2n} \Delta_{i1}^{(2n)} G^{(2n)} e^{pt}$$

$$i_2 = p_1 \Delta_{i2}^{(1)} G^{(1)} e^{pt} + p_2 \Delta_{i2}^{(2)} G^{(2)} e^{pt} + \cdots + p_{2n} \Delta_{i2}^{(2n)} G^{(2n)} e^{pt}$$

$$\cdots$$

$$i_n = p_1 \Delta_{in}^{(1)} G^{(1)} e^{pt} + p_2 \Delta_{in}^{(2)} G^{(2)} e^{pt} + \cdots + p_{2n} \Delta_{in}^{(2n)} G^{(2n)} e^{pt}$$
Putting $t = 0$ in these equations and using the initial values of q_1, q_2, \ldots, q_n, i_1, i_2, \ldots, i_n, we may solve for $G^{(1)}$, $G^{(2)}$, \ldots, $G^{(2n)}$ in terms of $\Delta_{k_1}^{(1)}$, $\Delta_{k_2}^{(2)}$, \ldots, $\Delta_{kn}^{(2)}$, $\Delta_{k_2}^{(2)}$, \ldots, $\Delta_{kn}^{(2)}$, etc. The latter are determined from the values of $c_{s(s)}^{(i)}$, etc., which, by (2), involve the values of p, obtained from (6) and the given constants of the circuit. Thus, the problem is completely solved.

9.08. Natural Modes in a Network. — In the case of the simple circuit solved in 9.03, we found that three types of modes may occur, depending on the constants of the circuit. The first type, known as the oscillatory type, occurs when p is complex. This type appears when the resistance is small compared with capacitance and inductance and is the only kind that appears when there is no resistance in the network. Since the actual charge q, must be a real quantity in 9.07 (9), although the Q,s may be complex, it is necessary, if one value p, of p is complex, that there should be another value p, which is its complex conjugate so that $Q^*e^{p_s t} + Q^{(k)}e^{p_k t}$ is real. These two terms may be combined in the form

$$Ae^{bt} \cos at + Be^{bt} \sin at = Ce^{bt} \cos (at + \phi)$$

Another type of mode that may occur corresponds to the critical damping case in 9.03 and arises when several roots of 9.07 (6) are identical. If, for example,

$$p_s = p_{s+1} = \ldots = p_{2n-1} = p_{2n}$$

then the terms in q_r in 9.07 (10), involving p_s to p_{2n}, must be replaced by

$$[\Delta_{k_1}^{(1)}G^{(1)} + \Delta_{k_2}^{(2)}G^{(2)} + \ldots + \Delta_{kn}^{(2n)}G^{(2n)}]e^{p_s t}$$

where r has all the values from 1 to n. Corresponding changes must be made in i_r.

The third type of mode which may occur is that in which p is real. This corresponds to the overdamped case in 9.03. In this case, there is no oscillation and the current or charge decays without reversing sign. This is the only type of mode that can arise if only inductance and resistance, or only capacitance and resistance, are present in the circuit.

9.09. Networks Containing Constant Electromotances. — If the general network that we have been considering contains constant sources of electromotance, then the right sides of some of the equations in 9.06 (8) will not be zero but constants of the form E_p, E_q, etc. The complete solution of these equations will consist of the sum of the complementary function or transient solution and the particular integral or steady-state solution. The complementary functions are given by 9.07 (10). To get the particular integral, we notice that, in the steady state, all capacitances become open circuits and all pure inductances become short circuits. Thus, if we redraw the network, omitting all branches containing capacitors and replacing inductors by perfectly conducting wires, the
resulting network may be treated by the method of 6.08 and 6.09 to obtain the steady-state solution for currents. Knowing the current and resistance of each branch gives us the electromotance across all the capacitors and, hence, the steady-state value of the charges on capacitors. We now add to each transient solution of 9.07 (10) the steady-state value of the corresponding current or charge, and we have the complete solution of the network. The constants \(G^{(1)}, G^{(2)}, \ldots, G^{(n)} \) are now determined as before by setting \(t = 0 \) in the complete solutions, putting in the initial values of the currents and the charges, and solving the resultant equations.

9.10. Modes of Two Inductively Coupled Circuits.—Let us apply the results just obtained to the mesh shown in Fig. 9.10a. The circuits traversed by \(i_1 \) and \(i_2 \) are said to be inductively coupled. Here \(L_{11} = L_1 \), \(L_{12} = L_{21} = M \), \(L_{22} = L_2 \), \(R_{11} = R_1 \), \(R_{22} = R_2 \), \(S_{11} = 1/C_1 \), and \(S_{22} = 1/C_2 \).

From 9.07 (2), we have

\[
c_{11} = L_1 p^2 + R_1 p + \frac{1}{C_1}, \quad c_{12} = c_{21} = M p^2, \]
\[
c_{22} = L_2 p^2 + R_2 p + \frac{1}{C_2} \tag{1}
\]

The determinantal equation 9.07 (4) becomes

\[
c_{11}c_{22} - c_{12}^2 = 0
\]

which, combined with (1), becomes

\[
p^4 + Ap^3 + Bp^2 + Cp + D = 0 \tag{2}
\]

where

\[
A = \frac{R_1 L_2 + R_2 L_1}{L_1 L_2 - M^2}
\]
\[
B = \frac{L_1}{C_2} + \frac{L_2}{C_1} + R_1 R_2
\]
\[
C = \frac{R_1}{C_2} + \frac{R_2}{C_1}
\]
\[
D = \frac{1}{C_1 C_2 (L_1 L_2 - M^2)} \tag{3}
\]

The modes of the circuit are determined by the roots of (2), which we shall designate by \(p_1, p_2, p_3, \) and \(p_4 \). (Details of the solution of a quartic equation are given in books on the theory of equations and in most college algebras.) Their values are given by
§9.10 MODES OF TWO INDUCTIVELY COUPLED CIRCUITS

\[p_{1,2} = -\frac{1}{2}A + P_1 \pm P_2 \pm P_3 \]
\[p_{3,4} = -\frac{1}{2}A - P_1 \pm P_2 \pm P_3 \]

where

\[P_{1,2,3} = \left[(\frac{A}{4})^2 - \frac{B}{6} + t_{1,2,3} \right]^{1/2} \]

The sign of this square root must be taken so that

\[p_1 p_2 p_3 p_4 = D \]

and

\[(p_1 + p_2)p_3 p_4 + (p_3 + p_4)p_1 p_2 = -C \]

In the oscillation case, for example, it is necessary to use Eq. (6) to determine which frequency and damping constant are associated. If we let

\[K = \frac{1}{12} \left(D - \frac{AC}{4} + \frac{B^2}{12} \right) \]
\[N = -\frac{1}{16} \left(\frac{BD}{3} + \frac{ABC}{24} - \frac{C^2}{8} - \frac{A^2 D}{8} - \frac{B^3}{108} \right) \]

then the values of \(t_1, t_2, \) and \(t_3 \) to be used in (5) are given by

If \(K > 0, N \geq 0, N^2 \geq K^2, \) let \(\cosh \phi = \{ \pm \} NK^{-i}, \) then

\[t_1 = \{ \pm \} 2(K)^{1/2} \cosh \frac{1}{2} \phi, \quad t_{2,3} = -\frac{1}{2} t_1 \pm j(3K)^{1/2} \sinh \frac{1}{2} \phi \]

If \(K < 0, \) let \(\sinh \phi = N(-K)^{-i}, \) then

\[t_1 = 2(-K)^{1/2} \sinh \frac{1}{2} \phi, \quad t_{2,3} = -\frac{1}{2} t_1 \pm j(-3K)^{1/2} \cosh \frac{1}{2} \phi \]

If \(K > 0, N^2 < K^2, \) let \(\cos \phi = NK^{-i}, \) then

\[t_1 = 2(K)^{1/2} \cos \frac{1}{2} \phi, \quad t_{2,3} = -\frac{1}{2} t_1 \pm (3K)^{1/2} \sin \frac{1}{2} \phi \]

The types of modes present may be found without actually computing the roots \(p_1, p_2, p_3, \) and \(p_4. \) If \(K^2 > N^2, 48(K)^{1/2} > (8B - 3A^2) \) and

8\(B > 3A^2, \) then the roots consist of two conjugate complex pairs which may be written \(p_{1,2} = -\alpha_1 \pm j\omega_1 \) and \(p_{3,4} = -\alpha_2 \pm j\omega_2. \) This indicates the presence of two damped harmonic oscillations in each circuit. The amplitude of the resultant oscillation is a maximum when these are in phase. This produces the phenomenon of beats like that observed in

\[\text{Fig. 9.10b.} \]
water and sound waves. The frequency is \(\frac{1}{2}(\omega_2 - \omega_1)/\pi\). The energy transfers back and forth from one circuit to the other with this beat frequency until it is entirely dissipated in the resistors. The current in the second circuit of Fig. 9.10a when \(C_1\) is discharged by closing the switch is shown in Fig. 9.10b.

If \(K^3 > N^2\) but \(8B < 3A^2\) and \(48(K)^3 < 8B - 3A^2\), then the roots are all real and negative and the currents decay without oscillation.

![Fig. 9.10c.](image)

Fig. 9.10c.

If \(K < 0\), there are two real roots and one conjugate complex pair. There is then one damped harmonic oscillation in the circuits which dies out without the phenomenon of beats. This is the case in Eq. (11). This case is shown in Fig. 9.10c. When \(K = N\), we have two or more roots equal.

9.11. Amplitudes in Two Coupled Circuits.

We have determined the frequencies of oscillation and the damping factors. It now remains to determine the amplitudes in terms of the initial conditions. From 9.07 (4), we find that

\[\Delta_{11} = c_{22}, \quad \Delta_{12} = -c_{12} = -Mp^2, \quad \text{and} \quad \Delta_{22} = c_{11} \]

so that the complete solution of our circuits, as given by 9.07 (10), is, taking \(k = 1\),

\[
\begin{align*}
q_1 &= c_{22}^{(1)}G^{(1)}e^{p_1t} + c_{22}^{(2)}G^{(2)}e^{p_2t} + c_{22}^{(3)}G^{(3)}e^{p_3t} + c_{22}^{(4)}G^{(4)}e^{p_4t} \\
q_2 &= -M(p_1G^{(1)}e^{p_1t} + p_2G^{(2)}e^{p_2t} + p_3G^{(3)}e^{p_3t} + p_4G^{(4)}e^{p_4t}) \\
i_1 &= p_1c_{11}^{(1)}G^{(1)}e^{p_1t} + p_2c_{11}^{(2)}G^{(2)}e^{p_2t} + p_3c_{11}^{(3)}G^{(3)}e^{p_3t} + p_4c_{11}^{(4)}G^{(4)}e^{p_4t} \\
i_2 &= -M(p_1G^{(1)}e^{p_1t} + p_2G^{(2)}e^{p_2t} + p_3G^{(3)}e^{p_3t} + p_4G^{(4)}e^{p_4t})
\end{align*}
\]

Let us suppose that, when \(t = 0\), \(q_1 = Q\), \(q_2 = 0\), \(i_1 = 0\), and \(i_2 = 0\). Putting these values in (1) and factoring out the \(-M\), we may solve for \(G^{(1)}\) and obtain

\[
G^{(1)} = p_2p_3p_4Q \begin{vmatrix}
p_2 & p_3 & p_4 \\
p_3 & p_2 & p_4 \\
p_4 & p_3 & p_2 \\
\end{vmatrix} + \begin{vmatrix}
c_{22}^{(1)} & c_{22}^{(2)} & c_{22}^{(3)} & c_{22}^{(4)} \\
p_1^2 & p_2^2 & p_3^2 & p_4^2 \\
p_1^2 & p_2^2 & p_3^2 & p_4^2 \\
\end{vmatrix}
\]

In the numerator, we may multiply the top and bottom rows by \(R_2\) and \(L_2\), respectively, and subtract from the center row, all terms of which
then become $1/C_2$. Subtracting the third column from the first and second makes the first two terms in this row zero, reducing the order of the determinant so that it is factorable by inspection. Thus, the numerator reduces to

$$-p_2p_3p_4(p_2 - p_4)(p_3 - p_4)(p_3 - p_2)Q/C_2^2$$

In the denominator, multiply the second row by L_2, and subtract from the first, then multiply the second and fourth by R_2 and L_2, and subtract from the third, from which $1/C_2$ can then be factored. Now multiply the third row by R_2, and subtract from the first, all terms of which now become $1/C_2$ which may be factored out. Subtracting the fourth column from the first, second, and third columns leaves the first three terms of the first row zero, reducing the order of the determinant and permitting us to factor out $(p_1 - p_4)(p_2 - p_4)(p_3 - p_4)$ after which the second row contains only ones. Subtracting the third column from the first and second again reduces the order and permits us to factor out $(p_1 - p_3)(p_2 - p_3)$. The resultant second-order determinant reduces to $p_2 - p_1$ so that the denominator becomes

$$\frac{(p_1 - p_4)(p_2 - p_4)(p_3 - p_4)(p_1 - p_3)(p_2 - p_3)(p_2 - p_1)}{C_2^2}$$

Thus, we have for $G^{(1)}$ the result

$$G^{(1)} = \frac{p_2p_3p_4C_2Q}{(p_2 - p_1)(p_3 - p_1)(p_4 - p_1)}$$

For $G^{(2)}$, we need only substitute 2 for 1 in (2) and change the sign in (3), giving

$$G^{(2)} = \frac{p_3p_4p_1C_2Q}{(p_3 - p_2)(p_4 - p_2)(p_1 - p_2)}$$

Similarly,

$$G^{(3)} = \frac{p_4p_3p_2C_2Q}{(p_4 - p_3)(p_1 - p_3)(p_2 - p_3)}$$

$$G^{(4)} = \frac{p_1p_2p_3C_2Q}{(p_1 - p_4)(p_2 - p_4)(p_3 - p_4)}$$

For the most general initial conditions, when q_1, q_2, i_1, and i_2 have values not zero, and when $t = 0$, we shall have four terms, very similar in form to those above, for each G. They can be worked out in the same way.

9.12. Oscillatory Solution.—If the solution is completely oscillatory, the roots of 9.10 (2) are of the form

$$p_{1,2} = -\alpha_1 \pm j\omega_1 \quad p_{3,4} = -\alpha_2 \pm j\omega_2$$

Let us take

$$2p_1C_{12}^{(1)}G^{(1)} = a' + jb' \quad 2p_3C_{22}^{(3)}G^{(3)} = a'' + jb''$$

(2)
Then, since \(p_1c^{(1)}_{22}G^{(1)} \) and \(p_2c^{(3)}_{22}G^{(3)} \) are the complex conjugates of \(p_2c^{(2)}_{22}G^{(2)} \) and \(p_4c^{(4)}_{22}G^{(4)} \), respectively, we may write \(i_1 \) in 9.11 (1), using \(p_{C1}612 \) and 613 or \(Dw \) 408.01 and 408.02, in the form

\[
i_1 = e^{-a_1t}(a' \cos \omega_1 t - b' \sin \omega_1 t) + e^{-a_2t}(a'' \cos \omega_2 t - b'' \sin \omega_2 t)
= a_1e^{-a_1t} \sin (\omega_1 t + \phi_1) + a_2e^{-a_2t} \sin (\omega_2 t + \phi_2)
\]

where

\[
a_1 = (a'^2 + b'^2)^{\frac{1}{2}}, \quad a_2 = (a''^2 + b''^2)^{\frac{1}{2}}
\]

and

\[
\phi_1 = \frac{\pi}{2} + \tan^{-1} \frac{b'}{a'}, \quad \phi_2 = \frac{\pi}{2} + \tan^{-1} \frac{b''}{a''}
\]

Similarly, taking

\[-2Mp_1G^{(1)} = c' + jd' \quad \text{and} \quad -2Mp_3G^{(3)} = c'' + jd''\]

we have

\[
i_2 = e^{-a_1t}(c' \cos \omega_1 t - d' \sin \omega_1 t) + e^{-a_2t}(c'' \cos \omega_2 t - d'' \sin \omega_2 t)
= c_1e^{-a_1t} \sin (\omega_1 t + \psi_1) + c_2e^{-a_2t} \sin (\omega_2 t + \psi_2)
\]

where

\[
c_1 = -(c'^2 + d'^2)^{\frac{1}{2}}, \quad c_2 = -(c''^2 + d''^2)^{\frac{1}{2}}
\]

and

\[
\psi_1 = \frac{\pi}{2} + \tan^{-1} \frac{d'}{c'}, \quad \psi_2 = \frac{\pi}{2} + \tan^{-1} \frac{d''}{c''}
\]

Substituting (1) in 9.11 (4), we have

\[
G^{(1)} = \frac{- (\alpha_1 + j\omega_1)(\alpha_2^2 + \omega_2^2)C_2Q}{-2j\omega_1[\alpha_2 - \alpha_1 + j(\omega_1 - \omega_2)]}[\alpha_2 - \alpha_1 + j(\omega_1 + \omega_2)]
\]

The last factors in the denominator may be written also

\[(\alpha_1 - \alpha_2)^2 + (\omega_2^2 - \omega_1^2) + 2j\omega_1(\alpha_2 - \alpha_1)\]

From 9.10 (1), we have

\[c^{(1)}_{22} = [L_2(\alpha_2^2 - \omega_1^2) - R_2\alpha_1 + C_2^{-1}] + j\omega_1(R_2 - 2\alpha_1L_2)
\]

Then we have, since

\[
c_{22}^{(3,4)}G^{(3,4)} = c_{22}^{(1,2)}G^{(1,2)}
\]

\[
a_{1,2} = (a',b',c',d')^{\frac{1}{2}} = 2(p_{13}p_{24}^{*}c_{22}^{(1,3)}G^{(1,3)}G^{(1,3)})^{\frac{1}{2}}
\]

\[
\omega_{1,2} = \left[\frac{L_2C_2(\alpha_2^2 - \omega_1^2) - R_2\alpha_1 + 1)^2 + \omega_2^2C_2(R_2 - 2\alpha_1L_2)^2}{((\alpha_2 - \alpha_1)^2 + (\omega_2 - \omega_1)^2[(\alpha_2 - \alpha_1)^2 + (\omega_2 + \omega_1)^2]}\right] Q
\]

where the subscripts or superscripts before the comma are used for \(a_1 \) and those after the comma for \(a_2 \). By 4.08 (3), \(\tan^{-1} (b'/a') \), which is the argument of \(a' + jb' \), is obtained by adding the arguments of \(c^{(1)}_{22} \) and the numerator of \(p_{1}G^{(1)} \) and sub-
§9.13 LOW-RESISTANCE INDUCTIVELY COUPLED CIRCUITS

tracting the arguments of the factors in the denominator of \(G^{(1)}\), giving, with the aid of (5),

\[
\phi_{1,2} = \tan^{-1} \frac{\omega_{1,2}C_2(R_2 - 2\alpha_{1,2}L_2)}{1 - \alpha_{1,2}R_2C_2 + L_2C_2(\alpha_{1,2}^2 - \omega_{1,2}^2)} - \tan^{-1} \frac{\omega_1 - \omega_2}{\alpha_2 - \alpha_1}
\]

\[
+ \tan^{-1} \frac{\omega_1 + \omega_2}{\alpha_2 - \alpha_1}
\]

(13)

In similar fashion,

\[
c_{1,2} = -(c''',d''') = -2M(p_1^3p_1^*G^{(1,3)}G^{(1,3)*})^t
\]

\[
= -MC_{2,1}(\alpha_{1,2}^2 + \omega_{1,2}^2)^2(\alpha_{1,1}^2 + \omega_{1,1}^2)Q
\]

\[
\omega_{1,2}[((\alpha_2 - \alpha_1)^2 + (\omega_2 - \omega_1)^2][((\alpha_2 - \alpha_1)^2 + (\omega_2 + \omega_1)^2)]^t
\]

(14)

By 4.08 (3), the argument of \(c' + jd'\) is obtained by adding the arguments of \(p_1^3\) and the numerator of \(p_1^3G^{(1)}\) and subtracting the arguments of the factors in the denominator of \(G^{(1)}\), giving, with the aid of (9),

\[
\psi_{1,2} = -2 \tan^{-1} \frac{\omega_{1,2}}{\alpha_{1,2}} - \tan^{-1} \frac{\omega_1 - \omega_2}{\alpha_2 - \alpha_1} + \tan^{-1} \frac{\omega_1 + \omega_2}{\alpha_2 - \alpha_1}
\]

(15)

9.13. Low-resistance Inductively Coupled Circuits.—When the resistance of both circuits is low so that the currents are highly oscillatory, the modes are given by \(p_{1,2} = -\alpha_1 \pm j\omega_1\), and \(p_{3,4} = -\alpha_2 \pm j\omega_2\). Let us substitute these values in

\[
(p - p_1)(p - p_2)(p - p_3)(p - p_4) = 0
\]

multiply out, and compare coefficients with 9.10 (2). This gives the relations

\[
A = 2\alpha_1 + 2\alpha_2
\]

(1)

\[
B = (\alpha_1^2 + \omega_1^2) + (\alpha_2^2 + \omega_2^2) + 4\alpha_1\alpha_2
\]

(2)

\[
C = 2\alpha_1(\alpha_2^2 + \omega_2^2) + 2\alpha_2(\alpha_1^2 + \omega_1^2)
\]

(3)

\[
D = (\alpha_1^2 + \omega_1^2)(\alpha_2^2 + \omega_2^2)
\]

(4)

Comparing (1) and (3) with 9.10 (3), we see that \(\alpha_1\) and \(\alpha_2\) are of the same magnitude as \(R_1\) and \(R_2\) so that \(\alpha_1^2, \alpha_2^2,\) and \(\alpha_1\alpha_2\) may be neglected compared with \(\omega_1^2\) and \(\omega_2^2\). Thus, we have

\[
A = 2\alpha_1 + 2\alpha_2
\]

(5)

\[
B \approx \omega_1^2 + \omega_2^2
\]

(6)

\[
C \approx 2\alpha_1\omega_2^2 + 2\alpha_2\omega_1^2
\]

(7)

\[
D \approx \omega_1^2\omega_2^2
\]

(8)

Solving (6) and (8), we have

\[
\omega_{1,2}^2 = \frac{1}{2}[B \pm (B^2 - 4D)^{1/2}]
\]

With the aid of 9.10 (3), neglecting \(R_1R_2\), this may be written

\[
\omega_{1,2}^2 = \frac{L_1C_1 + L_2C_2 \pm [(L_1C_1 - L_2C_2)^2 + 4C_1C_2M^2]^{1/2}}{2C_1C_2(L_1L_2 - M^2)}
\]

(9)
Solving (5) and (7) for \(\alpha_1\) and \(\alpha_2\) gives, after substituting for \(C\) and \(A\) from 9.10 (3),

\[
\alpha_{1,2} = -\frac{R_1C_1 + R_2C_2 - C_1C_2(R_1L_2 + R_2L_1)\omega_{1,2}^2}{2C_1C_2(L_1L_2 - M^2)(\omega_{1,2}^2 - \omega_{1,1}^2)}
\]

(10)

where, when two subscripts are used, the first goes with \(\alpha_1\) and the second with \(\alpha_2\).

Neglecting \(\alpha^2\), \(R^2\) and \(\alpha R\) in 9.12 (12), we have

\[
\alpha_{1,2} = \frac{\omega_1^2\omega_2^2(1 - \omega_1^2L_2C_2)}{\omega_{1,2}^2 - \omega_1^2} Q = \frac{(1 - \omega_1^2L_2C_2)Q}{\omega_{1,2}^2((L_1C_1 - L_2C_2)^2 + 4C_1C_2M^2)\omega_1^2 - \omega_2^2}\]

(11)

If the damping is small and \(\alpha_2 - \alpha_1 \ll \omega_1 - \omega_2\), then the last terms in 9.12 (13) are very large so that the sum of the angles is nearly \(\pi\) and the difference zero. In order to avoid ambiguity, it is advisable to use the formula \(\frac{1}{2}\pi - \tan^{-1} A = \tan^{-1}(A^{-1})\) so that all the arctangents are small. In this case, we may write \(A\) for the angle whose tangent is \(A\), neglecting \(A^3\); so we have

\[
\phi_{1,2} = -\frac{\pi(1 \pm 1)}{2} + \frac{\omega_1L_2C_2(R_2 - 2\alpha_1L_2)}{1 - \omega_1^2L_2C_2} + \frac{2\alpha_1\omega_2(\alpha_2 - \alpha_1)}{\omega_1^2 - \omega_2^2}
\]

\[
= -\frac{\pi(1 \pm 1)}{2} + \frac{2\omega_1\alpha_2(\alpha_2 - \alpha_1)}{(1 - \omega_1^2L_2C_2)((L_1C_1 - L_2C_2)^2 + 4C_1C_2M^2)}
\]

(12)

From 9.12 (14), we obtain

\[
c_{1,2} = -\frac{MC_2L_1\omega_{1,2}(\omega_1\omega_2)^2}{[\omega_2^2 - \omega_1^2]} Q = \frac{-\omega_{1,2}MC_2L_1Q}{[(L_1C_1 - L_2C_2)^2 + 4C_1C_2M^2]}\]

(13)

All the angles in 9.12 (15) are large so that we use the relation

\[
\frac{1}{2}\pi - \tan^{-1} A = \tan^{-1}(A^{-1})
\]

and write \(A\) for \(\tan^{-1} A\) for each. We may also simplify the result slightly by adding \(2\pi\), giving

\[
\psi_{1,2} = \frac{\pi(1 \mp 1)}{2} + \frac{2(\alpha_2\omega_1^2 - \alpha_1\omega_2^2)}{\omega_1L_2C_2(\omega_1^2 - \omega_2^2)}
\]

\[
= \frac{\pi(1 \pm 1)}{2} + \frac{2\omega_1\alpha_2(\alpha_2 - \alpha_1)}{\omega_{1,2}[(L_1C_1 - L_2C_2)^2 + 4C_1C_2M^2]}
\]

(14)

The currents \(i_1\) and \(i_2\) are now obtained by putting these values in 9.12 (3) and 9.12 (7).

9.14. Low-resistance Tuned Inductive Coupling.—If the two low-resistance circuits just discussed are tuned, when separate, to the same frequency, then, still neglecting \(R^2\) terms, \(L_1C_1 = L_2C_2\) and 9.13 (9) becomes

\[
\omega_{1,2}^2 = \frac{1}{(C_2C_1)\omega_{1,2}[(L_2L_1)^4 + M]]}
\]

(1)
In this case, 9.13 (10) simplifies to
\[
\alpha_{1,2} = \frac{R_1C_1 + R_2C_2}{4(C_2C_1)[(L_2L_1)^i + M]^i}
\]
Substituting in 9.13 (11), (12), (13), and (14), we have
\[
\begin{align*}
\alpha_{1,2} &= \frac{Q}{2(C_1C_2)[(L_1L_2)^i + M]^i} \\
\phi_{1,2} &= -\pi(1 \pm 1) = \frac{\pi(1 \pm 1)}{2} \\
c_{1,2} &= \frac{-(C_1C_2)lQ}{2C_1C_2[(L_1L_2)^i + M]^i} \\
\psi_{1,2} &= \pi(1 \pm 1)
\end{align*}
\]

9.15. Circuits with Repeated Members.—We sometimes have occasion to solve circuits of the form shown in Fig. 9.15, in which the same mesh is repeated many times. All the inductances have the value \(L \), and all the capacitances, except the first, are \(C \).

Equation 9.07 (3) now becomes for the \(r \)th mesh
\[
c_{r,r-1}Q_{r-1} + c_{r,r}Q_r + c_{r,r+1}Q_{r+1} = 0
\]
where
\[
c_{r,r-1} = c_{r,r+1} = \frac{1}{C}, \quad c_{r,r} = Lp^2 + \frac{2}{C}
\]
This may be written
\[
Q_{r-1} + Q_{r+1} = (2 - LC\omega^2)Q_r = 2 \cos 2\phi Q_r
\]
where
\[
p = j\omega = j(LC)^{-12} \sin \phi
\]
Since the conditions in the initial and final circuit are most easily expressed in terms of the potentials at the junction points, we shall express (2) in this way. Let us write \(r + 1 \) for \(r \) in (2) and subtract the result from (2), then, since
\[
CV_{r-1} = Q_{r-1} - Q_r, \quad CV_r = Q_r - Q_{r+1}, \quad \text{and} \quad CV_{r+1} = Q_{r+1} - Q_{r+2}
\]
we obtain
\[
V_{r-1} + V_{r+1} = 2 \cos 2\phi V_r
\]
Both (2) and (4) are similar to 6.06 (1), and by Dw 401.05 and 401.06 or Pc 591 and 592 the solution is
\[V_r = A \cos 2r\phi + B \sin 2r\phi \]
(5)

Since the end of the line is earthed
\[0 = A \cos 2n\phi + B \sin 2n\phi \]
(6)

In the first circuit,
\[V_1 - V_0 = L \frac{di_1}{dt} = Lp_i \quad \text{and} \quad pV_0 = \frac{pQ_1}{C_0} = \frac{i_1}{C_0} \]

Eliminating \(i_1 \) and substituting for \(p^2 \) from (3) and for \(V_0 \) and \(V_1 \) from (5) give
\[\left(1 - \frac{4C_0}{C} \sin^2 \phi \right)A = A \cos 2\phi + B \sin 2\phi \]
(7)

Substituting for \(\cos 2\phi \) and \(\sin 2\phi \) by Dw 403.02 and 403.22 or Pc 579 and 584, we obtain
\[\frac{B}{A} = \left(1 - \frac{2C_0}{C} \right) \tan \phi \]

Equating this to the value obtained from (6) gives
\[C \cot 2n\phi = (2C_0 - C) \tan \phi \]
(8)

This transcendental equation gives all possible values of \(\phi \) from which, by means of (3), all the natural frequencies in the circuit are found. The roots of (8) are most easily found by equating the difference of the two sides to zero and plotting the resultant function of \(\phi \) by means of a table. The intercepts with the \(\phi \)-axis give the desired values of \(\phi \). The calculation of the amplitudes to fit given initial conditions is somewhat simplified by the large number of zeros in 9.07 (10).

9.16. Integrated Transient Effects.—In some measuring circuits where ballistic galvanometers are used, it is the integrated effect of a transient that is measured. In such cases, the differential equation can usually be integrated as it stands to give the desired information. As an example, let us take the circuit shown in Fig. 9.16. This arrangement is sometimes used to compare a mutual inductance with a capacitance.

The circuit is said to be balanced when opening or closing the key produces no indication on the ballistic galvanometer. When the key is first closed, \(i_1 = i_2 = i_3 = q_1 = q_2 = q_3 = 0 \). After a steady state is reached, \(i_2 = i_3 = 0 \), \(q_2 = i_1R_1C \) and, if the circuit balances, \(q_2 = q_2 = 0 \) so that \(q_3 = i_1R_1C \). Letting \(L_o \) and \(R_o \) be the inductance
\[M \frac{d^2 i_1}{dt^2} + R_0(i_3 - i_2) + L_0 \left(\frac{di_3}{dt} - \frac{di_2}{dt} \right) + S \frac{di_3}{dt} + R_2 i_3 = 0 \]

(1)

Let \(t = 0 \) when the switch is closed, and let \(t = T \) when a steady state is reached. Multiply (1) by \(dt \), and integrate with respect to \(t \) between these limits, and we have, using the initial and final values already stated, the result

\[M i_1 + 0 + 0 + 0 + R_2 i_1 R_1 C = 0 \]

Canceling out \(i_1 \) gives

\[M = -R_1 R_2 C \]

(2)

This is the desired balance condition for the circuit. Except for special values of \(S \) and \(M \), the current through the galvanometer will not be zero during the duration of the transient but will flow first in one direction and then in the other.

9.17. Transient Due to Pulses of Finite Duration.—So far in this chapter, we have considered transients produced by instantaneous changes in the circuit. Suppose now we consider the case in which the applied electromotance requires an appreciable time \(T_0 \) to reach its steady-state value. During the interval \(0 < t < T_0 \), let it have the value \(f(t) \). Putting this in for \(E \), we solve the equations as before and obtain both the complementary function and particular integrals. We next evaluate the constants by the conditions at \(t = 0 \). This solution is good for the interval \(0 < t < T_0 \). We then set up and solve the equations for an instantaneous transient occurring at \(t = T_0 \). Unless changes have been made in the circuit, the complementary function will have the same form as before but the particular integral will be different. We then evaluate the integration constants by setting \(t = T_0 \) in this second solution and inserting the values of \(q_1, q_2, \ldots, q_n \) and \(i_1, i_2, \ldots, i_n \) obtained by putting \(t = T_0 \) in the first solution. The second solution then holds for \(T_0 < t < \infty \).

If \(f(t) \) is a complicated function, the process of getting the particular integral for the first solution may be difficult or impossible, especially for a complicated network. If, however, we have a "square" electromotance pulse, we have a constant electromotance for the interval \(0 < t < T_0 \) so the particular integral for the first solution may be found by 9.09. If the electromotance is zero thereafter, we have only the complementary function for the interval \(T_0 < t < \infty \).

For the circuit of Fig. 9.02, which has an inductance, capacitance, and resistance in series, we have, for the interval \(0 < t < T_0 \), in place of 9.02 (1),
\[\frac{d^2q}{dt^2} + \frac{R}{L} \frac{dq}{dt} + \frac{q}{C} = f(t) \]

(1)

If we let
\[\lambda_{1,2} = -\frac{R}{2L} \pm \left(\frac{R^2}{4L^2} - \frac{1}{LC} \right)^{\frac{1}{2}} \]

(2)

the general solution is, when \(R^2/(4L^2) \neq 1/(LC) \),
\[q = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} + \frac{e^{\lambda_1 t}}{L(\lambda_1 - \lambda_2)} \int_0^t f(t)e^{-\lambda_1 t} dt - \frac{e^{\lambda_2 t}}{L(\lambda_1 - \lambda_2)} \int_0^t f(t)e^{-\lambda_2 t} dt \]

(3)

When \(R^2/(4L^2) = 1/(LC) \), then \(\lambda_1 = \lambda_2 = -R/(2L) = -1/(LC) \)
\[q = (C'_1 + C'_2 t)e^{\lambda t} + \frac{e^{\lambda t}}{L} \left[t \int_0^t f(t)e^{-\lambda t} dt - \int_0^t tf(t)e^{-\lambda t} dt \right] \]

(4)

If \(q = q_0 \) and \(i = i_0 \) when \(t = 0 \), then we have, putting \(t = 0 \) in (3) and its derivative,
\[q_0 = C_1 + C_2 \quad \text{and} \quad \dot{i}_0 = \lambda_1 C_1 + \lambda_2 C_2 \]
\[C_1 = \frac{\lambda_2 q_0 - i_0}{\lambda_2 - \lambda_1} \quad \text{and} \quad C_2 = \frac{\lambda_1 q_0 - i_0}{\lambda_1 - \lambda_2} \]

(5)

In case there is critical damping, we have, from (4),
\[C'_1 = q_0 \quad \text{and} \quad C'_2 = i_0 - \lambda q_0 \]

(6)

For a specific example, let us take the pulse shown in Fig. 9.17 where
\[f(t) = \frac{E_0 t}{T_0} \]

(7)

Fig. 9.17. and \(q_0 = i_0 = 0 \) when \(t = 0 \). This pulse is sent into a critically damped circuit where (4) and (6) apply, so that \(C'_1 = C'_2 = 0 \). Then, from (4),
\[q = \frac{E_0}{LT_0} e^{\lambda t} \left(t \int_0^t e^{-\lambda t} dt - \int_0^t t e^{-\lambda t} dt \right) \]

(8)

Using Eq. 567.1 and 567.2 or Eq. 402 and 403 gives
\[q = \frac{4LE_0}{R^2T_0} \left[t - \frac{4L}{R} + \left(t + \frac{4L}{R} \right) e^{-\frac{Rt}{2L}} \right] \]

(9)
\[i = \frac{dq}{dt} = \frac{4LE_0}{R^2T_0} \left[1 - \left(1 + \frac{R}{2L}t \right) e^{-\frac{Rt}{2L}} \right] \]

(10)

This gives \(i \) and \(q \) in the interval \(0 < t < T_0 \). The solutions in the interval \(T_0 < t < \infty \) are given by 9.02 (7) to be
\[q = e^{-\frac{Rt}{2L}}(A + Bt) \]
\[i = e^{-\frac{Rt}{2L}} \left(-\frac{AR}{2L} \right) + B \left(1 - \frac{Rt}{2L} \right) \]
If \(i = i_1 \) and \(q = q_1 \) when \(t = T_0 \), these become

\[
q = e^{-\frac{R(t-T_0)}{2L}} \left[q_1 + \left(\frac{Rq_1}{2L} + i_1 \right) (t - T_0) \right]
\]

(11)

\[
i = e^{-\frac{R(t-T_0)}{2L}} \left[i_1 - \frac{R}{2L} \left(\frac{Rq_1}{2L} + i_1 \right) (t - T_0) \right]
\]

(12)

The values of \(i_1 \) and \(q_1 \) to be put in (11) and (12) are obtained from (9) and (10) by setting \(t = T_0 \). The charge and current when \(T_0 < t < \infty \) are then given by (11) and (12).

Problems

Problems marked C in the following are taken from the Cambridge examination questions, as reprinted by Jeans, by permission of the Cambridge University Press.

1. The capacitance \(C_2 \) and inductance \(L_2 \) are connected in parallel, and this group is then placed in series with \(C_1 \), \(L_1 \) and a switch. Initially, \(C_1 \) has a charge \(Q \). Show that at any time after closing the switch its charge is

\[
Q(p_1^2 - p_2^2) - \left(L_1^{-1}C_1^{-1} - p_1^2 \right) \cos pt - \left(L_1^{-1}C_1^{-1} - p_1^2 \right) \cos p2t
\]

where \(p_1 = (A + B)^\frac{1}{2} \) and \(p_2 = (A - B)^\frac{1}{2} \) and

\[
A = \frac{L_1C_1 + L_1C_2 + L_2C_2}{2L_1L_2C_1C_2}, \quad B = \frac{[L_1C_1 + L_2C_2]^2 - 4L_1L_2C_1C_2]}{2L_1L_2C_1C_2}\]

2. An electromagnet has an inductance of 1 henry and carries a steady current of 10 amp. Neglecting the resistance of the magnet, find how large a capacitor must be connected across it to prevent puncturing the insulation, which will stand 10,000 volts, when the circuit is suddenly broken. Using this capacitor, show that the actual electromotance across the magnet if its resistance is 1 ohm is 9992 volts, approximately.

3. An inductance \(L \), a capacitance \(C \), and a battery of resistance \(R \) and electromotance \(\mathcal{E} \) are connected in parallel. At a time \(t \) after the battery connection is made, show that the current through it is \((\mathcal{E}/R)[1 - (\omega RC)^{-1}]e^{-\frac{2\pi t}{RC}}\sin \omega t\) and that the current through the inductor is \((\mathcal{E}/R)[1 - e^{-\frac{2\pi t}{RC}}(2\omega RC)^{-1}\sin \omega t + \cos \omega t]\) where \(\omega = [(LC)^{-1} - (4\pi RC)^{-1}]^\frac{1}{2} \). Write out the solution when \(\omega \) is zero or imaginary.

4. After a steady state has been reached in the circuit in the last problem, the battery connection is broken. Show that the charge on the capacitor at a time \(t \) after the break is

\[
(LC)^{-1}R^{-1}\mathcal{E} \sin [(LC)^{-1}t]
\]

5. Two circuits are coupled with a mutual inductance \(M \). One contains \(\mathcal{E} \), \(R \), \(L_1 \) and a switch in series, and the other has \(L_2 \) and \(C \) in series. Show that the differential equation satisfied by the current in the first circuit is

\[
C(L_2R_1 + M^2)t + CL_2R_1 + L_1^2 + Ri = \mathcal{E}
\]

and that the equation for the second current is similar with the right side zero. For what values of the circuit constants are oscillations possible?

6. If, after a steady state is reached, the battery circuit in the previous problem could be suddenly broken, show that the current in the other circuit at a time \(t \) after the break would be \([M\mathcal{E}/(L_2R)](L_1C)^{-1}t\).
7. A circuit consists of two equal inductances L and L and a capacitance C in series. In parallel with the capacitance is a circuit having a battery E of resistance R. Coupled to each of the inductances by a mutual inductance M is a circuit having inductance L and capacitance C in series. After a steady state, the battery connection is broken. Show that the current in the central circuit is

$$\frac{1}{2} E R^{-1} \{ (\cos p_1 t + \cos p_2 t) + (L^2 + 8M^2)^{-1} L (\cos p_1 t - \cos p_2 t) \}$$

whereas in each of the coupled circuits it is

$$\mathcal{E} M R^{-1} (L^2 + 8M^2)^{-1} (\cos p_1 t - \cos p_2 t)$$

where

$$p_{1,2}^2 = \left[3L \mp (L^2 + 8M^2)^{\frac{3}{2}} [4C(L^2 - M^2)]^{-1} \right]$$

8. A circuit consisting of a battery \mathcal{E} in series with a switch and a capacitor C_2 is connected in series with a resistance R and capacitor C_1 in parallel. The capacitors are initially uncharged, and the resistance of the battery is negligible. Show that the charge on C_2 at a time t after closing the switch is $C_2 \mathcal{E} [1 - C_2 (C_1 + C_2)^{-1} e^{-mt}]$ where $m = [R(C_1 + C_2)]^{-1}$, and find the charge on C_1.

9. A large electromagnet of inductance L carries a steady current I. The current is to be broken by a switch that opens in $\frac{1}{2} t_0$ sec at a uniform rate to a final gap of 1 cm. The spark-over field for this switch is 1500 volts per millimeter. Show that the capacitance C of a capacitor placed across the switch must have the value

$$C \geq \frac{I^2 L}{(15,000)^2}$$

or $C \geq I/(150,000)$, whichever is the greater, in order to prevent sparking at any time.

10. Three branches connect two points. One branch contains L_1 and R_1, another L_2 and R_2, and the third \mathcal{E}, R, and a switch. Show that the current through the battery at a time t after closing the switch is

$$\mathcal{E} \left(A + e^{-\alpha t} \left(-A \cosh \omega t + \frac{L_1 + L_2}{\omega L_1 L_2} - \frac{\alpha A}{\omega} \sinh \omega t \right) \right)$$

where

$$A = \frac{R_1 + R_2}{R_1 R_2 + R(R_1 + R_2)}, \quad \alpha, \beta = \frac{R + R_1}{2L_1} \pm \frac{R + R_2}{2L_2},$$

$$\omega = \left[\beta^2 + \frac{R_2}{L_1 L_2} \right]^{\frac{1}{2}}.$$

11. Three branches connect two points, the first contains a capacitance C_1 and a switch, the second C_2 and a rectifier K, and the third an inductance L. Initially, C_1 has a charge Q_0, and the rectifier is so connected that at the instant $t = 0$ of closing the switch C_2 cannot share it. Show that the current in L in the intervals shown is

$$0 < t < \frac{1}{2} \pi (LC_1)^{\frac{1}{2}}, \quad i = Q_0 (LC_1)^{-\frac{1}{2}} \sin \left((LC_1)^{-\frac{1}{2}} t \right)$$

$$\frac{1}{2} \pi (LC_1)^{\frac{1}{2}} < t \leq \frac{3}{2} \pi (LC_1)^{\frac{1}{2}}, \quad i = Q_0 (LC_1)^{-\frac{1}{2}} \sin \left((LC_1)^{-\frac{1}{2}} t \right) + \frac{3}{2} \pi \left([(C_1 + C_2)^{-1} - 1] \right)$$

$$i = Q_0 [L(C_1 + C_2)]^{-\frac{1}{2}} \sin \left((LC_1 + C_2)^{-\frac{1}{2}} t \right) + \frac{3}{2} \pi \left(1 - [(C_1 + C_2)/C_1] \right)$$

12C. Two circuits, resistances R_1 and R_2, coefficients of induction L, M, N, lie near each other, and an electromotive force E is switched into one of them. Show that the total quantity of electricity that traverses the other is $EM/R_1 R_2$.

13C. A condenser, capacity C, charge Q, is discharged through a circuit of resistance R, there being another circuit of resistance S in the field. If $LN = M^2$, show that there will be initial currents
\[
\frac{-NQ}{C(RN + SL)} \quad \text{and} \quad \frac{MQ}{C(RN + SL)}
\]
and find the currents at any time.

14C. Two insulated wires \(A, B \) of the same resistance have the same coefficient of self-induction \(L \), whereas that of mutual induction is slightly less than \(L \). The ends of \(B \) are connected by a wire of small resistance and those of \(A \) by a battery of small resistance, and at the end of a time \(t \) current \(i \) is passing through \(A \). Prove that except when \(t \) is very small, \(i = \frac{1}{2}(i_0 + i') \), approximately, where \(i_0 \) is the permanent current in \(A \), and \(i' \) is the current in each after a time \(t \), when the ends of both are connected in multiple arc by a battery.

15C. Two electrified conductors whose coefficients of electrostatic capacity are \(\gamma_1, \gamma_2, \gamma \) are connected through a coil of resistance \(R \) and large inductance \(L \). Verify that the frequency of the electric oscillations thus established is

\[
\frac{1}{2\pi} \left(\frac{2\gamma + \gamma_1 + \gamma_2}{\gamma_1\gamma_2 - \gamma^2} \cdot \frac{1}{L} - \frac{R^2}{4L^2} \right)^{\frac{1}{2}}
\]

16C. Two coils (resistances \(R, S \); coefficients of induction \(L, M, N \) are arranged in parallel in such positions that when a steady current is divided between the two, the resultant magnetic force vanishes at a certain suspended galvanometer needle. Prove that if the currents are suddenly started by completing a circuit including the coils, then the initial magnetic force on the needle will not in general vanish, but that there will be a "throw" of the needle, equal to that which would be produced by the steady (final) current in the first wire flowing through that wire for a time interval

\[
\frac{M - L}{R} - \frac{M - N}{S}
\]

17C. A condenser of capacity \(C \) is discharged through two circuits, one of resistance \(R \) and self-induction \(L \), and the other of resistance \(R' \) and containing a condenser of capacity \(C' \). Prove that if \(Q \) is the charge on the condenser at any time

\[
LR' \frac{dQ}{dt^2} + \left(\frac{L}{R} + \frac{L}{C} + RR' \right) \frac{dQ}{dt} + \left(\frac{R}{C} + \frac{R'}{C'} \right) \frac{dQ}{dt} + \frac{Q}{CC'} = 0
\]

18C. A Wheatstone-bridge arrangement is used to compare the coefficient of mutual induction \(M \) of two coils with the coefficient of self-induction \(L \) of a third coil. One of the coils of the pair is placed in the battery circuit \(AC \), the other is connected to \(B, D \) as a shunt to the (ballistic) galvanometer, and the third coil is placed in \(AD \). The bridge is first balanced for steady currents, the resistances of \(AB, BC, CD, DA \) being then \(R_1, R_2, R_3, R_4 \); the resistance of the shunt is altered till there is no deflection of the galvanometer needle at make and break of the battery circuit, and the total resistance of the shunt is then \(R \). Prove that \(LRR_1 = M(R_1 + R_4)^2 \).

19. Two capacitors of capacitance \(C_1 \) and \(C_2 \) are connected in series with an inductance \(L \). Initially, the charge on \(C_1 \) is \(Q \), and that on \(C_2 \) is zero. A switch between them is now closed. Show that the current through the inductor at any time is

\[
I = Q \left[\frac{C_2}{LC_1(C_1 + C_2)} \right]^{\frac{1}{2}} \sin \left[\left(\frac{C_1 + C_2}{LC_1C_2} \right)^{\frac{1}{2}} t \right]
\]

Show that if \(C_1 > C_2 \), the sign of the charge on the first capacitor is never reversed.

20. Two points are connected by three branches two of which contain both a capacitance \(C \) and an inductance \(L \), and the third only a capacitance \(C \). Show that the angular frequencies of oscillation of the network are \((LC)^{-\frac{1}{2}}\) and \(3^{\frac{1}{2}}(LC)^{-\frac{1}{2}}\).
21. It is desired to produce a field between a pair of plates that increases linearly to \(F_0 \) in a time \(T \), and then falls linearly to 0 in the same time. There is a resistance \(R \) in the circuit, and the charge on the capacitor with the field \(F \) is \(Q \). Its capacitance is \(C \). Find the form of the single electromotive pulse that must be supplied.

22. Each side of an equilateral triangular circuit contains a capacitance \(C \), and each vertex is connected to a common central point by an inductance \(L \). Show that the possible oscillations of this circuit have the period
\[
T = 2\pi(3LC)^{\frac{1}{2}}.
\]

23. Two similar capacitors of capacitance \(C \) are connected in series with a solenoid of inductance \(L \). Show that connecting the midpoint of the solenoid to a point between the capacitors introduces a new possible angular frequency \(\omega_2 \) given by
\[
(1 - 2\omega_1^2MC)^{-1}\omega_1
\]
where \(\omega_1 \) was the original angular frequency and \(M \) the mutual inductance between the two halves of the solenoid.

References

The author has found the following books useful for this chapter:

CHAPTER X

ALTERNATING CURRENTS

10.00. Harmonic Electromotances. The Particular Integral.—When all the electromotances in a network are periodic functions of the time, they produce what is known as an alternating current. By far the most common and important of these functions is the harmonic or sinusoidal one. Such a type of electromotance would be that produced in a plane circular loop of wire of radius a by rotating it with constant angular velocity \(\omega \) about a diameter that is at right angles to a uniform magnetic field, \(B \). In this case, the flux through the loop when its plane makes an angle \(\alpha = \omega t \) with the field is \(N = \pi a^2 B \sin \omega t \). From 8.00 (1), the electromotance generated is

\[
\mathcal{E} = -\frac{dN}{dt} = -\pi a^2 B \omega \cos \omega t = \mathcal{E}_0 \cos \omega t
\]

(1)

If the field or the angular velocity was not quite uniform, \(\mathcal{E} \) might not be of this simple form; but, if these variations are periodic, it can still be expressed as a superposition of such simple terms each of a different frequency. Such cases will be treated at the end of this chapter.

The differential equations, in which \(t \) is the independent variable, will now contain, instead of a constant term, one of the form

\[
\mathcal{E} = \mathcal{E}_0 \cos(\omega t + \phi) = A \cos \omega t + B \sin \omega t
\]

(2)

where \(A = \mathcal{E}_0 \cos \phi \), \(B = -\mathcal{E}_0 \sin \phi \). The complete solution of such an equation consists of the complementary function, which is the solution obtained by equating this term to zero, plus the particular integral or steady-state solution. The former, or transient solution, has been fully treated in the last chapter in which we found that, when resistance is present, every term contains factors involving time as a negative exponent. After sufficient time has elapsed, this part of the complete solution becomes negligible and leaves only the particular integral that is the subject of the present chapter.

10.01. Circuit with Resistance, Capacitance, and Inductance.—The most general form that a branch of a network, not involving mutual inductance, can take is shown in Fig. 9.02 which has \(R \), \(L \), and \(C \) in series. For simplicity, we shall choose \(t = 0 \) when the sinusoidal electromotance is a maximum. Then \(\phi = 0 \) in 10.00 (2). Kirchhoff’s law for this circuit is

355
\[L\ddot{q} + R\dot{q} + \frac{q}{C} = \mathcal{E}_0 e^{j\omega t} \text{ (real part)} \]
\((1) \)

After the transient effects discussed in 9.02 have died out, we should expect the current in this circuit to have the same periodicity as the electromotance. To find the particular integral, we are led, therefore, to try writing the current in the form

\[i = ie^{j\omega t} \text{ (real part)} = Ie^{j\omega t} \text{ (real part)} = I_0 e^{j(\omega t + \psi)} \text{ (real part)} \]
\((2) \)

\(I \) will be, in general, a complex quantity called a phasor which contains both the amplitude \(I_0 \) and the phase \(\psi \), of the resultant current. If we write \(I = I' + jI'' \) where \(I' \) and \(I'' \) are real, then

\[(I'^2 + I''^2)^{1/2} = I_0, \quad \tan \psi = \frac{I''}{I'} \]

Remembering that \(i = \dot{q} \) and substituting for \(q \) in (1), we have, after canceling out \(e^{j\omega t} \),

\[\left[R + j(\omega L - \frac{1}{\omega C}) \right] I = \mathcal{E}_0 \]
\((3) \)

or

\[I = I_0 e^{j\psi} = \frac{\mathcal{E}_0}{R + j(\omega L - 1/(\omega C))} = \frac{\mathcal{E}_0}{Z} \]
\((4) \)

This equation is exactly like Ohm's law [6.02 (1)] in form, where the quantity \(Z \), known as the complex impedance of the circuit, replaces the resistance, the complex current amplitude (see footnote Art. 4.08) \(I \), replaces \(I \), and the amplitude \(\mathcal{E}_0 \) of the sinusoidal electromotance replaces \(\mathcal{E} \). By using these symbols, the whole theory of networks, developed in Chap. VI on the basis of Ohm's law and Kirchhoff's law, can be applied to a-c networks in the steady state. The amplitude of the current can always be found by taking the square root of the product of \(I \) by its conjugate phasor \(I^* \), since \(II^* = I'^2 + I''^2 \). We have already discussed the manipulation of such complex quantities in Chap. IV. In the particular case under discussion, we have

\[I_0 = I_0(e^{j\psi}e^{-j\psi})^{1/2} = (II^*)^{1/2} = \mathcal{E}_0 \left\{ \left[R + j(\omega L - \frac{1}{\omega C}) \right] \left[R - j(\omega L - \frac{1}{\omega C}) \right] \right\}^{-1/2} \]

\[= \mathcal{E}_0 \left[R^2 + (\omega L - \frac{1}{\omega C})^2 \right]^{-1/2} = \mathcal{E}_0 (R^2 + X^2)^{-1} = \frac{\mathcal{E}_0}{Z} \]
\((5) \)

\(Z \) is called the impedance of the circuit and \(X = \omega L - 1/(\omega C) \) is called the reactance, the first term being the inductive reactance, and the second term the capacitive reactance. Both are expressed in the same units as \(R \). If we multiply the numerator and denominator of (4) by \(Z^* \), the denominator becomes real so that \(I''/I' \) is the ratio of the imaginary
part to the real part of Z^*. This gives

$$\tan \psi = \frac{X}{R} = -\frac{\omega L - 1/(\omega C)}{R} = \frac{1 - \omega^2LC}{\omega RC}$$

(6)

From (2), the current then becomes

$$i = \frac{E_0}{Z} \cos (\omega t + \psi)$$

(7)

We see from (1) that short-circuiting the capacitor is equivalent to setting $C = \infty$. Thus, when inductance and resistance only are present, we have

$$i = \frac{E_0}{(R^2 + \omega^2L^2)^{1/2}} \cos \left(\omega t - \tan^{-1} \frac{\omega L}{R}\right)$$

(8)

In this case, the current is said to lag behind the electromotance. We also see from (1) that the effect of short-circuiting the inductor is to make $L = 0$. Therefore, when resistance and capacitance only are present we have

$$i = \frac{\omega CE_0}{(1 + \omega^2RC^2)^{1/2}} \cos \left(\omega t + \tan^{-1} \frac{1}{\omega RC}\right)$$

(9)

In this case, the current is said to lead the electromotance. If inductance only is present, set $R = 0$ in (8) and since $\frac{1}{2} \pi = \tan^{-1} \infty$ we have

$$i = \frac{E_0}{\omega L} \cos \left(\omega t - \frac{\pi}{2}\right)$$

(10)

In this case, the current lags by 90°. If capacitance only is present, set $R = 0$ in (9) and we have

$$i = \omega CE_0 \cos \left(\omega t + \frac{\pi}{2}\right)$$

(11)

In this case, the current leads by 90°.

10.02. Power, Root-mean-square Quantities and Resonance.—The power being expended in the circuit at any instant is given, as in 6.03 (1), by

$$P = iE = \frac{E_0^2}{Z} \cos \omega t \cos (\omega t + \psi)$$

$$= \frac{E_0^2}{Z} (\cos^2 \omega t \cos \psi - \cos \omega t \sin \omega t \sin \psi)$$

$$= \frac{E_0^2}{2Z} (\cos \psi + \cos 2\omega t \cos \psi - \sin 2\omega t \sin \psi)$$

(1)
part of the time, it is being fed back into the generator from the circuit. If we average the power given by (1) over any whole number of cycles, the \(\cos 2\omega t \) and \(\sin 2\omega t \) terms drop out and only the constant term remains, giving

\[
\bar{P} = \frac{E^* \cos \psi}{2\{R^2 + [\omega L - 1/(\omega C)]^2\}} = \frac{1}{2} \frac{E^*}{Z^*} \text{ (real part)} = \frac{i}{2} E^* \text{ (real part)} \quad (2)
\]

where \(E^* \) and \(Z^* \) are the conjugate phasors of \(E \) and \(Z \), respectively.

The root-mean-square or rms value of any a-c quantity is the square root of the value, averaged over 1 cycle, of the square of that quantity. From \(Dw \) 858.4 or \(Pc \) 489, the average value of the square of the sine or cosine over a period is one-half. Thus, the rms values of the current and electromotance are, respectively,

\[
i_\epsilon = (2)^{-1} I_0 \quad \text{and} \quad E_\epsilon = (2)^{-1} E_0 \quad (3)
\]

Equation 10.01 (5) may now be written

\[
i_\epsilon = \frac{E_\epsilon}{Z} \quad (4)
\]

The reason for using these quantities is immediately apparent if we write (2) in terms of them, using (3) and (4), for we then have

\[
\bar{P} = i_\epsilon E_\epsilon \cos \psi = i_\epsilon^2 Z \cos \psi = \frac{E_\epsilon^2}{Z} \cos \psi = i_\epsilon^2 R = E_\epsilon i_\epsilon^* \text{ (real part)} \quad (5)
\]

We see that if \(\psi = 0 \) these formulas become identical with the corresponding d-c formulas of 6.03. For this reason, \(i_\epsilon \) and \(E_\epsilon \) are also called the effective current and electromotance. The quantity \(\cos \psi \) is called the power factor and may be expressed in terms of the circuit constants, by \(Dw \) 400.12 or \(Pc \) 572 and 10.01 (6), giving

\[
\cos \psi = \frac{\omega RC}{[\omega^2 R^2 C^2 + (1 - \omega^2 L C^2)]^{1/2}} \quad (6)
\]

The quantity \(i_\epsilon \sin \psi \) is called the idle or wattless component of the current since it contributes nothing to the average power.

We notice from 10.01 (5) that \(Z \) is a minimum, and hence the current is a maximum, when \(\omega^2 = (LC)^{-1} \). With this frequency, the circuit is said to be in resonance. We see from 9.02 (3) that, if the resistance is small, this equals, approximately, the natural frequency of the circuit. It is possible, of course, to have resonance when the resistance is so large that the circuit is not oscillatory. When the circuit is in resonance, we see from (2) and (6) that the power factor is unity and the power expended in the circuit is a maximum. If we make a circuit with negligible resistance and capacitance but large inductance, we see from 10.01 (10) that
the current approaches zero but at the same time \(\psi \to -\frac{1}{2}\pi \) so \(\cos \psi \to 0 \). Therefore, without any loss of power, we can prevent alternating current from passing through this circuit although direct current can pass. Such a circuit is called a choke. On the other hand, by putting a large capacitor in a circuit we prevent the passage of direct current, but by 10.01 (11), the alternating current is passed without loss of power since \(\psi = \frac{1}{2}\pi \) again.

10.03. **Graphical Representations. Phasor Diagram.**—In 4.08, we saw that the value of any complex number \(z = x + jy \) may be represented by a point in the complex plane. In polar coordinates, this may be written \(re^{j\theta} \), where \(\theta \) is the angle between the real axis and the radius vector of length \(r \). This is identical in form with the expressions used in 10.01 (1) and (2) to represent steady-state current and electromotance so the latter also may be represented in polar coordinates in the same way. These two phasors, whose magnitudes are \(I_0 \) and \(E_0 \) and which make the constant angle \(\psi \) with each other, rotate with the uniform angular velocity \(\omega \) about the origin. The values of \(i \) and \(E \), at any time \(t \), are the projections, on the real axis \(t = 0 \) of the phasors at that instant. The phasor \(\mathcal{E} \) is the total electromotance around the circuit and is the sum of three components: first the electromotance \(j\omega L I_0 \) in the inductor which, by 10.01 (10), leads the current by 90°; second, the \(I R \) component which is in phase with the current; third, the electromotance \(-jI_0/(\omega C) \) in the capacitor which, by 10.01 (11), lags 90° behind the current. A phasor diagram of the electromotance and its components appears at the left in Fig. 10.03. The instantaneous values of current, electromotance, and
power are plotted as a function of time, in the center of the figure. At the right is shown a phasor diagram of the components of the power.

10.04. Impedances in Series and Parallel.—As already mentioned in 10.01, the use of the complex notation enables us to set up a law for alternating currents identical in form with Ohm's law for direct currents. This, combined with Kirchhoff's laws, enables us to develop the same rules, in the same way, for impedances in series and parallel that we did for resistances in 6.04. Thus, for the impedance \(Z \) of a circuit consisting of several impedances, \(Z_1, Z_2, \ldots, Z_n \) in series, we have

\[
Z = Z_1 + Z_2 + \cdots + Z_n
\]

(1)

Since these are phasor quantities, we must take the vector sum instead of the algebraic sum. For impedances \(Z_1, Z_2, \ldots, Z_n \) in parallel, we have

\[
\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \cdots + \frac{1}{Z_n}
\]

(2)

Since the reciprocal of a complex number \(re^{j\theta} \) is \(e^{-j\theta}/r \), we must draw in our phasor diagram, for impedances in parallel, phasors whose magnitudes are the reciprocals of the magnitudes of \(Z_1, Z_2, \ldots, Z_n \) and whose arguments are opposite in sign. We take the vector sum of these, and the phasor, whose magnitude is the reciprocal of this and whose argument is of opposite sign, is \(Z \). Figure 10.04 shows, at the left, how the impedance \(Z_s \), resulting from connecting \(Z_1, Z_2, \) and \(Z_3 \) in series, is obtained by adding phasors and, at the right, how the impedance \(Z_p \), resulting from connecting the same impedances \(Z_1, Z_2, \) and \(Z_3 \) in parallel, is obtained by taking the reciprocal of the sum of the reciprocals. The reciprocal of impedance is often called admittance. The scale is shown by the circles which are of unit radius. It should be noted that it would be
possible, in the parallel arrangement, to have the sum of the reciprocals of the finite impedances Z_n^{-1} equal to zero. In this case, the resultant impedance Z_p would be infinite and such a circuit would pass no current of this frequency.

10.05. Transmission of Power.—Let us suppose that our source of power generates an electromotance $E_0e^{j\omega t}$, that its impedance is Z_s, and that the load has an impedance Z_L. The current in the circuit is then, from 10.01 (5) and 10.04 (1),

$$i = \frac{E}{Z_s + Z_L} = \frac{E}{(R_s + jX_s) + (R_L + jX_L)}$$

(1)

and corresponding to 10.02 (4), we have

$$i_e = \frac{E_0}{[(R_s + R_L)^2 + (X_s + X_L)^2]^\frac{1}{2}}$$

(2)

With the aid of 10.02 (6), we find for the average power consumed by the load

$$\bar{P}_L = i_e^2Z_L \cos \psi = \frac{R_LE_0^2}{(R_s + R_L)^2 + (X_s + X_L)^2}$$

(3)

To find for what value Z_L the load will absorb maximum power, set both $\partial P/\partial R_L$ and $\partial P/\partial X_L$ equal to zero, giving

$$R_L^2 = R_s^2 + (X_s + X_L)^2$$

(4)

and

$$X_s = -X_L$$

(5)

Substituting (5) in (4) gives

$$R_L = R_s$$

(6)

The condition for maximum power transmission is therefore that Z_L will be the conjugate phasor of Z_s.

When this condition is met, we have

$$\bar{P}_L = \frac{E_0^2}{4R_L}$$

(7)

10.06. Impedance Bridge.—Just as the Wheatstone bridge (Fig. 6.05) is used to compare resistances, so the impedance bridge (Fig. 10.06) is used to compare impedances. If the current fed into the bridge is $I_0 \cos \omega t$, the current through the detector Z_d is, substituting Z for R in 6.05 (4), the real part of

$$i_1 = \frac{Z_1Z_4 - Z_2Z_3}{Z_d(Z_1 + Z_2 + Z_3 + Z_4) + (Z_1 + Z_3)(Z_2 + Z_4)}I_0e^{j\omega t}$$

(1)
If this current is to be zero, we have
\[Z_1 Z_4 = Z_2 Z_3 \] (2)

This now gives us two conditions for balance instead of one, for the equation must be satisfied by both the real and the imaginary parts independently. Two common bridges of this type are

The capacitance bridge
\[Z_1 = -\frac{j}{\omega C_1}, \quad Z_3 = -\frac{j}{\omega C_3}, \quad Z_2 = R_2, \quad \text{and} \quad Z_4 = R_4 \]

which give, for balance,
\[C_1 R_2 = C_3 R_4 \] (3)

The inductance bridge
\[Z_1 = R_1 + j \omega L_1, \quad Z_3 = R_3 + j \omega L_3, \quad Z_2 = R_2, \quad \text{and} \quad Z_4 = R_4 \]

which give, for balance,
\[R_1 R_4 = R_2 R_3 \quad \text{and} \quad L_1 R_4 = L_2 R_2 \] (4)

10.07. General Alternating-current Network.—The solution of the general network can be carried out exactly as in 6.08 and 6.09, provided that we can define quantities of the form \(Z_{pq} \) in such a way that they relate the complex electromotances and the circulating currents in the same way that \(R_{pq} \) does the direct currents and electromotances. In 9.06 (2), (3), (4), and (5), we have defined the mutual parameters \(L_{rs}, R_{rs}, \) and \(S_{rs} \) and the mesh parameters \(L_{rr}, R_{rr}, \) and \(S_{rr} \) in such a way that, in a steady state, when all quantities have the same periodicity, 9.06 (6) may be written
\[\left(j \omega L_{rr} + R_{rr} - \frac{j S_{rr}}{\omega} \right) i_r = Z_{rr} i_r = \mathcal{E}_{rr} \] (1)

and 9.06 (7) may be written
\[\pm \left(j \omega L_{rs} + R_{rs} - \frac{j S_{rs}}{\omega} \right) i_s = \pm Z_{rs} i_s = \mathcal{E}_{rs} \] (2)

We can also define \(Z_r \) by the relation
\[Z_{rr} = Z_r + Z_{1r} + Z_{2r} + \cdots + Z_{nr} \] (2.1)

\(Z_r \) therefore includes the mutual inductance terms appearing in \(L_{rs}. \)

The sum of the electromotances \(\mathcal{E}_1, \mathcal{E}_2, \ldots, \mathcal{E}_n \) around the circuits traversed by \(i_1, i_2, \ldots, i_n \) may be written
\[Z_{11}^2 i_1 + Z_{12} i_2 + \cdots + Z_{1n} i_n = \mathcal{E}_1 \]
\[\pm Z_{21} i_1 + Z_{22} i_2 + \cdots + Z_{2n} i_n = \mathcal{E}_2 \]
\[\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \]
\[\pm Z_{n1} i_1 + Z_{n2} i_2 + \cdots + Z_{nn} i_n = \mathcal{E}_n \] (3)
These equations are identical in form with 6.08 (3), the signs being determined in the same way by the directions chosen for the circulating currents. The solutions will also be of the same form so that from 6.08 (7) we conclude that the current i_q in one branch when the only source of electromotance in the network is E_p in the branch traversed only by i_p is given, in both amplitude and phase, by the relation

$$i_q = E_p \Delta_{pq} / \Delta$$ \hspace{1cm} (4)

where Δ_{pq} is the co-factor of Z_{pq} in the determinant

$$\Delta = \begin{vmatrix} Z_{11} & \cdots & \pm Z_{1n} \\ \vdots & \ddots & \vdots \\
\pm Z_{n1} & \cdots & Z_{nn} \end{vmatrix}$$ \hspace{1cm} (5)

We can also draw the conclusion that the steady-state current produced in one branch of a network by inserting an alternating electromotance in a second branch equals, in both amplitude and phase, the current produced in the second branch when the same source of electromotance is inserted in the first. We see, by 6.08 (8), that the ratio of any two steady-state currents in the network is given by

$$\frac{i_q}{i_p} = \frac{\Delta_{rq}}{\Delta_{rp}}$$

when the source of electromotance is in the rth branch.

Thévenin's theorem for alternating currents states that if the open-circuit potential across two terminals A and B of a network is E_0 and if, at the same frequency, the impedance of the network between A and B, when all electromotance sources have been replaced by their internal impedances, is Z, then the current which flows through a short-circuiting wire of zero impedance, connected between A and B, is i where

$$i = \frac{E_0}{Z}$$ \hspace{1cm} (5.1)

This is proved from (4) in exactly the same way as 6.08 (8.1) was proved from 6.08 (7). This enables us to connect A and B into any other circuit as if they were the terminals of a generator of electromotance E_0 and internal impedance Z.

In most cases, we shall find it possible to draw the circulating currents so as to satisfy the following conditions: *viz.*, that at least one branch is traversed by only one current i_i; that in branches in which only two currents circulate these are oppositely directed; and, that not more than two currents traverse any one branch. All signs are now taken care of, and we can use 6.08 (9), so that we have the following expression in which,
in Δ, all mesh impedances Z_{pp} are taken positive and all mutual impedances Z_{pq} are taken negative. We number the two currents circulating in the branch in which the electromotance is placed i_2 and i_3.

$$i_1 = \frac{\mathbf{E}_{z_2}}{\Delta}$$

(6)

If several sources of electromotance are present, we superimpose the results obtained by treating each one separately, paying proper attention to the phase of each.

If the complete solution, taking account of the transient effects of establishing the currents, is desired, we must add these steady-state solutions to the transient solutions obtained in 9.07 (10) and, after so doing, determine the constants to fit the initial conditions.

10.08. Conjugate Branches in Impedance Network. Anderson Bridge.

Two branches in a network are said to be conjugate if a source of electromotance when placed in one produces no current in the other, and vice versa. If the branches in question are traversed only by the currents i_p and i_q, then this condition is from 10.07 (4),

$$\Delta_{pq} = 0$$

(1)

If the currents are drawn so that 10.07 (6) applies, then we have, writing Δ_{12} for the determinant in this equation, the condition for conjugacy to be

$$\Delta_{12} = 0$$

(2)

Let us use this formula to find the conditions for balance of the Anderson bridge for comparing a capacitance and a self-inductance shown in Fig. 10.08. The impedances appearing in 10.07 (6) are $Z_{12} = R_3, Z_{13} = 0, Z_{14} = R_4, Z_2 = R_1 + j\omega L, Z_3 = R_2, Z_4 = 0, Z_{42} = R, Z_{43} = -j/\omega C$, and $Z_{44} = R + R_4 - j/\omega C$. Writing out (2) gives, omitting zero terms,

$$-Z_{12}Z_3Z_{44} + Z_{14}Z_2Z_{43} - Z_{11}Z_3Z_{42} = 0$$

for the condition of balance. The real part of this gives

$$-R_2R_3(R + R_4) + \frac{LR_4}{C} - R_4R_2R = 0$$

or

$$L = CR_2\left[\frac{(R + R_4)R_3}{R_4} + R\right]$$

(3)
and the imaginary part gives
\[\frac{R_2 R_2}{\omega C} - \frac{R_1 R_4}{\omega C} = 0 \]
or
\[R_1 R_4 = R_3 R_2 \quad (4) \]
The balance condition (4) can be obtained, by using direct current, as with an ordinary Wheatstone bridge, and then (3) can be satisfied by using alternating current and adjusting \(R \).

10.09. Forced Oscillations in Inductively Coupled Circuits.—Let us find the currents \(i_1 \) and \(i_2 \) in the circuits shown in Fig. 10.09. In this case, from 10.07 (1) and (2) and from 9.06 (2), (3), (4), and (5), we have
\[Z_{11} = R_1 + j \left(\omega L_1 - \frac{1}{\omega C_1} \right) = R_1 + jX_1 \]
\[Z_{12} = Z_{21} = j \omega M \]
\[Z_{22} = R_2 + j \left(\omega L_2 - \frac{1}{\omega C_2} \right) = R_2 + jX_2 \quad (1) \]
From 10.07 (4), we have for the currents
\[i_1 = \frac{Z_{22} E}{Z_{11} Z_{22} - Z_{12}^2} = \frac{(R_2 + jX_2) E_0}{D} \]
\[i_2 = \frac{-Z_{12} E}{Z_{11} Z_{22} - Z_{12}^2} = \frac{-j \omega M E_0}{D} \quad (2) \]
where
\[D = R_1 R_2 - X_1 X_2 + \omega^2 M^2 + j(R_1 X_2 + R_2 X_1) \quad (3) \]
Taking the real part of the product \(i_1 e^{i \omega t} \) as in 10.01 (2) gives
\[i_1 = \frac{(R_2^2 + X_2^2)^{1/2} E_0}{|D|} \cos (\omega t + \phi) \quad (4) \]
where, as in 10.01 (5),
\[|D| = [(R_1 R_2 - X_1 X_2 + \omega^2 M^2)^2 + (R_1 X_2 + R_2 X_1)^2]^{1/2} \quad (5) \]
and, as in 10.01 (6),
\[\tan \phi = -\frac{R_2 X_1 + X_2 (X_1 X_2 - \omega^2 M^2)}{R_1 X_2 + R_2 (R_1 R_2 + \omega^2 M^2)} \quad (6) \]
\[i_2 = \frac{\omega M E_0}{|D|} \cos (\omega t + \psi) \quad (7) \]
where
\[\tan \psi = +\frac{R_1 R_2 - X_1 X_2 + \omega^2 M^2}{R_1 X_2 + R_2 X_1} \quad (8) \]
From (2) or (6) and (8),

\[\tan (\psi - \phi) = \frac{R_2}{X_2} \] \hspace{1cm} (8.1)

It is of considerable interest to find what values of \(\omega \) give maximum or minimum amplitudes for \(i_1 \) and \(i_2 \). We shall sketch the rigorous method of doing this before taking up the more usual approximate methods. To put \(|D| \) in a more convenient form for differentiation, we compare (1) with 9.10 (1) and observe that if we substitute \(j\omega \) for \(p \) we have

\[j\omega Z_{11} = c_{11}, \quad j\omega Z_{12} = c_{12}, \quad j\omega Z_{22} = c_{22} \]

Thus, with the aid of 9.10 (2), we find

\[Z_{11}Z_{22} - Z_{12}^2 = -\frac{c_{11}c_{22} - c_{12}^2}{\omega^2} = D \]

\[= (\omega^4 - jA\omega^3 - B\omega^2 + jC\omega + D)\frac{L_1L_2 - M^2}{\omega^2} \]

Multiplying this by its conjugate complex and taking the square root give

\[|D| = \frac{L_1L_2 - M^2}{\omega^2} [\omega^8 + (A^2 - 2B)\omega^6 + (B^2 - 2AC + 2D)\omega^4 + (C^2 - 2BD)\omega^2 + D^2]^\frac{1}{2} \]

(9)

The determination of the maximum and minimum amplitudes of \(i_1 \) is difficult except by plotting the curve, but we can, without difficulty, differentiate the amplitude \(\omega M^2e_0/|D| \) of \(i_2 \) with respect to \(\omega \), set the result equal to zero, and obtain, in addition to \(\omega^2 = 0 \), the relation

\[\omega^8 - (B^2 - 2AC + 2D)\omega^4 - 2(C^2 - 2BD)\omega^2 - 3D^2 = 0 \] \hspace{1cm} (10)

This is a quartic equation in \(\omega^2 \) whose roots can be found by formulas of 9.10. To each positive real root, there corresponds a maximum or minimum of \(I_1 \). To find which it is, we can substitute in (9). This will also give the magnitudes.

We often determine the frequency of an alternating current by coupling with the circuit in which it flows a second circuit with adjustable known reactance and adjusting this until a maximum of current is obtained in it. This is called a wave meter. If \(R_1, L_1, C_1 \) and \(\omega \) are fixed, this maximum will occur, from (7), when

\[\frac{\partial}{\partial X_2} \left(\frac{1}{|D|} \right) = 0 \]

Solving the result for \(X_2^{(m)} \) gives

\[X_2^{(m)} = \frac{M^2\omega^2X_1}{R_1^2 + X_1^2} \] \hspace{1cm} (11)
This gives for i_2, from (7) and (5),

$$i_2^{(M)} = \frac{\omega M (R_1^2 + X_1^2) \mathcal{E}_0}{\omega^2 M^2 R_1 + (R_1^2 + X_1^2) R_2} \cos (\omega t + \psi) \quad (12)$$

If the coupling is very weak so that $M \to 0$, then $X_2^{(M)} = 0$ which means from (11),

$$\omega = (L_2 C_2)^{-\frac{1}{2}} \quad (13)$$

This coincides with the natural frequency of the wave meter in this adjustment if R_2 is small. If, keeping the frequency constant, we tune both circuits, then we must have, in addition to (11),

$$\frac{\partial}{\partial X_1} \left(\frac{1}{|D|} \right) = 0 \quad \text{or} \quad X_1^{(M)} = \frac{M^2 \omega^2 X_2}{R_2^2 + X_2^2} \quad (14)$$

To satisfy (11) and (14), we must have

$$X_1 = X_2 = 0 \quad \text{or} \quad X_1 = \pm \left[(M^2 \omega^2 - R_1 R_2) \frac{R_1}{R_2} \right]^\frac{1}{2}$$

$$X_2 = \pm \left[(M^2 \omega^2 - R_1 R_2) \frac{R_2}{R_1} \right]^\frac{1}{2} \quad (16)$$

where X_1 and X_2 have the same sign. Since X_1 and X_2 are real quantities, (16) cannot hold if $M^2 \omega^2 < R_1 R_2$ so that, for weak coupling, where M is small, we use (15) and get a maximum when

$$(L_1 C_1)^\frac{1}{2} = (L_2 C_2)^\frac{1}{2} = \frac{1}{\omega} \quad (17)$$

Equation (12) takes the form

$$i_2^{(M)} = \frac{\omega M \mathcal{E}_0}{R_1 R_2 + \omega^2 M^2} \sin \omega t \quad (18)$$

With strong coupling, $M^2 \omega^2 > R_1 R_2$ and (16) holds and in this case

$$i_2^{(M)} = \frac{1}{2} \mathcal{E}_0 (R_1 R_2)^{-\frac{1}{2}} \cos (\omega t + \psi) \quad (19)$$

where

$$\tan \psi = \pm \left(\frac{R_1 R_2}{M^2 \omega^2 - R_1 R_2} \right)^{\frac{1}{2}} = \frac{R_1}{X_1} = \frac{R_2}{X_2}$$

Equation (19) shows that with sufficient coupling the maximum current is independent of both M and ω. It should be noted that large values of L and C give positive signs to X_1 and X_2 in (16) and small values give negative signs.

10.10. Inductively Coupled Low-resistance Circuits.—The fact that R_1 and R_2 are small does not greatly simplify the expressions for current already given because the R^2 terms can be neglected safely only at frequencies sufficiently far from the resonance points so that other terms
are not likewise small. On the other hand, the calculation of resonance frequencies is simplified; for, referring to 9.10 (3), we see that we may neglect now AC and C^2 in 10.09 (10) which can then be factored, giving
\[(\omega^4 - B\omega^2 + D)(\omega^4 + B\omega^2 - 3D) = 0\] \(1\)

The first factor yields two positive roots
\[\omega_{1,2}^2 = \frac{B \pm (B^2 - 4D)^{\frac{1}{2}}}{2} \]
\[= \frac{L_1C_1 + L_2C_2 \pm [(L_1C_1 - L_2C_2)^2 + 4C_1C_2M^2]^{\frac{1}{2}}}{2C_1C_2(L_1L_2 - M^2)}\] \(2\)

These maximum values of i_2 are at exactly the natural oscillation frequencies of these coupled circuits as given by 9.13 (9). The second factor yields one positive root ω_3^2 which lies between ω_1^2 and ω_2^2 and is a minimum.

\[\omega_3^2 = \frac{(B^2 + 12D)^{\frac{1}{2}} - B}{2} \]
\[= \frac{[(L_1C_1 + L_2C_2)^2 + 12C_1C_2(L_1L_2 - M^2)]^{\frac{1}{2}} - L_1C_1 - L_2C_2}{2C_1C_2(L_1L_2 - M^2)}\] \(3\)

We notice that, if $M \to 0$, then $\omega_1^2 \to (L_2C_2)^{-1}$ and $\omega_2^2 \to (L_1C_1)^{-1}$ so that the frequencies for maximum i_2 approach the independent resonance frequencies of the two circuits.

The equation corresponding to 10.09 (10), but applying to the maxima and minima of i_1, may now also be factored, giving
\[(\omega^4 - B\omega^2 + D)
\left[(L_2C_2)^{\frac{1}{2}} + \left(BL_2 + \frac{3}{C_2}\right)\omega^2 - \left(3DL_2 + \frac{B}{C_2}\right)\omega^2 - \frac{D}{C_2}\right] = 0\] \(4\)

The first factor is identical with that in (1) so that i_1 has maxima at the same frequencies ω_1 and ω_2 as i_2. The second factor, a cubic in ω^2, may be solved by the standard method and yields one positive root lying between ω_1 and ω_2 but different from ω_3. This corresponds to a minimum.

10.11. Tuned Inductively Coupled Low-resistance Circuits.—If the two circuits just considered have been tuned, independently, to the same frequency, then $L_1C_1 = L_2C_2$ and the results of the last article simplify somewhat. The maximum current in both circuits occurs at frequencies ω_1 and ω_2 which, from 10.10 (2), are now given by
\[\omega_{1,2}^2 = \frac{1}{(C_1C_2)\left[(L_1L_2)^{\frac{1}{2}} + M\right]}\] \(1\)

The minimum of i_2 occurs, from 10.10 (3), at
\[\omega_3^2 = \frac{(4L_1L_2 - 3M^2)^{\frac{1}{2}} - (L_1L_2)^{\frac{1}{2}}}{(C_1C_2)\left[(L_1L_2 - M^2)\right]}\] \(2\)
We notice that as $M \to 0$

$$\omega_1^2 \to \omega_2^2 \to \omega_3^2 \to (L_1C_1)^{-1} = (L_2C_2)^{-1}$$

so that, for weak coupling, we obtain a single resonance peak at the natural frequency common to both independent circuits.

10.12. Filter Circuits.—A special type of impedance network, in which similar structures recur repeatedly as shown in Fig. 10.12a, is of special importance because such a mesh can be made to transmit alternating current of certain frequencies and exclude others. When so constructed, it is called a wave filter. Evidently there are two ways of breaking up such a network into simple similar units. We can divide the network at A', B', C', and D' so that each Z_1 impedance is split with two impedances, $Z_a = kZ_1$ and $Z_b = (1 - k)Z_1$ in series where $0 < k < 1$. Such a unit, shown in Fig. 10.12b, is called a T section. If $k = \frac{1}{2}$, it is said to have mid-series terminations. If we divide the network at A, B, C, and D, each Z_2 impedance is replaced by two, $Z'_a = Z_2/k$ and $Z'_b = Z_2/(1 - k)$, in parallel. Such a section, shown in Fig. 10.12c, is called a π section. If $k = \frac{1}{2}$, it is said to have mid-shunt terminations.

Putting in the values of the impedances, as defined in 9.06 (2), (3), (4), and (5) and in 10.07 (1) and (2), Kirchhoff’s law for the rth circuit in Fig. 10.12a becomes

$$-Z_2i_{r-1} + (Z_1 + 2Z_2)i_r - Z_2i_{r+1} = 0$$

This difference equation is identical in form with 6.06 (1), and from 6.06 (2), its solution is

$$i_r = A \cosh r\Gamma + B \sinh r\Gamma$$

where we have chosen

$$\cosh \Gamma = \frac{2Z_2 + Z_1}{2Z_2}$$

The complex quantity Γ is called the propagation constant per section. In Fig. 10.12a, we have numbered the units from the receiving end. Hence, if this end is infinitely far away, r approaches infinity; and, since
2 \cosh x \rightarrow 2 \sinh x \rightarrow e^x \text{ as } x \rightarrow \infty, \text{ we have, from Fig. 10.12b,}
\frac{i_{A'}}{i_{B'}} = \frac{i_{r+1}}{i_r} = \frac{A \cosh (r + 1) \Gamma + B \sinh (r + 1) \Gamma}{A \cosh r \Gamma + B \sinh r \Gamma} \rightarrow e^r

Similarly, from Fig. 10.12c, we have
\frac{i_B}{i_c} = \frac{(1 - k)i_{r+1} + ki_r}{(1 - k)i_r + ki_{r-1}} \rightarrow e^r

or
\Gamma = \ln \frac{i_{r+1}}{i_r} \tag{4}

Hence, we may define the propagation constant per section in a line of recurrent structure of either the \(\pi \) or \(T \) type of infinite length to be the natural logarithm of the vector ratio of the steady-state current at a point in one section to that at the corresponding point in the next section more remote from the transmitter. When so defined, the real part of \(\Gamma \) is positive and is called the attenuation constant \(\alpha \) and the imaginary part is called the phase constant \(\phi \).

Since, from (4), \(i_{p+1}/i_p \) is independent of \(p \) in an infinite line we have, for the propagation constant of a unit composed of \(n \) similar simple sections,
\[\Gamma_n = \ln \left(\frac{i_p}{i_{p-1}} \cdot \frac{i_{p-1}}{i_{p-2}} \cdots \frac{i_{p-n+1}}{i_{p-n}} \right) = \ln \left(\frac{i_p}{i_{p-1}} \right)^n = n\Gamma \tag{5} \]

where \(\Gamma \) is the propagation constant of one section. It is useful to know what impedance must be placed at the receiving end of a line to produce the same effect as continuing the structure to infinity. Such an impedance is called the iterative, characteristic, or surge impedance and written

\[Z_k \text{ for } \pi \text{ types and } Z_{k'} \text{ for } T \text{ types.} \]

The addition or subtraction of a section from such an infinite network will not change its impedance so that in Fig. 10.12b the impedance between \(A'A'' \) with \(Z_b \) connected at \(B'B'' \) will be the same as between the terminals of \(Z_k \) alone. Thus, we have
\[Z_{k1} = Z_a + Z_b + Z_{k1} \frac{Z_k + Z_{k1}}{Z_b + Z_z + Z_{k1}} Z_2 \]
Solving for Z_{k1}, remembering that $Z_a + Z_b = Z_1$, gives

$$Z_{k1} = \frac{1}{2}(Z_a - Z_b) + \left[Z_1Z_2\left(1 + \frac{1}{4} Z_1\right)\right]^\frac{1}{3}$$ (6)

We notice from (3) that

$$Z_1Z_2\left(1 + \frac{1}{4} Z_1\right)^\frac{1}{3} = Z_2 \sinh \Gamma$$ (7)

If we reverse the direction of the currents through the line, which amounts to interchanging Z_a and Z_b, we get a different iterative impedance

$$Z_{k2} = \frac{1}{2}(Z_b - Z_a) + \left[Z_1Z_2\left(1 + \frac{1}{4} Z_1\right)\right]^\frac{1}{3}$$ (8)

Similarly, for a π-type section from Fig. 10.12c, we get

$$Z'_{k1}' = \left[\frac{Z'_b - Z'_a}{2Z'_{a}Z'_b} + \left(\frac{1}{4} Z_1\right)^\frac{1}{3}\right]^{-1}$$ (9)

$$Z'_{k2}' = \left[\frac{Z'_a - Z'_b}{2Z'_{a}Z'_b} + \left(\frac{1}{4} Z_1\right)^\frac{1}{3}\right]^{-1}$$ (10)

10.13. Terminal Conditions in Wave Filters.—The constants A and B in 10.12 (2) are determined from the conditions in the first and last mesh of the circuit. Considering the T type, if we terminate the receiving end at the right of Fig. 10.12b by an impedance Z_k, then, applying Kirchhoff’s law around this circuit gives, with the aid of 10.12 (2), (3), (6), and (7), by setting $r = 0$,

$$0 = i_0(Z_R + Z_b + Z_2) - i_1Z_2
= A(Z_R + \frac{1}{2}Z_b - \frac{1}{2}Z_a + Z_2 \cosh \Gamma) - Z_2(A \cosh \Gamma + B \sinh \Gamma)
= A(Z_R + \frac{1}{2}Z_b - \frac{1}{2}Z_a) - B(Z_{k1} + \frac{1}{2}Z_b - \frac{1}{2}Z_a)$$ (1)

We now investigate the effect of making $Z_R = Z_{k1}$ or $A = B$, which gives 10.12 (2) the form

$$i_r = Ae^{\gamma}$$ (2)

For the first mesh, we have, if Z_t is the impedance of the transmitter and E its electromotance,

$$E = i_n(Z_t + Z_a + Z_2) - i_{n-1}Z_2
= A[Z_t + \frac{1}{2}Z_a - \frac{1}{2}Z_b + Z_2 \cosh \Gamma]e^{\gamma} - Z_2e^{(n-1)\gamma}$$ (3)

$$= A(Z_t + \frac{1}{2}Z_a - \frac{1}{2}Z_b + Z_2 \sinh \Gamma)e^{\gamma} = A(Z_t + Z_{k1})e^{\gamma}$$

From (2), the current in the receiver is

$$i_0 = \frac{Ee^{-\gamma}}{Z_t + Z_{k1}}$$ (4)
The current in the transmitter is, from (2),

\[i_n = A e^{\alpha n} = \frac{\mathcal{E}}{Z_i + Z_{k1}} \]

(5)

Since, as we shall show later, we can construct the network so that \(r \) is a purely imaginary quantity for any specified frequency; then, for this frequency, the current in the receiver has the same amplitude as that in the transmitter. This is a most desirable property, and so we always try to construct filters so that \(Z_k \), the output impedance, equals the iterative impedance of the filter, measured toward the output end. We see from 10.05 (5) and (6) that, to get maximum power into the line, we should also have \(Z_i = Z_{k1}^* \). From the next article, for transmitted frequencies, \(Z_{k2} = Z_{k2}^* \). Thus we must have the impedance of the transmitter or the input impedance \(Z_1 \) equal to the iterative impedance of the filter measured toward the input end. Exactly similar conclusions are reached by an analysis of the \(\pi \) circuit, so that which type we use depends on which of the iterative impedances \(Z_{k1} \) and \(Z_{k2} \) or \(Z_{k1}' \) and \(Z_{k2}' \) can most conveniently be made equal to the desired output and input impedances at the frequencies to be used.

10.14. Frequency Characteristics of Filters.—The condition that current of a given frequency pass a filter without loss is evident by inspection of 10.12 (2). If the amplitude of \(i \), is to be the same for all values of \(r \), terms involving \(r \) must be trigonometric and since \(\cosh j \theta = \cos \theta \) and \(\sinh j \theta = j \sin \theta \) this requires that \(\Gamma \) be a pure imaginary. The right side of 10.12 (3) must therefore be a real number between +1 and -1 so that \(Z_1 \) and \(Z_2 \) must be pure reactances. This ideal situation is nearly realized in practice. Thus, the condition for free transmission is expressed by the inequality

\[-1 \leq \frac{Z_1 + 2Z_2}{2Z_2} \leq 1 \quad \text{or} \quad -4 \leq \frac{Z_1}{Z_2} \leq 0 \]

(1)

Since \(Z_1 \) and \(Z_2 \) are to be pure imaginaries, we see from (1) and 10.12 (6), (8), (9), and (10) that \(Z_{k1} = Z_{k2}^* \) and \(Z_{k1}' = Z_{k2}'^* \) for a transmitted frequency. Thus, for symmetrical sections, \(Z_k \) and \(Z_{k'} \) are pure resistances for pass frequencies.

We can most easily examine the transmission of current in an infinite filter for frequencies that do not satisfy (1) by expressing the current \(i' \), passing the \(sth \) unit from the transmitting end, indicated by a prime, in terms of the current \(i_0 \) entering the network. From 10.12 (4), this is

\[i'_s = i_0 e^{-s \alpha} \]

(2)

If \(Z_1/Z_2 \) is positive, then \(\cosh \Gamma \) is a real number greater than unity so
that \(\Gamma \) is a real number which is positive from 10.12 (4). When

\[
-\infty < \frac{Z_1}{Z_2} < -4
\]

then \(\cosh \Gamma < -1 \) so that, from Dw 655.2 or Pc 695, \(\Gamma = |\Gamma| \pm j\pi \) and we have instead of (2)

\[
i' = -i_0' e^{-\pi |\Gamma|}
\]

(3)

Thus, the amplitudes of the currents of frequencies not satisfying (1) die off exponentially as we proceed along the network away from the transmitter.

10.15. The Band-pass Filter.—Filter circuits are usually grouped into four classes, viz.,

1. Low-pass filters, which transmit freely all frequencies below a certain value \(f_2 \) and block all others.

2. High-pass filters, which transmit freely all frequencies above a certain value \(f_1 \) and block all others.

3. Band-pass filters, which transmit freely all frequencies lying between the values \(f_1 \) and \(f_2 \) and block all other values.

4. Band-stop filters, which block all frequencies lying between the values \(f_1 \) and \(f_2 \) and transmit freely all others.

We shall consider as an example only the third class as it includes the first two as special cases and is probably the most important. We shall further restrict ourselves to the symmetrical T type in which the \(k \) of 10.12 equals one-half. The simplest arrangement is shown in Fig. 10.15a, in which \(Z_1 = j(\omega L_1 - 1/(\omega C_1)) \) and \(Z_2 = -j/(\omega C_2) \), so that

\[
\frac{Z_1}{Z_2} = -\omega^2 L_1 C_2 + \frac{C_2}{C_1}
\]

(1)

This is zero when

\[
\omega_1 = (L_1 C_1)^{-\frac{1}{2}}
\]

(2)

and positive for smaller values of \(\omega \) so that \(\omega_1 \) is the lowest angular frequency passed. When \(Z_1/Z_2 = -4 \), we have

\[
\omega_2 = (C_2 + 4C_1)^{\frac{1}{2}} (L_1 C_1 C_2)^{-\frac{1}{2}}
\]

(3)

so that this is the highest angular frequency passed. The attenuation constant \(\alpha \), the phase constant \(\phi \), and the real and imaginary parts of the iterative impedance \(Z_{k1} = Z_{k2} = Z_k \) are shown in Figs. 10.15b, c, d, and e, respectively, as a function of the angular frequency \(\omega \).

It is apparent upon examination of these curves that this filter has two serious defects. The first of these is revealed in Fig. 10.15b, which shows that the frequencies outside the pass band but near its edge are not blocked out strongly. In other words, the cutoff is not sharp.
The second, and often more serious, defect is revealed by Fig. 10.15d, which shows that the iterative impedance, which we see is a pure resistance in this case, varies considerably for different frequencies in the pass band. This makes it impossible to find an output impedance that will satisfy the conclusions of 10.13 for the whole transmitted range of frequencies.

To overcome the first difficulty, we wish to find a type of filter section possessing two special properties; the first being that, although the iterative impedance may vary with frequency in the pass band, it has the same value for all sections of this type; and the second being that different sections of this type possess different attenuation properties for the stop frequencies, especially near the cutoff. Because of the first property, such filter sections, when connected in series to form a composite filter, would transmit current of the pass frequencies from one section to the next as in an infinite uniform filter. Because of the second property, some sections could be built to attenuate strongly those frequencies which others attenuate weakly, and in this way all frequencies outside the pass band could be eliminated as completely as desired. Fortunately, such a type of filter section can be built in both the T and the π form, and this will be taken up in the next article.

Although the second difficulty, the variation of the iterative impedance for pass frequencies, cannot be eliminated completely, it can be greatly alleviated by a proper design of the terminal sections of the filter as will be shown in 10.17.

10.16. The M-derived Type of Filter Section.—The most important type of filter section is known as the m-derived type.

We shall consider only the symmetrical T or mid-series form shown in Fig. 10.16a. The special relations between Z_{1m} and Z_{2m} in this type are

\[
\begin{align*}
Z_{1m} &= mZ_1 \\
Z_{2m} &= \frac{Z_2}{m} + \frac{1}{4} \frac{Z_1(1 - m^2)}{m} \\
Z_1Z_2 &= k^2
\end{align*}
\]
The constant k is called the nominal iterative impedance of the section and is independent of the frequency. From 10.12 (6), since $Z_a = Z_b$, the iterative impedance is

$$Z_k = \left[Z_m Z_{2m} \left(1 + \frac{Z_m}{4Z_{2m}} \right) \right]^2 = \left[Z_m Z_{2m} \left(1 + \frac{Z_1}{4Z_2} \right) \right]^2$$

which is independent of the choice of m. From 10.12 (3), the propagation constant Γ is given by

$$\cosh \Gamma = 1 + \frac{Z_m}{2Z_{2m}}$$

From (1) and (2), we see that

$$\frac{Z_{1m}}{Z_{2m}} = \frac{4m^2 \left(\frac{Z_1}{Z_2} \right)}{\left(1 - m^2 \right) \left(\frac{Z_1}{Z_2} \right) + 4}$$

This is zero when Z_1/Z_2 is zero and equals -4 when Z_1/Z_2 equals -4 so that from 10.14 (1) we see that the cutoff frequencies are determined by the ratio Z_1/Z_2 and are also independent of m. We notice that the denominator of (6) is zero when

$$\frac{Z_1}{Z_2} = \frac{-4}{1 - m^2} \quad \text{or} \quad m = \left(1 + \frac{4Z_2}{Z_1} \right)^\frac{1}{2}$$

Hence, having fixed the ratio Z_1/Z_2 to cut off at the desired frequencies, we can find its value at any specified stop frequency and then, by (7), choose m to give infinite attenuation at this frequency. This solves the problem of eliminating unwanted frequencies.

For a single band-pass T-type filter, Z_1 and Z_2 can have the form

$$Z_1 = j\left(\omega L_1 - \frac{1}{\omega C_1} \right) \quad Z_2 = \frac{j\omega L_2}{1 - \omega^2 L_2 C_2}$$
where, to satisfy (3), we must have \(L_1C_1 = L_2C_2 \). \(Z_1 \) and \(Z_2 \) represent an inductance and capacitance in series and parallel, respectively. As the frequency passes from zero to infinity, \(\cosh \Gamma \) passes from \(-\infty \) to \(+1 \) so that the cutoff frequencies are both at \(\cosh \Gamma = -1 \), one when \(\phi_1 = -\pi \), and the other one when \(\phi_1 = +\pi \). There are therefore two frequencies at which (7) will give the same value of \(m \) and, hence, two frequencies of infinite attenuation. Typical curves giving the attenuation \(\alpha \), phase constant \(\phi \) and real and imaginary parts of the iterative impedance are shown in Fig. 10.166, \(c \), and \(d \), respectively, as a function of frequency.

10.17. Termination of Composite Filter.—Let us now put the termination shown in Fig. 10.17a on the last T section of our filter which has the iterative impedance \(Z_k \). We wish, if possible, to find a value of \(R \) that will give this impedance \(Z_k \) between \(A \) and \(B \) for all values of \(m \) so that the whole current will pass into this section without loss as into an infinite line. Setting the impedance between \(A \) and \(B \) equal to \(Z_k \), we have by Kirchhoff's law

\[
Z_k = \frac{Z_{1m}}{2} + \frac{2Z_{2m}R}{2Z_{2m} + \overline{R}} \]

Solving for \(R \) gives

\[
R = \frac{4Z_{2m}Z_k - 2Z_{1m}Z_{2m}}{4Z_{2m}^2 + Z_{1m}^2 - 2Z_k} \tag{1}
\]

From 10.12 (6), we have for a symmetrical T-type section

\[
Z_k = \left[Z_{1m}Z_{2m}\left(1 + \frac{Z_{1m}}{4Z_{2m}}\right)\right]^\dagger \tag{2}
\]

and from 10.12 (9), we have for a symmetrical \(\pi \)-type filter

\[
Z_{k'} = (Z_{1m}Z_{2m})^\dagger\left(1 + \frac{Z_{1m}}{4Z_{2m}}\right)^{-\dagger} \tag{3}
\]

From (2) and (3), we get the relations

\[
Z_kZ_{k'} = Z_{1m}Z_{2m} \tag{4}
\]

and

\[
4Z_{2m}Z_k = (4Z_{2m} + Z_{1m})Z_{k'} \tag{5}
\]

Substituting these expressions in the numerator of (1), we have

\[
R = \frac{(4Z_{2m} + Z_{1m})Z_{k'} - 2Z_kZ_{k'}}{4Z_{2m}^2 + Z_{1m}^2 - 2Z_k} = Z_{k'} \tag{6}
\]

The same reasoning applies to the transmitting end of the network so that we see that as far as the iterative impedance is concerned our network behaves like a \(\pi \)-type section having a propagation constant equal to that
of a symmetrical \(m \)-derived T-type section. From (4) and 10.16 (1) and (2)

\[
Z_{k'} = \frac{4Z_iZ_2 + (1 - m^2)Z_i^2}{4Z_k}
\]

(7)

If we make \(R_k^2 \) equal to \(Z_iZ_2 \), the nominal iterative impedance of the structure, then the ratio \(R_k/Z_k' \), plotted against \(\frac{1}{2}Z_1/Z_2 \) for the pass band, is shown in Fig. 10.17b for different values of \(m \). This curve shows that by choosing \(m \) equal to .6 for the terminal section of Fig. 10.17a, we can get an iterative impedance that is almost constant across the entire pass band, thus eliminating the last difficulty in the simple filter. Other and much more complicated filters are used in communication networks but the basic principles are similar to those we have used. The effect of dissipation due to resistance, which we have neglected throughout, is to round off the corners and sharp peaks in curves such as those shown in Figs. 10.15b, c, d, and e and Figs. 10.16b, c, and d.

10.18. **Transmission Lines.**—In Chap. VI, we passed easily from the case of a network with periodic line and leakage resistances to the continuous case. As in 10.01 to pass from the d-c transmission line to the a-c line, the series impedance per unit length \(Z_L \) is inserted in 6.01 (1) for the series resistance \(T \) and the parallel impedance per unit length \(Z_c \) for the leakage resistance \(S \). Thus the phasor current \(i \) in the line satisfies the differential equation

\[
\frac{d^2i}{dx^2} = \frac{Z_L}{Z_c}i = Z_LY_i = 1' \frac{d'i}{dx}
\]

(1)

The integral of this may be written in the exponential form

\[
i = Ae^{-1'x} + Be^{+1'x}
\]

(2)

The real part of the complex propagation constant \(1' \) is the attenuation \(\alpha' \), and the imaginary part \(j\beta' \) defines the phase constant \(\beta' \). In a length \(dx \) the current between the two line members is \(- (di/dx)dx \) which traverses an impedance \(Z_c/dx \) so that by Ohm's law the potential across the line is

\[
\mathcal{E} = -Z_c \frac{di}{dx} = -\frac{1}{Y_c} \frac{di}{dx}
\]

(3)

If \(\alpha' \) is small but not zero, then far from the generator where \(x \) is large,
\(i = 0 \) so that \(B = 0 \) in (2). The characteristic impedance is then

\[
Z_k = \left. \frac{E}{i} \right|_{B=0} = Z_c \Gamma' = (Z_L Z_L)^{\dagger} = (\frac{Z_L}{Y_c})^\dagger
\]

(4)

If \(B \) is not zero, the ratio of \(E \) to \(i \) at \(x = 0 \), which is obtained from (2), (3), and (4) and is called the input impedance, is

\[
Z_i = \frac{(A - B) \Gamma'}{(A + B) Y_c} = \frac{A - B}{A + B} Z_k
\]

(5)

If the line of length \(l \) ends in a load \(Z_L \) at \(x = l \), then from (2) and (3)

\[
Z_L = \left. \frac{E}{i} \right|_{x=l} = Z_k \frac{A e^{-\Gamma'l} - B e^{\Gamma'l}}{A e^{-\Gamma'l} + B e^{\Gamma'l}}
\]

(6)

Elimination of \(A \) and \(B \) from (5) and (6) gives for the input impedance

\[
Z_i = Z_k \frac{Z_L \cosh \Gamma'l + Z_k \sinh \Gamma'l}{Z_k \cosh \Gamma'l + Z_L \sinh \Gamma'l}
\]

(7)

Evidently, the input impedances, when the line is open or short-circuited, are \(Z_k \coth \Gamma'l \) and \(Z_k \tanh \Gamma'l \), respectively. We note that \(Z_0 Z_s = Z_k^2 \).

The line current from a generator of impedance \(Z_t \) and electromotance \(E \) is

\[
i_{x=0} = \frac{E}{Z_i + Z_k}
\]

(8)

From 10.05 (6), we know that to get the maximum power into the line, \(Z_i = Z_k^* \). Thus, for best efficiency of transmission, both the receiver and the transmitter impedances should be the conjugate phasors of the characteristic impedance of the line. Another treatment of this subject, using Maxwell’s equations, is given in 13.08 to 13.12.

There are several methods of treating regularly periodic electromotances of angular frequency \(\omega_1 \) which are not of the simple sine or cosine form. In the first of these methods, we look upon them as the superposition of many electromotances, of angular frequencies \(\omega_1, 2\omega_1, 3\omega_1, \) etc., called harmonics. We can easily determine what the amplitudes and phases of these must be in order to give the specified function \(f(t) \) by expanding \(f(t) \) in a Fourier series in the regular way; thus,

\[
f(t) = A_0 + \sum_m (A_m \cos m\omega_1 t + B_m \sin m\omega_1 t)
\]

\[
= A_0 + \sum_m \left[(A_m^2 + B_m^2)^{\dagger} \cos \left(m\omega_1 t - \tan^{-1} \frac{B_m}{A_m} \right) \right]
\]

\[
= A_0 + \sum_m C_m e^{im\omega_1 t} \text{ (real part)}
\]

(1)
where

\[A_m = \frac{\omega_1}{\pi} \int_{-\frac{\pi}{\omega_1}}^{+\frac{\pi}{\omega_1}} f(a) \cos m\omega_1 a \, da \]

(2)

\[B_m = \frac{\omega_1}{\pi} \int_{-\frac{\pi}{\omega_1}}^{+\frac{\pi}{\omega_1}} f(a) \sin m\omega_1 a \, da \]

(3)

and

\[C_m = A_m - jB_m \]

(4)

The last form of (1) is exactly that used throughout this chapter, beginning with 10.00 (1). Thus, if the actual electromotance is of the form \(f(t) \), we solve the network separately for

\[\mathcal{E}_1 = C_1 e^{j\omega_1 t} \text{ (real part)} \]

\[\mathcal{E}_2 = C_2 e^{j\omega_1 t} \text{ (real part)} \]

\[\mathcal{E}_3 = C_3 e^{j\omega_1 t} \text{ (real part)}, \text{ etc.} \]

(5)

Superimposing real parts of the solutions gives the actual solution of our problem.

As a specific example, let us take the sawtooth shape electromotance shown in Fig. 10.19 and apply it to a circuit which, for the frequency \(\omega_1 \), has the impedance \(Z_m \). From (2), we have \(A = 0 \), but from (3), by using \(P_c\ 336 \) or \(D_w\ 430.11 \),

\[B_m = \frac{\omega_1 E_0}{\pi T_0} \int_{-\frac{\pi}{\omega_1}}^{+\frac{\pi}{\omega_1}} a \sin m\omega_1 a \, da \]

\[= \frac{\omega_1 E_0}{\pi T_0} \frac{1}{m^2 \omega_1^2} \sin m\omega_1 a - m\omega_1 a \cos m\omega_1 a \bigg|_{-\frac{\pi}{\omega_1}}^{+\frac{\pi}{\omega_1}} = \frac{2E_0}{m\omega_1 T_0} (-1)^{m+1} \]

Thus we must superimpose electromotances of the form

\[\mathcal{E}_m = \frac{(-1)^m 2i E_0}{m\omega_1 T_0} e^{j m \omega_1 t} \text{ (real part)} \]

(6)

If the circuit to which this is applied has a resistance, capacitance, and inductance in series, we have for the current, from 10.01 (5), (6), and (7),

\[i = \frac{2E_0}{\omega_1 T_0} \sum_{m=1}^{\infty} (-1)^{m+1} \frac{\sin (m\omega_1 t + \psi)}{m \left(R^2 + \frac{1}{m\omega_1 L} - \frac{1}{m\omega_1 C} \right)^{\frac{3}{2}}} \]

(7)
where

$$\tan \psi = \frac{1 - m^2 \omega^2 LC}{m \omega_1 RC}$$ \hspace{1cm} (8)$$

The effect of the j in (6) was to change the cosine to the sine in 10.01 (7).

Another method of treating the steady state when the electromotance repeats with a period T and may be represented in the intervals t_1, t_1 to t_2, \ldots, t_{n-1} to T by $f_1(t), f_2(t), \ldots, f_n(t)$ is to obtain the complete solution of the differential equations with the electromotances $f_1(t), f_2(t), \ldots, f_n(t)$, etc., as in 9.17. We then evaluate the constants for the steady state by the condition that, if capacitance or inductance or both are present, then the charge or the current or both must have the same value at the end of one interval and at the beginning of the next and also they must be the same when $t = 0$ as when $t = T$.

As a specific example, let us apply this method to the same problem treated in the last article. We shall have three possible forms of solution, depending on whether the circuit is underdamped, overdamped, or critically damped. Let us take the oscillatory case, where the angular frequency $\omega = [(LC)^{-1} - \frac{1}{4}R^2L^{-2}]$ is real. The circuit equations become

$$\frac{d^2q}{dt^2} + \frac{R}{L} \frac{dq}{dt} + \frac{q}{LC} = \frac{E_0}{LT}$$ \hspace{1cm} (1)$$

$$\frac{d^2i}{dt^2} + \frac{R}{L} \frac{di}{dt} + \frac{i}{LC} = \frac{E_0}{LT}$$ \hspace{1cm} (2)$$

Instead of taking the more general but cumbersome method of 9.17 (3), let us solve (2) by substituting $x = i - E_0(C/T)$. The equation in x has the form of 9.02 (1) so, from 9.02 (5), the oscillatory solution is

$$i = \frac{E_0 C}{T} + e^{-\frac{1}{2}Rt}{L} (A \cos \omega t + B \sin \omega t)$$ \hspace{1cm} (3)$$

The first boundary condition is that $i_{t=-T} = i_{t=T}$ which gives

$$A \sinh \frac{RT}{2L} \cos \omega T = B \cosh \frac{RT}{2L} \sin \omega T$$ \hspace{1cm} (4)$$

The second boundary condition is that $q_{t=-T} = q_{t=T}$ or that

$$\int_{-T}^{+T} i dt = 0$$ \hspace{1cm} (5)$$

Integrating by Pc 414 and 415 or Dw 577.1 and 577.2 and putting in limits give

$$\frac{E_0}{L} = A \left(\frac{R}{2L} \sinh \frac{RT}{2L} \cos \omega T + \omega \cosh \frac{RT}{2L} \sin \omega T \right)$$

$$+ B \left(\frac{-R}{2L} \cosh \frac{RT}{2L} \sin \omega T + \omega \sinh \frac{RT}{2L} \cos \omega T \right)$$
Combining with (4), this becomes
\[
\frac{E_0}{\omega L} = A \cosh \frac{RT}{2L} \sin \omega T + B \sinh \frac{RT}{2L} \cos \omega T
\] (6)

Solving (4) and (6) for \(A\) and \(B\) gives
\[
A = \frac{E_0 \cosh \left(\frac{1}{2} \frac{RT}{L}\right) \sin \omega T}{\omega L [\sinh^2 \left(\frac{1}{2} \frac{RT}{L}\right) + \sin^2 \omega T]}
\] (7)
\[
B = \frac{E_0 \sinh \left(\frac{1}{2} \frac{RT}{L}\right) \cos \omega T}{\omega L [\sinh^2 \left(\frac{1}{2} \frac{RT}{L}\right) + \sin^2 \omega T]}
\] (8)

Equations (3), (7), and (8) give the steady-state current in the interval \(-T < t < T\). The current in any other cycle is a repetition of this. This may be regarded as the sum of the series of 10.19 (7).

10.21. Circuits with Negative Resistance.—The transient character of the phenomena discussed in Chap. IX is due to the presence of resistance, which dissipates energy. It is not possible, at ordinary temperatures, to construct circuits without resistance. It is, however, possible to construct power-supply apparatus which, when inserted in a circuit, functions, over a limited current range, as a negative resistance \(-R\). If this is placed in series with the resistance \(R\) in a circuit, the resultant resistance \(r\) is
\[
r = R - R
\] (1)
and if it is placed in parallel, the resultant resistance is
\[
r = \frac{RR}{\bar{R} - \bar{R}}
\] (2)

In the first case, \(r = 0\) if \(R = \bar{R}\) and in the second if \(R = 0\), so that any oscillations established will continue indefinitely with undiminished amplitude. If, in the first case, \(R < \bar{R}\), or in the second, \(\bar{R} < R\), then \(r\) is negative, and the negative exponents of Chap. IX becomes positive so that the oscillations, once begun, increase in amplitude exponentially until the end of the current range over which the apparatus functions as a negative resistance is reached. The generation of alternating current at frequencies too high for rotating machinery is usually accomplished with such apparatus.

We shall treat only one example of such a circuit. Let us consider the simple case treated in problem 3, Chap. IX, in which \(L, C, \) and \(R\) are connected in parallel. If \(4R^3C > L\), this circuit oscillates with a frequency \(\omega\), given by
\[
\omega^2 = \frac{1}{LC} - \frac{1}{4R^3C^2}
\] (3)

The amplitude of this oscillation dies out exponentially with time. Let us now place in parallel with \(R\) an apparatus, such as a vacuum tube,
which functions, over a limited range, as a negative resistance. The
arrangement is shown in Fig. 10.21a, in which the alternating currents
only are considered. The output current \(i \) of the source is controlled by a
negligible amount of power drawn from the oscillating circuit by some
coupling device. For example, if a vacuum tube is used, a grid circuit
might be loosely coupled, inductively, with \(L \). The output current \(i \)
is then some function of \(V \), the electromotive force across \(R \), which is linear for small
values of \(V \). Thus, we have

\[
i = \psi(V) \tag{4}
\]

From the figure, we have

\[
L \frac{di_L}{dt} = Ri_R = \frac{1}{C} \int i_c \, dt = V \tag{5}
\]

an

\[
i = i_L + i_R + i_c \tag{6}
\]

Differentiating (6), substituting for the current derivatives from (4)
and (5), and rearranging give

\[
\frac{d^2V}{dt^2} + \frac{1}{CR} \frac{d}{dt} [V - R\psi(V)] + \frac{V}{LC} = 0 \tag{7}
\]

We shall make \(\psi(V) \) large enough so that the second term is negative for
small values of \(V \) and assume a periodic steady-state solution of the form

\[
V = \sum_{n=1}^{\infty} a_n \cos (n\omega t + \phi_n) \tag{8}
\]

We can find a relation between the frequency of the fundamental and
the amplitudes of the harmonics by multiplying (7) through by \(V \) and
integrating over a complete period. The second term disappears, and the
first may be integrated by parts, giving

\[
\frac{dV^2}{dt} = \frac{1}{LC} V^2
\]

Substituting from (8) and solving for \(\omega \) give

\[
\omega^2 = \left(LC \sum_{n=1}^{\infty} n^2 a_n^2 \right)^{-1} \sum_{n=1}^{\infty} a_n^2 \tag{9}
\]

We shall consider only the case where the circuit is just able to oscillate
continuously, thus making the second term in (7) a small negative
quantity so that, to a first approximation, we neglect it and obtain a
frequency \(\omega = (LC)^{-1} \) which is identical with the undamped frequency.
Examining (9), we see that this also makes the harmonic amplitudes
negligible.
To determine the amplitude of the fundamental oscillation in the steady state, we shall assume a special, but reasonable, form for $\psi(V)$ in (4). Let us choose

$$i = \psi(V) = \beta R^{-1} \tan^{-1} \alpha V \quad (10)$$

making the second term of (7) negative for small values of V when $\alpha \beta > 1$. From Fig. 10.21b, where $y = \tan^{-1} 10x$ is plotted, we see that (10) closely resembles the characteristic curve of a triode vacuum tube working on its inflection point, where a-c plate current is plotted against a-c grid voltage. The constants α and β can be determined from the characteristic curve and the coupling or "feedback" with the aid of (10). Equation (7) now becomes

$$\frac{d^2V}{dt^2} + \frac{1}{CR} \frac{d}{dt}(V - \beta \tan^{-1} \alpha V) + \frac{V}{LC} = 0 \quad (11)$$

Let us multiply this through by $\int V \, dt$ and integrate each term by parts with respect to t, using Pc 19a or Dw 79 and taking $u = \int V \, dt$ in each case so that $du = V \, dt$. Choosing the limits to be $t = -\pi/\omega$ and $t = \pi/\omega$ eliminates the first and third terms and the uv term of the second, leaving

$$\int_{-\pi/\omega}^{\pi/\omega} (V^2 - \beta V \tan^{-1} \alpha V) \, dt = 0 \quad (12)$$

Substituting for V from (8), setting $a_n = 0$ when $n \neq 1$, and choosing the time origin so that $\phi_1 = 0$, we may integrate the second term by parts, taking $u = \tan^{-1} \alpha V$ and $dv = V \, dt$. The product uv goes out at both limits and, using Dw 858.3 or Pc 489, we obtain

$$\frac{\pi a^2}{\omega} - \beta \int_{-\pi/\omega}^{\pi/\omega} \frac{a^2 \sin^2 \omega t}{1 + a^2 \cos^2 \omega t} \, dt = 0$$

or

$$\frac{\pi a^2}{\omega} - \frac{2\pi\beta}{\alpha \omega} - \frac{\beta(1 + a^2 a^2)}{\alpha \omega} \int_{-\pi/\omega}^{\pi/\omega} \frac{d(\omega t)}{1 + a^2 a^2 \cos^2 \omega t} = 0$$

Integrate by Pc 315 or Dw 460.1 (where Dwight's b^2 is 1 and his a^2 is $1 + \alpha^2 a^2$), multiply through by $\alpha \omega / \pi$, and we obtain

$$\alpha a^2 - 2\beta - 2\beta(1 + \alpha \beta) = 0.$$

Rationalizing gives

$$\alpha a^2[\alpha a^2 - 4\beta(1 + \alpha \beta)] = 0 \quad (13)$$
Thus, zero amplitude is possible, which means that it may be necessary to start the oscillation initially by some process such as discharging the capacitor. The second factor gives the amplitude of the steady oscillation, which is

\[
a^2 = \frac{4\beta (1 + \alpha \beta)}{\alpha}
\]

(14)

We note that in the steady state, when the second term of (7) is small, the frequency depends only on \(L\) and \(C\) whereas the amplitude depends only on \(R\) and the generator properties. Treatments of more complicated circuits and an extensive bibliography will be found in the reference to van per Pol in the list at the end of the chapter.

Problems

Problems marked \(C\) in the following group are taken from the Cambridge examinations, as reprinted by Jeans, with the permission of the Cambridge University Press.

1C. A coil is rotated with constant angular velocity \(\omega\) about an axis in its plane in a uniform field of force perpendicular to the axis of rotation. Find the current in the coil at any time, and show that it is greatest when the plane of the coil makes an angle \(\tan^{-1} \left(\frac{L\omega}{R}\right)\) with the lines of magnetic force.

2C. The resistance and self-induction of a coil are \(R\) and \(L\), and its ends \(A\) and \(B\) are connected with electrodes of a condenser of capacity \(C\) by wires of negligible resistance. There is a current \(I \cos pt\) in a circuit connecting \(A\) and \(B\), and the charge of the condenser is in the same phase as this current. Show that the charge at any time is \(\left(\frac{L}{R}\right) \cos pt\) and that \(C(R^2 + p^2L^2) = L\). Obtain also the current in the coil.

3C. The ends \(B\), \(D\) of a wire \(BR\), \(L\) are connected with the plates of a condenser of capacity \(C\). The wire rotates about \(BD\) which is vertical with angular velocity \(\omega\), the area between the wire and \(BD\) being \(A\). If \(H\) is the horizontal component of the earth's magnetism, show that the average rate at which work must be done to maintain the rotation is \(\frac{1}{2} H^2 A C^2 R \omega^2 / [R^2 C^2 \omega^2 + (1 - CL\omega^2)]\).

4C. A closed solenoid consists of a large number \(N\) of circular coils of wire, each of radius \(a\), wound uniformly upon a circular cylinder of height \(2h\). At the center of the cylinder is a small coil whose axis coincides with that of the cylinder, and whose moment is a periodic quantity \(M\) sin \(pt\). Show that a current flows in the solenoid whose intensity is approximately

\[
\frac{1}{4} p_{\mu_e} MN[(a^2 + h^2)(R^2 + L^2 p^2)]^{-\frac{1}{2}} \sin (pt + \alpha)
\]

where \(R\), \(L\) are the resistance and self-induction of the solenoid and \(\tan \alpha = R/Lp\).

5C. A circular coil of \(N\) turns, of radius \(a\) and resistance \(R\), spins with angular velocity \(\omega\) round a vertical diameter in the earth's horizontal magnetic field \(H\). Show that the average electromagnetic damping couple which resists its motion is

\[
\frac{1}{2} \mu_0^2 H^2 N^2 a^2 \omega R / (R^2 + \omega^2 L^2)
\]

6C. A current is induced in a coil \(B\) by a current \(I \sin pt\) in a coil \(A\). Show that the mean force tending to increase any coordinate of position \(\theta\) is

\[
-\frac{1}{2} I^2 p^2 LM (\partial M / \partial \theta) / \left[R^2 + L^2 p^2 \right]
\]

where \(L\), \(M\), \(N\) are the coefficients of induction of the coils and \(R\) is the resistance of \(B\).
PROBLEMS 385

7C. A plane circuit, area S, rotates with uniform velocity \(\omega \) about the axis of z, which lies in its plane at a distance \(h \) from the center of gravity of the area. A loop of wire of moment \(M \) is fixed in the axis of x at a great distance \(a \) from the origin, pointing in the direction 0z. Prove that the current at time \(t \) is approximately

\[
\frac{S\omega \mu_0 M}{2\pi a^3(R^2 + L_0 a^2)^\frac{1}{4}} \cos (\omega t - \epsilon) + \frac{9S\omega \mu_0 M h}{4\pi a^3(R^2 + 4L_0 a^2)^\frac{1}{4}} \cos (2\omega t - \eta)
\]

where \(\eta, \epsilon \) are determinate constants.

8. A transmitter of fixed electromotance and impedance \(Z_t \) supplies current to a load of impedance \(Z_L \) through a transmission line of characteristic impedance \(Z_c \). Show that for maximum load current \(Z_c \) = \(Z_t \).

9C. Two points A, B are joined by a wire of resistance \(R \) without self-induction, B is joined to a third point C by two wires each of resistance \(R \), of which one is without self-induction, and the other has a coefficient of induction \(L \). If the ends A, C are kept at a constant potential difference \(E \cos pt \), prove that the difference of potentials at B and C will be \(E' \cos (pt + \gamma) \), where

\[
E' = E \left(\frac{R^2 + p^2L_2^2}{9R^2 + 4p^2L_2^2} \right)^\frac{1}{4}, \quad \tan \gamma = \frac{pLR}{2p^2L_2^2 + 3R^2}
\]

10C. A condenser of capacity \(C \) is connected by leads of resistance \(r \), so as to be in parallel with a coil of self-induction \(L \), the resistance of the coil and its leads being \(R \). If this arrangement forms part of a circuit in which there is an electromotive force of period \(2\pi/p \), show that it can be replaced by a wire without a self-induction if

\[
\left(R^2 - \frac{L}{C} \right) = p^2LC \left(r^2 - \frac{L}{C} \right)
\]

and that the resistance of this equivalent wire must be \([Rr + (L/C)](R + r)\).

11C. Two conductors \(ABD, ACD \) are arranged in multiple arc. Their resistances are \(R, S \), and their coefficients of self- and mutual-induction are \(L, N, \) and \(M \). Prove that, when placed in series with leads conveying a current of frequency \(p \), the two circuits produce the same effect as a single circuit whose coefficient of self-induction is

\[
NR^2 + LS^2 + 2MRS + p^2(LN - M^2)(L + N - 2M)
\]

and whose resistance is

\[
\frac{RS(S + R) + p^2[R(N - M)^2 + S(L - M)^2]}{(L + N - 2M)^2p^2 + (R + S)^2}
\]

12. Three point a, b, and c, are connected as follows: between a and c are two branches, one containing a resistance \(R \) and the other an a-c generator and an inductance; between b and c are two branches, one containing an ac galvanometer and the other a resistance \(P \) and inductance \(L \); between a and b is a capacitance \(C \) and resistance \(S \). Between the two inductances there is a mutual inductance \(M \). Show that in order that the galvanometer may be undeflected, we must have

\[
M = CPR = LR(R + S)^{-1}
\]

13. A generator with electromotance \(E_0 \cos \omega t \), a switch, an inductance \(L \), and a resistance \(R \) are connected in series. Show that the electromotance value at the time when the switch must be closed in order that there will be no transient effect in the circuit is \(E = \pm E_0L(R^2 + \omega^2L^2)^{-1} \).

14. The total inductance and resistance in a circuit including the secondary of a
transmitting transformer are L and R. A current \(I \cos \omega t \) flows in the primary. At one instant in each half cycle, it is possible to open the switch in the secondary without a spark. Show that the primary current at this instant is \(RI_0(\omega L^2 + R^2)^{-1} \).

16. A periodic electromotive force having a square wave form such that \(V = V_o \) when \(2n\pi/\omega < t < (2n + 1)\pi/\omega \) and \(V = 0 \) when \((2n + 1)\pi/\omega < t < (2n + 2)\pi/\omega \), where \(n \) is an integer, is applied to a circuit having capacitance \(C \) and inductance \(L \) in series. Show that the current \(i_1 \) or \(i_2 \) after a steady state is reached, is given by

\[
\frac{2n\pi}{\omega} < t < (2n + 1)\frac{\pi}{\omega}, \quad i_1 = \frac{1}{2} V_o \left(\frac{C}{L} \right)^{1/2} \sec \left[\frac{\pi}{2\omega LC} \right] \sin \left((LC)^{-1} \left[t - (2n + 1)\frac{\pi}{\omega} \right] \right)
\]

\[
(2n + 1)\frac{\pi}{\omega} < t < (2n + 2)\frac{\pi}{\omega}, \quad i_2 = i_1 - \left(\frac{C}{L} \right)^{1/2} V_o \sin \left((LC)^{-1} \left[t - (2n + 1)\frac{\pi}{\omega} \right] \right)
\]

Investigate the cases where \(\omega = (LC)^{-1} \) and \(\omega = \frac{1}{2}(LC)^{-1} \).

16. Solving the preceding problem by Fourier's series, show that the current is given by

\[
i = V_o \frac{2\omega C}{\pi} \sum_{m=0}^{\infty} \left[(2m + 1)\omega^2 LC - 1 \right]^{-1} \cos [(2m + 1)\omega t]
\]

17. The electromotive force in the preceding problems, but with the limits \(\pm \frac{1}{2} V_o \) and \(-\frac{1}{2} V_o \) instead of \(V_o \) and 0, is applied to \(L_1 \) which is coupled by \(M \) to a circuit having \(L_2 \) and \(C \) in series. Show that, in a steady state, the charges on the capacitor \(Q_1 \) and \(Q_2 \), for the time intervals of problem 14, are

\[
Q_{1,2} = \pm \frac{MV_o C}{L_1} \sec \frac{\pi \omega_1}{2\omega} \sin \frac{1}{2} \left(\theta + \frac{\pi \omega_1}{\omega} \right) \sin \frac{1}{2} \theta
\]

where

\[
\omega_1^2 = \frac{L_1}{C(L_1 L_2 - M^2)} \quad \text{and} \quad \theta = \omega_1 \left(t - \frac{2n + 1}{\omega} \frac{\pi}{\omega} \right)
\]

18. Solving the preceding problem by Fourier's series, show that the charge on the capacitor is given by

\[
Q = \frac{2MV_o C}{\pi} \sum_{m=0}^{\infty} \frac{\sin (2m + 1)\omega t}{(2m + 1)(2m + 1)\omega^2 (L_1 L_2 - M^2) C - L_1}
\]

19. An electromotive force is impressed across the primary of a transformer having inductance \(L_1 \) and resistance \(R_1 \). The secondary of the transformer plus load has inductance \(L_2 \), resistance \(R_2 \), and is in series with a load of impedance \(Z_L \). The mutual inductance between primary and secondary is \(M \). Show that the condition that the ratio of primary and secondary current may be independent of frequency is that \(\omega L_2 \) be much greater than \(R_2 + R_L + j/\omega C_L \).

20. In the above case, show that the condition that the ratio of primary to secondary electromotive force may be independent of frequency is that \(\omega L_1 Z_L \) will be much greater than \((M^2 - L_1 L_2)\omega^2 \) and \(R_1 (R_2 + Z_L) \) and \(\omega (L_2 R_1 + L_1 R_2) \).

21. The angular frequency of the sinusoidal electromotive force used in the circuit of Art. 10.01 is \(\omega_1 \). Show that the ratio \(y \) of the mean square of the current when \(LC = \omega_1^{-2} \) to that for any value of \(L \) and \(C \) is

\[
y = \left[1 + \frac{L^2 \omega_1^2}{R^2} \left(1 - \frac{1}{LC \omega_1^2} \right)^2 \right]
\]
PROBLEMS

22. If L, C, and R in the last problem are replaced by L_2, C_2, and R_2 and if M is sufficiently small, show that the result of the last problem is equally valid for the current in circuit 2 in Fig. 10.09 where ω_1 is the angular frequency of the electromotance in circuit 1.

23. Prove that a network composed of impedances Z_1, Z_2, \ldots, Z_n joining the points P_1, P_2, \ldots, P_n to a common point may be replaced by a network of impedances $Z_{12}, Z_{13}, Z_{23}, \ldots$, joining all pairs of points P, the suffixes showing the points connected, where

$$Z_{rs} = Z_{r}Z_{s} \sum_{p=1}^{n} Z_{p}^{-1}$$

24. It can be shown that the impedance of any two-terminal network containing only pure reactances is of the form

$$Z = \frac{A}{j\omega^2 - \omega^2} \sum_{n=0}^{\infty} \frac{(\omega_{n+1}^2 - \omega^2)}{\omega_{n+1}^2 - \omega^2}$$

where A is a positive constant and $0 \leq \omega_1 \leq \omega_2 \ldots \leq \omega_{n+1} \leq \infty$. Show from this that Z can be formed by a series circuit and a series combination of parallel tuned circuits with antiresonant angular frequencies ω_2, ω_3, \ldots, ω_n or by a parallel combination of tuned circuits with resonant angular frequencies ω_1, ω_2, \ldots, ω_{n+1}.

25. Show that, if two reactive impedances have the same resonant and antiresonant frequencies, their ratio must be constant for all frequencies.

26. Show that the reactance of an impedance containing only pure reactances always increases with frequency, between resonant or antiresonant frequencies.

27. One circuit has a resistance R_1, capacitance C_1, and total inductance L_1. The corresponding quantities in a second circuit are R_2, C_2, and L_2. Part of the inductance is common to both circuits. Show that, if M is defined as the flux linking one circuit when unit current flows in the other, the equations for i_1 and i_2 are identical with those of 10.09, provided that the element common to both circuits has zero resistance. Such an arrangement is called direct or auto transformer coupling.

28. Five circuits are arranged in a chain so that all mutual impedances are zero except those involving adjacent circuits. A sinusoidal electromotance is now applied to the central or 3 circuit. Show that the phasor currents are given by

$$i_1 = Z_{12}Z_{11}^{-1}i_0, \quad i_2 = Z_{12}Z_{22}(Z_{11}Z_{22} - Z_{12}^{-1})^{-1}i_0$$

$$i_3 = [Z_{22} - Z_{12}(Z_{12}^{-1}Z_{22} - Z_{12}^{-1})^{-1}Z_{11}Z_{22}]^{1/2}i_1$$

29. Two circuits contain inductances L_1 and L_2, capacitances C_1 and C_2, and total resistances R_1 and R_2, respectively. A portion r of R_1 and R_2 is common to both circuits. The first circuit contains a periodic electromotance having angular frequency ω_1. Show that the current in the second circuit is a maximum when the reactance of each circuit, separately, for this frequency is zero and that the value of this maximum current is $rC(R_1R_2 - r^2)^{-1}$. Such circuits are said to be resistance coupled.

30. Three circuits are arranged in line so that $Z_{12} = 0$ and Z_{12} and Z_{23} are pure imaginaries. An electromotance having angular frequency ω_1 is placed in the first circuit. The resistances in the circuits are R_1, R_2, and R_3, respectively. Show that if $R_1R_2R_3 > |R_2Z_{12} - R_1Z_{23}|$, a maximum current is obtained in the third circuit, only where the reactance of each circuit, separately, equals zero for ω_1 and that its amplitude is

$$C_0|Z_{12}Z_{23}|(R_1R_2R_3 - Z_{12}R_2 - Z_{23}R_1)^{-1}$$
31. If, in the above circuit, \(R_1 R_2 R_3 \ll R_2 Z_2^2 - R_2 Z_2^2 \), show that a maximum of current in the third circuit may be obtained when \(X_{11} = 0 \) and \(X_{22} X_{33}^{-1} = -Z_{32}^{-2} \) and that its amplitude is \(\left| Z_{12} \right| C_0 (R_1 R_2)^{-1} (R_1 R_3 - Z_{12})^{-1} \), where \(X_{11}, X_{22}, \) and \(X_{33} \) are the reactances.

32. If, in the above circuit, \(R_1 R_2 R_3 \ll R_2 Z_2^2 - R_2 Z_2^2 \), show that a maximum of current in the third circuit may be obtained when \(X_{33} = 0 \) and \(X_{22} X_{11}^{-1} = -Z_{12}^{-2} \) and that its amplitude is \(\left| Z_{22} \right| C_0 (R_1 R_2)^{-1} (R_1 R_3 - Z_{12})^{-1} \).

33. Two impedances are said to be inverse if \(Z_1 Z_2 = k^2 \), where \(k \) is real and independent of the frequency. Show that, if \(Z_1 \) acts like \(L_1 \) and \(C_1 \) in series, then \(Z_2 \) must act like \(L_2 \) and \(C_2 \) in parallel where \(L_1 C_1^{-1} = L_2 C_2^{-1} = k^2 \).

34. A pair of impedances satisfying 10.16 (3) are said to be inverse impedances. Suppose that \(Z_1 Z'_1 = Z_2 Z'_2 = k^2 \). Show that the impedance obtained by putting \(Z_1 \) and \(Z_2 \) in parallel and that obtained by putting \(Z'_1 \) and \(Z'_2 \) in series are inverse impedances with the same \(k^2 \).

35. A transmission line or filter or any form is connected to a load matching its output impedance \(Z_{41} \) and to a transmitter matching its input impedance \(Z_{23} \). Show that, at any specified frequency, nothing is changed if we replace the line or filter by a single T section, like that of 10.12b, provided that

\[
2Z_{k1} = (Z_a + Z_b)^2 (Z_a + Z_b + 4Z_a)^2 + Z_a - Z_b
\]

\[
2Z_{k2} = (Z_a + Z_b)^2 (Z_a + Z_b + 4Z_a)^2 - Z_a + Z_b
\]

36. Show that the T section in Fig. 10.12b and the π section of Fig. 10.12c behave identically, at all frequencies, provided that, at any frequency,

\[
Z_a = Z_a (Z_a + Z_b + Z_1)^{-1}, \quad Z_0 = Z_0 (Z_a + Z_b + Z_1)^{-1}, \quad Z_3 = Z_3 (Z_a + Z_b + Z_1)^{-1}
\]

37. Let \(Z_{01} \) and \(Z_{11} \) be the impedance across the input terminals of a filter when the output terminals are open or shorted, respectively, and let \(Z_{02} \) and \(Z_{22} \) be the corresponding impedances when output and input terminals are interchanged. Show that

\[
2Z_{k1} = Z_{01} - Z_{02} + [(Z_{01} - Z_{02})^2 + 4Z_{02} Z_{21}]^{1/2}
\]

\[
2Z_{k2} = Z_{02} - Z_{01} + [(Z_{01} - Z_{02})^2 + 4Z_{02} Z_{21}]^{1/2}
\]

and

\[
2 \cosh \Gamma = (Z_{01} + Z_{02}) (Z_{01} Z_{02} - Z_{21})^{-1/2}
\]

38. Let \(\omega_m \) be the resonance frequency of \(Z_1 \) in 10.16 and let \(L_1 \) be its effective inductance. Show with the aid of problem 32 that 10.16 (4) becomes

\[
Z_b = k \left[1 - \frac{\omega_m^2 L_1^2}{4k^2} \left(\omega - \omega_m \right)^2 \right]^{1/2}
\]

39. Using the preceding problem and taking the filter considered at the end of 10.16 in which the cutoff frequencies are both at \(\cosh \Gamma = -1 \), show that, in terms of the cutoff frequency \(\omega_2 \) we have

\[
Z_b = k \left[1 - \left(\frac{\omega - \omega_m}{\omega_m} \right)^2 \left(\frac{\omega_m - \omega_m}{\omega_m} \right)^{-2} \right]^{1/2}
\]

40. Show from the preceding that if \(\omega_1 \) and \(\omega_2 \) are the two cutoff frequencies and \(\omega_m \) is the resonance frequency for \(Z_1 \) then \(\omega_m^2 = \omega_1 \omega_2 \).

41. Comparing 10.16 (4) and problem 39, show that for given values of \(m, \omega_2, \) and \(\omega_m \) the frequency of infinite attenuation \(\omega_m \) can be found from

\[
\frac{\omega_m}{\omega_m} = \left(\frac{\omega_2}{\omega_m} - \frac{\omega_m}{\omega_2} \right) (1 - m^2)^{-1}
\]
PROBLEMS

42. A transmission line whose characteristic impedance is R_e is to be connected to a load of impedance $R_L + jX_L$. Show that line and load can be matched by placing in series with the load a quarter wave length of line of characteristic impedance $(R_R R_L)^{1/2}$ and then connecting at its junction with the main line a short-circuited branch line of length l and characteristic impedance R_b where $\tan \beta l = R_L/X_L$.

43. Show that the line and load of the last problem can also be matched through a quarter wave line of characteristic impedance $[(R_L^2 + X_L^2)R_b/R_L]^{1/2}$ by connecting at its junction with the load a short-circuited branch line of length l and characteristic impedance R_L where $\tan \beta l = -(R_L^2 + X_L^2)/(R_b X_L)$.

References

The author has found the following books useful for this chapter:

CHAPTER XI

EDDY CURRENTS

11.00. Induced Currents in Extended Conductors.—In the last two chapters, we have applied the laws of the magnetic interaction of currents and Faraday's law of induction to currents flowing in linear circuits. In the present chapter, we shall see what results from the application of these laws to extended conductors. We should note that this treatment, and all that have preceded it, involves one approximation, viz., the assumption that electric and magnetic fields are instantaneously propagated. This is equivalent to saying that Maxwell's "displacement current" is neglected. The error so introduced is perfectly negligible if the frequencies are such that the wave length is large compared with the dimensions of the apparatus. If this condition is not met, we must resort to the complete Maxwell equations treated in Chap. XIII.

Faraday's law of induction states that, if the magnetic induction \(B \) in a conductor, is changing, an electric field \(E \) is produced which is given, in magnitude and direction by 8.00 (3), to be

\[
\nabla \times E = -\frac{dB}{dt}
\]

In terms of the magnetic vector potential \(A \), 8.00 (4) gives

\[
E = -\frac{dA}{dt}
\]

Since this electric field is produced in a conductor, a current will flow according to Ohm's law. If \(\tau \) is the resistivity and \(i \) the current density, we may, with the aid of 6.02 (3), write (1) and (2) in the form

\[
\tau (\nabla \times i) = -\frac{dB}{dt}
\]

\[
\tau i = -\frac{dA}{dt}
\]

These currents, flowing in the conductor of permeability \(\mu \), will produce magnetic fields which, by 7.01 (3) and 7.02 (2), are given by

\[
\nabla \times B = \mu i
\]

\[
\nabla^2 A = -\mu i
\]

The equations that must be satisfied by \(i, B, \) and \(A \) in a conductor when a changing field is present derive from (3), (4), (5), and (6). Elimination
of B by (3) from the time derivative of (5) gives, by 6.00 (3),

$$\frac{\mu}{\tau} \frac{di}{dt} = -[\nabla \times (\nabla \times i)] = \nabla^2 i - \nabla (\nabla \cdot i) = \nabla^2 i$$ \hspace{1cm} (7)

Elimination of i from (4) and (6) gives

$$\frac{\mu}{\tau} \frac{dA}{dt} = \nabla^2 A$$ \hspace{1cm} (8)

Elimination of i from (3) and (5) gives, with the help of 7.01 (1),

$$\frac{\mu}{\tau} \frac{dB}{dt} = -[\nabla \times (\nabla \times B)] = \nabla^2 B - \nabla (\nabla \cdot B) = \nabla^2 B$$ \hspace{1cm} (9)

Equations (7), (8), and (9) all have the form of the well-known equation of the conduction of heat, but the dependent variable is a vector instead of a scalar. In rectangular coordinates, each component, regarded as a scalar, satisfies the same equation. This is not true for the components in any other system of coordinates except in special cases.

Problems in eddy currents, like those in linear circuits, naturally fall into two classes: transient and steady state. The latter are handled most easily by means of the phasor concept as in Chap. X. Here for the first time we meet quantities that are both phasors and vectors. Bold-face symbols now indicate vector properties. A small flat v or inverted circumflex over a symbol denotes a phasor and a circumflex means a conjugate phasor. The absence of vector designation indicates a scalar quantity or the magnitude of a vector quantity. The absence of phasor designation indicates a real number which may depend on time.

For a sufficiently small volume element the current is proportional to the applied electromotive so that its impedance is simply its resistance $\tau \frac{dx}{(dy \, dz)}$. In a steady state, the current in the element is $i \, dy \, dz$. Thus from 10.02 (2) the average power dissipated in such an element is

$$dP = \frac{1}{2} \dot{\mathbf{v}}^2 dv = \frac{1}{2} \tau \ddot{t} \ddot{u} \, dv$$ \hspace{1cm} (10)

11.01. Solution for Vector Potential of Eddy Currents.—We can obtain solutions of 11.00 (8) when $\tau \neq \infty$ in just the same way we did when $\tau = \infty$ in 7.04. As in 7.04 (1) and (2), let us write A in the form

$$A = \nabla \times (u W_1 + \mathbf{u} \times \nabla W_2)$$ \hspace{1cm} (1)

where $\mathbf{u} = i, j, k$, or r. From 7.04 (3) and (4), we have

$$\nabla^2 A = \nabla \times [u \nabla^2 W_1 + \mathbf{u} \times \nabla (\nabla^2 W_2)]$$

Substituting from these two equations in 11.00 (8) gives

$$\nabla \times \left[u \left(\nabla^2 W_1 - \frac{\mu}{\tau} \frac{dW_1}{dt} \right) + \mathbf{u} \times \nabla \left(\nabla^2 W_2 - \frac{\mu}{\tau} \frac{dW_2}{dt} \right) \right] = 0$$
Thus, if W_1 and W_2 are solutions of the heat conduction equation, viz.,

$$\nabla^2 W = \frac{\mu}{\tau} \frac{dW}{dt} \tag{2}$$

then, with the aid of (1), we can obtain from them solutions for the vector potential of eddy currents.

We calculate B in terms of W_1 and W_2 by making use of 7.04 (5) and (6). Thus,

$$B = \nabla \times A = \nabla \times (\nabla \times uW_1) + \nabla \times (u\nabla^2 W_2) \tag{3}$$

$$= \nabla \times \left[\frac{\mu}{\tau} \frac{d}{dt}(uW_2) - u \times \nabla W_1 \right] \tag{4}$$

where $u = i, j, k$, or r. Since B and A satisfy identical equations, 11.00 (8) and (9), the similar form of (1) and (4) is to be expected. We notice that now both W_1 and W_2 contribute to B. We can simplify this expression somewhat further by using 7.04 (6), which gives

$u = i, j, k, \quad B = -\frac{\mu}{\tau} \frac{d}{dt}(u \times \nabla W_2 + uW_1) + u \cdot \nabla (\nabla W_1) \tag{5}$

$u = r, \quad B = -\frac{\mu}{\tau} \frac{d}{dt}(r \times \nabla W_2 + rW_1) + r \cdot \nabla (\nabla W_1) + 2\nabla W_1 \tag{6}$

When u lies along u_1, a solution of (2) of the form $U(u_1)F(u_2, u_3, t)$ makes B normal to A as in 7.04.

11.02. Steady-state Skin Effect.—A simple solution of 11.00 (7) applies to a medium of permeability μ and resistivity τ filling all positive z-space. If the phasor current density i_z is uniform, x-directed, and of angular frequency ω on the surface, then in the interior 11.00 (7) becomes

$$\frac{j\omega \mu}{\tau} i_z = j\omega \mu \gamma i_z = \frac{\partial^2 i_z}{\partial z^2} = \frac{d^2 i_z}{dz^2} \tag{1}$$

since i_z is a function of z only. The solution of this equation is

$$i_z = C e^{-j(\omega \gamma)z} + \bar{D} e^{j(\omega \gamma)z} \tag{2}$$

If i_z is finite when $z = \infty$, then $\bar{D} = 0$; so writing $1 + j$ for $(2j)^{1/2}$ gives

$$i_z e^{j\omega t} = i_0 e^{-j(\omega \gamma)z} e^{j\omega t - j(\omega \gamma)z} \tag{3}$$

where i_0 is the value of i_z at the surface. Taking the real part gives

$$i_z = i_0 e^{-j(\omega \gamma)z} \cos [\omega t - (\frac{1}{2} \omega \gamma)z] \tag{4}$$

Thus the i_z amplitude decrease is exponential and the phase change uniform.

The net current $I \cos (\omega t + \phi)$ per meter width, given by expanding the cosine and using Dw 863.1 and 863.2 or Pc 506 and 507, is

$$\int_0^\infty i_z \, dz = i_0 (2\omega \gamma)^{-1/2} (\cos \omega t + \sin \omega t) = i_0 (\omega \gamma)^{-1/2} \cos (\omega t - \frac{1}{4} \pi) \tag{5}$$
SKIN EFFECT ON TUBULAR CONDUCTOR

This would be increased by removing all conducting matter below a certain depth since, for certain values of \(z \), the current is reversed. The power absorbed as heat, per square meter of surface, is, from 11.00 (10), with the aid of \(Dw 440.20 \) and 565.1 or \(Pc 363 \) and 401,

\[
P_1 = \frac{\omega r}{2\pi} \int_0^{2\pi} \int_0^\infty \frac{2x}{r} \, dt \, dz = \frac{\tau I^2}{2} \int_0^\infty e^{-2(\alpha \mu \gamma)} \, dz
\]

\[
= \frac{1}{4} \tau I^2 (\frac{3}{2} \alpha \mu \gamma)^{-\frac{1}{2}} = \tau I^2 (\gamma \delta)^{-1} = \frac{1}{2} \omega \mu \delta I^2
\]

where \(I_e = (2)^{-1} I \) is the effective value of \(I \). Thus the resistance equals the d-c resistance of a skin of thickness \(\delta = (\frac{3}{2} \alpha \mu \gamma)^{-1} \).

A uniform \(y \)-directed magnetic induction \(B_0 \cos \omega t \) adjacent to the surface would induce the eddy currents just considered. From 11.00 (7) and (8) the same differential equation describes the behavior of \(i \) and \(B \) in the conductor so that both die out exponentially. To find the power dissipated, take the line integral of \(B \) around a rectangular path normal to \(x \) whose sides lie in the \(z \)-direction and whose meter long ends lie, one just outside the surface where the induction is \(B_0 \) and the other far inside the conductor where it is zero. Only the \(B_0 \) end contributes to the integral so that from 7.01 (2) (or from Maxwell’s first equation)

\[
B_0 = \mu I = 2\mu I_e
\]

From (6), the power dissipated by eddy currents in a surface area \(S \) in terms of the magnetic induction amplitude \(B_0 \) just outside the surface is

\[
P = \int_S P_1 \, dS = (2\mu \gamma \delta)^{-1} \int_S B_0^2 \, dS
\]

The inductance per square meter \(L' \) contributed by the magnetic field inside the conductor is found from (4), (6), 8.08 (1.1), and 11.00 (3).

\[
\frac{L' I^2_e}{2} = \frac{\omega}{4\pi} \int_0^{2\pi} \int_0^\infty i \cdot A \, dt \, dz = \frac{\tau}{4\pi} \int_0^{2\pi} \int_0^\infty i^2 \, dt \, dz = \frac{P}{2\omega} = \frac{\tau I^2_e}{2\omega \delta}
\]

Comparison with the resistance \(R' \) per square meter gives the relation

\[
L' = \frac{\tau}{\omega \delta} = \frac{1}{\omega \delta \gamma} = R'
\]

At high frequencies \(L' \) is completely negligible.

11.03. Skin Effect on Tubular Conductor.—If the frequency is so high that the depth of penetration is small compared with the curvature of the conducting surface, then the results of the last article can be applied to the usual cylindrical wire or tubular conductor. If this is not true, we must use cylindrical coordinates. In this case, if we have symmetry about the axis so that \(i_z \) is a function of \(\rho \) only, 11.00 (7) becomes

\[
\frac{j\omega \mu i_z}{\tau} = j\omega \mu \gamma i_z = j\rho i_z = \frac{\partial^2 i_z}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial i_z}{\partial \rho}
\]
Let \(v = (jp)^\dagger \rho \), and this becomes

\[
\frac{\partial^2 i_z}{\partial v^2} + \frac{1}{v} \frac{\partial i_z}{\partial v} - i_z = 0
\]

(2)

This is exactly Bessel's modified Eq. 5.292 (1) of order zero, the solutions of which were found in 5.32 (6) to be

\[
i_z = \tilde{C}I_0(v) + \tilde{D}K_0(v) = \tilde{C}I_0[(jp)^\dagger \rho] + \tilde{D}K_0[(jp)^\dagger \rho]
\]

(3)

From 7.16 (2), we know that there can be no magnetic field in the cavity in this tube because of the symmetry. If the external and internal radii of the tube are \(a \) and \(b \), respectively, we see that the boundary condition at \(\rho = b \) is \(B = 0 \). From 11.00 (3), this gives

\[
(\nabla \times \mathbf{i})_{\rho=b} = 0 \quad \text{or} \quad \left(\frac{\partial i_z}{\partial \rho} \right)_{\rho=b} = 0
\]

(4)

At \(\rho = a \), the boundary condition is

\[
i_z = \tilde{C}I_0[(jp)^\dagger a] + \tilde{D}K_0[(jp)^\dagger a]
\]

(5)

From (3) and (4) using 5.33 (4), we have

\[
0 = \tilde{C}I_1[(jp)^\dagger b] - \tilde{D}K_1[(jp)^\dagger b]
\]

and from (3) and (5),

\[
i_0 = \tilde{C}I_0[(jp)^\dagger a] + \tilde{D}K_0[(jp)^\dagger a]
\]

From these, we obtain

\[
\tilde{C} = \frac{k_1[(jp)^\dagger b]i_0}{I_0[(jp)^\dagger a]K_1[(jp)^\dagger b] + I_1[(jp)^\dagger b]K_0[(jp)^\dagger a]}
\]

(6)

\[
\tilde{D} = \frac{k_1[(jp)^\dagger b]i_0}{I_0[(jp)^\dagger a]K_1[(jp)^\dagger b] + I_1[(jp)^\dagger b]K_0[(jp)^\dagger a]}
\]

(7)

11.04. Skin Effect on Solid Cylindrical Conductor.—If we have a solid wire instead of a tube, we must set \(\tilde{D} = 0 \) in 11.03 (3) since \(K_0(x) \) is infinite when \(x = 0 \) by 5.33. We would then have for \(i_z \)

\[
i_z = \frac{I_0[(jp)^\dagger \rho]}{I_0[(jp)^\dagger a]}i_0
\]

(1)

instead of the result given by 11.03 (3), (6), and (7). For numerical computation, it is necessary to split \(I_0[(j)^\dagger x] \) and \(K_0[(j)^\dagger x] \) into real and imaginary parts. This is done by means of the \(\text{ber} \), \(\text{bei} \), \(\text{ker} \), and \(\text{kei} \) functions of Lord Kelvin, for which numerous tables exist; see, for example, Dw 1050. Thus

\[
I_0[(j)^\dagger x] = \text{ber}x + j\text{bei}x
\]

(2)

\[
K_0[(j)^\dagger x] = \text{ker}x + j\text{kei}x
\]

(3)

Series for these functions are easily obtained by substituting in 5.33 (1) and (4). Using \(\text{ber} \) and \(\text{bei} \) functions in (1) multiplied by \(e^{j\omega t} \) and taking
the real part, we have for the current density in a solid wire of radius \(a \)

\[
i_z = \begin{cases} \text{ber}_0[(p)^{1} a] + \text{bei}_0[(p)^{1} a] \cos(\omega t + \alpha) \\ \text{ber}_0[(p)^{1} a] + \text{bei}_0[(p)^{1} a] \end{cases} \]

\[\alpha = \tan^{-1} \frac{\text{ber}_0[(p)^{1} a] \text{bei}_0[(p)^{1} a] - \text{ber}_0[(p)^{1} a] \text{bei}_0[(p)^{1} a]}{\text{ber}_0[(p)^{1} a] \text{ber}_0[(p)^{1} a] + \text{bei}_0[(p)^{1} a] \text{bei}_0[(p)^{1} a]} \]

We can obtain the total current in the wire at any instant from the magnetic field just inside the surface, since by 8.09 (1), they are connected by the relation \(B = \mu I/(2\pi a) \). From (1), 11.00 (3), and 5.33 (4), we have, after dividing out \(e^{i\omega t} \),

\[
j\omega (\vec{B})_a = -\tau (\nabla \times \vec{i})_a = \phi \left(\frac{\partial i_z}{\partial \rho} \right)_a = \frac{\phi (jp)^{1} I_0[(jp)^{1} a] \tau i_0}{I_0[(jp)^{1} a]}.
\]

or

\[
\bar{I} = \frac{2\pi a \vec{B}}{\mu} = \frac{2\pi \tau (jp)^{1} a I_0[(jp)^{1} a]}{j\omega I_0[(jp)^{1} a]} i_0.
\]

The average power dissipated per unit length in a ring of radius \(\rho \) and thickness \(d\rho \) is, from 11.00 (10),

\[
d\bar{P}_{av} = \frac{1}{2} |\bar{I}|^2 2\pi \rho \, d\rho = \pi \tau i_0^2 \, d\rho
\]

where \(i_z \) is the conjugate phasor of \(i_z \). We should note here that for electrical purposes the conjugate complex of \((+j)^t = 2^{-1}(1 + j) \) is \((-j)^t = 2^{-1}(1 - j) = -j(j)^t \). We may write

\[
\bar{I}_0[(jp)^{1} a] = \bar{I}_0[(-jp)^{1} a] = \bar{I}_0[-j(jp)^{1} a]
\]

The total power consumed per unit length in the wire is then

\[
\bar{P}_{av} = \int_0^a d\bar{P}_{av} = \frac{\pi i_0^2}{I_0[(jp)^{1} a] I_0[-j(jp)^{1} a]} \int_0^a I_0[-j(jp)^{1} a] I_0[(jp)^{1} a] \rho \, d\rho
\]

This integral is a special case of 5.323 (1) obtained by setting \(n = 0 \), and the result written in terms of \(\text{ber}_0 \) and \(\text{bei}_0 \) is

\[
\bar{P}_{av} = \frac{\pi \tau a}{(p)^{1}} \frac{\text{ber}_0[(p)^{1} a] \text{bei}_0[(p)^{1} a] - \text{ber}_0[(p)^{1} a] \text{bei}_0[(p)^{1} a]}{\text{ber}_0[(p)^{1} a] + \text{bei}_0[(p)^{1} a]}
\]

From (6), the rms current \(I_z \) is

\[
I_z^2 = \frac{2\pi^2 \tau^2 a^2 \bar{I}_0[(jp)^{1} a] \bar{I}_0[(jp)^{1} a]}{\mu \omega^2} \frac{I_0[(jp)^{1} a] I_0[(jp)^{1} a]}{I_0[(jp)^{1} a] I_0[(jp)^{1} a]}
\]

\[
= \frac{2\pi^2 a^2 \{\text{ber}_0[(p)^{1} a]\}^2 + \{\text{bei}_0[(p)^{1} a]\}^2}{p \{\text{ber}_0[(p)^{1} a]\}^2 + \{\text{bei}_0[(p)^{1} a]\}^2}
\]

If \(R = \tau/(\pi a^2) \) is the resistance per unit length for direct currents, then the high-frequency resistance \(R' \) is

\[
R' = \frac{\bar{P}_{av} a^2}{\tau I_z^2} = \frac{a(p)^{1} \{\text{ber}[(p)^{1} a]\text{bei}[(p)^{1} a] - \text{ber}[(p)^{1} a]\text{bei}[(p)^{1} a]\}R}{2 \{\text{ber}[(p)^{1} a]\}^2 + \{\text{bei}[(p)^{1} a]\}^2}
\]
where, as in many tables, the zero subscript is omitted and from 11.03 (1)

\[p = r^{-1}\mu_0 = \gamma \mu_0 \] (10)

and \(a \) is the radius of the cylinder.

One gets the magnetic field energy inside the wire as in (6), thus

\[j_\omega B = \phi \tau \left(\partial \frac{\partial x}{\partial \rho} \right) = \frac{\phi \tau i_0}{I_0((jp)^{1}a)} \frac{\partial I_0((jp)^{1}a)}{\partial a} \]

The average energy inside the wire is, from 8.02 (3),

\[\frac{\pi}{2\mu} \int_0^a \bar{\mathbf{E}} \cdot \bar{\mathbf{B}} \, d\rho = \frac{\pi r^2 i_0^2 p}{2\mu \omega^2 I_0((jp)^{1}a)I_0((-jp)^{1}a)} \int_0^a I_0^2 I_0' \, d\rho \]

where we have written \(I_0 \) for \(I_0((jp)^{1}a) \) and \(I_0' \) for \(\partial I_0(x)/\partial x \). Since \(I_0'(x) \) equals \(I_1(x) \) by 5.33 (4), we see that this integral is identical with 5.323 (1) when \(n = 1 \), so that its value in terms of \(ber_1(x) \) and \(bei_1(x) \) is

\[ap^{-1}[ber_1((p)a)bei_1((p)a) - ber_1((p)a)bei_1((p)a)] \]

Using \(Dw \) 828.1, 828.2, 829.3, and 829.4 to reduce this to zero order and remembering that this average energy equals \(\frac{1}{2}L_i I_i^2 \) where \(L_i \) is the internal self-inductance per unit length and \(I_i^2 \) is given by (8), we obtain

\[L_i = \frac{\tau (p)^{1} ber((p)^{1}a)ber'((p)^{1}a) + bei((p)^{1}a)bei'((p)^{1}a)}{2\pi \omega a \{ ber'((p)^{1}a) \}^2 + \{ bei'((p)^{1}a) \}^2} \] (11)

11.05. Solution in Spherical Coordinates for Axial Symmetry.—Let us assume that the magnetic field producing the eddy currents is independent of \(\phi \) and has no \(\phi \)-component. Then the vector potential has only a \(\phi \)-component and may be written

\[\mathbf{A} = \phi A_\phi(r, \theta, t) \] (1)

where \(\phi \) is a unit vector in the \(\phi \)-direction given by

\[\phi = -i \sin \phi + j \cos \phi \] (2)

Apply Laplace's operator 3.05 (1) to \(A_x = -A_\phi \sin \phi \) and \(A_y = A_\phi \cos \phi \) separately. After recombining we see that 11.00 (8) becomes

\[\frac{\mu}{\tau} \frac{\partial A_\phi}{\partial t} = \nabla^2 \mathbf{A} + \frac{A_\phi}{r^2 \sin^2 \theta} \]

Writing out \(\nabla^2 \) in polar coordinates by 3.05 (1) and dividing out \(\phi \) give

\[\frac{\mu}{\tau} \frac{dA_\phi}{dt} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial A_\phi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial A_\phi}{\partial \theta} \right) - \frac{A_\phi}{r^2 \sin^2 \theta} \]

\[= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial A_\phi}{\partial r} \right) + \frac{1 - u^2}{r^2} \frac{\partial}{\partial u} \left((1 - u^2) \frac{\partial A_\phi}{\partial u} \right) \] (4)

where \(u = \cos \theta \).

We shall now consider the steady-state eddy currents when the magnetic field oscillates with an angular frequency \(\omega \). As in 5.12, we shall
seek a solution that is the product of a function of θ by a function of r. Then we write

$$A_\phi = \Theta r^{-1} \Re e^{i\omega t} \quad \text{(real part)}$$

Substituting in (4), multiplying through by r^2, and dividing through by $\Theta r^{-1} \Re e^{i\omega t}$ give

$$\frac{r^2 d^2 \Re}{d r^2} + \frac{r d \Re}{d r} - \frac{1}{4} - jpr^2 + \frac{(1 - u^2)^4}{\Theta} \frac{d^2}{du^2}(1 - u^2)^4 \Theta = 0$$

where, as in 11.04 (10), we have written

$$p = r^{-1} \mu \omega = \gamma \mu \omega$$

Proceeding as we did in solving 5.12 (1), we set the terms in (6) involving θ equal to $-n(n+1)$ and those involving r equal to $n(n+1)$, thus satisfying (6) and giving, after expanding the derivatives in (6),

$$(1 - u^2) \frac{d^2 \Theta_n}{du^2} - 2u \frac{d \Theta_n}{du} - \frac{\Theta_n}{1 - u^2} + n(n + 1) \Theta_n = 0$$

$$(1 - u^2) \frac{d^2 \Re_n}{du^2} + \frac{1}{r} \frac{d \Re_n}{dr} - \left[jp + \frac{n(n + 1) + \frac{1}{2}}{r^2} \right] \Re_n = 0$$

The first of these is identical with the differential equation for Legendre’s associated functions with $m = 1$ as written in 5.23 (4.1), and the second is the modified Bessel equation in x where $x = (jp)^{1/2}$ as written in 5.32 (1). Thus, from 5.23 (5) and 5.32, A_ϕ is the real part of

$$r^{-1}[A_n P_n^1(u) + B_n Q_n^1(u)] [\tilde{c}_{n} I_{n+1}((jp)^{1/2}) + \tilde{d}_{n} K_{n+1}((jp)^{1/2})] e^{i\omega t}$$

If n is an integer, as it must be for $P_n^1(u)$ and $Q_n^1(u)$ unless conical boundaries are involved, we can use $I_{-(n+1)}$ instead of K_{n+1} for the second solution, by 5.37.

In a region where the conductivity is zero, the left side of (4) is zero, and if we let $\tilde{A}_\phi e^{i\omega t} = \tilde{R}' e^{i\omega t}$, we obtain (8) as before but instead of (9) we get

$$\frac{d}{dr} \left(r^2 \frac{d \tilde{R}'}{dr} \right) - n(n + 1) \tilde{R}' = 0$$

whose solution is given by 5.12 (3) to be

$$\tilde{R}' = \tilde{A} r^n + \tilde{B} r^{-n-1}$$

and in a nonconducting region this will replace terms involving r in (10).

11.06. Conducting Sphere in Alternating Field.—Consider now the specific example of a sphere of resistivity τ, permeability μ, and radius a placed in a uniform alternating z-directed magnetic field $\tilde{B} e^{i\omega t}$. The phasor vector potential of this field is, when $e^{i\omega t}$ is divided out,

$$\tilde{A} = \phi \tilde{B} r \sin \theta = \phi \tilde{B} r P_1^1(\cos \theta)$$

where

$$\phi = \sqrt{\frac{\tau}{\mu}}$$

and

$$\tilde{B} = \frac{1}{\sqrt{\mu \tau}}$$

with τ and μ in SI units.
as can be verified easily by taking its curl by 3.04 (2) and (3). Thus,

\[n = 1 \text{ in } 11.05 (10) \text{ and } (12); \]\n
and, since the eddy current vector potential must vanish at infinity, we have, outside the sphere,

\[a < r < \infty, \quad \vec{\Phi}_o = \frac{1}{2} \vec{B}(r + \vec{D}r^{-2}) \sin \theta \tag{2} \]

At \(r = 0 \), \(\vec{A}_i \) is finite, so 5.37 (4) and (5) show that only \(I_1[(jp)x_1] \) can occur inside the sphere. Thus, setting \(n = 1 \) in 11.05 (10), we have

\[0 < r < a, \quad \vec{A}_i = \frac{1}{2} \vec{B} C r^{-4} I_1[(jp)x_1] \sin \theta \tag{3} \]

From 7.21 (6) and (7), the boundary conditions when \(r = a \) are

\[\vec{A}_o = \vec{A}_i \quad \text{and} \quad \mu r \frac{\partial}{\partial r}(r \sin \theta \vec{A}_i) = \mu r \frac{\partial}{\partial r}(r \sin \theta \vec{A}_o) \tag{4} \]

Putting \(r = a \) in (2) and (3), we obtain with the aid of 5.321 (1), (2), and (3), after writing \(I_n \) for \(I_n[(jp)x_1] \) and \(v \) for \((jp)x_1 \),

\[a^3 + \vec{D} = a^3 \vec{C} I_x = a^3 \vec{C}[I_{-4} - v^{-1} I_1]\]

\[(2a^3 - \vec{D}) = \mu a^3 [\frac{1}{2} I_{-4} + v I_1'] \vec{C} = \mu a^3 [(v + v^{-1}) I_1 - I_{-4}] \vec{C} \]

Solving for \(\vec{C} \) and \(\vec{D} \) gives

\[\vec{C} = \frac{3 \mu v a^3}{(\mu - \mu_v) v I_{-4} + [\mu_v(1 + v^2) - \mu] I_1}\tag{5} \]

\[\vec{D} = \frac{(2 \mu + \mu_v) v I_{-4} - [\mu_v(1 + v^2) + 2 \mu] I_1}{(\mu - \mu_v) v I_{-4} + [\mu_v(1 + v^2) - \mu] I_1} a^3 \tag{6} \]

This may be expressed in terms of hyperbolic functions by 5.37 or Dw 808.1 and 808.3. From 11.00 (4), the current density anywhere inside can be obtained from (3) by the equation

\[\vec{i} = -j \omega \gamma \vec{A}_i = -j p \mu^{-1} \vec{A}_i \tag{7} \]

The magnetic field at any point outside is obtained from (2) 3.04 (3), and 3.04 (2) to be

\[\vec{B}_{o\theta} = -\frac{1}{r} \frac{\partial}{\partial r}(r \vec{A}_o) = -\vec{B}\left(1 - \frac{D}{2r^3}\right) \sin \theta \tag{8} \]

\[\vec{B}_{o\theta} = \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(\sin \theta \vec{A}_o) = \vec{B}\left(1 + \frac{D}{r^3}\right) \cos \theta \tag{9} \]

By a similar method (3) yields \(\vec{B}_i\theta \) and \(\vec{B}_{iv} \). Comparison of (8) or (9) with 7.10 (2) shows the eddy current field to be like that of a magnetic dipole loop of radius \(a \) carrying a current \(I e^{j \omega t} \) where \(\mu a^2 I = 2 \vec{B} \vec{D} \). If the magnetic field is not alternating, then \(\omega = 0 \) so that \(p \to c \) from 11.05 (7). From 5.37 and Dw 657.1 or 657.2, we see that

\[I_1(x) \to \left(\frac{2x}{\pi}\right)^{\frac{1}{2}} \left(x + \frac{x^3}{6}\right) \quad \text{and} \quad I_{-1}(x) \to \left(\frac{2x}{\pi}\right)^{\frac{1}{2}} \left(1 + \frac{x^2}{2}\right) \]
Thus (5) and (6) simplify so that (2) and (3) become

\[A_o = \phi \frac{\bar{B}}{2} \left[r + \frac{2(K_m - 1)a^2}{(K_m + 2)r^2} \right] \sin \theta \]
(10)

\[A_i = \phi \frac{3K_m \bar{B}}{2(K_m + 2)}r \sin \theta \]
(11)

These are the correct static fields. From (7), we obtain as a first approximation for slowly alternating fields

\[I_\varphi = -\frac{3j\omega K_m \gamma \bar{B}}{2(K_m + 2)}r \sin \theta \]
(12)

The same result is obtained if the resistivity is made infinite.

When the frequency is made very high, we see that

\[A_i \to 0 \quad A_o \to \phi \frac{1}{2} \bar{B}(r - a^2r^{-2}) \sin \theta \]
(13)

because, from 5.37,

\[I_4(x) \to I_3(x) \to I_2(x) \to \cdots \to \frac{2}{\pi x} \frac{e^x}{2} \]

thus, there is no magnetic field inside, and the eddy currents are confined to the surface as we would expect.

To visualize the magnitudes of the numbers involved, we shall compute \(p \) by 11.05 (7) for a field alternating at 60 cycles per second (so that \(\omega = 120\pi \)) for several substances. If \(\tau \) and \(\mu \) are in mks units, we find for copper \(\tau \approx 1.7 \times 10^{-8} \) ohm-meter, \(\mu \approx \mu_r = 4\pi \times 10^{-7} \) henry per meter, and \(p \approx 28,000 \). For a typical specimen of iron, \(\tau \approx 10^{-7}, \mu \approx 480\pi \times 10^{-7} \) for a magnetic field intensity of \(1.5 \times 10^5/(4\pi) \) ampere-turns per meter, and \(p = 570,000 \). For graphite, \(\tau \approx 8 \times 10^{-8}, \mu \approx 4\pi \times 10^{-7} \), and \(p = 600 \). Thus for this frequency, over distances of a few centimeters, (13) would apply to graphite but not to iron or copper. The initial assumption that \(A_i \) is zero and \(B_0 \) tangential to the surface greatly simplifies the calculation.

All the results of this section, being written in phasors, give both the amplitude and phase of the quantities involved. The same forms for the electromotances and the same types of boundary conditions apply equally well to any number of thick concentric spherical shells and could be used, for example, to calculate their screening effect. The results would be much more complicated than those given here. The distribution of a given amount of material in several separated shells will increase the screening effect. There are optimum thicknesses and spacings.

11.07. Power Absorbed by Sphere in Alternating Magnetic Field.— We shall now compute the power absorbed by the sphere in the last article. From 11.00 (10), the power absorbed in the volume element \(dv \) is

\[d\bar{P} = \frac{1}{2}r\bar{t} \bar{t} \bar{v} = \pi \bar{r} \bar{t} r^2 \sin \theta \bar{d}r \bar{d}\theta \]
Substitution for \(i \) and \(\ell \) from 11.06 (7) and (3) and integration with respect to \(\theta \) from \(\theta = 0 \) to \(\theta = \pi \) give

\[
\bar{P} = \frac{\pi \omega^2 B^2}{3} \int_0^a \bar{I}_1((\pm j p)^{\ell} r) I_1[-((\pm j p)^{\ell} r)] dr
\]

(1)

Integrate by the last form of 5.32 (1) and note from 5.37 that

\[
\begin{align*}
I_1((\pm j p)^{\ell} a) &= \frac{1}{2} \pi ((\pm j p)^{\ell} a)^{-1} \sinh \left[\frac{1}{2}(2p)^{(1+\pm j)} a\right] \\
I_{-1}((\pm j p)^{\ell} a) &= \frac{1}{2} \pi ((\pm j p)^{\ell} a)^{-1} \cosh \left[\frac{1}{2}(2p)^{(1+\pm j)} a\right]
\end{align*}
\]

(2)

Application of Dw 651.06 to 651.09 or Pc 669 to 672 gives for the integral

\[
(\pi p^3 a)^{-1}\left\{\frac{1}{2}(2p)^{(1+\pm j)} a\right\} \sinh (2p a^2) + \sin (2p a^2) - \cosh (2p a^2) + \cos (2p a^2)
\]

Evaluation of \(\bar{C} \hat{\gamma} \) by (2), 11.06 (5), and 11.05 (7) gives for \(\bar{P} \)

\[
\frac{3\pi a^2 \omega^2 B^2 \mu^2 \tau^{-1}}{(\mu - \mu_s)^2((p a^2 + 1)c + (p a^2 - 1)c - u(S + s)) + (\mu - \mu_s) p a^2 u(S + s) + p^2 a^4(C - c)}
\]

where \(u = (2p)^{\ell} a, C = \cosh u, c = \cos u, S = \sinh u, \) and \(s = \sin u. \)

11.08. Transients in Conducting Sphere.—In the last two articles we solved the steady-state problem of a sphere of permeability \(\mu \) and resistivity \(\tau \) in a uniform alternating magnetic field. Let us now solve a transient problem by calculating the effects when the same sphere is placed in a uniform magnetic field \(B \) which is suddenly removed at the time \(t = 0. \)

Clearly, in this case, as in the last one, \(A \) will have a \(\phi \)-component only. At \(t = 0, \) surface eddy currents prevent the interior field from changing, and since the vector potential must be continuous across the boundary, we have, from 11.06 (11), at \(t = 0, \)

\[
\begin{align*}
A_i &= \frac{\phi}{2(K_m + 2)} \frac{3K_m B}{P_1(u)}, & A_o &= \frac{\phi}{2(K_m + 2)} \frac{3K_m B}{\tau^2} \frac{\gamma^2 P_1(u)}{}
\end{align*}
\]

(1)

since \(\tau = \infty \) outside, the subsequent behavior of \(A \) is determined from 11.00 (8) by solving the equations

\[
\nabla^2 A_i = \frac{\mu}{\tau} \frac{dA_i}{dt}, \quad \nabla^2 A_o = 0
\]

(2)

In 11.05, we found a solution of the first of these equations when the time entered exponentially. Let us see if we can fit the boundary conditions in the present case by using a sum of such solutions. Clearly in the present case there will be no oscillations, so we shall need to substitute a negative exponent \(-q_d \) for \(j\omega. \) Let us write

\[
k_i^2 = \tau^{-1} \mu s = \gamma \mu q_s
\]

(3)

We must then substitute \(-k_i^2\) for \(j \) throughout 11.05. This gives us \(jk_i \) instead of \((j \rho)^{\ell}\) in 11.05 (10) and leads to ordinary Bessel functions.

From 11.05 (10), writing \(\sin \theta \) for \(P_1(u) \) and noting that \(A_i \) must be finite
§11.08

TRANSIENTS IN CONDUCTING SPHERE

401

at \(r = 0 \) and contain \(\theta \) in the same form as (1), we obtain

\[
A_i = \phi \sum_{s} A_s r^{-4} J_\nu(k_s r) \sin \theta e^{-\alpha t} \tag{4}
\]

\(A_o \) is finite at infinity and equals \(A_i \) at \(r = a \) for all values of \(t \). From 11.05 (12), it therefore has the form

\[
A_o = \phi \sum_{s} B_s r^{-2} \sin \theta e^{-\alpha t} \tag{5}
\]

In addition to satisfying (1) when \(t = 0 \), we must satisfy 11.06 (4). This gives at \(r = a \), dividing out \(\sin \theta \),

\[
A_o = A_i, \quad \mu \frac{\partial (r A_i)}{\partial r} = \mu \frac{\partial (r A_o)}{\partial r}
\]

Therefore, at \(r = a \) for all values of \(t \), it is necessary that

\[
A_s a^4 J_\nu(k_s a) = B_s, \quad \mu_A a^2 \frac{d}{da} [a^4 J_\nu(k_s a)] = -\mu B_s \tag{6}
\]

Differentiating the product in the second equation, multiplying the first equation by \(\mu \), and adding and dividing out \(A_s \), we obtain

\[
\mu a^2 \frac{d}{da} [J_\nu(k_s a)] + \left(\mu + \frac{1}{2} \mu \right) J_\nu(k_s a) = 0 \tag{7}
\]

To meet the boundary conditions, we must choose values of \(k_s \) that satisfy this equation. This determines, by (3), the values of \(q_s \) that appear in (4) and (5). The values of \(k_s \) can be found with the aid of 5.31 (3) and a table of trigonometric functions.

From (1), (4), and (5), multiplying through by \(r^4 \) and setting \(t = 0 \), we have

\[
\frac{3K_m B}{2(K_m + 2)} r^4 = \sum_{s} A_s J_\nu(k_s r) \tag{8}
\]

This is identical with 5.297 (1), last case, where \(n = \frac{3}{2} \), and, from (7), the \(B \) of that article equals \((\mu / \mu_v) + \frac{1}{2} \). From 5.294 (7),

\[
\int_{0}^{a} v f(v) J_\nu(k_s v) \, dv = \frac{3K_m B}{2(K_m + 2)} \int_{0}^{a} v^3 J_\nu(k_s v) \, dv = \frac{3K_m B a^4}{2k_s (K_m + 2)} J_\nu(k_s a)
\]

With the aid of (7) and 5.294 (2), we obtain

\[
J_\nu(k_s a) = -J_\nu(k_s a) + \frac{3}{2k_s a} J_\nu(k_s a) = \frac{K_m + 2}{k_s a} J_\nu(k_s a)
\]

So that, from 5.297 (6) we have

\[
A_s = \frac{3K_m B a^4}{[k_s^2 a^2 + (K_m - 1)(K_m + 2)] J_\nu(k_s a)} \tag{9}
\]
Substituting this in (4) and (5) gives A_t and A_s. With the aid of 11.00 (4), we obtain for the current density inside

$$
i = \Phi \frac{3Ba^3 \sin \theta}{\mu_0 r^3} \sum_s \frac{k_s^2 J_3(k_s r)}{[k_s^2 a^2 + (K_m \pm 1)(K_m \pm 2)]} J_1(k_s a) e^{-k_s r \mu \tau - t}$$

(10)

11.09. Eddy Currents in Plane Sheets.—We shall now calculate the vector potential $A(x, y, z, t)$ of the eddy currents of area density i induced in a very thin plane sheet of area resistivity s at $z = 0$ by a fluctuating magnetic field whose vector potential is $A'(x, y, z, t)$. In the interior of the sheet, the electric field $-\partial(A_t + A_s)/\partial t$ drives to the surface charges whose electrostatic field exactly neutralizes it. The effect of the associated current is negligible, so that inside the sheet we need consider only the tangential components A_t and A_s. Thus using 11.00 (4), we may write

$$-\frac{d(A_t + A_s)}{dt} = si$$

(1)

Let the eddy currents be confined to a finite region of the sheet which may or may not extend to infinity, and let us define the stream function $\Phi(x, y)$ at any point P in the sheet to be the current flowing through any cross section of the sheet extending from P to its edge. From 7.01 (2), we have, for the closed path bounding this cross section, but not including the surface, since B is symmetrical with respect to the sheet,

$$\mu_0 \Phi = \oint B \cdot ds = 2\int_{x}^\infty B_x \, dx = 2\int_{y}^\infty B_y \, dy$$

(2)

where the path of integration is in the positive x- or y-direction when z is positive. Differentiating this equation, we have

$$i_x = \frac{\partial \Phi}{\partial y} = -\frac{2B_y}{\mu_0} = -\frac{2}{\mu_0} \frac{\partial A_x}{\partial z}, \quad i_y = \frac{\partial \Phi}{\partial x} = \frac{2B_x}{\mu_0} = \frac{2}{\mu_0} \frac{\partial A_y}{\partial z}$$

Adding the components gives, inside the sheet

$$i = -\frac{2}{\mu_0} \frac{\partial A_s}{\partial z}$$

(3)

Substituting this in (1) gives, inside the sheet,

$$\frac{d(A_t' + A_t)}{dt} = \frac{2s}{\mu_0} \frac{\partial A_s}{\partial z}$$

(4)

Outside the sheet, A consists of two parts, a magnetic part arising from the eddy currents and an electric part, the gradient of a scalar, arising from the electric double layer produced by A'_t and A_t. Since A''_s, the tangential component of the exciting potential, is known and since A_s is continuous across each face of the double layer, (4) gives the boundary condition on A, just outside either surface of the sheet. This, combined
with the equation $\nabla^2 A = 0$, determines A everywhere outside the sheet. When the sheet is finite, the boundary condition in its plane, but beyond its edge, becomes $i = 0$ or $\partial A_z / \partial z = 0$. The right side of (4) is finite at all times, which means that if $\delta t \to 0$, then $\delta(A'_z + A_z) \to 0$. Thus an abrupt change in A' instantaneously induces eddy currents such as will maintain $A + A'$ and $B + B'$ unchanged in the sheet. Therefore, for a specified change in A', the initial value of A is known and, if no further changes occur, its subsequent values, as the eddy currents decay, can be determined by putting $dA'_z / dt = 0$ in (4) and solving. A second abrupt change in A' produces a second set of eddy currents, and so forth. At any instant, the actual field of the eddy currents is a superposition of these. As the magnitudes of the discontinuous changes in the external field become smaller and the intervals between them shorter, we approach, as a limit, a continuously changing magnetic field.

11.10. Eddy Currents in Infinite Plane Sheet by Image Method.—Suppose that a thin infinite plane conducting sheet at $z = 0$ lies in a magnetic field produced by sources in the region $z > 0$. At $t = 0$ the field is changed, the vector potential being given by $A'_1 = f_1(x, y, z)$ when $t < 0$ and by $A'_2 = f_2(x, y, z)$ when $0 < t$. From the last article, the eddy currents produced at the instant $t = 0$ keep the vector potential over the surface of the sheet the same so that, initially, the whole field on the negative side is unchanged. Thus we have, on the negative side of the sheet, from the eddy currents alone

$$(A)_{z=0} = A'_1 - A'_2 = f_1(x, y, z) - f_2(x, y, z)$$

This field could be produced by reversing the sign of the new source and replacing the old source. These hypothetical sources which can replace the actual eddy currents are images as in electrostatics.

Since A'_2 is not a function of t, 11.09 (4) reduces to

$$\frac{dA}{dt} = \frac{2s}{\mu_v} \frac{\partial A}{\partial z}$$

A general solution of this equation satisfying (1) at $t = 0$ is

$$A = f_1(x, y, -|z| - 2s\mu_v^{-1}t) - f_2(x, y, -|z| - 2s\mu_v^{-1}t)$$

The sign of z was chosen to make A identical at $\pm z$ as required by symmetry and to make it die out with time. Thus, the equation shows that, added to the field A'_2 which would exist if no sheet were present, there is a decaying field due to the eddy currents which appears, from either side of the sheet, to come from a pair of images on the opposite side which recedes with a uniform velocity $2s/\mu_v$.

Maxwell gives a formula for this law of images which applies to any type of field variation. Suppose the inducing field vector potential is

$$A' = f(t, x, y, z)$$
The change in this field in an infinitesimal interval of time \(d\tau \) is

\[
\frac{\partial A'}{\partial t} \, d\tau = \frac{\partial}{\partial t} f(t, x, y, z) \, d\tau
\]

The initial field of the eddy currents formed in that interval must be equal and opposite to this. This field dies out, as we have seen, as if it were due to an image on the opposite side of the sheet moving away with a uniform velocity \(2s/\mu_v \). Thus, the vector potential of the eddy currents at the present time \(t \) due to images formed in the interval \(d\tau \) at a positive time \(\tau \) before the present is given by

\[
dA = -\frac{\partial}{\partial t} f(t - \tau, x, y, -|z| - \frac{2s}{\mu_v} \tau) \, d\tau
\]

At the time \(t \), the total vector potential due to eddy currents is

\[
A = -\int_0^\infty \frac{\partial}{\partial t} f(t - \tau, x, y, -|z| - \frac{2s}{\mu_v} \tau) \, d\tau \tag{5}
\]

When \(z < 0 \), \(z \) replaces \(-|z|\) and, by \(\partial f / \partial \tau = -\partial f / \partial t + (2s/\mu_v) \partial f / \partial z \) so that substitution for \(\partial f / \partial t \) in (5) and integration give, since \(f \) is zero at \(\tau = \infty \) and equals \(A' \) at \(\tau = 0 \), for the total resultant field

\[
z < 0, \quad A + A' = -\frac{2s}{\mu_v} \int_0^\infty f(t - \tau, x, y, z - \frac{2s}{\mu_v} \tau) \, d\tau \tag{6}
\]

This is often simpler to integrate than (5).

11.11. Torque on Small Rotating Current Loop or Magnetic Dipole.—

If a magnetic system is rotated about an axis normal to a conducting sheet, the field of induced eddy currents will, in general, set up a retarding torque on the system which is, as we shall see, proportional to its angular velocity if this is not too great. By measuring this torque, the angular velocity can be found, and this is the basic principle of some automobile speedometers. The simplest magnetic system is a dipole or small current loop, which rotates about its center keeping its axis parallel to the sheet. In order to visualize the images, we shall not use 11.10 (5) but shall suppose that at regular intervals of time \(\tau \) the magnet is instantaneously rotated through an angle \(\omega \tau \). From this result, by letting the intervals approach zero, we shall obtain the result for continuous motion. Figure 11.11 shows the images formed by the last four jumps at the instant the dipole, of moment \(M \), arrives in the position indicated, as viewed from the upper side of the sheet.
The actual torque on M will be the sum of torques due to all the images. Since all image dipoles are perpendicular to the axis of rotation, $\theta_1 = \theta_2 = \frac{1}{2}\pi$ in 1.071 (4) and, from 1.071 (7) and 7.00, the torque due to a single image making an angle ψ with M is

$$T = -\frac{\partial W}{\partial \psi} = \frac{\mu_0 M^2}{4\pi r^3} \sin \psi$$ \hspace{1cm} (1)

The torque due to all the images is then, if $p = \omega \mu_e/s$,

$$T = \frac{\mu_0 p^3 M^2}{32\pi} \sum_{n=0}^{\infty} \frac{\sin n\omega t - \sin (n + 1)\omega t}{[2c + (2ns/\mu_e)^2]^{3/2}}$$ \hspace{1cm} (2)

$$= \frac{\mu_0 p^3 M^2}{32\pi} \sum_{n=0}^{\infty} \frac{\sin n\omega t - \sin n\omega t \cos \omega t - \cos n\omega t \sin \omega t}{(pc + n\omega)^3}$$

As the motion becomes continuous, $\tau \to \text{d}t$, $nt \to t$, and $\sin \omega t \to \omega t \to \omega \text{d}t$ so that (2) passes over into the integral

$$T = \frac{\mu_0 p^3 M^2}{32\pi} \int_0^\infty \frac{-\cos \omega t}{(pc + \omega t)^3} \text{d}t$$ \hspace{1cm} (3)

Let $x = pc + \omega t$ so that $\cos \omega t = \cos (x - pc)$, and this becomes

$$T = \frac{\mu_0 p^3 M^2}{32\pi} \left(\cos pc \int_{pc}^{\infty} \frac{\cos x}{x^3} \text{d}x + \sin pc \int_{pc}^{\infty} \frac{\sin x}{x^3} \text{d}x \right)$$

Applying Dw 441.13 and 431.13 or Pc 345 and 344 gives

$$T = \frac{\mu_0 p^3 M^2}{64\pi} \left(\frac{1}{p^2 c^2} - \cos pc \int_{pc}^{\infty} \frac{\cos x}{x} \text{d}x - \sin pc \int_{pc}^{\infty} \frac{\sin x}{x} \text{d}x \right)$$ \hspace{1cm} (4)

These integrals may be evaluated by the series Pc 346 and 347 or Dw 431.11 and 441.11, or they may be put in the form of the standard cosine integral Ci and sine integral Si. Thus

$$\int_{pc}^{\infty} \frac{\cos x}{x} \text{d}x = -Ci(pc) \quad \text{and} \quad \int_{pc}^{\infty} \frac{\sin x}{x} \text{d}x = \frac{\pi}{2} - Si(pc)$$ \hspace{1cm} (5)

Numerical tables and graphs of Ci and Si are available in Jahnke-Emde and other mathematical handbooks.

If pc is much greater than unity, we integrate (3) thrice by parts and obtain for T,

$$\frac{\mu_0 p^3 M^2}{32\pi} \left[\frac{\sin \omega t}{(pc + \omega t)^3} - \frac{3 \cos \omega t}{(pc + \omega t)^4} + \frac{12 \sin \omega t}{(pc + \omega t)^5} \right]_{0}^{\infty} - 60 \int_0^\infty \frac{\omega \sin \omega t}{(pc + \omega t)^6} \text{d}t$$

Neglecting $20\omega/(pc)^2$ compared with unity, we have

$$pc \gg 1 \quad T = \frac{3\mu_0 M^2}{32\pi pc^4}$$ \hspace{1cm} (6)
Neglecting $\omega(pc)^2$ compared with unity (4) gives

$$pc \ll 1 \quad T = \frac{\mu_0 pM^2}{64\pi c^2}$$ (7)

For a copper sheet 0.1 mm thick $s = 0.00017$ so that for 100, 10,000, and 10,000,000 cycles per second we have for p, 4.67, 467, and 467,000, respectively. Thus, for these frequencies, we would use (7), (4), and (6), respectively, if $c \approx 0.01$ meter.

11.12. Eddy Currents from Rotating Dipole.

It is instructive actually to calculate the equation for the eddy currents produced by the rotating dipole treated in the last article. In Fig. 11.12a, we draw one of the images shown in Fig. 11.11 and indicate at P the point on the sheet whose coordinates are ρ, θ at which we wish to calculate the stream function Φ. From 11.09 (2), we have

$$\Phi = 2\mu_0^{-1} \int_\rho^\infty B_\rho \, d\rho$$ (1)

by choosing a radial path for our integration and noting that the contribution from the lower half equals that from the upper. The figure shows the nth positive image. Only its ρ-component contributes to B_ρ. Using 7.10 (5) and (2) for B_ρ, adding the contribution from the nth negative image, and summing over all the images, we have

$$B_\rho = -\frac{\mu_0 M}{4\pi} \sum_{n=0}^\infty \{ \cos (n\omega T + \theta) - \cos [(n + 1)\omega T + \theta] \} \frac{\partial}{\partial x} \left(\frac{\sin \theta'}{R^2} \right)$$ (2)

Substituting in (1), integrating, and breaking up the second cosine by Dw 401.03 or Pc 592, we have

$$\Phi = \frac{M\rho}{2\pi} \sum_{n=0}^\infty \cos (n\omega T + \theta) - \cos (n\omega T + \theta) \cos \omega T + \sin (n\omega T + \theta) \sin \omega T$$

$$- \{ \rho^2 + [c + (2ns/\mu_0)\tau]^2 \} \frac{\partial}{\partial x} \left(\frac{\sin \theta'}{R^2} \right)$$ (3)

Passing over into the integral exactly as in the last article we have

$$\Phi = \frac{\omega M\rho}{2\pi} \int_0^\infty \frac{-\sin (\omega T + \theta)}{\{ \rho^2 + [c + (2s/\mu_0)\theta]^2 \} \frac{\partial}{\partial x} \left(\frac{\sin \theta'}{R^2} \right)} \, d\tau$$ (4)
If \(\mu_0 \omega \ll s \), the condition obtaining for 11.11 (7), we may say that the
\((2st/\mu_0)^3\) term in the denominator is already very large before \(\omega t \) in the
numerator becomes appreciable. Thus, we may write

\[
\mu_0 \omega \ll s \quad \Phi = \frac{\omega M \rho \sin \theta}{2\pi} \int_0^\infty \frac{-dt}{\sqrt{\rho^2 + [c + (2s/\mu_0)t]^2}}
\]

Letting \(x = c + (2s/\mu_0)t \) and using \(P c = 138 \) or \(D w = 200.03 \), we obtain

\[
\Phi = -\frac{\omega \mu_0 M}{4\pi \rho \rho} \left[1 - \frac{c}{(\rho^2 + c^2)^{3/2}} \right] \sin \theta
\]

(5)

The system of eddy currents given by this equation is shown in Fig. 11.12b, the value of \(4\pi \Phi/\mu_0 \) being indicated on the figure. This system of
stream lines rotates with the same speed as the magnet, which lies at a

![Diagram of a magnetic dipole with stream lines](image)

Fig. 11.12b.—Stream lines of the eddy currents induced in an infinite thin plane
conducting sheet as seen by an observer on a magnetic dipole directed to the right which
rotates with an angular velocity \(\omega \) as shown in a plane 1 cm above the sheet. The
values of the stream function \(\Phi \) in Eq. 5, Art. 11.12, are shown when \(\omega \mu_0 M/(4\pi s) = 1 \).

unit distance, on the scale shown, above the plane of the paper and is
parallel to the \(\Phi = 0 \) line. We see at once that the currents shown will
give a field at right angles to the magnet. This will produce the torque
calculated in the last article.

11.13. Shielding of Circular Coil by Thin Conducting Sheet.—Let us use 11.10 (6) to find the effect of the insertion of an infinite thin conducting sheet on the flux linkage between two coaxial loops of radii \(a \) and \(b \) at
a distance c apart. If no sheet were present, the vector potential at the second loop due to the first would be, from 7.10,

$$A'_{\phi} = \frac{\mu_0 a I \cos \omega t}{2\pi} \int_0^\pi \frac{\cos \phi \, d\phi}{(u^2 + c^2)^{\frac{3}{2}}} \quad (1)$$

where $u^2 = a^2 + b^2 - 2ab \cos \phi$. From 11.10 (6), we have the real part of

$$A_{\phi} + A'_{\phi} = -\frac{saI}{\pi} \frac{\partial}{\partial c} \int_0^\pi \cos \phi \left(\int_0^\infty \frac{e^{j\omega(t-r)}}{[u^2 + [c + (2s/\omega \tau)]^2]^{\frac{3}{2}}} \, dr \right) \, d\phi \quad (2)$$

To simplify calculation, we shall take only the case where $2s/(\omega \mu_v) < 1$. Integrate the r-integral repeatedly by parts, the nth integration giving

$$u_n = \left(\frac{2s}{\omega \mu_v} \right)^{n-1} \frac{\partial^{n-1}}{\partial c^{n-1}} \left[u^2 + \left(c + \frac{2s}{\omega \tau} \right)^2 \right]^{-\frac{3}{2}}, \quad dv_n = \left(\frac{j}{\omega} \right)^{n-1} e^{j\omega(t-r)}$$

The phasor vector potential at the second loop then becomes

$$\tilde{A}_{\phi} + \tilde{A}'_{\phi} = -\frac{\mu_0 a I}{2\pi} \sum_{n=1}^\infty \left(\frac{2js}{\omega \mu_v} \right)^n \frac{\partial^n}{\partial c^n} \int_0^\pi \frac{\cos \phi \, d\phi}{(u^2 + c^2)^{\frac{3}{2}}} \quad (3)$$

From 8.06, the ratio of the new to the old flux linkage is

$$R_0 = \frac{2\pi b(A_{\phi} + A'_{\phi})_{\text{rms}}}{2\pi b(A'_{\phi})_{\text{rms}}} \quad (4)$$

If $2s/(\omega \mu_v)$ is small, only the first term in the series is needed so that

$$R_0 = \frac{2s}{\omega \mu_v} \frac{1}{A'_{\phi}} \frac{\partial A'_{\phi}}{\partial c} = \frac{2s}{\omega \mu_v} \frac{B_{\rho}}{A'_{\phi}} \quad (5)$$

where B_{ρ} and A'_{ϕ} are given by 7.10 (6) and (4), respectively, and are evaluated at $\rho = b, z = c$. If, in addition, either a or b is small compared with c, then from 7.10 (1) we get

$$R_0 = \frac{6sc}{\omega \mu_v (a^2 + b^2 + c^2)} \quad (6)$$

As we saw in 11.12 for a sheet of copper 0.1 mm thick and a frequency of a million cycles per second, $\omega \mu_v/s$ is 46,700 which justifies the approximation in (5). Hence, if $a = 1$ cm, $b = 10$ cm, and $c = 10$ cm, then, from (6), $R_0 \approx 0.0006$ so that the linkage is greatly reduced by the shield.

—Let us now consider the eddy currents in a thin spherical conducting shell when we have axial symmetry so that all the eddy currents flow in coaxial circles. Let the total vector potential be $A' + A$, that part due to the eddy currents being A. The electromotance E producing the current in the ring of width $a \, d\theta$ at θ is induced by the change in the total flux through the ring. By 8.00 (1) and 7.07, we can write E in terms of $A' + A$ and then relate it to
the current by Ohm's law 6.02 (1), giving
\[
\mathcal{E} = -\frac{dN}{dt} = -\frac{d}{dt}[2\pi a \sin \theta (A'_\phi + A_\phi)] = \frac{2\pi a s}{a d\theta} \sin \theta i_\phi d\theta
\]
so that, if the vector potentials are zero at \(\theta = 0 \),
\[
-\frac{d}{dt}(A'_\phi + A_\phi) = si_\phi
\]
where \(i_\phi \) is the current density and \(s \) the area resistivity. Let the eddy currents in the shell be expressed as a series of zonal harmonics, the \(n \)th term being \(i_n \). In 7.12 (2) and (5), we found a simple relation between \(i_n \) and the \(n \)th term in the expansion of the vector potential produced by these currents. The relation is
\[
(A_{\phi n})_{r=a} = \frac{\mu_s a}{2n + 1} i_n
\]
If \(A'_\phi \) is also expanded in spherical harmonics, we see by substituting (2) in (1) that the expansions of \(A'_\phi \) and \(A_\phi \) are related at the surface of the shell \(r = a \) by the equation
\[
-\sum_n \frac{d}{dt}(A'_n + A_n) = \sum_n \frac{2n + 1}{\mu_s a} A_n s
\]
If, after the time \(t = 0 \), the inducing field \(A'_\phi \) is constant and if, at the time \(t = 0 \), the field of the eddy currents is known to be
\[
A_\phi = \sum_n C_n A_n
\]
then, clearly, a solution of (3), showing how the eddy currents decay is,
\[
A_\phi = \sum_n C_n A_n e^{-\frac{2n+1}{\mu_s a} t}
\]
Suppose that the vector potential of the inducing field can be written, on the surface of the sphere, in the form
\[
A'_\phi = \sum_n C_n A_n f_n(t)
\]
The change in this field in the infinitesimal interval of time \(d\tau \), at a time \(\tau \) before the present time \(t \), is given by
\[
\frac{\partial A'_\phi}{\partial t} d\tau = \sum_n C_n A_n \frac{\partial f_n(t - \tau)}{\partial t} d\tau
\]
The eddy currents set up in that interval \(d\tau \) exactly neutralized the change at the surface of the sphere at that time but have been dying out accord-
ing to (5) since, so that the present effect is
\[dA_{\phi} = - \sum_n C_n A_n \frac{\partial f_n(t - \tau)}{\partial \tau} e^{-\frac{2n+1}{\mu_a} \tau} d\tau \]
The total vector potential of the eddy currents at the surface of the sphere at the present time due to all these past changes is, then,
\[A_{\phi} = - \sum_n C_n A_n \int_0^\infty \frac{\partial f_n(t - \tau)}{\partial \tau} e^{-\frac{2n+1}{\mu_a} \tau} d\tau . \quad (7) \]
Replacement of \(\partial f/\partial t \) by \(- \partial f/\partial \tau \) and integration by parts give with the aid of (6), for the total vector potential from all sources, at \(r = a \),
\[A_{\phi} + A'_{\phi} = - \frac{s}{\mu_\omega} \sum_n (2n + 1) C_n A_n \int_0^\infty f_n(t - \tau) e^{-\frac{2n+1}{\mu_a} \tau} d\tau \quad (8) \]
In the steady-state a-c case \(A'_{\phi} \), which may result from both external and internal sources, is given at \(r = a \) by (6) where
\[A_{ns} = P_1^n(\cos \theta) \quad f(t) = \cos \omega t \quad (9) \]
Integration of (7), with \(N \) substituted for \((2n + 1)s/(\mu_\omega a)\), by \(Pc 506 \) and 507 or \(Dw 863.1 \) and 863.2, gives for the eddy currents alone at \(r = a \)
\[A_{\phi} = \sum_{n=0}^\infty C_n A_n \omega (\omega^2 + N^2)^{-1} (N \sin \omega t - \omega \cos \omega t) \]
\[= - \sum_{n=0}^\infty C_n A_n \cos \psi_n \cos (\omega t + \psi_n) \quad (10) \]
where \(\tan \psi_n \) is \(N/\omega \). Thus the present eddy currents are in phase with those formed at a time \(\psi_n \) before the present. The phase lag \(\epsilon_n \) is \(- \psi_n \).
The value of \(A_\phi \) that vanishes at \(r = \infty \) and gives (10) at \(r = a \) is the vector potential outside the sphere due to eddy currents alone. Thus
\[A_0 = \phi \sum_{n=0}^\infty - C_n \left(\frac{\alpha}{r} \right)^{n+1} P_1^n(\cos \theta) \cos \epsilon_n \cos (\omega t - \epsilon_n) \quad (11) \]
\[\tan \epsilon_n = \frac{(2n + 1)s}{\mu_\omega \omega} \quad (12) \]
Inside the shell, the eddy current vector potential \(A_i \) must be everywhere finite so \((r/a)^n\) replaces \((a/r)^{n+1}\). For an external source, \(r \) enters \(A' \) as \((r/a)^n\). From (6), (9), and (10) the total internal field is, by \(Dw 401.03 \).
\[A_i + A' = \phi \sum_{n=0}^\infty - C_n \left(\frac{r}{a} \right)^n P_1^n(\cos \theta) \sin \epsilon_n \sin (\omega t - \epsilon_n) \quad (13) \]
This could also have been found directly from (6), (8), and (9). The ratio of the \(n \)th term in the harmonic expansion of the new amplitude to the corresponding term in the expansion of the old amplitude is

\[
R_{on} = \frac{|A_+ + A'|}{|A'|} = \sin \epsilon_n
\]

From (11), if \(s \) is very large, this is unity and the field is unchanged, but if the shield is a good conductor, \(i.e., \) if \(s \) is small compared with \(\mu \omega R_{on} \) is very small and the shielding is high.

The eddy current density in the shell as given by (2) and (10) is

\[
i = \phi \sum_n \frac{2n + 1}{\mu \alpha} C_n P_n^1(\cos \theta) \cos \epsilon_n \cos (\omega t - \epsilon_n)
\]

The instantaneous energy dissipation rate in an element of area \(dS \) of the shell is \(i^2 s \) \(dS \) from 6.03 (2). In the whole shell it is, writing \(u \) for \(\cos \theta \),

\[
s \int_S i^2 dS = 2s\pi a^2 \int_0^\pi i^2 \sin \theta \, d\theta = -2s\pi a^2 \int_{-1}^{+1} i^2 \, du
\]

When (14) is squared and integrated from \(u = -1 \) to \(u = 1 \), all cross-product terms vanish by 5.13 (2) leaving only a sum of integrals of squares. Thus each harmonic component \(i_n \cos (\omega t - \epsilon_n) \) of \(i \) behaves as an independent circuit so that the mean rate of energy dissipation from 10.02 (5) is

\[
\frac{1}{2} s \int_S i^2 dS = s\pi a^2 \int_{-1}^{+1} \left[\sum i_n \right]^2 \, du = s\pi a^2 \sum \int_{-1}^{+1} i_n^2 \, du
\]

Integration by 5.231 (3) gives for the energy dissipation rate in the sphere

\[
P = 2s\pi \mu_0^2 \sum_{n=1}^{\infty} n(n + 1)(2n + 1) C_n^2 \cos^2 \epsilon_n
\]

11.15. Eddy Currents in Thin Cylindrical Shell.—When all eddy currents in a thin infinite conducting circular cylinder of radius \(a \) are parallel to the axis, the vector potential of the field producing them must also be parallel to the axis and the magnetic field is a two-dimensional one. In this case, as we saw in 7.25, the vector potential behaves as an electrostatic stream function so that its value at any point represents the flux between this point and some fixed point. Let the total vector potential be \(A_+ + A_z \), that part due to the eddy currents being \(A_z \). Then the electromotance per unit length induced in a strip of width \(a \, d\theta \) at \(a, \theta \) by the change in total flux \(N \) linking unit length of this strip gives, with the aid of Ohm's law, 6.02 (1)

\[
\mathcal{E} = -\frac{dN}{dt} = -\frac{d}{dt}(A_+ + A_z) = \frac{s}{a \, d\theta} i_A a \, d\theta
\]
where \(i_z \) is the current density and \(s \) the area resistivity. If \(i \) is expressed in a series of circular harmonics, then, from §11.17 (1) and (4), there is a simple relation between the \(n \)th term of this expansion and the \(n \)th term of the expansion of the vector potential \(A_z \) produced by it. At the surface of the shell, this relation is

\[
(A_n)_{p=a} = \frac{1}{2} \mu_0 a n^{-1} i_n
\]

(2)

If both \(A'_z \) and \(A_z \) are expanded in circular harmonics, we see, by substituting (2) in (1), that these expansions satisfy the relation

\[
-\sum_n \frac{d}{dt} (A'_n + A_n) = \sum_n \frac{2n s}{\mu_0 a} A_n
\]

(3)

Except for a constant factor, this equation is identical with 11.13 (3) so that, if the inducing field at \(p = a \) is given, as in 11.13 (6), by

\[
A'_{z} = \sum_{n=1}^{\infty} C_n A_{n} f_n(t)
\]

(4)

then the eddy current vector potential is given, as in 11.13 (7), by

\[
A_{z} = -\sum_{n=1}^{\infty} C_n A_{n} \int_{0}^{\infty} \frac{\partial f_n(t - \tau)}{\partial t} e^{-\frac{2n s}{\mu_0 a}} d\tau
\]

(5)

Replacement of \(\partial f/\partial t \) by \(-\partial f/\partial \tau \) and integration by parts give

\[
A_{z} + A'_{z} = -\frac{2s}{\mu_0 a} \sum_{n=1}^{\infty} C_n A_{n} \int_{0}^{\infty} f_n(t - \tau) e^{-\frac{2n s}{\mu_0 a}} d\tau
\]

(6)

For a sinusoidal inducing field we have, as in 11.13 (9),

\[
A_{n} = \cos (n \theta + \delta_n) \quad f(t) = \cos \omega t
\]

(7)

As in 11.13 (11) and 11.12 (12), the eddy currents alone give, when \(\rho > a \),

\[
A_{o} = -k \sum_{n=1}^{\infty} C_n a^n \rho^{-n} \cos (n \theta + \delta_n) \cos \epsilon_n \cos (\omega t - \epsilon_n)
\]

(8)

\[
\tan \epsilon_n = 2n s (\omega \mu_0 a)^{-1}
\]

(9)

When \(\rho < a \), \((\rho/a)^n \) replaces \((a/\rho)^n \) and for external excitation, as in 11.14,

\[
A_{i} + A' = -k \sum_{n=1}^{\infty} C_n \rho^n a^{-n} \cos (n \theta + \delta_n) \sin \epsilon_n \sin (\omega t - \epsilon_n)
\]

(10)

The ratio of the \(n \)th harmonic with the shell to that without the shell is

\[
R_{on} = \frac{|A_{i} + A'|}{|A'|} = \sin \epsilon_n
\]

(11)
The same remarks apply to this as to 11.13 (14). For internal excitation the new and old amplitude ratio outside the shell is still given by (11). The eddy current density in the shell is, from (2) and (8),

$$i = -k2(\mu_o a)^{-1} \sum_{n=1}^{\infty} nC_n \cos (n\theta + \delta_n) \cos \epsilon_n \cos (\omega t - \epsilon_n)$$

(12)

From 10.02 (5), the average power consumption per unit length is

$$\bar{P} = \frac{1}{2} a \int_{0}^{2\pi} st^2 \, d\theta$$

When (12) is squared, the integration from 0 to 2π eliminates all the cross-product terms and leaves only the sum of integrals of $\cos^2 (n\theta + \delta_n)$ which equal π by $Dw 854.1$. Thus each n-term behaves as an independent circuit, and the rate of energy dissipation per unit length is

$$\bar{P} = 2\pi s(\mu_o a)^{-1} \sum_{n=1}^{\infty} n^2 C_n^2 \cos^2 \epsilon_n$$

(13)

11.16. Transient Shielding by a Thick Cylindrical Shell.—Sinusoidal longitudinal eddy currents in a thick cylindrical shell and arbitrarily varying longitudinal currents in a thin shell were treated in Arts. 11.02 and 11.14, respectively. As a relatively simple example involving both cross and longitudinal components, consider an infinite cylinder of permeability μ, conductivity γ, internal radius a, and external radius b whose axis makes an angle α with a uniform field of induction B. Find the field inside at a time t after the external field is removed or established. Examination of 7.05 (5) shows that suitable solutions for the static vector potential when $\rho > b$, $b > \rho > a$, and $a > \rho$ are, respectively,

$$(A_1)_0 = B[\phi_1 \sin \alpha(\rho - C_0 \rho^{-1}) + k \cos \alpha(\rho - C'_0 \rho^{-1}) \sin \phi]$$

(1)

$$(A_2)_0 = B[\phi_2 \sin \alpha(D_0 \rho - E_0 \rho^{-1}) + k \cos \alpha(D'_0 \rho - E'_0 \rho^{-1}) \sin \phi]$$

(2)

$$(A_3)_0 = B[\phi_3 \sin \alpha F_0 \rho + k \cos \alpha F'_0 \rho \sin \phi]$$

(3)

These give the prescribed field at $\rho = \infty$, and the field is finite at $\rho = 0$. The values of the constants needed to match A_1 and $(B \times \phi)/\mu$ at $\rho = a$ and at $\rho = b$ are, if β is written for $(\mu - \mu_\nu)/(\mu + \mu_\nu)$ and G for $b^2/(b^2 - \beta^2 a^2)$,

$$C_0 = \mu^{-1}(\mu - \mu_\nu)(b^2 - a^2), \quad D_0 = \mu^{-1} \mu, \quad E_0 = \mu^{-1}(\mu - \mu_\nu)b^2, \quad F_0 = 1$$

(4)

$$C'_0 = \beta(a^2 - b^2)G, \quad D'_0 = (1 + \beta)G, \quad E'_0 = \beta(1 + \beta)a^2G, \quad F'_0 = (1 - \beta^2)G$$

(5)

After $t = 0$, the same solutions of 11.00 (8) are valid where $\gamma = 0$ except that in A_1 the ρ-terms disappear because $B = 0$ at $\rho = \infty$. For $a < \rho < b$, solutions are needed where A_ϕ has the factor $\sin \phi$ and A_ϕ is independent of ϕ. As in 11.08 we try sums of exponentially damped solutions
so that

\[A_2 = B \sum_s [\phi R(\rho)e^{-pt} + \kappa P(\rho) \sin \phi e^{-at}] \] (6)

For \(A_1 \), 11.00 (8) is a scalar equation from which \(\sin \phi e^{-at} \) divides out and which, upon substitution of \(v^2 = \mu \gamma q_s \rho^2 \), yields 5.291 (3) with \(n = 1 \). For \(A_\phi \), 11.00 (8) becomes 11.05 (3) which, upon inserting \(-\phi \rho^{-2} \) for \(v^2 \phi \) from 11.05 (5), dividing out \(e^{-pt} \) and writing \(v^2 = \mu \gamma p_s \rho^2 \) gives again 5.291 (3) with \(n = 1 \). Thus, when \(t > 0 \), (1), (2) and (3) are replaced by

\[A_1 = B \sum_s [\phi \sin \alpha C_s \rho^{-1} e^{-pt} + \kappa \cos \alpha C_s \rho^{-1} \sin \phi e^{-at}] \] (7)

\[A_2 = B \sum_s \{ \phi \sin \alpha D_s R_1[(\mu \gamma p_s) \rho]_1 e^{-pt} + \kappa \cos \alpha D_s' P_1[(\mu \gamma q_s) \rho] \sin \phi e^{-at} \} \] (8)

\[A_3 = B \sum_s [\phi \sin \alpha F_s \rho e^{-pt} + \kappa \cos \alpha F_s' \rho \sin \phi e^{-at}] \] (9)

where \(R_1 \) and \(P_1 \) are Bessel functions. At \(\rho = b \), equate \(A_1 \) to \(A_2 \), write \(k_s \) for \((\mu \gamma p_s) \rho \), \(l_s \) for \((\mu \gamma q_s) \rho \), and cancel \(\sin \phi \) out of \(A_3 \). Thus we get

\[\phi C_s + \kappa C_s' = \phi bD_sR_1(k_s b) + kbD_s' P_1(l_s b) \] (10)

Equating tangential components of \(\mu^{-1} B = \mu^{-1} \nabla \times A \) at \(\rho = b \), canceling \(\sin \phi \) out of the \(\phi \)-component, and multiplying through by \(b^2 \) give

\[-\phi \mu C_s' = \kappa \mu \rho bD_s[k_s bR_1(k_s b) + R_1(k_s \rho)] - \phi \mu \rho b^2 D_s' P_1(l_s b) \] (11)

The \(k \)-term is zero so, from 5.294, \(\rho_0(k_s b) = 0 \) and, from 5.293 (9),

\[R_1(k_s b) = \frac{1}{2} \pi (k_s b)^{-1}, \quad R_1(k_s \rho) = Y_0(k_s b)J_1(k_s \rho) - J_0(k_s b)Y_1(k_s \rho) \] (12)

Similarly the boundary conditions at \(\rho = a \) give, writing out \(P_1(l_s a) \),

\[\phi F_s a + \kappa F_s' a = \phi D_s R_1(k_s a) + \kappa D_s' [F_s J_1(l_s a) + Y_1(l_s a)] \] (13)

\[\kappa 2 \mu F_s - \phi F_s' = \kappa \mu k_s D_s R_0(k_s a) - \phi \mu l_s D_s' P_1'(l_s a) \] (14)

Eliminating \(F_s, D_s, F_s' \), and \(D_s' \) from these four component equations gives

\[k_s \rho R_0(k_s a) - 2(\mu_e^{-1} \mu) R_1(k_s a) = k_s a R_1'(k_s a) + (1 - 2\mu_e^{-1} \mu) R_1(k_s a) = 0 \] (15)

\[\mu \rho l_s P_1'(l_s b) + \mu P_1(l_s b) = 0 = \mu \rho a P_1'(l_s a) - \mu P_1(l_s a) \] (16)

Only values of \(p_s = k_s^2(\mu \gamma) \) which satisfy (15) can be used. Insertion of \(Y_0(k_s b) \) from (15) into \(R_1(k_s a) \) and application of 5.293 (9) give

\[R_1(k_s a) = 2\mu_e J_0(k_s b) \pi^{-1}[\mu_k k_s a J_0(k_s a) - 2 \mu J_1(k_s a)] \] (17)

If \(P' \) and \(P \) are expressed in terms of \(P_0 \) and \(P_2 \) by 5.294 (2) and (3) and if \(\beta \) replaces \((\mu - \mu_e)/(\mu + \mu_e) \), (16) may be rearranged to give

\[-E' = \frac{\beta Y_0(l_s a) + Y_2(l_s a)}{\beta J_0(l_s a) + J_2(l_s a)} = \frac{Y_0(l_s b) + \beta Y_2(l_s b)}{J_0(l_s b) + \beta J_2(l_s b)} \] (18)

Only values of \(q_s = k_s^2(\mu \gamma) \) satisfying the second equality can be used. Insertion of \(E' \) into \(P_1(l_s a) \) and \(P_1(l_s b) \) and application of the recurrence
formulas of 5.294 and of 5.293 (9) give
\[P_1(l, a) = \frac{2(1 - \beta)}{\pi l a[\beta J_0(l, a) + J_2(l, a)]}, \quad P_1(l, b) = \frac{-2(1 - \beta)}{\pi l b[J_0(l, b) + \beta J_2(l, b)]} \]
(19)
It remains to determine \(D_s \) and \(D'_s \) so that, when \(t = 0 \), (8) agrees with (2) when \(a < \rho < b \) or so that, dividing common factors out of each component,
\[\phi(D_{0\rho} - E_{0\rho}^{-1}) + \kappa(D_{0\rho} - E_{0\rho}^{-1}) = \sum_s \{\phi D_s R_1(k_s \rho) + \kappa D'_s P_1(l_s \rho)\} \]
(20)
Take the scalar product of both sides by \(\rho [\phi R_1(k_s \rho) + \kappa P_1(l_s \rho)] \) \(d\rho \) and integrate from \(a \) to \(b \) or subtract the 0 to \(a \) from the 0 to \(b \) integral. By (11), (15), (16), and 5.296 (3) only the \(n \)th term on the right survives, and for \(A_\phi \) its value is given by 5.297 (6) with \(B = 1 - 2\mu_s^2 \mu \). Integrate the left side by 5.294 (7) and (8), solve for \(D_n \), and from (13) \(F_n \) is
\[F_n = \frac{4\pi \mu_v R_1(k_n a)}{k_n a[4 \mu_s^2 - (4 \mu^2 - 4 \mu_v + k_n^2 a^2 \mu_s^2) \pi^2 [R_1(k_n a)]^2]} \]
(21)
For \(A_z \) 5.297 (6) with \(B = \mu_s^{-1} \mu \) gives the right side. Integrate the left side by 5.294 (7) and 5.294 (8), solve for \(D'_n \), and from (5) \(F'_n \) becomes
\[F'_n = \frac{4\mu_v b(1 - \beta) P_1(l_n b)}{(\mu^2 b^2 + \mu_s^2 - \mu_v^2)[P_1(l_n b)]^2 - (\mu^2 b^2 + \mu_s^2 - \mu_v^2)[P_1(l_n a)]^2} \]
(22)
The total field inside at any time is given by (9), (21), (22), (17), and (19) where \(k_n \) and \(l_n \) are determined by (15) and (18). If there is no field when \(t < 0 \) but at \(t = 0 \) the field \(B \) is established, then it is clear from Eqs. (3) and (9) that the vector potential \(A'_n \) inside is
\[\rho < a, \quad A'_z = (A_3)_0 - A_3 \]
(23)
These solutions are obtained by a different method in Phil. Mag., Vol. 29, page 18 (1940). The field, when \(B \) varies arbitrarily with time, can be found from these results by methods similar to those used in the last article.

Problems

Problems marked C in the following group are taken from the Cambridge examinations as reprinted by Jeans, with the permission of the Cambridge University Press.

1C. An infinite iron plate is bounded by the parallel planes \(x = h, x = -h \); wire is wound uniformly round the plate, the layers of wire being parallel to the axis of \(y \). If an alternating current is sent through the wire, producing outside the plate a magnetic force \(H_0 \cos pt \) parallel to \(z \), prove that \(H \), the magnetic force in the plate at a distance \(x \) from the center, will be given by
\[H = H_0 \left(\frac{\cosh 2mx + \cosh 2mh}{\cosh 2mx + \cos 2mh} \right)^\frac{\tan \beta}{\cosh 2h} \cos(pt + \beta) \]
where \(m^2 = \frac{1}{4} \nu p/\tau \). Discuss the special cases of \(mh \) small and \(mh \) large.
2. All points of a circular loop of wire are at a distance \(c \) from the center of a ball of radius \(a \), permeability \(\mu \), and resistivity \(\tau \), and any radius of the loop subtends an angle \(\alpha \) at the center. A current \(I \cos \omega t \) flows in the loop. Show that the vector potential inside the sphere is the real part of

\[
\Phi = \frac{\mu_0 a^4 I \sin \alpha}{2r^4} \sum_{n=1}^{\infty} 2n + 1 \left(\frac{a}{r} \right)^n A_n I_n + i(jp)^4 P_n (\cos \theta) e^{iwt}
\]

where

\[
A_n = (\mu - \mu_r) n I_n + i(jp)^4 a I_{n-1} ([jp]a)^{-1} P_n (\cos \alpha) \quad \text{and} \quad p = \mu_0 / \tau
\]

3. A sphere of radius \(a \), permeability \(\mu \), and resistivity \(\tau \) lies in a region where, at \(t = 0 \), a field is established that, but for the sphere, would be of uniform induction \(B \). Show in the notation of 11.08 that, when \(t > 0 \), the potentials are

\[
A_0 = \phi \left[\frac{1}{2} Br - \frac{(\mu - \mu_r) a^3}{2(\mu + 2\mu_r) r^2} B - \sum s A_{sr}^{-1} J_d(kr)e^{-q_d} \right] \sin \theta
\]

\[
A_i = \phi \left[\frac{3\mu Br}{2(\mu + 2\mu_r)} - \sum s A_{sr}^{-1} J_d(kr)e^{-q_d} \right] \sin \theta
\]

4. An infinite circular cylinder of radius \(a \), permeability \(\mu \), and resistivity \(\tau \) is wound with wire carrying an alternating current. If \(H_s \) at the surface is uniform and of magnitude \(H_0 \cos \omega t \), show that the magnetic field at any point inside is given by 11.04 (4) and (5) with \(B_t \) and \(B_0 \) substituted for \(i_s \) and \(i_0 \). Find the density and direction of the eddy currents by 11.00 (5).

5. A circular loop of wire is located at \(r = a \), \(\theta = \alpha \) and a spherical conducting shell of area resistivity \(\tau \) at \(r = b \). A current is built up in the loop according to the equation \(i = I(1 - e^{-\mu_0 / \tau}) \). If the sphere and shell do not move appreciably before the eddy currents have decayed, show that the momentum imparted is

\[
\frac{\pi \mu_0 b^2 I^2}{2s} \sum_{n=1}^{\infty} \frac{\sin^2 \alpha}{(n + 1)(2n + 1)} \left(\frac{b}{a} \right)^{2n+1} (2n + 1)sL + 2\mu_b bR P_n (\cos \alpha) P_{n+1} (\cos \alpha)
\]

6. A small loop of wire of moment \(M \cos \omega t \) lies above an infinite thin plane sheet of area resistivity \(\tau \), with its axis perpendicular to the sheet. Show that, if \(1 \gg \omega \tau_0 \) where \(\tau_0 = \mu_0 \tau \), the magnetic induction on the far side of the sheet is

\[
B_r = \frac{\mu_0 M}{2\pi s} \left[\cos \theta \cos \omega t + \frac{\mu_0 \tau_0}{4s} \sin \omega t \right], \quad B_\theta = \frac{\mu_0 M}{4\pi s} \sin \theta \cos \omega t
\]

7. Show, in the preceding case, that the current density \(i_s \) at a distance \(\rho \) from the axis and the average rate of dissipation of power are given, approximately, by

\[
\frac{\mu_0 \omega M \sin \omega t}{4\pi s (s^2 + c^2)^{3/2}} \quad \text{and} \quad \frac{\mu_0^2 M^2 \omega^2}{64\pi s c^4}
\]

8. The magnetic moment of a small loop carrying current falls linearly from the value \(M \) at \(t = 0 \) to 0 at \(t = T \). If the loop is at a distance \(c \) above an infinite thin sheet of area resistivity \(\tau \) with its axis normal to it, show that the additional \(B \) on the axis at a distance \(z \) above the sheet due to its presence is

\[
\Delta B = \frac{\mu_0^2 M d[\mu_0(c + z) + s]}{2\pi T(c + z)[\mu_0(c + z) + 2s]^2}
\]
when $0 < t < T$ and that, when $t > T$, it is

$$\Delta B = \frac{\mu_0 M[\mu_0(c + z) + z(2t - T)]}{2\pi[\mu_0(c + z) + 2\pi(t - T)^{2}[\mu_0(c + z) + 2\pi]^2]^{3}}$$

9. A magnetic loop dipole of moment M is parallel to and at a distance c from an infinite thin sheet of area resistivity σ and is moved parallel to the sheet and normal to its axis with a uniform velocity v. Show that in a steady state the eddy current retarding force is $\frac{\mu_0 M^2\sigma}{2\pi}[4(\sigma^2 + \mu_0^2\sigma^2)^{1} + 2\pi]^2$.

10. A loop dipole of moment M moves with a uniform velocity v in a straight line at a distance c from an infinite plane sheet of area resistivity σ. If M parallels the sheet and makes an angle ϕ with v, show that the retarding force is

$$F = \left\{1 - \frac{6\mu_0^2\sigma^2\cos^2\phi}{5(\mu_0^2\sigma^2 + 4\pi^2)^{1}[\mu_0^2\sigma^2 + 4\pi^2]^{1} + 2\pi]^2}\right\}F_0$$

where F_0 is the retarding force in the last problem.

11C. A slowly alternating current $I \cos \omega t$ is traversing a small circular coil whose magnetic moment for unit current is M. A thin spherical shell, of radius a and specific resistance σ, has its center on the axis of the coil at a distance f from the center of the coil. Show that the currents in the shell form circles round the axis of the coil and that the strength of the current in any circle whose radius subtends an angle $\cos^{-1} \alpha$ at the center is, if tan $\epsilon = (2n + 1)/\mu_0\sigma$,

$$MI(4\pi^2\sigma)^{-1}\Sigma(2n + 1)(2n^2 + 2\pi^2)^{-1}\cos \epsilon\sigma \cos(\omega t - \epsilon)$$

12. A thin spherical shell of area resistivity σ and radius a rotates with a uniform angular velocity ω about an axis normal to a uniform field of induction B. Show that the retarding torque is $6\pi B^2\cos \omega (\sigma^2 + \mu_0^2\sigma^2)^{-1}$.

13. Show that the average power dissipation in the shell of the last problem when placed in the field $B \cos \omega t$ is $3\pi a^2 \sigma \omega a^4(\sigma^2 + \mu_0^2\omega^2)^{-1}$.

14. Show that the field inside the shell in the last problem is, if tan $\epsilon = 3\pi/\mu_0\sigma$,

$$-3B(\sigma^2 + \mu_0^2\sigma^2)^{-1}\sin(\omega t - \epsilon)$$

15. A thin circular cylinder of area resistivity σ and radius a is placed in a field $B \cos \omega t$ normal to its axis. If tan $\epsilon = 2\pi/\mu_0\sigma$, show that the field inside is

$$-2\pi B(\sigma^2 + \omega^2\mu_0^2\sigma^2)^{-1}\sin(\omega t - \epsilon)$$

16. Show that the retarding torque per unit length, when the cylinder of the last problem is spinning on its axis with an angular velocity ω in a uniform magnetic field B normal to its axis, is $4\pi a\sigma \omega a^2 B^2(\sigma^2 + \omega^2\mu_0^2\sigma^2)^{-1}$.

17. The cylindrical coordinates of the wires of a bifilar circuit which carry the outgoing and incoming currents are, respectively, b, 0 and b, π. When the current in the circuit is $I \cos \omega t$, show that the vector potential at the point r, θ outside a thin tube $\rho = a$ of area resistivity σ is

$$2\mu_0 I \pi^{-1}\Sigma(2n + 1)^2\sigma^2 + \mu_0^2\sigma^2\omega a^2)^{-1}(\rho^{-1}h)^{2n+1}\cos(2n + 1)\theta\sin(\omega t - \epsilon)$$

where tan $\epsilon = 2(2n + 1)/\mu_0\sigma$ and the summation is from 0 to ∞, $a > b$.

18. A thin oblate spheroidal shell $r = \zeta$ has a variable thickness such that we may consider the area resistivity to be $\sigma = h_3\zeta$. At the time $t = 0$, a uniform magnetic field of induction B is suddenly established parallel to the axis. Show that if $N = 2[(1 + \zeta_0^2)\Sigma q_1(j\epsilon_0)]^{-1}$ the eddy current density is given by

$$i_\phi = \frac{BN(1 + \zeta_0^2)(1 - \zeta_0^2)^{\frac{1}{2}}e^{-\lambda t\xi}}{2(\zeta_0^2 + \zeta_0^2)^{\frac{1}{2}}e^{-\lambda t\xi}}$$
19. A long solid cylinder of radius \(a = (x^2 + y^2)^{\frac{1}{2}} \), permeability \(\mu \), and resistivity \(\tau \) is placed in an \(x \)-directed alternating magnetic field \(B_0 e^{j\omega t} \) (real part). Show that the \(x \)-directed vector potentials \(A_x \) and \(A_0 \) inside and outside the cylinder are

\[
A_1 = \tilde{C} I_1[(jp)^{1/2} \rho] e^{j\omega t} \sin \phi \text{ (real part)}, \quad A_\infty = B(\rho + \tilde{D}\rho^{-1}) e^{j\omega t} \sin \phi \text{ (real part)}
\]

where, writing \(I_0 \) and \(I_2 \) for \(I_0[(jp)^{1/2} \rho] \) and \(I_2[(jp)^{1/2} \rho] \),

\[
\tilde{C} = \frac{4\mu B}{(jp)^{3/2}(\mu + \mu_0)I_0 - (\mu - \mu_0)I_2} \quad \text{and} \quad D = \frac{(\mu - \mu_0)I_0 - (\mu + \mu_0)I_2}{(\mu + \mu_0)I_0 - (\mu - \mu_0)I_2}
\]

20. Show that the mean power dissipated per unit length in the last problem is

\[
\bar{P} = \frac{4\pi \omega \sigma^2 B^2 [(\rho_0(p^4a)(\rho_0^4a) - (\rho_0(p^4a)(\rho_0^4a)]}{[(\mu + \mu_0)ber_0 + (\mu - \mu_0)ber_1]^2 + [(\mu + \mu_0)be_0 + (\mu - \mu_0)be_1]^2}
\]

where \(-(ber_2x + jbe_2x)\) is written for \(I_2[(j^2)x] \). The arguments in numerator and denominator are the same. If \(p \) is small, show that this reduces to

\[
\bar{P} = \frac{1}{2}(\mu + \mu_0)^{-2}
\]

21. A long solid cylinder of radius \(a \), permeability \(\mu \), and conductivity \(\gamma \) is rotated about its axis with a uniform angular velocity \(\omega \) in a magnetic field \(B \) normal to this axis. Show that the retarding torque per unit length, due to eddy currents, is

\[
T = \frac{8\pi \omega \sigma^2 B^2 [(\rho_0(p^4a)(\rho_0^4a) - (\rho_0(p^4a)(\rho_0^4a)]}{[(\mu + \mu_0)ber_0 + (\mu - \mu_0)ber_1]^2 + [(\mu + \mu_0)be_0 + (\mu - \mu_0)be_1]^2}
\]

The arguments in numerator and denominator are the same, and \(p = \gamma \mu \sigma \).

22. A loop of radius \(a \) is coaxial with and at a distance \(d \) from the bottom of a cylindrical box of radius \(b \) and height \(c \). If the skin effect is so large that \(B \) is nearly tangent to the walls, show that the decrease in self-inductance is

\[
\Delta L = \left\{ \sum_{n=1}^{\infty} M_{1n} + 4\pi \sigma^2 \sum_{n=1}^{\infty} \left[I_1(n\pi ac^{-1}) \right]^2 c I_1(n\pi b c^{-1})^{-1} K_1(n\pi b c^{-1}) \sin^2 (n\pi dc^{-1}) \right\}
\]

\[
M_{1n} = 2\mu_0 \left[k_1^{-1}[(1 - \frac{1}{2}k_1^2) K_1 - E_1] - (1 - \delta^2) k_1^{-1}[(1 - \frac{1}{2}k_1^2) K - E] \right]
\]

where the modulus \(k_1 \) is \(a(a^2 + (nc - d)^2)^{-1} \) and \(k \) is \(a(a^2 + n^2c^2)^{-1} \).

23. In problem 21 the skin depth is \(\delta \), the conductivity \(\gamma \), and the current \(I \). Show from 11.02 (8) that if \(k_m \) is chosen so that \(J_1(k_m b) \) is zero, the power dissipation is

\[
\bar{P} = \frac{2\pi I^2}{\gamma d} \left\{ \frac{a^2}{b c} \sum_{n=1}^{\infty} \left[\frac{I_1(n\pi ac/c) \sin (n\pi dc/c)}{I_1(n\pi b c/c)} \right]^2 + \frac{a^2}{b^2} \sum_{m=1}^{\infty} \frac{[J_1(k_m a)]^{2} \sinh^2 k_m(c - d) + \sinh^2 (k_m d)]}{[J_1(k_m a)] \sinh (k_m c)]^2} \right\}
\]

24. A thin disk of radius \(a \) and area resistivity \(s \) is placed in a region where, before its insertion, there was a uniform field of induction \(B_0 \cos \omega t \) normal to it. Find the secondary currents from the vector potential of the primary eddy currents induced by \(B_0 \cos \omega t \). Thus show that the total eddy current density is

\[
\frac{\omega B_0}{2s} \left\{ \rho \sin \omega t + \frac{\omega \mu}{6\pi \rho s} [(a - \rho)(2\rho^2 + a^2)K + (a + \rho)(2\rho^2 - a^2)E] \cos \omega t + \cdots \right\}
\]
where the modulus of K and E is $2(a\rho)^3(a + \rho)^{-1}$ and terms in $(\omega \mu a / \tau)^2$ are neglected. Note that at 60 cycles this is good for 0.1 mm copper sheet.

25. If in the last problem the frequency is so high that the skin depth δ is much less than the disk thickness so that B can be taken tangent to its surface, show that the eddy current density, including both faces, at a distance ρ from the center is

$$i_\phi = \frac{\pi B \rho^2}{\mu a (a^2 - \rho^2)^{1/2}}$$

This i_ϕ is completely rigorous for a perfectly conducting disk.

26. The eddy current density in an infinitely long cylindrical shell of radius a, area resistivity σ, and thickness much less than skin depth is $(i_\phi)_0$ at $t = 0$ and i_ϕ at $t = \tau$. If $(i_\phi)_0$ can be written as a Fourier integral, show that

$$(i_\phi)_0 = \int_0^\infty \psi(k) \cos kz \, dk$$

$$i_\phi = \int_0^\infty \psi(k) \cos kze^{-[\mu a I_1(ka)]K_1(ka)} \sin \tau \, dk$$

27. The vector potential of the inducing field at the shell’s surface in problem 26 is

$$(A_\phi' \rho = a = -\int_0^\infty \Phi(k, a, t) \cos kz \, dk$$

Show by the reasoning of 11.14 and the last problem that, due to eddy currents,

$$(A_\phi)_{\rho = a} = -\int_0^\infty \int_0^\infty \frac{\partial}{\partial t} \psi(k, a, t - \tau) \cos kze^{-[\mu a I_1(ka)]K_1(ka)} \cos kz \, dk \, dr$$

28. A loop of radius b carries a current $I \cos \omega t$ and is coaxial with a very long shell at $\rho = a$ of area resistivity σ and thickness much less than the skin depth. Show that the shell increases the loop’s resistance and inductance by amounts

$$\Delta R = 2\mu b^2 \omega \int_0^\infty \sin^2 \theta [R_1(kb)]^2 K_1(ka)[I_1(ka)]^{-1} \, dk$$

$$\Delta L = -2\mu b^2 \int_0^\infty \sin \theta \cos \theta [R_1(kb)]^2 K_1(ka)[I_1(ka)]^{-1} \, dk$$

$R_1(kb) = I_1(kb)$ if $b < a$, $R_1(kb) = K_1(kb)$ if $b > a$ and tan $\theta = s^{-1} \omega a I_1(ka) K_1(ka)$.

29. From problem 40, Chap. VII, and 7.04 show that the external self-inductance of the torus formed by rotating a circle of radius b about a coplanar line c meters from its center at high frequencies where there is a strong skin effect is

$$L = 2\mu c \cos \alpha \cos \frac{1}{2} \left[\left(1 - \frac{1}{2} k^2 \right) K - E \right] \left[1 - 2 \sum_{n=1}^\infty \frac{(-1)^n Q_{2n-1}(\cot \alpha)}{(4n - 1)(4n + 1)Q_{2n-1}(\cot \alpha)} \right]$$

where tan $\alpha = b/c$ and the modulus k of K and E is given by $k^2 = \cos \alpha \sec \frac{1}{2} \alpha$.

30. A wire loop of radius a is coaxial with and outside an infinite conducting cylinder of radius b and carries an alternating current I of such high frequency that the eddy current density in the cylinder is confined to its skin. Show with the aid of problems 26 and 28 of Chap. VII that this density is

$$i_\phi = \frac{a I}{b \mu c} \int_0^\infty K_1(ka) \cos kz \, dk$$

31. In the foregoing problem show with the aid of 8.06 (1) that the presence of the cylinder decreases the self-inductance of the loop by an amount

$$|\Delta L| = 2\mu a^2 \int_0^\infty I_1(kb) K_1(ka) \, dk = \mu (a + b) ((1 - \frac{1}{2} k^2) K - E)$$
420

EDDY CURRENTS

where \(K \) and \(E \) are complete elliptic integrals of modulus \(k = 2(ab)^{1/2}(a + b)^{-1} \). Show that the eddy current losses increase the resistance of the loop by an amount

\[
R = \frac{4a^3}{\gamma \delta b} \int_0^\infty \left[\frac{K_1(ka)}{K_1(kb)} \right]^3 dk
\]

where \(\gamma \) is the conductivity and \(\delta \) the skin depth for the cylinder material.

References

The following books will be found useful for this chapter:

Bateman, H.: “Electrical and Optical Wave Motion,” Cambridge, 1905. Discusses boundary conditions, gives solutions of wave equations and an extensive list of references.

Russell, A.: “Alternating Currents,” Cambridge, 1914. Treats manipulation of \(\text{ber} \) and \(\text{bei} \) functions.

CHAPTER XII

MAGNETISM

12.00. Paramagnetism and Diamagnetism.—In most substances, with some notable exceptions to be considered in Art. 12.04, the magnetic permeability depends very little on the field strength so that taking it constant, as we have done, introduces no appreciable error. Unlike the relative capacitivity, the relative permeability may be either greater or less than 1. Substances in which it is greater are called paramagnetic, and those in which it is less diamagnetic. Let us consider the forces acting on such bodies when placed in the field of a fixed circuit carrying a constant current. From 8.01 (4) and 8.03 (4) or 8.08 (3), we see that, if any infinitesimal displacement or rotation of the circuit will increase the flux through it, then there is a force or torque trying to produce this motion. If there are any bodies in the field of this circuit whose displacement or rotation will increase the flux through it then, by Newton's law of reaction, there will be corresponding forces or torques acting on these bodies.

In 7.29, we saw that the magnetic induction or flux density and the permeability are related in magnetic circuits in exactly the same way as the current density and the electric conductivity in electric circuits. Thus we may state theorems 3 and 4 of 6.11 in a form applicable to magnetic circuits. If the permeability of any element in the magnetic field of an electric current is increased or decreased, the reluctance of the magnetic circuit is decreased or increased, respectively. As we have seen, these are forces acting to increase the flux and hence to decrease the reluctance. Thus, in an inhomogeneous field, there is a tendency for bodies that are more paramagnetic or less diamagnetic than the ambient medium to move toward the more intense parts of the field, and vice versa. If a paramagnetic or diamagnetic body of elongated shape is placed in a uniform field, there is a torque tending to set its axis parallel to the field. This can be seen in the case of spheroids by substituting μ for ε, μ_e for ε_e, and H or B/μ for E in problem 84, Chap. V, and observing that the torque formula contains $H_1 - H_2$ which has the factor $\mu - \mu_e$ in it so that the torque depends on $(\mu - \mu_e)^2$ and has the same sign for $\mu > \mu_e$ and $\mu < \mu_e$.

Quantum mechanics gives a theoretical basis for the empirical fact that the permeability of diamagnetic bodies is usually independent of temperature. For weakly paramagnetic substances, the permeability is often
independent of temperature. In strongly paramagnetic, but not ferromagnetic, substances, the permeability usually depends on temperature, obeying the equation

$$\mu = \mu_v + \frac{\mu_v C}{T + \theta}$$ \hspace{1cm} (1)$$

where C and θ are constants and T is the absolute temperature. This empirical relation is called Curie's law. A theoretical basis for it is found in quantum mechanics. For gases, θ is usually zero.

12.01. Magnetic Susceptibility.—It is often convenient to use a new quantity magnetic susceptibility defined, in an isotropic medium, in terms of the quantities already treated in 7.20 and 7.28 by the equations

$$\kappa H = M = B \left(\frac{1}{\mu_v} - \frac{1}{\mu} \right)$$ \hspace{1cm} (1)$$

Thus susceptibility and permeability are related by the equation

$$\kappa = \mu_v^{-1}(\mu - \mu_v) = K_m - 1$$ \hspace{1cm} (2)$$

When a substance is placed in a magnetic field, its energy is decreased if it is paramagnetic and increased if it is diamagnetic. From 8.02 (3) and (2), the change is given by

$$\Delta W = \frac{\mu_v H^2}{2} - \frac{B^2}{2\mu} = \frac{(\mu_v - \mu)H^2}{2} = -\frac{\mu_v}{2}\kappa H^2$$ \hspace{1cm} (3)$$

We notice that, for paramagnetic bodies, κ is positive; for diamagnetic bodies, it is negative. Curie's law [12.00 (1)] may be expressed more simply in terms of the susceptibility by the empirical equation

$$\kappa = \frac{C}{T + \theta}$$ \hspace{1cm} (4)$$

A theoretical basis for this equation has also been worked out.

12.02. Magnetic Properties of Crystals.—Many substances, especially crystals, possess different magnetic properties in different directions. It is even possible with some materials, such as graphite, to prepare specimens that are paramagnetic in one direction and diamagnetic in another. In such cases, it is found however that for any given orientation the magnetic induction B is proportional to the field intensity H and makes a constant angle α with it. This relation is similar therefore to that connecting the electric displacement D and the electric field intensity E in a crystal and can be formulated in the same way as in 1.19 by writing a set of equations analogous to 1.19 (1) and (2). We find, therefore, from 1.19 (3) that the components of B and H are con-
§12.03 CRYSTALLINE SPHERE IN UNIFORM MAGNETIC FIELD

connected by the relations

\[
B_z = \mu_{11}H_z + \mu_{21}H_y + \mu_{31}H_z \\
B_y = \mu_{12}H_z + \mu_{22}H_y + \mu_{32}H_z \\
B_z = \mu_{13}H_z + \mu_{23}H_y + \mu_{33}H_z
\] \hspace{1cm} (1)

where

\[
\mu_{12} = \mu_{21}, \quad \mu_{13} = \mu_{31}, \quad \mu_{23} = \mu_{32}
\] \hspace{1cm} (2)

Thus \(B\) and \(H\) are now connected by a quantity having nine components of which six are different. The permeability, formerly a simple ratio, has become a symmetrical tensor. By a suitable orientation of axes, (1) may be written in a form analogous to 1.19 (7), giving

\[
B_z = \mu_1 H_z, \quad B_y = \mu_2 H_y, \quad B_z = \mu_3 H_z
\] \hspace{1cm} (3)

When (3) holds, the coordinate axes are said to lie along the magnetic axes of the crystal.

By means of 12.01 (1), we see that the corresponding equation connecting the magnetic susceptibility and intensity of magnetization are

\[
M_x = \kappa_1 H_x, \quad M_y = \kappa_2 H_y, \quad M_z = \kappa_3 H_z
\] \hspace{1cm} (4)

where \(\kappa \mu_1 = \mu_1 - \mu_v\), etc. By rotation of coordinates, we can get a set of equations, connecting \(M\) and \(H\) in a crystal, analogous to (1) and involving a tensor magnetic susceptibility.

12.03. Crystalline Sphere in Uniform Magnetic Field.—As an illustration of the manipulation of the formulas of the last article, let us find the torque acting on a crystalline sphere when placed in a uniform magnetic field of induction \(B\). Let the angle between \(B\) and the \(x\)-axis in 12.02 (3) be \(\alpha\), and let \(\mu_2 = \mu_3\). The boundary conditions will evidently be satisfied if we superimpose the case of a field of induction \(B\) cos \(\alpha\) in the \(x\)-direction, acting on an isotropic sphere of permeability \(\mu_1\), and the case of a field \(B\) sin \(\alpha\) in the \(y\)-direction, acting on an isotropic sphere of permeability \(\mu_2\).

If we take \(B\) in the \(xy\)-plane (Fig. 12.03), then from 11.06 and 7.10 (2), we see that the field outside the sphere is exactly the same as if we superimposed on the original field a field due to a magnetic dipole of moment \(M_x\) in the \(x\)-direction and that of one of strength \(M_y\) in the \(y\)-direction where

\[
M_x = \frac{\mu_1 - \mu_v}{\mu_1 + 2\mu_v} \frac{4\pi a^3 B \cos \alpha}{\mu_v} \quad \text{and} \quad M_y = \frac{\mu_2 - \mu_v}{\mu_2 + 2\mu_v} \frac{4\pi a^3 B \sin \alpha}{\mu_v}
\]

The field due to these two dipoles equals that due to a single dipole of...
strength \(M \) making an angle \(\beta \) with the axis, where

\[
\tan \beta = \frac{M_y}{M_z} = \left(\frac{\mu_2 - \mu_v}{\mu_1 - \mu_v} \right) \left(\frac{\mu_1 + 2\mu_v}{\mu_2 + 2\mu_v} \right) \tan \alpha
\]

\[
M = (M_z^2 + M_y^2)^\frac{3}{2} = 4\pi a^3 \left[(\mu_1 - \mu_v)^2 (\mu_2 + 2\mu_v)^2 (1 - \sin \alpha) + (\mu_2 - \mu_v)^2 (\mu_1 + 2\mu_v)^2 \sin \alpha \right] \left(\mu_v (\mu_1 - \mu_v) (\mu_2 + 2\mu_v) \right)
\]

The angle that \(M \) makes with the field is, from Dw 405.02 or Pc 593,

\[
\tan (\beta - \alpha) = \frac{3(\mu_2 - \mu_1) \tan \alpha}{(\mu_1 - \mu_v)(\mu_2 + 2\mu_v) + (\mu_2 - \mu_v)(\mu_1 + 2\mu_v) \tan^2 \alpha}
\]

The torque acting is then, from 7.18,

\[
T = MB \sin (\beta - \alpha)
\]

This torque tends to rotate the sphere so that the axis of \(\mu_1 \) lies in the direction of the field if \(\mu_1 > \mu_2 \) and so that it lies at right angles to the field if \(\mu_1 < \mu_2 \).

12.04. Ferromagnetism.—There is an important group of materials whose permeability varies with the magnetizing field, depends on the previous treatment of the specimen, and is much larger than that of ordinary substances. These materials are said to be ferromagnetic and include iron, cobalt, nickel, and the Heusler alloys and, at low temperatures, some of the rare earth metals. Let us construct, of ferromagnetic material, a simple magnetic circuit such as the anchor ring considered in 7.29 in which the magnetizing force, or the magnetomotance per meter, can be computed easily. Starting with the zero values of both the magnetic induction \(B \) and the magnetizing force \(H \), we find that as \(H \) is increased \(B \) also increases but the ratio of \(B \) to \(H \) which is the permeability \(\mu \) first increases and then decreases. Typical curves of \(B \) and \(\mu \) as a function of \(H \), for a ferromagnetic material, are shown in Fig. 12.04.

In many ferromagnetic substances, if we measure the magnetization...
with sufficiently sensitive instruments, we find the steeper part of the magnetization curve to have a step structure. This is called the Barkhausen effect. It suggests that a large region, involving many similarly oriented atomic magnets, changes direction as a unit. Experiments on ferromagnetic single crystals indicate that certain preferred directions are easiest for magnetization. Since most ferromagnetic substances with which we work are polycrystalline, it is believed that the major part of the magnetization is due to the magnetic units in a microcrystal orienting themselves in that preferred direction most nearly coincident with the magnetizing force. When all units are so oriented, the Barkhausen effect ceases, and further increases in the magnetizing field force the magnetization of these units continuously from their preferred directions toward the direction of the field. This accounts for the absence of step structure in the flatter part of the curve where the magnetization approaches saturation. A theoretical basis for this picture is found in the electron configuration of the iron atom.

In the calculation of magnetic fields, inductances, magnetic forces, eddy currents, and such quantities, we have hitherto assumed that the permeability of a given substance is fixed. We see from these curves that if there is much variation in the magnetizing force in a region occupied by ferromagnetic material this assumption is not justified. In such cases, we take a mean value of \(\mu \), which is approximately correct for this substance, for the range of \(H \) used. Our knowledge of the magnetization curve of the particular specimen involved usually does not justify higher precision. In case, however, all ferromagnetic material used is very homogeneous and has been carefully annealed, we may be able to determine from this solution and the magnetization curve the value of \(\mu \) which should be used in different regions. It is in geometrically simple cases only that this knowledge can be used to find a more rigorous analytical solution.

12.05. Hysteresis. Permanent Magnetism.—Suppose that, having increased \(H \) to \(H_1 \), thereby increasing \(B \) to \(B_1 \), as described in 12.04, we now decrease \(H \) to \(-H_1\). We find that the induction \(B \) does not retrace any portion of the path shown in Fig. 12.04 but decreases less rapidly, following the upper curve in Fig. 12.05a, and, for a normal specimen, reaches the value \(-B_1\) at \(-H_1\). If we now increase \(H \) again to \(+H_1\), we follow the lower curve in Fig. 12.05 and reach the original curve at \(B_1, H_1 \). This lag in the induction is called hysteresis, and the closed curve in Fig. 12.05a is called a hysteresis loop.

It is clear that with a given specimen we get a different hysteresis loop when we start with a different point on the magnetization curve, but if we vary \(H \) continuously from \(H_1 \) to \(-H_1 \) and back we repeatedly retrace the same loop.
§12.06

The hysteresis loops for different ferromagnetic materials may differ greatly. For magnetically "soft" specimens, the area inside the loop is very small, giving the inner curve in Fig. 12.05a, whereas in magnetically "hard" substances it is very great as shown in curve D. In the latter case, we still have a large residual induction or retentivity B_m when the magnetizing force is zero and it actually takes a large reverse field H_C called the coercive force, to destroy the induction in the specimen. Here, we observe for the first time the presence of a magnetic field when electric currents are apparently absent. Magnetic phenomena were originally discovered associated with such "permanent" magnets, and the whole theory of magnetism was developed on the basis of experiments made with them.

12.06. The Nature of Permanent Magnetism.—Hitherto, we have considered the energy in a magnetic field as essentially kinetic, it being associated with the motion of electric charges. As the magnetic fields produced by permanent magnets appear in every respect to be identical with those produced by electric currents, it is natural to seek a similar origin for them. The nature of permanent magnetism is revealed by a group of phenomena known as the gyromagnetic effects. Since no electricity is entering or leaving a permanent magnet, any motion of electricity therein must be circulatory and this circulation or spin must be about axes that are oriented, on the average, in a definite direction to produce a definite external field. If, as we have seen in 1.04, the electrical carriers possess mechanical inertia, then when circulating in closed paths or spinning, they possess angular momentum and therefore are subject to gyroscopic forces. Such forces were predicted by Maxwell but could not be detected with the experimental technique of his day.
Two effects immediately suggest themselves. The first of these is magnetization by rotation. A well-known fact in mechanics is that when the supporting system of a gyroscope is rotated and its axis a is free to turn only in the plane common to it and the axis b of rotation of the system, then a tends to set itself parallel to b.

Thus, if an unmagnetized body possessed circulating or spinning electricity with axes oriented at random, a rotation of this body should produce an alignment of these axes with the axis of rotation, and the body should become magnetized. Such effects have been detected and measured by Barnett in ferromagnetic substances. The second effect is the converse of the first, rotation by magnetization. From the law of conservation of angular momentum, if the random axes of rotation are aligned by a magnetic field, then the body as a whole must rotate in the reverse direction to keep the resultant angular momentum zero. This effect was first measured by Einstein and De Haas and has since been done with greater precision by other experimenters. Both effects show that there is a rotation of negative electricity in ferromagnetic bodies and that the average magnetic moment of the individual gyroscopes is slightly greater than that of a spinning electron. The excess is supposed to be due to an "orbital" motion of the electrons. Thus, we see that the magnetic fields of permanent magnets are not different from those already studied.

12.07. Uniform Magnetization. Equivalent Current Shell.—In permanent magnets, the magnetization \mathbf{M} is, by definition, independent of applied fields. It can be defined, as in 7.20, as the magnetic moment per unit volume of the permanent circulating currents or spins. From 7.20 (1) and (4), the vector potential due to \mathbf{M} is given by the equation

$$A_\mu = -\frac{\mu_0}{4\pi} \int_V \frac{\mathbf{M} \times \mathbf{r}}{r^3} \, dV = \frac{\mu_0}{4\pi} \int_V \frac{\mathbf{r} \times \mathbf{M}}{r} \, dV + \frac{\mu_0}{4\pi} \int_S \frac{\mathbf{M} \times \mathbf{n}}{r} \, dS$$ (1)

where the volume integrals are throughout the volume of the magnet and the surface integral over its surface.

When \mathbf{M} is the same in magnitude and direction in every element of a given region, we say this region is uniformly magnetized. For such a magnet, the second volume integral in (1) is zero. Let us examine the remaining surface integral. Suppose that \mathbf{M} is in the x-direction so that $\mathbf{M} = i M$. Let θ be the angle between i and \mathbf{n}, and let $d\mathbf{s}$ and $d\mathbf{s}_1$ be orthogonal vectors lying in the magnet surface, $d\mathbf{s}$ being normal to i and \mathbf{n}. Then, we have

$$\mathbf{M} \times \mathbf{n} \, dS = M \sin \theta \, d\mathbf{s}_1 \, ds = M \, dx \, ds$$

so that

$$A = \frac{\mu_0}{4\pi} \int \int \frac{M \, dx}{r} \, ds$$ (2)
We see that this is identical in form with 7.02 (5) so that the whole magnet can be replaced by a current shell, coinciding with its surface, around which the currents flow in planes normal to the direction of magnetization \(x \). The current density, in terms of \(x \), is uniform and equals the intensity of magnetization \(M \). Such a shell is called an equivalent current shell and is frequently very useful in treating permanent magnets.

12.08. Magnetized Sphere and Cylinder. Magnetic Poles.—For a uniformly magnetized sphere, the current flowing in the equivalent current shell between \(\theta \) and \(\theta - d\theta \) is

\[
i d\theta = M \, dx = Ma \sin \theta \, d\theta
\]

where \(i \) is the angular current density. The stream function is then given by

\[
\Psi = \int_0^\theta i \, d\theta = Ma(\cos \theta - 1) = Ma[P_1(u) - P_0(u)]
\]

where \(u = \cos \theta \). This is identical in form with 7.12 (1); and setting \(n = 0 \) and \(1 \) in 7.12 (5) and (3), we see that the vector potential outside the sphere is

\[
A_{\varphi} = \frac{\mu_0 Ma^3}{3\pi^2} \sin \theta
\]

Comparing with 7.10 (1), we see that the field is identical with that of a small current loop of moment

\[
M = \frac{4\pi Ma^3}{3}
\]

We saw in 7.00 that the magnitude and configuration of the magnetic field at a distance from such a loop are identical with that of the electric field about an electric dipole having the same moment.

For a right circular cylinder magnetized parallel to its axis, the equivalent current shell is seen to be a solenoid with zero pitch, the current per unit length being \(M \). From 7.15 (4), the magnetic induction at any point \(P \) on the axis of such a solenoid is given by

\[
B_x = \frac{1}{2}\mu_0 M_x (\cos \beta_2 - \cos \beta_1)
\]

where \(\beta_2 \) and \(\beta_1 \) are the angles subtended by radii of the two ends at \(P \). If the radius \(a \) of the cylinder is small compared with its length \(l \), then at points far from the ends we have

\[
\cos \beta_{1,2} = (x \pm \frac{1}{2}l)[(x \pm \frac{1}{2}l)^2 + a^2]^{-1}
\]

Dividing numerator and denominator by \(x \pm \frac{1}{2}l \), expanding by \(Pc \) 754
or Dw 9.03, neglecting a^4, a^6, etc., terms, and substituting in (4), we obtain

$$B_x = \frac{\mu_o a^2 M}{4(x + \frac{1}{2}l)^2} - \frac{\mu_o a^2 M}{4(x - \frac{1}{3}l)^2}$$

This is identical with the electric displacement one would obtain on the x-axis with electric charges $q_1 = \mu_0 \pi a^2 M$ at $x = \frac{1}{2}l$ and $q_2 = -\mu_0 \pi a^2 M$ at $x = -\frac{1}{3}l$. Thus, experiments with magnetic needles lead naturally to the hypothesis of magnetic charges or poles. The region from which the magnetic lines of force emerge is called the north pole, and the region in which they reenter the magnet is called the south pole. As we have seen, the actual existence of magnetic charges is impossible if the divergence of the magnetic induction is to be zero everywhere.

12.09. Boundary Conditions on Permanent Magnets.—As the name implies, we assume that the intensity of magnetization of a "permanent" magnet is unaffected by the fields in which it is placed. This means that if we replace the magnet with an equivalent current shell, the region inside is assumed to have a permeability μ_o. If the magnet is immersed in a region of permeability μ and an external field is superimposed, it will be distorted at the surface of the magnet to meet the boundary conditions between a medium of permeability μ_o and one of permeability μ. These boundary conditions have already been stated in 7.21, 7.22, and 7.28.

12.10. Spherical Permanent Magnet in Uniform Field.—As an example, let us compute the torque on a uniformly magnetized sphere immersed in a medium of permeability μ in which the magnetic induction B, before the introduction of the sphere, was uniform. Let α be the angle between M and B. Obviously, the current sheet can produce no torque on itself; so we need compute only the induction due to the external field. In spherical coordinates, the vector potential of B is

$$A_\phi = \frac{1}{2} Br \sin \theta$$

In 7.10 (1), we have a form of vector potential in which θ enters in the same way but which vanishes at infinity. This is therefore the logical form to choose for the additional term due to the presence of the sphere with permeability μ_o. Thus, outside the sphere, we have

$$A_\phi = \frac{B}{2} \left(r + \frac{C}{r^2} \right) \sin \theta$$

Since A_ϕ must be finite at the origin and must include θ in the same way, it must have the form

$$A_\phi = Dr \sin \theta$$

To determine C and D, we apply the boundary conditions of 7.21 (6) and
MAGNETISM

\[\frac{B}{2} \left(1 - \frac{C}{2a^3} \right) = \frac{\mu D}{\mu_0} \quad \text{and} \quad \frac{B}{2} \left(a + \frac{C}{a^2} \right) = Da \]

(4)

Solving for \(C \) and substituting in (2) give

\[A_{\phi} = \frac{1}{2} B \left(r - 2 \frac{\mu - \mu_0}{2\mu + \mu_0} \frac{a^3}{r^3} \right) \sin \theta \]

(5)

When \(r = a \), this has the same form as (1) and so, from (3), represents a uniform field in the direction of \(B \). The torque on the current ring element lying between \(\theta_1 \) and \(\theta_1 + d\theta_1 \), where \(\theta_1 \) is the colatitude angle measured from the axis of magnetization, equals the product of the current in the ring by its area, by the magnetic induction, and by \(\sin \alpha \), giving

\[dT = \pi a^2 \sin^2 \theta_1 B \left[1 - 2 \frac{\mu - \mu_0}{2\mu + \mu_0} \right] i d\theta_1 \sin \alpha \]

Substituting for \(i d\theta_1 \) from 12.08 and integrating by Dw 854.1 or Pc 483 give

\[T = \frac{3\pi \mu_0 a^2 MB \sin \alpha}{2\mu + \mu_0} \int_0^r \sin^2 \theta_1 d\theta_1 = \frac{4\pi \mu_0 a^2 MB \sin \alpha}{2\mu + \mu_0} \]

(6)

If the field in which the sphere was placed were not homogeneous, we would have a force as well as a torque. This would consist of two parts, \(\text{viz.,} \) the force on a sphere of permeability \(\mu_0 \) and the force on the current shell in the field at the surface of this sphere. These forces could be calculated, using 11.06 (13) and 7.18.

12.11. Lifting Power of Horseshoe Magnet.—

For lifting ferromagnetic objects, one frequently uses a permanent magnet in the form of a horseshoe. In treating this, we shall assume for simplicity that the “legs” are eliminated, leaving only half a ring as shown in Fig. 12.11. If the legs were present, we could use an approximate method like that in 6.22. We shall assume that the half ring was magnetized by placing it in contact with another similar piece of steel to form a complete ring, winding uniformly with wire and passing a current. To a first approximation, the magnetization \(M \) will be the same function of \(r \), the distance from the center of the ring, as the magnetomotive force was, so that we have, from 7.29 (3),

\[M = \frac{C}{r} \]

(1)
To find the equivalent current shell, we take a thin layer of thickness dr and radius r in which M may be considered constant. Then, if i is the angular current density, we have for the current flowing between θ and $\theta - d\theta$, as in 12.08,

$$i d\theta = M dx = \left(\frac{C}{r}\right) r \, d\theta = C \, d\theta$$

(2)

When the layer current shells are superimposed, adjacent current layers cancel and we have a constant angular current density C around any section of the ring. Now let us suppose this magnet is placed in perfect contact with a block of infinite permeability. The lines of magnetic induction inside the current shell are then semicircles since they enter and leave the block normally by 7.21 (2). The magnetomotance around the circuit is, by 7.28 (3),

$$\Omega = \int_0^\pi C \, d\theta = \pi C$$

(3)

The reluctance of the layer dr is, as in 7.29,

$$dR = \frac{\text{length}}{\mu_\theta \times \text{area}} = \frac{\pi r}{\mu_\phi a \, dr}$$

since the permeability inside our current shell is μ_ϕ. The flux in this layer is

$$Ba \, dr = \frac{\Omega}{dR} = \frac{\mu_\phi C}{r} \, a \, dr$$

The tension across a section of this layer is, from 8.14 (2),

$$dT = \frac{aB^2}{2\mu_\phi} \, dr = \frac{\mu_\phi aC^2}{2r^2} \, dr$$

The pull on the block at each contact is

$$T = \frac{\mu_\phi aC^2}{2} \int_b^c \frac{dr}{r^2} = \frac{\mu_\phi aC^2(c - b)}{2bc}$$

(4)

An upper limit for C can be computed roughly from the magnetization curve of the steel. If the total number of turns in the original magnetizing winding was n and the current used was i_m, then the magnetomotance per meter was $ni_m/(\pi r)$ ampere-turns per meter from 7.28 (3). Suppose that the wide loop in Fig. 12.05b corresponds to our specimen and that $H_D = ni_m/(\pi b)$. Then, for all values of r greater than b, the magnetizing force will be smaller than H_D and the hysteresis loops will lie inside of that shown. We have assumed that the ratio of B_m to B_D is the same for all these loops (let us call it P) and that the ratio of B_D to H_D is also a constant (let us call it μ'). Then, from (1),

$$M = \frac{C}{r} = \frac{B_m}{\mu_\phi} = \frac{ni_m\mu' P}{\mu_\phi \pi r}$$
so that we have

$$C_{\text{max}} = \frac{n l m \mu P}{\mu_0 \pi}$$

(5)

This is an upper limit for C since any mechanical shock, heat-treatment, or "softness" of the steel will diminish C, especially after the ring has been separated into two magnets. The approximation made in assuming $\mu = \infty$ for the block is not serious, for in most soft iron specimens $\mu/\mu_0 > 500$.

12.111. Field of Cylindrical Magnet.—In order to produce strong steady fields over small areas, permanent magnets are frequently made in the form of rings, with small gaps, which are magnetized, as described in the last article, by winding uniformly with wire and passing a current. To simplify the calculation of the field in this case, let us suppose that the ring is so wide in the direction parallel to its axis that we may take it as a long cylinder of internal and external radii a and b which has been magnetized, before the gap is made, by winding wire uniformly over the walls parallel to its axis. As explained in the last article, the resultant M is inversely proportional to r. After magnetizing, a gap with radial walls is created, without disturbing M, by removing part of the metal, leaving only the portions lying between $\theta = +\alpha$ and $\theta = -\alpha$. If b is sufficiently small compared with the length of the cylinder, the problem far from the ends becomes a two-dimensional one. In this case, the lines of magnetic induction coincide with the lines of constant vector potential as proved in 7.25 and may be most easily calculated by the method of circular harmonics considered in 4.01, 4.02, 4.03, and 7.17.

As shown in the last article, the equivalent current shell consists of that portion of the original magnetizing winding not removed with the gap and carries the current $I\,d\theta$ between θ and $\theta + d\theta$. Since all elements of the winding are parallel to the axis and the ends are so distant that they do not affect the vector potential A, the latter is also everywhere parallel to the axis and the current elements may be considered infinite in length. Considering the contribution of the inner elements negative and that of the outer ones positive, we find that dA at the point P at r, θ due to the elements at $+\theta_1$ and $-\theta_1$ is given from 7.09 (1), by

$$dA = \frac{1}{2\pi} \mu_0 I (\ln R_1 - \ln R_2 - \ln R_3 + \ln R_4) \, d\theta_1$$
§12.111 FIELD OF CYLINDRICAL MAGNET

Fig. 12.111b.—Lines of magnetic induction and constant vector potential in a permanent magnet formed by magnetizing a long thick cylindrical shell and removing a sector to form the air gap. Calculated from Eqs. (1), (2), and (3) of Art. 12.111 in which \(C = 1 \), \(\alpha = 7\pi/8 \), \(a = 1 \) and \(b = 2 \).

Substituting for the logarithms from 4.02 (1) and writing \(C \) for \(\mu_0 I/\pi \) give

\[
dA = C \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{a^n - b^n}{r^n} \right) \cos n\theta_1 \cos \theta d\theta_1
\]

Integrating this from \(\theta_1 = 0 \) to \(\theta_1 = \alpha \) gives

\[
r > b, \quad A = C \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{a^n - b^n}{r^n} \right) \sin n\alpha \cos n\theta \quad (1)
\]

Similarly,

\[
b > r > a, \quad A = C \left\{ \alpha \ln \frac{b}{r} + \sum_{n=1}^{\infty} \frac{1}{n^2} \left[\left(\frac{a}{r} \right)^n - \left(\frac{r}{b} \right)^n \right] \sin n\alpha \cos n\theta \right\} \quad (2)
\]
\[a > r, \quad A = C \left\{ \alpha \ln \frac{b}{a} + \sum_{n=1}^{\infty} \frac{1}{n^2} \left[\left(\frac{a}{b} \right)^n - \left(\frac{b}{a} \right)^n \right] \sin n\alpha \cos n\theta \right\} \tag{3} \]

The lines of induction when \(C = 1, \alpha = 7\pi/8, a = 1, \) and \(b = 2, \) calculated from (1), (2), and (3), are accurately drawn in Fig. 12.111b.

12.12. Magnetic Needles.—The most familiar form of permanent magnet is probably the magnetic needle. This consists of a thin cylinder of steel more or less uniformly magnetized lengthwise. As we saw in 12.08 (5), the magnetic induction of such a magnet approximates in form that of the electric displacement about two charges \(\mu_e \pi a^2 M \) and \(-\mu_e \pi a^2 M \) placed at a distance \(l \) apart, where \(a \) is the radius, \(l \) the length, and \(M \) the intensity of magnetization of the magnet. This analogy fails if the magnet is placed in a medium of permeability \(\mu \neq \mu_e. \) However, in the case of the magnetic needle whose length-to-diameter ratio is very great, another approximation can be used. Its equivalent current shell, if filled with a medium \(\mu_v \) and immersed in a medium \(\mu, \) behaves by 7.24 and 1.18 like a long slender cavity so that the axial flux through it from an external source is the product of \(\mu_v H \) or \(\mu_v B/\mu \) by \(\pi a^2 \cos \theta \) where \(\theta \) is the angle between its axis and \(B. \) From 12.07, the current in a length \(dl \) of the equivalent current shell that links this flux is \(M dl \) where \(M \) is the magnetization. From 8.03 (6) and 7.28 (5), the energy of the shell is

\[W = \mu_v M \pi a^2 \int H \cos \theta \, dl = \mu_v M \pi a^2 (\Omega_2 - \Omega_1) \tag{1} \]

This has the form of 1.071 (1) so that a thin needle uniformly magnetized lengthwise acts exactly like a pair of equal and opposite electric charges of size \(\mu_v M \pi a^2 \) placed in an electric field of potential \(V = \Omega, \) where \(\Omega \) is the magnetomotance or scalar magnetic potential.

In the absence of external magnetic field sources, the flux threading the slender current shell is practically independent of the permeability of the medium surrounding the needle for the reluctance of the magnetic circuit involved lies almost entirely inside the shell where the medium does not penetrate and the permeability is \(\mu_v. \) Thus the magnetic flux from a sufficiently thin magnetic needle, like the electric flux from an electric dipole, is independent of the medium surrounding it. The scalar magnetic potential or magnetomotance of such a needle is, therefore, inversely proportional to the permeability of the medium around it. These forces may be computed by the formulas of 1.071 as if the magnets possessed a mutual potential energy. Thus if \(r \) is the radius vector from \(M' \) to \(M'' \) which make angles \(\theta_1 \) and \(\theta_2 \) with it and \(\alpha \) with each other and, if \(\psi \) is the angle between the planes intersecting in \(r \) which contain \(M' \) and \(M'' \) then,
PROBLEMS

from (1), 1.071 (4), and 1.071 (5), this potential energy is

\[
W = \frac{M' M''}{4\pi \mu r^3} (\cos \alpha - 3 \cos \theta_1 \cos \theta_2) \tag{2}
\]

\[
= \frac{M' M''}{4\pi \mu r^3} (\sin \theta_1 \sin \theta_2 \cos \psi - 2 \cos \theta_1 \cos \theta_2) \tag{3}
\]

All forces and torques exerted by one dipole on the other can be found from these formulas by the usual method of differentiation with respect to the coordinate involved. In particular, the force of repulsion is

\[
F = -\frac{\partial W}{\partial r} = \frac{3M' M''}{4\pi \mu r^3} (\sin \theta_1 \sin \theta_2 \cos \psi - 2 \cos \theta_1 \cos \theta_2) \tag{4}
\]

The apparent potential energy of a needle \(M' \) in a field of induction \(B \), from which the forces are found by differentiation, is, from 1.071 (2),

\[
W = M' \cdot H = M' \cdot B \mu^{-1} \tag{5}
\]

The vector potential at a distance \(r \) from a magnetic needle is given in spherical polar coordinates by 7.10 to be, when \(r \gg l \).

\[
A_\phi = \frac{M' \sin \theta}{4\pi r^2} \tag{6}
\]

which, like its total flux, is independent of the medium's permeability. It should be noted that the classical magnetic moment \(M' \) used in this article differs dimensionally from the loop magnetic moment defined in 7.00 and 7.10 (2). The formulas of this article are rigorous only for infinitely thin magnets. Forces on or energies of permanent magnets of large cross section in mediums where \(\mu \neq \mu_0 \) cannot be found by integrating these formulas.

Problems

Problems in the following group marked C are taken, by permission of the Cambridge University Press, from the Cambridge examinations as reprinted by Jeans.

The classical magnetic moment is used throughout these problems.

1. An iron pipe runs east and west in a certain region. To locate the pipe, measurements of the dip at 5-ft intervals, starting from a fixed point, in a northerly direction are made. At distances \(x \) ft from the point, the dip deviates from the normal 60° dip by the following amounts:

\[
x \quad 185 \quad 190 \quad 195 \quad 200 \quad 205 \quad 210 \quad 215 \quad 220 \quad 225 \quad 230 \quad 235
\]

\[
\Delta \phi = -4.5^\circ \quad -5.0^\circ \quad -5.5^\circ \quad -7.5^\circ \quad -6.0^\circ \quad +0.0^\circ \quad +14.5^\circ \quad +0.0^\circ \quad -1.5^\circ \quad -1.2^\circ \quad -1.0^\circ
\]

Find \(x \) for the center of the pipe and its distance below the surface.

2. A steel pendulum bob of radius \(a \) is uniformly magnetized in a vertical direction with an intensity \(I \). The strength of the vertical component of the earth's field at a certain location is \(V \) and the acceleration of gravity \(g \). Find the ratio of the period to that when unmagnetized if it swings in an east and west plane, its mass being \(m \) and the distance from center of mass to pivot, \(l \).

3. A sphere of permeability 1000 and radius 10 cm is placed 1 m northeast (mag-
magnetic) of a compass needle. Show that, within 1 per cent, the deviation of the needle from the magnetic meridian, neglecting the magnet's own image forces, is 5\textdegree.

4. Find the magnetic field outside and in the cavity of a thick spherical shell uniformly magnetized in the \(x \)-direction with an intensity \(M \).

5C. Two small magnets float horizontally on the surface of water, one along the direction of the straight line joining their centers, and the other at right angles to it. Prove that the action of each magnet on the other reduces to a single force at right angles to the straight line joining the centers and meeting that line at one-third of its length from the longitudinal magnet.

6C. A small magnet \(ABC \), free to turn about its center \(C \), is acted on by a small fixed magnet \(PQ \). Prove that in equilibrium the axis \(ACB \) lies in the plane \(PQC \) and that \(\tan \theta = -\frac{1}{2} \tan \phi ' \), where \(\theta, \phi ' \) are the angles that the two magnets make with the line joining them.

7C. Three small magnets having their centers at the angular points of an equilateral triangle \(ABC \), and being free to move about their centers, can rest in equilibrium with the magnet at \(A \) parallel to \(BC \) and those at \(B \) and \(C \), respectively, at right angles to \(AB \) and \(AC \). Prove that the magnetic moments are in the ratios \(3:4:4:4 \).

8C. The axis of a small magnet makes an angle \(\phi \) with the normal to a plane. Prove that the line from the magnet to the point in the plane where the number of lines of force crossing it per unit area is a maximum makes an angle \(\theta \) with the axis of the magnet, such that
\[
2 \tan \theta = 3 \tan 2(\phi - \theta).
\]

9C. Two small magnets lie in the same plane and make angles \(\theta, \phi ' \) with the line joining their centers. Show that the line of action of the resultant force between them divides the line of centers in the ratio \(\tan \phi ' + 2 \tan \theta : \tan \theta + 2 \tan \phi ' \).

10C. Two small magnets having their centers at distances \(r \) apart make angles \(\theta, \phi ' \) with the line joining them and an angle \(\epsilon \) with each other. Show that the longitudinal force on the first magnet is
\[
3 MM' (4 \pi r \mu) (5 \cos^2 \theta \cos \phi' - \cos \phi' - 2 \cos \epsilon \cos \theta).
\]
Prove that the couple about the line \(r \) which the magnets exert on one another is
\[
MM' (4 \pi r \mu)^{-1} d \sin \epsilon,
\]
where \(d \) is the shortest distance between their axes produced.

11C. Two magnetic needles of moments \(M, M' \) are soldered together so that their directions include an angle \(\alpha \). Show that when they are suspended so as to swing freely in a uniform magnetic field, their directions will make angles \(\theta, \phi ' \) with the lines of force given by
\[
\frac{\sin \theta}{M'} = \frac{\sin \phi'}{M} = (M^2 + M'^2 + 2 MM' \cos \alpha)^{-\frac{1}{2}} \sin \alpha
\]

12C. Prove that if there are two magnetic molecules, of moments \(M \) and \(M' \), with their centers fixed at \(A \) and \(B \), where \(AB = r \), and one of the molecules swings freely, whereas the other is acted on by a given couple, so that when the system is in equilibrium this molecule makes an angle \(\theta \) with \(AB \), the moment of the couple is
\[
\frac{3 MM' \sin 2 \theta}{8 \pi r^3 (3 \cos^2 \theta + 1)^{\frac{1}{2}}}
\]
where there is no external field.

13C. Two small equal magnets have their centers fixed and can turn about them in a magnetic field of uniform intensity \(H \), whose direction is perpendicular to the line \(r \) joining the centers. Show that the position in which the magnets both point in the direction of the lines of force of the uniform field is stable only if \(H > 3 M (4 \pi r \mu)^{-1} \).

14C. Two magnetic particles of equal moment are fixed with their axes parallel to the axis of \(z \), and in the same direction, and with their centers at the points \(\pm a, 0, 0 \). Show that if another magnetic molecule is free to turn about its center, which is fixed
at the point \((0, y, z)\), its axis will rest in the plane \(z = 0\) and will make with the axis of \(z\) the angle \(\tan^{-1}\left[3yz/(2z^2 - a^2 - y^2)\right]\). Examine which of the two positions of equilibrium is stable.

16C. Prove that there are four positions in which a given bar bar magnet may be placed so as to destroy the earth’s control of a compass needle so that the needle can point in any direction (and experiences no translational force). If the bar is short compared with its distance from the needle, show that one pair of these positions is about \(1\frac{1}{2}\) times more distant than the other pair.

16C. Three small magnets, each of magnetic moment \(M\), are fixed at the angular points of an equilateral triangle \(ABC\), so that their north poles lie in the directions \(AC, AB, BC\), respectively. Another small magnet, moment \(M'\), is placed at the center of the triangle and is free to move about its center. Prove that the period of a small oscillation is the same as that of a pendulum of length \(4\pi\mu b^3g/(351)^4MM'\), where \(b\) is the length of a side of the triangle and \(I\) the moment of inertia of the movable magnet about its center.

17C. Three magnetic particles of equal moments are placed at the corners of an equilateral triangle and can turn about those points so as to point in any direction in the plane of the triangle. Prove that there are four and only four positions of equilibrium such that the angles, measured in the same sense of rotation, between the axes of the magnets and the bisectors of the corresponding angles of the triangle are equal. Also prove that the two symmetrical positions are unstable.

18C. Four small equal magnets are placed at the corners of a square and oscillate under the actions they exert on each other. Prove that the times of vibration of the principal oscillations are

\[
2\pi \left[\frac{4\pi\mu mk^2 d^3}{M^2(2 + \frac{1}{2} - \frac{1}{2})} \right]^{\frac{1}{2}}, \quad 2\pi \left[\frac{4\pi\mu mk^2 d^3}{M^2(2 + \frac{1}{2} - \frac{1}{2})} \right]^{\frac{1}{2}}
\]

where \(M\) is the magnetic moment, and \(mk^2\) the moment of inertia, of a magnet, and \(d\) is a side of the square.

19C. A system of magnets lies entirely in one plane, and it is found that when the axis of a small needle travels round a contour in the plane that contains no magnetic poles, the needle turns completely round. Prove that the contour contains at least one equilibrium point.

20C. Prove that the scalar potential of a body uniformly magnetized with intensity \(I\) is, at any external point, the same as that due to a complex magnetic shell coinciding with the surface of the body and of strength \(IX\), where \(x\) is a coordinate measured parallel to the direction of magnetization.

21C. A sphere of hard steel is magnetized uniformly in a constant direction, and a magnetic particle is held at an external point with the axis of the particle parallel to the direction of magnetization of the sphere. Find the couples acting on the sphere and on the particle.

22C. A spherical magnetic shell of radius \(a\) is normally magnetized so that its strength at any point is \(S_b\), where \(S_b\) is a spherical surface harmonic of positive order \(i\). Show that the scalar potential at a distance \(r\) from the center is

\[
\begin{cases}
-\frac{4\pi(i + 1)}{2i + 1} S_b \left(\frac{r}{a}\right)^i & \text{when } r < a \\
\frac{4\pi i}{2i + 1} S_b \left(\frac{a}{r}\right)^{i+1} & \text{when } r > a
\end{cases}
\]
23C. If the earth was a uniformly magnetized sphere, show that the tangent of the dip at any point would be equal to twice the tangent of the magnetic latitude.

24C. Prove that if the horizontal component, in the direction of the meridian, of the earth's magnetic force was known all over its surface, all the other elements of its magnetic force might be theoretically deduced.

25C. From the principle that the line integral of the magnetic force round any circuit ordinarily vanishes, show that the horizontal components of the magnetic force at any station may be deduced approximately from the known values for three other stations which lie around it. Show that these six known elements are not independent but must satisfy one equation of condition.

26C. If the earth was a sphere and its magnetism due to two small straight bar magnets of the same strength situated at the poles, with their axes in the same direction along the earth's axis, prove that the dip δ in latitude λ would be given by

$$8 \cot (\delta + \frac{1}{2}\lambda) = \cot \frac{1}{2}\lambda - 6 \tan \frac{1}{2}\lambda - 3 \tan^2 \frac{1}{2}\lambda$$

27C. Assuming that the earth is a sphere of radius a and that the magnetic potential Ω is represented by $\Omega = S_1(r/a) + S_2(r/a)^2 + S_3(a/r)^2$, show that Ω is completely determined by observations of horizontal intensity, declination, and dip at four stations and of dip at four more.

28C. Assuming that in the expansion of the earth's magnetic potential the fifth and higher harmonics may be neglected, show that observations of the resultant magnetic force at eight points are sufficient to determine the potential everywhere.

29C. Assuming that the earth's magnetism is entirely due to internal causes and that in latitude λ the northerly component of the horizontal force is $A \cos \lambda + B \cos^3 \lambda$, prove that in this latitude the vertical component reckoned downward is

$$2 \left(A + \frac{6B}{5} \right) \sin \lambda - \frac{4B}{3} \sin^3 \lambda$$

30C. A magnetic particle of moment M lies at a distance a in front of an infinite block of soft iron bounded by a plane face, to which the axis of the particle is perpendicular. Find the force acting on the magnet, and show that the potential energy of the system is

$$\frac{M^2(\mu - \mu_0)}{32\pi\mu a^3(\mu + \mu_0)}$$

31. A small magnet of moment M is held in the presence of a very large fixed mass of soft iron of permeability μ with a very large plane face, the magnet is at a distance a from the plane face and makes an angle θ with the shortest distance from it to the plane. Show that a certain force and a couple

$$\frac{(\mu - \mu_0)M^2 \sin \theta \cos \theta}{32\pi \mu a^3(\mu + \mu_0)}$$

are required to keep the magnet in position.

References

The author has found the following books useful for this chapter:

Gives brief treatment by vector notation.

Ewing, J. A.: "Magnetic Induction in Iron and Other Substances," Van Nostrand, 1900. Uses old notation and was the standard work of its time.

CHAPTER XIII

PLANE ELECTROMAGNETIC WAVES

13.00. Maxwell’s Field Equations.—In a region where \(\mu \) and \(\varepsilon \) are continuous and in which there may be an electric charge density together with electric convection or conduction currents, we shall assume that the electric and magnetic quantities are connected by the equations

\[
\nabla \times H = \nabla \times \frac{B}{\mu} = i + \frac{\partial D}{\partial t} \\
\nabla \times E = -\frac{\partial B}{\partial t} \\
\n\nabla \cdot D = \rho \\
\n\nabla \cdot B = 0
\]

Without the last term the first of these equations expresses Ampère’s law 7.01 (3), the second generalizes Faraday’s law of induction 8.00 (3), and the third and fourth are 3.02 (1) and 7.01 (1), respectively. The last term in the first equation, introduced by Maxwell, is new and, when currents and charges are absent, completes the symmetry of the group and provides a companion equation for (2). It asserts that a change in the electric flux through a closed curve in space produces a magnetomotance around the curve; just as Faraday’s law of induction states that a change in the magnetic flux through a closed curve produces an electromotance around it. Maxwell apparently thought of the magnetic field as being caused by an actual displacement of electric charge, but such a picture is not needed to justify (1). These equations are justified by the far-reaching validity of the conclusions based on them. They may be only approximately true, but for the present precision of measurement we may consider them exact. If charge is conserved, the equation of continuity, 6.00 (3), holds so that

\[
\nabla \cdot i + \frac{\partial \rho}{\partial t} = 0
\]

In isotropic bodies, \(i \) and \(E \) are connected by Ohm’s law, 6.02 (3), which is

\[
E = \gamma i \quad \text{or} \quad i = \gamma E
\]

In anisotropic bodies, with a proper choice of axes, 6.23 (2) gives

\[
i = i_{\gamma_2}E_x + i_{\gamma_3}E_y + k_{\gamma_2}E_z
\]
§13.01 PROPAGATION EQUATION

In isotropic bodies 1.13 (1) gives the relation between D and E to be

$$D = \epsilon E$$

(8)

In anisotropic bodies, with a proper choice of axes, 1.19 (7) gives

$$D = \varepsilon_1 E_x + \varepsilon_2 E_y + \varepsilon_3 E_z$$

(9)

We have assumed that μ and (6), (7), (8), and (9) are independent of field strength. This limits the use of the equations and prevents their being applied to ferromagnetic materials at some frequencies.

13.01. Propagation Equation. Electrodynamic Potentials. Hertz Vector.—Taking the curl of 13.00 (1) gives when μ is constant,

$$\nabla \times (\nabla \times B) = \nabla(\nabla \cdot B) - \nabla^2 B = \mu \left[\gamma(\nabla \times E) + \epsilon \frac{\partial}{\partial t}(\nabla \times E) \right]$$

Substitution for $\nabla \cdot B$ from 13.00 (4) and for $\nabla \times E$ from 13.00 (2) give

$$\nabla^2 B = \mu \gamma \frac{\partial B}{\partial t} + \mu \epsilon \frac{\partial^2 B}{\partial t^2}$$

(1)

Similarly, taking the curl of 13.00 (2) and substituting for $\nabla \cdot E$ from 13.00 (3) with $\rho = 0$ and for $\nabla \times B$ from 13.00 (1) give

$$\nabla^2 E = \mu \gamma \frac{\partial E}{\partial t} + \mu \epsilon \frac{\partial^2 E}{\partial t^2}$$

(2)

These are the propagation equations for the magnetic induction and the electric intensity. As we shall see later, the first term on the right represents a dissipation of energy as heat or a damping term in the wave which is absent in insulating mediums where γ is zero.

Hitherto we have used extensively an electrostatic scalar potential whose negative gradient is the electric field and a magnetostatic vector potential whose curl is the magnetic induction and whose divergence is zero. We wish to extend these potential definitions to include rapidly fluctuating fields. Let us, therefore, choose a general magnetic vector potential A whose curl always gives the magnetic induction B and which, for steady fields, reduces to the magnetostatic vector potential. Thus

$$B = \nabla \times A$$

(3)

Eliminating B by 13.00 (2) and changing the differentiation order give

$$\nabla \times E = -\nabla \times \frac{\partial A}{\partial t}$$

Integration of this removes the curls but adds an integration constant whose curl is zero and hence must be the gradient of a scalar. Thus

$$E = -\frac{\partial A}{\partial t} - \nabla \psi$$

(4)
We have now defined a scalar \(\psi \), called the electric potential, which is identical with the electrostatic potential of 1.06 for static fields. It is convenient, but not necessary as we shall see in 14.01, to have \(A \) and \(\psi \) satisfy the same propagation equations as \(E \) and \(B \), viz.,

\[
\nabla^2 A = \mu \gamma \frac{\partial A}{\partial t} + \mu \epsilon \frac{\partial^2 A}{\partial t^2}
\]

(5)

\[
\nabla^2 \psi = \mu \gamma \frac{\partial \psi}{\partial t} + \mu \epsilon \frac{\partial^2 \psi}{\partial t^2}
\]

(6)

This gives another relation between \(A \) and \(\psi \) for if we take the divergence of both sides of (4) then, if \(\rho \) is zero, \(\nabla \cdot E \) is zero by 13.00 (3) so that

\[
\nabla^2 \psi = -\frac{\partial \nabla \cdot A}{\partial t}
\]

Comparison of this with (6) shows that the latter will hold if

\[
\nabla \cdot A = -\mu \gamma \psi - \mu \epsilon \frac{\partial \psi}{\partial t}
\]

(7)

To show that (7) and (5) are consistent, take the gradient of both sides of (7), expand the left side by using again the vector relation at the first of this article, and substitute for \(\nabla \times B \) from 13.00 (1) using 13.00 (6) and (8). On the right side substitute for \(\nabla \psi \) from (4). Canceling terms appearing on both sides of the resultant equation gives (5).

We shall now see that the whole electromagnetic field may be described by means of a single vector \(Z \), called the Hertz vector, from which \(A \) and \(\psi \) can be obtained by the equations

\[
A = \mu \gamma Z + \mu \epsilon \frac{\partial Z}{\partial t}, \quad \psi = -\nabla \cdot Z
\]

(8)

These equations satisfy (7) and also (4) if we take

\[
E = \nabla (\nabla \cdot Z) - \nabla^2 Z = \nabla \times (\nabla \times Z)
\]

(9)

\[
\nabla^2 Z = \mu \gamma \frac{\partial Z}{\partial t} + \mu \epsilon \frac{\partial^2 Z}{\partial t^2}
\]

(10)

The magnetic induction is given by (3) and (8) in terms of \(Z \).

\[
B = \mu \gamma \nabla \times Z + \mu \epsilon \frac{\partial (\nabla \times Z)}{\partial t}
\]

(11)

Equation (10) contains all the properties of the electromagnetic wave. In nonconducting mediums the elimination of \(\psi \) from (4) and (7) gives

\[
E = -\frac{\partial A}{\partial t} + \frac{1}{\mu \epsilon} \int \nabla \nabla \cdot A \, dt = -\frac{\partial A'}{\partial t} \quad B = \nabla \times A'
\]

(12)

When \(\rho = 0 \), the new vector potential \(A' \) has zero divergence by 13.00 (3).
§13.03 PLANE WAVES IN DIELECTRIC INSULATOR

13.02. Poynting's Vector.—Multiplication of 13.00 (1) by \(-E\) and of 13.00 (2) by \(B/\mu\) and addition of the results give

\[
\frac{B}{\mu} \cdot (\nabla \times E) - E \cdot \left(\nabla \frac{B}{\mu}\right) = -i \cdot E - D \cdot \frac{\partial E}{\partial t} - \frac{B}{\mu} \cdot \frac{\partial B}{\partial t}
\]

Integration of this over any volume \(v\) gives by Gauss's theorem, 3.00 (2),

\[
\int_v \left[\frac{B}{\mu} \cdot (\nabla \times E) - E \cdot \left(\nabla \frac{B}{\mu}\right) \right] \, dv = \int_v \nabla \cdot \left(E \times \frac{B}{\mu} \right) \, dv = \int_s n \cdot \left(E \times B \right) \, dS
\]

for the left side. The right side remains a volume integral so that

\[
- \int_s n \cdot \left(E \times \frac{B}{\mu} \right) \, dS = \int_v \left[i \cdot E + \frac{\partial}{\partial t} \left(\frac{D \cdot E}{2} + \frac{B^2}{2\mu} \right) \right] \, dv
\]

By 6.03 (2) and Ohm's law, the first term on the right represents the electric power absorbed as heat in \(v\). By 2.08 (2) and 8.02 (3), the second and third term represent the rate of change of the electric and magnetic field energies in \(v\). If all these terms are positive and if the law of the conservation of energy holds, then \(v\) absorbs power from outside, and the rate of flow of energy through its surface must be given by the left side of (2). Thus the outward normal component of the vector

\[
\Pi = \frac{E \times B}{\mu}
\]

when integrated over a closed surface, represents the rate of flow of energy outward through that surface. The vector \(\Pi\) is called Poynting's vector. We should note that a meaning has been given only to the surface integral of this vector over a closed surface. We have not shown that \(\Pi\) can represent the rate of flow of energy through any element of surface.

13.03. Plane Waves in Homogeneous Uncharged Dielectric Insulator.

An electromagnetic disturbance is a plane wave when the instantaneous values of \(B, E, \psi, A,\) and \(Z\) are constant in phase over any plane parallel to a fixed plane. These planes are called the wave fronts and their normal, given by the unit vector \(n\), is the wave normal. In the dielectric where \(\gamma\) is zero so that the first term on the right of 13.01 (10) is missing, differentiation shows that, if \(v = (\mu \epsilon)^{-1}\), a general solution is

\[
Z = f_1(n \cdot r - vt) + f_2(n \cdot r + vt)
\]

\[
= f_1[(n \cdot r + vt') - v(t + t')] + f_2[(n \cdot r - vt') + v(t + t')]
\]

So that \(f_1\) has the same value at the point \(n \cdot r + vt\) at the time \(t + t'\) as at the point \(n \cdot r\) at the time \(t\). Thus it represents a wave moving in the \(n\)-direction with a velocity \(v\). Similarly, \(f_2\) represents a wave of the same velocity in the \(-n\)-direction. The vacuum velocity of an electromagnetic wave is \(c = (\mu \epsilon v)^{-1}\) and equals \(3 \times 10^8\) meters per second. The
ratio of \(c \) to the velocity \(v \) in a medium is its index of refraction \(n \).

\[n = \frac{c}{v} \]

(2)

Since Eqs. (1), (2), (5), (6), and (10) of 13.01 are identical, we can write the solutions for a wave in the positive \(n \)-direction in the form

\[D = D_0 f(n \cdot r - vt) \]
\[E = E_0 f(n \cdot r - vt) \]
\[B = B_0 f_1(n \cdot r - vt) \]

(3)

(4)

(5)

where \(D_0, E_0, \) and \(B_0 \) are the vector amplitudes of \(D, E, \) and \(B, \) respectively, and \(f(n \cdot r - vt) \) is a scalar. When \(\rho \) is zero, (3) and 13.00 (3) give

\[\mathbf{n} \cdot D = 0 \]

(6)

A similar substitution of (5) in 13.00 (4) gives the similar result

\[\mathbf{n} \cdot B_0 = 0 \]

(7)

Thus \(D \) and \(B \) lie in the wave front. From (4), (5), and 13.00 (2) we have

\[\nabla \times E = n \times E_0 f'(n \cdot r - vt) = -\frac{\partial B}{\partial t} = vB_0 f_1(n \cdot r - vt) \]

This holds at all times so that \(f_1 \) is proportional to \(f \), and we take

\[n \times E_0 = vB_0 \quad \text{or} \quad n \times E = vB \]

(8)

Similarly, substitution of (3) and (5) in 13.00 (1) where \(i \) is zero gives

\[n \times B_0 = -\mu v D_0 \quad \text{or} \quad n \times B = -\mu v D \]

(9)

The scalar product of (8) by (9) gives, since \(\mathbf{n} \cdot B_0 \) is zero by (7),

\[(n \times E_0) \cdot (n \times B_0) = -\mu v^2 D_0 \cdot B_0 = (n \cdot n)(E_0 \cdot B_0) - (n \cdot B_0)(n \cdot E_0) = E_0 \cdot B_0 \]

By (9) the right side of this equation is zero, so that

\[E_0 \cdot B_0 = 0 \quad \text{and} \quad D_0 \cdot B_0 = 0 \]

(10)

Thus both \(E_0 \) and \(D_0 \) are normal to \(B_0 \). From 13.02 (3), Poynting's vector is

\[\mathbf{II} = \mu^{-1}E_0 \times B_0 [f(n \cdot r - vt)]^2 = \Pi_0 [f(n \cdot r - vt)]^2 \]

(11)

whereas from (6) and (7) the normal to the wave front has the direction of \(D_0 \times B_0 \). Thus the energy propagation direction \(\mathbf{II} \) makes the same angle with the wave normal \(n \) that \(E \) makes with \(D \). When all \(B \) vectors parallel a fixed line, then from (10) all \(E \) vectors parallel a line normal to it and the wave is plane polarized. The polarization plane is defined as that parallel to \(\mathbf{II} \) and \(B \) in optics and as that parallel to \(\mathbf{II} \) and \(E \) in radio.
13.04. Plane Wave Velocity in Anisotropic Mediums.—We now consider the propagation of electromagnetic effects in a homogeneous anisotropic medium of zero conductivity and permeability μ. By 1.19 (7), in such a medium there are axes for which D and E are connected by the equations

$$D_x = \varepsilon_1 E_x, \quad D_y = \varepsilon_2 E_y, \quad D_z = \varepsilon_3 E_z$$

(1)

These coordinate axes are chosen to coincide with the electric axes of the medium. By 2.08, the electrical energy density is given by

$$\frac{\partial W}{\partial v} = \frac{1}{2} D \cdot E = \frac{1}{2} (\varepsilon_1 E_x^2 + \varepsilon_2 E_y^2 + \varepsilon_3 E_z^2) = \frac{B^2}{2\mu}$$

(2)

The last relation is obtained by using 13.00 (9) for D, interchanging dot and cross, and substituting 13.03 (8) for $n \times E$. It shows the equality of electric and magnetic energy densities whose sum is twice (2). Let the direction of ray or energy propagation be n', then $B, D, E, n,$ and n' are related as shown in Fig. 13.04. Evidently the vectors $D, E, n,$ and n' lie in the same plane since all are normal to B. We also notice that

$$\sin \alpha = \frac{n \cdot E}{E} = -\frac{n' \cdot D}{D}$$

(3)

To find the wave front velocity v along n, we start with 13.03 (8) and (9).

$$\mu_v v^2 D = -n \times (n \times E) = E - n (n \cdot E)$$

(4)

We now introduce the crystal constants $v_1, v_2,$ and v_3 defined by

$$\mu_v \varepsilon_1 v_1^2 = 1, \quad \mu_v \varepsilon_2 v_2^2 = 1, \quad \mu_v \varepsilon_3 v_3^2 = 1$$

(5)

Elimination of E from the components of (4) by (1) and (5) gives

$$\mu_v (v_1^2 - v^2) D_x = i(n \cdot E), \quad \mu_v (v_2^2 - v^2) D_y = m(n \cdot E),$$

$$\mu_v (v_3^2 - v^2) D_z = n(n \cdot E)$$

(6)

Where $i, m,$ and n are the components or direction cosines of n. From 13.03 (6) $n \cdot D = iD_x + mD_y + nD_z = 0$. Insertion of $D_x, D_y,$ and D_z from (6) gives

$$\frac{i^2}{v^2 - v_1^2} + \frac{m^2}{v^2 - v_2^2} + \frac{n^2}{v^2 - v_3^2} = 0$$

(7)

This is Fresnel's equation and gives the velocity of the wave front propagation in terms of the direction cosines of its normal. In general, for every particular direction of the wave normal, there are two different values of this velocity. We can easily verify by substitution in (7) that, if $v_1 > v_2 > v_3$, the only two directions in which v has a single value are

$$t = \pm (v_1^2 - v_2^2)^{1/2}(v_1^2 - v_3^2)^{-1}, \quad m_0 = 0, \quad n_0 = \pm (v_2^2 - v_3^2)^{1/2}(v_1^2 - v_3^2)^{-1}$$

(8)
and that the velocity in these directions is \(v_2 \). The directions defined by \(\nu_0, \mu_0, \) and \(\nu_0 \) are called the optic axes of this biaxial crystal. When \(v_1 = v_2 \neq v_3, \) \(v \) is single-valued in the \(z \)-direction only, for which \(n_0 = 1 \) and \(\nu_0 = \mu_0 = 0 \). If \(v_1 \neq v_2 = v_3, \) \(v \) is single-valued in the \(x \)-direction only, for which \(\nu_0 = 1 \) and \(\mu_0 = \nu_0 = 0 \). In such cases there is only one optic axis and the crystal is said to be uniaxial.

13.05. Ray Surface and Polarization in Anisotropic Media.—The energy propagation velocity \(v' \) in any direction in a crystal is found by dividing 13.02 (3) by \(E^2/\mu v \) and multiplying through by \(n \cdot E \) giving by 13.03 (8)

\[
\mu v \frac{n \cdot E}{E^2} \Pi = vn \cdot \frac{E \times B}{E^2} = n(n \cdot E) - \frac{(n \cdot E)^2}{E^2} E
\]

(1)

We can then solve 13.04 (4) for \(n(n \cdot E) \), write out components, eliminate \(D_x, D_y, \) and \(D_z \) by 13.04 (6), and insert in the right side of (1), giving

\[
\mu v \frac{n \cdot E}{E^2} \Pi_{x,y,z} = \left[1 - \frac{v^2}{v_{1,2,3}^2} - \frac{(n \cdot E)^2}{E^2} \right] E_{x,y,z}
\]

(2)

Figure 13.04 and 13.04 (3) show that the relation between \(v \) and \(v' \) is

\[
\left(\frac{v}{v'} \right)^2 = \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \frac{(n \cdot E)^2}{E^2}
\]

(3)

Also \(\Pi_{x,y,z} = \Pi_0 n'_{x,y,z} \) so that we can rearrange (2) in the form

\[
-\frac{n_{x,y,z}}{(v/v_{1,2,3})^2} - \frac{(v/v')^2}{\mu v \Pi_0 (n \cdot E) E_{x,y,z}} = \frac{E^2}{\mu v \Pi_0 (n \cdot E) E_{x,y,z}}
\]

Let \(v', m', \) and \(n' \) be the direction cosines or components of \(n' \) and notice that, from 13.03 (11), \(n' \cdot E = v'E_x + m'E_y + n'E_z \). Then multiplying these equations through by \(v', m', \) and \(n' \) and adding, we obtain

\[
\frac{v'^2 v_1^2}{v''^2 - v_1^2} + \frac{m'^2 v_2^2}{v''^2 - v_2^2} + \frac{n'^2 v_3^2}{v''^2 - v_3^2} = 0
\]

(4)

This equation gives the ray velocity \(v' \) in the direction \(v', m', \) and \(n' \) as a function of the crystal constants \(v_1, v_2, \) and \(v_3 \). In general for every particular direction there are two ray velocities. If, at some instant, an electromagnetic disturbance starts from the origin, then in 1 sec the wave will be given by \(r = v' \). When \(v_1 > v_2 > v_3 \), the form of this wave in one octant is shown in Fig. 13.05. In the direction of \(OP \) and of its image in the \(yz \)-plane, both rays have the same velocity. Substitution in (4) shows the
directions of the ray and optic axes to be related by

\[l_r = \frac{l_0 v_2}{v_2}, \quad m_r = m_0 = 0, \quad n_r = \frac{n_0 v_1}{v_2} \]

(5)

The optic axis is shown by \(OO' \) in Fig. 13.05. In each of the coordinate planes, the section of one of the sheets of the double surface is circular and of radius \(v_1, v_2, \) or \(v_3 \) as shown. If two of the quantities \(v_1, v_2, \) and \(v_3 \) are equal, one sheet of the wave surface is a prolate or oblate spheroid whose axis is a diameter of the other sheet which is spherical. The rays that produce the spherical surface are said to be ordinary rays, and those producing the spheroidal surface are called extraordinary rays.

Let us designate the two solutions of 13.04 (7) by \(v_a \) and \(v_b \) and the components of the electric displacement corresponding to these two normal velocities by \(D_{x,y,z}^{(a)} \) and \(D_{x,y,z}^{(b)} \). Multiply each equation of 13.04 (6) with \(v = v_a \) by the same equation with \(v = v_b \) and rearrange. This gives

\[\frac{\mu^2 D_{x,y,z}^{(a)} D_{x,y,z}^{(b)}}{(n \cdot E)^2} = \frac{n_{x,y,z}^2}{(v_{1,2,3}^a - v_0^a)(v_{1,2,3}^b - v_0^b)} \]

(6)

Split the right side by partial fractions and add the three equations

\[\frac{\mu^2 D^{(a)} \cdot D^{(b)}}{(n \cdot E)^2} = \frac{1}{v_a^2 - v_b^2} \sum_{z,y,z} \left(\frac{n_{x,y,z}^2}{v_{1,2,3}^a - v_0^a} - \frac{n_{x,y,z}^2}{v_{1,2,3}^b - v_0^b} \right) \]

By 13.04 (7), each term in the sum on the right is zero so that we have

\[D^{(a)} \cdot D^{(b)} = 0 \]

(7)

Thus the \(v_a \) and \(v_b \) rays are plane polarized at right angles to each other.

13.06. Energy, Pressure, and Momentum of a Plane Wave.—Imagine a plane wave in an isotropic medium striking a thin infinite plane absorbing sheet normally, and consider a right prism which encloses a unit area of the sheet and whose axis is normal to it. An integration of Poynting's vector \(\Pi \) over its surface gives the radiant energy entering it. But we have already seen, from 13.03 (6) and (7), that on the sides of the prism \(v B_n = E_n = 0 \) so that \(\Pi_n \) is zero. It is also zero on that end which is on the opposite side of the absorbing sheet from the impinging wave. Thus, the only contribution to the integral is from the base on which the wave impinges. Therefore, from 13.03 (11) and (8), the instantaneous rate of energy absorption in the sheet, in watts per square meter, is

\[\Pi = \frac{E \times B}{\mu} = \frac{n E^2 - (n \cdot E) E}{\mu v} \]

In isotropic mediums \(n \cdot E = 0 \) and \(B = (\mu e)\hat{E} \) from 13.03 (8), so that

\[\Pi_i = n \frac{e E^2}{(\mu e)^2} = n \frac{B^2}{\mu (\mu e)^2} = n \frac{1}{\mu (\mu e)^2} \left(\frac{B^2}{2\mu} + \frac{e E^2}{2} \right) \]

(1)
But, by 2.03 (2) and 8.02 (3), the energy density in the wave field is

$$\frac{\partial W}{\partial v} = \frac{\epsilon E^2}{2} + \frac{B^2}{2\mu}$$

(2)

The propagation velocity is $(\mu \epsilon)^{-\frac{1}{2}}$ so that the energy per square meter of wave front equals that in a cylinder of unit area and length $(\mu \epsilon)^{-\frac{1}{2}}$.

From 1.14 (6) and 8.14 (2) there appear to be in electric and magnetic fields pressures normal to the lines of force of $\frac{1}{2}\epsilon E^2$ and $\frac{1}{2}B^2/\mu$, respectively. Since in the plane wave case, such fields parallel the face of the absorbing sheet on one side but not on the other, we should expect a total pressure, in newtons per square meter, against the sheet, of amount

$$P = \frac{1}{2}\epsilon E^2 + \frac{1}{2}\mu^{-1}B^2$$

(3)

From (2) this equals the energy density at the surface of the sheet.

Consider the absorbing sheet free to move but so heavy that P gives it a negligible velocity. Then the relation between P and the momentum p is

$$P = \frac{dp}{dt}$$

(4)

The mechanical law of conservation of momentum, if applied here, requires that the momentum acquired by the sheet must have been carried by the electromagnetic wave which impinged on it. A comparison of (4), (3), and (1) shows that this implies that the waves possesses a momentum g_n per unit volume, in the direction of propagation n, equal to

$$g_n = \mu \epsilon l l_n$$

(5)

13.07. Refraction and Reflection of a Plane Wave.—Let us now consider a plane wave in a medium of permeability μ and capacitvity ϵ, impinging on the infinite plane boundary of a second medium whose constants are μ'' and ϵ''. This wave may give rise to two waves: one, known as the reflected wave, returning into the first medium, and the other, known as the refracted wave, entering the second medium. Let the unit vectors in the direction of propagation of the incident, reflected, and refracted waves be σ, σ', and σ'', respectively. Let σ and σ' make angles θ and θ'' with the normal to the plane surface drawn into the second medium, and σ' make an angle θ' with the opposite normal. The plane of incidence is perpendicular to the interface and contains σ.
Let M and N be any two points in space, the vector from M to N being p. If, as before, we take n to be a unit vector normal to the wave front, then $n \cdot p/v$ seconds after passing through M this wave, which has a velocity v, will pass through N. In the case being considered, the same wave front passes through a given point P in the first medium twice, once before and once after reflection. A wave front which passes through a point O on the reflecting surface at the time $t = 0$ will pass through P before reflection at $t = d \cdot r/v$ and after reflection at $t = d' \cdot r/v$, where r is the radius vector from O to P. If the same law of reflection holds for all parts of the surface, the interval of time between these two passages must be the same for any other point Q at the same distance from the surface as P. The vector from O to Q will be $r + s$ where s is a vector lying in the surface. Equating these time intervals and multiplying through by the velocity give

$$d \cdot r - d' \cdot r = d \cdot (r + s) - d' \cdot (r + s) \quad \text{or} \quad d \cdot s = d' \cdot s$$

Therefore d and d' make the same angle with any vector drawn in the interface which is possible only if d is the mirror image of d' in the surface. Thus both reflected and incident wave normals lie in the plane of incidence on opposite sides of the normal to the interface and make the same (acute) angle with it.

To locate the refracted beam, suppose a wave front requires a certain time to pass from P in the first medium to its image point P'' in the second. Let the radius vector from O to P be r and from O to P'' be r''. If two other points Q and its image point Q'' are at the same distances from the interface as P and P'', the time for the wave front to pass from Q to Q'' will be the same. The radius vectors to Q and Q'' are $r + s$ and $r'' + s$, where s lies in the interface. Equating the time intervals in the same way as for the reflected wave normal, we have

$$\left(\mu''/\mu'\right)^4[d'' \cdot r'] - \left(\mu e^1\right)^4[d \cdot r] = \left(\mu''/\mu'\right)^4[d'' \cdot (r' + s)] - \left(\mu e^1\right)^4[d \cdot (r + s)] \quad \text{(2)}$$

If s is taken perpendicular to d, which means normal to the plane of incidence, then the right side of (2) is zero, so that d'' is also perpendicular to s. Thus both reflected and refracted wave normals lie in the plane of incidence. If s is taken in the plane of incidence then, if v and v'' are the wave velocities in the first and second mediums, respectively,

$$\left(\mu''/\mu'\right)^4 = v/v'' = \cos \theta \cos \theta'' = \sin \theta \sin \theta'' = n$$

This is Snell's law of refraction. The ratio n of $\sin \theta$ to $\sin \theta''$ is called the index of refraction. The preceding reasoning is equally valid for an anisotropic medium, although v and v'' may be different for each angle of incidence so that n depends on θ.

13.08. Intensity of Reflected and Refracted Waves.—The law of conservation of energy requires that the energy passing into a medium through a square meter of surface must equal the difference between the incident and the reflected energies. From Fig. 13.08 and 13.03 (11), this gives

\[(\Pi - \Pi') \cos \theta = \Pi'' \cos \theta'' \]

(1)

We shall identify all vectors associated with a beam whose magnetic vector lies in the plane of incidence by the subscript 1, and those associated with a beam whose electric vector lies in this plane with the subscript 2. In finding the intensity of reflected and refracted beams, it is necessary to treat these cases separately.

For the beam whose magnetic vector lies in the plane of incidence, \(E_1\) is parallel to the surface; so, from 1.17 (3), we have

\[E_1 + E'_1 = E''_1\]

(2)

In this case, from 13.06 (1), setting \(\mu = \mu'' = \mu_v\), (1) becomes

\[e^{i(E_1'' - E_1^2)} \cos \theta = e' E_1'' \cos \theta''\]

Dividing this by (2) and using 13.07 (3), we get

\[E_1 - E'_1 = \frac{\sin \theta \cos \theta'}{\sin \theta'' \cos \theta'} E''_1\]

(3)

Solving (2) and (3) for \(E'_1\) and \(E''_1\) gives

\[E'_1 = -\frac{\sin (\theta - \theta'')}{\sin (\theta + \theta'')} E_1\]

(4)

\[E''_1 = \frac{2 \sin \theta' \cos \theta}{\sin (\theta + \theta'')} E_1\]

(5)

It follows from 13.03 (8) and 13.07 (3) that

\[B'_1 = \frac{-\sin (\theta - \theta'')}{\sin (\theta + \theta'')} B_1\]

(6)

\[B''_1 = \frac{\sin 2\theta}{\sin (\theta + \theta'')} B_1\]

(7)

Using 13.06 (1), we get for the reflected intensity

\[\Pi'_1 = \frac{\sin^2 (\theta - \theta'')}{\sin^2 (\theta + \theta'')} \Pi_1\]

(8)

Substituting this in (1), we get for the refracted intensity

\[\Pi''_1 = \frac{2 \sin \theta' \cos \theta \sin 2\theta}{\sin^2 (\theta + \theta'')} \Pi_1\]

(9)
§13.08 INTENSITY OF REFLECTED AND REFRACTED WAVES

For the beam whose electric vector lies in the plane of incidence, B_2 is parallel to the surface so, setting $\mu = \mu'' = \mu_v$, we have

$$B_2 + B_2' = B_2''$$

(10)

From 13.06 (1), setting $\mu = \mu'' = \mu_v$, (1) becomes

$$\epsilon''(B_2^2 - B_2'^2) \cos \theta = B_2'' \epsilon'' \epsilon' \cos \theta''$$

Dividing this by (10) and using 13.07 (3), we get

$$B_2 - B_2' = \frac{\sin 2\theta''}{\sin 2\theta} B_2''$$

(11)

Solving (10) and (11) for B_2' and B_2'' gives

$$B_2' = \frac{\tan (\theta - \theta'')}{\tan (\theta + \theta'')} B_2$$

(12)

and

$$B_2'' = \frac{\sin 2\theta}{\sin (\theta + \theta'') \cos (\theta - \theta'')} B_2$$

(13)

It follows, from 13.03 (8) and 13.07 (3), that

$$E_2' = \frac{\tan (\theta - \theta'')}{\tan (\theta + \theta'')} E_2$$

(14)

$$E_2'' = \frac{2 \sin \theta'' \cos \theta}{\sin (\theta + \theta'') \cos (\theta - \theta'')} E_2$$

(15)

Using 13.06 (1), we get for the reflected intensity

$$\Pi'_2 = \frac{\tan^2 (\theta - \theta'')}{\tan^2 (\theta + \theta'')} \Pi_2$$

(16)

Substituting this in (1), we get for the refracted intensity

$$\Pi''_2 = \frac{2 \sin \theta'' \cos \theta \sin 2\theta}{\sin^2 (\theta + \theta'') \cos^2 (\theta - \theta'')} \Pi_2$$

(17)

At normal incidence, the cosines in (1) are unity, so that in place of (3)

$$E - E' = (\epsilon'' / \epsilon) E'' = \frac{v}{v'} E''$$

Combining this with (2) gives

$$E' = \frac{v - v''}{v + v''} E$$

(18)

$$E'' = \frac{2v''}{v + v''} E$$

(19)

From 13.06 (1), the reflected intensity is

$$\Pi' = \left(\frac{v - v''}{v + v''}\right)^2 \Pi$$

(20)
Combining this with (1) gives

$$\Pi'' = \frac{4vv''}{(v + v'')^2} \Pi$$

(21)

It should be noted that the intensity of radiation given in (8), (9), (16), (17), (20), and (21) is the energy passing in 1 sec through 1 sq m of area parallel to the wave front. To get the actual radiation energy in 1 cu m divide Π by the wave velocity in the medium.

Evidently from (12), if $\theta + \theta'' = \frac{\pi}{2}$, $B'_2 = 0$, which means that at this incident angle radiation whose electric vector lies in the plane of incidence is not reflected. This is called the polarizing angle because unpolarized radiation incident at this angle is reflected with its magnetic field in the plane of incidence. From 13.07 (3), this “Brewster’s angle” is

$$\sin \theta_p = \tan \frac{\theta_p}{v} = n$$

(22)

13.09. Frequency, Wave Length, Elliptic Polarization.—So far we have used the general solution for a plane wave, $f(n \cdot r - vt)$, in deriving the laws of reflection and refraction. For discussing circular and elliptic polarization it is convenient to take a regularly periodic function which can be built up by Fourier’s series from simple sinusoidal terms. Thus

$$f(n \cdot r - vt) = D \cos [\omega(t - v^{-1}n \cdot r) + \phi]$$

(1)

where n is a unit vector in the propagation direction. As in 10.00 (2), the mathematical manipulation is considerably simplified by writing

$$D \cos [\omega(t - v^{-1}n \cdot r) + \phi] = D e^{i\phi} e^{i\omega(t - n \cdot r/v)} \quad \text{(real part)}$$

(2)

As in 10.01, the term $D e^{i\phi}$ is usually written as a phasor \vec{D}. The angular frequency ω and the cyclical frequency v are related by

$$\omega = 2\pi v$$

(3)

The wave length λ is the shortest distance in the direction of propagation along a “frozen” wave in which the electrical conditions repeat. It is related to the frequencies and the wave velocity v by the equations

$$\lambda = \frac{v}{\nu} = \frac{2\pi v}{\omega} = \frac{1}{\nu(\mu \epsilon)^{\frac{1}{2}}} = \frac{2\pi}{\omega(\mu \epsilon)^{\frac{1}{2}}} = \frac{2\pi}{\beta}$$

(4)

Now consider the superposition of two plane electromagnetic waves of the same frequencies traveling in the z-direction. Let one be plane polarized with a y-directed magnetic vector and the other with an x-directed one so that the equations for the electrical intensities are

$$E_x = E_1 \cos [\omega(t - v^{-1}z)]$$

$$E_y = E_2 \cos [\omega(t - v^{-1}z) + \delta]$$

(5) (6)
§13.10

TOTAL REFLECTION

453

E_x and E_y are shown as a function of z in Fig. 13.09. To find the locus in the xy-plane of the end of the vector E whose components are E_x and E_y, set $z = 0$ and eliminate t from (5) and (6). This gives

$$\frac{E_x^2}{E_1^2} + \frac{E_y^2}{E_2^2} - \frac{2E_xE_y}{E_2E_1} \cos \delta = \sin^2 \delta$$ \hspace{1cm} (7)

This is the equation of an ellipse, shown at the left in Fig. 13.09. Such waves are called elliptically polarized. If $\delta = n\pi$, (7) becomes

$$E_xE_x \pm E_1E_y = 0$$ \hspace{1cm} (8)

which represents a straight line, so the resultant wave is plane polarized.

If $\delta = \frac{1}{2}(2n + 1)\pi$ and, in addition, $E_1 = E_2 = E$, then (7) becomes

$$E_x^2 + E_y^2 = E^2$$ \hspace{1cm} (9)

This locus is a circle, and the resultant wave is circularly polarized.

13.10. Total Reflection.—Our first example of elliptically polarized radiation occurs in connection with the phenomenon of total reflection. If $\epsilon'' < \epsilon$ in 13.07 (3), then $\theta'' > \theta$ so that θ'' may be equal $\frac{1}{2}\pi$ when $\theta < \frac{1}{2}\pi$. The value of θ which gives $\theta'' = \frac{1}{2}\pi$ is called the critical angle θ_c. The agreement between experimental facts and the results of the following interpretation of this phenomenon justifies its use. When $\theta > \theta_c$, let us write 13.07 (3) in the following form, when $\mu = \mu''$,

$$\cos \theta'' = (1 - \sin^2 \theta'')^{\frac{1}{2}} = \left(1 - \frac{\epsilon}{\epsilon''} \sin^2 \theta\right)^{\frac{1}{2}} = j\left(\frac{\epsilon}{\epsilon''} \sin^2 \theta - 1\right)^{\frac{1}{2}}$$
Equation 13.08 (3) must then be written

\[E'_1 - \tilde{E}'_1 = j \frac{\sin^2 \theta - (\epsilon''/\epsilon)}{\cos \theta} \tilde{E}'_1 \]
\[(1) \]

which, combined with 13.08 (2), gives

\[\tilde{E}'_1 = \frac{\cos \theta - j \sin^2 \theta - (\epsilon''/\epsilon)}{\cos \theta + j \sin^2 \theta - (\epsilon''/\epsilon)} E_1 = e^{j\psi_1} E_1 \]
\[(2) \]

\[\tan \psi_1 = -\frac{2 \cos \theta \sin^2 \theta - (\epsilon''/\epsilon)}{\cos^2 \theta - \sin^2 \theta + (\epsilon''/\epsilon)} \]
\[(3) \]

Corresponding to 13.08 (11), we have

\[\frac{B_2 - \tilde{B}_2}{\cos \theta} = \frac{\epsilon}{\epsilon'} \frac{(\epsilon/\epsilon'') \sin^2 \theta - 1}{\cos \theta + j \sin^2 \theta - (\epsilon''/\epsilon)} B''_2 \]
\[(4) \]

\[\tan \psi_2 = \frac{-2 \cos \theta (\epsilon/\epsilon') \sin^2 \theta - 1}{\cos^2 \theta - (\epsilon''/\epsilon)^2 \sin^2 \theta + (\epsilon''/\epsilon)} \]
\[(5) \]

It is evident from (2) and (4) that \(|E'_1| = |E_1|\) and \(|B''_2| = |B_2|\) so that the reflected and incident rays have the same intensity. Thus the law of the conservation of energy permits no energy in the refracted beam. This can be verified by computing \(E''_1\) and \(B''_2\) and from this \(\Pi''\). A comparison of (2) and (4) with 13.09 (2) shows that there is a phase change \(\psi_1\) for the beam whose magnetic vector lies in the plane of incidence and \(\psi_2\) for the beam whose magnetic vector lies normal to it. Thus, for plane-polarized incident radiation, whose two electric vector components are \(E_1\) and \(E_2\), the reflected radiation is elliptically polarized. The phase difference \(\delta\) can be obtained from the ratio of (2) to (4), since \(B'_2 = (\mu \epsilon)^{1/2} E'_2\) and \(B_2 = (\mu \epsilon)^{1/2} E_2\) by 13.03 (8), giving

\[e^{i\delta} = e^{i(\psi_1 - \psi_2)} = \frac{\sin^2 \theta + j \cos \theta [\sin^2 \theta - (\epsilon''/\epsilon)]^1}{\sin^2 \theta - j \cos \theta [\sin^2 \theta - (\epsilon''/\epsilon)]^1} \]

Taking the ratio of the imaginary to the real part of this gives us \(\tan \delta\), which, with the aid of \(Pc 573\) or \(Dw 406.02\), may be reduced to

\[\tan \frac{\delta}{2} = \frac{\cos \theta [\sin^2 \theta - (\epsilon''/\epsilon)]^1}{\sin^2 \theta} \]
\[(6) \]

13.11. Electromagnetic Waves in Homogeneous Conductors.—In a medium whose conductivity is not zero, we must use all the terms in the propagation equations 13.01 (1) and (2). In deriving 13.01 (2), we set \(\rho = 0\). To justify this, take the divergence of 13.00 (1) which gives

\[\mu \epsilon \frac{\partial}{\partial t} (\nabla \cdot E) + \mu \gamma \nabla \cdot E = 0 \]
Write \(\rho \) for \(\epsilon \nabla \cdot \mathbf{E} \) by 13.00 (3) and integrate from 0 and \(\rho_0 \) to \(t' \) and \(\rho' \).

\[
\rho' = \rho_0 e^{-\gamma t'/\epsilon}
\]

Thus, an electrical distribution \(\rho_0 \) is dissipated independently of electromagnetic disturbances so that, if \(\rho_0 \) is zero initially, \(\rho' \) is always zero, which justifies setting \(\rho = 0 \). We define the relaxation time \(T \) to be

\[
T = \tau \epsilon = \gamma^{-1} \epsilon
\]

Take a simple periodic disturbance so that both \(B \) and \(E \) have the form

\[
B = \tilde{B} e^{j\omega t} \quad \text{(real part)} = \tilde{B}_0 e^{j(\omega t + \phi)} \quad \text{(real part)}
\]

Now \(\partial / \partial t \) may be replaced by \(j\omega \), and 13.01 (1) and (2) become

\[
\nabla^2 B = \mu(j\omega \gamma - \omega^2 \epsilon)B
\]

\[
\nabla^2 E = \mu(j\omega \gamma - \omega^2 \epsilon)E
\]

These are identical in form with 13.01 (1) and (2) for a periodic disturbance in an insulator. The equations will have identical solutions if we write \(\epsilon \rightarrow j\gamma / \omega \) for \(\epsilon \). The complex quantity \((\mu \epsilon)^{\frac{1}{2}} \) which occurs frequently may be separated into real and imaginary parts by \(Dw \) 58.2.

\[
[\mu(\epsilon - j\omega^{-1} \gamma)]^{\frac{1}{2}} = n + jk
\]

\[
n = \left\{ \frac{\mu \epsilon}{2} \left[\left(1 + \frac{\gamma^2}{\omega^2 \epsilon^2} \right)^{\frac{1}{2}} + 1 \right] \right\}^{\frac{1}{2}}, \quad k = -\left\{ \frac{\mu \epsilon}{2} \left[\left(1 + \frac{\gamma^2}{\omega^2 \epsilon^2} \right)^{\frac{1}{2}} - 1 \right] \right\}^{\frac{1}{2}}
\]

13.12. Plane Waves in Homogeneous Isotropic Conductors.—Certain properties of plane waves in conductors can now be obtained, by the substitution suggested above, from the corresponding properties in a dielectric derived in 13.03. In isotropic mediums the nature of \(\epsilon \) does not affect (6), (7), or (8) of 13.03 so that in a homogeneous conductor \(\tilde{B} \) is normal to \(\tilde{E} \) and both lie in the wave front. From 13.03 (9)

\[
\tilde{B}_0 = (n + jk)E_0 = (n^2 + k^2)^{\frac{1}{2}} E_0 \epsilon^{\tan^{-1}(k/n)}
\]

Thus, the electric and magnetic vectors differ in phase by \(\tan^{-1}(k/n) \). Writing \(\tilde{E} \) in the form of 13.09 (2) and substituting in (1) give

\[
\tilde{E} e^{j\omega t} = \epsilon A_1 \epsilon^{j\omega r} e^{j\omega (t - \sigma r)}
\]

\[
\tilde{B} e^{j\omega t} = (\epsilon \times \sigma) (n^2 + k^2)^{\frac{1}{2}} A_1 \epsilon^{j\omega r} e^{j\omega (t - \sigma r) + \tan^{-1}(k/n)}
\]

where \(\epsilon \) is a unit vector along \(\tilde{E} \), and \(\sigma \) is a unit vector normal to the wave front. We note that both \(\tilde{E} \) and \(\tilde{B} \) decrease exponentially as the wave advances, indicating a rapid absorption if \(k \) is large. We call \(n \) the index of refraction of the conductor and \(k \) the coefficient of extinction.

It is useful to know the magnitude of these quantities in nonferromagnetic conductors whose permeability is nearly equal to \(\mu_o \). In conductors the capacitiveness is not accurately known but seems to be of the same order of magnitude as in insulators. As a typical example take copper, whose
conductivity is about 5.8×10^7 mhos/m. Designating wave length in vacuo by λ_0 and using 13.09 (4), we have, for copper, writing K for $\varepsilon/\varepsilon_v$,

$$\frac{\gamma}{\omega \varepsilon} = \frac{\lambda_0 \gamma}{2\pi \omega \varepsilon} \approx \frac{\lambda_0}{K} \times 3.38 \times 10^9$$

Except for very short waves, this quantity is certainly large compared with unity so that, from 13.11 (6), n and k are well approximated by

$$n \approx -k \approx \left(\frac{\mu \lambda_0 \gamma}{(\pi c)^2}\right)$$

The distance an electromagnetic wave must travel in order that \mathbf{E} and \mathbf{B} fall to $e^{-2\pi} = 0.002$ times their initial values is, from (3),

$$d = -\frac{2\pi}{\omega k} = -\frac{\lambda_0}{k c} = \left(\frac{4\pi \lambda_0}{\mu \gamma c}\right)^{1/2} \text{ meters}$$

For air wave lengths of 1 cm, 1 m, 100 m, and 10 km, this gives d the values, in copper, of 0.0025, 0.024, 0.24, and 2.4 mm, respectively. It is also of interest to compare the average electric and magnetic energies in the wave. From (3) and (4) and 13.06 (2), we have

$$\frac{W_e}{W_m} = \frac{\mu e}{\varepsilon B^2} = \frac{\mu e}{n^2 + k^2} \approx \frac{2\pi \varepsilon c}{\lambda_0 \gamma}$$

On the assumption that $\varepsilon = 2\varepsilon_v$, this gives, for the waves just considered, 5.7×10^{-8}, 5.7×10^{-10}, 5.7×10^{-12}, and 5.7×10^{-14}, respectively, so that nearly the entire energy is in the magnetic field.

13.13. Reflection from Conducting Surface.—We saw in 13.11 that in a conducting medium $(\mu'' \varepsilon'')^{1/2}$ is replaced by

$$[\mu''(\varepsilon'' - j\omega^{-1}\gamma)]^{1/2} = n + jk$$

Thus, $\sin \theta''$ and $\cos \theta''$ become, by 13.07 (3) with the aid of 13.11 (5),

$$\sin \theta'' = \left(\frac{\mu e}{n + jk}\right)^{1/2} \sin \theta \quad \cos \theta'' = \left[1 - \frac{\mu e \sin^2 \theta}{(n + jk)^2}\right]^{1/2}$$

We saw in the last article that, for electromagnetic waves over 1 cm long,

$$-k \approx n > 1.4 \times 10^4$$

So that, from (1), θ'' is a complex and extremely small angle. Thus, from 13.08 (8), when the magnetic vector lies in the plane of incidence,

$$\Pi'_1 = \frac{\sin^2 (\theta - \theta'')}{\sin^2 (\theta + \theta'')} \Pi_1 \to \Pi_1$$

When the electric vector lies in the plane of incidence, we get, from 13.08 (16), provided θ is not too close to $\frac{\pi}{2}$,

$$\Pi'_2 = \frac{\tan^2 (\theta - \theta'')}{\tan^2 (\theta + \theta'')} \Pi_2 \to \Pi_2$$
Thus, for all angles of incidence and for all states of polarization, a sufficiently long electromagnetic wave is completely reflected from a conducting surface. The same results apply to longer waves at lower conductivities. From the last article, the extremely small fraction not reflected is very rapidly absorbed so that quite thin sheets of metal can be very opaque for short waves. To study the state of polarization of the reflected beam, we divide 13.08 (4) by 13.08 (14) and obtain

\[
\frac{E'_2}{E'_1} = \frac{\cos (\theta + \theta'')}{\cos (\theta - \theta'')} \frac{E_2}{E_1} = -\left(\cos \theta'' - \sin \theta'' \tan \theta\right) \frac{E_2}{\cos \theta'' + \sin \theta'' \tan \theta} (\theta'' = \theta''(\cos v K (\cos v K)\tan v)}
\]

For the wave lengths just considered, we have seen that

\[n + jk \approx n(1 - j)\]

If \(\mu e/(n + jk)^2 \ll 1\), then \(\cos \theta'' = 1\) from (1) so that

\[
\frac{E'_2}{E'_1} = \frac{\left[n - (\mu e)^i \sin \theta \tan \theta - jn\right]E_2}{\left[n + (\mu e)^i \sin \theta \tan \theta - jn\right]E_1} = \left[\frac{\left[n - (\mu e)^i \sin \theta \tan \theta \right]}{\left[n + (\mu e)^i \sin \theta \tan \theta \right]} + n^2\right]^i E_2 \left(\frac{\mu e}{E_1}\right) \sin \theta \tan \theta \tan ^2 \theta
\]

Because \(n\) is a large quantity, we note that, except when \(\theta \to \frac{\pi}{2}\),

\[
\frac{E'_2}{E'_1} = \frac{E_2}{E_1}
\]

When \(\tan \theta \to \infty\), there is not only a change in the magnitudes of \(E'_2\) and \(E'_1\) but a phase shift \(\delta\) as well. Thus, for wave lengths of a centimeter or more, we obtain elliptically polarized radiation only when plane polarized radiation is reflected near grazing incidence from the conducting surface.

Plane waves can be propagated not only in free space and infinite dielectric mediums with plane faces but also in the z-direction along a set of perfect conductors, provided all sections of the set taken normal to the z-axis are identical. From 11.02, we know that on perfect conductors the currents flow in an infinitely thin surface layer with no fields inside and no energy dissipation. This problem can be set up in several ways. The results of 7.25 suggest taking the vector potential and hence, from 13.01, the Hertz vector, in the z-direction parallel to the currents. The solution of the propagation equation for the Hertz vector yields both a scalar and a vector potential. Elimination of the scalar potential by 13.01 (13) gives a vector potential normal to z. The same result can be obtained more directly by solving the scalar propagation equation

\[
\left[\frac{\partial^2 W}{\partial x^2} + \frac{\partial^2 W}{\partial y^2}\right] + \left[\frac{\partial^2 W}{\partial z^2} - \mu e - \frac{\partial^2 W}{\partial t^2}\right] = 0
\]
The solution obtained by setting each bracket separately equal to zero is

\[W = V_1(x, y)f_1[z - (\mu\varepsilon)^{-1}t] + V_2(x, y)f_2[z + (\mu\varepsilon)^{-1}t] \]

(2)

where \(V_1 \) and \(V_2 \) are solutions of Laplace's equation in two dimensions so that, if \(W_1 \) and \(W_2 \) are the complex potential functions of Chap. IV,

\[W_1 = U_1 + jV_1 = F_1(x + jy), \quad W_2 = U_2 + jV_2 = F_2(x + jy) \]

(3)

If \(\nabla_2 V \) is defined as \(i(\partial V/\partial x) + j(\partial V/\partial y) \) we see from 4.10 that

\[-k \times \nabla_2 V = \nabla_2 U, \quad k \times \nabla_2 U = \nabla_2 V, \quad \nabla_2 [\nabla_2 Uf(z)] = k \times \nabla_2 Uf'(z) \]

(4)

By 11.01 (1), the vector potential for a transverse electric field is

\[A = \nabla \times kW = -k \times \nabla_2 V f_1[z - (\mu\varepsilon)^{-1}t] - k \times \nabla_2 V f_2[z + (\mu\varepsilon)^{-1}t] \]

\[= \nabla_2 U_1(x, y)f_1[z - (\mu\varepsilon)^{-1}t] + \nabla_2 U_2(x, y)f_2[z + (\mu\varepsilon)^{-1}t] \]

(5)

Evidently the first and second terms represent, respectively, waves that travel in the positive and negative \(z \)-directions. The fields are

\[B = \nabla \times A = \nabla_2 V(x, y)f'[z \mp (\mu\varepsilon)^{-1}t] \]

\[E = -\frac{\partial A}{\partial t} = \pm (\mu\varepsilon)^{-1}\nabla_2 U(x, y)f'[z \mp (\mu\varepsilon)^{-1}t] \]

(6)

The upper sign goes with the positive wave. From (4), (6), and (7)

\[(\mu\varepsilon)^{\frac{1}{2}}E = \mp k \times B \]

(8)

Suppose that the current goes out on one set of conducting cylinders and returns on another set. It is evident from (7) that, if all members of the same set have the same potential at one value of \(z \), then this will also be true at any other value of \(z \). The relation between total current and charge per unit length in either set of \(n \) members can be found from (8), the magnetomotance law 7.01 (2), and Gauss's theorem 1.15 (1), thus

\[Q = \sum_{i=1}^{n} \oint E_n ds_i = (\mu\varepsilon)^{\frac{1}{2}} \sum_{i=1}^{n} \oint H_z ds_i = (\mu\varepsilon)^{\frac{1}{2}} I \]

(9)

If \(L \) is the self-inductance per unit length, \(C \) the capacitance per unit length, and \(S \) the area outside the conductors in a plane of constant \(z \), then with the aid of 2.07 (4), 2.19 (1), and 8.08 (1) we have

\[\frac{LI^2}{2} = \int_S \frac{B^2}{2\mu} dS = \int_S \frac{E^2}{2} dS = \frac{Q^2}{2C} = \frac{\mu\varepsilon}{2C} I^2 \]

(10)

Therefore, \(L \) and \(C \) are connected by the relation

\[LC = \frac{\mu\varepsilon}{v^2} \]

Thus the product \(LC \) equals the reciprocal of the square of the electromagnetic wave velocity in the medium outside the conductors.
\section*{§13.15 INTRINSIC IMPEDANCE OF A MEDIUM}

If \(E \) and \(B \) are specified in the plane \(z = 0 \) as functions of time, it is easy (5) to write down \(A \) for any \(z \). Thus,
\[
A = \frac{1}{2} \nabla_2 U(x, y) \{ f[t - (\mu \varepsilon)^2 z] + f[t + (\mu \varepsilon)^2 z] + g[t - (\mu \varepsilon)^2 z] \\
- g[t + (\mu \varepsilon)^2 z] \} \tag{12}
\]

If \(U \) and \(V \) are given by (3), \(A \) yields the following fields at \(z = 0 \):
\[
\begin{align*}
E_0 &= - (\partial A / \partial t)_0 = - \nabla_2 U(x, y) f'(t), \\
B_0 &= (\nabla \times A)_0 = - (\mu \varepsilon)^2 \nabla_2 V(x, y) g'(t)
\end{align*} \tag{13}
\]

It is equally simple to write down \(A \) from (5) when \(E \) and \(B \) are given as functions of \(z \) at \(t = 0 \). Thus,
\[
A = \frac{1}{2} \nabla_2 U(x, y) \{ f[(\mu \varepsilon)^2 z + t] - f[(\mu \varepsilon)^2 z - t] - g[(\mu \varepsilon)^2 z + t] \\
- g[(\mu \varepsilon)^2 z - t] \} \tag{14}
\]

If \(U \) and \(V \) are given by (3), \(A \) yields the following fields at \(t = 0 \):
\[
\begin{align*}
E_0 &= - \nabla_2 U(x, y) f'[(\mu \varepsilon)^2 z], \\
B_0 &= - (\mu \varepsilon)^2 \nabla_2 V(x, y) g'[(\mu \varepsilon)^2 z]
\end{align*} \tag{15}
\]

\subsection*{13.15. Intrinsic Impedance of a Medium}

When the dielectric of the last article is replaced by a medium of conductivity \(\gamma \), 13.14 (1) becomes
\[
\left[\frac{\partial^2 W}{\partial x^2} + \frac{\partial^2 W}{\partial y^2} \right] + \left[\frac{\partial^2 W}{\partial z^2} - \mu \gamma \frac{\partial W}{\partial t} - \mu \varepsilon \frac{\partial^2 W}{\partial t^2} \right] = 0
\]

When the second bracket is equated to zero, a solution in terms of simple arbitrary functions is no longer possible so we use the Chap. V method of separation of variables which splits it into two total differential equations with a separation constant. Their solution is exponential in form and, according to whether the separation constant is real or imaginary, lead to solutions harmonic in space (transient) or to solutions harmonic in time (steady state). We shall now consider steady-state solutions in which time enters as the factor \(e^{i\omega t} \) as in 13.09. The second factor in (1) now yields the differential equation of 10.18 (1), and in the equations of 13.14 the functions \(f[z \pm (\mu \varepsilon)^{-1} t] \) are now replaced by \(e^{\pm \pi z + j \omega t} \)
\[
\begin{align*}
\tilde{\Gamma}^2 &= j \omega \mu (\gamma + j \omega) = (\alpha + j \beta)^2 \\
\alpha &= \{(\frac{1}{2} \omega \mu)[(\omega^2 \varepsilon^2 + \gamma^2)^{\frac{1}{2}} - \omega] \}^{\frac{1}{2}}, \\
\beta &= \{(\frac{1}{2} \omega \mu)[(\omega^2 \varepsilon^2 + \gamma^2)^{\frac{1}{2}} + \omega] \}^{\frac{1}{2}}
\end{align*} \tag{2}
\]

Here \(\tilde{\Gamma} \) is the propagation constant, \(\alpha \) the attenuation constant, \(\beta \) the phase constant or wave number. Thus 13.14 (6) and (7) become, for the wave in the positive or negative \(z \)-direction,
\[
\begin{align*}
B &= \mp \tilde{\Gamma} \nabla_2 V(x, y) e^{\mp \pi z + j \omega t} \quad \text{(real part)} \\
&= \mp \nabla_2 V(x, y) e^{\mp \pi z + j \omega t} [\alpha \cos (\omega t + \beta z) - \beta \sin (\omega t + \beta z)] \\
E &= -j \omega \nabla_2 U(x, y) e^{\mp \pi z + j \omega t} \quad \text{(r.p.)} = \omega \nabla_2 U(x, y) e^{\mp \omega z} \sin (\omega t + \beta z) \\
\tilde{\Gamma} E &= \mp j \omega (k \times \tilde{B}) \quad \text{or} \quad \tilde{\Gamma} k \times \tilde{E} = \pm j \omega \tilde{B}
\end{align*} \tag{4}
\]

From 6.12 (7), the product of the resistance \(R \) per unit length between conductors by the capacitance \(C \) per unit length is \(\tau e \) or \(e/\gamma \). Therefore
the shunt admittance \(\bar{Y} \) and the series impedance \(\bar{Z}_L \) appearing in 10.18 are

\[
\bar{Y} = \frac{1}{R} + j\omega C = \frac{\gamma + j\omega \mu e}{\epsilon L} = \frac{\bar{F}^2}{j\omega L}, \quad \bar{Z}_L = j\omega L
\]

From 10.18 (4), the characteristic impedance of the line is

\[
\bar{Z}_k = \left(\frac{\bar{Z}_L}{\bar{Y}} \right)^{\frac{1}{2}} = \frac{j\omega L}{\bar{F}} = \frac{\bar{V}}{I} = \frac{L\bar{E}}{B} = \frac{j\omega \mu}{\bar{F}C}
\]

(7)

Now let us consider the special case where the conductors consist of two infinite parallel planes 1 m apart. An infinite tubular section 1 m square running in the \(z \)-direction has a capacitance per unit length of \(\epsilon \) so that its characteristic impedance is

\[
\bar{Z}_k = \left(\frac{j\omega \mu}{\gamma + j\omega \epsilon} \right)^{\frac{1}{2}} = \frac{j\omega \mu}{\alpha + j\beta}
\]

(8)

also \(V = E \) and \(B = \mu i \) where \(i \) is the current density. We observe that \(\bar{Z}_k \) depends on the properties of the medium alone and that the configuration of the fields is identical with that in a plane polarized plane wave. It is therefore logical to follow Schelkunoff and call \(\bar{Z}_k \) the intrinsic impedance of the medium. A comparison of (8) with 13.07 (3) shows that, in an optically transparent medium where \(\gamma \) is zero and \(\mu \) is \(\mu \), the intrinsic impedance is proportional to the index of refraction. From (3) and (8), we may define the intrinsic propagation constant of the medium as

\[
\bar{f}_k = \alpha + j\beta = [j\omega \mu(\gamma + j\omega \epsilon)]^{\frac{1}{2}} = j\omega \mu Z^{-1}_k
\]

(9)

13.16. Reflection at a Discontinuity. Matching Section.—Suppose the plane wave described in the last article, traveling in the positive \(z \)-direction, meets a plane boundary over which \(z \) is constant and beyond which lies a medium of capacitance \(\epsilon_2 \), permeability \(\mu_2 \), and conductivity \(\gamma_2 \). The relations between the original wave, the reflected wave, and the transmitted wave and their respective currents are, from 13.15 (7),

\[
\bar{V}_1 = \bar{Z}_i \bar{i}_1, \quad \bar{V}'_1 = -\bar{Z}_i \bar{i}'_1, \quad \bar{V}_2 = \bar{Z}_2 \bar{i}_2
\]

(1)

At the boundary, potential and current must be continuous so that

\[
\bar{V}_1 + \bar{V}'_1 = \bar{V}_2 \quad \text{and} \quad \bar{i}_1 + \bar{i}'_1 = \bar{i}_2
\]

(2)

The result of solving the above equations for \(\bar{V}'_1, \bar{V}_2, \bar{i}_1, \) and \(\bar{i}_2 \) is

\[
\frac{\bar{V}'_1}{\bar{V}_1} = \frac{-\bar{i}'_1}{\bar{i}_1} = \frac{\bar{Z}_2 - \bar{Z}_1}{\bar{Z}_1 + \bar{Z}_2}, \quad \frac{\bar{V}_2}{\bar{V}_1} = \frac{\bar{i}_2 \bar{Z}_2}{\bar{i}_1 \bar{Z}_1} = \frac{2\bar{Z}_2}{\bar{Z}_1 + \bar{Z}_2}
\]

(3)

If both mediums have zero conductivity, it will be observed from 13.15 (3), 13.15 (7), and 13.07 (3) that \(\bar{Z}_2/\bar{Z}_1 \) may be replaced by \(v_2/v_1 \), the ratio of wave velocities in the two mediums. The potential therefore obeys the same law for normal reflection as the electric field in 13.08 (18) and.
(19). By working with components one may use the transmission line formulas to derive the laws of reflection at any angle.

Electromagnetic waves may be passed from one nonconducting dielectric medium \(\mu_1, \varepsilon_1 \) into a second \(\mu_2, \varepsilon_2 \) without loss by insertion of a matching section. For perfect transmission, the input impedance of the matching layer or section must equal the characteristic impedance of the first medium. Therefore, by 13.15 (7), we must substitute in 10.18 (7)

\[\tilde{Z}_i = L(\mu_1\varepsilon_1)^{-1}, \quad \tilde{Z}_k = L(\mu_2\varepsilon_2)^{-1}, \quad \tilde{Z}_L = L(\mu_3\varepsilon_3)^{-1}, \quad \tilde{I} = j\omega(\mu_3\varepsilon_3)^{\frac{1}{4}} = 2\pi j\lambda_2^{-1} \]

This gives the following equation to be satisfied for a match:

\[\left(\frac{\mu_1\varepsilon_1}{\mu_2\varepsilon_2} \right)^\frac{1}{4} = \frac{(\mu_3\varepsilon_3)^{\frac{1}{4}} \cos (2\pi l/\lambda_2) + j(\mu_3\varepsilon_3)^{\frac{1}{4}} \sin (2\pi l/\lambda_2)}{(\mu_3\varepsilon_3)^{\frac{1}{4}} \cos (2\pi l/\lambda_2) - j(\mu_3\varepsilon_3)^{\frac{1}{4}} \sin (2\pi l/\lambda_2)} \]

(4)

The real terms on the right vanish, and the equation holds if we choose

\[l = \frac{1}{2}(2n + 1)\lambda_2 \quad \text{and} \quad \mu_2\varepsilon_2 = (\mu_1\varepsilon_1)^{\frac{1}{2}}(\mu_3\varepsilon_3)^{\frac{1}{2}} \]

(5)

Thus, the matching section should be an odd number of quarter wave lengths thick, and its intrinsic impedance should be the geometric mean of those of mediums 1 and 2. In terms of optics, the index of refraction of the matching layer must be the geometric mean of those on either side. These quarter wave layers are widely used to eliminate reflections from lenses.

13.17. Complex Poynting Vector.—An expression for the Poynting vector in phasor form is useful when the fields vary sinusoidally so that the operator \(\partial / \partial t \) may be replaced by the factor \(j\omega \). Let us write down Eq. 13.00 (2) and (1), using conjugate phasors in the latter, for which it is equally valid because they give the same two real equations. Thus

\[\nabla \times \tilde{E} = -j\omega \tilde{B} \quad \nabla \times \tilde{B} = \mu(\gamma - j\omega \varepsilon)\tilde{E} \]

(1)

Multiply the first equation by \(\tilde{B} \) and the second by \(-\tilde{E} \) and add.

\[\tilde{B} \cdot (\nabla \times \tilde{E}) - \tilde{E} \cdot (\nabla \times \tilde{B}) = -[\mu\gamma \tilde{E} \cdot \tilde{E} - j\omega(\mu\varepsilon \tilde{E} \cdot \tilde{E} - \tilde{B} \cdot \tilde{B})] \]

Proceed as in 13.02, writing \(\nabla \cdot (\tilde{E} \times \tilde{B}) \) for the first term, integrating over the volume \(V \), and applying Gauss's theorem. By Ohm's law, 6.02 (3), we may replace \(\tilde{E} \) by \(\tilde{I}/\gamma \) or \(j\tilde{I} \) where \(\tilde{I} \) is the current density and so get

\[-\mu^{-1}\int_S \mathbf{n} \cdot (\tilde{E} \times \tilde{B}) \, dS = \int_V \tilde{I}^2 \, dv - j\omega \int_V (\varepsilon\tilde{E} \cdot \tilde{E} - \mu^{-1}\tilde{B} \cdot \tilde{B}) \, dv \]

(2)

By 11.00 (10), the real term on the right gives twice the average energy dissipated per second by eddy currents in the volume of integration. Thus, if we integrate the inward pointing normal component of the vector

\[\tilde{\Pi} = \frac{1}{2}\mu^{-1}(\tilde{E} \times \tilde{B}) \quad \text{(real part)} = \frac{1}{4}\mu^{-1}(\tilde{E} \times \tilde{B} + \tilde{E} \times \tilde{B}) \]

(3)

over the surface of the volume \(V \), we get the rate at which energy is being absorbed from the wave. This formula can be used to find the energy flow across the plane \(z = z_0 \) of the transmission line considered in 13.15.
Elimination of \(\vec{E} \) from (3) by 13.15 (6) and the use of 13.14 (10) and 13.15 (7) give, for a wave traveling in the positive \(z \)-direction,
\[
\int_S \vec{\Pi} \, dS = -\frac{j\omega}{2\mu \bar{\Gamma}} \int_S (\kappa \times \vec{B}) \times \vec{\mathcal{B}} \, dS = \frac{j\omega}{\kappa \bar{\Gamma}} \int_S \vec{B} \, dS = \frac{j\omega LI^2}{2\bar{\Gamma}} = \frac{k}{2} \bar{V} \hat{z}
\]
(4)

In 13.14 (9), a positive potential was assumed on conductors in which the current is in the positive \(z \)-direction. If either current or potential is reversed but not both, then the direction of energy flow is reversed.

If the conductors forming the transmission line considered in 13.14 and 13.15 have finite conductivity, heat is generated in their surfaces by the eddy currents. The electric field has a \(z \)-component at the surface so that its Poynting vector is inclined toward the surface and the wave is no longer truly plane. In most practical cases, the power lost per unit length is small compared with that transmitted so that the inclination of \(\vec{\Pi} \) to the \(z \)-axis is negligible. In this case, one uses the plane wave formula to calculate the fields in any plane normal to the \(z \)-axis. The energy loss is proportional to the field strength so it damps the fields exponentially with \(z \) and adds a real term \(R_i \) to the series impedance \(\bar{Z}_L \). The magnetic field penetration into the wire adds an internal inductance term \(j\omega L_i \) to \(\bar{Z}_L \). From 13.15 (7), the characteristic impedance is
\[
\bar{Z}_k = \left(\frac{\bar{Z}_L}{\bar{Y}} \right)^{\frac{1}{2}} = \left(\frac{L(R_i + j\omega(L + L_i))}{\mu(\gamma + j\omega \epsilon)} \right)^{\frac{1}{2}}
\]
(1)

For many transmission lines \(R_i \ll \omega L, L_i \ll L \), and \(\gamma \ll \omega \epsilon \) so that in a vacuum the characteristic impedance and propagation constants are
\[
\bar{Z}_k = L(\mu \epsilon \epsilon_0)^{-\frac{1}{2}} = 3 \times 10^8 L = (3 \times 10^8 \epsilon_0)^{-\frac{1}{2}}
\]
(2)
\[
\bar{\Gamma}^2 = \bar{Z}_L \bar{Y} = \mu L^{-1}(\gamma + j\omega \epsilon)[R_i + j\omega(L + L_i)]
\]
(3)

It will be instructive to calculate \(\bar{Z}_k \) and \(\bar{\Gamma} \) for a Lecher wire system composed of two parallel wires of diameter \(d \) with their axes at a distance \(b \) apart. By 4.14 (2) and 13.14 (11), the external inductance is
\[
L = \frac{\mu e}{\bar{c}} = \frac{\mu}{\pi} \cosh^{-1} \frac{b}{d}
\]
(4)

Note that \(L \) depends only on the configuration and not on the scale. We shall assume that the conductivity and frequency are so high that \(\delta \) is small compared with \(d \), and the formulas for the resistance per unit area \(R_i \) and the inductance per unit area \(L_i \), given in 11.02 (10), may be used.
\[
R_i I^2 = 2R_i \mathcal{I} \mathcal{I}^2 \, ds \quad \text{and} \quad L_i I^2 = 2L_i \mathcal{I} \mathcal{I}^2 \, ds
\]
(5)

where \(\mathcal{I} \) is the current across unit arc length in the cylindrical skin and the factor 2 is inserted to include both wires. From 13.14 (6) on the \(U = U_1 \) cylinder, the tangential component of \(\vec{B} \) is \(\partial \vec{V}/\partial s \). The mag-
netomotance law applied to a surface element gives \(\mu i = B \). Thus,

\[
\int i_s^2 \, ds = \mu^{-2} \mathcal{F}(\partial V/\partial s)^2 \, ds = \mu^{-2} \mathcal{F}(\partial V/\partial s) \, dV
\]

From 7.09 (1), 4.11 (2), and 4.13 (1) we have

\[
\frac{dW}{dz} = \frac{\partial V}{\partial s} = \frac{\mu I}{\pi a} \sin \frac{\pi (U_1 + jV)}{j\mu I} \sin \frac{\pi (U_1 - jV)}{-j\mu I} = \frac{\mu I}{\pi a} \left(\cosh^2 \frac{\pi U_1}{\mu I} - \cos^2 \frac{\pi V}{\mu I} \right)
\]

\[
\int i_s^2 \, ds = \frac{I}{\mu \pi a} \int_0^{\mu I} \left(\cosh^2 \frac{\pi U_1}{\mu I} - \cos^2 \frac{\pi V}{\mu I} \right) \, dV = \frac{I^2}{2\pi a} \cosh \frac{2\pi U_1}{\mu I} \tag{6}
\]

(7) is from 4.13 (3). Putting (6) and (7) into (5) and dividing out \(I^2 \),

\[
R_i = \frac{2R_i^* b}{\pi d(b^2 - d^2)^{\frac{3}{2}}} = \frac{2\gamma' b}{\pi \delta d(b^2 - d^2)^{\frac{3}{2}}} \tag{8}
\]

\[
L_i = \frac{2L_i^* b}{\pi d(b^2 - d^2)^{\frac{3}{2}}} = \frac{2\gamma' b}{\pi \omega \delta d(b^2 - d^2)^{\frac{3}{2}}} \tag{9}
\]

Now consider a special case where \(d/b \) is 1.5, and the line operates in a vacuum or air so that \(\mu = \mu_0 = 4\pi \times 10^{-7} \). Then by (4), \(L \) is \(3.85 \times 10^{-7} \) henry. The calculation of \(R_i \) and \(L_i \) requires, beside \(d/b \), the frequency and the resistivity, permeability, and one dimension of the conductors. The most important conductor is copper for which \(\gamma' \) or \(1/\gamma' \) is \(5.8 \times 10^7 \) and \(\mu = \mu_0 \). Consider the frequencies 3, 300, and 30,000 megacycles which correspond to the wave lengths of 100 m, 1 m, and 1 cm for which \(\omega L \) is 72.5, 725, and 7250 ohms, and the skin thickness is \(3.82 \times 10^{-5} \), \(3.82 \times 10^{-6} \), and \(3.82 \times 10^{-7} \) m. From (6), (7), and (3) we then have

<table>
<thead>
<tr>
<th>(\lambda) (m)</th>
<th>(d) (m)</th>
<th>(R_i) (ohms)</th>
<th>(L_i) (henry)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.001</td>
<td>38.5</td>
<td>(1.225 \times 10^{-10})</td>
<td>(5.1 \times 10^{-2})</td>
<td>19</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>3.85</td>
<td>(1.225 \times 10^{-11})</td>
<td>(5.1 \times 10^{-3})</td>
<td>19</td>
</tr>
<tr>
<td>1.00</td>
<td>0.001</td>
<td>3.85</td>
<td>(1.225 \times 10^{-9})</td>
<td>(5.1 \times 10^{-3})</td>
<td>1.9</td>
</tr>
<tr>
<td>1.00</td>
<td>0.01</td>
<td>0.385</td>
<td>(1.225 \times 10^{-10})</td>
<td>(5.1 \times 10^{-4})</td>
<td>1.9</td>
</tr>
<tr>
<td>100</td>
<td>0.001</td>
<td>0.385</td>
<td>(1.225 \times 10^{-8})</td>
<td>(5.1 \times 10^{-4})</td>
<td>0.19</td>
</tr>
<tr>
<td>100</td>
<td>0.01</td>
<td>0.0385</td>
<td>(1.225 \times 10^{-9})</td>
<td>(5.1 \times 10^{-5})</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Evidently in all cases \(R_i \) and \(\omega L_i \) are very small compared with \(\omega L \) so that the characteristic impedance may be obtained from (2) to be 115.5 ohms.

13.19. Group Velocity.—We have seen that any of the field amplitudes for a plane wave on a transmission line may be written in the form

\[
A(\beta) = f(u_1, u_2) \cos (\omega t - \beta z) \tag{1}
\]
where \(u_1 \) and \(u_2 \) are orthogonal coordinates in a plane normal to \(z \), and \(\beta \) is the wave number or phase constant. When the phase velocity of a wave depends on its frequency, as in a wave guide or a dispersive medium, then it is evident that a signal consisting of a group of waves of different frequencies will change form as it advances. Let us assume that the wave numbers of the group lie between \(\beta_0 - \delta \) and \(\beta_0 + \delta \) and that the amplitude in the interval \(d\beta \) is \(A(\beta) \). The amplitude of the signal is then

\[
S = \int_{\beta_0 - \delta}^{\beta_0 + \delta} A(\beta)e^{i(\omega t - \beta z)} \, d\beta
\]

This may be split into a carrier wave factor with the velocity \(\omega_0/\beta_0 \) and a modulation factor with a velocity \((\omega - \omega_0)/(\beta - \beta_0) \). Thus

\[
S = C e^{i(\omega_0 t - \beta_0 z)}, \quad C = \int_{\beta_0 - \delta}^{\beta_0 + \delta} A(\beta)e^{i(\omega_0 t - (\beta - \beta_0)z)} \, d\beta
\]

Here \(1/\delta C/\delta \) is the average amplitude of the wave group whose median phase velocity is \(v_0 = \omega_0/\beta_0 \). Thus we have a modulating frequency \(\omega - \omega_0 \) superimposed on the carrier frequency \(\omega_0 \). We wish to find the velocity of a plane in which the modulation amplitude \(C \), which constitutes the signal, is constant. By the mean value theorem for an integral, we have

\[
C = 2\delta A(\beta_1)e^{i(\omega_1 - \omega_0)t - (\beta_1 - \beta_0)z}
\]

where \(\beta_0 - \delta \leq \beta_1 \leq \beta_0 + \delta \). If the frequency range in the group is so small that \(\beta_1 - \beta_0 \) and \(\omega_1 - \omega_0 \) are infinitesimal, the signal velocity is

\[
v_s = \frac{\omega_1 - \omega_0}{\beta_1 - \beta_0} \xrightarrow{\substack{\beta_1 \to \beta_0 \\ \delta \to 0}} \left| \frac{\partial \omega}{\partial \beta} \right|_{\beta = \beta_0}
\]

Problems

1. Two airplanes are flying at a distance \(d \) apart at a height \(h \) above a plane water surface. One sends radio signals to the other, both sending and receiving antennas being short vertical wires of length \(l \). Show that the ratio of intensity of the signal received by water reflection to the direct signal, taking the capacitativity of water to be \(\varepsilon \) and taking \(h \ll l, d \gg l, \) and \(\lambda \gg l, \) is

\[
\frac{d^2}{(d^2 + 4h^2)^2} \left\{ \left[(\varepsilon - \varepsilon_s) l^2 + 4lh^2 \right] - 2\varepsilon \varepsilon_r h \right\}^2
\]

2. A plane electromagnetic wave polarized at 45° to the plane of incidence is totally reflected in a prism which it enters and leaves normally. Show that the intensity of the emergent beam is \(16\pi^2(1 + n)^{-4}I_0 \), where \(n \) is the refractive index. Show that the emergent beam is elliptically polarized with a phase difference \(\phi \) given by tan \(\frac{\phi}{2} = \cos \theta (\sin \theta)^{-2}(\sin^2 \theta - n^{-2})^{-1/2} \) where \(\theta \) is the angle of incidence on the back of the prism and multiple reflections are neglected.

3. A plane electromagnetic wave of wave length \(\lambda \) is incident on an infinite plane plate of dielectric of thickness \(a \). Show that the reflected beam intensity, if the beam is polarized either normal to or in the plane of incidence, is given by

\[
4\delta^2 \sin^2 \left(\frac{\delta}{2} \right) [(1 - b^2)^2 + 4b^2 \sin^2 \left(\frac{\delta}{2} \right)]^{-1} I_0
\]
PROBLEMS

4. Show that the law of refraction derived in 13.06 does not hold, in general, for Poynting's vector at the surface of an anisotropic medium.

5. Show that a plane normal to the optic axis where it pierces the ray surface in Fig. 13.05 is tangent to this surface on a circle that encloses the ray axis.

6. A plane wave is incident at an angle \(\theta \) on the plane face of a uniaxial crystal whose normal makes an angle \(\alpha \) with the optic axis. The angle between the plane of incidence and the plane containing the normal and the optic axis is \(\phi \). If \(\varepsilon_1 = \varepsilon_2 \neq \varepsilon_3 \), show that the two reflected wave normal directions \(\theta_a \) and \(\theta_b \) are

\[
\sin \theta_a'' = \sin \theta \frac{\varepsilon_1}{\varepsilon_3 - \varepsilon_1}, \quad \sin^2 \theta_a'' = \frac{2P^2 - MN \pm 2P(P^2 - M^2 - MN)^{1/2}}{N^2 + 4P^2}
\]

\[
M = \cos^2 \alpha + \frac{\varepsilon_1}{\varepsilon_3 - \varepsilon_1}, \quad P = \sin \alpha \cos \alpha \cos \phi, \quad N = \frac{P^2}{\cos^2 \alpha} - M^2 + \frac{\varepsilon_1(\varepsilon_3 \sin^2 \theta - \varepsilon_1)}{\varepsilon_3 - \varepsilon_1} \sin \theta
\]

The minus sign is taken when \(\phi < \frac{1}{2} \pi \) and the plus sign when \(\frac{1}{2} \pi < \phi < \pi \).

7. Verify that possible plane wave vector potentials, when \(B \) is normal to \(z \), are

\[
A_1 = C_1(e^{j\beta z} - k(\beta'^2 - \beta_1^2)^{1/4}x) \sin (\omega t - \beta'^2)^{1/4}z, \quad A_2 = C_2 \left(e^{j\beta z} \cos [(\beta^2 - \beta_2^2)^{1/4}x] - k(\beta_2^2 - \beta^2)^{1/4} \sin [(\beta^2 - \beta_2^2)^{1/4}x] \right) e^{j(\omega t - \beta'^2)z}
\]

where \(\beta_1 = \omega \mu_1 \varepsilon_1, \beta_2 = \omega \mu_2 \varepsilon_2 \), and \(\beta_2 > \beta_1 \). With these, solve the problem of a plane surface wave moving over an infinite plane perfectly conducting surface coated with a dielectric layer \(\mu \varepsilon_2 \) of thickness \(a \) when the infinite medium above it has the constants \(\mu_1, \varepsilon_1 \).

Show that the velocity may be found from the equation

\[
e_2(\beta'^2 - \beta_2^2)^{1/4} = \mu_1(\beta_2^2 - \beta^2)^{1/4} \tan [(\beta_2^2 - \beta'^2)^{1/4}a]
\]

If \(\beta \alpha = 1.00, \mu_2 = \mu_1, \) and \(\varepsilon_1 = 4 \varepsilon_2 \), then \(\beta_1: \beta': \beta_2 = 1:1.636:2 \), roughly, so that the amplitude has dropped to 0.1 of its maximum value when \(x = 1.78a \).

8. Verify that possible plane wave vector potentials, when \(E \) is normal to \(z \), are

\[
A_1 = JC_1(e^{-(\beta'^2 - \beta_1^2)^{1/4}z + j(\omega t - \beta'^2)z}) \sin [(\beta_2^2 - \beta^2)^{1/4}x]e^{j(\omega t - \beta'^2)z}
\]

where \(\beta_2 = \omega \mu_1 \varepsilon_1, \beta_2 = \omega \mu_2 \varepsilon_2 \), and \(\beta_2 > \beta_1 \). With these, solve the problem of a plane surface wave moving over an infinite plane perfectly conducting surface coated with a dielectric layer \(\mu \varepsilon_2 \) of thickness \(a \) when the infinite medium above it has the constants \(\mu_1, \varepsilon_1 \).

Show that the velocity may be found from the equation

\[
\mu_2(\beta'^2 - \beta_2^2)^{1/4} = - \mu_1(\beta_2^2 - \beta^2)^{1/4} \cot [(\beta_2^2 - \beta'^2)a]
\]

If \(\beta \alpha = 1.00, \mu_2 = \mu_1, \) and \(\varepsilon_1 = 4 \varepsilon_2 \), then \(\beta_1: \beta': \beta_2 = 1:1.03:2 \), roughly, so that the amplitude has dropped to 0.1 of its maximum value when \(x = 9.4a \).

9. Show that, if the two conductors of the section of uniform line bounded by planes of zero capacitivity and permeability at \(z = 0 \) and \(z = l \) are given equal and opposite charges producing a difference of potential \(V_0 \) and if at \(t = 0 \) the surfaces of the planes are made conducting so that the resistance between conductors is \(R \), then the potential between conductors is

\[
V_x = \frac{V_0}{R + \bar{Z}_k} \left[R + \frac{4\bar{Z}_k}{\pi} \sum_{m=0}^{\infty} \frac{1}{2m+1} \sin \frac{(2m+1)\pi z}{l} \cos \frac{(2m+1)\pi t}{(\mu \varepsilon)^4 l} \right]
\]

where \(0 < z < l \) and \(s(\mu \varepsilon)^4 l < t < (s + 1)(\mu \varepsilon)^4 l \).
10. A uniform transmission line of length l and characteristic impedance Z_k is terminated at one end by a battery of zero resistance and electromotance \mathcal{E} in series with a switch and at the other by a resistance R. Neglecting field distortions at the ends, show that, if the switch is closed at $t = 0$, the current through R is

$$i = \frac{2\mathcal{E}}{R + Z_k} \sum_{s=0}^{n} \left(\frac{Z_k - R}{Z_k + R} \right)^s, \quad (2n + 1)(\mu e)^{1/2}l < t < (2n + 3)(\mu e)^{1/2}l$$

11. A uniform transmission line of length l and characteristic impedance Z_k is short-circuited at $z = l$ and has a switch in series with a battery of electromotance \mathcal{E} and resistance R connected across it at $z = 0$. Neglecting end field distortions, show that, if the switch is closed at $t = 0$, the battery current is

$$i = \mathcal{E} \sum_{s=0}^{n} (2 - \delta^s) \left(\frac{Z_k - R}{Z_k + R} \right)^s, \quad 2n(\mu e)^{1/2}l < t < (2n + 2)(\mu e)^{1/2}l$$

12. If the Hertz vector has only a z-component so it satisfies the scalar wave equation 13.14 (1) for a plane transmission line, show that the potentials are

$$\psi = V(x, y)/|z - (\mu e)^{-1}l| \quad A = k(\mu e)^{1/2}V(x, y)/|z - (\mu e)^{-1}l|$$

Show that when the scalar potential is eliminated by 13.01 (13), the resultant vector potential A' is identical in form with 13.14 (5).

13. A transmission line consists of two mutually external parallel cylinders of radii a and b, at an axial distance c. Show that the characteristic impedance is given by 13.18 (1) or (2) and the propagation constant by 13.18 (3), where

$$L = \frac{\mu}{2\pi} \cosh^{-1} \frac{c^2 - a^2 - b^2}{2ab}, \quad R_i = \omega L_i = \frac{\tau' (b + a)[c^2 - (b - a)^2]}{2\pi \alpha \delta[(b^2 - a^2)^2 - 2c^2(b^2 + a^2) + c^4]}$$

14. A transmission line consists of two confocal elliptic cylinders with major axes $2a$ and $2b(a < b)$. If the focal distance is $2c$ and K is a complete elliptic integral, show that Z_k is given by 13.18 (1) or (2) and I by 13.18 (3), where

$$L = \frac{\mu}{2\pi} \ln \frac{b + (b^2 - c^2)^{1/2}}{a + (a^2 - c^2)^{1/2}}, \quad R_i = \omega L_i = \frac{\tau' \left[\frac{1}{a} \int \frac{K\left(\frac{c}{a}\right)}{b} \right]}{2\pi \delta}$$

15. A transmission line consists of two parallel flat strips of width b and resistivity τ' whose faces are at a distance a apart where $a \ll b$. Show that the propagation constant and the characteristic impedance are, approximately,

$$\rho = \frac{b}{a} \left(\gamma + jw \right) \left[\frac{2\tau' (1 + j) + j\omega a \delta}{b^2 (\gamma + jw)} \right], \quad Z_k = \left\{ a[2\tau' (1 + j) + j\omega a \delta] \right\}^{1/2}$$

16. A transmission line consists of two parallel cylinders of radii a and b, one inside the other at an axial distance c. Show that the characteristic impedance is given by 13.18 (1) or (2) and the propagation constant by 13.18 (3), where

$$L = \frac{\mu}{2\pi} \cosh^{-1} \frac{a^2 + b^2 - c^2}{2ab}, \quad R_i = \gamma L_i = \frac{\tau' (b - a)[(a + b)^2 - c^2]}{2\pi \alpha \delta[(b^2 - a^2)^2 - 2c^2(a^2 + b^2) + c^4]}$$

17. A plane wave in a medium of permeability μ and capacitance ϵ strikes normally a plane perfectly conducting mirror. Show that reflection is prevented by placing a thin layer of material of thickness d, capacitance ϵ', and conductivity γ' one quarter wave length in front of it if $\gamma'd \approx (\epsilon/\mu)^{1/2}$ and $\gamma' \gg \omega \epsilon'$.

18. Plane electromagnetic waves...
REFERENCES

References
The following books will be found useful for this chapter:

DRUDE, P.: “Theory of Optics,” Longmans, 1920. This is the classical book on this subject and uses the long notation.

CHAPTER XIV

ELECTROMAGNETIC RADIATION

14.00. The Radiation Problem.—Any system generating electro-

magnetic waves and incompletely enclosed by conductors loses energy

because waves escape into space. If the system is not supposed to radi-

ate, this represents a leakage loss and the only information usually

required of a calculation is the power radiated. If the function of the

system is to radiate, as in the case of antennas or horns, the additional

information needed may include the polarization and distribution in

space of the radiant energy, the nonradiative losses, the current and

charge distribution in the system, and its input impedance. These will

depend on the impressed frequency and electromotance, on the system’s

dimensions and geometrical configuration, and on the materials of which

it and its surroundings are composed. When the antenna lies in empty

space, a complete solution of the problem must give fields which satisfy

Maxwell’s equations for empty space outside the antenna and for the

antenna medium inside it and which satisfy its surface boundary condi-

tions. These fields must also lead to electric intensity and current dis-

tributions that match those of the transmission line over its junction

surface with the antenna. For existing materials and configurations,

such perfect solutions appear impossible.

There are, however, methods of calculating one or more of the desired

quantities with considerable accuracy. One can always find, by means of

retarded potentials, the fields of a given charge or current distribution.

Often the distant radiation is sensitive only to the major features of

this distribution, of which a rough estimate is then adequate. This also

gives the ohmic losses, if they are small, with sufficient accuracy so that

with the aid of Poynting’s theorem the real part, but not the imaginary

part, of the input impedance can be found. Information as to the actual

current distribution in perfectly conducting antennas of simple geo-

metrical forms like spheres and spheroids can be obtained by a rigorous

solution of the boundary value problem in terms of orthogonal functions

similar to, but more complicated than, those used in electrostatics. Skin

effect formulas give the ohmic losses in terms of the magnetic fields just

outside the surface. With the exception of the biconical antenna, such

solutions give little information on the input reactance. The radiation

from orifices is often found by assuming initial field values which are
then corrected by trial to fit the boundary conditions. In the articles that follow examples of most of these methods are given.

14.01. Two Useful Types of Vector Potential.—When given the current distribution in the source, one may find the charge distribution from the equation of continuity. We shall see in 14.03 that, as in magnetostatics and electrostatics, the retarded vector and scalar potentials are obtained from the current and charge, respectively, by integration. The retarded Hertz vector, which gives all the fields so that they satisfy the continuity equation at the source, is obtained from the current by a single integration.

In general, the above methods yield vector potentials whose divergence is not zero and which have components tangential to the antenna surfaces. When all charges are confined to perfectly conducting surfaces that bound the region in which the fields are to be found, it is often simpler to use a second type of vector potential whose divergence is zero and to dispense with the scalar potential entirely, as pointed out in 13.01 (12). This vector potential is always normal to the antenna surfaces. If there is charge outside the conductors, we may divide A into two parts: a solenoidal part A'' and a lamellar part A'. The time derivative of the latter may be written as the gradient of a scalar Ψ'. When we take the divergence of 13.01 (4) and use 13.00 (3), we obtain

$$\nabla \cdot E = -\nabla \cdot \frac{\partial A'}{\partial t} - \nabla \cdot \nabla \Psi = -\nabla^2 (\Psi' + \Psi) = \frac{\rho}{\epsilon}$$

Substitution of the new scalar Φ in place of $\Psi' + \Psi$ gives

$$\nabla^2 \Phi = -\frac{\rho}{\epsilon}$$

Thus the only complication introduced by the charge is the necessity of solving Poisson's equation for which electrostatic methods are available. Note that Φ is in phase with ρ and involves no energy propagation.

14.02. Spherical Electromagnetic Waves. Dipole.—By 13.01, all the electromagnetic vectors have the same propagation equations, so that in nonconducting isotropic mediums each component $u_{x,y,z}$, if it is a function of r only, satisfies an equation which, in polar coordinates, is

$$\frac{\partial^2 u_{x,y,z}}{\partial t^2} = v^2 \nabla^2 u_{x,y,z} = v^2 \frac{\partial}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u_{x,y,z}}{\partial r} \right)$$

where $v^2 = (\mu \epsilon)^{-1}$. If we let $w = r u_{x,y,z}$, this is

$$\frac{\partial^2 w}{\partial t^2} = v^2 \frac{\partial^2 w}{\partial r^2}$$

In 13.03, we found solutions of this equation to be

$$w = r u_{x,y,z} = f_1 [t - (\mu \epsilon)^{1/2} r] + f_2 [t + (\mu \epsilon)^{1/2} r]$$
As in 13.03 (1), the first term is an expanding and the second a contracting wave. By differentiating (1) repeatedly with respect to x, y, and z and changing the differentiation order, one sees that derivatives of u with respect to x, y, and z are also solutions of (2), so solutions of (1) are

$$u_{x,y,z} = \frac{\partial^{m+n+s}}{\partial x^m \partial y^n \partial z^s} \left\{ \frac{1}{r} J_1(t - (\mu e)^4 r) + \frac{1}{r^2} J_2(t + (\mu e)^4 r) \right\} \tag{4}$$

This equation enables us to write down the radiation field produced by time variations in strength of any of the electric multipoles described in 1.07, for clearly, near the origin where $r \to 0$, the electric potential must approach the electrostatic potentials given in 1.07. Thus the scalar potential near the origin and the corresponding Hertz vector for the unit strength multipoles discussed in 1.07 are seen from (4), 1.07, and 13.01 (8) to be, for a dipole and a linear quadrupole in the z-direction

$$\Psi = -\frac{f(t)}{4\pi e} \frac{\partial}{\partial z} \left(\frac{1}{r} \right) = - (\nabla \cdot Z)_{r \to 0} \quad Z = \frac{k}{4\pi e} f(t - (\mu e)^4 r) \tag{5}$$

$$\Psi = \frac{f(t)}{4\pi e} \frac{\partial^2}{\partial z^2} \left(\frac{1}{r} \right) = - (\nabla \cdot Z)_{r \to 0} \quad Z = -\frac{k}{4\pi e} \frac{\partial}{\partial z} \left(\frac{1}{r} f(t - (\mu e)^4 r) \right) \tag{6}$$

The radiation from the square quadrupole of Fig. 1.07 is not determined uniquely by the electrostatic potential, but depends on the way in which the current flows between charges. In the most symmetrical case, we have

$$\Psi = \frac{f(t)}{4\pi e} \frac{\partial^2}{\partial x \partial y} \left(\frac{1}{r} \right) = -[\nabla \cdot Z]_{r \to 0} \tag{7}$$

$$Z = -i \frac{1}{8\pi e} \frac{\partial}{\partial y} \left(\frac{1}{r} f(t - (\mu e)^4 r) \right) - j \frac{1}{8\pi e} \frac{\partial}{\partial x} \left(\frac{1}{r} f(t - (\mu e)^4 r) \right) \tag{8}$$

One should note that there are nine second derivatives, of which six are independent because the order of differentiation is immaterial. Each of these vectors, multiplied by an arbitrary constant, may be considered as a component of the most general quadrupole whose moment therefore, like the capacitivity of 1.19, is a symmetric tensor of the second rank. In the same way, moments of the most general multipoles of higher orders are tensors of higher rank. A complete treatment is given by Stratton. By writing E for B and B for $\mu e E$ in electric multipole fields, one gets the fields of the analogous magnetic loop multipole of 7.10.

The most important multipole radiator is the electric dipole of moment $m \cos \omega t$. From (5), 13.01 (8), and 13.01 (9), we have

$$Z = \frac{M}{4\pi e r} (r_1 \cos \theta - \theta \sin \theta) \cos (\omega t - \beta r) \tag{9}$$

$$\Psi = -\nabla \cdot Z = \frac{M}{4\pi e r^2} [\cos (\omega t - \beta r) - \beta r \sin (\omega t - \beta r)] \tag{10}$$
\[A = \mu_e \frac{\partial Z}{\partial t} = -\frac{\omega \mu M}{4\pi r} (r, \cos \theta - \theta \sin \theta) \sin (\omega t - \beta r) \]
\[E_r = -\frac{\partial A_r}{\partial t} - \frac{\partial \Psi}{\partial r} = \frac{M \cos \theta}{2\pi r \epsilon r^3} [\cos (\omega t - \beta r) - \beta r \sin (\omega t - \beta r)] \]
\[E_\theta = -\frac{\partial A_\theta}{\partial t} - \frac{\partial \Psi}{r \partial \theta} = \frac{M \sin \theta}{4\pi r^3} [(1 - \beta^2 r^2) \cos (\omega t - \beta r) - \beta r \sin (\omega t - \beta r)] \]
\[B_\phi = \frac{\partial (r A_\phi)}{r \partial r} - \frac{\partial A_r}{\partial \theta} = -\frac{\omega \mu M \sin \theta}{4\pi r^2} [r \beta \cos (\omega t - \beta r) + \sin (\omega t - \beta r)] \]
\[\beta = \omega(\mu e)^1 = \omega v^{-1} = 2\pi \lambda^{-1} \]

A second type of vector potential, defined by \(A' = -\int E\, dt \), also gives the magnetic induction (14). As pointed out in 14.00, no scalar potential is needed with \(A' \), and its divergence is zero. This form is that obtained by the application of 11.01 (1) to the scalar \(\partial w/\partial z \) defined by (3).

If we look upon our dipole as a pair of conductors connected by a wire of length \(l \), so fine that the charge on it may be neglected compared with that on the conductors, then \(M = Q l \) where \(Q \) is the maximum charge. But the maximum current is related to \(Q \) by the equation \(I = \omega Q \), and \(B_\phi \) is in phase with \(I \) when \(r \) is small so that, to get the radiation when the current is \(I \cos \omega t \), we substitute \(I l \) for \(\omega M \) and \(\omega t - \frac{1}{2} \pi \) for \(\omega t \) in the above formulas. At great distances from this oscillator, (12), (13), and (14) become
\[E_r = 0, \quad E_\theta = (\mu e)^{-1} B_\phi = -\frac{\omega \mu M \sin \theta}{4\pi r} \sin (\omega t - \beta r) \]

The instantaneous rate of energy radiation is given by 13.02 (2) to be
\[P = \int_S \mathbf{E} \cdot \mathbf{n} \, dS = \int_0^\infty \frac{E_\theta B_\phi}{\mu} 2\pi R^2 \sin \theta \, d\theta = \frac{\beta^2 I^2 l^2 \omega^2}{6\pi \epsilon \omega} \sin^2 (\omega t - \beta r) \]

The mean rate has half this amplitude so that from 13.09 (2) \textit{in vacuo},
\[\bar{P} = \frac{\beta^2 I^2 l^2}{12\pi \omega \epsilon \omega} = \frac{\omega^2 I^2 l^2}{12\pi \epsilon \omega \lambda^3} = \frac{\pi I^2 l^2}{3\epsilon_0 \omega \lambda^3} = \frac{395I^2 l^2}{\lambda^2} \]

where \(l \) and \(\lambda \) are in the same units, \(P \) is in watts, and \(I \) in the dipole current amplitude in amperes. This formula is inexact for actual antennas, even when the effect of the earth and adjacent objects is removed, because the current is not uniform, but it may be used if \(l \ll \lambda \) by insertion of the estimated mean current amplitude for \(I \). The power lost by radiation, like ohmic loss, varies with the square of the current so it is customary to define the radiation resistance as the factor by which the mean of the squared current must be multiplied to give the
power radiated. Thus,
\[R_r = \frac{P}{I^2_0} = \frac{790^2}{\lambda^2} \text{ ohms} \] (19)

14.03. Retarded Potentials.—A useful method of obtaining solutions of Maxwell’s equations given in 13.00 is by means of retarded potentials. By 13.01 (5) and (6), the vector and scalar potentials propagate in a homogeneous dielectric with a velocity \((\mu e)^{-1}\). Let us now try to set up a solution of these equations analogous to 7.02 (5) and 3.09 (1). We shall take both the electric current density \(i\) and the electric charge density \(\rho\) as fixed in position but with magnitudes that vary with time, postponing the treatment of moving isolated charges to a later chapter. We wish to evaluate the potentials \(A\) and \(\Psi\) at the point \(P\) at the time \(t\).

The contribution of an element \(dv\) at the point \(x_1, y_1, z_1\), distant \(r\) from \(P\), having traveled from \(dv\) to \(P\) with a velocity \((\mu e)^{-1}\), must have left \(dv\) at the time \(t - (\mu e)^{-1}r\) and must therefore represent the conditions at \(dv\) at that time. Adding up the effect of all elements, we have, for the potentials at \(P\), from 7.02 (5) and 3.09 (1), at the time \(t\),

\[A(x, y, z, t) = \frac{\mu}{4\pi} \int \int \int \frac{I[x_1, y_1, z_1, t - (\mu e)^{-1}r]}{r} \, dx_1 \, dy_1 \, dz_1 \] (1)

\[\Psi(x, y, z, t) = \frac{1}{4\pi \epsilon} \int \int \int \frac{\rho[x_1, y_1, z_1, t - (\mu e)^{-1}r]}{r} \, dx_1 \, dy_1 \, dz_1 \] (2)

The fields are obtained from these retarded potentials as in 13.01. To show that (1) and (2) actually do satisfy the propagation equations, we observe that in the above expression for \(A_x, A_y, A_z\), and \(\Psi\) the integrands have exactly the form of solution, \(f(t - (\mu e)^{-1}r)/r\), obtained in 14.02 (3).

In free space \(A = \mu e \partial Z/\partial t\) from 13.01 (8), so by inspection one writes down an expression for the retarded Hertz vector that gives (1). Thus

\[Z = \frac{1}{4\pi \epsilon} \int \int \int \frac{i[x_1, y_1, z_1, t - (\mu e)^{-1}r]}{r} \, dx_1 \, dy_1 \, dz_1 \, dt \] (3)

We must now verify that this satisfies (2), remembering that \(i\) and \(\rho\) are related by the equation of continuity 13.00 (5). To get \(\Psi\) from \(Z\), we must take the divergence of \(Z\) at the field point so that \(\nabla\) operates only on \(r\) in (3). Because \(r^2 = (x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2\), any derivative of \(r\) with respect to a coordinate \(x, y,\) or \(z\) of the field point equals the negative of the corresponding derivative \(\nabla\) with respect to a coordinate \(x_1, y_1,\) or \(z_1\) of the source element \(dv\). The form of \(i\) in (3) shows that

\[\nabla \cdot i = -(\mu e)^{-1} \frac{\partial i}{\partial t} \cdot \nabla r \quad \nabla_i \cdot i = -(\mu e)^{-1} \frac{\partial i}{\partial t} \cdot \nabla_i r + \nabla_i \cdot i \]

where \(\nabla_i\) operates only on \(x_1, y_1,\) and \(z_1\) and not on \(t\) or \(r\). By writing
\[\nabla r \text{ for } -\nabla r, \text{ applying the equation of continuity to the source element} \]

at the time \(t = (\mu \epsilon)^t r \), and substituting in (3), we get

\[\nabla \cdot i = -\nabla_1 \cdot i + \nabla_1' \cdot i = -\nabla_1 \cdot i - \frac{\partial \rho}{\partial t} \]

\[\nabla \cdot Z = -\frac{1}{4\pi \epsilon} \int \int \nabla_1 \cdot \left(\frac{i}{r} \right) dv \, dt = -\frac{1}{4\pi \epsilon} \int \int \frac{1}{r} \frac{\partial \rho}{\partial t} dv \, dt \]

The first volume integral vanishes for, when transformed into a surface integral by Gauss's theorem, the integration surface may be taken outside the source where \(i \) is zero. The last term, when integrated with respect to \(t \), is identical with (2) so that (3) and 13.04 (5) give (1) and (2).

The usefulness of (1), (2), and (3) depends on the accuracy with which we can estimate the current and charge distributions in the source. If the source is a very thin perfectly conducting wire lying on a curve \(s \), then we require that no component of the electric field given by 13.04 (4) lie along \(s \) and that the equation of continuity, 13.04 (5), be satisfied.

\[E_s = -\frac{\partial \Phi}{\partial s} - \frac{\partial A_s}{\partial t} = 0 \quad \frac{\partial I}{\partial s} + \frac{\partial \rho}{\partial t} = 0 \]

(4)

But, since the wire is infinitely thin, we may go so close to it that the radius of curvature of \(s \) is infinite compared with our distance \(r \) so that \(A \) and \(\Phi \) are given by the formulas for a long straight wire

\[\Phi = -\frac{\rho}{2\pi \epsilon} \ln r \quad A_s = -\frac{\mu I}{2\pi} \ln r \]

(5)

Insert these values into (4), differentiate one with respect to \(t \) and the other with respect to \(s \), and eliminate \(A_s \) or \(\Phi \) from the result. Thus

\[\frac{\partial^2 I}{\partial s^2} = \mu \epsilon \frac{\partial^2 I}{\partial t^2} \quad \frac{\partial^2 \rho}{\partial s^2} = \mu \epsilon \frac{\partial^2 \rho}{\partial t^2} \]

(6)

If the current is harmonic in time, the solution of (6) is

\[I(s) = \tilde{I}_1 e^{j(\omega t - \beta s)} + \tilde{I}_2 e^{j(\omega t + \beta s)} \]

(7)

The distribution of the current on the wire is therefore sinusoidal.

14.04. **Radiation from Linear Antenna.**—Retarded potentials may be used to calculate the radiation field surrounding a linear antenna. We use the cylindrical coordinate system \(\rho, \phi, z \) and write \(z' \) for the coordinate of a point on the axis of which the antenna occupies that portion between \(z_1' \) and \(z_2' \). Its diameter to length ratio is so small that the current forms a sinusoidal standing wave. The origin lies inside or outside the antenna at a point where there is, or would be, a current node so that

\[I = I_0 \sin \beta z' \cos \omega t \]

(1)
We can use either the potentials or the Hertz vector to get the fields. The physical nature of the terminal conditions is somewhat clearer in terms of the potentials. Whether or not the current is zero at the end depends on the terminal connection. The linear charge density is, by 13.00 (5),
\[\sigma = -(\mu e)^4 I_0 \cos \beta z' \sin \omega t \] (2)
Note that \(\sigma \) is everywhere finite so the solution applies only when the lumped terminal charges do not radiate. It is a very simple matter to add to the solutions, when necessary, the additional terms arising from such sources. From 14.03 (1) and (2), the retarded potentials are
\[
A_z = \frac{\mu I_0}{4\pi} \int_{z_1'}^{z_2'} \frac{\sin \beta z' \cos (\omega t - \beta z)}{r} \, dz' \\
\Psi = \frac{\beta I_0}{4\pi \omega e} \int_{z_1'}^{z_2'} \frac{-\cos \beta z' \sin (\omega t - \beta z)}{r} \, dz'
\] (3) (4)
where \(r^2 = (z' - z)^2 + \rho^2 \). To get \(E_z \) from 13.01 (4), we substitute
\[
u = \sin \left(\frac{\omega t - \beta r}{r}\right), \quad \frac{\partial u}{\partial z} = -\frac{\partial u}{\partial z'}, \quad v = \cos \beta z', \quad \frac{\partial v}{\partial z'} = -\beta \sin \beta z'
\]
\[
\frac{\partial A_z}{\partial t} = \frac{\omega \mu I_0}{4\pi \beta} \int_{z_1'}^{z_2'} u \, dv, \quad \frac{\partial \Psi}{\partial z} = \frac{\omega \mu I_0}{4\pi \beta} \int_{z_1'}^{z_2'} v \, du
\]
Thus from 13.01 (4), we have for \(E_z \)
\[
E_z = -\frac{\omega \mu I_0}{4\pi \beta} \nu \bigg|_{z_1'}^{z_2'} = \frac{\omega \mu I_0}{4\pi \beta} \left[\frac{\cos \beta z'_1 \sin (\omega t - \beta r_1) - \cos \beta z'_2 \sin (\omega t - \beta r_2)}{r_1} \right] \]
(5)
To find \(E_\rho \) and \(H_\phi \) without the integration of (3) and (4), we substitute \(u = r + \beta' - z \) and \(v = r - \beta' + z \) so that \(r \, du = u \, dz' \) and \(r \, dv = -v \, dz' \) in the integrals of (3) and (4). With the aid of Dw 401.01 or P 591, these may then be written, using the upper sign for (3) and the lower for (4),
\[
- \int_{z_1'}^{z_2'} \frac{\sin (\omega t - \beta z - \beta u)}{2u} \, du + \int_{z_1'}^{z_2'} \frac{\sin (\omega t + \beta z - \beta v)}{2v} \, dv
\]
(6)
Note that \(\rho \) appears only in the limits of the integrals and that
\[
\frac{\partial u_{1,2}}{\partial \rho} = \frac{\partial v_{1,2}}{\partial \rho} = \frac{\rho}{r_{1,2}}
\]
(7)
so that differentiation of the integrals with respect to \(\rho \) gives
\[
\frac{\rho}{2} \left[-\frac{\sin (\omega t - \beta r - \beta z')}{r(r + z' - z)} + \frac{\sin (\omega t - \beta r + \beta z')}{r(r - z' + z)} \right]_{z_1'}^{z_2'}
\]
(8)
Putting over a common denominator, substituting \(\rho^2 \) for \(r^2 - (z' - z)^2 \),
§14.04 RADIATION FROM LINEAR ANTENNA

and combining the sines of the sum and difference of $\omega t - \beta r$ and $\beta z'$ give

$$E_\phi = -\frac{\partial \Psi}{\partial \rho} = -\frac{\omega I_0}{4\pi \rho} \left[\cos (\omega t - \beta r_2) \sin \beta z_2' - \cos (\omega t - \beta r_1) \sin \beta z_1'
+ \frac{z_2' - z}{r_2} \sin (\omega t - \beta r_2) \cos \beta z_2' - \frac{z_1' - z}{r_1} \sin (\omega t - \beta r_1) \cos \beta z_1' \right]$$

(9)

$$B_\phi = -\frac{\partial A_z}{\partial \rho} = \frac{\mu I_0}{4\pi \rho} \left[\sin (\omega t - \beta r_2) \cos \beta z_2' - \sin (\omega t - \beta r_1) \cos \beta z_1'
+ \frac{z_2' - z}{r_2} \cos (\omega t - \beta r_2) \sin \beta z_2' - \frac{z_1' - z}{r_1} \cos (\omega t - \beta r_1) \sin \beta z_1' \right]$$

(10)

Equations (5), (9), and (10) apply to antennas whose terminal loads are not zero, provided the loads charged by them are prevented from radiating by earthed shields like the coaxial termination shown in Fig. 14.04a.

The cases shown in Fig. 14.04b and c can be treated by adding to the scalar potential of (4) the terminal charge retarded potential. If the load is replaced by an antenna section extending to the nearest current node, the charge on this section equals that on the load since the same charging current flows into it. Thus the integrals of σ from the nearest node to z_1' and from z_2' to the nearest node give, respectively, the charge Q_1 on z_1' and Q_2 on z_2' so that, from (2),

$$Q_1 = -\omega^{-1} I_0 \sin \beta z_1' \sin \omega t, \quad Q_2 = \omega^{-1} I_0 \sin \beta z_2' \sin \omega t$$

If the terminal loads are small enough to be treated as point charges, the corresponding retarded scalar potential to be added to (4) is

$$\Delta \Psi = \frac{I_0}{4\pi \omega e} \left[\frac{\sin \beta z_2' \sin (\omega t - \beta r_2)}{r_2} - \frac{\sin \beta z_1' \sin (\omega t - \beta r_1)}{r_1} \right]$$

(11)

The contributions to E_z and E_ρ are, respectively,

$$\Delta E_z = \frac{\omega I_0}{4\pi \beta^2} \left[-\sin \beta z_2' \frac{\partial}{\partial z} \left[\frac{\sin (\omega t - \beta r_2)}{r_2} \right]
+ \sin \beta z_1' \frac{\partial}{\partial z} \left[\frac{\sin (\omega t - \beta r_1)}{r_1} \right] \right]$$

(12)

$$\Delta E_\rho = \frac{\omega I_0}{4\pi \beta^2} \left[-\sin \beta z_2' \frac{\partial}{\partial \rho} \left[\frac{\sin (\omega t - \beta r_2)}{r_2} \right]
+ \sin \beta z_1' \frac{\partial}{\partial \rho} \left[\frac{\sin (\omega t - \beta r_1)}{r_1} \right] \right]$$

(13)
The magnetic field of (10) is unchanged. It is interesting to note that Bechmann’s derivation of the linear oscillator field by use of the Hertz vector, which is quoted by Stratton, gives this load type at both ends.

If the antenna terminals are current nodes, then from (1), \(\beta z_1' \) and \(\beta z_2' \) must be \(m_1 \pi \) and \(m_2 \pi \), respectively, where \(m_1 \) and \(m_2 \) are positive or negative integers so that the cosine become \((-1)^{m_1}\) and \((-1)^{m_2}\). The fields given by (5), (9), and (10) then take the simplified form

\[
E_z = \frac{\omega \mu I_0}{4\pi \beta} \left[\frac{(-1)^{m_1} \sin (\omega t - \beta r_1)}{r_1} - \frac{(-1)^{m_2} \sin (\omega t - \beta r_2)}{r_2} \right] \quad (14)
\]

\[
E_p = \frac{\omega \mu I_0}{4\pi \beta \rho} \left[(z_1' - z) \sin (\omega t - \beta r_1) - (z_2' - z) \sin (\omega t - \beta r_2) \right] \quad (15)
\]

\[
B_\phi = -\frac{\mu I_0}{4\pi \rho} \left[(-1)^{m_1} \sin (\omega t - \beta r_1) - (-1)^{m_2} \sin (\omega t - \beta r_2) \right] \quad (16)
\]

Here \(m_2 - m_1 = n \) is the number of current loops in the antenna.

Suppose an antenna of length \(2l \) has end \(a \) at \(z' = -l \), end \(b \) at \(z' = l \), and is driven from the center at an arbitrary frequency so that there may or may not be a loop there, but there are nodes at the ends. Find the fields for each half separately by (5), (9), and (10) and superimpose the results. The substitutions for ends \(a \) and \(b \) are, respectively,

\[
z_2' = l, \quad r_1 = r_a, \quad r_2 = r, \quad z = z_1' = r_1 \cos \theta_a, \quad z - z_2' = r_2 \cos \theta
\]

The angles \(\theta, \theta_a, \) and \(\theta_b \) are measured from the positive \(z \)-axis. Substitution in (5), (9), and (10) gives, writing \(\omega = c\beta \),

\[
E_z = \frac{c \mu I_0}{4\pi} \left[\frac{\sin (\omega t - \beta r_a)}{r_a} + \frac{\sin (\omega t - \beta r_b)}{r} - \frac{2 \cos \beta l \sin (\omega t - \beta r)}{r} \right] \quad (17)
\]

\[
E_p = \frac{c \mu I_0}{4\pi \rho} \left[2 \cos \theta \cos \beta l \sin (\omega t - \beta r) - \cos \theta_a \sin (\omega t - \beta r_a) \right.
\]

\[
\quad - \cos \theta_b \sin (\omega t - \beta r_b) \right] \quad (18)
\]

\[
B_\phi = \frac{\mu I_0}{4\pi \rho} \left[2 \cos \beta l \sin (\omega t - \beta r) - \sin (\omega t - \beta r_a) - \sin (\omega t - \beta r_b) \right] \quad (19)
\]

Note that \(I_0 \) is the maximum current amplitude and, if it lies on the antenna, may occur at any point except at the ends.

14.05. Distant Radiation from Linear Antenna.—We shall now obtain the radiation pattern at a great distance from a linear antenna of length \(2l \) center driven at an arbitrary frequency with nodes at the ends. In 14.04 (19), write \(r + l \cos \theta \) for \(r_a \), \(r - l \cos \theta \) for \(r_b \), and \(r \sin \theta \) for \(\rho \), whence

\[
B_\phi = (\mu \epsilon) \frac{1}{4} E_\theta = \frac{\mu I_0 [\cos \beta l - \cos (\beta l \cos \theta)] \sin (\omega t - \beta r)}{2\pi r \sin \theta} \quad (1)
\]
§14.05 DISTANT RADIATION FROM LINEAR ANTENNA

From 13.17 (3), the mean radiation intensity in the r-direction is

$$\bar{n} = \frac{1}{2} |E_\theta| |H_\phi| = \frac{1}{2} \mu e^{-i} |B_\phi|^2$$ \hspace{1cm} (2)

If the antenna is driven at resonance with a loop at the center so that $2\beta l = n\pi$, it is clear from these equations that, when \bar{n} is plotted as the radius vector in polar coordinates as a function of θ, the resultant curve has maxima and minima corresponding in number to the standing wave loops and nodes. The dashed curves in Fig. 14.05 show such a plot for $n = 3$. The total power radiated is found by the integration of \bar{n} over a large sphere centered at the origin. We shall calculate only the resonance case. When we substitute $\frac{1}{2} n\pi$ for βl and write the square of the numerator in (1) in terms of twice the angle by $Pe 577$ or $Dw 404.22$, we get

$$\bar{n} = \frac{\mu c I_0^2}{8\pi} \int_0^{\pi} \left[1 - \frac{(-1)^n \cos (n\pi \cos \theta)}{1 - \cos^2 \theta} \right] \sin \theta \, d\theta$$ \hspace{1cm} (3)

Substitution of u for $\cos \theta$ and resolution into two integrals by partial fractions show that the integrals are equal because one changes into the other when $-u$ replaces u as the variable of integration. Thus,

$$\int_{-1}^{+1} \frac{ \pm \cos n\pi u }{2(1 - u)} \, du + \int_{-1}^{+1} \frac{ \pm \cos n\pi u }{2(1 + u)} \, du = \int_{-1}^{+1} \frac{ \pm \cos n\pi u }{1 + u} \, du$$

Let $v = n\pi(1 + u)$ and (3) becomes

$$\bar{n} = \frac{\mu c I_0^2}{8\pi} \int_0^{2n\pi} \frac{1 - \cos v}{v} \, dv = \frac{\mu c I_0^2}{8\pi} [C + \ln (2n\pi) - \text{Ci}(2n\pi)]$$ \hspace{1cm} (4)

where $\text{Ci}(2n\pi)$ is the cosine integral tabulated in Jahnke and Emde and C is 0.5772. Insertion of numerical values gives for the radiation resistance

$$R_r = \frac{\bar{n}}{I_0^2} = \frac{2\bar{n}}{I_0^2} = 72.4 + 30 \ln n - 30 \text{Ci}(6.28n)$$ \hspace{1cm} (5)

When $n = 1$, this becomes 73.13 ohms. The radiation resistance when there is not a connected loop at the driving point is given in 14.09.
The assumption of an infinitely thin antenna is only one of the defects in the foregoing treatment. To maintain the postulated standing wave, one must supply to each element the energy lost by ohmic heating and radiation. The former is greatest at the current maximum near the driving point, and the latter is greatest near the ends of the antenna as can be shown with little difficulty from 14.04 (14) and (16). Thus it is evident not only that it is impossible to maintain the assumed current from any single driving point, but also that, to supply the losses, a damped progressive wave must be present which has no nodes and radiates in quite a different fashion from the standing wave. A rough qualitative idea of the effect on the radiation pattern of the weakening of the current near the ends of the antenna is obtained, for example, by superimposing the fields of two antennas, one oscillating in the \(n = 1 \) mode and one in the \(n = 3 \) mode. Assuming equal strengths and frequencies, this gives the radiation from a three-loop oscillator when the inner loop has twice the amplitude of the outer ones. Using (1) with \(\beta l = \frac{1}{2} n \pi \) and simplifying by \(Dw \) 403.23 give

\[
B_\phi = (\mu e)^4 E_\theta = \frac{\mu I_0 \cos \left(\frac{3}{2} \pi \cos \theta \right) \cos (\pi \cos \theta)}{\pi \sin \theta} \sin (\omega t - \beta r) \tag{6}
\]

When substituted in (2), this gives the radiation pattern shown by the solid lines in Fig. 14.05. We note that, although the outer loops have the same amplitude as before, the outer lobes are actually cut down in magnitude, but the central lobe is quadrupled in magnitude.

\textbf{14.06. Radiation from Progressive Waves.—} Consider a wave of uniform amplitude that travels along a wire from \(z' = -\frac{1}{2} l \) to \(z' = +\frac{1}{2} l \) where it is absorbed without reflection, giving a current \(I_0 \cos (\omega t - \beta z') \). From 14.03 (1), the field at \(x, y, z \) is, when \(r = (\rho^2 + z^2)^{\frac{1}{2}} \) is large,

\[
B_\phi = (\mu e)^4 E_\theta = -\frac{\partial A_z}{\partial \rho} = -\frac{\mu I_0}{4\pi} \int_{-\frac{1}{2} l}^{\frac{1}{2} l} \frac{\partial}{\partial \rho} \left(\cos [\omega t - \beta (r' + z')] \right) dx'
\]

where \(r' = [(z - z')^2 + \rho^2]^{\frac{1}{2}} \approx r - z' \cos \theta \) and \(\rho = r \sin \theta \). If \(r' \gg l \), we may neglect terms in \(r^{-2} \) so that, using \(Dw \) 401.11 or \(Pc \) 597,

\[
B_\phi = \frac{\mu I_0}{2\pi r} \sin \theta \sin (\omega t - \beta r) \sin \left[\frac{1}{2} \beta l (1 - \cos \theta) \right] \frac{1}{1 - \cos \theta} \tag{1}
\]

The mean power radiated then becomes, by integration of 14.05 (2),

\[
P = \frac{\mu I_0^2}{4\pi e^4} \int_0^{\pi} \frac{\sin^2 \theta \sin^2 \left[\frac{1}{2} \beta l (1 - \cos \theta) \right]}{(1 - \cos \theta)^2} \sin \theta \, d\theta
\]

Substitution of \(u \) for \(\beta l (1 - \cos \theta) \) gives, using \(Dw \) 403.2 or \(Pc \) 576,

\[
P = \frac{\mu I_0}{4\pi e^4} \left[\int_0^{2\beta l} \frac{1 - \cos u}{u} \, du - \frac{1}{2\beta l} \int_0^{2\beta l} (1 - \cos u) \, du \right]
\]
The first is given on page 3 of Jahnke and Emde in terms of \(\text{Ci} \) \(2\beta l \) so that the substitution of numerical values and of \(2\pi/\lambda \) for \(\beta \) give

\[
\bar{P} = 30 I_0^2 \left[2.108 + \ln \frac{l}{\lambda} + \text{Ci} \frac{2\pi l}{\lambda} + \frac{\sin (4\pi l/\lambda)}{4\pi l/\lambda} \right]
\]

14.07. Conical Transmission Lines.—The radiation fields of a linear antenna driven at the center are given by 14.04 (17) to (19). In 14.05 (5), we found the radiation resistance of such an antenna with a current loop at the driving point. No antenna reactance information is obtained by considering such infinitely thin wires because their inductance per unit length is infinite. If, to avoid this difficulty, we choose a radius not zero, then the infinite capacitance appearing across the infinitely narrow gap between input terminals again prevents reactance calculations. Schelkunoff eliminated both these difficulties by considering a biconical antenna composed of two cones whose apexes meet at the driving point. To simplify matters we should first discuss the conical transmission line.

The propagation equation in spherical polar coordinates for a wave of angular frequency \(\omega \) is, from 13.01, 3.05 (1), and 13.15 (3),

\[
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial W}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 W}{\partial \phi^2} + \frac{\partial}{\partial r} \left(r^2 \frac{\partial W}{\partial r} \right) - r^2 \Gamma^2 W = 0
\]

To break this into two equations, we equate the first and second pair of terms separately to zero and obtain 5.12 (6) and 14.02 (1) with \(\Gamma^2 \) in place of \(v^2/\omega^2 \). Thus from 5.12 (7) and 14.02 (3) for an expanding wave,

\[
W = r^{-1} V(\theta, \phi) e^{-ar} \cos(\omega t - \beta r)
\]

where \(a \) is the attenuation constant, \(\beta \) the wave number, and

\[
U(\theta, \phi) + j V(\theta, \phi) = F(e^{i\phi} \tan \frac{1}{2}\theta)
\]

The vector potential for a transverse electromagnetic wave is

\[
A = \nabla \times \mathbf{r} W = -r_1 \times \nabla_2 V e^{-ar} \cos(\omega t - \beta r) = \nabla_2 U e^{-ar} \cos(\omega t - \beta r)
\]

where \(\nabla_2 \) has \(\theta \)- and \(\phi \)-components only. This is identical in form with 13.14 (5) and shows that, when an alternating potential is applied between the apexes of two or more perfectly conducting cones whose surfaces are generated by radius vectors, a spherical wave is transmitted that is just equivalent to a plane wave on a cylindrical transmission line for which

\[
x = \cos \phi \tan \frac{1}{2}\theta, \quad y = \sin \phi \tan \frac{1}{2}\theta, \quad z = r
\]

Let us now consider the special case of two circular cones of half angle \(\chi_1 \) and \(\chi_2 \) whose axes intersect at an angle \(2\psi \), as shown in Fig. 14.07. Clearly, if the trace of these cones on a sphere of radius \(r \) is projected stereographically on the tangent plane, as in 6.20, the equivalent trans-
mission line is the two cylinders of radii R_1 and R_2 at an axial distance D whose sections are shown in Fig. 4.13b. From Fig. 14.07,
\[\frac{1}{2}D + R_{1,2} = 2r \tan \left(\frac{\psi}{2} \right) \]
\[\frac{1}{2}D - R_{1,2} = 2r \tan \left(\frac{\psi}{2} \right) \]
Take the ratio of these equations, apply P_c 602, and solve for $\frac{1}{2}D / R_{1,2}$.
\[\frac{D}{2R_{1,2}} = \frac{\sin \psi}{\sin \chi_{1,2}} \]

(6)

The capacitance per unit length of the equivalent cylindrical line is, from 4.14 (2) or 4.13 (5), according to whether $\chi = \chi_1 = \chi_2$ or $\chi_1 \neq \chi_2$,
\[\frac{\varepsilon}{C} = \frac{1}{\pi} \sin \frac{\psi}{\sin \chi} \quad \text{or} \quad \frac{1}{2\pi} \cosh^{-1} \left(\pm \frac{4 \sin^2 \psi - \sin^2 \chi_1 - \sin^2 \chi_2}{2 \sin \chi_1 \sin \chi_2} \right) \]

(7)

The negative sign applies if one cone encloses the other, otherwise the positive sign is used. By 13.15 (7), the characteristic impedance is
\[Z_h = \frac{\varepsilon}{C} \left(\frac{j \omega \mu}{\gamma + j \omega \epsilon} \right)^{1/2} = \frac{j \omega \mu \epsilon}{(\alpha + j \beta) C} \]

(8)

where μ is the permeability, ϵ the capacitance, and γ the conductivity of the medium surrounding the perfectly conducting cones.

When $\psi = \frac{1}{2} \pi$, simpler formulas are given by taking $\theta = 0$ as the axis of one of the cones so that U is independent of ϕ. For this we choose $F(u)$ to be $C \ln u$ in (3) so that from 5.212 (4)
\[U = V_0 \frac{\ln \tan \frac{1}{2} \theta}{\ln \tan \frac{1}{2} \chi} = V_0 \frac{Q_0(\cos \theta)}{Q_0(\cos \chi)} \]

(9)

where the potential between the cones and the capacitance per unit length are, respectively,
\[V = 2V_0 e^{-ar} \cos (\omega t - br) \quad C = \pi \epsilon (\ln \cot \frac{1}{2} \chi)^{-1} \]

(10)
§14.08. The Biconical Antenna.—When both biconical transmission line cones terminate, they form a biconical antenna. If open at the ends or if closed by spherical caps, they fit into the spherical polar coordinate system to be discussed in 14.12, and the field calculation is a boundary value problem in this system. The method works best for cones whose half angles are nearly zero or 90°. In the small angle case, numerical work is simplified by using a different method.

Take perfectly conducting coaxial cones of equal length whose half angle χ is so small that by 14.03 (4) to (7) the current distribution is

$$i = I_0 \cos \omega t \sin (\beta l - \beta r) \quad (1)$$

The fields are then given by 14.04 (17) to (19) and the radiated power by an integration of Poynting's vector over the conical surfaces. Let χ_a, χ, and χ_b be the angles subtended at $z = -l, z = 0$, and $z = l$, respectively, by a radius ρ of the cone ending on its surface at a distance r from its apex. By Poynting's vector 13.02 (2) and the magnetomotance law 7.01 (2), the total instantaneous power radiation from both cones is

$$P = 2 \int_0^l E_r H_\phi 2\pi \rho \, dr = 2 \int_0^l i(E_\phi \cos \chi + E_\rho \sin \chi) \, dr \quad (2)$$

Inserting 14.04 (17) for E_ϕ, 14.04 (18) for E_ρ, and (1) for i gives

$$P = \frac{c \mu I^2 \cos \omega t}{2\pi} \int_0^l \left[\left(\frac{\cos \chi}{r_a} - \frac{\cos \chi_a}{r} \right) S_a + \left(\frac{\cos \chi_b}{r_b} + \frac{\cos \chi_b}{r} \right) S_b \right] \sin (\beta l - \beta r) \, dr$$

where S_a and S_b have been written for $\sin (\omega t - \beta r_a)$ and $\sin (\omega t - \beta r_b)$, respectively. The terms containing $\cos \beta t$ cancel out because $\rho = r \sin \chi$. The half angle χ is chosen so small that $l + r$ and $l - r$ replace r_a and r_b and $\cos \chi_a, \cos \chi$, and $\cos \chi_b$ equal one. If S_a and S_b are split up so that $\sin \omega t$ and $\cos \omega t$ factor out, then with the aid of Dw 401.05 to 401.07 or Pc 595 to 597, we obtain for $2\pi P(c \mu I^2)^{-1}$

$$\frac{\sin 2\omega t}{4} \int_{\delta'}^{l-\delta} \left[\left(\frac{1}{l + r} - \frac{1}{r} \right) (\sin L - \sin R) + \left(\frac{1}{r - l} + \frac{1}{r} \right) \sin (L - R) \right] \, dr$$

$$- \frac{\cos^2 \omega t}{2} \int_{\delta'}^{l-\delta} \left\{ \frac{l}{r(l + r)} (\cos R - \cos L) + \frac{1}{r(l - r)} [1 - \cos (L - R)] \right\} \, dr$$

where R is written for $2\beta r$ and L for $2\beta l$. The quantities δ and δ' are to be set equal to zero except where so doing makes a term infinite. In Jahnke and Emde we find the cosine- and sine-integral formulas

$$\int_0^a \frac{\sin Ax}{x} \, dx = \text{Si}(Aa), \quad \int_0^a \frac{1 - \cos Ax}{x} \, dx = C + \ln (Aa) - \text{Ci}(Aa)$$
where \(C = 0.5772 \). With these formulas, the power expression integrates easily and \(\ln \delta \) and \(\ln \delta' \) cancel out so that all terms are finite. Thus

\[
P = \frac{c \mu I_0^2 \sin 2\omega t}{8\pi} \left\{ 2\text{Si}(2\beta l) - \text{Si}(4\beta l) \cos (2\beta l) \right. \\
+ \left. [\text{Ci}(4\beta l) - C - \ln (\beta l)] \sin (2\beta l) \right\}
- \frac{c \mu I_0^2 \cos^2 \omega t}{4\pi} \left\{ 2C + 2 \ln (2\beta l) - 2\text{Ci}(2\beta l) + [C + \text{Ci}(4\beta l) - 2\text{Ci}(2\beta l) \sin (2\beta l) \\
+ \ln (\beta l)] \cos (2\beta l) + [\text{Si}(4\beta l) - 2\text{Si}(2\beta l)] \sin (2\beta l) \right\} \tag{3}
\]

Comparison with 10.02 (1), where \(\mathcal{E}^2 \) is replaced by \(I_0^2 \mathcal{Z}^2 \), shows that the coefficient of \(I_0^2 \sin 2\omega t \) is \(2\mathcal{Z}_r \sin \psi \) or \(2X_r \), where \(X_r \) is the radiation reactance and that of \(I_0^2 \cos^2 \omega t \) is \(\mathcal{Z}_r \cos \psi \) or \(R_r \), the radiation resistance. If there is a current loop at the driving point so that \(2\beta l = n\pi \) where \(n \) is odd, the value of \(R_r \) is identical with that of 14.05 (5). With a node at the driving point, \(n \) is even so the result is different because in (1) and (2) we assumed the current similarly directed in the two halves, whereas in 14.05 (4) they are taken in opposite directions.

Although we have now established the power loss from the antenna, we still do not know where to put it in the line to give the correct input impedance. Examination of (1) shows that \(H_4 \) and hence the power loss are zero at the current nodes so it cannot be put at the ends. A simple way to discover its location is to consider the case in which the perfectly conducting antenna is tuned so that the only power loss is by radiation. There is then a current loop at the driving point so that \(\beta l = \frac{1}{2}(2n + 1)\pi \) and the input current amplitude is \(I_0 \). Insertion of this value in 10.18 (10) after setting the attenuation constant equal to zero gives for the input impedance and the mean power expended

\[
\mathcal{Z}_i = \mathcal{Z}_k^{-1} \mathcal{Z}_k^2 \quad \mathcal{P} = \frac{1}{2} \mathcal{Z}_i I_0^2 \tag{4}
\]

where \(\mathcal{Z}_i \) is the terminal impedance. But (3) gives \(\frac{1}{2} \mathcal{Z}_i I_0^2 \) for the mean power so for a tuned antenna \(\mathcal{Z}_i, \mathcal{Z}_k = \mathcal{Z}_k^2 \). We try this value in 10.18 (10) for the input impedance of an untuned antenna and, to justify it, show that for thin antennas the resistive power loss agrees with (3). Thus

\[
\mathcal{Z}_i = \frac{\mathcal{Z}_k \mathcal{Z}_k \cos \beta l + j\mathcal{Z}_k \sin \beta l}{\mathcal{Z}_r \cos \beta l + \mathcal{Z}_k \sin \beta l} \tag{5}
\]

Now let \(\mathcal{Z}_k \) become very large, which means a very thin cone, so that the input current becomes \(I_0 \sin \beta l \) and the power input is, from (4),

\[
\mathcal{P}_i = \frac{1}{2} \mathcal{Z}_i I_0^2 \sin^2 \beta l = \frac{1}{2} \mathcal{Z}_r - \frac{1}{2} j\mathcal{Z}_k \sin 2\beta l \tag{6}
\]

This gives a resistive power loss of \(\frac{1}{2} R_r I_0^2 \) as it should. We note that (5) is the same expression that would have been obtained from 10.18 (10) if we had written \(\beta l - \frac{1}{2} \pi \) for \(\beta l \) and \(\mathcal{Z}_r \) for \(\mathcal{Z}_k \). This is equivalent to
cutting \(\frac{1}{4} \lambda \) off the line and using \(\tilde{Z}_r \) as the terminal impedance. Thus the effective position of the radiation impedance is one-quarter wave length from the end of the line. The inverse of the radiation impedance given by Schelkunoff in Proc. I.R.E., September, 1941, pages 493–521 appears in Fig. 14.08. Clearly from (5) the resonance wave length at which \(Z_i \) is real is affected by the radiation reactance, but it is still near \(2\beta l = n\pi \) if \(\tilde{Z}_k \gg X_r \).

Fig. 14.08.—Real (solid) and imaginary (dotted) parts of \(\tilde{Z}_k^2/\tilde{Z}_r \) plotted against \(2\pi l/\lambda \).

14.09. Antenna Arrays

The radiation pattern of a linear antenna is symmetrical about its axis. To concentrate the radiation in a single direction, a “directional array” is needed in which several radiators of length \(2l \), usually identical in type and parallel to each other, are set in some regular pattern. These may differ in amplitude and phase of excitation. Let us consider radiators parallel to the \(z \)-axis and lying in the positive octant of a rectangular lattice structure, the spacing between adjacent ones being \(a, b, \) and \(c \) in the \(x-, y-, \) and \(z \)-direction, respectively. With integral \(u, v, \) and \(w \) the distance of radiator \(uvw \) from the origin is

\[
r_{uvw} = iua + jvb + kwc
\]

Let the radius vector from the origin \(O \) to the very distant field point \(P \) be \(r_1 \) so that the difference in travel distance of a signal from \(O \) to \(P \) and from radiator \(uvw \) to \(P \) is \(r_1 \cdot r_{uvw} \). Assume the dimensions of the array small compared with \(r \) so that all radiators can be considered as equidistant from \(P \) for field amplitude calculations. If oscillator \(uvw \) lags behind oscillator 000 by a phase angle \(\psi_{uvw} \) and has a current \(I_{uvw} \), then from 14.05 (1) its contribution to \(B_\theta \) at \(P \) is the real part of

\[
\frac{\mu I_{uvw} [\cos \beta - \cos (\beta l \cos \theta)] e^{j\hat{\omega}t - j\psi_{uvw} - j(\tau - r_{uvw})}}{2\pi r \sin \theta}
\]
Writing \(F_{uvw} \) for the first factor gives for the whole array

\[
\mathbf{\tilde{E}}_{\phi} = (\mu e)^{\frac{1}{2}} e^{i\phi} \sum_{u} \sum_{v} \sum_{w} F_{uvw} e^{i(\beta r_1 + \Psi_{uvw} - \phi)}
\]

(2)

For identical radiators \(F \) is constant, and this formula simplifies if, when going in the positive \(x-, y-, \) or \(z- \)direction, each radiator shows a constant phase lag \(\xi, \eta, \) or \(\zeta, \) respectively, behind the preceding one. The triple summation in (2) then breaks down into a triple product of summations.

\[
F \sum_{u} \sum_{v} \sum_{w} e^{i u (\beta r_1 \cdot i a - \xi) + v (\beta r_1 \cdot j b - \eta) + w (\beta r_1 \cdot k c - \zeta)}
\]

\[
= F \sum_{u} e^{i u (\beta r_1 \cdot i a - \xi)} \sum_{v} e^{i v (\beta r_1 \cdot j b - \eta)} \sum_{w} e^{i w (\beta r_1 \cdot k c - \zeta)}
\]

(3)

Each factor is a geometrical progression which may be summed by Dw 26 and gives, when \(m_x \) is the number of oscillators in the \(x- \)direction,

\[
\sum_{n=0}^{m_x-1} e^{i n \psi} = \frac{1 - e^{i m_x \psi}}{1 - e^{i \psi}} = \frac{\sin \frac{1}{2} m_x \psi}{\sin \frac{1}{2} \psi} e^{-i (m_x - 1) \psi}
\]

(4)

From 13.17 (4) the mean Poynting vector is \(\frac{1}{2} (\mu e)^{-1} \mathbf{\tilde{B}} \cdot \mathbf{\tilde{B}} \) so that

\[
\bar{\Pi} = \frac{F^2 \sin^2 \left[\frac{1}{2} m_x (\beta r_1 \cdot i a - \xi) \right] \sin^2 \left[\frac{1}{2} m_y (\beta r_1 \cdot j b - \eta) \right] \sin^2 \left[\frac{1}{2} m_z (\beta r_1 \cdot k c - \zeta) \right]}{2 \mu e^2 \sin^2 \left[\frac{1}{2} (\beta r_1 \cdot i a - \xi) \right] \sin^2 \left[\frac{1}{2} (\beta r_1 \cdot j b - \eta) \right] \sin^2 \left[\frac{1}{2} (\beta r_1 \cdot k c - \zeta) \right]}
\]

(5)

As already stated, an array is used to concentrate radiation in special directions. The directivity or gain \(G \) is defined as the ratio of the maximum intensity \(\Phi_M \) to the average intensity \(\Phi_0 \) on a large sphere concentric with the array. In decibels we write it \(G_d \). Thus

\[
G = \frac{\Phi_M}{\Phi_0}, \quad G_d = 10 \log_{10} \frac{\Phi_M}{\Phi_0}
\]

(6)

The gain function \(G(\theta, \phi) \) in any direction is the ratio of \(\Phi(\theta, \phi) \) to \(\Phi_0 \). Thus for a half wave antenna, from 14.05 (2) and (4), the ratio of maximum to average intensity is \(4[\ln (2\pi) + C - Ci(2\pi)]^{-1} \) which gives a numerical value of 1.64 for \(G \) or a gain of 2.15 decibels in the equatorial plane. The transmitting pattern is the surface.

\[
\bar{\Pi} = \frac{\mu^3 I_0^2}{8\pi^2 r^2 e^2} \left[\frac{\cos \left(\frac{1}{2} n \pi \cos \theta \right)}{\sin \theta} \right]^2 \left[\frac{\sin \left(\frac{3}{2} m \pi \cos \phi \sin \theta \right)}{\sin \left(\frac{1}{2} \pi \cos \phi \sin \theta \right)} \right]^2
\]

(7)

Now consider the special case of \(m \) identical, in phase, \(n \)-loop antennas, lying a half wave length apart along the \(x- \)axis. Take \(m_y = m_z = 1, \xi = 0, \beta a = \frac{1}{4} \beta \lambda = \pi, \) and \(\beta l = \frac{1}{2} n \pi, \) so \(\beta r_1 \cdot i a \) is \(\pi \cos \phi \sin \theta \) in (5) which becomes

\[
\bar{\Pi} = \frac{\mu^3 I_0^2}{8\pi^2 r^2 e^2} \left[\frac{\cos \left(\frac{1}{2} n \pi \cos \theta \right)}{\sin \theta} \right]^2 \left[\frac{\sin \left(\frac{3}{2} m \pi \cos \phi \sin \theta \right)}{\sin \left(\frac{1}{2} \pi \cos \phi \sin \theta \right)} \right]^2
\]

(8)
This is called a broadside array because the second factor maximum is at right angles to the plane of the array when $\phi = \frac{1}{2}\pi$. Figure 14.09 shows the relative values of Π in the plane $\theta = 0$ when subsidiary maxima are omitted. Near this maximum the second factor sines are small so it becomes m^2. We cannot assume from this that, for the same total power input, the radiation in this direction is m times that of a single oscillator because the oscillators interact. To get the actual gain, we must calculate Φ_0. We note from (4) that the last factor in (8) may be written, if α is $\pi \cos \phi \sin \theta$,

$$\left|\frac{\sin \frac{1}{2}m\alpha}{\sin \frac{1}{2}\alpha}e^{j(m-1)\alpha}\right|^2 = \left|\sum_{p=0}^{m-1} e^{jp\alpha}\right|^2 = m + 2 \sum_{p=1}^{m-1} (m - p) \cos p\alpha$$

Expansion of the cosine by $Pc\ 773$ or $Dw\ 415.02$, integration over ϕ by $Pc\ 483$ or $Dw\ 854.1$, and combination of the terms independent of θ give

$$2m\pi + \sum_{p=1}^{m-1} (m - p) \int_0^{2\pi} \cos (p\pi \cos \phi \sin \theta) \, d\phi$$

$$= 2\pi \left[m^2 + \sum_{p=1}^{m-1} \sum_{s=1}^{\infty} (m - p)(jpr\pi \sin \theta)^{2s} \right]$$

To get the power radiated, multiply this by the remaining factors in (8) and by $r^2 \sin \theta \, d\theta$ and integrate from $\theta = 0$ to $\theta = \pi$. The first term was integrated in 14.05. The other integrals have the form

$$\int_0^{\pi} \cos^2 \left(\frac{1}{2}n\pi \cos \theta\right) \sin^{2s-1} \theta \, d\theta = \frac{1}{2} \int_0^{\pi} [1 + \cos (n\pi \cos \theta)] \sin^{2s-1} \theta \, d\theta$$

We may integrate this by $Dw\ 854.1$ or $Pc\ 483$ and 5.03 (5) which gives

$$\frac{[(s - 1)!]^2 2^{2s-2}}{(2s - 1)!} + \frac{(s - 1)!}{2\pi^{s-1}} \left(\frac{2}{n}\right)^{s-1} J_{2s-1}(n\pi)$$

The s-summation of the first term by $Dw\ 442.11$ or $Pc\ 347$ gives a result expressible as a cosine integral by page 3 of Jahnke and Emde. Thus

$$2 \sum_{s=1}^{\infty} \frac{(-1)^s (p\pi)^{2s}}{2s(2s)!} = -2 \int_0^{\pi} \frac{1 - \cos x}{x} \, dx = -2C - 2 \ln (p\pi) + 2Ci(p\pi)$$
Collecting terms gives for the total power radiated

\[P = \frac{\mu I^2 c}{8\pi} \left\{ m^2 c + m^2 \ln (2n\pi) - m^2 \text{Ci}(2n\pi) \right\} \]
\[+ 4 \sum_{p=1}^{m-1} (m - p) \left[\text{Ci}(p\pi) - C - \ln (p\pi) + \sum_{s=1}^{\infty} \frac{(-1)^s \pi^{s+1} p^{2s}}{48s! (2n)^{s+1}} J_{s-1}(n\pi) \right] \]

(9)

From (6) and (7) the directivity in decibels is

\[10 \log \left[\frac{\frac{1}{2} \mu c I^2 m^2}{(nP)} \right] \]

For \(n = 1, m = 2 \), the ratio \(\Phi_m/\Phi_0 \) is 3.81 which is more than twice that of a single half wave antenna. The directivity is 5.81 db.

14.10. Earth Effects.—Dielectrics or conductors near an antenna react on it or distort its field or both. The commonest such object is the earth’s surface. To a nearly spherical wave one may apply the laws of reflection and refraction at a conducting boundary derived in 13.13. If, on the other hand, the antenna is so near the surface that the angle of incidence is a complicated function, this becomes laborious. Often the surface may be taken as flat and perfectly conducting so that the fields above it are unchanged if it is replaced by a second identical or “image” antenna located and oriented so as to make the resultant electric field normal to the former earth’s surface. If all the original antennas were either normal to or parallel to the earth’s surface, then evidently the resultant fields may be calculated by the formulas of the last article.

14.11. Uniqueness of Solution.—Before deriving the wave equation solutions used in boundary value problems, one should find what data are needed for a unique solution. Consider a region, bounded internally by the surfaces \(S_1 \) to \(S_n \) and externally by \(S_0 \), wherein \(\mu, \epsilon, \) and \(\gamma \) are functions of position but not of field strength, and which contains no sources. Let \(E, B \) and \(E', B' \) be two solutions of Maxwell’s equations which are identical throughout the region when \(t = 0 \). Poynting’s theorem 13.02, and Ohm’s law give, writing \(\Delta E \) for \(E - E' \), \(\Delta B \) for \(B - B' \), etc.,

\[\int_V \left\{ \frac{(\Delta \mathbf{E})^2}{\gamma} + \frac{\partial}{\partial t} \left[\frac{\epsilon(\Delta \mathbf{E})^2}{2} + \frac{(\Delta \mathbf{B})^2}{2\mu} \right] \right\} \, dV = -\sum_{i=0}^{n} \int_{S_i} \frac{\Delta \mathbf{E} \cdot \Delta \mathbf{B}}{\mu} \cdot \mathbf{n} \, dS_i \]

In order that the surface integral vanish, it is necessary that

\[\Delta \mathbf{E} \cdot \Delta \mathbf{B} \cdot \mathbf{n} = \Delta \mathbf{B} \cdot \mathbf{n} \cdot \Delta \mathbf{E} = \mathbf{n} \cdot \Delta \mathbf{E} \cdot \Delta \mathbf{B} = 0 \]

Thus, if \(\mathbf{n} \times \Delta \mathbf{B} \) or \(\mathbf{n} \times \Delta \mathbf{E} \) is zero when \(t > 0 \), the surface integrals are zero. The energy term in brackets is zero or positive and was zero at \(t = 0 \) so, if it changes at all, it must become positive. But the first term is zero or positive, and the whole integrand is zero so that \(\Delta \mathbf{E} \) and \(\Delta \mathbf{B} \) are zero. Thus the \(E, B \) and \(E', B' \) solutions are identical and are determined by the
initial values of the fields in the region together with the tangential components of either \(E \) or \(B \) over its surface when \(t > 0 \). In practice we are usually concerned with steady-state solutions of the problem, in which case the values at any time determine all previous values.

14.12. Solutions of the Wave Equation in Spherical Coordinates.—In an isotropic insulating medium all waves are spherical at distances from the source great compared with its dimensions. In radiation problems, therefore, the most useful solutions of the propagation equation are in polar coordinates and have the form of a sum of products of orthogonal functions with coefficients which can be determined from given boundary conditions. We saw in 13.01 that in such cases the entire radiation field is derivable from a vector potential with zero divergence. Expressions for such a potential can be obtained from two solutions of the scalar propagation equation as indicated in 11.01. Thus from 11.01 (2), if \(W_{te} \) and \(W_{tm} \) are solutions of the last two of the equations,

\[
\nabla^2 A = -\mu \varepsilon^2 A, \quad \nabla^2 W_{te} = -\mu \varepsilon^2 W_{te}, \quad \nabla^2 W_{tm} = -\mu \varepsilon^2 W_{tm} \tag{1}
\]

then a solution of the first equation is obtained from the formula

\[
A = \nabla \times (rW_{te} + r \times \nabla W_{tm}) \tag{2}
\]

Note that the solution derived from \(W_{te} \) gives a vector potential, and hence an electric field, normal to \(r \). This is called a transverse electric wave as the subscript suggests. From 11.01 (4), the magnetic induction is

\[
B = -\nabla \times (\mu \varepsilon^2 r W_{tm} + r \times \nabla W_{te}) \tag{3}
\]

Thus the magnetic field derived from \(W_{tm} \) is normal to \(r \), and the wave is called transverse magnetic. We solve (1) as in 11.05 except that for more generality the factor \(\Phi(\phi) \) is added. We therefore write

\[
\vec{W} = r^{-1} \vec{K}(r) \theta(\theta) \Phi(\phi) \tag{4}
\]

Substitution of (4) in (1) gives the differential equation of 11.05 (9) for \(\vec{K} \), that of 5.14 (2) for \(\theta \), and \(d^2 \Phi / d \phi^2 = -m^2 \Phi \) for \(\Phi \). The solution for \(\vec{W} \) then becomes, writing \(\beta \) for \(\omega / (\mu \varepsilon)^{1/2} \) and \(u \) for \(\cos \theta \),

\[
\vec{W} = [A P_n^m(u) + B Q_n^m(u)] [\hat{C}_n(\beta r) + \hat{D} \hat{K}_n(j \beta r)] \cos (m \phi + \delta_m) \tag{5}
\]

This spherical Bessel function notation is that of 5.31 and 5.37 where

\[
j_n(\beta r) = r^{1/2}(2 \beta r)^{-1/2} J_{n+1}(\beta r), \quad k_n(j \beta r) = \left(\frac{1}{2} j \pi r \right)^{-1/2} \hat{K}_{n+1}(j \beta r) \tag{6}
\]

The reason for using these forms is that the first, combined with \(e^{j \omega t} \), represents a standing wave and the second, from 5.37 (9), an expanding or contracting traveling wave according as \(n \) is positive or negative.

14.13. Polynomial Expansion for a Plane Wave.—A plane wave expansion in the form of 14.12 (5) is often needed to fit spherical boundary conditions. For simplicity consider a wave parallel to the \(\theta = 0 \) axis.
ELECTROMAGNETIC RADIATION

§14.14

It can then be referred to any other axis by 5.24. We saw in 13.15 (4) and (5) that \(z = r \cos \theta \) enters plane wave formulas only in the exponent and multiplied by \(\tilde{\mathbf{r}} \). Thus we need the coefficient of \(P_n(\cos \theta) \) in the Legendre polynomial series expansion of \(e^{i\tilde{\mathbf{r}} \cos \theta} \). From 5.156 (3),

\[
\tilde{a}_n = \frac{2n + 1}{2n+1n!} (\tilde{\mathbf{r}})^n \int_{-1}^{+1} e^{i\tilde{\mathbf{r}}u(1 - u^2)^n du}
\]

(1)

Expansion of the exponential by \(Pc 759 \) or \(Dw 550 \) gives

\[
\tilde{a}_n = \frac{2n + 1}{2n+1n!} (\tilde{\mathbf{r}})^n \sum_{s=0}^\infty \frac{(\tilde{\mathbf{r}})^s}{s!} \int_{-1}^{+1} u^s(1 - u^2)^n du
\]

(2)

The integral vanishes when \(s \) is odd, so write \(2m \) for \(s \) and take twice the value of the integral from 0 to 1. For the \((2m)! \) in the denominator we may write \(2^{2m}m! \pi^{-\frac{1}{2}} \Gamma(m + \frac{1}{2}) \) by \(Dw 850.7 \) and \(855.1 \) and obtain with the aid of 5.32 (2), after writing \(\Gamma(n + 1) \) for \(n! \),

\[
\tilde{a}_n = \frac{(2n + 1)\pi^\frac{1}{2}}{2^{n+1}\Gamma(n + 1)} \sum_{m=0}^\infty \frac{(\tilde{\mathbf{r}})^{n+2m}}{m! \Gamma(m + \frac{1}{2})} \Gamma(m + \frac{1}{2})\Gamma(n + 1)
\]

(3)

\[
= (2n + 1)\left(\frac{\pi}{2\tilde{\mathbf{r}}}\right)^\frac{1}{2} \sum_{m=0}^\infty \left(\frac{\tilde{\mathbf{r}}^m}{m! \Gamma(m + n + \frac{1}{2})}\right) = (2n + 1)\left(\frac{\pi}{2\tilde{\mathbf{r}}}\right)^\frac{1}{2} I_{n+4}(\tilde{\mathbf{r}})
\]

When there is no attenuation, we replace \(\tilde{\mathbf{r}} \) by \(j\beta \) and obtain by 5.32 (2)

\[
\tilde{a}_n = (2n + 1)j^n\left(\frac{\pi}{2\beta r}\right)^\frac{1}{2} I_{n+4}(\beta r) = j^n(2n + 1)j_n(\beta r)
\]

(4)

The expansion is, therefore,

\[
e^{j\beta z} = e^{j\tilde{\mathbf{r}} \cos \theta} = \sum_{n=0}^\infty j^n(2n + 1)j_n(\beta r)P_n(\cos \theta)
\]

(5)

For \(e^{-j\beta z} \) replace \(\beta \) by \(-\beta \) or \(\cos \theta \) by \(\cos (\pi - \theta) \) which is equivalent, by 5.293 (3) or 5.157, to inserting the factor \((-1)^n\) on the right. Thus

\[
e^{-j\beta z} = e^{-j\tilde{\mathbf{r}} \cos \theta} = \sum_{n=0}^\infty (-j)^n(2n + 1)j_n(\beta r)P_n(\cos \theta)
\]

(6)

The orthogonal solutions of 14.12 usually occur in boundary value problems but may also be preferable for sources with given current distributions. For example, the distant radiation from a circular loop carrying a uniform current distribution is easily found by the retarded potential method of 14.03, but that near the loop is not. It is clear from symmetry that this source gives a transverse electric wave and, from 14.03 (1) and (2), that
we need no scalar potential, and that the vector potential has only a
\(\phi \)-component. Therefore when \(r > a \), we have, from 14.12 (5),

\[
\vec{W}_e = \sum_{n=0}^{\infty} \vec{A}_n P_n(\cos \theta) j_n(\beta a) \vec{k}_n(j \beta r)
\]

(1)

If \(r < a \), interchange \(r \) and \(a \). By 14.12 (2), the vector potentials are

\[
\begin{align*}
\vec{A}_n^{(1)} &= \sum_{n=0}^{\infty} \vec{A}_n P_n^{(1)}(\cos \theta) j_n(\beta a) \vec{h}_n(j \beta r) \\
\vec{A}_n^{(2)} &= \sum_{n=0}^{\infty} \vec{A}_n P_n^{(2)}(\cos \theta) j_n(\beta r) \vec{h}_n(j \beta a)
\end{align*}
\]

(2)

(3)

Clearly these potentials are equal at \(r = a \), and only odd values of \(n \) can appear in them for the field must be symmetrical about the \(\theta = \frac{\pi}{2} \) plane, so we replace \(n \) by \(2m + 1 \). The uniform current implies from 14.03 (7) that \(\beta a \) is very small so that we may write \((\beta r)^{2m+1}/(4m + 3)!! \) for \(j_n(\beta r) \) where \(r < a \) and \((4m + 1)!!(j \beta a)^{-2m-2} \) for \(\vec{k}_n(j \beta a) \) from 5.31 (9) and 5.37 (11). Except for the time factor, (3) is real and identical in form with 7.13 (2) if \(\alpha = \frac{\pi}{2} \) so that the latter, multiplied by \(\cos \omega t \), gives \(\vec{A}_n \) when \(r < a \). Write \((-1)^m(2m + 1)!! \) for \(P_n^{(2m+1)}(0) \) by 5.23 (6) and 5.157 and substitute the \(A_m \) value found from (3) in (2) which gives

\[
\begin{align*}
\vec{A}_n^{(r, a)} &= -\frac{1}{2} \mu I \sum_{m=0}^{\infty} \frac{(2m - 1)!!(\beta a)^{2m+2}}{(2m + 2)!!(4m + 1)!!} P_n^{(2m+1)}(\cos \theta) \vec{h}_{2m+1}(j \beta r)
\end{align*}
\]

(4)

To get the real part of \(\vec{A}_n e^{i \omega t} \), we may substitute, from 5.37 (13),

\[
[e^{i \omega t} \vec{h}_{2m+1}(j \beta r)]_{\text{real part}} = (-1)^m [n_{2m+1}^{(r, a)} \cos \omega t - j_{2m+1}(\beta r) \sin \omega t]
\]

When \(r \) is large, all but the \(m = 0 \) term may be neglected because \(\beta a \) is small so that \(n_1 \) and \(j_1 \) are given by 5.31 (3), (4), (8), and (10). The expression for \(A^{(r, a)}_n \) then becomes

\[
A_n^{(r, a)} = \frac{1}{2} \mu I a^2 r^{-2} \sin \theta [\cos (\omega t - \beta r) - \beta r \sin (\omega t - \beta r)]
\]

(5)

The electric field \(-\partial A/\partial t \) is identical with the magnetic field of an electric dipole given by 14.02 (14) provided \(\pi a^2 I \) is replaced by \(M \) and the components of the magnetic induction \(B_r \) and \(B_\theta \) equal the corresponding components of the electric field of the electric dipole multiplied by \(-\mu \epsilon \).

At a great distance the fields become

\[
E_\phi = (\mu \epsilon)^{-1} B_\phi = -\frac{\omega \mu \beta a^2 I \sin \theta}{4r} \cos (\omega t - \beta r)
\]

(6)

This is 14.02 (16) multiplied by the factor \(\pi \beta a^2 l^{-1} \) so that the radiated power and the radiation resistance will be given by 14.02 (18) and (19).
multiplied by the square of this factor.

\[P = 153,900a^4I^2\lambda^{-4} \quad R_r = 307,800a^4\lambda^{-4} \]

(7)

Thus, in terms of antenna current, the loop radiates power inversely as the fourth power of the wave length instead of as the linear antenna’s square.

14.15. Free Oscillations of a Conducting Sphere.—The solutions of the propagation equations given in 14.12 are evidently well adapted to the study of the electromagnetic oscillations of spherical bodies. From 14.12 (2), we see that both transverse electric and transverse magnetic oscillations are possible. Examination of 14.12 (5) discloses that outside the sphere there is a standing wave if \(\tilde{D} \) is zero, from 5.31 (7) and a diverging wave if \(\tilde{C} \) is zero from 5.37 (12). The \(Q_r^a \) solution is excluded because it is infinite at \(\theta = 0 \) and \(\theta = \pi \). A dielectric or imperfectly conducting sphere will have fields inside it. We then use a sum of solutions of the type of 14.12 (5) with undetermined coefficients which are different for the interior and exterior regions. The vector potentials derived from these solutions by 14.12 (2) must be matched at the boundary to satisfy the boundary conditions 7.21 (6) and (7) as was done in 11.06.

A simple and interesting case is that of a perfectly conducting sphere where, if there are initially no internal fields, there can be none at any subsequent time and energy can be lost by radiation only. The unknown frequency appearing in 14.12 (5) must be determined to fit the boundary conditions which usually make it complex. Let us consider first the transverse magnetic oscillations such as would be set up by moving the sphere in a static electric field. The simplest of these will be that for which \(m = 0 \) and \(n = 1 \) in 14.12 (5) so that by 14.12 (2)

\[\vec{A} = \nabla \times (r \times \nabla \tilde{W}_{lm}) = \frac{r_1}{r \sin \theta \partial} \left(\sin \theta \frac{\partial \tilde{W}_{lm}}{\partial \theta} \right) - \frac{\theta}{r \partial} \frac{\partial \tilde{W}_{lm}}{\partial \theta}
\]

\[= \sum p \vec{A}_p \left[-\frac{2r_1}{r} \cos \theta k_1(j \beta r) + \frac{\theta}{r \partial} \frac{\partial}{\partial r}(r k_1(j \beta r)) \right] \]

(1)

The condition that the tangential component \(-\partial \vec{A}_\theta / \partial t \) of the electric field be zero at \(r = a \) requires, from 5.37 (12), that

\[\left(-1 - \frac{1}{j \beta a} + \frac{1}{\beta^2 a^2} \right) e^{-j \beta a} = \left(\frac{1}{\beta a} + \frac{j + 3}{2} \right) \left(\frac{1}{\beta a} + \frac{j - 3}{2} \right) e^{-j \beta a} = 0 \]

(2)

Putting these two values of \(\beta_p = \omega_p(\mu \epsilon)^{1/2} \) into 14.12 (5) yields for \(\tilde{W}_{lm} e^{j\omega t} \)

\[\sin \theta \left\{ A_1 k_1 \left[-\frac{2r}{(j + 3) \alpha} e^{(-j(3\alpha))} + A_2 k_1 \left[-\frac{2r}{(j - 3) \alpha} e^{(j(3\alpha))} \right] \right] \right\} \]

(3)

With the aid of 5.37 (10) and (12) and of the substitutions

\[\omega = \frac{1}{2} 3^{1/2} (\mu \epsilon)^{-1} a^{-1}, \quad \alpha = \frac{1}{2} (\mu \epsilon)^{-1} a^{-1}, \quad \beta = \frac{1}{2} 3^{1/2} a^{-1} \]

(4)

the real part of \(\tilde{W}_{lm} e^{j\omega t} \) may be written, after collecting constants,
§14.16 OSCILLATIONS OF DIELECTRIC OR CONDUCTING SPHERE

\[Cr^{-2}a \sin \theta \left[3^{4}(a - r) \sin(\omega t - \beta r - \psi) - (a + r) \cos(\omega t - \beta r - \psi)e^{-\alpha t+i\alpha^{-1}r} \right] \]

From (4) and 13.09 (4), we see that the wave length of the oscillation is 7.26a and that the amplitude is reduced by the factor 1/e while the wave travels a distance equal to the diameter of the sphere. The oscillation is therefore very rapidly damped and disappears in a few cycles. The transverse electric modes can be calculated in similar fashion.

An analysis similar to that given, but more complicated, applies to a prolate spheroid. When the eccentricity of such a spheroid is large, it gives an excellent approximation to a straight wire of finite length.

14.16. Forced Oscillations of Dielectric or Conducting Sphere.—The formulas of 14.12 and 14.13 permit a rigorous calculation of the steady-state diffraction effects caused by a plane monochromatic electromagnetic wave with its electric vector in the \(x\)-direction and traveling in the \(z\)-direction, impinging on a homogeneous sphere. We shall consider only the cases where the sphere is a perfect dielectric or a perfect conductor. From 13.15 (4), 13.15 (5), and 13.01 (12), the phasor electric field, magnetic induction, and vector potential of such a wave are

\[\vec{E}_x = (\mu e)^{-1} \vec{B}_y = E e^{-j\beta z}, \quad \vec{A}_x = j\omega^{-1} E e^{-j\beta z} \]

Both \(\vec{E}_x\) and \(\vec{B}_y\) have \(r\)-components, so to express them in polar coordinates both \(TE\) and \(TM\) waves are needed. From 14.12 (2) and (3) we have

\[\vec{A}_r = \vec{A}_x \sin \theta \cos \phi = [\nabla \times (r \times \nabla \vec{W}_n)]_r, \quad \vec{B}_r = \vec{B}_y \sin \theta \sin \phi = [\nabla \times (r \times \nabla \vec{W}_n')]_r \]

In 14.13 (6), \(e^{-j\beta z}\) appears as a sum of terms like 14.12 (5). Differentiation with respect to \(\theta\) brings in the sine factor of (2), so

\[j\beta r \sin \theta e^{-j\beta z} = - \sum_{n=1}^{\infty} (-j)^n (2n + 1) j_n(\beta r) P_n^1(\cos \theta) \]

\[\vec{A}_r = - \frac{E \cos \phi}{\omega \beta r} \sum_{n=1}^{\infty} (-j)^n (2n + 1) j_n(\beta r) P_n^1(\cos \theta) \]

\[\vec{B}_r = - \frac{E \sin \phi}{j \omega r} \sum_{n=1}^{\infty} (-j)^n (2n + 1) j_n(\beta r) P_n^1(\cos \theta) \]

Operating on the \(n\)th term of 14.13 (5) and using 5.12 (4) give

\[[\nabla \times (r \times \nabla \vec{W}_n)]_r = \left[\nabla \times \left(\phi \frac{\partial \vec{W}_n}{\partial \theta} - \frac{\theta}{\sin \theta} \frac{\partial}{\partial \phi} \frac{\partial \vec{W}_n}{\partial \phi} \right) \right]_r \]

\[= \frac{j_n(\beta r)}{r} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial S_n}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 S_n}{\partial \phi^2} \right] = - \frac{n(n + 1)}{r} \vec{W}_n \]
Therefore those parts \(\tilde{W}'_{tm} \) and \(\tilde{W}'_{te} \) of \(\tilde{W}_{tm} \) and \(\tilde{W}_{te} \) that represent the plane incident wave are found by multiplying the nth term of (4) and (5) by \(-r[n(n + 1)]^{-1}\). Those parts that represent the diffracted wave must be diverging waves and so contain \(k_n(j\beta r) \). Thus we have

\[
\tilde{W}_{tm} = \frac{E \cos \phi}{\omega \beta} \sum_{n=1}^{\infty} \frac{2n + 1}{n(n+1)} \left[(-j)^n j_n(\beta r) + \tilde{\alpha}_n k_n(j\beta r) \right] P_n^1(\cos \theta) \tag{7}
\]

\[
\tilde{W}_{te} = \frac{E \sin \phi}{j \omega} \sum_{n=1}^{\infty} \frac{2n + 1}{n(n+1)} \left[(-j)^n j_n(\beta r) + \tilde{\beta}_n k_n(j\beta r) \right] P_n^1(\cos \theta) \tag{8}
\]

Inside the sphere, fields must be finite at the origin so that

\[
\tilde{W}_{tm} = \frac{E \cos \phi}{\omega \beta} \sum_{n=1}^{\infty} \frac{2n + 1}{n(n+1)} \left[(-j)^n \tilde{\alpha}_n j_n(\beta' r) P_n^1(\cos \theta) \right] \tag{9}
\]

\[
\tilde{W}_{te} = \frac{E \sin \phi}{j \omega} \sum_{n=1}^{\infty} \frac{2n + 1}{n(n+1)} \left[(-j)^n \tilde{\beta}_n j_n(\beta' r) P_n^1(\cos \theta) \right] \tag{10}
\]

From (6) and (2), equating normal displacements gives

\[
\varepsilon \tilde{\alpha}_n j_n(\beta' a) = \varepsilon [j_n(\beta a) + j^n \tilde{\alpha}_n k_n(j\beta a)] \tag{11}
\]

From (6) and (2), equating normal magnetic inductions gives

\[
\tilde{\beta}_n j_n(\beta' a) = j_n(\beta a) + j^n \tilde{\beta}_n k_n(j\beta a) \tag{12}
\]

From (6) and (2), the tangential components of \(A \) are

\[
\tilde{A}_t = \theta \left[\frac{1}{\sin \theta} \frac{\partial \tilde{W}_{te}}{\partial \phi} - \frac{1}{r} \frac{\partial^2 (r \tilde{W}_{tm})}{\partial \theta \partial r} \right] - \phi \left[\frac{\partial \tilde{W}_{te}}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial (r \tilde{W}_{tm})}{\partial \phi \partial r} \right] \tag{13}
\]

Equating tangential components of \(\tilde{E} \) or \(\tilde{A} \) involves only the r-derivatives of \(\tilde{W}_{tm} \) because the \(\tilde{W}_{te} \) terms are already equal by (12). The same relation is obtained from the \(\theta \)- or \(\phi \)-component.

\[
\tilde{A}_n = \frac{\partial [a j_n(\beta' a)]}{\partial a} = \frac{\partial [a j_n(\beta a)]}{\partial a} + j^n \tilde{A}_n \frac{\partial [a k_n(j\beta a)]}{\partial a} \tag{14}
\]

By comparison of (2) and (3), the contribution of \(\tilde{W}_{tm} \) to \(\tilde{A}_t \) is identical with that of \(\tilde{W}_{te} \) to \(\tilde{B}_t \). Equating either \(\theta \)- or \(\phi \)-components of \(\mu^{-1} \tilde{B} \) at \(r = a \) involves only the r-derivatives of \(\tilde{W}_{te} \) because from (11), (13), and (14) the \(\tilde{W}_{tm} \) terms are already equal. Thus

\[
\frac{1}{\mu} \tilde{B}_n \frac{\partial [a j_n(\beta a)]}{\partial a} = \frac{1}{\mu} \left\{ \frac{\partial [a j_n(\beta a)]}{\partial a} + j^n \tilde{B}_n \frac{\partial [a k_n(j\beta a)]}{\partial a} \right\} \tag{15}
\]

We now equate values of \(A_{nt} \) from (11) and (14) and solve for \(\tilde{A}_n \). Use
of 5.37 (13), 5.31 (11), and 5.31 (12) gives \((1 - jN)^{-1}\) for \(\tilde{A}_n\) where \(N\) is
\[
\begin{align*}
\beta a\epsilon j_n(b'\alpha)n_{n-1}(\beta a) - b'\alpha n_n(\beta a)j_{n-1}(b'\alpha) - n(\epsilon_1 - \epsilon)j_n(b'\alpha)n_n(\beta a) \\
\beta a\epsilon j_n(b'\alpha)j_{n-1}(\beta a) - b'\alpha e j_n(b'\alpha)n_{n-1}(\beta a) - n(\epsilon_1 - \epsilon)j_n(b'\alpha)j_n(\beta a)
\end{align*}
\]

(16)

The same formula is obtained for \(\tilde{B}_n\) by solving (12) and (15) except that \(\mu_2\) and \(\mu\) replace \(\epsilon_1\) and \(\epsilon\). When the sphere is perfectly conducting, \(\tilde{A}_n\) and \(\tilde{B}_n\) are obtained by equating the left sides of (12) and (14) to zero. Thus
\[
\tilde{A}_n = \left\{1 - j\frac{\beta a n_{n-1}(\beta a) - n_n(\beta a)}{\beta a\epsilon j_n(b'\alpha)n_{n-1}(\beta a) - b'\alpha n_n(\beta a)j_{n-1}(b'\alpha) - n(\epsilon_1 - \epsilon)j_n(b'\alpha)n_n(\beta a)}\right\}^{-1}, \quad \tilde{B}_n = \frac{j_n(\beta a)}{\beta a\epsilon j_n(b'\alpha)n_{n-1}(\beta a) - b'\alpha n_n(\beta a)j_{n-1}(b'\alpha) - n(\epsilon_1 - \epsilon)j_n(b'\alpha)j_n(\beta a)}
\]

(17)

The energy scattered by the sphere in a specified direction is, from 13.17 (3), the real part of the complex Poynting vector
\[
\frac{1}{2}\mu^{-1}\vec{E} \times \vec{B} = \frac{1}{2}\mu^{-1}(\mu \epsilon)^{1/2}\vec{E} \times (\vec{r}_1 \times \vec{E}) = \frac{1}{2}r\mu^{-1}\epsilon e^j\left(\vec{E}_\theta \vec{E}_\phi + \vec{E}_\phi \vec{E}_\theta\right)
\]

(18)

From 5.37 (12) at a great distance, neglecting terms in \(r^{-1}\) when \(p > 1\),
\[
k_n(j\beta r) = \frac{1}{j\beta r} e^{-j\beta r}, \quad \frac{\partial[rk_n(j\beta r)]}{\partial r} = -\frac{1}{r} e^{-j\beta r}
\]

(19)

Substitution in (7), (8), and (13) gives for the tangential component of the scattered electrical intensity at a great distance from the sphere
\[
\vec{E}_s = -j\omega \vec{A}_s = \frac{jE}{\beta r} e^{-j\beta r} \sum_{n=1}^{\infty} \frac{2n + 1}{n(n + 1)} \left\{\theta \left[\tilde{A}_n \sin \theta P_n'(\cos \theta) + \tilde{B}_n \sin \theta P_n'(\cos \theta)\right] \sin \phi\right\}
\]

(20)

To get the total energy scattered, (18) is multiplied by \(r^2 \sin \theta d\theta d\phi\) and integrated over the ranges \(0 < \phi < 2\pi\) and \(0 < \theta < \pi\). Substitution of (20) in (18) and integration with respect to \(\phi\) bring in a factor \(\pi\) and leave, omitting the argument in the Legendre polynomials,
\[
\frac{4\pi E^2}{2\mu^2 \beta^2 r^2} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{(2n + 1)(2m + 1)}{n(n + 1)m(m + 1)} \left[\left(\tilde{A}_n \vec{A}_m + \tilde{B}_n \vec{B}_m\right) + \left(\tilde{A}_n \vec{B}_m + \tilde{B}_n \vec{A}_m\right)\left(P^2_\ell m + P^2_\ell_1 m\right)\right]
\]

(21)

When multiplied by \(r^2 \sin \theta d\theta\) and integrated from 0 to \(\pi\), the first group of Legendre polynomials yields the integral following 5.231 (7) which is zero if \(m \neq n\) and 5.231 (8) if \(m = n\). Integration of the first term of the second group gives the negative of the second term and cancels it. The result is real so that the total scattered power is
\[
P = \frac{\pi E^2}{\mu^2 \beta^2} \sum_{n=1}^{\infty} (2n + 1)(|A_n|^2 + |B_n|^2)
\]

(22)
Interesting cases are discussed in the books by MacDonald and by Stratton listed at the end of the chapter.

14.17. Solution of Propagation Equation in Cylindrical Coordinates.— In 13.14 we considered the special type of cylindrical wave moving in the z-direction obtained by setting those terms in the scalar wave equation containing z and t separately equal to zero. If instead we equate the first group to $\pm \beta_{mn}^2$ and the second to $\mp \beta_{mn}^2$ and assume a sinusoidal time dependence so that $\beta^2 = \omega^2 \mu \epsilon$, we obtain the equations

$$\nabla_z^2 \vec{U} \pm \beta_{mn}^2 \vec{U} = 0, \quad \frac{\partial^2 \vec{Z}}{\partial z^2} + (\beta^2 \mp \beta_{mn}^2) \vec{Z} = 0, \quad \vec{W} = \vec{U} \vec{Z} \tag{1}$$

Comparison with 5.291 (1) to (5) and 5.293 (6) shows that the form of \vec{W} in the ρ, ϕ, z system is, writing k_{mn}^2 for $\beta^2 - \beta_{mn}^2$, and $k_{mn}'^2$ for $\beta^2 + \beta_{mn}^2$,

$$\vec{W} = (\tilde{A} e^{j k_{mn} z} + \tilde{B} e^{-j k_{mn} z})[\tilde{C} I_m(\beta_{mn} \rho) + \tilde{D} Y_m(\beta_{mn} \rho)] \cos (m \phi + \delta_m) \tag{2}$$

$$\vec{W} = (\tilde{A} e^{j k_{mn}' z} + \tilde{B} e^{-j k_{mn}' z})[\tilde{C} I_m(\beta_{mn} \rho) + \tilde{D} K_m(\beta_{mn} \rho)] \cos (m \phi + \delta_m) \tag{3}$$

When \tilde{C}, \tilde{D}, k_{mn}, and k_{mn}' are real, both these equations give waves propagated only in the z-direction. If $\beta_{mn}^2 > \beta^2$ so that k_{mn} is imaginary, (2) gives a wave exponentially damped in the z-direction. If \tilde{C} is real and \tilde{D} is complex, we have a radial propagation component in (2). If z is absent, k_{mn} and k_{mn}' are zero, and we have cylindrical wave fronts in (2) and (3).

If transverse electric and transverse magnetic waves are defined as those whose electric and magnetic fields, respectively, are normal to the z-axis then, putting $\mathbf{u} = \mathbf{k}$ in 11.01 (1) and (5), we obtain

$$\tilde{A} = \frac{\varphi_1}{\rho} \frac{\partial \tilde{W}_{te}}{\partial \phi} - \frac{\phi}{\rho} \frac{\partial \tilde{W}_{te}}{\partial \rho} - \left[\rho \frac{\partial^2 \tilde{W}_{tm}}{\partial \rho^2} + \phi \frac{\partial^2 \tilde{W}_{tm}}{\partial \phi^2} + k \left(\beta^2 \tilde{W}_{tm} + \frac{\partial^2 \tilde{W}_{tm}}{\partial z^2} \right) \right] \tag{4}$$

$$\tilde{B} = \frac{\varphi_1}{\rho} \frac{\partial \tilde{W}_{te}}{\partial \rho} + \phi \frac{\partial^2 \tilde{W}_{te}}{\partial \phi \partial z} + \left[\beta^2 \tilde{W}_{te} + \frac{\partial^2 \tilde{W}_{te}}{\partial z^2} \right]$$

$$- \frac{\beta^2}{\rho} \frac{\partial \tilde{W}_{tm}}{\partial \phi} + \phi \frac{\partial \tilde{W}_{tm}}{\partial \rho} \tag{5}$$

14.18. Expansion in Cylindrical Harmonics for a Plane Wave.—From 13.15, the formula for a plane sinusoidal wave traveling in the direction \mathbf{n} is

$$\tilde{W} e^{j u} = f(u_1, u_2) e^{i (ut - \mathbf{m} \cdot \mathbf{n})} = f(u_1, u_2) e^{j u} e^{-j \beta \rho \cos (\alpha - \phi)} \tag{1}$$

where \mathbf{n} is normal to the z-axis and makes an angle α with the plane $\phi = 0$ and u_1 and u_2 are coordinates in the plane normal to \mathbf{n}. A plane wave may be expressed in cylindrical harmonics by expanding the last exponential factor in (1) in a complex Fourier series. In order to utilize formulas already derived, it is simpler to expand real and imaginary parts sep-
§14.19 RADIATION FROM APERTURES IN PLANE SCREENS

arately. Let us first expand \(\cos (x \sin \psi) \) in a Fourier series.

\[
\cos (x \sin \psi) = \sum_{n=0}^{\infty} a_n \cos n\psi,
\]

where

\[
a_n = \frac{2 - \delta_n^0}{2\pi} \int_{-\pi}^{\pi} \cos (x \sin \psi) \cos n\psi \, d\psi \quad (2)
\]

Application of Dw 401.06 or Pc 592 gives two even integrands whose integral from \(-\pi\) to \(\pi\) may be replaced by twice that from 0 to \(\pi\). Thus

\[
a_n = \frac{2 - \delta_n^0}{2\pi} \left[\int_{0}^{\pi} \cos (n\psi - x \sin \psi) \, d\psi + \int_{0}^{\pi} \cos (n\psi + x \sin \psi) \, d\psi \right] \quad (3)
\]

From 5.302 (4), the integrals are \(J_n(x) \) and \(J_n(-x) \) or \((-1)^n J_n(x) \) so that \(a_n \) is zero when \(n \) is odd, and we may write \(2m \) for \(n \) which gives

\[
\cos (x \sin \psi) = \sum_{m=0}^{\infty} (2 - \delta_{2m}^0) J_{2m}(x) \cos 2m\psi = \sum_{m=-\infty}^{\infty} J_{n}(x) \cos n\psi \quad (4)
\]

We can expand \(\sin (x \sin \psi) \) in a sine series in just the same way and get the difference of \(J_n(x) \) and \(J_n(-x) \) instead of the sum so that

\[
\sin (x \sin \psi) = \sum_{m=0}^{\infty} 2J_{2m+1}(x) \sin (2m+1)\psi = \sum_{n=-\infty}^{\infty} J_n(x) \sin n\psi \quad (5)
\]

If we multiply this by \(j \) and add to (4), we get the exponential form. If we then substitute \(\beta \rho \) for \(x \) and \(\frac{1}{2}\pi + \phi - \alpha \) for \(\psi \), we get

\[
e^{j\beta \rho \cos (\alpha - \phi)} = \sum_{n=-\infty}^{\infty} j^n J_n(\beta \rho)e^{jn(\alpha - \phi)} = J_0(\beta \rho) + 2 \sum_{n=1}^{\infty} j^n J_n(\beta \rho) \cos n(\alpha - \phi) \quad (6)
\]

14.19. Radiation from Apertures in Plane Conducting Screens.—The rigorous calculation of the radiation passing through an aperture is a very difficult problem. The fields must satisfy not only the propagation equations in the space outside the aperture and specified conditions at its boundaries, but also they must fit smoothly onto the fields inside the aperture. These fields are usually changed by the back radiation from the screen surrounding the aperture which practically restricts rigorous solutions to the very limited number of cases where it is mathematically feasible to treat the entire radiation space as a single volume.

It was proved in 14.11 that, if the initial field values throughout an empty volume are given together with the tangential components of either the electric or the magnetic field over its surface, then the fields at any subsequent time are uniquely determined. The second condition alone is sufficiently in a steady state. Evidently with conducting screens one should use the electric field because its tangential component is
known to be zero on the screen. The best first approximation to the unknown electric field over the aperture seems to be that its value is the same as with no screen. The treatment that follows is particularly applicable to plane conducting screens with no restrictions on the number or shape of the apertures nor on the form of the incident wave.

We desire a source that will give a tangential electric field E over an area S of an infinite plane and zero over the remainder. Consider a thin double current sheet with a very small distance between layers, one of which has a current density equal and opposite to the other as shown in cross section in Fig. 14.19a. For a sheet uniform in the direction of flow, all the current passes around the edge, but for one stronger in the center, like that shown in Fig. 14.19b, part will turn back before reaching the edge. If the sheet is very thin, the external magnetic field is negligible compared with that between layers so that when we apply the magnetomotance law to the rectangle $abcd$, which is normal to t and fits closely a section of the upper layer, we find B_t to be μ_0. As the flux $N = B_0 \delta dl$ through the rectangle $a'b'c'd'$ changes, the electromotance $-dN/dt$ around the loop equals from symmetry $2E = dl$ as $\delta \to 0$ so that the electric field strength E just above the sheet is $-\frac{1}{2}j\omega \mu \delta i$. Clearly the double current sheet can be built up out of infinitesimal solenoids of cross-sectional area δdl, length dc, and magnetic moment $n \times \delta i \delta dl$ which, in terms of E is $-2(j\omega \mu)^{-1}n \times E \delta S$. Evidently these solenoidal elements can be combined in such a way as to produce any desired variation in E. It is also evident from symmetry that E is normal to the plane of the sheet outside its boundaries. From 14.14 (5) we see that the vector potential at P of the radiation from a small oscillating loop is normal to the loop axis and proportional to the sine of the angle between this axis and r the radius vector from the loop to P. Thus substitution of the moment just found for $\pi a^2 I$ gives for the diffracted vector potential

$$A = \Phi e^{jut} = \frac{1}{2\pi \omega} e^{jut} \int_{S} \frac{(j - \beta r)(n \times E) \times r_1 e^{-j\beta r} dS}{r^2} \tag{1}$$

where r_1 is a unit vector along r. At a great distance the j-term in the integrand may be neglected compared with βr. In the most general case, E will vary in magnitude, direction, and phase over the aperture.

Consider a system of sources of electromagnetic waves in the region above the xy-plane together with its image system in opposite phase below
this plane. Clearly, in the xy-plane, the tangential electric and normal magnetic fields of the two systems cancel while the normal electric and the tangential magnetic fields add. Hence covering any parts of the xy-plane with infinitely thin perfectly conducting sheets will not disturb the field. If the image sources are now removed then, in the openings, the normal electric and tangential magnetic fields of the original sources alone survive, undisturbed by the coplanar eddy currents and charges which yield only tangential electric and normal magnetic fields. Thus, when any form of electromagnetic wave strikes a thin plane perfectly conducting sheet of any shape, the normal electric and tangential magnetic fields of the original wave are unperturbed in the apertures. Thus, from (1)

$$[e\vec{B}] = \frac{1}{2\pi\omega} \left[\nabla \times \int_{S} \left(\frac{(i - \beta r)(n \times E) \times r_{1}}{r^{2}} e^{-i\beta r} dS \right) \right] \quad (2)$$

In theory this integral equation can be solved for $n \times E$ in the openings and the result substituted in (1) to give rigorously the field diffracted by an infinitely thin plane conducting sheet of any shape.

When the incident magnetic field parallels the screen and the wave length is long compared with the relevant aperture dimension, it is often possible to calculate by potential theory the exact ratio of the normal to the tangential components of the magnetic induction in the openings and from this the tangential electric field. In Fig. 14.19 a displacement of the rectangle $a'b'c'd'$ along B_{i} decreases $2E \, dl$ by an amount equal to the decrease in dN/dt. This in turn equals the rate of change of the flux that escapes from both faces of the shell between the two positions. Thus, for an aperture in the xy-plane when E has only a y-component, we have

$$\frac{\partial E_{y}}{\partial x} = j\omega B_{x} \quad (3)$$

Integration of this expression gives the tangential component of E to be used in (1). All static potential solutions will give B_{x} in terms of the induction tangential to the sheet far from the apertures. This standing wave value is twice the incident wave value that appears in the aperture. Examples at the end of the chapter include Bethe's small hole results.

14.20. Diffraction from Rectangular Aperture in Conducting Plane.—The formula of the last article will now be used to find the diffracted field from a rectangular aperture in a perfectly conducting sheet lying in the xy-plane. The magnetic field parallels the x-axis, and Poynting's vector makes an angle α with the z-axis as shown in Fig. 14.20a. If x_{1} and y_{1} are the coordinates of dS, r the radius vector from dS to P, and R that from O to P, then we have approximately, if $R \gg a$ and $R \gg b$,

$$r \approx R - x_{1} \cos \phi \sin \theta - y_{1} \sin \phi \sin \theta$$

(1)
The tangential component E_t varies in phase at $z = 0$ so that

$$\tilde{E}_t e^{i\omega t} = E \cos \alpha \, e^{i(\omega t - \beta y_1 \sin \alpha)}$$ (2)

Because $n \times E$ parallels the x-axis, $(n \times E) \times R$ lies parallel to the yz-plane, normal to DP and hence to R and is proportional to $\sin \theta'$. Thus

$$\tilde{A}_y = -\cos \theta \csc \theta' \tilde{A}, \quad \tilde{A}_z = \sin \theta \sin \phi \csc \theta' \tilde{A}$$ (3)

$$\tilde{A}_\theta = \tilde{A}_y \sin \phi \cos \theta - \tilde{A}_z \sin \theta, \quad \tilde{A}_\phi = \tilde{A}_y \cos \phi, \quad \tilde{A}_r = 0$$ (4)

When 14.19 (1) is substituted in (3), $\csc \theta'$ cancels the $\sin \theta'$. Neglect of x_1^2 and y_1^2 compared with R^2 leaves x_1 and y_1 terms only in the exponent of \tilde{A}. Writing in \tilde{E}_t from (2) and using (4), we have

$$\tilde{A}_\theta = \frac{\beta E \cos \alpha \sin \phi \, e^{-i\beta R} \int_{-\frac{b}{a}}^{ia} \int_{-\frac{b}{a}}^{ia} e^{i\beta \left(x_1 \cos \phi \sin \theta + y_1 (\sin \phi \sin \theta - \sin \alpha)\right)} \, dx_1 \, dy_1}{2 \pi \omega R \cos \phi \sin \theta (\sin \phi \sin \theta - \sin \alpha)}$$

$$\tilde{A}_\phi = \tilde{A}_\theta \cot \phi \cos \theta$$ (5)

The only approximation involved in these formulas is the assumption of an unperturbed electric field over the aperture. Stratton and Chu (Phys. Rev., Vol. 56, page 106) derived them by a superposition or "reflection" of two solutions of Maxwell's equations, which assume unperturbed electric and magnetic fields over the opening. This superposition was necessary to eliminate the tangential electric field over the screen and, as we see from the solution just obtained and from the uniqueness theorem, this is just equivalent to discarding all terms derived from the magnetic field. These authors check (5) and (6) at various b and α values by comparing the yz-plane intensity $E_3^2 + E_4^2$ with the rigorous two-dimensional solution for a slit ($a = \infty$) of Morse and Rubenstein (Phys. Rev., Vol. 54, page 895). The results appear in Fig. 14.20b, c, and d. A similar comparison of the xz-plane field with that of a slit ($b = \infty$) for $\alpha = 0$ is shown in Fig. 14.20e. This fairly good agreement shows the magnitude of the errors made by assuming an unperturbed electric field over the opening. Clearly the Kirchhoff scalar diffraction theory used in optics, which requires Fig. 14.20b and e due to be identical, is completely wrong when applied to apertures of wave length dimensions in conducting screens.

14.21. Orthogonal Functions in Diffraction Problems. Coaxial Line.—The method of the last two articles does not apply to curved screens, and
the integral of 14.19 (1) is frequently difficult to evaluate close to the aperture in a plane screen. In such cases we may start with solutions of the scalar propagation equation in the form

\[e^{i\omega t} \sum_n \sum_m C_{nm} U_{mn}(u_1)V_n(u_2)W_{mn}(u_3), \quad \int \int U_{nm}U_{pq}V_p d u_1 d u_2 = \delta_{pq}^m D_{nm} \]

If \(u_3 \) is normal to the screen, then \(u_1 \) and \(u_2 \) are orthogonal curvilinear coordinates in its surface. The integration is over the screen and aperture surface, and \(\delta_{pq}^m \) is zero unless \(p = n \) and \(q = m \). Such solutions appear in 14.12 (5), 14.17 (2), and 14.17 (3) and others occur in waveguide problems. For a conducting screen, we evaluate \(C_{mn} \) from the tangential component of the electric field, which is given over the aperture.

The radiation from the open end of a coaxial line can be calculated by this method. The distant field is found more easily by 14.19 (1), but the method to be used here is better near the opening. The propagation space in the line is bounded internally and externally by the cylinders \(\rho = a \) and \(\rho = b \), respectively, and terminates in the plane \(z = 0 \) which, except when \(a < \rho < b \), is perfectly conducting. To find the radiation into the region of positive \(z \), we shall assume that \(b \ll \lambda \) and use electrostatic methods to calculate the field for \(r < b \). This is found, for any zonal potential distribution in the aperture, by integration of that above a plane at zero potential except for a ring of radius \(\rho \) and width \(d\rho \) at potential \(V(\rho) \). At a point \(P \) on the axis, \(V_r \) due to the ring is got by Green's reciprocation theorem from the charge \(dq \) induced on a ring element of an earthed plane by a charge \(q \) at \(P \). To get \(dq \) from 5.06 (3), we let \(b - a = z \) and \(a \to b \to \infty \). If \(z > \rho \) expanding by \(Pc \) 757 or
Dw 9.05 gives
\[dq = \frac{-zq2\pi \rho \, d\rho}{2\pi(\rho^2 + z^2)^{3/2}} \]
\[dV_r = -\frac{dq}{q} V(\rho) = V(\rho) \sum_{n=0}^{\infty} (-1)^n (2n + 1)!! \rho^{2n+1} \]
\[(2n + 2)! z^{2n+2} \]
\[(1) \]
To get \(dV \) at \(r, \theta \), we write \(r \) for \(z \) and multiply by \(P_{2n+1}(\cos \theta) \). The values of the potential in the plane \(z = 0 \) are assumed to be
\[\rho > b, \quad V(\rho) = 0, \quad b > \rho > a, \quad V(\rho) = \frac{V_0 \ln (\rho/b)}{\ln (a/b)}, \]
\[a > \rho > 0, \quad V(\rho) = V_0 \quad (2) \]
When these values are inserted in (1), the result may be integrated by \(Pc 427 \) or \(Dw 610.9 \) and gives
\[V = \frac{V_0}{\ln (b/a)} \sum_{n=0}^{\infty} (-1)^n b^{2n+2} - a^{2n+2} (2n + 1)!! (2n + 2)! P_{2n+1}(\cos \theta) \]
\[(2n + 2)!! (2n + 2)! \quad (3) \]
To get the radiation fields, one puts \(A = 1 \) and \(B = \tilde{C} = m = \delta = 0 \) in 14.12 (5) so that it gives an expanding wave and evaluates \(\tilde{D}_n \) by setting \(r = b \) and equating the coefficient of \(P_{2n+1}(\cos \theta) \) in the \(E_\theta \) derived from \(W_{im} \) to that in the \(E_\theta \) given by (3). From 14.12 (5) and (2), we have
\[(\tilde{E}_\theta)_{r=b} = \left[j\omega \frac{\partial^2 (r\tilde{W}_{im})}{\partial r \partial \theta} \right]_{r=b} = -\frac{j\omega}{b} \sum_{n=0}^{\infty} \tilde{D}_n \frac{d}{db} [b \tilde{k}_{2n+1}(j\beta b)] \]
\[P_{2n+1}(\cos \theta) \]
Since \(\beta b \) is small, we may write \(-(2n + 1)(4n + 1)!! (j\beta b)^{-(2n+2)} \) for the derivative in this expression by 5.37 (11) and (12). To get \(E_\theta \) at \(r = b \), we write \(-b^{-1}[P_{2n+1}(\cos \theta)]/d\theta = b^{-1}P_{2n+1}'(\cos \theta) \) for \(P_{2n+1}(\cos \theta) \) in (3) and \(b^{2n+2} \) for \(r^{2n+2} \). Equating coefficients and solving for \(\tilde{D}_n \) give
\[\tilde{D}_n = \frac{jV_0}{\omega \ln (b/a)} (2n + 1)!! [(\beta b)^{2n+2} - (\beta a)^{2n+2}] \]
\[(2n + 2)! (4n + 1)!! \quad (4) \]
The electric and magnetic fields when \(r \) is greater than \(b \) are then given by 14.12 (2), 14.12 (5), 14.16 (6), and 14.12 (3) to be
\[\tilde{E}_\theta = -j\omega \sum_{n=0}^{\infty} \tilde{D}_n \frac{d}{dr} [r \tilde{k}_{2n+1}(j\beta r)] P_{2n+1}'(\cos \theta) \]
\[(5) \]
\[\tilde{E}_r = j\omega \sum_{n=0}^{\infty} r^{-1} \tilde{D}_n (2n + 1)(2n + 2) \tilde{k}_{2n+1}(j\beta r) P_{2n+1}(\cos \theta) \]
\[(6) \]
\[\tilde{B}_\phi = -\beta^2 \sum_{n=0}^{\infty} \tilde{D}_n \tilde{k}_{2n+1}(j\beta r) P_{2n+1}'(\cos \theta) \]
\[(7) \]
These equations hold if \(r > b \), and if \(b < \lambda \) they satisfy the boundary conditions (2) rigorously. If we neglect higher powers of \(\beta b \) and \(\beta a \), only the first term of the series survives and, if the case is further simplified by considering the field only at a great distance so that by 5.37 (12) \((j\beta r)^{-1}e^{-j\beta r}\) replaces \(k_{2n+1}(j\beta r) \), then the fields become

\[
B_\phi = (\mu_0)^{1/2}E_\theta = -\frac{\beta^3(b^2 - a^2)V_0}{4\omega r \ln (b/a)} \sin \theta \cos (\omega t - \beta r) \tag{8}
\]

From 14.02 (16), this is identical with the distant radiation from a current element \(-Il \sin \omega t\) where \(I \) is \(\pi \omega (b^2 - a^2)V_0/\ln (b/a) \) so that the power radiated into the upper hemisphere is half that of 14.02 (18).

\[
P = \frac{\pi \omega \beta^3(b^2 - a^2)^2V_0^2}{24(\ln (b/a))^2} = \frac{2\pi^2 \varepsilon (b^2 - a^2)^2V_0^2}{3(\ln (b/a))^2 \lambda^4}
\]

\[
R_r = \frac{V_0^2}{2\beta} = \frac{3(\ln (b/a))^2 \lambda^4}{4\pi^2 \varepsilon (b^2 - a^2)^2}
\]

The same method applies to other than plane screens, such, for example, as an infinite conducting cone coaxial with the line. In this case we take the same steps but start with 5.261. Other applications will be found in the problems at the end of the chapter.

Problems

1. A linear quadrupole consists of charges \(-q\), \(+2q\) and \(-q\) at \(z = -a, 0 \) and \(+a\), respectively. Its moment \(Q = a^2q \sin \omega t\). Show that, if \(a \ll r \), the fields are

\[
E_r = \frac{Q_0(1 - 3 \cos^2 \theta)}{4\pi \varepsilon} \left[\frac{3\beta}{r^3} \cos (\omega t - \beta r) + \left(\frac{3}{r^4} - \frac{\beta^2}{r^3} \right) \sin (\omega t - \beta r) \right]
\]

\[
E_\theta = \frac{Q_0 \sin 2\theta}{4\pi \varepsilon} \left[\left(\frac{\beta^2}{r^3} - \frac{3\beta}{2r^2} \right) \cos (\omega t - \beta r) + \left(\frac{3\beta^2}{2r^2} - \frac{3}{r^3} \right) \sin (\omega t - \beta r) \right]
\]

\[
E_\phi = \frac{Q_0 \beta \sin 2\theta}{8\pi \varepsilon} \left[\left(\frac{\beta^3}{r^3} - \frac{3\beta}{2r^2} \right) \cos (\omega t - \beta r) + \frac{3\beta^2}{r^3} \sin (\omega t - \beta r) \right]
\]

2. Show that the average rate at which energy is radiated from the linear quadrupole of the last problem is \(16\pi^2 Q_0^2 (15\lambda^4 \varepsilon)^{-1} \).

3. A plane quadrupole consists of charges \(-q\), \(+q\), \(-q\), and \(+q\) at the corners of a square of area \(a^2 \) whose sides are parallel to \(\phi = 0, \frac{\pi}{2}, \pi \) and \(\frac{3\pi}{2} \), respectively. Its moment is \(Q = a^2q \cos \omega t = Q_0 \cos \omega t\). Show that, if \(a \ll r \), the fields are

\[
E_r = \frac{3Q_0 \sin^2 \theta \sin 2\phi}{8\pi \varepsilon} \left[\left(\frac{3}{r^3} - \frac{\beta^2}{r^2} \right) \cos (\omega t - \beta r) - \frac{3\beta}{r^3} \sin (\omega t - \beta r) \right]
\]

\[
E_\phi = \frac{Q_0 \sin \theta \cos 2\phi}{8\pi \varepsilon} \left[\left(\frac{3\beta^2}{r^3} - \frac{6}{r^4} \right) \cos (\omega t - \beta r) + \left(\frac{6\beta}{r^4} - \frac{\beta^2}{r^3} \right) \sin (\omega t - \beta r) \right]
\]

\[
E_\theta = -E_\phi \cos \theta \tan 2\phi, \quad B_r = 0, \quad B_\phi = B_\theta \cos \theta \tan 2\phi
\]

\[
B_\theta = -\frac{Q_0 \beta \sin \theta \cos 2\phi}{8\pi \varepsilon} \left[\frac{3\beta^2}{r^3} \cos (\omega t - \beta r) - \left(\frac{\beta^2}{r^3} - \frac{3\beta}{r^2} \right) \sin (\omega t - \beta r) \right]
\]
4. Show that the average rate at which energy is radiated from the quadrupole in the last problem is \(4\pi \varepsilon_0 Q_0^2 (5\lambda_k)^{-1} \).

5. An electric dipole lies in the \(xy \)-plane at the origin and rotates about the \(z \)-axis with an angular velocity \(\omega \) pointing in the positive \(x \)-direction when \(t = 0 \). Show that the components of the magnetic induction are

\[
B_r = 0, \quad B_\theta = -\frac{\omega \mu_0 M}{4\pi r^2} [\beta \sin (\omega t - \beta r - \phi) - \cos (\omega t - \beta r - \phi)]
\]

\[
B_\phi = \frac{\omega \mu_0 M \cos \theta}{4\pi r^2} [\beta \cos (\omega t - \beta r - \phi) + \sin (\omega t - \beta r - \phi)]
\]

6. An antenna of length \(2l \) supports a standing wave of \(2n + 1 \) loops and current amplitude \(I_0 \). If there are nodes at the ends, show that the mean energy radiated per second from an element \(dz \) at a distance \(z \) from the center is

\[
\frac{\mu c I_0^2 \cos^2 (2n + 1)\pi x}{4\pi (l^2 - z^2)^{3/2}} \frac{dz}{2l}
\]

7. Two antennas, each \(\frac{1}{2}(2n + 1)\lambda \) long, lie parallel to the \(z \)-axis with their centers at \(x = 0 \) and \(x = a \). The one at \(x = a \) lags 90° in phase behind the one at the origin. Show that the radiation intensity of this “end-fire” array is

\[
\bar{\Pi}_1 = \frac{\mu c I_0^2 \cos^2 \left(\frac{1}{2} (2n + 1) \pi \cos \theta \right) \cos^2 \left(\frac{1}{2} \pi \left[1 - (4a / \lambda) \sin \theta \cos \phi \right] \right)}{2\pi r^2 \sin^2 \theta}
\]

Draw a rough sketch of the heart-shaped intensity pattern when \(\theta = \frac{1}{2} \pi \) and \(a = \frac{1}{4} \lambda \).

8. Show that, when \(a = \frac{1}{4} \lambda \), the directivity of the double antenna of the last problem is twice that of a single antenna resonating in the same mode.

9. A set of \(p \) end-fire in-phase pairs like that of the last problem are set at half wave intervals along the \(y \)-axis. Show that the radiation intensity pattern is

\[
\bar{\Pi} = \frac{\sin^2 (\frac{1}{2} \pi r \sin \theta \sin \phi)}{\sin^2 (\frac{1}{2} \pi \sin \theta \sin \phi)}
\]

where \(\bar{\Pi}_1 \) is given in problem 7 with \(a = \frac{1}{4} \lambda \). Show that the directivity is twice that of \(p \) single antennas spaced at half wave length intervals along the \(y \)-axis.

10. A number \(p \) of half wave in-phase antennas are placed end to end along the \(z \)-axis. Show that the radiation intensity at a great distance is

\[
\bar{\Pi} = \frac{\mu c I_0^2 \cos^2 (\frac{1}{2} \pi \cos \theta) \sin^2 (\frac{1}{2} \pi r \cos \theta)}{8\pi r^2 \sin^2 \theta \sin^2 (\frac{1}{2} \pi \cos \theta)}
\]

Note that this is the same situation as when a long linear antenna is loaded at half wave length intervals to suppress alternate phases.

11. The current in a circular loop of radius \(a \) of wire is \(I_0 \sin n \phi \cos \omega t \). Show by the use of retarded potentials and with the aid of the formulas of 14.17 that at \(r, \theta, \phi \), when \(r \) is very large, the potential \(\Lambda_\phi \) is

\[
\frac{1}{2} \mu c a r^{-1} I_0 J_n (\beta a \sin \theta) \sin n \phi \sin (\frac{1}{2} n \pi + \omega t - \beta r)
\]

12. Electromagnetic waves are scattered from a conducting sphere whose radius is small compared with a wave length. Show that, at a distance from the sphere large compared with its radius, the radiation scattered at an angle \(\frac{1}{2} \pi \) with the direction of the incident beam is plane polarized.

13. A plane polarized electromagnetic wave falls upon a nonconducting sphere of capacitance \(\varepsilon_1 \) and permeability \(\mu_1 \) whose radius is very small compared with the wave length. Show that the scattered radiation is the same as if there were at the origin
an electric dipole parallel to the incident electric vector and a magnetic loop dipole normal to it, their moments being, respectively,

\[M = \frac{4\pi a^3}{\epsilon_1 + 2\epsilon} e E \cos \omega t \quad \text{and} \quad \pi r^2 I = \frac{4\pi a^2}{\mu (\mu_1 + 2\mu)} \omega \epsilon^\ast \cos \omega t \]

14. A plane electromagnetic wave, whose \(y \)-directed \(E \)-vector is \(E \cos (\omega t - \beta z) \), impinges on a perfectly conducting cylinder of radius \(a \) whose axis is the \(z \)-axis. Show that the total fields are given by the real parts of

\[
E_p = -\frac{j \omega}{\rho} \frac{\partial \overline{W}_{te}}{\partial \phi} e^{j\omega t}, \quad E_\phi = j \omega \frac{\partial \overline{W}_{te}}{\partial \phi} e^{j\omega t}, \quad B_z = \beta S \overline{W}_{te} e^{j\omega t}
\]

\[
\overline{W}_{te} = \frac{j E}{\omega B} \sum_{n=1}^{\infty} \left\{ -j(2 - \delta_n^\ast) \left[J_n(\beta a) Y_n(\beta \rho) - J_n(\beta \rho) Y_n(\beta a) \right] \right\} \cos n\phi
\]

15. In a medium \(\mu \) \(a \) plane electromagnetic wave whose \(y \)-directed electric vector is \(E \cos (\omega t - \beta z) \) impinges on a cylinder \(\mu' \) of radius \(a \), whose axis is the \(z \)-axis. Show that the scattered radiation is given by the real part of

\[
B_z = \beta S \overline{W}_{te} e^{j\omega t}, \quad E_p = -\frac{j \omega}{\rho} \frac{\partial \overline{W}_{te}}{\partial \phi} e^{j\omega t}, \quad E_\phi = j \omega \frac{\partial \overline{W}_{te}}{\partial \phi} e^{j\omega t}
\]

\[
\overline{W}_{te} = (\omega B)^{-1} \sum_{n=0}^{\infty} \left\{ \frac{\overline{B}_n[J_n(\beta \rho) - j Y_n(\beta \rho)]}{\beta' \left[(\mu' \ast)^{\ast} J_n(\beta a) J_n(\beta' a) - (\mu' \ast)^{\ast} J_n(\beta a) J_n(\beta' a) \right]} \right\} \cos n\phi
\]

16. A plane electromagnetic wave, whose \(z \)-directed \(E \)-vector is \(E \cos (\omega t - \beta z) \), impinges on a perfectly conducting cylinder of radius \(a \) whose axis is the \(z \)-axis. Show that the total fields are given by the real parts of

\[
E_z = j \omega \beta^2 \overline{W}_{tm} e^{j\omega t}, \quad B_\rho = -\frac{\beta^2}{\rho} \frac{\partial \overline{W}_{tm}}{\partial \phi} e^{j\omega t}, \quad B_\phi = \beta S \frac{\partial \overline{W}_{tm}}{\partial \phi} e^{j\omega t}
\]

\[
\overline{W}_{tm} = \frac{E}{\omega \beta^2} \sum_{n=0}^{\infty} \left\{ -j(2 - \delta_n^\ast) \left[J_n(\beta a) Y_n(\beta \rho) - J_n(\beta \rho) Y_n(\beta a) \right] \right\} \cos m\phi
\]

17. In a medium \(\mu \) \(a \) plane electromagnetic wave whose \(z \)-directed electric vector is \(E \cos (\omega t - \beta z) \) impinges on a cylinder \(\mu' \) of radius \(a \) whose axis is the \(z \)-axis. Show that the scattered radiation is given by the real part of

\[
E_z = j \omega \beta^2 \overline{W}_{tm} e^{j\omega t}, \quad B_\rho = -\frac{\beta^2}{\rho} \frac{\partial \overline{W}_{tm}}{\partial \phi} e^{j\omega t}, \quad B_\phi = \beta S \frac{\partial \overline{W}_{tm}}{\partial \phi} e^{j\omega t}
\]

\[
\overline{W}_{tm} = \frac{E}{j \omega \beta^2} \sum_{n=0}^{\infty} \left\{ -j(2 - \delta_n^\ast) \left[J_n(\beta a) Y_n(\beta \rho) - J_n(\beta \rho) Y_n(\beta a) \right] \right\} \cos m\phi
\]

18. The portion of a perfectly conducting sphere of radius \(a \) between \(\theta = \gamma \) and \(\theta = \pi - \gamma \) is removed, and a potential difference \(V \cos \omega t \) is maintained between the
cones at \(r = a \). Assuming that the potential in the gap at \(r = a \) is given by 14.07 (9) show that the radiation fields are the real parts of

\[
E_\theta = V_0 e^{-i \omega t} \sum_{n=0}^{\infty} \hat{C}_n [(2n + 2) \hat{k}_{2n+1}(j \beta r) - j \beta r \hat{k}_{2n+2}(j \beta r)] P_{2n+1}^1 (\cos \theta)
\]

\[
E_r = -V_0 e^{-i \omega t} \sum_{n=0}^{\infty} (2n + 1)(2n + 2) \hat{C}_n \hat{k}_{2n+1}(j \beta r) P_{2n+1} (\cos \theta)
\]

\[
B_\phi = -V_0 j \beta^2 e^{-i \omega t} \sum_{n=0}^{\infty} \hat{C}_n \hat{k}_{2n+1}(j \beta r) P_{2n+1} (\cos \theta)
\]

\[
\hat{C}_n = \frac{-\omega \mu (4n + 3) P_{2n+1} (\cos \gamma)}{\pi \beta Z_k (2n + 1)(2n + 2)[(2n + 2) \hat{k}_{2n+1}(j \beta a) - j \beta a \hat{k}_{2n+2}(j \beta a)]}
\]

where \(Z_k \) is given by 14.07 (8) and (11).

19. Calculate the input impedance of the arrangement of the last problem by proving its equivalence to a conical transmission line terminated at \(r = a \) by a load comprised of an infinite number of impedances \(Z_1, Z_2, \ldots \) in parallel where

\[
\frac{1}{Z_n} = \frac{2 \pi a \beta^2 \sin \gamma}{\mu \omega} \hat{C}_n \hat{k}_{2n+1}(j \beta a) P_{2n+1} (\cos \gamma)
\]

20. A medium \(\mu \varepsilon \) fills the space between an infinite dielectric cylinder \(\mu' \varepsilon' \) of radius \(a \) and a perfectly conducting cylinder \(\rho = b \). Show that a plane transverse electric wave propagates along the cylinder for each value of \(u_n \) that satisfies

\[
\frac{\mu' J_1(u_n)}{u_n J_0(u_n)} = \frac{\mu[J_1(v_n) Y_1(v_n b/a) - Y_1(v_n) J_1(v_n b/a)]}{v_n[J_0(v_n) Y_1(v_n b/a) - Y_0(v_n) J_1(v_n b/a)]} = \frac{\mu R_1(v_n)}{v_n R_0(v_n)}
\]

provided that \(\omega a^2 \mu' \epsilon' > u_n^2 \) and \(\omega a^2 \mu \epsilon > v_n^2 \). Show that the velocity of the nth wave is \(\omega a^2 \mu' \epsilon' - u_n^2 \) and that the fields in \(\mu' \epsilon' \) are

\[
- k_n \hat{E}_\phi = \omega \hat{B}_\rho = k_n \hat{C} e^{-i k_n x} J_1(u_n \rho / a), \quad - j \omega a \hat{B}_z = u_n \hat{C} e^{-i k_n x} J_0(u_n \rho / a)
\]

where \(\omega a^2 \mu' \epsilon' - u_n^2 = \omega a^2 \mu \epsilon - v_n^2 = k_n^2 a^2 \).

21. If in the last problem there is no reflector at \(\rho = b \), show that with the same materials and frequencies a plane wave is impossible but that otherwise the results of the last problem hold if the Hankel functions \(J_0 - j Y_0 \) and \(J_1 - j Y_1 \) are substituted for \(R_0 \) and \(R_1 \), respectively.

22. An infinite medium \(\mu \varepsilon \) surrounds an infinite dielectric cylinder \(\mu' \varepsilon' \) of radius \(a \). Show that a plane transverse electric wave can be propagated along the cylinder for each value of \(u_n \) that satisfies the equations

\[
\mu' v_n K_0(v_n) J_1(u_n) + \mu u_n K_1(v_n) J_0(u_n) = 0, \quad \omega a^2 \mu' \epsilon' - u_n^2 = \omega a^2 \mu \epsilon + v_n^2 = k_n^2 a^2
\]

provided that \(\omega a^2 \mu' \epsilon' \) is greater than \(u_n^2 \) and \(\epsilon' \) is greater than \(\epsilon \). Show that the velocity of the wave is \(\omega a^2 \mu' \epsilon' - u_n^2 \) and that the external fields are

\[
k_n \hat{E}_\phi = - \omega \hat{B}_\rho = k_n \hat{C} e^{-i k_n x} K_1(v_n a^{-1} \rho), \quad - j \omega a \hat{B}_z = v_n \hat{C} e^{-i k_n x} K_0(v_n a^{-1} \rho)
\]

23. If \(Y_1(v_n b/a) \) is zero, verify that the conditions of problem 20 are satisfied approximately by \(\epsilon = 1.99 \epsilon' = 1.99 \epsilon_0, \mu = \mu' = \mu_0, \omega = 10^9, u = 1, v = 3.46, \) and show that the phase velocity is approximately \(3.15 \times 10^8 \text{ m/sec} \).

24. Verify that the conditions of problem 22 are satisfied approximately by \(\epsilon' = 1.72 \epsilon = 1.72 \epsilon_0, \mu = \mu' = \mu_0, \omega = 10^9, u = 2.65, v = 1, \) and show that the phase velocity in the \(z \)-direction is approximately \(2.87 \times 10^8 \text{ m/sec} \).
25. A medium \(\mu \varepsilon \) fills the space between an infinite dielectric cylinder \(\mu' \varepsilon' \) of radius \(a \) and a perfectly conducting cylinder \(\rho = b \). Show that a plane transverse magnetic wave propagates along the cylinder for each value of \(u_n \) that satisfies

\[
\frac{u_n J_1(u_n)}{J_1(u_n)} = \frac{v_n [J_0(v_n) Y_0(v_n b/a) - Y_0(v_n) J_0(v_n b/a)]}{J_0(v_n) Y_0(v_n b/a) - Y_0(v_n) J_0(v_n b/a)} = v_n R_0(v_n)
\]

provided that \(\omega^2 a^2 \mu' \varepsilon' > u_n^2 \) and \(\omega^2 a^2 \mu \varepsilon > v_n^2 \). Show that the velocity of the \(n \)th wave is \(\omega (\omega^2 a^2 \mu' \varepsilon' - u_n^2)^{1/2} \) and that the fields in \(\mu' \varepsilon' \)

\[
\bar{E}_\rho = k_n (\omega u) \bar{J}_1(u_n \rho/a) = \hat{C} e^{-ik_2 u J_1(u_n \rho/a)}, \quad k_n a \bar{E}_z = u_n \hat{C} e^{-ik_2 J_0(u_n \rho/a)}
\]

where \(\omega^2 a^2 \mu' \varepsilon' - u_n^2 = \omega^2 a^2 \mu \varepsilon - v_n^2 = k_n^2 a^2 \).

26. If there is no reflector at \(\rho = b \) in the last problem, show that with the same materials and frequencies a plane wave is impossible but that otherwise the results of the last problem hold if the Hankel functions \(J_0 - j Y_0 \) and \(J_1 - j Y_1 \) are substituted for \(R_0 \) and \(R_1 \), respectively.

27. An infinite medium \(\mu \varepsilon \) surrounds an infinite dielectric cylinder \(\mu' \varepsilon' \) of radius \(a \). Show that a plane transverse magnetic wave can be propagated along the cylinder for each value of \(u_n \) that satisfies the equations

\[
v_n \varepsilon' J_1(u_n a) K_0(v_n) + u_n \varepsilon J_0(u_n a) K_1(v_n) = 0, \quad \omega^2 a^2 \mu' \varepsilon' - u_n^2 = \omega^2 a^2 \mu \varepsilon + v_n^2 = k_n^2 a^2
\]

provided that \(\omega^2 a^2 \mu' \varepsilon' \) is greater than \(u_n^2 \). Show that the velocity of the \(n \)th wave is \(\omega (\omega^2 a^2 \mu' \varepsilon' - u_n^2)^{1/2} \) and that the fields outside the cylinder are

\[
\bar{E}_\rho = -k_n (\omega u) \bar{J}_1(u_n \rho/a) = \hat{C} e^{-ik_2 u J_1(u_n \rho/a)}, \quad k_n a \bar{E}_z = j u \hat{C} e^{-ik_2 J_0(u_n \rho/a)}
\]

28. If \(Y_0(v_n b/a) \) is zero, verify that the conditions of problem 25 are satisfied approximately by \(\varepsilon = 2 \varepsilon' = 2 \varepsilon_\varepsilon, \mu = \mu = \mu, \omega = 1.2 \times 10^8, u_n = 1, v_n = 3, \) and show that the phase velocity in the \(z \)-direction is approximately \(3.10 \times 10^8 \) m/sec.

29. Verify that the conditions of problem 27 are satisfied approximately by taking \(\varepsilon' = 1.81 \varepsilon = 1.81 \varepsilon_\varepsilon, \mu = \mu = \mu, \omega = 0.99 \times 10^8, u_n = 2.8, v_n = 1 \) and show that the phase velocity is approximately \(2.88 \times 10^8 \) m/sec.

30. An infinite plane perfectly conducting surface is coated with a dielectric layer \(\mu_2 \varepsilon_2 \) of thickness \(a \) and underlies an infinite dielectric medium \(\mu_1 \varepsilon_1 \). By 14.17, show a diverging surface \(TE \) wave is possible whose vector potentials are the real parts of

\[
A_1 = C_1 [i (\beta_1^2 - \beta^2)^{1/2} H_1^{(2)}(\beta \rho') - k \beta' H_0^{(2)}(\beta \rho')] e^{-i(\beta^2 - \beta^2 a^2) + j \omega t}, \quad A_2 = C_2 [i (\beta_2^2 - \beta^2)^{1/2} \sin[(\beta_2^2 - \beta^2 a^2)] H_1^{(2)}(\beta \rho') - k \beta' \cos[(\beta_2^2 - \beta^2 a^2)] H_0^{(2)}(\beta \rho')] e^{i \omega t},
\]

where \(\beta_1^2 = \omega^2 \mu_1 \varepsilon_1, \beta_2^2 = \omega^2 \mu_2 \varepsilon_2, \) and \(\beta_2 > \beta' > \beta_1 \). Show that its velocity is the same as that of the plane wave of problem 7, Chap. XIII.

31. An infinite plane perfectly conducting surface is coated with a dielectric layer \(\mu_2 \varepsilon_2 \) of thickness \(a \) and underlies an infinite dielectric medium \(\mu_1 \varepsilon_1 \). By 14.17, show a diverging surface \(TM \) wave is possible whose vector potentials are the real parts of

\[
A_1 = \phi C_1 e^{-i(\beta_2^2 - \beta_1^2)^{1/2} H_1^{(2)}(\beta \rho')} e^{i \omega t}, \quad A_2 = \phi C_2 \sin[(\beta_2^2 - \beta^2 a^2)] H_1^{(2)}(\beta \rho')] e^{i \omega t},
\]

where \(\beta_1^2 = \omega^2 \mu_1 \varepsilon_1, \beta_2^2 = \omega^2 \mu_2 \varepsilon_2, \) and \(\beta_2 > \beta' > \beta_1 \). Show that its velocity is the same as that of the plane wave of problem 8, Chap. XIII.

32. An infinite perfectly conducting cylinder of radius \(a \) which is coated with a dielectric layer \(\mu_2 \varepsilon_2 \) of outer radius \(b \) passes through an infinite medium \(\mu_1 \varepsilon_1 \). Show by 14.17 that possible vector potentials for a surface \(TM \) wave are the real parts of

\[
A_1 = C_1 [-\varphi_1 j \beta' K_1(\beta \rho') + k \beta' K_0(\beta \rho')] e^{i(\omega a - \beta a)}, \quad A_2 = C_2 [\varphi_2 j \beta' R_1^0(\beta \rho') - k \beta' R_0^0(\beta \rho')] e^{i(\omega a - \beta a)}
\]
where \(\beta_1^2 = \omega^2 \mu_1 \varepsilon_1, \beta_2^2 = \omega^2 \mu_2 \varepsilon_2, \beta_2 > \beta' > \beta, \ \rho_1^2 = \beta'^2 - \beta_1^2, \rho_2^2 = \beta_2^2 - \beta_1^2, \) and

\[
 R_0(p_2o) = K_0(p_2o) I_0(p_2o) - I_c(p_2o) K_0(p_2o) \\
 R_1(p_2o) = K_0(p_2o) I_1(p_2o) + I_c(p_2o) K_1(p_2o).
\]

Show that the velocity may be found from the equation

\[
 -c_2 p_1 K_0(p_2o) R_0(p_2b) = c_2 p_2 K_1(p_2o) R_0(p_2b)
\]

If \(a = 1, \ b = 2, \ \mu_2 = \mu_1, \ \varepsilon_2 = 4 \varepsilon_1, \) and \(\beta_2b = 1,000, \) show that \(\beta_1 : \beta' : \beta_2 = 1: 1.163: 2 \) and that, when \(\rho = 3.445b, \) then \(B_0 \) has one-tenth of its value at \(\rho = b. \)

33. Obtain the result in 14.21 (8) by using 14.19 (1).

34. The plane of polarization of the incident wave in Fig. 14.20a is rotated so that \(E \) parallels the \(x \)-axis. Show that the diffracted vector potential at a great distance is,

\[
 \vec{A}_\theta = -\frac{\cos \phi}{\cos \alpha \sin \phi} \vec{\lambda}_b, \quad \vec{A}_\phi = \frac{\cos \theta}{\cos \alpha} \vec{\lambda}_b
\]

35. The opening of 14.20 is not rectangular but annular of internal and external radii \(a \) and \(b. \) Show that the diffracted vector potential at a great distance is

\[
 \vec{A}_\theta = \frac{\tan \phi}{\cos \theta} \vec{\lambda}_\theta \quad \vec{A}_\phi = -\frac{E \cos \alpha \sin \phi}{\omega R Q} [a J_1(\beta Qa) - b J_1(\beta Qb)]e^{-i\beta R}
\]

where \(Q = (\sin^2 \alpha + \sin^2 \theta - 2 \sin \alpha \sin \theta \sin \phi). \)

36. The polarization plane of the incident beam in the last problem is rotated so that \(E \) parallels the \(z \)-axis. Show that the vector potential of the diffracted field at a great distance is

\[
 \vec{A}_\theta = -\frac{\cot \phi}{\cos \theta} \vec{\lambda}_\phi = -\frac{E \cos \phi}{\omega R Q} [b J_1(\beta Qb) - a J_1(\beta Qa)]e^{-i\beta R}
\]

37. Show that, if in 14.20 or in the last three problems, there are not one but two identical openings centered at \(y = c \) and \(y = -c \) then, if \(R \gg c \) the single opening potential must be multiplied by \(2 \cos [\beta c (\sin \alpha + y/R)]. \)

38. If in the last problem the openings are at \(x = c \) and \(x = -c \), show that the multiplication factor in \(2 \cos (\beta cx/R). \)

39. A spherical shell of radius \(a \) is perfectly absorbing inside and perfectly conducting outside. An electric dipole of moment \(M \cos \omega t \) is placed at the origin pointed in the \(\theta = 0 \) direction, and the part of the shell between \(\theta = \alpha' \) and \(\theta = \alpha'' \) is removed. Show that 14.12 gives the external diffracted vector potential where

\[
 \vec{W}_{im} = M (1 - \beta^2 a^2 + j\beta a) \sum_{n=1}^{\infty} \vec{A}_n P_n(\cos \theta) \vec{k}_n(j\beta r)
\]

\[
 \vec{A}_n = e^{-i\beta a} \left[\frac{(2n+1)P_n(u) - (n+2)uP_{n-1}(u) - (n-1)uP_{n+1}(u)}{8n\omega a^2(n-1)(n+2)\partial[nk'_n(j\beta a)/\partial a]} \right] u = \cos \alpha
\]

40. The dipole in the shell of the last problem is replaced by a small coaxial loop of wire of radius \(b \) carrying a current \(Ie^{j\omega t}. \) Show that 14.12 (2) gives the vector potential of the diffracted field outside where

\[
 \vec{W}_{ic} = \mu Ib^2 (1 + j\beta a) \sum_{n=1}^{\infty} \vec{A}_n P_n(\cos \theta) \vec{k}_n(j\beta r)
\]

\[
 \vec{A}_n = e^{-i\beta a} \left[\frac{(n+2)uP_{n-1}(u) + (n-1)uP_{n+1}(u) - (2n+1)P_n(u)}{8a^2k'_n(j\beta a)(n-1)(n+2)} \right] u = \cos \alpha
\]
41. A small loop of wire of radius \(b \) carries a current \(I \cos \omega t \) and is coaxial with and at a distance \(c \) from the center of a hole of radius \(a \) in an infinite plane conducting sheet. If \(a \ll \lambda \), \(b \ll c \), and \(c \ll \lambda \), prove the diffracted potential is

\[
\hat{A}_d^{\omega \text{out}} = -\mu \beta^2 b^2 (16\pi)^{-1} [2c - (2c^2 + a^2)(c^2 + a^2)^{-1}] \sin 2\theta e^{i(\omega t - \beta R)}
\]

42. A plane wave whose electric vector \(E_\omega e^{i(\omega t - \beta z)} \) lies in the \(z \)-direction meets normally an infinite plane perfectly conducting sheet in which a slit of width \(2a \) is bisected lengthwise by the \(z \)-axis. Neglecting phase differences over the slit, show with the aid of Arts. 4.23 and 14.19 that at a distance \(R \) from the slit, where \(R \gg a \), the transmitted electric field is

\[
\vec{E}_d^{\omega \text{out}} = \frac{j\beta a E_0 \cos \theta}{2 \sin \theta} \left[\frac{2\pi}{\beta R} \right]^4 J_1(\beta a \sin \theta) e^{i(\omega t - \beta R)}
\]

where \(t' = t + \left(\frac{\pi}{\omega} \right) \) and \(\theta \) is the angle between \(R \) and the normal. Note that the (standing wave) \(B \) of Art. 4.23 is twice the running wave amplitude.

43. An alternating standing wave electric field of nodal strength \(E_\omega e^{i(\omega t - \beta z)} \) is normal to an infinite plane perfectly conducting sheet having a slit of width \(2a \). Neglecting phase differences over the slit, show with the aid of Arts. 4.23 and 14.19 that at a distance \(R \) from the slit, where \(R \gg a \), the transmitted field is

\[
\vec{E}_d^{\omega \text{out}} = \frac{j\beta a E_0}{4 \ln \beta a} \left[\frac{2\pi}{\beta R} \right]^4 J_1(\beta a \sin \theta) e^{i(\omega t - \beta R)}
\]

where \(t' = t + \left(\frac{\pi}{\omega} \right) \) and \(\theta \) is the angle between \(R \) and the normal. Leave \(E_0 \) undetermined in the last problem and calculate \(B_0 \) from \(A_\theta \). Take the expression for \(B_0 \) before the \(x \)-integration and evaluate it at \(x = 0 \) assuming \(\beta a \ll 1 \) so that the Hankel function argument is very small.

Write \(E_0 \) in terms of this value \(B_\omega e^{i(\omega t - \beta z)} \) and so show that, when a plane wave for which \(B_x = B_\omega e^{i(\omega t - \beta z)} \) passes over a thin plane perfectly conducting sheet in which there is a slit of width \(2a \) centered at \(x = 0 \), the diffracted magnetic induction, if \(a \ll \lambda \), is

\[
\vec{B}_d^{\omega \text{out}} = \frac{j\pi B_0}{4 \ln \beta a} \left[\frac{2\pi}{\beta R} \right]^4 e^{i(\omega t - \beta R)} J_1(\beta a \sin \theta)
\]

where \(t' = t + \left(\frac{\pi}{\omega} \right) \) and \(\theta \) is the angle between \(R \) and the normal. Use 5.331 (3).

44. A plane wave whose magnetic vector \(B_\omega e^{i(\omega t - \beta z)} \) lies in the \(z \)-direction impinges normally on an infinite plane perfectly conducting sheet at \(y = 0 \) having a slit of width \(2a \) bisected lengthwise by the \(z \)-axis. Neglecting phase differences over the slit, show with the aid of Arts. 4.22 and 14.19 that at a distance \(R \) from the slit, when \(R \gg a \), the transmitted magnetic induction is

\[
\vec{B}_d^{\omega \text{out}} = \frac{-j\pi B_0}{2 \ln \beta a} \left[\frac{2\pi}{\beta R} \right]^4 e^{i(\omega t - \beta R)}
\]

where \(t' = t + \left(\frac{\pi}{\omega} \right) \), \(\theta \) is the angle between \(R \) and the normal, and \(B_0 \) is evaluated at the center of the slit and equated to \(B_0 \) there.

46. A plane polarized electromagnetic wave whose wave front makes an angle \(\alpha \) with the \(yz \)-plane falls on the slit of problem 42. If its magnetic vector parallels the slit, show from problems 44 and 45 that the diffracted intensity at a great distance \(R \) from the slit is, if \(\beta a \) is so small that phase differences in the slit are negligible,

\[
I = \frac{\pi}{2\beta R(\ln \beta a)^4} \left(\cos \alpha + \frac{1}{4} \pi \beta a \sin \theta \sin \alpha \right)^2 I_0
\]
47. The wave of the last problem has its electric vector parallel to the slit. Show that, if \(\beta a \) is very small so that phase differences over the slit may be neglected, then from problem 42 the diffracted intensity is
\[
\Pi = \frac{\pi a^4 \cos^2 \theta \cos^2 \alpha}{8R} \Pi_0
\]

48. A hole of radius \(a \) is cut in an infinite plane perfectly conducting sheet which bounds a uniform electric standing wave field \(E_0 e^{i\omega t} \). By neglecting phase differences over the hole, show from 5.272 (6) and 14.19 (1) that the vector potential at a great distance from the center of the hole is
\[
\tilde{A}_\theta = -jE_0 [\sin (\beta a \sin \theta) - \beta a \sin \theta \cos (\beta a \sin \theta)] e^{-i\beta R}
\]
\[
\tilde{A}_\phi = \tilde{A}_\theta \cos \theta \cot \phi
\]

49. Show by the methods of 5.272 that, if a uniform standing wave magnetic field of induction \(B_0 e^{i\omega t} \) exists in the \(z \)-direction above and parallel to an infinite thin plane perfectly conducting sheet at \(z = 0 \) having a hole of radius \(a \) in it, the \(z \)-component of \(B \) in the hole is \(2B_0 (x/\pi) (a^2 - x^2 - y^2)^{-1} \). Hence by 14.19, neglecting phase differences, show that at a great distance from the center of the hole below the sheet, where the azimuth angle from the \(x \)-axis is \(\phi \) and the colatitude angle from the hole axis is \(\theta \), the vector potential is
\[
\tilde{A}_\theta = \frac{2jB_0 \sin \phi [\sin (\beta a \sin \theta) - \beta a \sin \theta \cos (\beta a \sin \theta)]}{\pi \beta R \sin^2 \theta} e^{-i\beta R}, \quad \tilde{A}_\phi = \tilde{A}_\theta \cos \theta \cot \phi
\]

50. A plane polarized wave strikes a thin plane perfectly conducting sheet with a hole of radius \(a \) in it at an angle \(\alpha \) from the normal. If \(E_0 \) parallels the sheet, show, when \(\beta a \) is very small in problem 49, that the intensity of the diffracted radiation is
\[
\Pi = \frac{16\beta^4 a^6 \cos^2 \alpha (1 - \sin^2 \phi \cos^2 \phi)}{9\pi^2 R^2} \Pi_0
\]
Note that the standing wave \(B_0 \) of problem 49 is twice the incident running wave induction.

51. Show that the average power radiated from the hole in the last problem is
\[
\bar{P} = \frac{64\beta^4 a^6 \cos^2 \alpha}{27\pi} \Pi_0
\]

52. In problem 50 let the electric vector lie in the plane of incidence and show, when \(\beta a \) is very small in problems 48 and 49, that the intensity of the diffracted radiation is
\[
\Pi = \frac{4\beta^4 a^6}{9\pi^2 R^2} [4 \sin^2 \phi \cos^2 \theta + (2 \cos \phi - \sin \theta \sin \alpha)^2] \Pi_0
\]
Note that the standing wave amplitudes in problems 48 and 49 are twice those in \(\Pi_0 \).

53. Show that the average power radiated from the hole in the last problem is
\[
\bar{P} = \frac{16\beta^4 a^6 (1 + \sin^2 \alpha)}{27\pi} \Pi_0
\]

54. An electromotance \(E \) is maintained across the center of a very narrow slot bounded by \(y = \pm \delta, z = \pm l \) in the infinite plane conducting face \(y = 0 \). Assuming that the field in the slot in this plane is \(E_0 = i5^{-1}E \sin [\beta(l - z)] \), show by 14.19 (1) that the electrical intensity outside the slot, where \(y > 0 \), is
\[
E = \frac{1}{2\pi} iE (iy - jx) \sum \int_{l - l}^{l + l} R^{-3}(1 + j\beta R) \sin [\beta(l \mp z_1)] e^{i(\omega t - \beta R)} dz_1
\]
where \(R^2 = x^2 + y^2 + (z - z_0)^2 \). Show by comparison with the curl of 14.19 (1) that

\[
[E]_{\text{slot}} = -2\mathcal{E}(\mu I_0)^{-1}[B]_{\text{antenna}}
\]

so that the fields are identical in form with those of an antenna driven at the center but with \(B \) and \(E \) interchanged so that from 14.04 (18)

\[
E_\phi = -\frac{1}{2}\mathcal{E}(\pi \rho)^{-1}[2 \cos \beta l \sin (\omega t - \beta r) - \sin (\omega t - \beta r_a) - \sin (\omega t - \beta r_b)]
\]

where \(r_a \) and \(r_b \) are the distances between the ends of the slot and the field point.

55. Apply the results of the last problem to the resonant slot \(l = \frac{\lambda}{4} \) and thus show by 14.05 (4) that the radiation resistance of the slot is 363 ohms if it radiates from both faces.

Note: The results of the following problems are based on the Kirchhoff theory of diffraction. They are useful in optics but should be used with caution elsewhere.

56. Let \(U = \psi(x, y, z)e^{i\omega t} \) be a component of the Hertz vector in an insulating medium so that it satisfies 13.01 (10) when \(\tau = \infty \). Let

\[
V = r^{-1}e^{i(\omega t - \beta r)} = \phi(x, y, z)e^{i\omega t}
\]

be a similar component for a spherical wave originating at a point \(P \) as given by 14.02 (4). Insert \(\phi \) and \(\phi \) in Green’s theorem, 3.06 (4), and, taking the volume of integration to lie between a very small sphere surrounding \(P \) and some larger surface \(S \), enclosing the sphere, show that

\[
4\pi\psi_p = \int_S [r^{-1}e^{-i\beta r} \nabla \psi - \psi \nabla (r^{-1}e^{-i\beta r})] \cdot n \, dS
\]

where \(\psi_p \) is the value of \(\psi \) at \(P \). This formula, the basis of Kirchhoff’s diffraction theory, gives the effect at \(P \) in terms of its integral over a surface surrounding \(P \).

57. Let \(S \) have apertures, and let \(U \) be a spherical wave originating at \(Q \) outside \(S \). Assuming that \(U \) has the same value over the apertures as if \(S \) were absent and is zero over the remainder of \(S \), show that

\[
\psi_p = \frac{j\beta}{4\pi} \int_{S'} \frac{1}{rr_1} \left(\frac{n \cdot r}{r} - \frac{n \cdot r_1}{r_1} \right) e^{-i\beta(r+r)} \, dS'
\]

where \(r_1 \) and \(r \) are the radius vectors from \(Q \) and \(P \) to the apertures and both are much larger than \(\beta^{-1} \). \(S' \) is the area of the openings.

58. Let there be a single aperture, let \(R \) and \(R_1 \) be the mean distances from its center \(O \) to \(P \) and \(Q \), and let the coordinates of any point in it, referred to \(O \), be \(x' \) and \(y' \). Expand \(r' \) and \(r_1' \) in powers of \(x' \) and \(y' \) and, since \(\beta = 2\pi\lambda^{-1} \), show that

\[
\psi_p = \frac{j}{2\kappa R R_1} \left(\frac{n \cdot R}{R} - \frac{n \cdot R_1}{R_1} \right) e^{-2\pi R(R+R_1)} \int_{S'} e^{-2\pi F(x', y', R, R_1)} \, dS'
\]

59. Consider a plane wave of intensity \(I_0 \) incident normally on a circular aperture of radius \(a \) so that \(R_1 = \infty \), and take \(R \gg a \) and \(P \) at \(x = \tau, y = 0 \) so that

\[
F(x', y', R, R_1) = -\pi x'R^{-1} - \rho' \cos \theta' \sin \alpha
\]

where \(\alpha \) is the angle subtended by \(x \) at \(0 \). Evaluate the integral by 5.302 (3) and (2), and show that the diffracted intensity is

\[
I_d = \frac{1}{4} \rho \kappa R^{-3} \cot \alpha \left| J_1(2\pi\alpha) \right|^2
\]

60. Take \(Q \) and \(P \) in the axis of a circular aperture, of radius \(a \) and take \(R_1 \) and \(R \) much larger than \(a \). Show that, if the incident intensity is \(I_0 \), that at \(P \) is

\[
4R^2I_0(R_1 + R)^{-3} \sin^2 \left[\pi a^2(2\lambda)^{-1}(R^{-1} + R_1^{-1}) \right]
\]
REFERENCES

The following books will be found useful for this chapter:

CHAPTER XV

WAVE GUIDES AND CAVITY RESONATORS

15.00. Waves in Hollow Cylindrical Tubes.—That plane waves may be guided by two or more mutually external perfectly conducting cylinders was shown in 13.14 to 13.18. If the propagation space is enclosed by a perfectly conducting cylinder, other unattenuated wave types will propagate at very high frequencies, and if this is the only boundary, a simple plane wave is no longer possible. Each external and internal (if any) boundary of a cylindrical wave guide is generated by moving a straight line transversely keeping it parallel to the z-axis. It is often considered closed by the \(z = 0 \) plane and extends from \(z = 0 \) to \(z = \infty \). In 13.01 (12) it was proved that each wave type can be represented by a vector potential \(\mathbf{A} \) derivable as shown in 13.14 from a solution \(\mathbf{W} \) of the scalar propagation equation in two ways, one giving transverse electric and one transverse magnetic waves. The differential equations are

\[
\nabla^2 \mathbf{A} = \mu \varepsilon \frac{\partial^2 \mathbf{A}}{\partial t^2}, \quad \nabla^2 \mathbf{W}_{te} = \mu \varepsilon \frac{\partial^2 \mathbf{W}_{te}}{\partial t^2}, \quad \nabla^2 \mathbf{W}_{tm} = \mu \varepsilon \frac{\partial^2 \mathbf{W}_{tm}}{\partial t^2}
\]

We are interested in a steady-state solution of angular frequency \(\omega \). In this case from 11.01 a vector potential satisfying the first equation and its curl may be obtained from solutions of the scalar equations by

\[
\mathbf{A} = \nabla \times (k \mathbf{W}_{te} + k \times \nabla \mathbf{W}_{tm}), \quad \mathbf{B} = -\nabla \times (k \beta^2 \mathbf{W}_{tm} + k \times \nabla \mathbf{W}_{te})
\]

where \(\beta^2 = \omega^2 \mu \varepsilon \). These equations are written out in cylindrical polar coordinates in 14.17 (4) and (5). As in 14.17, we may write \(\mathbf{W} \) as a product of a function of \(z \) by a function of the transverse coordinates so that either scalar equation in (1) splits into two. Thus

\[
\mathbf{W} = U \mathbf{Z}, \quad \nabla_2 U \pm \beta_{mn} U = 0, \quad \frac{\partial^2 \mathbf{Z}}{\partial z^2} + (\beta^2 \mp \beta_{mn}^2) \mathbf{Z} = 0
\]

Here \(U \) depends only on the transverse coordinates \(u_1 \) and \(u_2 \), and boundary and symmetry conditions fix \(\beta_{mn} \). If \(\mathbf{n} \) is a unit vector which like \(\mathbf{A} \) is normal to the curved surface, then from (2) the conditions there are

\[
0 = n \times \mathbf{A}_{te} = -n \cdot \nabla (k \mathbf{W}_{te}) \quad \text{or} \quad \frac{\partial U_{te}}{\partial n} = 0
\]

\[
0 = n \times [\nabla \times (k \nabla \mathbf{W}_{tm})] = n \times [k \nabla^2 \mathbf{W}_{tm} - k \cdot \nabla \mathbf{W}_{tm}]
\]

\[
= -\beta^2 n \times k \mathbf{W}_{tm} - \frac{\partial}{\partial z} (n \times \nabla \mathbf{W}_{tm}) = s_1 \left[\beta^2 \mathbf{W}_{tm} + \frac{\partial^2 \mathbf{W}_{tm}}{\partial z^2} \right] - k \frac{\partial^2 \mathbf{W}_{tm}}{\partial s \partial z}
\]

\[
= s_1 \beta_{mn}^2 \mathbf{W}_{tm} - k \frac{\partial^2 \mathbf{W}_{tm}}{\partial s \partial z}
\]

511
where \(s \) is a coordinate measured around a cylindrical surface along its curve of intersection with a plane normal to the \(z \)-axis so that \(s_1 = k \times n \).

The conditions imposed on \(U \) at the boundary are therefore

\[
U_{tm} = 0 \quad \text{or} \quad \beta_{mn} = 0 \quad \text{and} \quad \frac{\partial U_{tm}}{\partial s} = 0 \quad (5)
\]

The second pair of conditions in (5) are those met by the principal waves described in 13.14 to 13.18 whose velocity is independent of frequency. These are possible only with two or more conducting cylinders.

The differential equations of (3) are of the second order so each has two solutions, and the general solution is of the form

\[
\tilde{W} = [\tilde{A}U_1(u_1, u_2) + \tilde{B}U_2(u_1, u_2)](\tilde{C}e^{-\tilde{\beta}_{mn}z} + \tilde{D}e^{\tilde{\beta}_{mn}z}) \quad (6)
\]

\[
\tilde{\beta}_{mn} = j(\beta^2 - \beta_{mn}^2)^{1/2} = \alpha_{mn} + j\beta_{mn} \quad (7)
\]

When \(\beta > \beta_{mn} \), the propagation constant \(\tilde{\beta}_{mn} \) is a pure imaginary so \(\alpha = 0 \) and the first and second exponential terms in (6) indicate unattenuated waves in the positive and negative \(z \)-direction, respectively. If \(\beta < \beta_{mn} \), we put \(\tilde{C} = 0 \) when \(z \) is positive or \(\tilde{D} = 0 \) when \(z \) is negative since the fields must remain finite. For the remaining term, \(\tilde{\beta}_{mn} \) is real so \(\beta_{mn} = 0 \) which gives an exponentially damped term. The cutoff frequency \(\nu_{mn} \) and the cutoff wave length for the \(mn \)th mode are

\[
\nu_{mn} = \frac{\beta_{mn}(\mu e)^{-1}}{2\pi} = \frac{\omega_{mn}}{2\pi} \quad \lambda_{mn} = \frac{2\pi}{\beta_{mn}} \quad (8)
\]

To extend the concept of characteristic impedance to wave guides, the definition of \(13.15 \) (8) is put in terms of \(\tilde{E} \) and \(\tilde{B} \) by 13.15 (6). Thus

\[
\begin{align*}
|\tilde{Z}_k|_{te} &= \frac{\mu \tilde{E}_{te}}{k x \tilde{B}_{te}} = \frac{\pm j \omega \mu |\nabla \times k \tilde{W}_{te}|}{|k x [\nabla \times (k x \tilde{W}_{te})]|} = \pm j \omega \mu |\nabla \times k \tilde{W}_{te}| = \pm j \omega \mu \tilde{\beta}_{mn} \\
|\tilde{Z}_k|_{tm} &= \frac{\mu |k x \tilde{E}_{tm}|}{\omega e |\nabla \times k \tilde{W}_{tm}|} = \mp j \omega e |\nabla \times k \tilde{W}_{tm}| = \mp j \tilde{\beta}_{mn}
\end{align*}
\]

\[
(9)
\]

in terms of the cutoff frequency \(\nu_{mn} \), these are

\[
|\tilde{Z}_k|_{te} = \frac{\pm \mu e^{-1}}{[1 - (\nu_{mn}/\nu)]^3}, \quad |\tilde{Z}_k|_{tm} = \pm \mu e^{-1}[1 - (\nu_{mn}/\nu)^2]^3 \quad (11)
\]

From 13.15 (6), the upper or lower sign is to be used according as the wave is in the negative or positive \(z \)-direction, respectively. Note that both wave types give a real characteristic impedance, indicating power propagation above the cutoff frequency and a reactive one below it. Observe that this differs from the transmission line definition in 13.16.
§15.01 ATTENUATION IN HOLLOW WAVE GUIDES

From (6) and (7), when \(\beta > \beta_{mn} \), waves propagate with a phase velocity
\[
v_{mn} = \frac{\omega}{\beta'_{mn}} = \frac{\omega}{(\beta^2 - \beta_{mn}^2)^{1/2}} = \frac{v}{\left[1 - (v_{mn}/v)^2\right]^{1/2}} = \frac{v}{\left[1 - (\lambda/\lambda_{mn})^2\right]^{1/2}} \tag{12}
\]
where \(v \) is the velocity of a free wave in the medium filling the tube. The signal velocity is given by 13.19 (2) and (12) to be
\[
(v_x)_{mn} = \frac{\partial \omega}{\partial \beta'_{mn}} = \frac{1}{(\mu e)^{1/2}} \frac{\partial \beta}{\partial \beta'_{mn}} = \frac{\beta'_{mn}}{\beta(\mu e)^{1/2}} = \frac{1}{\mu v_{mn}} = \frac{v^2}{v_{mn}} \tag{13}
\]
Thus \(v_{mn} > v > (v_x)_{mn} \). At sufficiently high frequencies, both phase and signal velocities approach the velocity of the free wave.

From (2) and (3), the electric and magnetic fields in terms of \(U \) are
\[
\mathbf{E}_{le} = -j\omega \mathbf{A}_{le} = j\omega \mathbf{k} \times \nabla U_{le} e^{-j\beta'_{mn}z} \tag{14}
\]
\[
\mathbf{B}_{le} = \nabla \times \mathbf{A}_{le} = (-j\beta'_{mn} \nabla U_{le} + k\beta_{mn}^2 U_{le}) e^{-j\beta'_{mn}z} \tag{15}
\]
\[
\mathbf{E}_{lm} = -j\omega \mathbf{A}_{lm} = (\omega \beta_{mn}^2 \nabla U_{lm} + k\omega \beta_{mn}^2 U_{lm}) e^{-j\beta'_{mn}z} \tag{16}
\]
\[
\mathbf{B}_{lm} = \nabla \times \mathbf{A}_{lm} = \beta_{mn}^2 \mathbf{k} \times \nabla U_{lm} e^{-j\beta'_{mn}z} \tag{17}
\]
where \(U_{le} \) and \(U_{lm} \) satisfy (3) and from (2) have different dimensions.

15.01. Attenuation in Hollow Wave Guides.—Wave guides are used to transmit high-frequency power from one point to another so transmission losses are important. If an imperfect dielectric fills the tube, energy will be dissipated there, but in the common air-filled guide such losses are seldom important and their calculation will be left to the problems at the end of the chapter. The eddy current energy loss in the walls is, however, unavoidable and must be considered. In all practical cases, the wall conductivity is so high that field solutions for perfectly conducting tubes are excellent approximations and can be used to calculate \(P \). In any case where losses in a quantity are proportional to the quantity itself, there is exponential attenuation. Equation 11.02 (8) shows that the power loss in a conducting surface is proportional to the square of the tangential magnetic field at the surface. Therefore the fields are damped exponentially as they pass down the tube and, if their attenuation factor is \(\alpha \), that of the Poynting vector is \(2\alpha \). The periodic factors disappear in the time average \(\bar{P} \) of the transmitted power leaving \(\bar{P} e^{-2\alpha z} \). The \(z \)-derivative of \(\bar{P} \), evaluated by 11.02 (8) and divided by \(\bar{P} \), is
\[
2\alpha = -\frac{1}{\bar{P}} \frac{\partial \bar{P}}{\partial z} = \frac{\tau}{2\mu^2 \bar{P}} \int \mathbf{B} \cdot \mathbf{B} ds \tag{1}
\]
where \(\partial \bar{P}/\partial z \) is the average power loss per unit length, \(\mathbf{B} \) the magnetic induction next the wall, \(\tau \) the wall resistivity, and \(\delta \) the skin thickness. At the wall \(\nabla U_{le} = s, \partial U_{le}/\partial s \) so that, from 15.00 (15) and (17),
\[
\mathbf{B}_{le} \cdot \mathbf{B}_{le} = (\beta^2 - \beta_{mn}^2) \left(\frac{\partial U_{le}}{\partial s}\right)^2 + \beta_{mn}^4 U_{le}^2, \quad \mathbf{B}_{lm} \cdot \mathbf{B}_{lm} = \beta^4 \nabla U_{lm} \cdot \nabla U_{lm} \tag{2}
\]
By 13.17 (3), the average z-directed energy passing through unit area per second is the real part of \(\frac{1}{2} \mu^{-1} \mathbf{E} \times \mathbf{B} \) so that 15.00 (14) to (17) give

\[
|\Pi_{le}| = -\frac{1}{2} \mu^{-1} \omega \beta^2 [(k \times \nabla U_{le}) \times \nabla U_{le}] = \frac{1}{2} \mu^{-1} \omega (\beta^2 - \beta_{mn}^2) \nabla U_{le} \cdot \nabla U_{le} \quad (3)
\]

\[
|\Pi_{tm}| = \frac{1}{2} \mu^{-1} \omega \beta^2 [\nabla U_{tm} \times (k \times \nabla U_{tm})] = \frac{1}{2} \mu^{-1} \omega \beta^2 (\beta^2 - \beta_{mn}^2) \nabla U_{tm} \cdot \nabla U_{tm} \quad (4)
\]

To simplify the surface integral of the scalar product in (3) and (4), we expand and note that the first term of the surface integral vanishes when transformed into a line integral around the boundary because, by 15.00 (4) or (5), either \(U \) or \(\nabla U \) is zero there. Thus, using 15.00 (3),

\[
\int_S \nabla U \cdot \nabla U \, dS = \int_S (\mathbf{U} \nabla U - U \nabla U) \, dS = \beta_{mn}^2 \int_S U^2 \, dS \quad (5)
\]

From (1), (2), and (3), the attenuation of transverse electric waves is

\[
\alpha_{le} = \frac{\tau}{2 \mu \delta} \frac{\beta_{mn}^{-2}[1 - (\nu_{mn}/\nu)^2] \mathcal{F} \left(\frac{\partial U_{le}}{\partial s} \right)^2 \, ds + (\nu_{mn}/\nu)^2 \mathcal{F} U_{le}^2 \, ds}{[1 - (\nu_{mn}/\nu)^2] \int_S U_{le}^2 \, dS} \quad (6)
\]

Here \(\delta \) is the skin depth \(\left(\frac{1}{2} \omega \mu' \gamma_0 \right)^{-1} \), \(\mu' \) the permeability of the wall, \(\nu \) the frequency, \(\nu_{mn} \) the cutoff frequency, \(\nu \) the free wave velocity in \(\mu \varepsilon \), and \(\beta_{mn} \) is \(2\pi \nu^{-1} \nu_{mn} \). From (1), (2), and (4), since \(\nabla U \) is normal to the wall,

\[
\alpha_{tm} = \frac{\tau}{2 \mu \delta} \frac{\mathcal{F} \left(\frac{\partial U_{tm}}{\partial n} \right)^2 \, ds}{\beta_{mn}^{-2}[1 - (\nu_{mn}/\nu)^2] \int_S U_{tm}^2 \, dS} \quad (7)
\]

This equation shows that the attenuation of transverse magnetic waves increases with frequency in the same way for all forms of cross section. From Eq. (6) the attenuation of transverse electric waves depends on the form of the tube cross section and increases with frequency unless the first numerator term vanishes, as in some circular pipe modes.

15.02. The Rectangular Wave Guide.—Consider a tube bounded by the planes \(x = 0 \), \(x = a \), \(y = 0 \), \(y = b \). By inspection, solutions \(U(x,y) \) of 14.00 (3), which satisfy boundary conditions 15.00 (4) and (5), are

\[
U_{le} = C_{mn} \cos \frac{m \pi x}{a} \cos \frac{n \pi y}{b} \quad U_{im} = C_{mn} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \quad (1)
\]

\[
\beta_{mn}^2 = \pi^2 \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right) \quad \text{or} \quad \nu_{mn}^2 = \frac{1}{\lambda_{mn}^2} \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right) = \frac{\nu^2}{\lambda_{mn}^2} \quad (2)
\]

if \(m \) and \(n \) are integers. From 15.00 (14) and (15) the \(TE \) fields are

\[
\mathbf{E}_{le} = j \omega \pi \tilde{C} \left(\frac{n}{b} \cos \frac{m \pi x}{a} \sin \frac{n \pi y}{b} - \frac{m}{a} \sin \frac{m \pi x}{a} \cos \frac{n \pi y}{b} \right) e^{-j \beta_{mn} z} \quad (3)
\]

\[
\mathbf{B}_{le} = \tilde{C} \left\{ \frac{m}{a} \sin \frac{m \pi x}{a} \cos \frac{n \pi y}{b} + \frac{n}{b} \cos \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \right\} e^{-j \beta_{mn} z} \quad (4)
\]
§15.02

THE RECTANGULAR WAVE GUIDE

From (1), (2), and 15.01 (6), the attenuation of these waves is

\[|\alpha_{te}|_{m0} = \frac{\tau}{\mu_0 \delta} \left(a + 2b \frac{(v_{mo}/v)^2}{1 - (v_{mo}/v)^2} \right) \]

\[|\alpha_{te}|_{mn} = \frac{2\pi}{\mu_0 \delta} \left(\frac{(m^2b + n^2a)[1 - (v_{mn}/v)^2]}{m^2b^2 + n^2a^2} + \frac{(a + b)(v_{mn}/v)^2}{ab[1 - (v_{mn}/v)^2]} \right) \]

From (2), the longest cutoff wave length for the **TE** waves in a guide for which \(a = 2 \text{ cm} \) and \(b = 4 \text{ cm} \) occurs when \(m = 0, n = 1 \), for then \(\lambda_{01} = 8 \text{ cm} \). This is independent of \(a \). The next longest at \(m = 1, n = 0 \) is \(\lambda_{10} = 4 \text{ cm} \) and is independent of \(b \). As we shall see later, the

![Field Maps](image)

Fig. 15.02a.

guide coupling can be arranged to excite some modes and not others. For a 5-cm wave transmitted only in the **TE** mode, \(\delta \approx 8.5 \times 10^{-7} \text{ m} \) in copper. Thus, from (5), the attenuation is \(\alpha_{te} \approx 0.005 \) so by \(Pc 757 \) or \(Dw 550.2 \), the field strength drops about \(\frac{1}{2} \) per cent and the energy 1 per cent in 1 m of guide. From 15.00 (12), the \(\lambda_{10} \) attenuation is

\[\alpha_{10} = j\beta_{10}' = 0.3\pi = 0.94 \]

or about 200 times that of \(\lambda_{01} \). From 15.00 (12) and (13), the signal velocity is 78 per cent that of a free wave. Figure 15.02a shows field maps of the **TE** and **TE** waves. From 15.00 (16) and (17), the **TM**
wave fields are
\[
\tilde{E}_{tm} = \tilde{\phi} \left\{ \omega \beta_{mn} \left[\frac{m}{a} \cos \frac{m \pi x}{a} \sin \frac{n \pi y}{b} + \frac{n}{b} \sin \frac{m \pi x}{a} \cos \frac{n \pi y}{b} \right] \right. \\
\left. + 2 \nu \omega \beta_{mn}^2 \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \right\} e^{-j \beta_{mn} z} \tag{7}
\]
\[
\tilde{B}_{tm} = \pi \beta C \left(-\frac{n}{b} \sin \frac{m \pi x}{a} \cos \frac{n \pi y}{b} + \frac{m}{a} \cos \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \right) e^{-j \beta_{mn} z} \tag{8}
\]
From (1), (2), and 15.01 (7), the attenuation of these waves is
\[
\alpha_{tm} = \frac{2 \nu}{\omega \bar{\delta} ab (m^2 b^2 + n^2 a^2) \left[1 - (\nu_{mn}/\nu)^2 \right]^\frac{1}{2}} \tag{9}
\]
From (2), the longest TM cutoff wavelength in a guide for which $a = 2$ cm and $b = 4$ cm occurs when $m = n = 1$ at $\lambda_{11} = 3.58$ cm, and the next is at $\lambda_{12} = 2.83$ cm. A field map of the TM_{11} wave is shown in Fig. 15.02a.

Superposition of two square wave-guide fields gives that of the isosceles right-triangular guide of Fig. 15.02b with the same cutoff frequency.

15.03. The Circular Wave Guide.—Consider a wave guide of radius a. From 14.17, a solution of 15.00 (3) which is finite on the axis is
\[
\tilde{U}(\rho, \phi) = J_m(\beta_{mn} \rho)(\bar{C}_{mn} \cos m \phi + \bar{D}_{mn} \sin m \phi) \tag{1}
\]
where, by 15.00 (4) and (5), β_{mn} must be chosen so that
\[
|\partial J_m(\beta_{mn} a)/\partial a|_{a=0} = 0 \quad |J_m(\beta_{mn} a)|_a = 0 \tag{2}
\]
§15.03 THE CIRCULAR WAVE GUIDE

TE_{01} mode. E-lines in AB section spaced to give equal intensity increments.

TE_{10} mode. Principal section of equiflux tubes of magnetic induction.

TE_{11} mode. E-lines in AB section spaced to give equal intensity increments on center line.

TM_{01} mode. B-lines in AB section spaced to give equal induction increments.

TM_{01} mode. Principal section of equiflux tubes of displacement.

TM_{01} mode. B-lines in AB section spaced to give equal induction increments on center line.

TM_{11} mode. E-lines in principal section spaced to give equal intensity increments on center line.

Fig. 15.03.

The most important zeros of these functions are

\[J'_0(3.832) = J'_1(7.016) = J'_1(1.841) = J'_1(5.331) = 0 \]
\[J'_0(2.405) = J'_0(5.520) = J'_1(3.832) = J_1(7.016) = 0 \]

From 15.00 (14) and (15), the fields of the TE waves are

\[[\mathbf{E}]_{te} = j\omega\varphi_1m\rho^{-1}J_m(\beta_{mn}\rho)(\bar{C}_{mn} \sin m\phi - \bar{D}_{mn} \cos m\phi) + \beta_{mn}J'_m(\beta_{mn}\rho) + \bar{C}_{mn} \cos m\phi + \bar{D}_{mn} \sin m\phi) e^{-j\beta_{mn}z} \]
\[[\mathbf{B}]_{te} = \{j\beta'_{mn}[-\varphi_1\beta_{mn}J'_m(\beta_{mn}\rho)(\bar{C}_{mn} \cos m\phi + \bar{D}_{mn} \sin m\phi) + \varphi m\rho^{-1}J_m(\beta_{mn}\rho)(\bar{C}_{mn} \sin m\phi - \bar{D}_{mn} \cos m\phi) + \kappa\beta'_{mn}J'_m(\beta_{mn}\rho)(\bar{C}_{mn} \cos m\phi + \bar{D}_{mn} \sin m\phi) e^{-j\beta'_{mn}z} \]
From (1), (2), 15.01 (6), and 5.295 (6), the TE wave attenuation is

$$\alpha_{\text{le}} = \frac{\tau}{\mu \omega \delta} \left[1 - \left(\frac{\nu_{mn}}{v} \right)^2 \right]^{-1} \left[\frac{m^2}{\beta_{mn}^2 a^2 - m^2} + \left(\frac{\nu_{mn}}{v} \right)^2 \right]$$ (7)

We notice that the circularly symmetrical waves for which \(m = 0 \) have the unusual property of a decreasing attenuation with increasing frequency. The longest TE cutoff wave length \(\lambda_{11} \) is, from (2), (3), and 15.00 (8), at 3.42 \(a \) and the next, \(\lambda_{01} \), is at 1.64 \(a \). Take \(a = 2.34 \) cm so that \(\lambda_{11} \) is 8 cm and compare with the 2- by 4-cm guide of the last article at the same cutoff. The 5-cm free wave length attenuation is 0.0028 \(m^{-1} \) which is considerably less than the 0.005 \(m^{-1} \) of the rectangular guide. Field maps of some of the TE modes appear in Fig. 15.03.

From 15.00 (16) and (17), the fields of the TM waves are

$$\mathbf{E}_{\text{lm}} = \{ \omega \beta'_{mn} [\theta_{lm} \beta_{mn} J_{mn}(\beta_{mn} \rho) (\mathcal{C}_{mn} \cos m \phi + \mathcal{D}_{mn} \sin m \phi)$$

$$- \phi m \rho^{-1} J_{mn}(\beta_{mn} \rho) (\mathcal{C}_{mn} \sin m \phi - \mathcal{D}_{mn} \cos m \phi)] + k j \omega \beta_{mn} J_{mn}(\beta_{mn} \rho) (\mathcal{C}_{mn} \cos m \phi + \mathcal{D}_{mn} \sin m \phi) \} e^{-j \omega'_{mn} z}$$ (8)

$$\mathbf{B}_{\text{lm}} = [\theta_{lm} \beta^2 \rho^{-1} J_{mn}(\beta_{mn} \rho) (\mathcal{C}_{mn} \sin m \phi - \mathcal{D}_{mn} \cos m \phi)$$

$$+ \phi \beta^2 \beta_{mn} J_{mn}(\beta_{mn} \rho) (\mathcal{C}_{mn} \cos m \phi + \mathcal{D}_{mn} \sin m \phi) \} e^{-j \omega'_{mn} z}$$ (9)

From (1), (2), 15.01 (7), and 5.295 (6), the TM wave attenuation is

$$\alpha_{\text{tm}} = \frac{\tau}{\mu \omega \delta} \left[1 - \left(\frac{\nu_{mn}}{v} \right)^2 \right]^{-4}$$ (10)

The longest \(\lambda_{mn} \) values are \(\lambda_{01} = 2.61 a \), \(\lambda_{11} = 1.64 a \), and \(\lambda_{02} = 1.14 a \).

15.04. The Coaxial Wave Guide.—Transmission lines whose propagation space is bounded internally by \(\rho = a \) and externally by \(\rho = b \) fall in the class treated in 13.14 which have principal modes that can transmit waves at any frequency. From 13.18 (5), the resistance per unit length is

$$R_i I^2 = R_i \left(\oint_a i^2 ds + \oint_b i^2 ds \right) = \frac{I^2 R_i}{2\pi} \left(\frac{1}{b} + \frac{1}{a} \right) = \frac{\tau I^2 (a + b)}{2\pi ab \delta} = \omega L_i I^2$$ (1)

The characteristic impedance is then given by 13.18 (1) to be

$$Z_k = \left(\frac{L_i I^2 + j \omega (L_i + L_0)}{\mu (\gamma + j \omega \epsilon)} \right)^{\frac{1}{2}}$$

where \(L = \frac{\mu}{2\pi} \ln \frac{b}{a} \) (2)

The inductance per unit length was written down from \(LC = \mu \epsilon \) and 2.04 (2). If the skin inductance \(L_i \) and dielectric conductivity \(\gamma \) are small, there is a flat minimum in the attenuation when \(\delta (R_i / L_i) / \delta (b / a) \) is zero. This value, which occurs at \(b = 3.6 a \) is only 5 per cent below that at \(2.5 a \) and \(5.0 a \).

At short enough wave lengths, higher order waves of the type discussed in the last article are possible in a coaxial line. These waves appear chiefly in boundary conditions at discontinuities. The axial region is
§15.05
PLANE DISCONTINUITIES IN COAXIAL LINES

now excluded so both Bessel function can occur. Thus from 14.17 (2),

\[
\ddot{U} = (\ddot{C}_{mn} \cos m\phi + \ddot{D}_{mn} \sin m\phi)R_m(\beta_{mn} \rho)
\]

\[
[R_m(\beta_{mn} \rho)]_{te} = J_m(\beta_{mn} \rho)Y_m(\beta_{mn} \rho) - Y_m(\beta_{mn} \rho)J'_m(\beta_{mn} \rho)
\]

\[
[R_m(\beta_{mn} \rho)]_{tm} = J_m(\beta_{mn} \rho)Y_m(\beta_{mn} \rho) - Y_m(\beta_{mn} \rho)J'_m(\beta_{mn} \rho)
\]

where, from 15.00 (4) and (5), \(\beta_{mn} \) must be chosen so that

\[
\frac{\partial [R_m(\beta_{mn} \rho)]_{te}}{\partial \rho} = 0
\]

\[
[R_m(\beta_{mn} \rho)]_{tm} = 0
\]

From (4), (5), and (6), the boundary conditions of 15.00 (4) and (5) are satisfied at \(\rho = a \) and \(\rho = b \). The fields, attenuations, etc., can be worked out exactly as in the last article but are of little interest.

15.05. Plane Discontinuities in Coaxial Lines.—Electrostatic methods yield nearly exact solutions of certain electromagnetic wave problems. To show this, write 15.00 (1) in terms of wave length. Thus

\[
\nabla^2 E = -\omega^2 \mu \varepsilon E = -4\pi^2 \lambda^{-2} E \quad \longrightarrow 0
\]

Thus for wave lengths very long compared with the dimensions of the region involved, the instantaneous field is indistinguishable from a solution of Laplace's equation that satisfies the same boundary conditions.

Consider two coaxial lines coaxially joined to the \(z = 0 \) plane which is perfectly conducting save where holes connect the propagation spaces. The wave lengths are so long that only the principal mode is propagated. Clearly, if standing waves are set up so that there is an electric node at \(z = 0 \), the discontinuity has no effect for there is no radial electric field there and the magnetic induction links no element of this plane. In any transmission line, only a pure shunt element can be inserted at an electric node in a standing wave pattern without upsetting it. Therefore this discontinuity acts as a pure shunt element across the line at \(z = 0 \).

Now take the special case of coaxial annular openings and suppose that standing waves are set up so that \(z = 0 \) lies halfway between two adjacent electric nodes. Obviously the radial field of the principal mode alone is not normal to the plane face at \(z = 0 \), so local higher mode fields of the type of 15.04 (4) or (5) are needed there. These contain the factor \(e^{-|\beta'|z_{\text{rad}}} \) as in 15.03 (5) which confines them to line sections so short compared with the wave length that all the local fields are in phase. By (1), the instantaneous electric field in this section is identical with the static field between inner and outer conductors, and the capacitance across the line at \(z = 0 \) is the excess of the actual static capacitance of the section over the sum of the capacitances given by the concentric cylindrical capacitor formula for each half of it.

The simplest case occurs when the ratio of the external to the internal radius is nearly one. A small sector of a cylindrical capacitor then looks
like a narrow strip of parallel plate capacitor which is solvable by a conformal transformation. The case of a parallel plate capacitor with a step in one wall, as shown by the lines \(V = 0 \) and \(V = \frac{1}{2} \pi \) in Fig. 6.13b, is treated in 6.13. Half the increase of resistance per unit length is given by 6.13 (5), so by 6.14 (4) the increase in capacitance per unit length is \(2\varepsilon/(\tau\Delta R) \). The discontinuity capacitance is the product of this by the circumference \(2\pi r \) of the propagation space. Thus, from 6.13 (5),

\[
C = 2\pi \varepsilon C_1 = 2\varepsilon r \left(\frac{h^2 + k^2}{hk} \ln \frac{k + h}{k - h} + 2 \ln \frac{k^2 - h^2}{4hk} \right)
\]

Whinnery and Jamison (Proc. I.R.E. Vol. 32, page 98) have shown empirically that, when a discontinuity is in one wall, the circumference of the other wall should be used. If the ratio of internal to external radius is 5, this rule still gives an error of only about 10 per cent. Reflections from such obstacles are calculated by 13.16 (3) where, if \(Z_{k1} \) and \(Z_{k2} \) are the line characteristic impedances on the two sides of the obstacle,

\[
Z_1 = Z_{k1}, \quad \frac{1}{Z_2} = j\omega C + \frac{1}{Z_{k2}} = \frac{2\pi jC}{\lambda} + \frac{1}{Z_{k2}}
\]

15.06. Coupling to Wave Guides.—A rigorous calculation of waveguide excitation by a coupling loop or stub is extremely difficult, but as in the antenna problem (14.03 to 14.06) approximate solutions are obtained by assuming a current distribution along the wire and considering it as concentrated on the axis. This determines the magnetic field near the wire which is then reproduced by superimposing the fields of many modes. If the assumed current distribution is correct, the electric field of the applied electromotance just cancels, at the wire surface, the tangential component of these electric fields. Thus the radiation impedance of a section of the wire is minus the sum of the line integrals of the mode electric fields along the wire in the direction of the current, divided by the current. Thus each mode acts as if it were an independent circuit shunted across the ends of the section. A given current element excites every mode that has an electric field component along it, which implies a magnetic flux linkage. Consider an element lying in the \(z = z_0 \) plane of a wave guide that extends from \(z = -\infty \) to \(z = \infty \). The components \(B_i \) of \(B \) tangential to this plane may be written as the sum of an infinite number of terms, one for each mode, of the form \(A_{mn} U_{mn}(u_1) V_m(u_2) \) where \(U_{mn}(u_1) \) and \(V_m(u_2) \) are orthogonal functions of the transverse coordinates \(u_1 \) and \(u_2 \). Multiply by \(U_{pq}(u_1) V_p(u_2) du_1 du_2 \) and integrate over the plane leaving only the \(pq \) term on one side. On the other side, \(B_i \) is zero except over an area at \(u_1', u_2' \) so small that we use the mean value \(U_{pq}(u_1') V_p(u_2') \) over it. By the magnetomotance law of 7.01 (2), the integral of \(B_i \) across the current element is \(\frac{1}{2}\mu I \). This method was used
in magnetostatic problems in 7.11, 7.13, and 7.31. Usually such an element will generate both TE and TM waves. If a second circuit element, equal and opposite in sign to the first, is placed in the image position at \(z = -z_0 \), then the total electric field is normal to the plane \(z = 0 \) and represents the field generated in a guide closed at \(z = 0 \) by a perfectly conducting plane.

A current element parallel to \(z \) excites only TM modes. The method of 14.02 leaves uncertain both length and phase of the dipole source got by differentiation of the field of a point source with respect to \(z \), the propagation direction. It is safer to use a dipole source confined to a single phase plane such as that in 14.21 (1) in which the \(z_0 \)-plane is earthed except for an infinitesimal area which is raised to a potential \(V_0 e^{j\omega t} \). The electric dipole moment of this source, like the magnetic dipole moment of a small current loop, is proportional to its area \(dS_0 \). Thus 14.21 (8) gives for the current element of strength \(I \) \(dS_0 \cos \omega t \),

\[
I_0 \, dz_0 = \frac{j \omega \varepsilon (b^2 - a^2) V_0}{\ln(b/a)} \rightarrow 2j \omega \varepsilon V_0 \pi a^2 = 2j \omega \varepsilon V_0 \, dS_0
\] (1)

In the \(z_0 \)-plane, we write the tangential component of \(E_{lm} \) as an infinite sum of terms of the form \(A_{mn} U_{mn}(u_1) V_m(u_2) \) and, to determine \(A_{pq} \), multiply by \(U_{pq}(u_1) V_p(u_2) \) \(du_1 \, du_2 \) and integrate over the plane. On one side only, the \(A_{pq} \) term survives, and on the other we take \(dS_0 \) to be a curvilinear square bounded by \(u_1', u_1' + \Delta u_1' \) and by \(u_2', u_2' + \Delta u_2' \). On and outside \(dS_0 \), \(E_{lm} \) vanishes, but its integral across the edge of \(dS_0 \) is \(\pm V_0 \).

If the current element carries a free charge, as it must when a stub terminates inside the guide, then by 14.01 (1) we have a scalar potential in phase with the charge that satisfies electrostatic boundary conditions and does not contribute to the propagated wave. This local electric field yields capacitative reactance. When the current element is oriented at random, it can be resolved into components which can be treated separately.

When a guide is excited through an orifice, the method of 14.21 often gives an approximate solution by postulating an unperturbed tangential component of the electric field over the opening.

15.07. Excitation of Circular Guide by Current Element.—The method of the last article will now be used to calculate the wave patterns in a circular wave guide excited by radial and longitudinal current elements. The calculation for an element normal to these two is similar to that for the radial element and this, together with the analogous results for a rectangular guide, is given in problems at the end of this chapter. Consider a current element of strength \(q \, I e^{j\omega t} \) and of length \(dp_0 \) at \(p_0, 0 \) in the \(z_0 \) plane. If the element is at \(\phi = \phi_0 \) instead of at \(\phi = 0 \), we may write \(\phi - \phi_0 \) for \(\phi \) in the equations of 15.03. The complete TE solution is a
double sum over \(m \) and \(n \) of terms like 15.03 (5) and (6). To find the amplitude of the \(pq \)-term, one sets \(t = 0, z = z_0 \), and \(\tilde{C}_{mn} = 0 \) in 15.03 (6), \(\tilde{E}_\rho \) being an even function of \(\phi \), takes its scalar product by

\[
[\phi \beta_{p'q'}(\beta_{pq}) \sin \phi + \phi_{p'q'} J_p(\beta_{pq}) \cos \phi] \rho d\rho d\phi
\]

and integrates from \(\phi = -\pi \) to \(\phi = \pi \) and from \(\rho = 0 \) to \(\rho = a \). The first integration eliminates all but 15.296 (11), its value is \(\frac{1}{2} (\beta^2_{pq} a^2 - p^2) J_p^2(\beta_{pq} \alpha) \). In the \(z_0 \) plane, \(B_\phi \) is zero everywhere and \(B_\phi \) is zero except over the element \(d\rho_0 \) at \(\rho_0 = 0 \). But by 7.01 (2), \(\Phi B_{\phi} \rho \) is

\[
\frac{1}{2} \mu I \rho \rho_0 \theta \text{ at } \rho_0.
\]

Solving for \(\tilde{D}_{pq} \) gives

\[
[\tilde{D}_{pq}]_{im} = \frac{-\mu I \rho \rho_0 J_p(\beta_{pq} \rho_0) \rho d\rho d\phi}{2\pi \beta_{pq} \beta_{pp'}(\beta_{pq} \beta_{pp'})^{2} e^{i\beta_{pq} \rho_0}}
\]

For the TM modes excited by the radial element, set \(t = 0, z = z_0 \), and \(\tilde{D}_{mn} = 0 \) in 15.03 (9) and take its scalar product by

\[
[\phi \rho \rho_0^{-1} J_p(\beta_{pq}) \sin \phi + \phi_{p'q'} J_p(\beta_{pq}) \cos \phi] \rho d\rho d\phi
\]

and integrate from \(\phi = -\pi \) to \(\phi = \pi \) and from \(\rho = 0 \) to \(\rho = a \). The integrals are identical with those found before except for a \(2 - \delta^2_\rho \) factor, and the integral in (1) is \(\frac{1}{2} (\beta_{pq} a^2) J_p^2(\beta_{pq} \alpha) \) because \(J_p(\beta_{pq} \alpha) \) is zero. Thus we get

\[
[\tilde{C}_{pq}]_{im} = \frac{-\mu I \rho \rho_0 J_p(\beta_{pq} \rho_0) (2 - \delta^2_\rho) e^{i\beta_{pq} \rho_0}}{2\pi \beta_{pq} \beta_{pp'}(\beta_{pq} \beta_{pp'})^{2} e^{i\beta_{pq} \rho_0}}
\]

For the longitudinal current element, use the source of 15.06 (1), set \(z = z_0 \), \(\tilde{D}_{mn} = 0 \) in 15.03 (8), and take the scalar product of both sides by

\[
[\phi \rho \rho_0^{-1} J_p(\beta_{pq}) \cos \phi - \phi_{p'q'} J_p(\beta_{pq}) \sin \phi] \rho d\rho d\phi = R_{pq} \rho d\rho d\phi
\]

Integrate over the ranges \(0 < \rho < a \) and \(0 < \phi < 2\pi \). After integration of the right side with respect to \(\phi \), we obtain with the aid of 5.296 (11) and (12), keeping in mind that \(J_p(\beta_{pq} \alpha) \) is zero,

\[
\int_0^a \int_0^{2\pi} E \cdot R_{pq} \rho d\rho d\phi = \frac{\pi \omega \beta_{pq} C_{pq} \beta_{pq}^2 a^2 J_p(\beta_{pq} \alpha)^2 e^{i\beta_{pq} \rho_0}}{2 - \delta^2_\rho}
\]

The arcs \(c + \frac{1}{2} \delta \) and \(c - \frac{1}{2} \delta \) and radial lines at \(\frac{1}{2} \Delta \phi \) and \(-\frac{1}{2} \Delta \phi \) bound \(dS_0 \). The integral over the arcs, where the integrand is independent of \(\phi \), gives

\[
\beta_{pq}(c + \frac{1}{2} \delta)J_p^2[\beta_{pq}(c + \frac{1}{2} \delta)] - (c - \frac{1}{2} \delta)J_p^2[\beta_{pq}(c - \frac{1}{2} \delta)] \int_0^\Delta \phi \rightarrow \beta_{pq}[\beta_{pq} J_p'(\beta_{pq} \rho_0') + J_p'(\beta_{pq} \rho_0')] V_0 \Delta \phi
\]
On the radial sides δ is so small that we may set $p = c$, which gives

$$-\delta p c^{-1} J_p(\beta p a) [\sin (\frac{1}{2} p \Delta \phi) - \sin (- \frac{1}{2} p \Delta \phi)] V_0 = -p^2 \Delta \phi c^{-1} V_0 J_p(\beta p a)$$ \hspace{1cm} (6)$$

The sum of (5) and (6) gives the left side of (4). When we write dS_0 for $c \delta \Delta \phi$, substitute for $V_0 dS_0$ from 15.06 (1), combine the Bessel functions by Bessel's equation 5.293 (3), and solve for C_{pq}, we obtain

$$[C_{p} q]_{lm} = \frac{j(2 - \delta_m^0) I d_a J_p(\beta p a) c^{i\beta p a} \omega}{2\pi J_m(\beta p a)(1 + \frac{\omega}{c})}\]$$

It should be noted that, in (3) and (7), $-J_{p+1}(\beta p a)$ may be substituted for $J_p(\beta p a)$ by 5.294 (2) because $J_p(\beta p a)$ is zero.

15.08. Loop Coupling with Circular Guide.—The formulas of the last article may be applied to a square plane loop at $\phi = 0$ in a wave guide of radius a closed by a conducting wall at $z = 0$ where clearly the boundary condition is satisfied by using an image loop, as shown in Fig. 15.08. The current is assumed uniform although the integrals can be set up for any given distribution. Only the radial sections of the loop generate TE waves. Addition of the contributions to D_{mn} given by 15.07 (2) for elements $I d \rho_0$ at $\rho_0, d; -I d \rho_0$ at $\rho_0, b; I d \rho_0$ at $\rho_0, -b$; and $-I d \rho_0$ at $\rho_0, -d$ and integration from $\rho_0 = c$ to $\rho_0 = a$ give, when $z \pm d$,

$$[D_{mn}]_{lc} = \frac{-2 m \mu I [\sin (\beta_m a d) - \sin (\beta_m b)]}{\pi \beta_m a} \int_{\beta_m a}^{\beta_m c} J_m(\nu) d \nu$$ \hspace{1cm} (1)$$

where β_m is given by 15.03 (2) and β_m^2 is $\beta^2 - \beta_m^2$. The integral can be evaluated numerically by using for $J_m(\nu)$ the series 5.293 (3) of which only a few terms are usually needed. The TE fields are given by putting this value of D_{mn} into 15.03 (5) and (6) and equating G_{mn} to zero.

The last article shows that TM waves will be generated by all sides of the loop. Proceeding as for the TE waves but using 15.07 (3) instead of 15.07 (2), we find for the sides of the loop, when $z > d$,

$$[C_{mn}]_{lm} = \frac{j \mu I_0 (2 - \delta_m^0) [\sin (\beta_m a d) - \sin (\beta_m a b)]}{\pi \beta_m a J_m(\beta_m c)}$$

From Fig. 15.08 for the longitudinal wires, we add by 15.07 (7) effects of elements at z_0 and $-z_0$ and integrate from $z_0 = b$ to $z_0 = d$, which gives

$$z > d, \quad [\tilde{C}_{mn}]_{lm} = \frac{(2 - \delta_m^0) \mu I_0 [\sin (\beta_m a d) - \sin (\beta_m a b)]}{\pi \beta_m a J_m(\beta_m c)}$$ \hspace{1cm} (3)$$
Addition of (2) and (3) gives, since \(\beta^2 \) equals \(\beta'_{mn}^2 + \beta''_{mn}^2 \) by 15.00 (7), for all \(\text{TM} \) modes generated by the loop

\[
[\tilde{C}_{mn}]_{lm} = \frac{j(2 - \delta''_{mn}) \mu I_0 [\sin (\beta'_{mn} d) - \sin (\beta''_{mn} b)] J_m(\beta_{mn} c)}{[\beta'_{mn} \beta_{mn} \alpha J_m(\beta_{mn} \alpha)]^2} (4)
\]

This value, when substituted in 15.03 (8) and (9), gives the fields. For transmitted waves \(\beta'_{mn} \) is real so that the trigonometric terms in the numerators may be written, by \(P_c \, 591 \) or \(Dw \, 401.09,

\[
\sin (\beta'_{mn} d) - \sin (\beta'_{mn} b) = 2 \sin [\pi (d - b) \chi_{mn}^{-1}] \cos [\pi (d + b) \chi_{mn}^{-1}] (5)
\]

It is at once evident that if the length \(d - b \) of the loop is an integral number of guide wave lengths or if the distance \(\frac{1}{2}(d + b) \) of its center from the closed end is an odd number of half wave lengths, then this mode is not excited. If the bottom of the loop lies on the guide axis, only axially symmetrical \(\text{TM} \) waves appear because \(J_m(0) = 0 \) unless \(m = 0 \).

15.09. Orifice Coupling with Circular Guide.—In the last article, the wave-guide excitation was calculated for an assumed current distribution in the antenna or current loop. We shall now calculate it by assuming the tangential electric field component over an orifice. The propagation space of a coaxial line is bounded by the cylinders \(\rho = b \) and \(\rho = c \) where \(c > b \) and terminates in the plane \(z = 0 \) which is perfectly conducting save for the annular opening. This plane closes the end of a circular wave guide which is bounded by the cylinder \(\rho = a \) extending from \(z = 0 \) to \(z = \infty \). From symmetry it is clear that only the \(\text{TM} \) waves independent of \(\phi \) can be excited and, from 15.04 (6) and 15.03 (8), we must have

\[
J_0(\beta_n a) = 0, \quad \tilde{E}_\rho = \omega \sum_{n=1}^{\infty} \tilde{C}_n \beta'_{n} \beta_n J_1(\beta_{n} \rho) e^{-i \beta_{n} z} (1)
\]

As in 14.21 (2), the assumed boundary conditions at \(z = 0 \) are

\[
0 < \rho < b, \quad \tilde{E}_\rho = 0; \quad b < \rho < c, \quad \tilde{E}_\rho = \tilde{V}_0 [\rho \ln (b/c)]^{-1}; \quad c < \rho < a, \quad \tilde{E}_\rho = 0 \quad (2)
\]

Insert these values for \(\tilde{E}_\rho \) into (1), multiply both sides by \(\rho J_1(\beta_{n} \rho) \, d\rho \), integrate from \(\rho = 0 \) to \(\rho = a \), and solve for \(\bar{C}_n \), and we get

\[
\bar{C}_n = \frac{2 \tilde{V}_0 [J_0(\beta_n b) - J_0(\beta_n c)]}{\omega \beta'_n \beta_n^2 a^2 \ln (b/c)[J_1(\beta_n a)]^2} (3)
\]

To estimate the input impedance of the guide when coupled to the coaxial line, integrate Poynting's vector over the opening. From 13.11 (2) by using the ratio of \(E_\rho \) to \(B_\phi \) obtained from 15.03 (8) and (9), we have

\[
\bar{I} = \frac{1}{2 \mu} \int \tilde{E}_\rho \tilde{B}_\phi \, dS = \frac{\beta^2}{2 \omega \mu \beta'_{n}} \int_b^c \tilde{E}_\rho^2 2 \pi \rho \, d\rho = \frac{V^2_0}{2 \bar{Z}_i} (4)
\]
The square of (1) is integrated by 5.297 (3).

$$\frac{1}{\tilde{Z}_i} = \frac{4\pi\omega\epsilon}{a^4\ln^2(b/c)} \sum_{n=1}^{\infty} \frac{[J_0(\beta_n b) - J_0(\beta_n c)]^2[[cJ_1(\beta_n c)]^2 - [bJ_1(\beta_n b)]^2]}{\beta_n^2 \beta_n'[J_1(\beta_n a)]^2}$$

(5)

Thus the guide represents a set of parallel impedances, one for each mode. For transmitted modes, β_n' is real giving resistive impedance; for others, β_n' is imaginary giving reactive impedance. An exact solution requires a matching of fields across the opening, using 15.04 (5) on the coaxial side.

15.10. Plane Discontinuities in Rectangular Guides.—The junction of two rectangular wave guides which are affixed normally to opposite sides of the perfectly conducting $z = d$ plane in which holes are cut to connect their interiors, forms a plane discontinuity. If in both guides only the TE_{10} wave is propagated, then standing waves may be set up as in 15.05 so that there is an electric node at $z = d$. Then, by the reasoning of 15.05, such a junction must act as a shunt element \tilde{Z}_s across the line at $z = d$. Now consider a special case where λ_{10} is the same on both sides of $z = d$ and suppose a TE_{10} standing wave is set up so that the nearest electric nodes are at $z = 0$ and $z = 2d$. From 15.02 (3), the TE_{10} electric field is

$$E_y = E_0 \sin \frac{\pi x}{a} \sin \beta_{10} z \cos \omega t$$

(1)

when $0 < z < d$. Higher mode fields must be present to cancel this field where it is tangent to conducting surfaces at $z = d$. By 15.02 (3), these contain the factor $e^{-j\beta_{m'}(z-d)}$ which, when λ_{10} is large, will confine them to a z-interval so short that all local fields are in phase so that by 15.05 (1) their configuration may be found by static field methods.

The wave guide section $0 < z < 2d$ is now equivalent to the T-section of Fig. 10.12b short-circuited at $A'A''$ ($z = 0$) and $B'B''$ ($z = 2d$) when $\tilde{Z}_a = \tilde{Z}_b$, $\tilde{Z}_2 = \tilde{Z}_s$, and it oscillates in the mode for which $i_{r+1} = -i_r$ and $\frac{1}{2}Z_a + \tilde{Z}_s$ is zero. It is usual in treating wave-guide obstacles to use “normalized” impedances which we shall designate by a superior 0. These are obtained by dividing each impedance by the characteristic guide impedance which normalizes to one. For a wave guide transmitting the TE_{10} mode with no attenuation, 10.18 (10) then becomes

$$\tilde{Z}_i^0 = \frac{\tilde{Z}_i^0 \cos \beta_{10} l + j \sin \beta_{10} l}{\cos \beta_{10} l + jZ_L^0 \sin \beta_{10} l}$$

(2)

For the short-circuited T-section, $Z_L^0 = 0$ and $l = d$ so for resonance

$$Z_s^0 = -\frac{1}{2}Z_i^0 = -\frac{1}{2}j \tan \beta_{10} d$$

(3)

Now consider the special case where all sections parallel to the $x = 0$
plane, and hence to the electric field, look alike. At \(z = d \), there may be steps in the walls or irises, or both. The electric fields parallel the \(x = 0 \) plane so that, in the region near \(z = d \) where phase differences can be neglected, \(E \) at any value of \(x \) must obey the equation of continuity in \(y \) and \(z \) and can be derived from a potential that satisfies Laplace's equation in \(y \) and \(z \). Identical currents cross all electric nodes in the guide so that the total charge on top or bottom between nodes is the same. Let the charge per unit width in the interval \(0 < z < 2d \) at some value \(x_0 \) of \(x \) be \(Q_{10} \) for the \(TE_{10} \) mode and \(Q_0 \) for all the modes. Let the static discontinuity capacitance per unit width be \(C_1 \) and the potential across the guide at \(x = x_0, z = d \) be \(V_d = bE_d \). Then, from (1),

\[
C_1 = \frac{Q_0 - Q_{10}}{bE_d} = \frac{2}{bE_d} \left(\int_0^{1/\alpha_\lambda} eE_y \, dz - \int_0^d eE_y \, dz \right) = \frac{2\varepsilon \cot \beta_{10}'d}{b\beta_{10}'}
\] (4)

Insertion of this value in (3) gives

\[
Z_s^0 = \frac{\varepsilon}{j\beta_{10}'C_1} = \frac{1}{j\omega C_0} \quad \text{or} \quad C^0 = \frac{b\beta_{10}'}{\omega\varepsilon}C_1
\] (5)

Thus the discontinuity is capacitative.

As a specific example, consider an iris which leaves a window of height \(c \) in a guide of height \(b \), as shown in Fig. 4.22b where the equipotentials are dotted except at the boundaries \(U = 0 \) and \(U = \frac{1}{2} \pi \). Insertion of \(a = c, W = jV \), and \(z = jd \) in 4.22 (6) gives for \(V \), as \(V \) and \(d \) approach infinity,

\[
V = \frac{\pi d}{2b} - \ln \sin \frac{\pi c}{2b} = \frac{\pi d}{2b} + \ln \csc \frac{\pi c}{2b}
\] (6)

The charge per unit length between 0 and \(d \) is \(\varepsilon V \). The last term times \(\varepsilon \) equals half the additional charge on the guide due to the presence of the iris for a potential difference of \(\frac{1}{2} \pi \). Therefore, twice the second term multiplied by \(2\varepsilon / \pi \) gives \(C_1 \). Insertion of \(C_1 \) into (5) and substitution of \(2\pi \alpha_{\lambda}^{-1} \) for \(\beta_{10}' \) give for the normalized susceptance \(B^0 \)

\[
B^0 = \omega C^0 = \frac{8b}{\lambda_\lambda} \ln \csc \frac{\pi c}{2b}
\] (7)

For the symmetrical iris bounded by \(U = -\frac{1}{2} \pi \) and \(U = \frac{1}{2} \pi \) in Fig. 4.22b the only change is the potential difference which is now \(\pi \) instead of \(\frac{1}{2} \pi \) so that (7) must be divided by 2. The least attenuated higher mode, the \(TE_{11} \), is now eliminated by the symmetry so the result is slightly more precise. From Fig. 4.22b, the centered capacitative strip behaves in exactly the same way as the symmetrical iris.

Another interesting case is when all sections parallel to the \(y = 0 \) plane, and hence to the magnetic field, look alike. From 15.02 (4), the
amplitudes of the components of B at $z = d$ are, since $\beta_{m_0} = m\pi/a$,

$$B_x = A \beta_{10}' \cos (\beta_{10}' d) \sin \frac{\pi x}{a} + \sum_{m=2}^{\infty} m A |\beta_{m_0}'| \cosh |\beta_{m_0}' d| \sin \frac{m\pi x}{a}$$

(8)

$$B_z = -\frac{\pi A_1}{a} \sin (\beta_{10}' d) \cos \frac{\pi x}{a} - \sum_{m=2}^{\infty} \frac{m^2 \pi}{a} A_m \sinh |\beta_{m_0}' d| \cos \frac{m\pi x}{a}$$

(9)

Multiplication of (8) by $\sin (\pi x/a) \, dx$ and (9) by $\cos (\pi x/a) \, dx$, integration from $x = 0$ to $x = a$, and elimination of A_1 give

$$\tan (\beta_{10}' d) = -\frac{\beta_{10}' a \int_0^a B_x \cos (\pi x/a) \, dx}{\pi \int_0^a B_z \sin (\pi x/a) \, dx}$$

(10)

This requires a static approximation to the higher modes only in the $z = d$ plane, not over their whole range, so it may give more precision than (4).

As a specific example, take the symmetrical iris with a gap of width c as shown in Fig. 15.10a. Evidently the magnetic lines that encircle the window's center pass through it in opposite directions on the two sides.

The two maps in this figure bear the same relation to each other as those in Fig. 4.22b. The field in b results from cutting a slit of width 2 in an infinite sheet of zero permeability that separates two opposite and equal uniform magnetic fields. Figure 4.23 shows the upper field by itself with $a = 1$. Superposition of the two by 4.23 (2) gives Fig. 15.10b, and application to this of the transformation below Fig. 4.22b, modified to put the origin at the base of the iris, gives Fig. 15.10a. Thus,

$$W = C'(z_1'^2 - 1)^4, \quad z_1' = b_1 \sin \frac{\pi (z' - \frac{1}{2}a)}{a}$$

(11)

Elimination of z_1' and the requirement that $z' = \frac{1}{2}(a - c)$ when $z_1' = 1$
give
\[W = C \left(\cos^2 \frac{\pi x}{a} - \sin^2 \frac{\pi c}{2a} \right)^{\frac{1}{2}} \] \hspace{1cm} (12)

For the \(z = d \) plane of the guide, \(y' = 0 \), so this yields by 4.11 (1)
\[B_x + jB_z = \pm C \frac{\partial}{\partial x} \left(\cos^2 \frac{\pi x}{a} - \sin^2 \frac{\pi c}{2a} \right)^{\frac{1}{2}} \] \hspace{1cm} (13)

Thus, with respect to the guide axis \(B_x \) is an even function which is zero when \(\frac{1}{2}(a - c) < x < \frac{1}{2}(a + c) \) and \(B_z \) is an odd function which is zero when \(0 < x < \frac{1}{2}(a - c) \) and when \(\frac{1}{2}(a + c) < x < a \). The integration in (10) can be done by parts letting \(dv = B_x \, dx \) and \(u = \sin \left(\frac{\pi x}{a} \right) \) in one and \(dv = B_z \, dx \) and \(u = \cos \left(\frac{\pi x}{a} \right) \) in the other. The \(uv \) products are zero and, if \(\sin \left(\frac{\pi x}{a} \right) \) is replaced by \(t \cos \left(\frac{\pi x}{a} \right) \) in one and \(\cos \left(\frac{\pi x}{a} \right) \) by \(t \sin \left(\frac{\pi x}{a} \right) \) in the other, they lead to \(Dw = 350.01 \). Substitution in (10) and (3) gives
\[\bar{Z}_z = j \frac{a}{h} \tan^2 \frac{\pi c}{2a} = j \omega L_z \] \hspace{1cm} (14)

The iris is therefore inductive, and the normalized shunt susceptance is
\[B^o = \frac{B}{Y_k} = -\frac{1}{\omega L} = -\frac{\lambda_g}{a} \cot^2 \frac{\pi c}{2a} \] \hspace{1cm} (15)

Other iris results appear in the problems at the end of the chapter.

15.11. Cavity Resonators. Normal Modes.—When an electromagnetic disturbance occurs in a closed cavity with perfectly conducting walls so the energy cannot be dissipated, waves reflect back and forth between the walls indefinitely. Because the tangential electric field vanishes at each wall, a wave of arbitrary form must be built up of elementary standing waves of frequencies such as to give electric nodes at the walls. These standing waves constitute the normal oscillation modes of the cavity. Clearly, when two continuous waves having the same frequency, polarization, and intensity travel in opposite directions on a transmission line or a wave guide, there are transverse electric nodes at half wave length intervals. If we form a cavity by inserting at any two nodes perfectly conducting plane sheets normal to the axis of the guide, then that portion of the trapped waves between the sheets is a normal mode of the cavity. It is evident that, if the spacing of the sheets is arbitrary, then the normal frequencies will be those for which the guide wave length is an integral number of half wave lengths. This fact can be used to find the normal or natural oscillation frequencies of cavities formed in the manner just described from any section of wave guide. The two oppositely directed waves in 15.00 (6) must have equal amplitudes so \(\bar{C} = \pm \bar{D} \). If the cavity ends are at \(z = 0 \) and \(z = d \), then for a nondissipative cavity the
real part of 15.00 (6) becomes, for one of the \(p \)th transverse electric modes,

\[
W_{te} = [A U_1(u_1, u_2) + B U_2(u_1, u_2)]_{te} \sin \frac{p \pi z}{d} \cos (\omega_p t + \psi_p)_{te} \tag{1}
\]

and for one of the \(p \)th transverse magnetic modes,

\[
W_{tm} = [A U_1(u_1, u_2) + B U_2(u_1, u_2)]_{tm} \cos \frac{p \pi z}{d} \cos (\omega_p t + \psi_p)_{im} \tag{2}
\]

where \(\beta_{mn}' \) is chosen equal to \(p \pi /d \) to make the tangential electric field vanish over the ends. The boundary conditions of 15.00 (4), (5), and (7) used to determine \(\beta_{mn} \) still hold. Thus, writing \(\beta_{mnp} \) for \(\beta_{mn} \) and \(mnp \) for \(p'_{mn} \), we may solve 15.00 (7) for the normal frequency of the \(mnp \)th mode in an evacuated cavity.

\[
\omega_{mnp} = (\mu_\varepsilon_\varepsilon_\nu)^{-1} \beta_{mnp} = v \beta_{mnp} = v(\beta_{mn}^2 + \beta_{mn}'^2)^{1/4} = v[\beta_{mn}^2 + p^2 \pi^2 d^{-2}]^{1/4} \tag{3}
\]

For rectangular wave guides \(\beta_{mn} \) is given by 15.02 (2), for circular wave guides by 15.03 (2), and for the higher modes of the coaxial wave guide by 15.04 (6). For the principal coaxial modes, \(\beta_{mn} \) is zero by 15.00 (5).

15.12. Independent Oscillation Modes of a Cavity.—An electromagnetic disturbance in a cavity will usually excite several modes simultaneously. We shall now prove that the instantaneous total energy is the sum of the instantaneous energies of each of the constituent modes. To prove that

\[
\int_V E^2 \, dV = \sum_{i=1}^n \int_V E_i^2 \, dV \quad \text{and} \quad \int_V B^2 \, dV = \sum_{i=1}^n \int_V B_i^2 \, dV \tag{1}
\]

we substitute \(E_i \) or \(B_i \) for \(\mathbf{E} \) and \(E_j \) or \(B_j \) for \(\Phi \) in the vector analogue, 3.06 (6), of Green's theorem, and for the double curl we write \(\omega_i^2 \mu_\varepsilon \) from 13.01 (1) or (2). Thus, we obtain

\[
\mu_\varepsilon (\omega_i^2 - \omega_j^2) \int_V E_i \cdot E_j \, dV = \int_S [E_j \times (\nabla \times E_i) - E_i \times (\nabla \times E_j)] \cdot \mathbf{n} \, dS \tag{2}
\]

But \(E_i \) and \(E_j \) are normal to the boundary, so both vectors in the bracket are tangential to it and their scalar product with \(\mathbf{n} \) is zero. Thus the surface integral is zero, and we have, since \(E = -j \omega A, \)

\[
\omega_i \neq \omega_j, \quad \int_V E_i \cdot E_j \, dV = \int_V B_i \cdot B_j \, dV = \int_V A_i \cdot A_j \, dV = 0 \tag{3}
\]

Thus, in any perfectly conducting cavity filled with a nondissipative dielectric, those oscillation modes having different frequencies are quite independent. If cavity losses are so large that the resonance curves of two modes overlap, then such conclusions are not valid because the first factor on the left side of (2) may be zero part of the time.
The vector potential used here is always derived by taking the curl of W so that its divergence is zero. As shown in 14.01, all fields that satisfy Maxwell’s equations are derivable from such potentials if charges are absent. If the cavity contains an electrode carrying an oscillating charge, then by 14.01 (1) a scalar potential satisfying Poisson’s equation is needed whose electric field throughout the cavity oscillates in phase with the charge. That this field $-\nabla\Phi$ has an energy independent of that of the field $-j\omega A$ or $-j\omega \nabla \times W$ is proved from 3.00 (2) by writing

$$\int_V (\nabla \times W) \cdot \nabla \Phi \, dv = \int_V \nabla \cdot (W \times \nabla \Phi) \, dv = \int_S n \cdot (W \times \nabla \Phi) \, dS = 0 \quad (4)$$

The surface integral is zero because $\nabla \Phi$ is parallel to n.

15.13. Inductance and Capacitance of Cylindrical Cavity.—In general, the distribution of charges, currents, and potentials over the cavity walls is such that no self-consistent definition of these quantities according to lumped circuit concepts is possible. To be useful, a definition must give current, inductance, capacitance, energy, and resonant frequency of the same order of magnitude as in a lumped circuit. As defined here, the cavity current for any mode equals the volume rms value of the displacement current density multiplied by the average transverse cross-sectional area $S_c = 2^{-1} S_0$ for a TM or by the mean longitudinal cross-sectional area $S_c = (\frac{1}{4} S_0) d$ for a TE wave. Clearly this fits the usual definition of current in a linear LC transverse magnetic circuit when the capacitor field is uniform and of area S_c. Thus from Maxwell’s first equation 13.00 (1), the instantaneous current in the ith mode is, if $\omega^2 \mu e A$ is written for $\nabla \times \nabla \times A$,

$$I_i = S_c \left[\frac{1}{V} \int_V \left(\frac{\partial D_i}{\partial t} \right)^2 \, dv \right]^{\frac{1}{2}} = \omega^2 S_c \left[\frac{1}{V} \int_V (\nabla \times B_i) \cdot (\nabla \times B_i) \, dv \right]^{\frac{1}{2}}$$

$$= \omega^2 e S_c \left[\frac{1}{V} \int_V A_i \cdot A_i \, dv \right]^{\frac{1}{2}} \quad (1)$$

where V is the cavity volume. From 8.02 (2), 13.00 (1), and 8.02 (3) the instantaneous magnetic energy is

$$W_M = \frac{1}{2\mu} \int_V (\nabla \times B) \cdot A \, dv = \sum_{i=1}^{n} \frac{\omega^2 e}{2} \int_V A_i \cdot A_i \, dv = \frac{V}{2\epsilon \mu} \sum_{i=1}^{n} I_i^2 \quad (2)$$

From (1) and 1.14 (6), the instantaneous electrical energy is

$$W_E = \frac{1}{2\epsilon} \int_V D^2 \, dv = \frac{1}{2\epsilon} \left\{ \int \left[\int \left(\frac{\partial D}{\partial t} \right)^2 \, dv \right] \, dt \right\}^{\frac{1}{2}} = \frac{V}{2\epsilon \mu} \sum_{i=1}^{n} (\int I_i \, dt)^2 \quad (3)$$

Writing q_i for $\int I_i \, dt$ shows that (2) and (3) represent the energy in n
§15.14 DAMPING OF NORMAL MODES. CAVITY RESISTANCE

We note that the resonance relation $\omega^2 = LC$ is satisfied and that the capacitance is the same for all modes of one type in a given cavity.

15.14. Damping of Normal Modes. Cavity Resistance.—Thus far we have assumed perfectly conducting walls in all the normal mode calculations. Most metals used are such good conductors that a free oscillation must go on many cycles before any damping is observable. This justifies using the formulas already derived to calculate the energy losses in the walls by the skin effect formulas of 11.02. Thus, from 11.02(10),

$$P = (2\mu^2\gamma^2)^{-1}\int B_t \cdot B_t dS$$ \hspace{1cm} (1)

where γ and δ are the conductivity and skin thickness for the wall and B_t is the tangential component of the magnetic induction amplitude at the wall. The damping properties of a cavity resonator are usually expressed in terms of its "Q" value which may be defined by the equation

$$W_t = W_0 e^{-\frac{t}{Q}}$$ \hspace{1cm} (2)

where W_t is the energy at a time t after W_0. Division of this equation by its derivative with respect to t gives

$$Q = -\omega W \left(\frac{\partial W}{\partial t}\right)^{-1} = \frac{\omega W}{P}$$ \hspace{1cm} (3)

Note from 15.13 (2) and (3) that the total energy swings back and forth between purely electric and purely magnetic, but the sum remains constant except for the damping factor. We may therefore equate the total energy to the maximum magnetic energy of 15.13 (2) so that

$$Q = \frac{\omega^3 \mu^2 \gamma^2}{\int B_t \cdot B_t dS} = \frac{\omega \mu \gamma \delta}{\int B_t \cdot B_t dS} = \frac{2\mu \int B^2 dv}{\mu' \delta \int B^2 dS}$$ \hspace{1cm} (4)

In 9.02 (5) the damping factor in both q and i is $-\frac{1}{2}R_t/L$, so by 9.01 (1) it is $-R_t/L$ for W. Thus from (3) and 15.13 (4), the resistance of the cavity of volume V for the ith mode is

$$R_i = \frac{\omega_i L_i}{Q_i} = \left[\frac{2d}{\omega_i \varepsilon S_0 Q_i}\right]_{tm} = \left[\frac{2}{\omega_i \varepsilon d Q_i}\right]_{te}$$ \hspace{1cm} (5)

With wall losses the resonance frequency ω will be less than $\omega_0 = (LC)^{-1}$. If d/dt is replaced by $j\omega$ in the differential equation for oscillation and if R is so small that $\omega + \omega_0 \approx 2\omega_0$ and $\omega_0 \approx \omega^2$, there results

$$-L \omega^2 + j\omega R + C^{-1} = 0 \quad \text{or} \quad \Delta \omega = |\omega - \omega_0| \approx \frac{1}{2} \omega_0 Q^{-1}$$ \hspace{1cm} (6)
15.15. Normal Modes of a Cylindrical Cavity.—An expression for the natural oscillation frequencies of a cylindrical cavity appeared in 15.11 (3) and for the inductance and capacitance in 15.13 (4) and (5). We need to express the cavity current, Q factor, and field strengths in terms of the cavity dimensions. To simplify these operations we need a formula which is proved with the aid of 15.01 (5), as follows

$$\int_V (\nabla \times kW) \cdot (\nabla \times kW) \, dv = \int_V (\nabla_2 W)^2 \, dv$$

$$= \int_{S_0} (\nabla_2 U)^2 \, dS \int_0^d \left(\frac{\sin^2 \frac{\pi z}{d}}{\cos} \right) \, dz = \frac{\beta_{mn}^2 d}{2 - \delta_0^2} \int_{S_0} U^2 \, dS \quad (1)$$

The cavity current by this formula, 15.00 (2), and 15.13 (1) is

$$I_{te} = \omega^2 e S_0 \left[\frac{1}{\mu} \int_V A \cdot A \, dv \right] = \frac{\beta_{mn}^2}{2\mu} \left[\int_{S_0} (U_{te})^2 \, dS \right] \cos (\omega t + \phi) \quad (2)$$

For the TM modes, we write the volume integral in terms of B instead of A as in 15.14 (4) so that, with the aid of (1) and 15.00 (2), we get

$$I_{tm} = \frac{\beta_{mnp}}{\mu} \left[\frac{S_0}{2d} \int_V B \cdot B \, dv \right]$$

$$= \frac{\beta_{mnp}^3}{2(2 - \delta_0^2)} \int_{S_0} (U_{tm})^2 \, dS \cos (\omega t + \phi) \quad (3)$$

From 15.00 (2), 15.11 (1), and 15.11 (2), the fields are

$$E_{te} = -\frac{\partial A_{te}}{\partial t} = \omega_p (k \times \nabla U_{te}) \sin \frac{\pi z}{d} \sin (\omega_p t + \phi_p) \quad (4)$$

$$B_{te} = \left(\frac{\pi}{d} \nabla_2 U_{te} \cos \frac{\pi z}{d} + k\beta_{mn}^2 U_{te} \sin \frac{\pi z}{d} \right) \cos (\omega_p t + \phi_p) \quad (5)$$

$$E_{tm} = \omega_p \left(\frac{\pi}{d} \nabla_2 U_{tm} \sin \frac{\pi z}{d} - k\beta_{mn}^2 U_{tm} \cos \frac{\pi z}{d} \right) \sin (\omega_p t + \phi_p) \quad (6)$$

$$B_{tm} = -\beta_{mn}^2 (k \times \nabla U_{tm}) \cos \frac{\pi z}{d} \cos (\omega_p t + \phi_p) \quad (7)$$

To calculate Q we must evaluate the surface integral in 15.14 (4). For one end surface from (2), (5), and 15.01 (5),

$$\int_{S_0} B_{te} \cdot B_{te} \, dS = \frac{\beta_{mn}^2 d^2}{2} \int_{S_0} (\nabla_2 U_{te})^2 \, dS = \frac{\beta_{mn}^2 d^2}{2} \int_{S_0} U_{te}^2 \, dS = \frac{4\pi^2 \mu^2 \beta_{mn}^2}{\beta_{mn}^4 \mu^2} I_{te}^2 \quad (8)$$

Substitution for the volume integral of 15.14 (4) from (2) gives

$$Q_{te} = \frac{\beta_{mn}^4 d^3 \gamma \delta}{4 \pi^2 \omega \mu^2} \left(1 + \frac{\beta_{mn}^4 d^4}{8 \pi^2 \mu^2 I_{te}^2} \int_{S_0} B_{te}^2 \, dS \right)^{-1} \quad (9)$$

where S_1 is the side surface. For one TM end (7), 15.01 (5) and (3) give

$$\int_{S_0} B_{tm} \cdot B_{tm} \, dS = \beta_{mn}^4 \beta_{mn}^2 \int_{S_0} U_{tm}^2 \, dS = \frac{2\mu^2 (2 - \delta_0^2) I_{tm}}{\beta_{mn}^4 S_0} \quad (10)$$
Substitute for the volume integral of 15.14 (4) from 15.13 (1),

\[Q_{lm} = \frac{\omega \mu \gamma \delta d}{2(2 - \delta_p^2)} \left[1 + \frac{\beta_{mn,p}^2}{4\mu^2(2 - \delta_p^2)} \int_{S_1} B_{lm}^2 dS \right]^{-1} \]

(11)

In the articles that follow the detailed properties of the rectangular, right circular, and coaxial cylindrical cavities are worked out. Results for other simple forms appear in the problems at the end of the chapter.

15.16. Properties of a Rectangular Cavity.—From Eqs. 15.11 (3) and 15.02 (2), the natural frequencies of a rectangular cavity are

\[\nu_{mn,p}^2 = \frac{v^2}{\lambda_{mn,p}^2} = \frac{v^2}{4\left(\frac{a^2}{b^2} + \frac{n^2}{b^2} + \frac{p^2}{b^2}\right)} = \frac{v^2}{4\pi^2\beta_{mn,p}^2} \]

(1)

From 15.02 (1) and 15.15 (4) to (7), the fields are

\[E_{\theta} = \pi \omega_{mn,p} C \left[-i \frac{n}{b} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b} + j \frac{m}{a} \cos \frac{m\pi y}{a} \sin \frac{n\pi x}{b} \right] \sin \frac{p\pi z}{d} \sin (\omega t + \psi)_{mn,p} \]

(2)

\[B_{\theta} = \pi^2 C \left\{ \frac{p}{d} \left[i \frac{m}{a} \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} + j \frac{n}{b} \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} \right] \cos \frac{p\pi z}{d} \right.

+ \left. \kappa \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right) \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \cos \frac{p\pi z}{d} \right\} \cos (\omega t + \psi)_{mn,p} \]

(3)

\[E_{im} = \pi^2 C' \left\{ i \frac{m}{a} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b} + j \frac{n}{b} \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} \right.

- \left. \kappa \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right) \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \cos \frac{p\pi z}{d} \right\} \sin (\omega t + \psi)_{mn,p} \]

(4)

\[B_{im} = -\pi^2 C' \left[j \frac{m}{a} \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} - i \frac{n}{b} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \right] \cos \frac{p\pi z}{d} \cos (\omega t + \psi)_{mn} \]

(5)

When \(m, n, \) or \(p \) is zero, \(E \) lies along the corresponding axis and \(\nu \) is then independent of its length. In this most common case, the fields become, taking \(p = 0 \) and writing \(C_0 \) for \(\pi^2 (m^2 a^{-2} + n^2 b^{-2}) C' \),

\[E_z = -\omega_{mn} C_0 \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \sin (\omega t + \psi)_{mn} \]

(6)

\[B = \pi C_0 \left(j \frac{n}{b} \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} - i \frac{m}{a} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \right) \cos (\omega t + \psi)_{mn} \]

(7)

If the electric field is along any other axis, the fields are given by a cyclic permutation of \(x, y, z, a, b, c \) and \(m, n, p, \) \(T_{\theta} \), \(C_i \), and \(I_i \) near the values for an equivalent lumped circuit, one treats this as a \(TM \) mode. Figure 15.02a represents the fields in a cavity as well as those in a wave...
guide except that the upper map is a section through CD instead of AB. The pattern is stationary instead of progressive, and E vanishes as B reaches its maximum and vice versa. The transverse boundaries must be drawn to cut the E-lines normally. If $m = 0$ and $n = 0$ are excluded from I_{te}, the cavity currents are, from 15.15 (2) and 15.15 (3),

$$I_{te} = \frac{\beta_{mn} \beta_{mm}(ab)^4 dC}{4\mu} \cos (\omega t + \psi), \quad I_{tm} = \frac{\beta_{mn} \beta_{nn} ab C'}{2\mu(2 - \delta_p^2)} \cos (\omega t + \psi) \quad (8)$$

If none of the integers m, n, p is zero, we have, from 15.15 (9) for Q_{te}

$$Q_{te} = \frac{\frac{1}{2} \nu \mu \gamma \delta \pi (m^2 b^2 + n^2 a^2)(m^2 b^2 d^2 + n^2 a^2 d^2 + \rho^2 a^2 b^2)}{p^2 a^2 b^2[m^2 b^2 + n^2 a^2 + d^2(a + b)(m^2 b^2 + n^2 a^2)]} \quad (9)$$

Since A_{tm} vanishes if m or n is zero, we have, from 15.15 (11), for Q_{tm}

$$Q_{tm} = \frac{\nu \mu \gamma \delta \pi d(a^2 + b^2)^2}{2[ab(2 - \delta_p^2)(m^2 b^2 + n^2 a^2) + 2d(n^2 a^2 + m^2 b^2)]} \quad (10)$$

Evidently from (1) the lowest possible frequency occurs when the integer corresponding to the shortest dimension is zero and the others are one. If $p = 0$ and d is the shortest dimension, we have

$$Q_{tm} = \frac{\nu \mu \gamma \delta \pi d(a^2 + b^2)^2}{2[ab(a^2 + b^2) + 2d(a^2 + b^2)]} \quad (11)$$

For a rectangular $(a = b)$ box and a cubical $(a = b = d)$ one, we get

$$Q_{tm} = \frac{\nu \mu \gamma \delta \pi d}{2d(a + 2d)}, \quad Q_{tm} = \frac{\nu \mu \gamma \delta \pi}{243} \quad (12)$$

where v is the free wave velocity in the dielectric of permeability μ in the cavity, γ is the wall conductivity, and δ is the skin depth. Numerical results appear in the problems at the end of the chapter.

15.17. Properties of a Right Circular Cylindrical Cavity.—From 15.11, the natural frequencies of this cavity are, in terms of the velocity v and wave length λ_{mn} of a free wave in the medium that fills it

$$\nu_{mn}^2 = \frac{v^2}{\lambda_{mn}^2} = \frac{v^2}{4\pi^2 \left(\frac{\beta_{mn}}{2} + \frac{p^2 \pi^2}{d^2} \right)} = \frac{v^2}{4\pi^2 \frac{\beta_{mn}}{2}} \quad (1)$$

where β_{mn} is chosen to satisfy 15.03 (2). From 15.03 (1) and 15.15 (7), the fields are, if $s(\phi)$ stands for $\sin (m \phi + \psi_m)$, $c(\phi)$ for $\cos (m \phi + \psi_m)$, J_m for $J_m(\beta_{mn} \rho)$, $s(t)$ for $\sin (\omega t + \alpha)$, and $c(t)$ for $\cos (\omega t + \alpha)$,

$$E_{te} = \omega_{mn} \rho \left[\theta_1 \frac{m}{\rho} J_m s(\phi) + \phi \beta_{mn} J_m' c(\phi) \right] \sin \frac{p \pi \rho}{d} s(t) \quad (2)$$

$$B_{te} = C \left(\frac{p \pi}{a} \left[\theta_1 \beta_{mn} J_m c(\phi) - \phi \frac{m}{\rho} J_m s(\phi) \right] \cos \frac{p \pi \rho}{d} + \kappa \beta_{mn} J_m c(\phi) \sin \frac{p \pi \rho}{d} \right) c(t) \quad (3)$$
\[E_{tm} = \omega_{mn} C \left(\frac{p \pi x}{d} \left[\Phi_{m} J_{m} (\phi) - \frac{m}{\rho} J_{m} (\phi) \right] \right) \sin \frac{p \pi x}{d} \]

\[- k^2 m J_{m} (\phi) \cos \frac{p \pi x}{d} \right] s(t) \]

(4)

\[B_{im} = - \beta_{mn} \left[\frac{m}{\rho} J_{m} (\phi) + \Phi_{m} J_{m} (\phi) \right] \cos \frac{p \pi x}{d} c(t) \]

(5)

From 15.15 (2), 15.15 (3), and 5.296 (11), the cavity currents are

\[I_{te} = (2\mu)^{-1} dC \beta_{mn}^2 \left[\pi (\beta_{mn}^2 a^2 - m^2) \right] \frac{1}{2} (2 - \delta_m)^{-1} J_m (\beta_{mn} a) \cos (\omega t + \alpha) \]

(6)

\[I_{im} = \mu^{-1} \pi a^2 C \beta_{mn}^2 \delta_m \left[(2 - \delta_m)(2 - \delta_m) \right] J_m (\beta_{mn} a) \cos (\omega t + \alpha) \]

(7)

Since \(p \neq 0 \) for a TE wave, we have, from 15.15 (9) and 15.15 (11),

\[Q_{te} = \frac{v \mu \gamma \delta a \beta_{mn}^2 (\beta_{mn}^2 a^2 - m^2)}{2 \pi (2 - \delta_m) \delta_m \left[(2 - \delta_m)(2 - \delta_m) \right]} \]

(8)

\[Q_{im} = \frac{v \mu \gamma \delta a \beta_{mn}^2}{2 \pi (2 - \delta_m) \delta_m \left[(2 - \delta_m)(2 - \delta_m) \right]} \]

(9)

Numerical results are given in 15.25.

15.18. Multiply Connected Cylindrical Cavities.—In a cavity which is multiply connected, it is possible to draw a closed curve which cannot be contracted to a point without passing outside the cavity. If the cavity is bounded externally by two parallel planes and by a cylindrical surface normal to them and internally by one or more closed cylindrical surfaces also normal to them, modes of oscillation are possible whose frequency depends only on the plane spacing. These are called the principal modes. They satisfy the second set of boundary conditions in 15.00 (5) in which \(\beta_{mn} \) is zero and represent standing waves of the transmission line type treated in 13.14 to 13.18. From 15.11 (3), the resonance frequencies of the principal modes of such a multiply connected cavity are

\[v_p = \frac{\nu}{\lambda_p} = \frac{v}{2\pi} \]

(1)

The fields can be written down from 13.14 (6) and (7). Thus,

\[E = C_p \nabla U(x, y) \sin \frac{p \pi x}{d} \sin \omega_p t, \quad B = C_p (\nu \pi)^{1/2} \nabla V(x, y) \cos \frac{p \pi x}{d} \cos \omega_p t \]

(2)

where \(U(x, y) \) and \(V(x, y) \) are the conjugate functions of Chap. IV and \(U(x, y) \) has the value \(U_1 \) on one set of cylindrical surfaces and \(U_2 \) on the other. From 4.10 (1), the line integral of \(\nabla U \) or \(\nabla V \) around any path of constant \(U \) is the increment \([V] \) in \(V \). This is usually \(2\pi \) as with the elliptic cylinders (write \(U \) for \(V \)) of Fig. 4.22a. Let the instantaneous charge per meter in the \(p \)th principal mode at \(z \) be \(\sigma_p \), and define the charge
of the cavity in terms of a mean \(\sigma_p^2 \), with the aid of 1.15 (1), as follows:

\[
q_p = (d \int_0^d \sigma_p^2 dz)^\frac{1}{2} = [\epsilon d \int_0^d (\mathbf{E}_p dz)^2 dz]^{\frac{1}{2}} = 2^{-1} [d |\mathbf{V}| C_p \sin \omega_p l]
\]

Let the instantaneous \(p \)th mode current on \(U_1 \) or \(U_2 \) at \(z \) be \(I_p \), and define the cavity current in terms of a mean \(I_p^2 \), aided by 7.01 (2), as follows:

\[
i_p = \left(\frac{p^2 \pi^2}{d} \int_0^d I_p^2 dz \right)^\frac{1}{2} = \left[\frac{\omega_p^2 d}{2 \mu \pi^2} \int_0^d (\mathbf{B}_p dz)^2 dz \right]^{\frac{1}{2}} = \frac{ed}{2^\frac{1}{4}} |\mathbf{V}| C_p \omega_p \cos \omega_p l = \frac{d q_p}{d t}
\]

The instantaneous electric and magnetic energies are, therefore,

\[
(W_e)_p = \frac{1}{2C_1} \int_0^d \sigma_p^2 dz = \frac{q^2}{2C_1 d} \\
(W_m)_p = \frac{L_p}{2} \int_0^d I_p^2 dz = \frac{L_p d}{2p^2 \pi^2} i_p^2
\]

where \(C_1 \) and \(L_1 \) are the capacitance and the inductance per unit length. Thus if \(L_p \) and \(C \) are the inductance and capacitance of the cavity, we get with the aid of (1) and 13.14 (11) the following relations:

\[
L_p = \frac{L_1 d}{p^2 \pi^2}, \\
C = C_1 d, \\
\frac{L_p}{\omega_p^2} = \frac{L_1 C_1}{\mu \epsilon}
\]

If \(V_0 \) is the maximum potential difference at any instant between the walls of the cavity, then the electrical energy in the cavity is

\[
W_e = \frac{1}{2} \int_0^d C_1 V_0^2 \sin^2 \frac{p \pi z}{d} dz = \frac{1}{4} C_1 V_0^2 = \frac{1}{2} C V_p^2
\]

where \(V_p \) is \(2^{-\frac{1}{4}} V_0 \). With this definition of \(V_p \), therefore, all the lumped circuit relations between \(L, C, i, q, \) and \(V \) for any principal mode hold. To calculate losses, we evaluate the surface integral in 15.14 (1). Over the end surfaces from (2) and (5), we have

\[
2 \int_{S_e} \mathbf{B} \cdot dS = \frac{4}{d} \int_{V} \mathbf{B} \cdot dV = \frac{8 \mu}{d} (W_m)_p = \frac{4 \mu L_p i_p^2}{d}
\]

Over the two sets \(U_1 \) and \(U_2 \) of curved surfaces, since \(\nabla V, \partial V/\partial s \) and \(\partial W/\partial z \) are identical from (2), we have

\[
\int_{S_{1,2}} \mathbf{B} \cdot dS = \frac{1}{2} \mu \epsilon d C_2 \int_{1,2} (\nabla V)^2 ds \cos^2 \omega_p l
\]

Substitution from (5), (8), and (9) in 15.14 (1) to (3) gives

\[
Q_p = \frac{\mu d}{2 \mu \delta_p} \left[1 + \frac{d}{4 |\mathbf{V}| (U_2 - U_1)} \left(\mathbf{E}_1 |\partial \mathbf{W}/\partial z_1|^{-1} dV + \mathbf{E}_2 |\partial \mathbf{W}/\partial z_1|^{-1} dV \right) \right]^{-1}
\]

To evaluate the line integrals, \(z_1 \) is expressed as a function of \(W \) as in
4.22 (3) so that \(\partial z_1/\partial W \) is a function of \(U \) and \(V \). For the first integral \(U \) is set equal to \(U_1 \), for the second to \(U_2 \), and both are integrated over the range of \(V \) necessary to cover \(U \).

15.19. Coaxial Cable Resonators.—In the simplest kind of multiply connected cavity the curved walls are concentric circular cylinders. The principal modes are found as in the last article. From 4.12, we have

\[
W = \ln z_1, \quad z_1 = e^W, \quad U = \ln \rho, \quad V = \theta
\]

(1)

The fields given by 15.18 (1) and (2) are, therefore,

\[
E_\rho = \frac{C_\rho}{\rho} \sin \frac{p\pi \rho}{d} \sin \omega_p t, \quad B_\theta = \frac{C_\rho}{\rho^2} \cos \frac{p\pi \rho}{d} \cos \omega_p t
\]

(2)

The range \([V]\) of \(V \) is \(2\pi \) so, if the outer radius is \(b \) and the inner \(a \),

\[
(U_2 - U_1) = \ln \frac{b}{a}, \quad \int_1^b \frac{dz_1}{W} = e^{-u_1} \int_0^{2\pi} dV = 2\pi e^{-u_1} = \frac{2\pi}{a}
\]

(3)

In similar fashion the other line integral gives \(2\pi/b \). Substitution of these results in 15.18 (10) gives for the \(p \)th principal mode

\[
Q_p = \frac{\mu d}{2\mu' \delta} \left[1 + \frac{(a + b)d}{4ab \ln (b/a)} \right]^{-1}
\]

(4)

From Eqs. (1), (4), and (6) of the last article, we have

\[
i_p = 2\pi \omega_p edC_\rho \cos \omega_p t, \quad L_p = \frac{\mu d}{2p^3 \pi^3} \ln \frac{b}{a}, \quad C = 2\pi ed \left(\ln \frac{b}{a} \right)^{-1}
\]

(5)

This \(i_p \) equals the radial displacement current \(I \) of 15.13 (1) if the mean cross-sectional area is defined to be

\[
S_c = \pi d \left[\frac{2(b^2 - a^2)}{\ln (b/a)} \right] \rightarrow 2\pi ad
\]

(6)

In addition to the principal modes, there are the types considered in 15.04 (3) to (6) which involve the two kinds of Bessel functions. If \(d \) is large compared with \(b - a \), these modes have much higher frequencies than the principal mode \(p = 1 \). They are treated by the methods of 15.15.

15.20. The Normal Modes of a Spherical Cavity.—The solution of the propagation equation in 14.12 involves products of spherical harmonics and spherical Bessel functions. Of the \(\theta \) and \(R \) terms given in 14.12 (5) only the \(P_n(\cos \theta) \) and \(j_n(\beta r) \) terms survive because \(Q_n(\cos \theta) \) is infinite on the axis and \(\kappa_n(\beta r) \) represents a progressive wave whereas in the perfectly conducting oscillating cavity only standing waves can exist. Equations 14.12 (5), (2), (3) and 14.16 (6) and (13) show that the electric field and the magnetic induction are, when we write \(s(\phi) \) for \(\sin (m\phi + \psi_m) \),
c(\phi) for \cos (m\phi + \psi_m), and \tilde{j}_n for \tilde{j}_n(\beta_{pn} r),

\begin{align}
E_{te} &= \omega C \left[\theta \frac{m}{\sin \theta} P_n^m(\cos \theta) s(\phi) - \phi \sin \theta P_n^m(\cos \theta) c(\phi) \right] j_n \sin (\omega t + \gamma) \quad (1) \\
B_{te} &= C \left[r_1 \frac{n(n + 1)}{r} P_n^m(\cos \theta) c(\phi) j_n - \frac{\sin \theta}{r} P_n^m(\cos \theta) c(\phi) \frac{\partial}{\partial r}(r j_n) \\
&\quad - \frac{\phi}{r} \frac{m}{\sin \theta} P_n^m(\cos \theta) s(\phi) \frac{\partial}{\partial r}(r j_n) \right] \cos (\omega t + \gamma) \quad (2) \\
E_{tm} &= \omega C^r \left[r_1 \frac{n(n + 1)}{r} P_n^m(\cos \theta) c(\phi) j_n - \frac{\sin \theta}{r} P_n^m(\cos \theta) c(\phi) \frac{\partial}{\partial r}(r j_n) \\
&\quad - \frac{\phi}{r} \frac{m}{\sin \theta} P_n^m(\cos \theta) s(\phi) \frac{\partial}{\partial r}(r j_n) \right] \sin (\omega t + \gamma) \quad (3) \\
B_{tm} &= \omega^2 \mu \epsilon C^r \left[\theta \frac{m}{\sin \theta} P_n^m(\cos \theta) s(\phi) - \phi \sin \theta P_n^m(\cos \theta) c(\phi) \right] j_n \cos (\omega t + \gamma) \quad (4)
\end{align}

At the cavity surface \(r = a \), the tangential component of \(E \) vanishes so that \(\beta_{pn} \) must be chosen to satisfy the boundary conditions

\[[j_n(\beta_{pn} a)]_{te} = 0, \quad \frac{\partial}{\partial a} [a j_n(\beta_{pn} a)]_{tm} = 0 \quad (5) \]

The cavity current can be defined as in 15.13 (1) as the volume rms displacement current, using \(\frac{1}{2} \pi a^2 \) for the mean cross-sectional area. This choice is exact for the \(TE_{01} \) mode in which the displacement current encircles the axis, and reasonable for the \(TM_{10} \) mode. When (1) is squared and integrated over \(v \), the \(\phi \)-integration yields \(2\pi/(2 - \delta_m^0) \), and the rest are integrated by 5.231 (7) and by 5.31 (10) and 5.296 (7) so that

\[I_{te} = \frac{1}{2} \omega^3 \epsilon a^2 C j_{n-1}(\beta_{pn} a) \left[\frac{3n(n + 1)(n + m)!}{2(2 - \delta_m^0)(2n + 1)(n - m)!} \right]^4 \quad (6) \]

For the \(TM \) current, writing \(W_m \) in terms of \(A \) and \(B \) shows that the volume integral of \(A^2 \) is that of \(B^2 \) divided by \(\beta_{pn}^2 \). By (4), this leads to the same integral as before but is subject to the second condition in (5). Thus

\[I_{tm} = \frac{1}{2} \omega^3 \epsilon a C j_{n}(\beta_{pn} a) \left\{ \frac{3n(n + 1)(n + m)!\beta_{pn}^2 - \frac{1}{2}(2m + 1)^2}{2(2 - \delta_m^0)(2n + 1)(n - m)!} \right\}^4 \quad (7) \]

From 15.13 (2) and 15.14 (3), the inductance and capacitance are

\[L = \frac{8\mu}{3\beta_{pn}^2 a}, \quad C = \frac{3\pi a}{8} \quad (8) \]

The calculation of \(Q \) by 15.14 (4) is simplified because from (1) and (2) the integrations with respect to \(\theta \) and \(\phi \) produce identical factors in the volume and surface integrals which cancel out so that there remains only the \(r \)-integration of the volume integral. Using the first form of 15.14 (4) for the \(TE \) wave and the second form for the \(TM \) wave and integrating
by 5.31 (10) and 5.296 (7), we get, after simplifying by (5),

$$Q_{te} = \frac{\mu a}{\mu_0^2}, \quad Q_{tm} = \frac{\mu a}{\mu_0^2} \left[1 - \frac{(2n + 1)^2}{4\beta_n^2 a^2} \right]$$ \hspace{1cm} (9)

15.21. Normal Modes of an Imperfect Cavity.—So far all cavities have been treated as completely enclosed by perfectly conducting walls. Wall loss effects were found in 15.14 (6). In practice there must be openings in the walls through which waves enter or electrodes are inserted. These are usually made as few and small as possible so as to modify the fields only slightly. Let the vector potential and resonance frequency of the actual cavity be \(\mathbf{A} \) and \(\omega \) and of the perfect cavity \(A_0 \) and \(\omega_0 \). Insertion of \(A \) for \(\Psi \), \(A_0 \) for \(\Phi \), and \(\omega^2 \mu \epsilon \) for the double curl in 3.06 (6) gives

$$\mu \epsilon (\omega^2 - \omega_0^2) \int_V \mathbf{A} \cdot d\mathbf{v} = \int_S [\mathbf{A} \times (\nabla \times \mathbf{A}_0) - \mathbf{A}_0 \times (\nabla \times \mathbf{A})] \cdot \mathbf{n} dS$$ \hspace{1cm} (1)

Let \(\mathbf{v} \) be the volume of the perfect cavity and \(S \) its surface to which \(A_0 \) is normal so that the second term in the surface integral vanishes. If the hole is small, \(\omega \approx \omega_0 \), \(\omega + \omega_0 \approx 2\omega_0 \), and in most of \(\mathbf{v} \mathbf{A} \approx A_0 \) so that

$$\omega_0 - \omega = \frac{1}{2\mu_0^2 \epsilon \int \mathbf{A} \cdot A \, d\mathbf{v}}$$

where \(W_m, E_i, \) and \(B_0 \) are instantaneous values of the magnetic energy in the cavity and the tangential components of the actual \(\mathbf{E} \) and of the \(\mathbf{B}_0 \) with no hole. The part of \(\mathbf{E}_i \) due to \(\mathbf{B}_0 \) is found by solving the magnetostatic problem of an infinite plane face of zero permeability pierced by the given hole which bounds a field of induction \(\mathbf{B}_0 \) that is tangential to it and uniform except for distortion near the hole. This expresses the normal \(\mathbf{B}_n \) over the hole surface in terms of \(\mathbf{B}_0 \). The effect of the hole is wiped out by covering it with a double current sheet like that in 14.19 whose radiation exactly cancels its absorption. The current sheet \(\mathbf{B}_n \) and \(\mathbf{E}_i \) are exactly equal and opposite to those of the hole, but the \(\mathbf{B}_i \) adds to restore the standing wave \(\mathbf{B}_0 \). For an aperture in the \(xy \)-plane and an \(x \)-directed \(\mathbf{B}_0 \) \((E_i)_x \) can be obtained from \(\mathbf{B}_n \) by integration of 14.19 (3). Problem 49 of Chap. XIV gives \(\mathbf{B}_n \) for a circular aperture in a thin wall. If, with no hole, the normal electric field is \(\mathbf{E}_0 \), then its contribution to \(\mathbf{E}_i \) is given by the electrostatic solution of the problem of a plane conducting face that bounds a field of intensity \(\mathbf{E}_0 \) which is uniform far from the hole. Article 5.272 treats the case of a circular hole in a thin wall. The hole losses must be added to the wall losses to get \(Q \).

15.22. Complex Cylinders.—Some of the most important cavities are the simply connected ones whose boundaries coincide only in part with single coordinate surfaces. Usually a special type of solution is required for each case. Consider, for example, a right circular cylindrical cavity of radius \(b \) and length \(c \), to one end of the interior of which a shorter closed
right circular cylinder of radius \(a \) has been fastened coaxially leaving a gap \(d \) at the other end. This cavity, shown in section in Fig. 15.22, falls outside the categories so far treated. We shall indicate the nature of the exact solution by Hahn's method (J. Applied Phys., Vol. 12, page 62) then give a nearly exact method that applies in the important case where \(d \) is much less than \(a, b, \) or \(\lambda \), and finally present a rough approximation that uses the transmission line analogy. We desire the cavity fields and

![Fig. 15.22.](image)

the lowest normal frequency. From 15.15 and 15.17, \(TM \) field components in the \(M \)-region which give \(E_z \) zero at \(\rho = b, z = 0 \), and \(z = c \) are

\[
\tilde{E}_z = \tilde{C}_0 \frac{R_0(\beta_0 \rho)}{R_0(\beta_0 a)} + \sum_{m=1}^{\infty} \tilde{C}_m \frac{R_m(\beta_m \rho)}{R_0(\beta_m a)} \cos \frac{m \pi z}{c} + \sum_{m=1}^{\infty} \tilde{C}_m \frac{R_m(\beta_m \rho)}{R_0(\beta_m a)} \cos \frac{m \pi z}{c} \quad (1)
\]

\[
\tilde{B}_\phi = \frac{\beta_0^2}{\omega} \frac{\tilde{C}_0 R_0'(\beta_0 \rho)}{R_0(\beta_0 a)} + \sum_{m=1}^{\infty} \tilde{C}_m \frac{R_m(\beta_m \rho)}{R_0(\beta_m a)} \cos \frac{m \pi z}{c} \quad (2)
\]

\[
R_0(\beta_0 \rho) = J_0(\beta_0 b) Y_0(\beta_0 \rho) - Y_0(\beta_0 b) J_0(\beta_0 \rho)
R_0(\beta_m \rho) = I_0(\beta_m b) K_0(\beta_m \rho) - K_0(\beta_m b) I_0(\beta_m \rho)
\]

\[
\beta_m^2 = \beta_0^2 - \frac{n^2 \pi^2}{c^2}, \quad \beta_n^2 = \beta_0^2 - \frac{n^2 \pi^2}{d^2}, \quad \beta_0^2 = \beta^2 = \omega^2 \mu \varepsilon = \frac{4\pi^2}{\lambda^2} \quad (4)
\]

In the \(N \)-region, fields finite at \(\rho = 0 \) giving \(E = 0 \) at \(z = 0 \) and \(z = d \) are

\[
\tilde{E}_z' = \tilde{A}_0 \frac{J_0(\beta_0 \rho)}{J_0(\beta_0 a)} + \sum_{n=1}^{\infty} \tilde{A}_n \frac{I_n(\beta_n \rho)}{I_0(\beta_n a)} \cos \frac{n \pi z}{d} \quad (5)
\]

\[
\tilde{B}_\phi' = \frac{\beta_0^2}{\omega} \frac{\tilde{A}_0 J_0'(\beta_0 \rho)}{\beta_0 J_0(\beta_0 a)} + \sum_{n=1}^{\infty} \tilde{A}_n \frac{I_n'(\beta_n \rho)}{\beta_n I_0(\beta_n a)} \cos \frac{n \pi z}{d} \quad (6)
\]

A formula for \(\tilde{A}_n \) in terms of all the \(\tilde{C}_m \)'s is found by equating \(\tilde{B}_\phi \) to \(\tilde{B}_\phi' \), setting \(\rho = a \), multiplying through by \(\cos (p \pi z/d) \) \(dz \), and integrating from \(z = -d \) to \(z = d \). Similarly \(\tilde{C}_m \) in terms of all the \(\tilde{A}_n \)'s is obtained by equating \(\tilde{E}_z \) to \(\tilde{E}_z' \) when \(0 < |z| < d \) and to zero when \(d < |z| < c \), multiplying by \(\cos (q \pi z/c) \) \(dz \), and integrating from \(z = -c \) to \(z = c \).
Elimination of the \tilde{A}_n's from these equations and division by \tilde{C}_0 give \tilde{C}_o/\tilde{C}_0 in terms of the \tilde{C}_m/\tilde{C}_0 ratios. There are an infinite number of these equations, one for each q, so that to obtain \tilde{C}_m/\tilde{C}_0 an infinite determinant must be solved. Insertion of these values of \tilde{C}_o/\tilde{C}_0 into the $q = 0$ equation gives

$$1 = \frac{J_0(\beta_0 a)}{J'_0(\beta_0 a)} \left[\tilde{C}_0 R'_0(\beta_0 a) + \beta_0 c \sum_{m=1}^{\infty} \frac{C_m}{m\beta_m} \frac{R'_0(\beta_m a)}{R_0(\beta_m a)} \sin \frac{m\pi d}{c} \right]$$ (7)

The lowest value of β_0 that satisfies this equation gives β_0 by (4). The amplitude of excitation has been chosen to make $A_0 = 1$.

The calculation just outlined is evidently a major undertaking which is exact in theory but not in practice because of the finite amount of time available. However Hahn has prepared tables that make it feasible. If d is much less than a, b, and λ, then the following method gives λ with greater accuracy than that with which a, b, and c are usually measurable and enables us to calculate Q. The tangential electric field between M and N at $\rho = a$ is independent of a and b if d is small enough and depends only on d, c, and the potential across the gap. We may then take a and b infinite, which makes it the two-dimensional problem solved in 6.13 where h and k replace d and c. The choice of $c \gg d$ simplifies the work by deleting the bends at $x_1 = \pm 1$ in Fig. 6.13a. The procedure of 6.13 gives

$$z = \frac{2d}{\pi} \left[(z_1^2 - 1)^{\frac{1}{2}} + \sin^{-1} \frac{1}{z_1} \right]$$ (8)

$$E_x = \left| \frac{\partial V}{\partial x} \right| = \left| \frac{\partial W}{\partial z} \right|_{i.p.} = \left| \frac{V_0}{d(z_1^2 - 1)^{1/2}} \right|_{i.p.}$$ (9)

where z and z_1 are complex variables and the potential difference across the gap is $2V_0$. To get E_x on the x-axis in terms of x, we find complex values of z_1 which give $y = 0$ in (8). Substitution of these values in (8) and (9) gives x and E_x. To within 1 part in 5000, these fit the formula

$$E_x = V_0 d^{-1} \{ A + B \cos (\pi x d^{-1}) + C(xd^{-1})^2 + D[\sec (\frac{\pi}{2} xd^{-1})]\}$$ (10)

where $A = .34091$, $B = -.00656$, $C = -.07785$, and $D = .49910$. Integration of (5) from $z = 0$ to $z = d$ with $\rho = a$ shows that $V_0 = A_0$. Insert this value of V_0 into (10), substitute z for x, equate the result to (1) when $-d < z < d$, and equate (1) to zero when $d < |z| < c$, multiply through by $\cos (p\pi z/c) dz$ and integrate from $z = -c$ to $z = c$. Solve the resultant equation for C_p and insert in (7) which is then solved by trial for β. Moreno (see references) gives curves for such a cavity on pages 230 to 238. It is evident that insertion of A_n and C_m in (2) and (6) gives the magnetic inductions so that Q can be calculated from 15.14 (4).

The transmission line concept furnishes an approximate value of the resonance frequency. If $d \ll c$, the region M of the cavity resembles a
section of coaxial line short-circuited at \(z = c \) whose input impedance is \(\frac{1}{2} j \beta (\pi \omega)^{-1} \tan \beta c \) from 10.18 (10) and 15.05 (2). The region \(N \) represents a capacitor of impedance \((j \omega C_0)^{-1}\) shunted across the line. At resonance, these impedances are equal and opposite so \(\beta \) satisfies, approximately,

\[
\beta \tan \beta c = \frac{2 \pi \varepsilon}{C_0 \ln (b/a)}
\]

(11)

We can only estimate \(C_0 \). Treatment of the \(N \)-region as a parallel plate capacitor where \(C_0 \approx \varepsilon \pi a^2 / d \) gives a lower limit because it neglects the fringing field. In the special case where \(d \ll a, d \ll c, \) and \(a \approx b, \) \(C_0 \) can be found quite accurately as will be seen in problem 65.

15.23. Excitation of Cavities, Inductive Coupling. The most general cavity oscillation state is a superposition of modes already considered. Not only does each mode oscillate as an independent linear circuit, but the ratio of the exciting current to the cavity current in any mode depends only on the geometrical configuration as with linear circuits. E. U. Condon (Rev. Mod. Phys., Vol. 14, No. 4) simplified this mutual inductance calculation by breaking up the vector potential of the \(i \)th mode into two factors, \(C_i \) and \(A^0_i \). The scalar factor contains the intensity and time, and its magnitude is adjusted to make the integral of the square of the vector factor over the volume \(v \) of the cavity equal to \(v \). The vectors \(A^0_i \) which depend only on the geometry are the “normalized” vector potentials. They are dimensionless, mutually orthogonal from 15.12 and, by 15.00 (1), after setting \(\omega = \omega_i \) so that only \(A^0_i \) is present, satisfy the equation

\[
\nabla^2 A^0_i = -\beta_i^2 A^0_i
\]

(1)

From 15.13 (1), we may evaluate \(C_i \) in terms of the cavity current \(I_i \) so that \(A \) may be written in terms of \(A^0_i \) and \(I_i \). Thus,

\[
\int_V A_i \cdot A_i \, dv = \frac{\nu I^2_i}{\omega \varepsilon S_0} = \frac{\mu^2 \nu I^2_i}{\beta_i^2 S_0} = C_i \int_V A^0_i \cdot A^0_i \, dv = v C_i^2
\]

(2)

\[
A(r, t) = \sum_{i=0}^{\infty} C_i(t) A^0_i(r) = \frac{\mu}{S_0} \sum_{i=0}^{\infty} \beta_i^2 A^0_i(r)
\]

(3)

The problem now is to determine the coefficients in this equation from a known exciting current density \(i'(r, t) \). In the absence of charge \(i'(r, t) \) has zero divergence and so may be expanded in the form

\[
i'(r, t) = \sum_{i=0}^{\infty} D_i(t) A^0_i(r)
\]

(4)

To determine \(D_i(t) \), we multiply through by \(A^0_p(r) \, dv \) and integrate over
Let the total exciting current \(I' \) be confined to a wire so thin that \(A_p \) may be taken constant over its cross section. Then if \(ds \) is an element of the wire, the integral on the left becomes a line integral along \(s \) and all terms on the right except the \(p \)th vanish, so that

\[
\int v' (r, t) \cdot A^0_p (r) \, dv = \int I' \oint A^0_p \cdot ds = \frac{\beta^3 S_c I'}{\mu} \oint A^0_p \cdot ds = \frac{\beta^3 S_c}{\mu} M_p I' = v D_p
\]

(5)

Note that the mutual inductance \(M_p \) between the \(p \)th mode and the wire is defined exactly as in 8.03 (2) where \(A_p / I_p \) is the vector potential per unit current. Because \(A \) and \(i' \) are expanded in terms of the same complete set of orthogonal functions, Maxwell's equation 13.01 (1) which connects (3) and (4) applies to each mode separately. Therefore, writing \(B \) and \(D \) in terms of \(A \) and remembering that \(\nabla \cdot A \) is zero, we have

\[
\frac{\mu I_i}{S_i \beta^3} \nabla^2 A^0_i - \frac{\mu^2 \epsilon}{\beta^3 S_c} \frac{\partial^2 I_i}{\partial t^2} A^0_i = -\mu D_i A^0_i
\]

(6)

Substitution from (1) and (5) for \(\nabla^2 A^0_i \) and \(D_i \) and division by \(A^0_i \) give

\[
\frac{\partial^2 I_i}{\partial t^2} + \omega_i^2 I_i = \frac{\beta^3 S_c^2 M_i I'}{\mu^2 \epsilon} (t)
\]

(7)

This was derived for perfectly conducting walls where \(Q_i \) was infinite. To allow for the small damping that occurs in practice, one may insert \((\omega_i / Q_i) \partial I_i / \partial t \) on the left, write \(\omega_i^2 \) for \(L_i C_i \) which is defined by 15.13 (4) and 15.13 (5), and use \(R_i \) from 15.14 (5) so that (7) becomes

\[
L_i \frac{\partial^2 I_i}{\partial t^2} + R_i \frac{\partial I_i}{\partial t} + \frac{I_i}{C_i} = \frac{M_i I'}{L_i C_i} = -\frac{M_i}{\omega^2 L_i C_i} \frac{\partial^2 I'}{\partial t^2}
\]

(8)

Since \(I' \) is periodic with an angular frequency \(\omega \), each mode satisfies the forced oscillation equation of 10.01 (1). For the steady-state amplitude, write \(|I'| e^{j \omega t} \) for \(I_i \), \(|I'| e^{j \omega t} \) for \(I_i' \), divide out \(e^{j \omega t} \), and solve for \(|I_i| \). Resonance is at \(\omega = \omega_i \) approximately, so that

\[
|I_i| = |\frac{M_i |I'|}{L_i (1 - \omega^2 L_i C_i + j \omega R_i C_i)}| \quad |I_i|_{res} = \frac{\omega_i M_i |I'|}{j R_i} = \frac{M_i |I'| Q_i}{j L_i}
\]

(9)

The resonance cavity current \(|I_i|_{res} \) evidently lags \(90^\circ \) behind \(I' \).

The total magnetic field in the cavity comes from \(A \) which is the sum of the vector potentials of the separate modes. It follows from (5) that the entire field linking the loop is \(\Sigma M_i I_i \) and that there is no separate self-inductance term. The electromotance in the loop of resistance \(R \) is

\[
\mathcal{E} = RI' + \sum_{i=0}^{\infty} j \omega M_i I_i
\]

(10)
Substitution for I, in terms of I' from (9) gives the loop impedance

$$Z = \frac{\hat{Z}}{I'} = R + \sum_i \frac{j\omega M_i^2}{L_i(1 - \omega^2\omega_i^2 + j\omega/\omega_i)}$$

$$= R + \sum_i \frac{j\omega\omega_i^2 M_i^2}{L_i(\omega_i^2 - \omega^2 + j\omega/\omega_i)}$$

(11)

Since Q_i is usually a large number, the first terms in the denominator dominate unless $\omega \approx \omega_i$. Those modes, for which $\omega_i > \omega$, produce an inductive reactance; those, for which $\omega_i < \omega$, a capacitative one. This formula is useful in showing the qualitative behavior of the driving loop reactance, but M_i must be modified to give quantitative results. The origin of the difficulty lies in the assumption of an infinitely thin wire near which B and hence L are infinite. In practice, if the wire is sufficiently thin compared with a wave length, the cavity fields will be the same as if the exciting current were concentrated at its center, and its surface will coincide with the boundary of a tube of induction. The true flux linkage can, therefore, be found by integrating A from one end of the loop to the other along any curve lying in its surface. The definition of M_p in (5) should be modified accordingly. One should note that the integration path in (5) can be closed by passing back to the starting point along the boundary which contributes nothing to M_p because A is perpendicular to it. The integral of B over the area of the loop would serve as well.

15.24. Inductive Coupling to a Circular Cylindrical Cavity.—The theory just developed will be clarified by considering the case of a circular cylindrical cavity excited in its lowest natural frequency, the TE_{11} mode shown in Fig. 15.03, so that $\beta_{11}a$ is 1.84. From 15.17 (1), this is

$$v_{11} = \frac{v}{2}(\beta_{11}^2 + \frac{1}{d^2})^{1/2} = 1.5 \times 10^6(0.343 + \frac{1}{d^2})^{1/2}$$

(1)

From 15.17 (3), the magnetic induction amplitude is proportional to

$$\frac{\pi}{d^2} \left[\theta \beta J_1(\beta \rho) \cos \phi - \phi \frac{J_1(\beta \rho)}{\rho} \sin \phi \right] \cos \frac{\pi z}{d} + \kappa \beta^2 J_1(\beta \rho) \cos \phi \sin \frac{\pi z}{d}$$

(2)

where we have written β for β_{11}. To excite this mode, we insert a small loop through the wall at some point. Evidently from (2) one encircles the maximum TE_{11} flux and gets the closest coupling on the flat ends by linking B_ϕ near the center or B_ϕ near the edge or on the curved surface by linking B_ϕ near the ends or B_z near the center. The fields are weak near the corners so we discard the B_ϕ choice. The ratio of the z-flux linked at $\rho \approx a$, $\phi = 0$, $z \approx \frac{1}{4}d$ to the ρ-flux linked at $\rho \approx 0$, $\phi = 0$, $z \approx 0$ is

$$\frac{M_z}{M_\rho} = \frac{|B_\rho|_{\text{max}}}{|B_z|_{\text{max}}} = \frac{\beta d J_1(\beta a)}{\pi J_1(0)} = 0.682d/a$$

(3)
Thus for $0.682d > a$, the tightest coupling for a given sized loop will be near the curved wall halfway between the ends. Let us assume that the small loop of area S on the $z = \frac{1}{2}d$ plane at $\phi = 0$ is so near the wall that the value of B_z at the wall may be used over its whole area. To justify this, we observe that, if ρ is 0.95a, then $J_1(\beta \rho)$ is 0.997 $J_1(\beta a)$. The mutual inductance is the flux through the loop at unit cavity current so that, from 15.17 (3) and (6),

$$M = \frac{|B|S}{I_i} = \frac{2\beta_1|S|}{\beta_1^2|d(\frac{1}{2}\pi(\beta_1^2a - 1))|} = \frac{1.3 \times 10^{-6}Sd}{d^2 + 2.92a^2} \quad (4)$$

From 15.17 (8) and 15.23 (11) in a copper cavity where $\gamma = 5.7 \times 10^7$, the Q-factor and the additional loop resistance at resonance are

$$Q = \frac{9.92(ad)^\frac{1}{4}(d^2 + 2.92a^2)^\frac{1}{4}}{4.11a^3 + 0.86a^2d + d^3 \times 10^4}, \quad R' = \frac{1253S^2Q}{a^3(d^2 + 2.92a^2)^\frac{1}{4}} \quad (5)$$

The maximum potential across the cavity is on the line $z = \frac{1}{2}d$, $\phi = \frac{3}{2}\pi$, and so from 15.17 (2), putting $m = p = 1$ and using 5.293 (3), we have

$$V = 2\omega C \int_0^a \frac{J_1(\beta \rho)}{\rho} d\rho = \omega C \sum_{r=0}^{\infty} \frac{(-1)^r}{r!}\frac{1}{(r + 1)^\frac{1}{4}} \int_0^{1.84} v^{2r} dv$$

$$= 1.60\omega C = 582aI_1(d^2 + 2.92a^2)^{\frac{1}{4}} \quad (6)$$

From (1), (4), (6), and 15.23 (10), we get the potential magnification and, from (4), (5), and 15.23 (10), the cavity current. Thus,

$$\frac{V}{\mathcal{E}} = \frac{V}{\omega MI} = \frac{0.812a^2}{S} \quad |I| = \frac{R'|I'|}{\omega M_1} = \frac{1.748SQ}{a^2} |I'| \quad (7)$$

This \mathcal{E} is the loop electromotive component that is in phase with I'.

It will be of interest to take some numerical values. Let the area S of the loop be 1 cm2, the radius a of the cavity 10 cm, the length d 20 cm and the medium inside a vacuum, then

$$\omega \approx 7.25 \times 10^9 \text{ rad/sec}, \quad \nu \approx 1.15 \times 10^9 \text{ cyc/sec}, \quad \lambda \approx 26.0 \text{ cm}$$

$$M \approx 3.76 \times 10^{-10} \text{ henry} \quad Q \approx 36,000 \quad R' \approx 1715 \text{ ohms}$$

The cavity inductance and capacitance are, by 15.13 (4) and (5)

$$L_{11} = 2.15 \times 10^{-8} \text{ henry} \quad C_{11} = 8.85 \times 10^{-12} \text{ farad}$$

If the peak loop electromotive in phase with I' is 1000 volts, then $\mathcal{E}_0 \approx 1000$, $I'_0 = 0.583$ amp, $V_{\text{max}} = 81,200$ volts, $I_0 = 367$ amp., and $P = 292$ watts. Some other excitation methods appear in the problems.

15.25. Excitation of Cavity by Internal Electrode.—When a cavity is excited by a nonuniform current as when an electrode terminates inside it, the divergence of the current density i is no longer zero so there
is a charge density σ. In such cases as shown in 14.01, the fields may be derived from a solenoidal vector potential plus a scalar potential that satisfies Poisson's equation. The mutual inductance with each normal mode is still given by 15.23 (5) because, as proved in 15.12 (4), the lamellar part of i contributes neither to the volume integral nor to the cavity current. The field of the scalar potential contributes an additional electrical energy in phase with the electrode charge that represents a purely capacitative reactance. As in the antenna problem, the difficulty of finding the current and charge distribution appears. A very thin wire stub has negligible capacitance, and its inductance is determined almost entirely by its radius so that the reasoning of 14.03 applies and leads to the sinusoidal distribution of 14.03 (7). As its radius increases, the reactance of the cavity has relatively more effect and the distribution is modified. A fairly accurate result is obtainable when the electrode is charged by a thin wire in which the current may be taken uniform so that the charge appears entirely on the electrode and may be calculated as in electrostatics. Equations (1) to (9) of 15.23 are unchanged, but we add q/C_0 to (10) where $I' = j\omega q'$ and C_0 is the electrode capacitance.

$$\tilde{Z} = R - \frac{j}{\omega C_0} + \sum_i \frac{j\omega^2 M_i^2}{L_i(\omega_i^2 - \omega^2 + j\omega\omega_i/Q_i)}$$ \hspace{1cm} (1)

When $\omega = \omega_i$, \tilde{Z} is no longer real because of C_0, but if $\omega \approx \omega_i$ only the ith term of the sum is important so equating the reactance to zero gives

$$Q_i^2 L_i(\omega_i^2 - \omega^2) - \omega^2 \omega_i^2 Q_i^2 M_i^2 C_0(\omega_i^2 - \omega^2) + \omega^2 \omega_i^2 L_i = 0$$ \hspace{1cm} (2)

Often the coefficient of $\omega_i^2 - \omega^2$ is much larger than that of $(\omega_i^2 - \omega^2)$ so that from the last two terms alone, writing $2\omega_i$ for $\omega + \omega_i$, we get

$$\frac{\omega - \omega_i}{\omega_i} = \frac{L_i}{2\omega_i^2 M_i^2 C_0 Q_i} = \frac{1}{2\omega_i R' C_0 Q_i}$$ \hspace{1cm} (3)

As an example, take a sphere of radius r supported with its center at a distance l from the wall by a thin wire, and use this to excite the TE_{11} mode discussed in the last article. Evidently, from 15.13 (5), to give tight coupling the wire should coincide with a strong component of the vector potential. From 15.17 (2), the best position is at $z = \frac{1}{2}d$, $\phi = \frac{1}{2}\pi$. As in the derivation of 15.24 (4), $J_1(ka)$ may be used for $J_1(k\rho)$ for some distance from the walls so 15.17 (2), 15.17 (6), and 15.23 (5) yield

$$M_i = \int_a^s A_s \cdot ds = \frac{2\mu\sigma}{I_i} \int a^{-1}d\rho \rho^2 = \frac{3.84 \times 10^{-7}a^2 d}{d^2 + 2.92a^2} \ln \frac{a}{a - l}$$ \hspace{1cm} (4)

From 15.23 (11), the resistance contribution to the coupling circuit is

$$R' = 109.2aQ(d^2 + 2.92a^2)^{-1} \{\ln[a(a - l)^{-1}]\}^2$$ \hspace{1cm} (5)
If the ball is sufficiently small and near the wall, the capacitance \(C_0 \) in (1) approximates that of a sphere and plane which from 5.082 (1) is

\[
C_0 = 4\pi[r + r^2(2l)^{-1} + r^2(4l^2 - r^2)^{-1} + \cdots]
\]

The condition that (3) be valid is strongly satisfied for any reasonable choice of values so that \(\omega \) is very close to \(\omega_1 \). From (1), 15.24 (6), and 15.23 (9), the ratio of the maximum potential across the cavity to that across the wire due to \(R' \) and \(C_0 \), and the cavity current is

\[
\frac{V}{\mathcal{E}} = \frac{1.664 \times 10^{14} C_0 Q}{d(1 + \omega^2 R'^2 C_0^2)} \ln \frac{a}{a - l} \quad I = 0.517 Q I' \ln \frac{a}{a - l}
\]

In the calculation of \(\mathcal{E} \) the reactance of the higher modes was neglected. When this is not negligible, it can be found from (1). Consider the mode of the last article, so that \(\omega, v, \lambda, Q, L_i, \) and \(C_i \) have the values given there, and take \(l \) and \(r \) to be 1 cm and 1 mm, respectively.

\[
C_0 \approx 1.17 \times 10^{-13} \text{ farad} \quad M \approx 3.08 \times 10^{-10} \text{ henry}
\]

\[
R' \approx 16,560 \text{ ohms} \quad (\omega_1 - \omega)/\omega_1 = 0.99 \times 10^{-6}
\]

A peak stub potential of 1000 volts gives, neglecting higher mode terms,

\[
V_{\text{max}} \approx 27,100 \text{ volts} \quad I_0' \approx 0.0604 \text{ amp}
\]

\[
I_0 \approx 118.4 \text{ amp} \quad \bar{P} \approx 30.2 \text{ watts}
\]

15.26. Cavity Excitation through Orifice.—When a wave guide ends in a cavity, a rigorous calculation involves matching the vector potential across the junction surface. On either side, this is represented by an infinite series of terms so that the problem is like that encountered in 15.22 where Hahn's method was used. Often a fair approximation is found by assuming the field over the opening as in 15.09. Examples of such solutions will be found among the problems at the end of the chapter.

Problems

1. At a given frequency, an electromagnetic disturbance travels along a wave guide as a series of identical wave cells moving at the phase velocity. Because \(\mathbf{H} \cdot \nabla \times \mathbf{H} \) is zero, each cell contains closed wave surfaces defined by the property that \(\mathbf{E} \) and \(\mathbf{B} \) are everywhere tangent to them. For TE waves we may, by such surfaces, divide up each cell into magnetic tubes of induction of equal strength. Show that for the TE\(_{mz}\) wave of 15.02, the equation for the wave surfaces in the cells whose centers are at \(z = 0 \) at \(t = 0 \) is \(C = \cos \beta_x m_2 \sin (m_2 x / a) \) where \(C \) is the fraction of the total flux passing between the tube through \(x, z \), and the wall of the cell. Show that these surfaces are hyperbolic near the cell corners and elliptic near the cell center.

2. Show that the equation of a TE wave surface in a rectangular guide is

\[
C = [E - K \cos^2 (m_2 xa^{-1}) \cos^2 (n_2 yb^{-1})] \cos \beta_x m_2
\]

where \(C \) is that fraction of the total magnetic flux in the cell which passes between the wave surface through \(x, y, z \) and the cell boundary, and \(E \) and \(K \) are the complete elliptic integrals of modulus \([1 - \cos^2 (m_2 x / a) \cos^2 (n_2 y / b)]^2\).
3. Show that the equation of a TM wave surface in a rectangular guide is

\[C = [E - K \sin^2 (m\pi x/a) \sin^2 (n\pi y/b)] \sin \beta_{mn} \]

where \(C \) is that fraction of the total electric flux that lies inside the wave surface that passes through \(x, y, z \), and \(E \) and \(K \) are the complete elliptic integrals of modulus \([1 - \sin^2 (m\pi x/a) \sin^2 (n\pi y/b)]^{1/2} \).

4. In a circular cylindrical guide, the wave cells for axially symmetrical waves are in general ring shaped. For the TE waves, the first rth cell is bounded by \(\rho_r \) and \(\rho_{r+1} \) and by \(z = \pm \frac{1}{2} \lambda \), where \(r \) is an integer such that \(0 < r < n \) and \(J_1(\beta_{mn} \rho_r) = 0 \) and \(J_1(\beta_{mn} \rho_{r+1}) = 0 \). Show that the cell’s wave surfaces are magnetic vortex rings given by

\[C = \rho J_1(\beta_{mn} \rho) \rho M J_1(\beta_{mn} \rho M) \]^{-1} \cos \beta_{mn}^2 \]

where \(J_0(\beta_{mn} \rho M) = 0, \rho \rho < \rho M < \rho_{r+1} \), and \(C \) is that fraction of the magnetic flux circulating in the rth ring that lies between \(\rho \) and \(\rho, z \). Make a sketch.

5. In a circular cylindrical wave guide, axially symmetrical TM waves form ring-shaped cells with half cells next the wall. In the rth cell, \(\rho_r < \rho < \rho_{r+1} \) and \(0 < z < \frac{1}{2} \lambda \) where \(r \) is an integer such that \(0 < r < n \) and \(J_1(\beta_{mn} \rho) = J_1(\beta_{mn} \rho_{r+1}) = 0 \). Show that, except next the wall, the wave surfaces are electric vortex rings given by

\[C = \rho J_1(\beta_{mn} \rho) \rho M J_1(\beta_{mn} \rho M) \]^{-1} \sin \beta_{mn}^2 \]

where \(J_0(\beta_{mn} \rho M) = 0, \rho \rho < \rho M < \rho_{r+1} \), and \(C \) is that fraction of the total electric flux in the rth cell that lies between \(\rho \) and \(\rho_r \). For the half cell next the wall, \(\rho_M = a \).

6. From 13.15 and 15.00 (7), show that when the dielectric conductivity in a wave guide is \(\gamma \), the wave number and the dielectric attenuation are, respectively,

\[\beta' = 2 - \frac{1}{2} \left((\beta^2 - \beta_m^2) + \omega^2 \mu \gamma z \right) \right]^{1/2} + \beta^2 - \beta_m^2 \frac{1}{2} \]

\[\alpha' = 2 - \frac{1}{2} \left((\beta^2 - \beta_m^2) + \omega^2 \mu \gamma z \right) \right]^{1/2} - \beta^2 + \beta_m^2 \frac{1}{2} \]

Note that these formulas hold both above and below cutoff.

7. If the conductivity to capacitance ratio is small compared with the difference between the frequency \(v \) transmitted in the mth mode and the cutoff frequency \(v_m \), show that the dielectric attenuation \(\alpha' \) and the phase velocity \(v_m' \) are, approximately,

\[\alpha' = \frac{i}{2} \mu \gamma (1 - (v_m/v)^2)^{-1/2}, \quad v_m' = v_m [1 - \frac{i}{2} (\mu \nu v_m^2/\gamma)] \]

where \(v \) is the free wave velocity and \(v_m \) the phase velocity for zero conductivity.

8. A uniform current \(I \cos \omega t \) flows in that portion of the perfectly conducting cylinder \(\rho = a \) which lies between two infinite parallel perfectly conducting planes normal to its surface. Show that the phasor vector potential of the outward moving electromagnetic radiation between the planes is

\[\tilde{A}_z = \frac{\mu I [J_0(\beta a) - j Y_0(\beta a)]}{2 \pi a \beta [J_1(\beta a) - j Y_1(\beta a)]} \]

where \(\beta^2 = \omega^2 \mu \), and from 5.293 (5) \(Y_1(\beta a) \) approaches \(2/(\pi \beta a) \) as \(\beta a \) approaches zero. Note, from the Jahnke and Emde tables, that if \(a < 0.0181 \lambda \) then

\[|J_1(\beta a)| < 0.01 |Y_1(\beta a)| \]

9. Show that in the last problem the wire’s input resistance and reactance are

\[R_i = \frac{\mu I}{\pi \beta a M^2}, \quad X_i = \frac{\mu I [J_0(\beta a) J_1(\beta a) + Y_0(\beta a) Y_1(\beta a)]}{2 \pi a M^2} \]

where \(M \) is \(|J_1(\beta a)|^2 + |Y_1(\beta a)|^2 \), and \(l \) is the distance between the planes.
10. The planes in problem 8 are connected at \(\rho = b \) by a perfectly conducting cylinder. Show that the phasor vector potential between the planes is

\[
\vec{A}_z = \frac{\mu I [Y_\alpha(\beta b)J_\alpha(\beta \rho) - J_\alpha(\beta b)Y_\alpha(\beta \rho)]}{2\pi a \beta [J_\alpha(\beta b)Y_\alpha(\beta a) - Y_\alpha(\beta b)J_\alpha(\beta a)]}
\]

and calculate the input reactance.

11. Electromagnetic waves move radially between two parallel perfectly conducting planes normal to the \(z \)-axis. If the electric field has only a \(z \)-component and is independent of \(\phi \) and if the ratio of \(\vec{E}_z \) to \(\vec{H}_\phi \) at \(\rho = a \) is \(\vec{Z}_e \), show with the aid of 14.17 (2), (4), and (5) that at \(\rho = b \) the ratio is

\[
\frac{\vec{E}_z}{\vec{H}_{\phi|b}} = \vec{Z}_e = \frac{\mu \psi [J_\alpha(\beta a)Y_\alpha(\beta b) - J_\alpha(\beta b)Y_\alpha(\beta a)] + j \vec{Z}_0 [J_\alpha(\beta a)Y_\alpha(\beta b) - J_\alpha(\beta b)Y_\alpha(\beta a)]}{\mu \psi [J_\alpha(\beta a)Y_\alpha(\beta b) - J_\alpha(\beta b)Y_\alpha(\beta a)] + j [J_\alpha(\beta a)Y_\alpha(\beta b) - J_\alpha(\beta b)Y_\alpha(\beta a)]}
\]

12. A wave guide of radius \(b \) transmits the \(TM_{01} \) wave of Fig. 15.03 when \(\nu > \nu_{01} \). For this wave to pass a gap in the walls, a field must exist across the gap to transfer the induced charge. Thus show from the previous problem that the transmission of the frequency \(\nu_e > \nu_{01} \) is blocked by covering the gap with a coaxial cylindrical box whose plane ends terminate at its edges, if the box radius satisfies the relation

\[
J_1[2\pi (\mu e)^{1/2} \rho]Y_0[2\pi (\mu e)^{1/2} \nu_e] = J_0[2\pi (\mu e)^{1/2} \nu_e]Y_1[2\pi (\mu e)^{1/2} \nu_e]
\]

13. It is desired to insulate two sections of the outer walls of radius \(b \) of a coaxial guide for d-c potentials. Show from problem 11 that this can be done without interfering with the transmission of the principal mode at frequency \(\nu_e \) by leaving a small gap between sections, provided each terminates in a plane flange whose outer edge of radius \(a \) is coaxial with the line and satisfies the relation

\[
J_0[2\pi (\mu e)^{1/2} \rho]Y_1[2\pi (\mu e)^{1/2} \nu_e] = J_1[2\pi (\mu e)^{1/2} \nu_e]Y_0[2\pi (\mu e)^{1/2} \nu_e]
\]

Assume there is a magnetic or current node at the flange's edge.

14. If \(I \) is the coaxial line current in the last problem, \(t \) is the gap length, and \(\nu \) is \((\mu e)^{1/2} \), show that the potential between the outer flange edges is

\[
V_0 = \frac{It}{\pi \omega e \rho b [J_1(\omega a/\nu) Y_1(\omega b/\nu) - J_1(\omega b/\nu) Y_1(\omega a/\nu)]}
\]

15. A sectorial horn formed by the planes \(z = 0, z = b \) and \(\phi = 0, \phi = \alpha' \) is excited by a uniform current \(kI \) \(\cos \omega t \) in a thin wire at \(\rho = c, \phi = \alpha \). The wave is completely absorbed at \(\rho = \infty \). From 14.17 (2) and (4), find suitable forms for \(A'_z \) when \(\rho < c \) and \(A'_z \) when \(c < \rho \). Set up the Fourier series by equating \(A'_z \) to \(A_z \) at \(\rho = c \), integrating \(B_\phi - B'_\phi \) over the surface \(\rho = c \), and applying the magnetomotance law as in 7.31 (9).

16. Using the last problem, integrate Poynting's vector 13.17 (4) over a section of the horn when \(\rho \) is large, and thus show that the radiation resistance is

\[
R_r = \frac{\omega \mu b}{\alpha'} \sum_{m=1}^{\infty} \left[\frac{J_{mx} (\beta c)}{\alpha'} \right]^2 \sin^2 \frac{m\pi \alpha}{\alpha'}
\]
17. The horn angle in problem 15 is $\alpha' = \frac{\pi}{n}$ where n is an integer and the wire radius is a. If $a \ll \alpha$ and $a \ll [(s/n) - \alpha]$, show that the boundary conditions are satisfied by superimposed fields of the type of problem 8 according to the principle of images of Fig. 4.06. If the wave is completely absorbed at $\rho = \infty$, show that the input impedance is, approximately, if $a \ll \lambda$ and R is the ohmic resistance of the wire,

$$R + \frac{\omega b}{4} \left\{ 1 - \frac{2j}{\pi} \ln \beta + \sum_{s=1}^{n-1} \left[J_0 \left(2\beta c \sin \frac{2\pi}{n} \right) - jY_0 \left(2\beta c \sin \frac{2\pi}{n} \right) \right] \\
- \sum_{s=0}^{n-1} \left[J_0 \left(2\beta c \sin \frac{(s + 1)\pi - n\alpha}{n} \right) - jY_0 \left(2\beta c \sin \frac{(s + 1)\pi - n\alpha}{n} \right) \right] \right\}$$

The sum of the Y_0 terms will usually be negligible compared with the logarithm term.

18. Show that, if an electromagnetic wave having n electric field peaks in the z-direction is to be propagated radially in the horn bounded by the perfectly conducting planes $z = 0$, $z = b$, $\phi = 0$, and $\phi = \alpha$, it is necessary that $r > \frac{1}{2} n(\mu_e)^{-1} b^{-1}$.

19. A uniform current ΦI flows in a circular loop $\rho = c$ that lies in the plane $z = d$ between two infinite conducting planes $z = 0$ and $z = a$. With the aid of 14.17, show that there is no propagation of energy if $\lambda > 2a$ and that, in this case, the vector potential between the planes, when $\rho > c$, is from 14.17

$$\tilde{A}_\phi = \frac{2\mu I}{a} \sum_{n=1}^{\infty} I_1(\beta_n c) K_1(\beta_n \rho) \sin \frac{n\pi \rho}{a} \sin \frac{n\pi \rho}{a}$$

where $\beta_n = \frac{2\pi}{\lambda} \left[\left(\frac{n\lambda}{2a} \right)^2 - 1 \right]^{\frac{1}{2}}$

20. If in the last problem $a < \lambda < 2a$ so that a single mode is propagated, show that, when $\rho > c$, the phasor vector potential is

$$-\frac{j\mu I}{\rho} \left\{ \pi \nu H_n^{(2)}(\beta_n \rho) J_1(\beta_n) \sin \frac{\pi \rho}{a} \sin \frac{\pi \rho}{a} + \sum_{n=2}^{\infty} \pi K_1(\beta_n \rho) I_1(\beta_n c) \sin \frac{n\pi \rho}{a} \sin \frac{n\pi \rho}{a} \right\}$$

where $H_n^{(2)}(\beta_n \rho)$ is the Hankel function of 5.293 (10), $\beta_1 = (2\pi / \lambda)[1 - (\frac{1}{2} \lambda / a)^2]$, and $\beta_n = (2\pi / \lambda)(\frac{1}{2} \lambda / a)^2 - 1]^{\frac{1}{2}}$.

21. A sectional horn is bounded by the planes $z = 0$, $z = a$ and $\phi = 0$, $\phi = \alpha$ and is excited by a thin curved wire at $\rho = c$, $z = d$ carrying a uniform current ΦI cos ωt. If $a < \lambda < 2a$ and the radius r of the wire is much less than c, and if the radiation is completely absorbed at $\rho = \infty$, show from problem 20 that

$$R_r = \frac{\pi \omega a^2 \mu}{a} \left[J_1(\beta_1 c) \sin \frac{\pi d}{a} \right]^2$$

$$X_r = \frac{2 \omega a^2 \mu}{a} \left\{ \left[\frac{1}{2} \pi J_1(\beta_1 c) Y_1(\beta_1 c) + \frac{a}{2n c} \right] \sin^2 \frac{n\pi d}{a} + \sum_{n=2}^{\infty} \left[K_1(\beta_n c) I_1(\beta_n c) \right] \sin^2 \frac{n\pi d}{a} + \frac{a}{4n c} \left[\ln \sin \frac{n\pi d}{a} + \ln \frac{2a}{n \pi r} \right] \right\}$$

Note that the series converges very rapidly.

22. If in the last problem $\lambda = 1.5a$, $c = a$, $\alpha = 18^\circ$, $d = \frac{1}{2} a$, show that to make the reactance vanish the radius of the wire should be 0.0114a and that the radiation resistance in this case is 274.5 ohms.
23. A rectangular wave guide is excited by a loop lying in the plane \(x = d \). Show by images that all components of the vector potential are parallel to this plane and hence that the waves generated by this loop may be derived as in 15.00, where

\[
\vec{W} = \vec{C}_m \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} e^{-i\beta_m z} \\
\vec{A} = \nabla \times i \vec{W}
\]

\[
\vec{E} = -\omega \vec{C}_m \left(j \beta_m \cos \frac{n\pi y}{b} + k \sin \frac{n\pi y}{b} \right) \sin \frac{m\pi x}{a} e^{-i\beta_m z}
\]

\[
\vec{B} = \vec{C}_m \left\{ i \left[\beta^2 - \frac{m^2 \pi^2}{a^2} \right] \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} - \frac{m\pi x}{a} \left[j \frac{\pi}{b} \sin \frac{n\pi y}{b} \right]
\]

\[
+ k j \beta_m \sin \frac{n\pi y}{b} \right] \cos \frac{m\pi x}{a} \cos \frac{n\pi y}{b} \right) e^{-i\beta_m z}
\]

where \((\beta_m^2)^2 = \beta^2 - \beta_m^2\). Note that this is a combination of TE and TM waves.

24. A rectangular wave guide is excited by electrodes whose current elements lie entirely in the y-direction. Show by image considerations that \(\vec{B} \cdot \vec{j} \) is zero and hence, by the methods of 15.00, that the waves generated must be given by

\[
\vec{W} = -\vec{C}_m \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} e^{-i\beta_m z}, \\
\vec{A} = \nabla \times (j \times \nabla \vec{W})
\]

\[
\vec{E} = \omega \vec{C}_m \left[\frac{j m \pi^2}{a b} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b} - j \left(\beta^2 - \frac{n^2 \pi^2}{b^2} \right) \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} \right]
\]

\[
+ k j \beta_m \sin \frac{n\pi y}{b} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \right] e^{-i\beta_m z}
\]

where \((\beta_m^2)^2 = \omega^2 \mu_e - (\pi / a)^2 - (n / b)^2 = \beta^2 - \beta_m^2\).

25. Show by the method of 15.07 that the vector potential due to an element of current of strength \(k \dot{l} dz e^{i\omega t} \) at \(x_0, y_0, z_0 \) in a rectangular wave guide is, if \(z > z_0 \),

\[
\vec{A}_m = -\frac{2 \dot{l} dz}{\omega^2 \varepsilon_0 b} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \sin \frac{m\pi x_0}{a} \sin \frac{n\pi y_0}{b} \left(\frac{m\pi x}{a} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \right)
\]

\[
+ \frac{\pi \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} + \frac{k j \beta_m^2}{b} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \right] e^{-i\beta_m \left(z - z_0 \right)}
\]

26. Show from problem 24 that the vector potential due to an element of current of strength \(j \dot{l} dy e^{i\omega t} \) at \(x_0, y_0, z_0 \) in a rectangular wave guide is, if \(z > z_0 \),

\[
\vec{A} = \frac{j \dot{l} dy}{\beta_{mz} \varepsilon_0 b} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \frac{2 - \delta_{m0}}{\beta_m} \sin \frac{m\pi x_0}{a} \cos \frac{n\pi y_0}{b} \left[\frac{m\pi x}{a} \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \right]
\]

\[
- \frac{j \left(\beta^2 - \frac{n^2 \pi^2}{b^2} \right) \sin \frac{m\pi x}{a} \cos \frac{n\pi y}{b} - k j \beta_m \sin \frac{n\pi y}{b} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b} \right] e^{-i\beta_m \left(z - z_0 \right)}
\]

27. Show from problems 25 and 26 that the vector potential of a small loop of wire of area \(dS \) carrying a current \(I e^{i\omega t} \), having an \(x \)-directed magnetic moment, and lying
in the x_0 plane at $y = y_0$ and $z = z_0$ in a rectangular wave guide is, if $z > z_0$,

\[
\vec{A} = -\frac{\mu I}{ab} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \left(2 - \delta_m^0 \right) \sin \frac{m\pi x_0}{a} \cos \frac{n\pi y_0}{b} \left[j \cos \frac{n\pi y}{b} \right. \\
\left. + k \frac{jn\pi}{\beta_{mn} b} \sin \frac{n\pi y}{b} \right] \sin \frac{m\pi x}{a} e^{-j\beta_{mn}(z-z_0)}
\]

28. Show from problem 26 that the vector potential of a small loop of wire of area dS carrying a current $I e^{j\omega t}$, having a z-directed magnetic moment and lying in the x_0-plane at x_0, y_0 in a rectangular wave guide is, if $z > z_0$,

\[
\vec{A} = \frac{jI}{ab} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \left(2 - \delta_m^0 - \delta_n^0 \right) \sin \frac{m\pi x_0}{a} \cos \frac{n\pi y_0}{b} \left[\frac{n\pi}{b} \sin \frac{n\pi y}{b} \cos \frac{m\pi x}{a} \\
- j \frac{m\pi}{a} \sin \frac{m\pi y}{a} \cos \frac{n\pi x}{b} \right] e^{-j\beta_{mn}(z-z_0)}
\]

29. A rectangular wave guide, closed at $z = 0$, is driven by half a rectangular loop of wire with its legs normal to the y-axis and its side, of length c, at x_0, z_0. If only the TE_{10} wave is transmitted, show that the radiation resistance is

\[
R_r = \frac{2\mu_0 c^2}{\beta_{10} ab} \sin^2 \frac{\pi x_0}{a} \sin^2 \beta_{10} z_0 \quad \text{where} \quad \beta_{10}' = \frac{2\pi}{\lambda} \left[1 - \left(\frac{\lambda}{2a} \right)^2 \right]^{1/2}
\]

30. A rectangular wave guide, closed at $z = 0$, is driven by a semicircular loop of radius c of thin wire that carries a uniform current. The loop lies in the $x = d$ plane, and its center and ends are in the $z = 0$ plane. The frequency is such that only the TE_{10} wave is transmitted. Show from problem 26 that the radiation resistance is

\[
R_r = \frac{2\mu_0 c^2}{\beta_{10} ab} \left| \int_I (J_1(\beta c)) \right|^2 \sin^2 \frac{\pi d}{a} \quad \text{where} \quad \beta_{10}' = \frac{2\pi}{\lambda} \left[1 - \left(\frac{\lambda}{2a} \right)^2 \right]^{1/2}
\]

31. Show, by application of the method of images to the result of problem 20 and with the aid of 5.299 (7) and 5.35 (4), that the radiation reactance in problem 30 is

\[
X_0 = \frac{2\pi \mu_0 c^2}{a} \sum_{n=1}^{\infty} \left\{ \pi Y_0(\beta_0 n) \left[J_1(\beta c) \sin \frac{\pi d}{a} \right]^2 + 2 \sum_{p=2}^{\infty} K_0(\beta_0 n) I_1(\beta_0 c) \sin \frac{\pi d}{a} \right\}
\]

where X_0 is the reactance given in problem 21 with $\alpha = \pi$ and

\[
\beta_1 = \frac{2\pi}{\lambda} \left[1 - \left(\frac{\lambda}{2a} \right)^2 \right]^{1/2}, \quad \beta_n = \frac{2\pi}{\lambda} \left[\frac{n\lambda}{2a} \right]^2 - 1 \right]^{1/2}
\]

Except for a large loop, the first term is much larger than the sum of the image terms.

32. A circular wave guide of radius a that extends from $z = -\infty$ to $z = \infty$ is excited by a current element of strength $\phi I_{\phi\rho_0} d\phi e^{j\omega t}$ at $\rho_0, 0, z_0$. Show that the amplitude of the TE modes in 15.03 (5) and (6) is

\[
[\vec{C}]_{m\rho} = \frac{j(2 - \delta_m^0) I_0 \phi I_{\phi\rho_0} J_m'(\beta_{m\rho_0})}{2\pi \beta_{m\rho} (\beta_m^2 a^2 - m^2)|J_m(\beta_{m\rho})|^2} e^{j\beta_{m\rho} a z_0} \quad [\vec{D}]_{m\rho} = 0
\]

where $J_m'(\beta_{m\rho})$ is zero, and that for the TM modes in 15.03 (8) and (9) it is

\[
[\vec{D}]_{m\rho} = -\frac{\mu I_0 \phi I_{\phi\rho_0} J_m(\beta_{m\rho})}{\pi |\beta_{m\rho}\phi J_m'(\beta_{m\rho})|^2} e^{j\beta_{m\rho} a z_0} \quad [\vec{C}]_{m\rho} = 0
\]

where $J_m(\beta_{m\rho})$ is zero.
33. A circular wave guide of radius a that extends from $z = -\infty$ to $z = \infty$ is excited by a small current loop of magnetic moment kI $dSe^{j\omega t}$ that lies in the plane $z = z_0 \approx r_0 \approx 0$. Show that only TE modes appear whose amplitudes in 15.03 (5) and (6) are

$$[\tilde{C}_{mn}]_e = -\frac{j(2 - \delta_m^n)\mu I dSe^{j\beta_m^2}\mathcal{J}_m(\beta_{mn}r_0)}{2\pi\beta_{mn}(\beta_{mn}r_0^2 - m^2)[\mathcal{J}_m(\beta_{mn}r)]^2} \quad [\tilde{D}_{mn}]_e = 0$$

34. A circular wave guide of radius a that extends from $z = -\infty$ to $z = \infty$ is excited by a small current loop of magnetic moment ϕI $dSe^{j\omega t}$ that lies in the plane $\phi = 0$ at $z = z_0$, $\rho = \rho_0$. Show that, if $z > z_0$, the amplitudes of the TE modes in 15.03 (5) and (6) and of the TM modes in 15.03 (8) and (9) are, respectively,

$$[\tilde{D}_{mn}]_e = -\frac{-m\mu I dS\mathcal{J}_m(\beta_{mn}\rho_0)}{\pi\rho_0(\beta_{mn}^2 - m^2)[\mathcal{J}_m(\beta_{mn}\rho)]^2}e^{j\beta_{mn}z_0} \quad [\tilde{C}_{mn}]_e = 0$$

$$[\tilde{C}_{mn}]_m = -\frac{j\mu I dS(2 - \delta^n_m)J_m'(\beta_{mn}\rho_0)}{2\pi\beta_{mn}\rho_0(\beta_{mn}\rho)^2}e^{j\beta_{mn}z_0} \quad [\tilde{D}_{mn}]_m = 0$$

35. The propagation space of a coaxial line which has internal and external radii r_1 and r_2 terminates in an annular opening whose center is at $x = d$, $y = 0$, $z = c$ in the bottom of a rectangular wave guide closed at $z = 0$. If the frequency is such that the guide transmits only the TE_{10} mode, show that it contributes a radiation resistance

$$R_r = \frac{\omega \mu b \beta'}{8\pi^2 \sin^2 \left(\pi d/a\right) \sin \beta' c(J_0(2\pi r_2/\lambda) - J_0(2\pi r_1/\lambda))}$$

where $\beta' = (2\pi/\lambda)[1 - (\delta/\lambda)/a]^2$. Use the double current sheet method of 14.19 by calculating the guide excitation by a current vortex ring of rectangular section $(r_2 - r_1)\eta$ and letting $\eta \to 0$, keeping the product of η by the current density constant.

36. The rectangular wave guide of 15.02, closed at $z = 0$ by a perfectly conducting plane, is excited by a wire of radius a parallel to the y-axis at $x = d$, $z = c$ that carries a uniformly distributed current $jI \cos \omega t$. If $r \ll a$, $r \ll \lambda$, $r \ll c$, and $r \ll d$, show by superimposing solutions of the type in problem 8 that the reactance is

$$\frac{-\omega \mu b}{4} \left\{ \frac{2 \ln (\beta r)}{\pi} + 2 \sum_{n=1}^{+\infty} \frac{Y_0(2na)}{n} - \sum_{n=-\infty}^{+\infty} \frac{Y_0(2\beta|na - d|)}{n} \right\}$$

$$- \sum_{n=0}^{+\infty} \left[2 - \delta_n^m \right] Y_0(2\beta(n/2a^2 + c^2)^{1/2}) + \sum_{n=-\infty}^{+\infty} \frac{Y_0(2\beta|na - d|^2 + c^2)}{2|na - d|} \right\}$$

37. If in the preceding problem c is of the same order of magnitude as r but the wire does not actually touch the end wall, show that if terms in βc^4, βc^6, etc., are neglected pairs of terms may be combined to give the reactance

$$X = \frac{\omega \mu b}{2\pi} \left\{ \cosh^{-1} \frac{c}{r} - \pi \beta c^2 \sum_{n=1}^{+\infty} \frac{Y_0(2\beta|na - d|)}{na} + \pi \beta c^2 \sum_{n=-\infty}^{+\infty} \frac{Y_0(2\beta|na - d|)}{2|na - d|} \right\}$$

which, if $d = \frac{1}{2}a$, takes the form

$$X = \frac{\omega \mu b}{2\pi} \left\{ \cosh^{-1} \frac{c}{r} + 2\pi \beta c^2 \sum_{n=1}^{+\infty} \frac{Y_0(n\beta a)}{na} \right\}$$

38. The rectangular guide of 15.02, closed at $z = 0$ by a perfectly conducting plane, is excited by a wire of radius r carrying a current $jI \cos \omega t$ parallel to the y-axis at
$x = d$, $z = c$. If r is small, show that the fields when $z > c$ are

$$
\mathbf{E} = -\frac{2\omega I}{a} \sum_{m=1}^{\infty} j \beta_m \sin \frac{m\pi d}{a} \sinh \beta_m c \sin \frac{m\pi x}{a} e^{-i\beta_m z}$$

$$
\mathbf{B} = \frac{2\mu I}{a} \sum_{m=1}^{\infty} \sin \frac{m\pi d}{a} \sinh \beta_m c \left[i \sin \frac{m\pi x}{a} - \frac{Im}{\beta_m} \cos \frac{m\pi x}{a} \right] e^{-i\beta_m z}
$$

where β_m is $(\omega^2 \mu_e - \pi^2 m^2 a^{-2})^{1/2}$. When $z < c$, interchange z and c.

39. In the last problem take the exciting frequency ν so that $\nu \omega < 2a\nu < (n + 1)\nu$ where ν is the free wave velocity in the tube dielectric. Show by integrating Poynting’s vector across the tube section at large z that the radiation resistance is

$$R_r = \frac{2\omega \mu b}{a} \sum_{m=1}^{n} \frac{1}{\beta_m^2} \sin^2 \beta_m c \sin^2 \frac{m\pi d}{a}$$

40. A rectangular wave guide, $a = 10$ cm, $b = 2$ cm, and closed at $z = 0$, transmits waves whose free wave length is 15 cm. It is driven by a 0.5 mm radius wire across the guide at $x = 5$ cm, $z = c$. Show that, to make its resistance equal 100 ohms, c should be 2.62 cm, 14.0 cm, etc. Show that the phase and signal velocities are 1.52ν and 0.66ν, respectively, and that the inductive reactance is 261 ohms.

41. The wave guide of problems 38 and 39 is short-circuited at $x = d$, $z = c$, by a perfectly conducting wire. The impedances Z_1 and Z_2 of each wire alone in terms of its position and size may be calculated from 38 and 39. Show that, when both are present, the impedance Z_1' of the first wire is $Z_1' = (Z_1Z_2 + \omega^2 M^2)/Z_2$ where

$$M = \frac{2\mu b}{a} \sum_{m=1}^{\infty} \frac{1}{\beta_m} \sin \frac{m\pi d}{a} \sin \beta_m c e^{-i\beta_m z}$$

where β_m is real for transmitted modes.

42. It is desired to eliminate the reactance in problem 40. Show from 41 that this can be done without changing the resistance by inserting a short-circuiting wire on the center line at $c_2 = 11.39$ cm from the end so that M is real, provided its radius is 3.45 mm and assuming that our formulas hold for such a radius.

43. A rectangular wave guide, $a = 1$, $b = 2$ and closed at $z = 0$ is excited by the application of equal and opposite potentials to the ends of a rectangular loop in the $x = \frac{1}{2}$ plane. The legs of the loop are at $y = \frac{1}{2}$ and $y = \frac{3}{2}$, and their length is not given. The loop is driven at the frequency of half-centimeter free waves. Show that only the following waves can be transmitted: TM_{13}, TM_{31}, TM_{14}, (TE_{19}), TE_{13}, TE_{16}, (TE_{10}), TE_{22}, and give reasons for excluding other waves.

44. The wave-guide section is a right isosceles triangle with legs of length a. Show that for the simplest TE wave the cutoff frequency ν_c is $2\nu/a$ and that

$$\alpha = \frac{1}{\mu \gamma a \delta} \left[(1 - \frac{\nu^2}{\nu^2}) (1 + 2\nu^2) + (3 + 2\nu^2) \frac{\nu^2}{\nu^2} \right] \left(1 - \frac{\nu^2}{\nu^2} \right)^{1/2}$$

where ν is the velocity of a free wave in the medium that fills the guide.

45. The section of a wave guide is a right triangle with two sides of length a. Show that the simplest TM mode cutoff frequency ν_c is $\frac{1}{2} 5\nu/a$ and that

$$\alpha = \frac{(2 + 2\nu^2)}{\mu \nu a \delta} \left[1 - \left(\frac{\nu}{\nu} \right)^2 \right]^{1/2}$$

where ν is the velocity of a free wave in the medium that fills the guide.
46. The plane $\phi = 0$ in a circular cylindrical wave guide is an infinitely thin conducting sheet. Show that the lowest TE cutoff frequency is given by

$$\beta_4 a = 1.1656$$

or

$$\tan (2\pi v a v^{-1}) = 4\pi v a v^{-1}$$

and that, if the sheet has finite conductivity, the attenuation is infinite.

47. Show that the lowest TM cutoff frequency in problem 46 is $\frac{1}{2}\nu/a$ and that the attenuation is infinite if the sheet has finite conductivity.

48. The rectangular wave guide in 15.02 is obstructed by a thin conducting iris in which a slit of width d with its center at $y = c$ runs from $x = 0$ to $x = a$. For the TE_{10} mode show that the normalized shunt susceptance corresponding to 15.10 (7) is

$$B^0 = \omega C^0 = \frac{\omega C}{Y_k} = \frac{-4b}{\lambda_o} \ln \left(\frac{\sin \frac{\pi d}{b}}{\sin \frac{\pi d}{2b}} \right)$$

49. The half of the iris opposite the origin in 15.10 (12) is removed leaving a gap of width d. Show that the field is now given by the transformation

$$W = C \cos \frac{\pi x}{2a} \left(\cos \frac{\pi d}{2a} - \sin \frac{\pi d}{2a} \right)$$

where the origin is at the intersection of iris and wall. Hence, show that instead of 15.10 (15) the normalized susceptance is

$$B^0 = -\frac{1}{\omega L^0} = \frac{\lambda_o}{a} \cot^2 \frac{\pi d}{2a} \left(1 + \csc^2 \frac{\pi d}{2a} \right)$$

50. The inductive iris of 15.10 (10) is a centered strip of width c. Note from symmetry that identical areas on the top and bottom of the guide must charge via the strip so no current circulates around the windows, and the stream function has the same value, $V = 0$, on strip and wall. Show that in the plane of the strip

$$B_x + jB_z = C \left(\cos^2 \frac{\pi x}{a} - \frac{E}{K} \right) \left(\sin^2 \frac{\pi c}{2a} - \cos \frac{\pi x}{a} \right)^{-1}$$

where E and K are complete elliptic integrals of modulus $k = \cos (\frac{1}{2}\pi c/a)$. Hence show that the normalized shunt susceptance is

$$B^0 = \frac{B}{Y_k} = \frac{\lambda_o}{a} \left[\frac{E - \frac{1}{2}(1 - k^2)K}{E - (1 - \frac{1}{2}k^2)K} \right]$$

51. The guides of problems 1 to 5 are made into cavities by inserting perfectly conducting planes at $z = 0$ and $z = d$. Show that the wave surface equations are the same as before, provided $\sin (\nu x / d)$ is substituted for $\cos \beta' x$ in the TE waves and $\cos (\nu x / d)$ for $\sin \beta' x$ in the TM waves.

52. Show that the axially symmetrical wave surfaces in a spherical cavity are magnetic vortex rings and that in the cell bounded by the spheres $r = r_1$, $r = r_{s+1}$ and the cones $\theta = \theta_p$, $\theta = \theta_{p+1}$; where s and p are integers such that $0 \leq s < t$, $0 \leq p < n$, and $J_n(\beta_{n+1}) = 0$ and $\sin \theta_{\nu} P_\nu'(\cos \theta_{\nu}) = 0$. Their equation is

$$C = \frac{r_j(\beta_{n+s}) \sin \theta P_h(\cos \theta)}{r_M J_n(\beta_{n+s}) \sin \theta_{\nu} P_{\nu}'(\cos \theta_{\nu})}$$

where $r < r_M < r_{s+1}$, $d[r_M J_n(\beta_{n+s})] / dr_M = 0$, $\theta_p < \theta_M < \theta_{p+1}$, and $P_\nu(\cos \theta_M) = 0$. The fraction of the flux between the boundary of the cell and r, θ is C, and the radius of the cavity is $r_1 = a$.

53. Show that the axially symmetrical TM wave surfaces in a spherical cavity are
electric vortex rings whose equation is identical with that in problem 52 except that \(\beta_{10} \) is different, and there are half cells next the wall.

54. The planes \(z = 0, y = 0, x + y = a, z = 0, \) and \(z = d \) bound a cavity. Show that the natural frequency of the simplest TE mode is \(\nu = v(a^2 + d^2)^{1/2}/(2ad) \) and that

\[
Q = \frac{\mu ad(a^2 + d^2)}{\mu' [2a^3 + (1 + 2^2)ad + (3 + 2^2)d^2]}
\]

where \(v \) is the velocity of a free wave in the dielectric filling the cavity.

55. The planes \(z = 0, y = 0, x + y = a, z = 0, \) and \(z = d \) bound a cavity. Show that the natural frequency of the simplest TM mode is \(\nu = 5v/(2a) \) and that

\[
Q = \frac{\mu ad}{\mu' (2 + 2^1)d + a}
\]

where \(v \) is the velocity of a free wave in the dielectric filling the cavity.

56. A cavity is bounded by the planes \(x = 0 \) and \(x = a \) and by the prism \(y = 0, y = b, y = z, z - y = 2b. \) If the electric field is entirely \(x \)-directed and if one assumes that the only periodic solution that gives \(A_x = 0 \) at \(y = 0 \) and \(x = y \) is

\[
A_x = \tilde{C}[\sin p(x - y) \sin q(z + y)]
\]

where \(p \) and \(b \) are different arbitrary constants, show that the lowest resonance wave length of the cavity is \(2b/5^1 \) given by \(p = \frac{3\pi}{b} \) and \(q = \frac{\pi}{2b} \).

57. A check of the nodal lines shows that the lowest purely TM mode in the last problem consists of four right isosecles triangular cells. Hence show by problem 55, adding up losses on four side, two diagonal, and eight end faces, that

\[
Q = \mu \delta (\mu')^{-1}bd[(2 + 2^1)d + 2b]^{-1}
\]

This exceeds the simple TM mode \(Q \) of a square or circular flat ended cavity.

58. A cavity is formed by short-circuiting the biconical transmission line bounded by the cones \(\theta = \alpha \) and \(\theta = \pi - \alpha \) by the spherical surface \(r = d \). Show that the wave lengths of the principal mode resonances are \(4d/(2p + 1) \) and that

\[
Q = \frac{2\mu d \sin \alpha \ln \cot \frac{\alpha}{2}}{C - \ln [(2p + 1)\pi] - C \ln [(2p + 1)\pi] + 2 \sin \alpha \ln \cot \frac{\alpha}{2}]
\]

where \(C \) is Euler's constant 0.5772.

59. In the last problem, define the cavity current to be that in the outer shell and choose \(S \) to make this agree with 15.13 (1). Thus show that the inductance and capacitance of the cavity for the principal modes are

\[
L = \frac{\mu d}{4\pi} \ln \cot \frac{\alpha}{2} \quad C = \frac{16\mu d}{(2p + 1)^2\pi \ln \cot \frac{\alpha}{2}}
\]

60. A cavity resonator bounded by the planes \(z = 0, z = d \) and two confocal elliptic cylinders orthogonal to them whose major and minor axes are \(M_1, m_1 \) and \(M_2, m_2 \). Show with the aid of 4.22 and 15.18 that for the \(p \)th principal mode of this cavity

\[
Q_p = \frac{\mu d}{2\mu' \delta_p} \left[1 + \frac{d(M_1 K_2 + M_2 K_1)}{2\pi M_1 M_2 [\ln (M_2 + m_2) - \ln (M_1 + m_1)]} \right]^{-1}
\]

where \(M_2 > M_1 \) and \(K_1 \) and \(K_2 \) are complete elliptic integrals of modulus \((M_1^2 - m_1^2)^{1/2}/M_1 \) and \((M_2^2 - m_2^2)^{1/2}/M_2 \) respectively.

61. A cavity is bounded by the planes \(z = 0, z = d \), and by two circular cylinders orthogonal to them of radii \(a \) and \(b \) whose axes are a distance \(c \) apart where \(a > b + c \).
Show with the aid of 4.13 and 15.18 that for the pth principal mode
\[Q = \mu d \left\{ \frac{1 + \frac{d(a - b)(a + b)^2 - c^2}{4ab(a^2 - b^2) - 2(a^2 + b^2)c^3 + c^4|\sin^{-1}[(a^2 + b^2 - c^2)/(2ab)]|}}{2\mu' \delta_d} \right\}^{-1} \]

62. A rectangular cavity of width a, height b, and length $d > 2a$ is partly closed at the center from $y = a$ to $y = b$ by a thin conducting iris and excited in the TE_{11a} mode. Consider it as a transmission line T-section short-circuited at the ends with the capacitance of 15.10 forming the leg of the T and thus show that the lowest free space resonance wave length satisfies
\[\lambda = \frac{2a\lambda_1}{(4a^2 + \lambda_1^2)^{1/2}} \]

63. If $a = 2$, $b = 1$, $c = \frac{1}{2}$, and $d = 4$ in the last problem, show that $\lambda = 4.692$.

64. In problem 62, let $z = 0$ be at one end of the cavity and show with the aid of problem 23, 4.22 (6), and the Mehler-Derichlet Legendre function integral that the vector potential in the cavity, when $0 < z < d$, is
\[A = A_0 \sin \frac{\pi z}{a} \left[\frac{\sin \beta z}{\sin \beta d} + \sum_{n=1}^{\infty} C_n \left(j \cos \frac{n\pi y}{b} + k \sum_{n=1}^{\infty} \frac{n\pi y}{b} \sin \frac{n\pi y}{b} \right) \frac{\sin (\beta_n z)}{\sin (\beta_n d)} \right] \]

65. If $d < a$, $d \ll c$, and $a \approx b$ in the reentrant cavity of 15.22, show with the aid of the results in problem 60, Chap. IV, that C_0 in 15.22 (11) is, approximately,
\[C_0 = \left[\pi a^2 + 2a \ln \frac{d^2 + k^2}{4kd} + \frac{2ak}{d} \tan^{-1} \frac{d}{k} + \frac{2ad}{k} \tan^{-1} \frac{k}{d} - \frac{2rad}{k} \right] \]

where k is $b - a$. If $a = 0.1$, $b = 0.015$, $d = 0.001$, $c = 0.02$, this gives $\beta = 42.7$. Moreno's graphs give $\beta = 41.0$. The accuracy increases as a approaches b.

66. A rectangular cavity of dimensions a, b, d in the x, y, z-directions is to be excited in the TM_{11a} mode by a wire parallel to the z-axis at $x = a_1$, $y = b_1$. The wire is terminated to give uniform current in the section of resistance R inside the cavity. If d is much less than a or b, show that the input resistance is
\[R' = R + \frac{2\gamma \mu \beta a^2 b^2 (a^2 + b^2)}{ab(a^2 + b^2) + 2d(a^2 + b^2)} \sin^2 \frac{\pi a_1}{a} \sin^2 \frac{\pi b_1}{b} \]

Show that the electromotance multiplication is csc $(\pi a_1/a) \csc (\pi b_1/b)$.

67. Show by the image method and with the aid of problem 8 that the reactance load on the driving circuit in the last problem when the radius of the wire is c is
\[-\omega \mu d c + \omega \mu d \sum_{-\infty}^{\infty} \sum_{-\infty}^{\infty} \left((1 - \delta_n^2 \delta_m^2) Y_n[2\beta(n^2a^2 + m^2b^2)] - Y_n[2\beta((na - a_1)^2 + m^2b^2)] \right) \]

Observe that the first term is much larger than the rest, if c is small, and that in the latter the $m = n = 0$ terms are most important.

68. The cavity in problem 66 is of copper for which γ is 5.8×10^7 and its a, b, and d dimensions are 10, 20, and 2 cm, respectively. Show that its TM_{11a} resonance fre-
Frequency is 1.676 × 10⁶ cycles per second, its Q is roughly 9100, and that for an input resistance of 100 ohms the driving wire is at \(x = 0.0512 \text{ cm}, y = 10 \text{ cm}; \) at \(x = 5 \text{ cm}, y = 0.1024 \text{ cm}, \) or anywhere on the curve \(\sin (\pi a/10) \sin (\pi b/20) = 0.0160. \) Show that for 1 watt input, the rms potential across the center is 625 volts.

69. A rectangular cavity is excited by a semicircular loop of radius \(r \) lying in the \(y = b_1 \) plane with its center at \(z = d_1, x = 0. \) Show that the mutual inductance between this loop and the \(TE_{mnlp} \) mode is

\[
M = \frac{8\pi^2 \mu \mu_r r J_1(\beta_{mnlp} r)}{\beta_{mnlp} \beta_{mnlp} d^2} \sin \frac{n\pi b_1}{b} \cos \frac{p\pi d_1}{d}
\]

70. A rectangular cavity is excited by a semicircular loop of radius \(r \) lying in the \(y = b_1 \) plane with its center at \(z = d_1, x = 0. \) Show that the mutual inductance between this loop and the \(TM_{mnlp} \) mode is

\[
M = \frac{2\pi^2 \mu \mu_r [2(2 - \delta_0^2)]\frac{1}{4} J_1(\beta_{mnlp} r)}{\beta_{mnlp} \beta_{mnlp} \alpha^2} \sin \frac{n\pi b_1}{b} \cos \frac{p\pi d_1}{d}
\]

71. A spherical copper cavity of radius \(a \) is excited by a small plane loop of area \(S \) so close to the wall that the value of \(B \) at the wall may be used over \(S. \) Show that, when driven at the \(TM_{01} \) resonance frequency, the input resistance of the loop is

\[
R_i = R + \frac{3\omega \mu_r \gamma \delta (4\beta_{01}^2 a^2 - 9)S^2}{4\pi a^2 (4\beta_{01}^2 a^2 - 1)} = R + \frac{1.854 \times 10^3 \gamma \delta S^2}{a^4}
\]

and that, if \(\beta_{01} a = 2.744 \) and \(R \) is the loop resistance, the potential multiplication is

\[
\frac{V}{\mathcal{E}} = \frac{2}{\beta_{01}^2 S} \left[\text{Si}(\beta_{01} a) - 1 \right] = \frac{7.42}{\beta_{01}^2 S}
\]

72. The cavity of the last problem is made of copper and its radius is 10 cm. Show that to get an input resistance of 100 ohms the area of the loop should be roughly 0.225 cm², in which case the potential multiplication is 436.

References

The following books will be found useful for this chapter:

CHAPTER XVI

SPECIAL RELATIVITY AND THE MOTION OF CHARGED PARTICLES

16.00. The Postulates of Special Relativity.—In previous chapters, we considered electric and magnetic interaction of charges and currents whose magnitudes may vary with time but whose positions are fixed relative to each other and the observer. The special theory of relativity seems to furnish the most firmly established experimental basis for the discussion of the interaction of systems moving in a straight line relative to each other or to the observer.

The two fundamental postulates of this theory are:

1. Physical laws, or the equations defining them, have the same form, \textit{in vacuo}, in all cartesian coordinate systems that have a uniform translatory motion relative to each other.

2. The velocity of light, \textit{in vacuo}, is the same for all observers, independent of the relative velocity of the source of light and the observer.

A great number of observable phenomena, mechanical, optical, and electrical, predicted by these postulates have been investigated, and in all cases the results of experiments made on a terrestrial scale confirm them.

16.01. The Lorentz Transformation Equations.—Consider the two coordinate systems shown in Fig. 16.01 in which the \(x\) and \(x'\) axes coincide and the system \(S'\) is moving with a uniform velocity \(v\) in the \(x\)-direction with respect to \(S\). To find the equations connecting \(x, y, z\) and \(t\) with \(x', y', z'\) and \(t'\) which will satisfy the two postulates of special relativity, we shall consider a simple experiment. Suppose that at the instant \(t = t' = 0\) the two origins, \(O\) and \(O'\), are in coincidence and that at this instant a light pulse leaves the common origin. Our postulates require
that S and S' each observe a spherical wave spreading out from his origin with a velocity c. Thus, at any future instant, the equation of the wave front must be for S

$$x^2 + y^2 + z^2 = c^2t^2$$

(1)

For S' it must be

$$x'^2 + y'^2 + z'^2 = c^2t'^2$$

(2)

From the symmetry of the situation as viewed by S and S', we are led to try setting $z = z'$ and $y = y'$ so that, to satisfy these equations, we must have

$$x^2 - c^2t^2 = x'^2 - c^2t'^2$$

(3)

For S, at the time t, O' has the coordinate vt; and for S', at the time t', O has the coordinate $-vt'$. The simplest relations which will give this result are

$$x' = \kappa(x - vt) \quad x = \kappa'(x' + vt')$$

(4)

Eliminating x' from these equations gives

$$t' = \kappa \left[t - \frac{x}{v} \left(1 - \frac{1}{\kappa \kappa'} \right) \right]$$

(5)

Substituting for x' and t' in (3) from (4) and (5), we obtain an equation in which the variables appear as x^2, xt, and t^2, and since this equation must be satisfied for any positive values of t and any values of x, this requires that the coefficients of x^2, xt, and t^2 vanish separately. Setting these equal to zero and solving for κ and κ' we obtain

$$\kappa = \kappa' = \left[1 - \left(\frac{x}{c} \right)^2 \right]^{-1}$$

(6)

Thus, from (4) and (5), the transformation formulas become

$$x' = \kappa(x - vt) \quad x = \kappa(x' + vt')$$

$$y' = y, \quad z' = z \quad y = y', \quad z = z'$$

$$t' = \kappa \left(t - \frac{xv}{c^2} \right) \quad t = \kappa \left(t' + \frac{x'v}{c^2} \right)$$

(7)

16.02. Transformation Equations for Velocity and Acceleration.—We shall designate velocities relative to the S coordinate system by

$$u_x = \frac{dx}{dt}, \quad u_y = \frac{dy}{dt}, \quad u_z = \frac{dz}{dt}$$

(1)

and those relative to the S'-system by

$$u_x' = \frac{dx'}{dt'}, \quad u_y' = \frac{dy'}{dt'}, \quad u_z' = \frac{dz'}{dt'}$$

(2)

By differentiating the first three equations of the first group in 16.01 (7) with respect to t' and those in the second group with respect to t and
then eliminating dt/dt' and dt'/dt, respectively, from the right sides by differentiating the fourth equation of the opposite group, we get

$$u'_x = \frac{u_x - v}{1 - \frac{u_xv}{c^2}} \quad u_x = \frac{u'_x + v}{1 + \frac{u'_x v}{c^2}}$$

(3)

$$u'_{y,z} = \frac{u_{y,z}}{\kappa \left(1 - \frac{u_x v}{c^2}\right)} \quad u_{y,z} = \frac{u'_{y,z}}{\kappa \left(1 + \frac{u'_x v}{c^2}\right)}$$

(4)

These are the transformation equations for velocity. It is interesting to note that even if we give the two systems the relative velocity $v = c$ and a point in the S'-system has a velocity $u' = c$, the value of u given by (3) is still c. Thus, the velocity of light may be regarded as the upper limit of possible velocities.

By a very similar process, differentiating (3) and (4), we obtain for the accelerations

$$\frac{du_x}{dt} = \left[\kappa \left(1 + \frac{u'_x v}{c^2}\right)\right]^{-2} \frac{du'_x}{dt'}$$

(5)

$$\frac{du'_{y,z}}{dt} = \left[\kappa \left(1 + \frac{u'_x v}{c^2}\right)\right]^{-2} \frac{du'_{y,z}}{dt'} - \frac{u'_{y,z} v}{\kappa c^2 \left(1 + \frac{u'_x v}{c^2}\right)} \frac{du'_x}{dt'}$$

(6)

We get the corresponding equation for du'_x/dt' and $du'_{y,z}/dt'$ by interchanging primed and unprimed quantities and substituting $+v$ for $-v$. We note that a constant acceleration in the S'-system does not, in general, imply a constant acceleration in the S-system.

16.03. Variation of Mass with Velocity.—The first postulate requires that the laws of conservation of energy and of momentum be satisfied for all observers. To see the result of this requirement, let us consider a simple hypothetical experiment devised by Tolman and illustrated in Fig. 16.03. At the instant when the two origins are coincident, let S'
§16.03 VARIATION OF MASS WITH VELOCITY

563

project a sphere with a velocity \(u \) from \(B' \) toward \(O' \), and let \(S \) project one from \(A \) parallel to \(y \) with a velocity \(u \). Let \(OA \) and \(OB \) be chosen in such a way that the spheres collide when their centers are aligned in the \(Y \)-direction. The collisions as observed by \(S \) and \(S' \) are shown. We shall choose the mass of the spheres so that, when at rest with respect to any observer, both have, for him, the mass \(m_0 \). We shall assume that the mass is a function of the magnitude of the velocity so that

\[m = f(u^2) \quad \text{and} \quad m_0 = f(0) \]

(1)

By the formulas of the last articles, the initial velocities are

For \(S \) \hspace{1cm} \text{For} \ S'

\[u_{ax} = 0, \quad u_{ay} = u \quad u'_{ax} = -v, \quad u'_{ay} = \frac{u}{\kappa} \]

(2)

\[u_{bx} = v, \quad u_{by} = -\frac{u}{\kappa} \quad u'_{bx} = 0, \quad u'_{by} = -u \]

Let us indicate velocities after the impact by bars. From the conditions of impact of smooth spheres, neither observer will see any transfer of the \(x \)-component of momentum. Thus, \(S \) observes that \(m_b = \overline{m}_b \) or

\[v f \left(v^2 + \frac{u^2}{\kappa^2} \right) = v f \left(v^2 + \frac{u_b^2}{\kappa^2} \right) \]

This requires that

\[\overline{u}_b = -u \quad \text{and hence} \quad \overline{m}_b = m_b \]

(3)

The negative sign is chosen since we know it to be correct for small velocities, where \(\kappa = 1 \). For the \(y \)-component, \(S \) observes that

\[u_f(u^2) - \frac{m_b u}{\kappa} = \overline{u}_a f(\overline{u}_a^2) - \frac{\overline{m}_b \overline{u}_b}{\kappa} \]

In view of (3) and the known result when \(v = 0 \), this can be satisfied only if \(\overline{u}_a = -u \) so that this equation becomes, by dividing out \(u \),

\[f(u^2) = m_a = \frac{m_b}{\kappa} \]

(4)

If the velocity of projection \(u \) becomes very small, then

\[m_b = f \left(v^2 + \frac{u^2}{\kappa^2} \right) \rightarrow f(v^2) \]

and

\[m_a = f(u^2) \rightarrow f(0) = m_0 \]

(5)

Thus, the mass of an object in motion with a velocity \(v \) with respect to a given observer appears to him to be increased by the factor

\[\kappa = \left[1 - \left(\frac{v}{c} \right)^2 \right]^{-\frac{1}{2}} \]

(6)

over its mass when at rest.
We shall find it convenient to introduce here two new symbols κ_1 and κ'_1 defined by

$$\kappa_1 = \left(1 - \frac{u_x^2 + u_y^2 + u_z^2}{c^2}\right)^{-\frac{1}{2}}$$

(7)

$$\kappa'_1 = \left(1 - \frac{u'_x^2 + u'_y^2 + u'_z^2}{c^2}\right)^{-\frac{1}{2}}$$

(8)

where u_x, u_y, and u_z are the components of velocity of a particle as observed by S and u'_x, u'_y, and u'_z the components of velocity of the same particle as observed by S'. Using the relations 16.02 (3) and (4), we obtain the relations

$$\kappa_1 = \kappa k' \left(1 + \frac{u'_x^2}{c^2}\right)$$

(9)

$$\kappa'_1 = \kappa k_1 \left(1 - \frac{u'_x^2}{c^2}\right)$$

(10)

16.04. The Transformation Equations for Force.—The nature of the equations connecting the forces observed by S and S' depends on whether force is defined as the product of mass by acceleration or as the rate of change of momentum. We shall take the latter definition so that, from 16.03 (5), we have

$$\mathbf{F} = \frac{d(mu) dt}{dt} = m_0 \frac{d(\kappa_1 u) dt}{dt}$$

(1)

By writing out the components of this equation, we see that with this definition force and acceleration are not, in general, in the same direction. Carrying out the differentiation, we have

$$\mathbf{F} = \frac{m du}{dt} + u \frac{dm}{dt} = m_0 \kappa_1 \frac{du}{dt} + m_0 \kappa_1 u \frac{du}{dt}$$

$$= m_0 \kappa_1 \left[\left(1 - \frac{u^2}{c^2}\right) \frac{du}{dt} + \frac{uu}{c^2} \frac{du}{dt}\right]$$

(2)

If the force is applied in the direction u_1 of u, then $u = u_1 u$ and

$$\frac{du}{dt} = u_1 \frac{du}{dt}$$

so that we have

$$\mathbf{F} = m_0 \kappa_1 \frac{du}{dt} = m_0 \frac{du}{dt}$$

(3)

If du/dt is zero, i.e., if the velocity changes in direction but not in magnitude, then (2) shows that the force is again in the direction of the acceleration which is at right angles to u, and we have

$$\mathbf{F} = m_0 \frac{du}{dt} = m_0 \frac{du}{dt}$$

(4)
The quantities $m_t = m_{0t} x^i$ and $m_t = m_{0x} x^j$ are usually called the longitudinal and transverse masses, respectively, of the particle.

The forces observed by S' will be of the same form as those observed by S; thus,

$$ F' = m_0 \frac{d(k'_t u')}{dt'} $$

Let us substitute in the x-component of (1) for $k'_t u_x$ from 16.02 (3) and for dt'/dt from differentiating 16.01 (7), and we have

$$ F_x = m_0 \frac{d(k'_t u_x)}{dt} = m_0 \left(1 + \frac{u'_x}{c^2} \right)^{-1} \frac{d(k'_t (u'_x + v))}{dt} $$

$$ = F'_x + m_0v \left(1 + \frac{u'_x}{c^2} \right)^{-1} \left[-\frac{u'_x}{c^2} \frac{dk'_t}{dt} + \frac{dk'_t}{dt} \right] $$

$$ = F'_x + m_0v \left(1 + \frac{u'_x}{c^2} \right)^{-1} \left[\left(1 - \frac{u'_x}{c^2} \right) \frac{dk'_t}{dt} - \frac{k'_t u'_x du'_x}{c^2 dt'} \right] $$

But

$$ 1 - \frac{u'_x}{c^2} = \frac{u'_y^2 + u'_z^2}{c^2} + \frac{1}{k'_t^2} $$

and

$$ -\frac{k'_t u'_x du'_x}{c^2 dt'} = \frac{k'_t u'_y du'_y}{c^2 dt'} + \frac{k'_t u'_z du'_z}{c^2 dt'} - \frac{1}{k'_t^2} \frac{dk'_t}{dt} $$

so that, making the substitution, we have

$$ F_x = F'_x + \frac{m_0v}{c^2 + u'_x} \left[u'_y \left(\frac{du'_y}{dt} + u'_x \frac{dk'_t}{dt} \right) + u'_z \left(\frac{du'_z}{dt} + u'_x \frac{dk'_t}{dt} \right) \right] $$

$$ = F'_x + \frac{u'_y}{c^2 + u'_x} F'_y + \frac{u'_z}{c^2 + u'_x} F'_z $$

(5)

Similar operations for F_y and F_z give

$$ F_{y,z} = \frac{c^2}{\kappa(c^2 + u'_x)} F'_{y,z} $$

(6)

These are the transformation equations for force.

16.06. Force on Charge Moving in Magnetic Field.—The first postulate of special relativity requires that the laws of electrostatics shall be identical for all observers. If we assume, in addition, that the magnitude of charges is the same for all observers, we shall see that it follows that the forces observed by S between charges moving in his system differ from electrostatic forces. We shall see from 16.13 that the invariance of charge follows from the invariance of the Maxwell equations. One might call these additional forces electrokinetic forces but, as we shall see, they are identical with those we have already called magnetic forces.

Let us suppose that there are point charges q and q_1 fixed in the $x'y'$-plane at $x' = 0, y' = y'_1$ and $x' = x', y' = 0$, respectively, in the S'-system. From Coulomb's law, the components of the force observed by S' to act on q are

$$ F'_x = \frac{-qq_1 x'}{4\pi\epsilon_0(x'^2 + y_1'^2)^{3/2}} \quad F'_y = \frac{qq_1 y'_1}{4\pi\epsilon_0(x'^2 + y_1'^2)^{3/2}} \quad F'_z = 0 $$

(1)
To S, these charges appear to be moving in the positive x-direction with a velocity v, and the forces he observes may be obtained by substituting in 16.04 (5) from 16.01 (7) and (1). To both S and S', the force appears independent of the time; so let us take it at $t = 0, t' = -x'v/c^2$. This gives, since $u'_x = u'_y = u'_z = 0, x' = x\kappa$, etc., the result

$$F_x = \frac{-qq_1\kappa x}{4\pi\varepsilon_0(\kappa^2x^2 + y_1^2)^{3/2}}, \quad F_y = \frac{qq_1y_1}{4\pi\varepsilon_0(\kappa^2x^2 + y_1^2)^{3/2}}, \quad F_z = 0$$

(2)

Now let us see what forces S observes if q_1 is replaced by an infinite line of charges uniformly spaced along the x-axis and moving with a velocity v. The charge on any element of axis is, by hypothesis, the same for both observers so that the force due to any element is given, by substituting in (2), the value

$$q_1 = \sigma \, dx = \sigma' \, dx'$$

(3)

In passing, we should note that the assumption that q_1 is the same for both observers requires, since from 16.01 (7) $dx' = \kappa \, dx$, that

$$\sigma = \kappa \sigma'$$

(4)

so that the charge densities observed by S and S' are different. By substituting (3) in (2) and integrating from $x = -\infty$ to $x = +\infty$, we get for the forces on q due to the moving line charge, by Pe 138 or Dw 200.03 and 201.03, if we write β for v/c,

$$F_x = 0, \quad F_z = 0, \quad F_y = \frac{q(1 - \beta^2)\sigma}{2\pi\varepsilon_0 y_1}$$

(5)

By putting $\beta = 0$, we find the electrostatic force observed by S to be $q\sigma/(2\pi\varepsilon_0 y)$ so that the additional force, due to the motion, is seen to be

$$\Delta F_y = -\frac{qv^2\sigma}{2\pi\varepsilon_0 c^2 y_1} = \frac{-\mu_0\sigma v}{2\pi y_1} \cdot qv$$

(6)

But the current measured by S is $i = \sigma v$. Furthermore, we have seen in 7.14 (3) that S attributes to this current a magnetic induction in the z-direction at $x = 0, y = y_1$ of the amount $B_z = \mu_0 i/(2\pi y_1)$. Substituting in (6), we see that the additional force on q due to its motion is

$$\Delta F_y = -B_z qv$$

(7)

Therefore, we say that a point charge q, moving with a uniform velocity v at right angles to a uniform field of induction B, is acted on by a force at right angles to both v and B given by

$$F_m = q(v \times B)$$

(8)
§16.06 MOTION OF CHARGE IN UNIFORM MAGNETIC FIELD

In rectangular coordinates, this is

\[
F_m = q \left[i(v_y B_z - v_z B_y) + j(v_z B_x - v_x B_z) + k(v_x B_y - v_y B_x) \right] \tag{9}
\]

In 16.13, we shall see that (8) also follows from the invariance of Maxwell's equations. If we let \(v = I \, ds \), this is exactly the law of force for an element \(ds \) of a circuit carrying a current \(I \) in a field of magnetic induction \(B \). This law as derived from Ampère's experiments in 7.18 was valid only when integrated around a closed circuit. We have now extended it to include isolated moving charges. We should note that (8) should apply quite accurately when \(B \) is variable as regards both time and position provided that the variation is sufficiently slow so that \(B \) may be considered uniform and constant over the region occupied by the actual charge involved. We may expect (8) to break down for any actual charged particles if we go to subatomic distances and frequencies.

16.06. Motion of Charge in Uniform Magnetic Field.—Suppose a particle having a charge \(q \) and a mass \(m \) has an initial velocity \(v \) in a magnetic field \(B \). Let \(s_1 \) be a unit vector making an angle \(\alpha \) with \(B \) such that \(v = v s_1 \). Then, from 16.05 (8), we have

\[
\frac{d(mv)}{dt} = s_1 \frac{d(mv)}{dt} + mv \frac{ds_1}{dt} = qv[s_1 \times B] \tag{1}
\]

Writing out components, we have

\[
s_1 \frac{d(mv)}{dt} = 0 \tag{2}
\]

showing that \(v \) is constant, and

\[
m \frac{ds_1}{dt} = q[s_1 \times B] \tag{3}
\]

showing that \(ds_1 \) is normal to \(s_1 \) and \(B \) so that we must use the transverse mass 16.04 (4) for \(m \). Let \(d\phi \) be the angle, measured in the plane normal to \(B \), through which \(s_1 \) has been turned by the change \(ds_1 \), and let \(\rho \) be the radius of curvature of the path corresponding to \(d\phi \). Then, carrying out the multiplication in (3) and dividing through by \(s_1 \sin \alpha \), we have

\[
\frac{m \, ds_1}{s_1 \sin \alpha \, dt} = \frac{m \, d\phi}{dt} \Rightarrow \frac{m \, v \sin \alpha}{\rho} = qB \tag{4}
\]

Thus, the path is a helix of constant angular pitch \(\frac{1}{2} \pi - \alpha \), lying on the circular cylinder whose radius is

\[
\rho = \left| \frac{m \phi \sin \alpha}{qB[1 - (v/c)^2]} \right| \tag{5}
\]

and whose axis is parallel to \(B \). In the special case, where \(v \) is normal to \(B \), \(\alpha \) is \(\frac{1}{2} \pi \) so that the charge travels in a circular path.
16.07. Energy of a Charged Moving Particle.—We define the energy given to a charged particle by the action of a force to be the work done on it. In an infinitesimal interval of time \(dt \), a particle will move a distance \(d\mathbf{r} = u\, dt \). Thus, from 16.03 (3), the work done on it is

\[
 dW = F \cdot d\mathbf{r} = F_1\, dr = m_\kappa^2\frac{du}{dt} \, dr = m_\kappa^2 u\, du
\]

(1)

Substitution of 16.03 (7) for \(\kappa_1 \) and integration from 0 to \(u \) give

\[
 W = (m_\kappa - m_0)c^2 = (\kappa_1 - 1)m_0c^2
\]

(2)

This proves that an energy increase is equivalent to a mass increase, which has become one of the most accurately and completely verified laws of physics. Confirmation has come chiefly from the vast amount of data on nuclear disintegrations. Thus we have excellent experimental grounds for the statement that a quantity of energy \(\Delta W \) always has associated with it a mass \(\Delta m \) given by the equation

\[
 \Delta W = c^2 \Delta m
\]

(3)

From (1) and 16.05 (8) a charged particle gets no energy from the magnetostatic part of a static electromagnetic field. Thus it cannot enter regions where the electrostatic potential exceeds the sum of the starting point potential and that needed to give it its initial velocity.

16.08. Magnetic Cutoff of Thermionic Rectifier.—As an example of a calculation of the motion of a charge when both electric and magnetic fields are present, let us consider a device known as the magnetron. The space between a pair of concentric circular conducting cylinders is evacuated, and charged particles, usually electrons, are set free at the surface of the inner cylinder with negligible initial velocity. The cylinders are maintained at different potentials so that the charges are accelerated from the inner, of radius \(a \), toward the outer, of radius \(b \). A magnetic field is applied parallel to the axis of the cylinders. The induction \(\mathbf{B} \) is a function only of \(\rho \), the distance from the axis. We wish to find the induction \(\mathbf{B} \) that is just sufficient to prevent particles from reaching the outer cylinder when the potential is \(\mathcal{V} \). If \(\phi \) is the longitude angle, then the charges will just reach the plate when \(d\rho/dt = \dot{\rho} = 0 \) there, so that we have \(b\, d\phi/dt = b\dot{\phi} = v_m \). Setting the rate of change of angular momentum equal to the torque acting, we have

\[
 \frac{d}{dt}(m_\kappa^2\dot{\phi}) = -q\rho B\dot{\rho}
\]

(1)

At the beginning of the path, \(\phi = 0 \), and at the end, \(\rho\phi = v, \rho = b \), and \(m = \kappa_1 m_0 \). Integrating (1) over this path, we have

\[
 \kappa_1 m_0 b v = -q \int_a^b \rho B\, d\rho
\]

(2)

If \(N \) is the total magnetic flux passing between the cylinders, then
§16.09 \textit{Path of Cosmic Particle in Uniform Field} \hfill 569

$N = 2\pi \int_a^b \rho B \, d\rho$ so that this can be written

$$\kappa_1 m_0 \mathcal{v} = -\frac{N q}{2\pi}$$

Since the charge has acquired all the energy by falling through the potential V, we have, from 16.07 (2),

$$V q = (\kappa_1 - 1) m_0 c^2$$

Eliminating κ_1 and v from (3) by means of (4) gives

$$N = -2\pi b c \left[\frac{V}{c^2} \left(\frac{2 m_0}{q} + \frac{V}{c^2} \right) \right]^\frac{1}{2}$$

If the potential is sufficiently small, the second term on the right can be neglected. In terms of potential, (5) becomes

$$V = \frac{m_0 c^2}{q} \left[\left(1 + \frac{N^2 q^2}{4\pi^2 c^2 b^2 m_0^2} \right)^\frac{1}{2} - 1 \right]$$

16.09. Path of Cosmic Particle in Uniform Field.—As an example of the calculation of a path of a charged particle influenced by both electrical and mechanical forces, we shall consider a particle, traveling in a plane normal to a uniform field \mathbf{B}, in a medium that opposes the motion of the particle with a force proportional to its velocity. It is found experimentally that the high-speed charged particles of cosmic origin dissipate their energy nearly uniformly along their paths so that the retarding force is that assumed. Let us write down the components of the equation of motion from 16.04 (1) and 16.05 (8), giving

$$\frac{d}{dt} (m_0 \mathbf{v}) = -q B \mathbf{v} - K \mathbf{v}$$

$$\frac{d}{dt} (m_0 v \mathbf{v}) = q B \mathbf{v} - K \mathbf{v}$$

We now integrate these two equations from any point on the path to the origin, where $\mathbf{v} = 0$ and $x = y = 0$ and take the ratio of the results, obtaining

$$\frac{\dot{y}}{\dot{x}} = \frac{dy}{dx} = \frac{-q B x - K y}{q B y - K x}$$

Setting $y = r \sin \theta$ and $x = r \cos \theta$, this becomes

$$\frac{dr}{r} = \frac{K}{q B} \, d\theta$$

Choosing $\theta = 0$ when $r = 1$ and integrating from this point to any point on the path, we have

$$\ln r = \frac{K}{q B} \theta \quad \text{or} \quad r = e^{\frac{K \theta}{q B}}$$
Thus, the path is an equiangular spiral. For a high-speed cosmic electron, \(K \) roughly equals \(3qP \times 10^{-4} \) where \(P \) is the air pressure in atmospheres.

16.10. Magnetic Field of Moving Charge.—Let us consider again the force between two moving charges determined in 16.05 (2). In view of the conclusions of 16.05, we may say that the force that \(S \) observes to act on the charge crossing the \(y \)-axis due to the charge moving along the \(x \)-axis he ascribes to the combined electric and magnetic fields of the latter. The \(x \)-component which acts in the direction of motion of \(q \) must be considered entirely electrostatic, but the \(y \)-component includes both electric and magnetic parts. Thus, we have

\[
F_x = +F_e \cos \theta \\
F_y = F_e \sin \theta - F_m
\]

(1)

\[
F_m = +F_z \tan \theta - F_y = -F_{y/x} - F_y
\]

(2)

We use the angle \(\theta \) in Fig. 16.10 since, as we shall see in 16.16, the aberration of a signal received by \(q \) from \(q_1 \) is zero. Substituting in the values of the forces from 16.05 (2), we obtain

\[
F_m = \frac{qq_1y(k^2 - 1)}{4\pi\varepsilon_0c(k^2x^2 + y^2)^{\frac{3}{2}}} = \frac{qq_1v^2y}{4\pi\varepsilon_0c^2(k^2x^2 + y^2)^{\frac{3}{2}}}
\]

(3)

\(S \) observes that this force does not vary with time and concludes that, since \(q \) is a point charge, it is effectively moving in a uniform field so that it is legitimate to compute the magnetic field in which it moves by means of 16.05 (8) and (3). Thus, the magnetic field due to \(q_1 \) is

\[
B_z = \frac{\mu_0 q_1vyk}{4\pi(k^2x^2 + y^2)^{\frac{3}{2}}}
\]

(4)

By definition, the electric field acting along \(r \) is, substituting from (1),

\[
E = \frac{F_e}{q} = \frac{F_xr}{qx} = \frac{q_1kr}{4\pi\varepsilon_0(k^2x^2 + y^2)^{\frac{3}{2}}}
\]

(5)

By applying in the formulas of 13.01,

\[
B_z = (\nabla \times A_x)_z = -k \frac{\partial A_z}{\partial y}
\]

\[
E = -\nabla \phi - \frac{dA}{dt}
\]

\[
E = \left[\left(-\frac{\partial \phi}{\partial x} + v \frac{\partial A_z}{\partial x} \right)^2 + \left(\frac{\partial \phi}{\partial y} \right)^2 \right]^{\frac{1}{2}}
\]
§16.11 Retarded Fields and Potentials of Moving Charge

we can easily verify that the vector and scalar potentials corresponding to (4) and (5) are

\[A_x = \frac{\mu_0 q_1 \kappa v_x}{4\pi (\kappa^2 x^2 + y^2)^{\frac{3}{2}}} \]

\[\phi = \frac{q_1 \kappa}{4\pi \varepsilon_0 (\kappa^2 x^2 + y^2)^{\frac{3}{2}}} \]

It should be noted that (4), (5), (6), and (7) apply to a point charge moving with uniform velocity in a straight line and are stated in terms of the actual position of the charge at the instant of measurement.

16.11. Retarded Fields and Potentials of Moving Charge.—Since electric and magnetic fields are propagated with a finite velocity \(c \), the field at \(Q \) at a time \(t \) when the charge that produced it is at \(P \) will actually have left \(q_1 \) at some previous point on its path indicated by \([P]\). If, after leaving \([P]\), the charge had changed its motion, the field at \(Q \) at the time \(t \) would still be the same. Thus, in the case of nonuniform motion, it is better to describe the field at a time \(t \) in terms of its motion at a time \(t - (r/c) \), called the retarded time, where \([r]\) is the radius vector drawn from the retarded position \([P]\) to the point of measurement \(Q \). Since the field at \(Q \) is independent of the path taken by \(q_1 \) after leaving \([P]\), we shall assume that its state of motion at \([P]\) continues unchanged so that it moves in a straight line with a uniform velocity \([v]\) to a fictitious position \(P' \). We now calculate the field at \(Q \) for this uniform motion by the method of the last article. From Fig. 16.11, we can write down the necessary relations between the fictitious and the retarded magnitudes

\[r^2 = [r]^2(1 + [\beta]^2 - 2[\beta] \cos [\theta]) \]

\[y^2 = [y]^2 = [r]^2 \sin^2 [\theta] \]

where we have written \([\beta]\) for \([v]/c\). The term occurring in the denominators of 16.10 (3) becomes

\[\kappa^2 x^2 + y^2 = [\kappa]^2(r^2 - [\beta]^2 y^2) = [\kappa]^2[r]^2(1 - [\beta] \cos [\theta])^2 \]

Substituting from (2) and (3) in 16.10 (4), we obtain for the magnetic induction of a moving charge in terms of retarded time the expression

\[B_x = \frac{\mu_0 q_1 [v][y]}{4\pi[\kappa]^2[y]^2(1 - [\beta] \cos [\theta])^3} \]

We evidently can apply this to a slowly varying velocity provided that
we use the values \([\beta]\) and \([v]\) at the position \([P]\). Thus, in vector notation, (4) may be written

\[
B = \frac{\kappa_{\infty}q_1(1 - [\beta]^2) ([v] \times [r])}{4\pi[r]^3 (1 - [\beta] \cos [\theta])^3}
\]

(5)

The electric field defined in 16.10 acts along \([r]\), and we note from Fig. 16.11 the vector relation

\[
r = [r] - \frac{[r][v]}{c} = [r] ([r_1] - \frac{[v]}{c})
\]

where \([r_1]\) is a unit vector along \([r]\). Thus, Eq. 16.10 (5) for the electric field becomes, by putting in the retarded values \([\beta]\) and \([v]\),

\[
E = \frac{q_1(1 - [\beta]^2) ([r_1] - \frac{[v]}{c})}{4\pi\varepsilon_0[r]^3 (1 - [\beta] \cos [\theta])^3}
\]

(6)

Substituting (1) and (2) in 16.10 (6) and (7), we obtain for the retarded potentials due to a moving point charge

\[
A = \frac{\mu_{\infty}q_1[v]}{4\pi[r](1 - [\beta] \cos [\theta])}
\]

(7)

\[
\phi = \frac{q_1}{4\pi\varepsilon_0[r](1 - [\beta] \cos [\theta])}
\]

(8)

When \([\beta]\) is small, these expressions obviously are identical with those given by 14.03 (1) and (2) for a small charge. When \([\beta]\) is large, we can obtain (7) and (8) from 14.03 (1) and (2) by taking account of the variation in the retarded time within the infinitesimal volume of the charge. This variation cannot be neglected even when the charge shrinks to a point. A full discussion of this item is given by Mason and Weaver.

16.12. Radiation from Linearly Accelerated Electron.—The results of the last article may be applied to the accelerated motion of an actual charge such as an electron provided that the acceleration is so small that the variation of retarded time throughout the electron may be neglected. If this is not the case, it is necessary to know the configuration of the latter in order to find the field and this, at our present state of knowledge, is not feasible. Assuming that the acceleration is low enough to permit the use of 16.11 (7) and (8), let us compute the radiation at a great distance from an electron whose linear motion is stopped with a uniform linear negative acceleration. Such a situation might arise at the target of an X-ray tube.

In this case, we shall find it simpler to get \(B\) by operating on \(A\). From 16.11 (7), \(A\) has only an \(x\)-component and \(B\) only a \(\phi\)-component where \(\phi\) is the longitude angle about the axis of motion. We know the dependence of \([v]\) on \([t]\) at the electron and wish to find the dependence of \(A\) on
ρ at some distant point. Since \(B \) is the curl of \(A \),

\[
B_\phi = -\frac{\partial A_z}{\partial \rho} = -\frac{\partial A_z}{\partial \rho} \left[\frac{dv}{dt} \frac{\partial}{\partial \rho} \right] + \frac{\partial A_z}{\partial \rho} \frac{\partial [x]}{\partial \rho} - \frac{\partial A_z}{\partial \rho} \frac{\partial [\rho]}{\partial \rho}
\]

(1)

Since \(\cos \theta \) may be written \([x][x] + [\rho]^2 \), we notice that all terms except the first involve the magnitude \([r]^2\) in the denominator so that at a great distance we need keep only the first. The unknown factor in this term is \([\partial l]/\partial \rho \). To evaluate this, we draw a diagram showing that

![Diagram](image)

Fig. 16.12.

the disturbance leaving the electron at the point \(-[v][dt]\) and the time \([t]\) arrives at the point \([x]\), \(\rho + \rho\) at the same time as the disturbance leaving \(O\) at \([t] + [dt]\) arrives at the point \([x]\), \(\rho\). If the latter disturbance travels a distance \(cr\), we have from Fig. 16.12a the relations

\[
c^2 \tau^2 = [x]^2 + [\rho]^2
\]

(2)

\[
c^2 (\tau + [dt])^2 = ([x] + [v][dt])^2 + ([\rho] + [\rho])^2
\]

(3)

We know that \([\rho] = \rho\) and assume that \([v]\) does not change appreciably in the interval \([dt]\). Eliminating \([x]^2\), \([\rho]^2\); and \(\tau^2\) from (3) by means of (2), discarding \([dt]^2\) and \(d\rho^2\) compared with \([dt]\) and \(d\rho\), and writing \([r]\) for \(cr\), we have

\[
\frac{[dt]}{d\rho} = \frac{[\rho]}{c[r] - [x][v]} = \frac{\sin \theta}{c(1 - [\beta] \cos \theta)}
\]

(4)

Substituting in the first term of (1) from 16.11 (7) and (4) and remembering to differentiate \(\beta\) in getting \(\partial A/\partial [v]\), we have

\[
B_\phi = \frac{\mu_0 q_s [\hat{v}] \sin \theta}{4\pi c[r](1 - [\beta] \cos \theta)^2}
\]

(5)

If the distance of the point of measurement is very great compared with the length in which the electron is stopped, then this disturbance represents a spherical wave and from 13.03 (8) \(cB_\phi = E_\phi\). We could verify this result by computing \(E_\phi\) directly from 16.11 (7) and (8) and seeing that the result agrees with (5).
We shall now use (5) to calculate the distribution of the total energy radiated when this electron is stopped. At any instant, the intensity of radiation is given by the Poynting vector [13.02 (2)] to be

$$\mathbf{\Pi} = \frac{\mathbf{E} \times \mathbf{B}}{\mu_0} = \frac{\mu_0 q^2 \dot{v}^2 \sin^2 \theta}{16\pi^2 c^4 r^2 (1 - \left[\beta \cos \theta\right])^5} \mathbf{n}$$

(6)

To get the total radiation passing the point, we integrate $\mathbf{\Pi}$ over the duration of the impulse at this point. But our velocity is a function of the retarded time at the electron, and so we must get a relation between this time and that at the field point. From Fig. 16.12b, we see that if an impulse leaving the electron at time $[t] = 0$ reaches P at the time τ and one leaving at the time $[dt]$ reaches P at the time $\tau + dt$, then we have the relations

$$\rho^2 + [x]^2 = c^2 \tau^2$$
$$\rho^2 + ([x] - [v][dt])^2 = c^2 (\tau - [dt] + dt)^2$$

(7)

(8)

Eliminating ρ^2, $[x]^2$, and τ^2 from (8) by (7), discarding $[dt]^2$ and dt^2 compared with $[dt]$ and dt, and writing $\cos \theta$ for $[x]/ct$, we obtain

$$dt = (1 - \left[\beta \cos \theta\right]) [dt]$$

(9)

Thus, we have for the total energy radiated in the direction θ the result

$$T_\theta = \int \mathbf{\Pi} dt = \int_{\nu = \tau}^{\nu = 0} \mathbf{\Pi} (1 - \left[\beta \cos \theta\right]) [dt]$$

We now substitute $[\dot{v}][dt] = -[dv]$ and obtain, with the aid of Pc 21 or Dw 90, the result

$$T_\theta = \frac{\mu_0 q^2 \dot{v} \sin^2 \theta}{16\pi^2 c^4 r^2} \int_{0}^{[v]} \frac{d[v]}{(1 - \left[\beta \cos \theta\right])^5}$$

$$= \frac{\mu_0 q^2 \dot{v} \sin^2 \theta}{64\pi^2 c^4} \left[1 - \frac{1}{\cos \theta^4 (1 - \beta \cos \theta)^4} \right]$$

(10)

where, in the last term, we have dropped the symbols of retardation since, by hypothesis, the whole distance in which the disturbance originates is small compared with the distance to the point of observation.

Equation (10), derived by Sommerfeld, fits the observed intensity distribution of the "white" x-radiation very well when account is taken of the absorption by the target. The result is plotted, in terms of β, in Fig. 16.12c.

16.13. Transformation of Maxwell’s Equations.—The first postulate of special relativity requires that the Maxwell equations have the same form for both S and S'. We have now extended these to include moving isolated charges; so we put ρu in place of i in 13.00 (1), giving for the
§16.13 Transformation of Maxwell’s Equations

Equations that must be satisfied in free space

\[\nabla \times \frac{B}{\mu_0} = \rho v + \varepsilon_0 \frac{\partial E}{\partial t} \quad \nabla \times \frac{B'}{\mu_0} = \rho' v' + \varepsilon_0 \frac{\partial E'}{\partial t'} \]

\[\nabla \times E = -\frac{\partial B}{\partial t} \quad \nabla \times E' = -\frac{\partial B'}{\partial t'} \]

\[\nabla \cdot E = \rho \quad \nabla \cdot E' = \rho' \]

\[\nabla \cdot B = 0 \quad \nabla \cdot B' = 0 \]

(1)

From 16.01 (7), we have the differential relations

\[\frac{\partial x'}{\partial x} = \kappa, \quad \frac{\partial t'}{\partial t} = -\frac{v}{c^2}, \quad \frac{\partial x}{\partial t} = -\kappa v, \quad \frac{\partial t'}{\partial t} = \kappa \]

(2)

Thus, we get the relations

\[\frac{\partial}{\partial x} = \frac{\partial}{\partial x'} \frac{\partial x'}{\partial x} + \frac{\partial}{\partial t'} \frac{\partial t'}{\partial x} = \kappa \left(\frac{\partial}{\partial x'} - \frac{v}{c^2} \frac{\partial}{\partial x'} \right) \]

\[\frac{\partial}{\partial t} = \frac{\partial}{\partial x'} \frac{\partial x'}{\partial t} + \frac{\partial}{\partial t'} \frac{\partial t'}{\partial t} = \kappa \left(\frac{\partial}{\partial t'} - \frac{v}{c^2} \frac{\partial}{\partial x} \right) \]

\[\frac{\partial}{\partial y} = \frac{\partial}{\partial y'}, \quad \frac{\partial}{\partial z} = \frac{\partial}{\partial z'} \]

(3)

Changing the independent variables in the first group of (1) from the S- to the S'-system by means of (3) and using the velocity relations from 16.02, we find that the substitution of E, B, and \(\rho \) from the following equations gives the second group in (1) and they are therefore the desired transformation equations.

\[E_x = E'_x \quad E_{y,z} = \kappa (E'_{y,z} \pm v B'_{z,y}) \]

\[B_x = B'_x \quad B_{y,z} = \kappa (B'_{y,z} \mp c^{-1} v B'_{y,z}) \]

\[\rho = \rho' \kappa \left(1 + \kappa^2 \right) \]

(4)

(5)

(6)

where the lower sign goes with the second subscript. These equations show that the way in which an electromagnetic field is separated into electric and magnetic parts depends on the state of motion of the observer. To get \(E', B', \) and \(\rho' \) in terms of \(E, B, \) and \(\rho, \) we need interchange only primed and unprimed quantities and change the sign of \(\beta \) and \(v. \)

We can show that (6) implies the invariance of electric charge assumed in 16.05. Elimination of the last factor in Eq. (6) by 16.03 (9) gives \(\rho \kappa = \rho' \kappa' \) where \(\kappa \) and \(\kappa' \) are defined by 16.03 (7) and (8). Thus, if \(S_0 \) is an observer stationary with respect to the charge,

\[\rho_0 = \rho \left[1 - \left(\frac{v}{c} \right)^2 \right]^\frac{1}{2} = \rho' \left[1 - \left(\frac{v'}{c} \right)^2 \right]^\frac{1}{2} \]

(7)
The volume elements seen by S and S' are contracted by (2), so that

$$ds_0 = \left[1 - \left(\frac{u}{c} \right)^2 \right]^{-\frac{1}{2}} ds = \left[1 - \left(\frac{u'}{c} \right)^2 \right]^{-\frac{1}{2}} ds'$$

(8)

Combining (7) and (8) shows that S and S' observe the same charge, for

$$\rho_0 \, ds_0 = \rho \, ds = \rho' \, ds' = q$$

(9)

We can also show that (4) and (5) lead to the expression for the force acting on a charge moving in a magnetic field given in 16.05 (8). Suppose that S' observes a charge at rest in an electrostatic field in his system, giving

$$F'_{z,y,z} = q'E'_{z,y,z}$$

(10)

Using the transformation equation for force [16.04 (5)], setting $u_x = v$, $u_y = 0$, and $u_z = 0$, and using (4) and (5), we have, since $q = q'$,

$$F_z = qE_z, \quad F_{y,z} = q(E_{y,z} \mp u_z B_{x,y})$$

(11)

Writing this in vector form gives

$$F = q[E \mp (u \times B)]$$

(12)

which agrees with 16.05 (8).

16.14. Ground Speed of an Airplane.—One of the most difficult experimental problems in aviation is that faced by an aviator in determining his speed relative to the ground when conditions are such that he can see nothing outside his airplane. Since an airplane flying horizontally is cutting the vertical component of the earth's field, an electromotive force, proportional to its speed, must be induced across any lateral conductor on the airplane. The idea has been suggested and patented that ground speed can be determined by measuring this electromotive force. Several methods of doing this suggest themselves, one of the most obvious of which is to rotate an elongated conductor in a horizontal plane about its center. For a uniform speed of rotation, the induced charges are constant if the airplane is stationary. If, however, the latter is in motion, the induced electromotive force is always, in the Northern Hemisphere, from right to left. Thus, there is a transfer of charge from one end of the conductor to the other, producing at its center an alternating current whose frequency is that of the rotation and whose magnitude is proportional to the ground speed of the airplane.

This current is very small but could be measured by sensitive instruments in a well-shielded laboratory. The question arises as to whether the effect disappears if the apparatus is electrically shielded in the airplane. We know that the magnetic field will penetrate nonmagnetic metallic conductors, but we also know that the induced electromotive forces in the shields will set up electric fields tending to counteract the
fields induced inside. So far, we have looked at this problem from the point of view of a stationary observer S on the ground and found it quite complicated. Let us now see how it looks to the observer S' in the airplane who is to make the measurements. Let z be the vertical direction and x the direction of motion and let the components of the earth's field be B_z, B_v, and B_s. There is also usually a vertical electric field present which we shall call E_z. These are the fields observed by S, from which we determine by 16.13 (5), the magnetic field observed by S' to be

$$B'_z = B_z, \quad B'_{y,z} = \kappa(B_{y,z} \pm c^{-1}\beta E_{z,y}) \approx B_{y,z}$$

(1)

Since the speed of an airplane is small compared with that of light, $\beta \approx 0$, and $\kappa \approx 1$ so that the magnetic fields observed by S' are unchanged. For the electric fields, we have

$$E'_z = 0, \quad E'_y = -\kappa v B_z \approx v B_z, \quad E'_z = \kappa E_z + \kappa v B_y \approx E_z$$

(2)

Thus, S' finds his airplane in a transverse electric field $v B_z$. He cannot therefore use any metallic shields about his apparatus. Furthermore, this field is extremely minute compared with E_z, the normal atmospheric electric field, so that the slightest lateral tilt of the airplane will completely nullify the measurements.

16.15. Motion of Charged Particle in Crossed Electric and Magnetic Fields.—In the last article, we had an example of the simplification of a problem by using the transformation equations 16.13 (4), (5), and (6) to introduce a field. We shall now use these same equations to eliminate a field. Consider a charged particle starting from the origin with initial velocity components v_z, v_y, and v_z under the influence of a uniform electric field in the y-direction and a uniform magnetic field in the z-direction. For an observer moving along the x-axis with a uniform velocity v, the fields will appear to be, from 16.13 (4) and (5),

$$E'_z = 0, \quad E'_y = \kappa E_y - \kappa v B_z, \quad E'_z = 0$$

$$B'_z = 0, \quad B'_y = 0, \quad B'_x = \kappa(B_z - c^{-1}\beta E_y)$$

(2)

Thus if $E_y < c B_z$, we choose the velocity with which S' moves such that

$$E_y = v B_z$$

(3)

so he observe only a single uniform magnetic field in the z-direction, given by (2), to be present. If the charge is released when the origins are coincident, then initially $t = t' = x = x' = y = y' = z = z' = 0$. For S', the components of the initial velocity are v'_x, v'_y, and v'_z. From 16.06 (5), he observes the particle to move in a helical path of pitch γ' on a circular cylinder of radius a, with an angular velocity ω', where

$$a = \left| \frac{k' m_0 (v'_x^2 + v'_y^2)^{\frac{1}{2}}}{q B'_z} \right| \quad \text{and} \quad \tan \gamma' = \frac{v'_z}{(v'_x^2 + v'_y^2)^{\frac{1}{2}}}$$

(4)
If we make use of 16.03 (7), (8), and (10), \(\kappa' \) may be written
\[
\kappa' = \left(1 - \frac{v_x'^2 + v_y'^2 + v_z'^2}{c^2} \right)^{-\frac{3}{4}} = (1 - \beta^2)^{-\frac{3}{4}} \left(1 - \frac{v_x'^2 + v_y'^2 + v_z'^2}{c^2} \right)^{-\frac{3}{4}} (1 - \frac{\beta v_z}{c})
\]
\[
\kappa' = \kappa_1 \left(1 - \beta^2 \frac{v_z}{c} \right) = \kappa_1 \frac{(c^2 B - v_z E)}{c^2 B}
\]
(5)

Substituting from (2) and (5) in (4), we obtain
\[
a = \kappa_1 m_0 c \frac{[c^2 (v_x B - E)^2 + (c^2 B^2 - E^2) v_y^2]}{q (c^2 B^2 - E^2)}
\]
(6)

The angular velocity about the axis of the cylinder is
\[
\omega' = \frac{(v_x'^2 + v_y'^2)^{\frac{1}{2}}}{a} = \frac{q (c^2 B^2 - E^2)}{\kappa_1 m_0 (c^2 B - v_z E)}
\]
(7)

where, looking in the positive \(z \)-direction, \(\omega' \) is counterclockwise if \(q \) is positive.

In most cases, \(E > v_x B \) so that \(v_x' \) is negative. In this case, a line normal to the \(z \)-axis and tangent to the cylinder at the origin makes an acute angle \(\psi_0 \) with the negative \(x' \)-axis, where, from 16.02 (3) and (4),
\[
\tan \psi_0 = -\frac{v_y'}{v_x'} = \frac{v_y}{\kappa (v - v_z)} = \frac{v_y (c^2 B^2 - E^2)^{\frac{1}{2}}}{c (E - v_z B)}
\]
(8)

We can write down the position of the charge at any time in the \(S' \)-system.
\[
x' = a [- \sin \omega' t \cos \psi_0 + (1 - \cos \omega' t) \sin \psi_0] = a [\sin \psi_0 - \sin (\omega' t + \psi_0)]
\]
\[
y' = a [\sin \omega' t \sin \psi_0 + (1 - \cos \omega' t) \cos \psi_0] = a [\cos \psi_0 - \cos (\omega' t + \psi_0)]
\]

Let us now introduce new symbols \(\psi \) and \(b \) which are defined by
\[
\psi = \omega' t' + \psi_0 = \omega' \left(t - \frac{x E}{c^2 B} \right) + \psi_0
\]
(9)
\[
b = \frac{v}{\omega'} = \frac{\kappa_1 m_0 E (c^2 B - v_z E)}{q B (c^2 B^2 - E^2)}
\]
(10)

Writing \(x \) and \(y \) in terms of \(x' \), \(y' \), and \(t' \) by 16.01 (7) and writing \(t' \) in terms of \(\psi \) and \(b \), we have
\[
x \left(1 - \frac{E^2}{c^2 B^2} \right)^{\frac{1}{2}} = b \psi - b \psi_0 + a \sin \psi_0 - a \sin \psi
\]
(11)
\[
y = a \cos \psi_0 - a \cos \psi
\]
(12)

These are the rigorous equations of the path of the particle in terms of the parameter \(\psi \). We notice that when \(\psi = 2 n \pi + \psi_0 \), the position of the particle is
\[
x_n = 2 n \pi b \left(1 - \frac{E^2}{c^2 B^2} \right)^{-\frac{1}{2}}, \quad y_n = 0
\]

Thus, the paths of all particles starting from the origin with the same
value of b intersect periodically at the same points along the z-axis. Furthermore, we notice from (10) that if the initial velocities are small compared with that of light, the distance between these points of intersection depends only on the field strengths and the ratio of the charge to the mass of the particles. This principle is utilized in one type of mass spectrometer.

With an electric field of 100,000 volts per meter and with an induction of 0.1 weber per square meter, the quantity $E^2/(cB)^2$ occurring in (11) is $1/90,000$. In such a case, (11) and (12) become the parametric equations of a trochoid, which is the curve traced by a point on the radius of a rolling circle. To make the circle roll on the x'-axis symmetrically, we choose a new origin so that

$$x' = x + b\psi_0 - a \sin \psi_0 \quad \text{and} \quad y' = y - a \cos \psi_0 + b$$

We thus obtain the paths shown in Fig. 16.15 in which we see that b is the radius of this rolling circle and a is the distance along this radius from its center to P, the point tracing the curve. The cycloidal path, traced when $a = b$, was used by J. J. Thomson, in 1899, in finding e/m_0 for photoelectrons.

16.16. Aberration and Doppler Effect.—In 13.01, we saw that all the properties of an electromagnetic wave can be obtained from the Hertzian vector Z which, in free space, satisfies the propagation equation 13.01 (11).

$$\nabla^2 Z = \frac{1}{c^2} \frac{d^2 Z}{dt^2}$$

A general solution of this equation for a plane wave was given in 13.03 (1). In the case of a monochromatic wave of frequency ν, we may write this, using 13.09 (4), since $\nu = c$,

$$Z = A \cos \frac{2\pi \nu}{c} (n \cdot r - ct)$$

This represents the ray as observed by S. The same ray will appear to
S' to be of frequency ν' and to be propagated in some direction \mathbf{n}', so that

$$Z' = A' \cos \frac{2\pi \nu'}{c} (\mathbf{n}' \cdot \mathbf{r}' - ct')$$

(3)

the velocity, by the second postulate of 16.00, appearing the same to S and S'. The transformation equations 16.01 (7) must transform (3) into (2), and, as we see, this requires that the argument of the cosine in (3) when expressed in terms of $\nu, \mathbf{n}, \mathbf{r}, \text{and} t$ must be identical with that of the cosine in (2). To hold for all values of $x, y, z, \text{and} t$, the coefficients of each of these must be the same in both arguments. We may write

$$\mathbf{n} \cdot \mathbf{r} - ct = lx + my + nz - ct$$

(4)

Using the transformation equation 16.01 (7), we have, by rearranging terms,

$$\mathbf{n}' \cdot \mathbf{r}' - ct' = \nu'x' + m'y' + n'z' - ct'$$

$$= \kappa \left(\nu + \frac{\nu}{c} \right) x + m'y + n'z - \kappa (c + \nu v)t$$

(5)

Equating the coefficients mentioned, we have

$$\kappa \left(\nu + \frac{\nu}{c} \right) = \frac{m'}{m} = \frac{n'}{n} = \frac{\kappa (c + \nu v)}{c} = \frac{\nu}{\nu'}$$

(6)

These equations enable us to find the effect of the motion of a source of electromagnetic radiation relative to an observer upon the measurements of its radiation made by him. The directional effect is known as aberration and the frequency effect as the Doppler effect. Let the source be at rest in the S'-system and the observer be at rest in the S-system. Then the light that appears to S to come from the l,m,n direction will appear to S' to travel in the l',m',n' direction, where the relations between l,m,n and l',m',n' are given by (6). Equate the first and fourth fractions in (6), put $i = \cos \theta$ and $\nu = \cos \theta'$, and we have

$$\cos \theta = \frac{\cos \theta' + \beta}{1 + \beta \cos \theta'}$$

(7)

where $\beta = \nu/c$. This is the rigorous formula for aberration. Equating the last two fractions, we obtain

$$\nu = \frac{1 + \beta \cos \theta'}{(1 - \beta^2)^{1/2}} \nu'$$

(8)

This is the rigorous expression for the change in the observed frequency of electromagnetic radiation when the source is moving relative to the observer. If the source is approaching the observer, $\cos \theta'$ is positive,
and if it is receding, $\cos \theta'$ is negative so that in the first case the frequency is apparently increased and in the second decreased. From the fundamental postulates, the aberration and Doppler effect appear only when there is a relative motion of source and observer. Thus (7) and (8) are equally valid if the observer is moving and the source is stationary. We might expect to find deviations from these formulas at astronomical distances since the special theory of relativity has been completely verified only on a terrestrial scale, but they should be precise on this scale.

Problems

1. A long straight filament of radius a carries a current I and emits electrons with negligible initial velocity which are accelerated by a potential V toward a long concentric cylindrical anode of radius b. Show that the relation between I, a, b, and V such that the electrons just fail to reach the anode is $V = [\mu^2 I/\delta^2] \ln^2 (b/a)$, where the dependence of m on the velocity is neglected.

2. Treat the preceding problem rigorously when $E_0 > cB_0$ by transforming to a system of coordinates moving parallel to the axis of the cylinder with such a velocity that the magnetic field disappears. Show by this means that it is impossible for an electron, once leaving the filament, to return.

3. Treat the preceding problem rigorously when $E_0 < cB_0$ by transforming to a system of axes moving parallel to the axis of the cylinder with such a velocity that the electric field disappears. Show that the relation such that electrons just fail to reach the anode is

$$2\pi mc(A^2 - v'_1) = \mu Iq(c^2 - A)^2 (1 - \beta'^2) \ln \frac{b}{a}$$

where $A = v'_1^2 + v'_2^2$ and v'_1 and v'_2 are related to the initial velocities v_1 and v_2 in the x and y directions by the relations

$$v'_1 = \frac{v_1 - c\beta_1}{1 - \frac{v_1\beta_1}{c}}, \quad v'_2 = \frac{v_2(1 - \beta_1^2)^{\frac{3}{2}}}{1 - \frac{v_1\beta_1}{c}}$$

where $v_1 = E_0/B_0$ and we neglect the initial v_0.

4. A vacuum tube contains a cylindrical cathode of radius r_0 which is surrounded by a coaxial anode of radius r_1. This tube is placed with its axis on the axis of rotation of the confocal hyperbolic pole pieces of an electromagnet. Show that the potential which must be applied in order that electrons, in the plane of symmetry, reach the anode, if the magnetic field in this plane is given by $B \phi(r^2 + b^2)^{-\frac{3}{2}}$, is rigorously

$$\frac{mc^2}{q} \left(1 + \frac{b^2}{m^2 c^2 r_1^2 (r_1^2 + b^2)^{\frac{3}{2}} - (r_0^2 + b^2)^{3/2}} \right)^{\frac{1}{2}} - 1$$

5. A parallel beam of electrons which have been accelerated through a potential V carries a current I. If the section of the beam is circular of radius a, show that the acceleration, normal to the beam, given to an electron at its surface due to electric and magnetic forces is

$$\ddot{v}_n = \frac{I}{4\pi \epsilon_0 a} \left(\frac{2q}{mV} \right)^{\frac{1}{2}} \left[\left(1 + \frac{Vq}{2mc^2} \right) \left(1 + \frac{Vq}{mc^2} \right)^2 \right]^{-1}$$
SPECIAL RELATIVITY

6. A point charge \(q \) moves in the field of a stationary point charge \(Q \). Using the conservation of angular momentum \(p \) and of energy and the expression 16.07 (2) for kinetic energy, show that the equation of its path is \(r^{-1} = A + B \cos \gamma \phi \), where

\[
\gamma^2 = 1 - \left(\frac{qQ}{4\pi \epsilon_0 cp} \right)^2
\]

7. A line normal to two plane sheets at a distance \(a \) apart in a vacuum is concentric with a hole of diameter \(b \) in each sheet. A beam of charged particles, all having the same energy, but having a maximum divergence angle \(\alpha \) from the normal, emerges from the first hole. Neglecting \(\alpha \) compared with unity, find the set of values of the magnetic field which, when applied normal to the sheets, will make these particles pass through the second hole. Show that the maximum diameter of the beam between the holes is then \(2a/(\pi \alpha) \sin \alpha + b \), where \(n \) is an integer.

8. If, in the last problem, all particles comprising the cone originate at the same point on the axis and the magnetic field includes this point, show that the minimum value of the field which will bring these particles to a focus at the image point beyond the second hole is \(2\pi \nu \omega d q/\nu (a + b)^{-1} \), where \(\alpha \) is the angle subtended at the source by any radius of the first aperture. Show also that this field increases the number of ions passing the first aperture by the factor \(\nu \pi b/2(\nu (a + b)) \sin (\pi b/(\nu (a + b)))^{-1} \).

9. Two similar circular parallel conducting cylindrical shells carry charges \(+Q \) and \(-Q \) per unit length. Inside each, a wire is so situated that when a current \(I \) flows through them in opposite directions each shell coincides with a magnetic line of force. Show how, if \(cQ < I \), it is possible to transform to a set of moving axes such that only a magnetic field appears.

10. In the last problem, show that, if a charged particle starts from rest on one cylinder, the component of its velocity parallel to the cylinder at \(r_1, r_2 \) is given by

\[
v_z = \frac{I \ln \frac{r_1 r_{20}}{r_2 r_{10}}}{Q \ln \frac{r_1 r_{20}}{r_2 r_{10}} + \frac{2\pi \mu_0}{\mu q}}
\]

where \(r_{10} \) and \(r_{20} \) are the distances from the starting points to the two wires.

11. In a two-dimensional magnetostatic field where the vector potential has only a \(z \)-component, let the total velocity of an ion of charge \(q \) and rest mass \(m_0 \) be \(v \) and let its \(z \)-component be \(v_z \) at a point where the vector potential is \(A_z \). Show that, when it is at a point where the vector potential is \(A_z \), the \(z \)-component of its velocity is given by \(v_z = -q(m_0 c^{-1})(\mathbf{v}^2 - v_z^2)^{1/2} \).

12. Show that, in any two-dimensional case in which the electric and magnetic fields are orthogonal, it is possible to choose a set of moving axes such as to eliminate either \(E \) or \(cB \) whichever is the smaller.

13. The position of a charge \(q \) is given by \(s = a \cos \omega t \). If \(\omega a c^{-1} \ll 1 \) and \(a \ll r \), show, by using 16.11 (7) and (8), that the periodic parts of \(E \) and \(B \) due to \(q \) are identical with 14.02 (12), (13), and (14) where \(r \) is the distance from its current position to the field point, \(\theta \) is the angle between \(r \) and \(s \), and \(M = qa \).

14. The positions \(s_1 \) and \(s_2 \) of two identical charges \(q \) are \(s_1 = -s_2 = 2a \) \(\cos (\frac{1}{2} \omega t) \). Proceeding as in the last problem, taking \(a r^{-1} \ll \omega a c^{-1} \ll 1 \), and letting \(Q_0 = qa^2 \), show that the periodic part of the field at a great distance is

\[
cB_\phi = E_\theta = -\frac{\omega^2 Q_0 \sin 2\theta}{8\pi \epsilon_0 c^2 r} \sin \omega \left(\frac{t - r}{c} \right)
\]

Compare with the linear quadrupole in problem 1, Chap. XIV.

15. An electron moves in an axially symmetrical magnetostatic field such that

\[
A_\phi (\rho, z) \neq 0, \quad A_\rho = 0, \quad A_z = 0
\]
Show that if its angular velocity about the axis at the point \(\rho = \rho_1 \) and \(z = z_1 \) is \(\omega_1 \) and if at the point \(\rho = \rho_2 \) and \(z = z_2 \) it is \(\omega_2 \), then
\[
m_\rho^1 \omega_1 - m_\rho^2 \omega_2 = e[\rho_1 A_\phi (\rho_1, z_1) - \rho_2 A_\phi (\rho_2, z_2)]
\]

16. At \(t = t_0 \) an \(x \)-directed particle of charge \(q \), mass \(m_0 \), and velocity \(v_0 \) enters at \(x = 0, y = \frac{1}{2}b, z = 0 \) an evacuated rectangular wave guide transmitting a \(TE_{01} \) wave. Show that its equation of motion for an observer moving with the signal velocity is
\[
\frac{d(mv')}{dt'} = -qE_0 \sin (c\beta_{01}t')
\]
where \(E_0 \) is the maximum electric field intensity in the stationary coordinate system. Show that, if \(v_x \ll c \), its position at any time \(t \) in this system is
\[
x = qE_0(\omega^2 m_0)^{-1}[\omega(t - t_0) \cos \omega t_0 - \sin \omega t + \sin \omega t_0] + v_0(t - t_0), \quad y = \frac{1}{2}b, \quad z = 0.
\]

References

The following references will be found useful for this chapter:

APPENDIX

SYSTEMS OF ELECTRICAL UNITS

There are three ways in which absolute systems of electrical units may be grouped. According to the mechanical units used, they belong either to the centimeter-gram-second (cgs) system or to the meter-kilogram-second (mks) system. According to the magnitudes of the units, they belong to either the classical or the practical system. According to the way in which a 4π factor enters, they belong to either the rationalized or the unrationalized system. The mks units used in this book belong to the practical rationalized mks group. The tables in this Appendix give the interrelations between these units, practical unrationalized cgs units, and classical unrationalized cgs units.

Equivalent formulas in all the rationalized systems are very similar. But the way in which the 4π is inserted in defining the units in the Georgi mks system differs from the method used in the corresponding classical systems in that it is so arranged that the rationalization does not affect the common practical units such as the coulomb and volt. This is done by inserting a 4π in the capacitance and the permeability. Since all numerical tables listing the electric and magnetic properties of materials give the relative capacitance $K = \epsilon/\epsilon_0$ and the relative permeability $K_m = \mu/\mu_0$, it is often the practice, in the practical system, to write for these quantities $K_{\epsilon\epsilon}$ and $K_{m\mu}$, where ϵ_ϵ and μ_μ are the values, for a vacuum, of the capacitance, dielectric constant, or permittivity and of the permeability.

If we are given a formula in one system of units, we can always write it in any other system by substituting in the given formula the values for the same quantities expressed in the desired units. To make this clear, let us, as an example, express Coulomb’s law for the force between two charges in classical unrationalized cgs units. A given physical quantity, when expressed in cgs esu, will be written without subscripts and the same quantity, measured in Georgi mks units, with subscript 1.

From Table II,

$$q_1 = 3^{-1}10^{-9}q$$

and

$$\epsilon_1 = (36\pi)^{-1}10^{-1}\epsilon$$

(1)

From Table I, for mechanical units, we see that

$$F_1 = 10^{-5}F$$

and

$$r_1 = 10^{-2}r$$

(2)

The formula 1.01 (1) for Coulomb’s law, which is in mks units, is

$$F_1 = \frac{q_1 q_1'}{4\pi \epsilon_0 r_1^2} = \frac{q q'}{4\pi \epsilon r^2}$$

(3)

Substitution of F_1, q_1, ϵ_1, and r_1 from (1) and (2) and simplification give

$$F = \frac{qq'}{\epsilon r^2}$$

(4)

The same procedure can, of course, be used for the conversion of magnetic formulas. An elaborate discussion of the latter is given by Kennelly in Am. Phil. Soc. Proc., Vol. 76, page 343 (1936). We notice that, if we put ϵ equal to 1 in (3) and (4), the formulas are still different. Thus it is important, even if the result is to be applied to a vacuum, that the formula to be transposed, if in esu or emu, be written for a medium in which μ and ϵ are not unity.

585
APPENDIX

Table I

A formula given in cgs units is expressed in mks units by replacing each symbol by its value in the right-hand column.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Esu</th>
<th>Emu</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>W joule</td>
<td>10^7W ergs</td>
<td></td>
</tr>
<tr>
<td>Force</td>
<td>F newton</td>
<td>10^5F dynes</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>l meter</td>
<td>10^4 centimeters</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>m kilogram</td>
<td>10^4m grams</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>P watt</td>
<td>10^7P ergs/sec</td>
<td></td>
</tr>
</tbody>
</table>

B. A formula given in rationalized mks units is expressed in cgs units by replacing each symbol by its value in the extreme right-hand column.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Esu</th>
<th>Emu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>W erg</td>
<td>$10^{-7}W$ joule</td>
</tr>
<tr>
<td>Force</td>
<td>F dyne</td>
<td>$10^{-5}F$ newton</td>
</tr>
<tr>
<td>Length</td>
<td>l centimeter</td>
<td>$10^{-7}l$ meter</td>
</tr>
<tr>
<td>Mass</td>
<td>m gram</td>
<td>$10^{-2}m$ kilogram</td>
</tr>
<tr>
<td>Power</td>
<td>P erg/sec</td>
<td>$10^{-7}P$ watt</td>
</tr>
</tbody>
</table>

Table II

A formula given in rationalized mks units is expressed in cgs esu or Gaussian units by replacing each symbol by its value in the extreme right-hand column. $c \approx 3 \times 10^8$. In very precise work each factor 3 is replaced by 2.9978.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Esu</th>
<th>Emu</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>C</td>
<td>$c^{-2}C$</td>
<td>$9^{-11}10^{-1}C$ farad</td>
</tr>
<tr>
<td>Capacitativity</td>
<td>ε</td>
<td>$c^{-2}\varepsilon$</td>
<td>$9^{-11}10^{-11}4\pi$-farad/cm $(36\pi)^{-11}10^{-8}$ farad/meter</td>
</tr>
<tr>
<td>Charge, quantity</td>
<td>q</td>
<td>$c^{-1}q$</td>
<td>$3^{-11}10^{-7}q$ coulomb</td>
</tr>
<tr>
<td>Conductance</td>
<td>G</td>
<td>$c^{-2}G$</td>
<td>$9^{-11}10^{-1}G$ mho</td>
</tr>
<tr>
<td>Conductivity, surface</td>
<td>γ'</td>
<td>$c^{-2}\gamma'$</td>
<td>$9^{-11}10^{-1}l$ mho</td>
</tr>
<tr>
<td>Conductivity, volume</td>
<td>γ</td>
<td>$c^{-2}\gamma$</td>
<td>$9^{-11}10^{-1}l$ mho/cm $9^{-11}10^{-6}l$ mho/meter</td>
</tr>
<tr>
<td>Current density, surface</td>
<td>i'</td>
<td>$c^{-1}i'$</td>
<td>$3^{-11}10^{-7}i$ amp/cm $3^{-11}10^{-7}i$ amp/meter</td>
</tr>
<tr>
<td>Current density, volume</td>
<td>i</td>
<td>$c^{-1}i$</td>
<td>$3^{-11}10^{-7}i$ amp/cm $3^{-11}10^{-7}i$ amp/meter2</td>
</tr>
<tr>
<td>Current</td>
<td>I</td>
<td>$c^{-1}I$</td>
<td>$3^{-11}10^{-8}I$ ampere</td>
</tr>
<tr>
<td>Displacement</td>
<td>D</td>
<td>$c^{-1}D$</td>
<td>$3^{-11}10^{-7}D$ 4π-coul/cm2 $(12\pi)^{-11}10^{-8}D$ coul/m2</td>
</tr>
<tr>
<td>Elastance</td>
<td>S</td>
<td>$c^{9}S$</td>
<td>$9 \times 10^{11}S$ darafs</td>
</tr>
<tr>
<td>Electromotance</td>
<td>\mathcal{E}</td>
<td>$c\mathcal{E}$</td>
<td>$300\mathcal{E}$ volts</td>
</tr>
<tr>
<td>Field intensity, electric</td>
<td>E</td>
<td>cE</td>
<td>$300E$ volts/cm $30,000E$ volts/meter</td>
</tr>
<tr>
<td>Impedance</td>
<td>Z</td>
<td>$c^{2}Z$</td>
<td>$9 \times 10^{11}Z$ ohms</td>
</tr>
<tr>
<td>Inductance</td>
<td>L</td>
<td>$c^{2}L$</td>
<td>$9 \times 10^{11}L$ henrys</td>
</tr>
<tr>
<td>Potential, electric</td>
<td>V</td>
<td>cV</td>
<td>$300V$ volts</td>
</tr>
<tr>
<td>Reactance</td>
<td>X</td>
<td>$c^{2}X$</td>
<td>$9 \times 10^{11}X$ ohms</td>
</tr>
<tr>
<td>Resistance</td>
<td>R</td>
<td>$c^{2}R$</td>
<td>$9 \times 10^{11}R$ ohms</td>
</tr>
<tr>
<td>Resistivity, surface</td>
<td>s</td>
<td>$c^{2}s$</td>
<td>$9 \times 10^{11}ohms$</td>
</tr>
<tr>
<td>Resistivity, volume</td>
<td>τ</td>
<td>$c^{2}\tau$</td>
<td>9×10^{11} ohm-cms $9 \times 10^{5} ohm$-meters</td>
</tr>
</tbody>
</table>
A formula given in rationalized mks units is expressed in cgs emu or Gaussian (starred) emu by replacing each symbol with its value in the extreme right-hand column. \(c = 3.29978 \times 10^{10} = \times 10^{10} \).

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Emu</th>
<th>Esu</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>(C)</td>
<td>(\varepsilon C^*)</td>
<td>(10^6 C) farads</td>
</tr>
<tr>
<td>Charge, quantity</td>
<td>(q)</td>
<td>(c^2q^*)</td>
<td>(10q) coulombs</td>
</tr>
<tr>
<td>Conductance</td>
<td>(G)</td>
<td>(c^2G^*)</td>
<td>(10^6 G) mhos</td>
</tr>
<tr>
<td>Conductivity, surface</td>
<td>(\gamma')</td>
<td>(c^2\gamma'^*)</td>
<td>(10^6\gamma') mhos</td>
</tr>
<tr>
<td>Conductivity, volume</td>
<td>(\gamma)</td>
<td>(c^2\gamma^*)</td>
<td>(10^5\gamma) mhos</td>
</tr>
<tr>
<td>Current density, surface</td>
<td>(i')</td>
<td>(c^2i'^*)</td>
<td>(10^6i') amps/meter</td>
</tr>
<tr>
<td>Current density, volume</td>
<td>(i)</td>
<td>(c^2i^*)</td>
<td>(10^5i) amps/meter</td>
</tr>
<tr>
<td>Current</td>
<td>(I)</td>
<td>(cI^*)</td>
<td>(10I) amperes</td>
</tr>
<tr>
<td>Elastance</td>
<td>(S)</td>
<td>(c^2S^*)</td>
<td>(10^5S) daraf</td>
</tr>
<tr>
<td>Electromotance</td>
<td>(\mathcal{E})</td>
<td>(c^2\mathcal{E}^*)</td>
<td>(10^6\mathcal{E}) volt</td>
</tr>
<tr>
<td>Field intensity, electric</td>
<td>(E)</td>
<td>(c^2E^*)</td>
<td>(10^8E) volt/cm</td>
</tr>
<tr>
<td>Field intensity, magnetic</td>
<td>(H^*)</td>
<td>(cH^*)</td>
<td>(10^6H) oersteds</td>
</tr>
<tr>
<td>Flux, magnetic</td>
<td>(N^*)</td>
<td>(c^{-2}N^*)</td>
<td>(10^6N) maxwells</td>
</tr>
<tr>
<td>Impedance</td>
<td>(Z)</td>
<td>(c^{-2}Z^*)</td>
<td>(10^6Z) ohm</td>
</tr>
<tr>
<td>Inductance</td>
<td>(L)</td>
<td>(c^{-2}L^*)</td>
<td>(10^6L) henry</td>
</tr>
<tr>
<td>Induction, magnetic</td>
<td>(B^*)</td>
<td>(c^{-2}B^*)</td>
<td>(10^9B) weber/meter</td>
</tr>
<tr>
<td>Magnetic moment (dipole)</td>
<td>(M'^*)</td>
<td>(4\pi M')</td>
<td>(4\pi \times 10^{-9}M') weber-m</td>
</tr>
<tr>
<td>Magnetic moment (loop)</td>
<td>(M^*)</td>
<td>(c^{-2}M^*)</td>
<td>(10M) ampere-cm²</td>
</tr>
<tr>
<td>Magnetization (dipole)</td>
<td>(M'^*)</td>
<td>(4\pi M')</td>
<td>(4\pi \times 10^{-4}M') webers/m²</td>
</tr>
<tr>
<td>Magnetization (loop)</td>
<td>(M^*)</td>
<td>(c^2M^*)</td>
<td>(10^6M) amperes/cm</td>
</tr>
<tr>
<td>Magnetomotance</td>
<td>(\Omega^*)</td>
<td>(c\Omega)</td>
<td>(\Omega) gilberts</td>
</tr>
<tr>
<td>Permeability</td>
<td>(\mu^*)</td>
<td>(c^{-2}\mu)</td>
<td>(4\pi \times 10^7 \mu) henry/m</td>
</tr>
<tr>
<td>Pole strength, magnetic</td>
<td>(m^*)</td>
<td>(c^{-2}m^*)</td>
<td>(4\pi \times 10^{-7} \mu) weber-m</td>
</tr>
<tr>
<td>Potential, electric scalar</td>
<td>(V)</td>
<td>(c^{-1}V^*)</td>
<td>(10^{-8}V) volt</td>
</tr>
<tr>
<td>Potential, magnetic vector</td>
<td>(A^*)</td>
<td>(c^2A^*)</td>
<td>(10^4A) weber/meter</td>
</tr>
<tr>
<td>Reactance</td>
<td>(X)</td>
<td>(c^{-2}X^*)</td>
<td>(10^6X) ohm</td>
</tr>
<tr>
<td>Reluctance</td>
<td>(R^*)</td>
<td>(c^2R^*)</td>
<td>(R') gilb/max</td>
</tr>
<tr>
<td>Resistance</td>
<td>(R)</td>
<td>(c^{-2}R^*)</td>
<td>(10^9R') amp-turns/web</td>
</tr>
<tr>
<td>Resistivity, surface</td>
<td>(s)</td>
<td>(c^{-2}s^*)</td>
<td>(10^{-2}) ohm</td>
</tr>
<tr>
<td>Resistivity, volume</td>
<td>(\tau)</td>
<td>(c^{-2}\tau^*)</td>
<td>(10^{-11}) ohm-meter</td>
</tr>
</tbody>
</table>
TABLE IV

A formula given in cgs units, egs units, or Gaussian units may be expressed in (a) unrationalized cgs or Gaussian units or (b) rationalized mks units by replacing each symbol with its value in the egs units, Gaussian units, or starred column, respectively.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>(a) Practical cgs units</th>
<th>(b) Rationalized mks units</th>
<th>Emu</th>
<th>Esu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>C farad</td>
<td>10⁻⁸C</td>
<td>9 × 10⁻¹²C⁻¹</td>
<td></td>
</tr>
<tr>
<td>Capacitance</td>
<td>(a) ε 4π-farad/cm</td>
<td>10⁻⁶ε</td>
<td>9 × 10⁻¹⁴ε⁻¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) ε farad/meter</td>
<td>4π × 10⁻¹¹ε⁻¹</td>
<td>36π × 10⁻¹³ε⁻¹</td>
<td></td>
</tr>
<tr>
<td>Charge, quantity</td>
<td>q coulomb</td>
<td>10⁻⁹q</td>
<td>3 × 10⁻¹⁵q</td>
<td></td>
</tr>
<tr>
<td>Conductance, surface</td>
<td>G mho</td>
<td>10⁻⁸G</td>
<td>9 × 10⁻¹²G⁻¹</td>
<td></td>
</tr>
<tr>
<td>Conductivity, surface</td>
<td>γ' mho</td>
<td>10⁻³γ</td>
<td>9 × 10⁻¹⁵γ⁻¹</td>
<td></td>
</tr>
<tr>
<td>Conductivity, volume</td>
<td>(a) γ mho/cm</td>
<td>10⁻³γ</td>
<td>9 × 10⁻¹⁵γ⁻¹</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) γ mho/meter</td>
<td>10⁻¹¹γ</td>
<td>3 × 10⁻⁸γ⁻¹</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>I ampere</td>
<td>10⁻¹I</td>
<td>3 × 10⁻⁸I</td>
<td></td>
</tr>
<tr>
<td>Current density, surface</td>
<td>(a) i⁺ ampere/cm</td>
<td>10⁻¹i⁺</td>
<td>3 × 10⁻⁸i⁺</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) i⁺ ampere/meter</td>
<td>10⁻³i⁺</td>
<td>3 × 10⁻⁸i⁺</td>
<td></td>
</tr>
<tr>
<td>Current density, volume</td>
<td>(a) i ampere/cm²</td>
<td>10⁻³i</td>
<td>3 × 10⁻⁸i</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) i amp/meter²</td>
<td>10⁻⁷i</td>
<td>3 × 10⁻⁸i</td>
<td></td>
</tr>
<tr>
<td>Displacement, electric</td>
<td>(a) D 4π-coul/cm²</td>
<td>10⁻¹D</td>
<td>3 × 10⁻⁸D</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) D coulomb/m²</td>
<td>4π × 10⁻⁹D</td>
<td>12π × 10⁻⁸D</td>
<td></td>
</tr>
<tr>
<td>Elastance</td>
<td>S daraf</td>
<td>10⁹S</td>
<td>9 × 10⁻⁹S⁷</td>
<td></td>
</tr>
<tr>
<td>Electromotance</td>
<td>C volt</td>
<td>10⁹C</td>
<td>(300)⁻¹C²⁻¹</td>
<td></td>
</tr>
<tr>
<td>Field intensity, electric</td>
<td>(a) E volt/cm</td>
<td>10⁹E</td>
<td>(300)⁻¹E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) E volt/meter</td>
<td>10⁹E</td>
<td>3 × 10⁻⁶E</td>
<td></td>
</tr>
<tr>
<td>Field intensity, magnetic</td>
<td>(a) H oersted</td>
<td>H*</td>
<td>3 × 10⁻³H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) H amp-turn/m</td>
<td>4π × 10⁻²H</td>
<td>12π × 10⁻³H</td>
<td></td>
</tr>
<tr>
<td>Flux, magnetic</td>
<td>(a) N maxwell</td>
<td>N*</td>
<td>3 × 10⁻⁶N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) N weber</td>
<td>10³N*</td>
<td>(300)⁻¹N</td>
<td></td>
</tr>
<tr>
<td>Impedance</td>
<td>Z ohm</td>
<td>10⁹Z</td>
<td>9 × 10⁻⁸Z⁷</td>
<td></td>
</tr>
<tr>
<td>Inductance</td>
<td>L henry</td>
<td>10⁹L</td>
<td>9 × 10⁻⁸L⁷</td>
<td></td>
</tr>
<tr>
<td>Induction, magnetic</td>
<td>(a) B gauss</td>
<td>B*</td>
<td>3 × 10⁻³B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Β weber/meter</td>
<td>10⁴B*</td>
<td>3 × 10⁻⁴B</td>
<td></td>
</tr>
<tr>
<td>Magnetic moment (dipole)</td>
<td>(a) M' maxwell-cm</td>
<td>(4π)⁻¹M'*</td>
<td>(12π)⁻¹10⁻³M'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) M' weber-meter</td>
<td>(4π)⁻¹10⁻³M'*</td>
<td>(12π)⁻¹10⁻³M'</td>
<td></td>
</tr>
<tr>
<td>Magnetic moment (loop)</td>
<td>(a) M ampere-cm²</td>
<td>10⁻¹M²</td>
<td>3 × 10⁸M⁷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) M amp-meter²</td>
<td>10³M²</td>
<td>3 × 10¹³M⁷</td>
<td></td>
</tr>
<tr>
<td>Magnetization (dipole)</td>
<td>(a) M maxwell/cm²</td>
<td>(4π)⁻¹M*</td>
<td>(12π)⁻¹10⁻³M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) M weber/meter²</td>
<td>(4π)⁻¹10⁻³M*</td>
<td>(12π)⁻¹10⁻³M</td>
<td></td>
</tr>
<tr>
<td>Magnetization (loop)</td>
<td>(a) M ampere/cm</td>
<td>10⁻¹M*</td>
<td>3 × 10⁸M⁷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) M amp/meter</td>
<td>10⁻⁵M*</td>
<td>3 × 10⁸M⁷</td>
<td></td>
</tr>
<tr>
<td>Magnetomotance</td>
<td>(a) Ω gilbert</td>
<td>Ω*</td>
<td>3 × 10¹⁰Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Ω ampere-turn</td>
<td>4π × 10⁻¹Ω</td>
<td>12π × 10⁻¹⁰Ω</td>
<td></td>
</tr>
<tr>
<td>Permeability</td>
<td>(a) μ gaussto/oersted</td>
<td>μ*</td>
<td>9 × 10⁻¹⁰μ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) μ henry/meter</td>
<td>(4π)⁻¹10⁻³μ*</td>
<td>(36π)⁻¹10⁻³μ</td>
<td></td>
</tr>
<tr>
<td>Pole strength</td>
<td>(a) m maxwell</td>
<td>(4π)⁻¹m*</td>
<td>(12π)⁻¹10⁻³m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) m weber</td>
<td>(4π)⁻¹10⁻³m*</td>
<td>(1200π)⁻¹10⁻³m</td>
<td></td>
</tr>
<tr>
<td>Potential, electric scalar</td>
<td>V volt</td>
<td>10⁸V</td>
<td>(300)⁻¹V*</td>
<td></td>
</tr>
<tr>
<td>Quantity</td>
<td>(a) Practical cgs units</td>
<td>(b) Rationalized mks units</td>
<td>Emu</td>
<td>Esu</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----</td>
<td>----------------------</td>
</tr>
<tr>
<td>Potential, magnetic vector</td>
<td>$A^* a$</td>
<td>$10^4 A^*$</td>
<td>$3 \times 10^{-10} A$</td>
<td></td>
</tr>
<tr>
<td>Reactance</td>
<td>$X \sigma$</td>
<td>$10^5 X$</td>
<td>$3 \times 10^{-10} X$</td>
<td></td>
</tr>
<tr>
<td>Reluctance</td>
<td>$R^* a$</td>
<td>$4 \pi 10^{-9} R^*$</td>
<td>$9 \times 10^{-11} R^*$</td>
<td></td>
</tr>
<tr>
<td>Resistance</td>
<td>$R \sigma$</td>
<td>$10^9 R$</td>
<td>$9 \times 10^{-11} R^*$</td>
<td></td>
</tr>
<tr>
<td>Resistivity, surface</td>
<td>$\sigma \sigma$</td>
<td>$10^9 t$</td>
<td>$9 \times 10^{-11} t$</td>
<td></td>
</tr>
<tr>
<td>Resistivity, volume</td>
<td>$\sigma \sigma$</td>
<td>$10^9 t$</td>
<td>$9 \times 10^{-11} t$</td>
<td></td>
</tr>
</tbody>
</table>
This table gives the physical dimensions of electrical units. Length is \(l \), mass is \(m \), time is \(t \), charge is \(q \), capacitivity is \(\epsilon \), and permeability is \(\mu \). Any column may be used in any system of units, but usually the first with \(\epsilon = 1 \) is used for esu, the second with \(\mu = 1 \) for emu, and the third for mks.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Esu ((\epsilon = 1))</th>
<th>Emu ((\mu = 1))</th>
<th>Mks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>(C)</td>
<td>(C)</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Capacitivity</td>
<td>(\epsilon)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Charge, quantity</td>
<td>(q, Q)</td>
<td>(q)</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Conductance</td>
<td>(G)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Conductivity, surface</td>
<td>(\gamma)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Conductivity, volume</td>
<td>(\gamma)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Current</td>
<td>(I)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Current density, surface</td>
<td>(I')</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Current density, volume</td>
<td>(i)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Displacement, electric</td>
<td>(D)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Elastance</td>
<td>(S)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Electromotance</td>
<td>(\Sigma)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Field intensity, electric</td>
<td>(E)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Field intensity, magnetic</td>
<td>(H)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Flux, magnetic</td>
<td>(N)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Impedance</td>
<td>(Z)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Inductance</td>
<td>(L)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Induction, magnetic</td>
<td>(b)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Magnetic moment (dipole)</td>
<td>(M)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Magnetic moment (loop)</td>
<td>(M')</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Magnetization (dipole)</td>
<td>(M')</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Magnetization (loop)</td>
<td>(M)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Magnetomotive</td>
<td>(\Omega)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Permeability</td>
<td>(\mu)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Pole strength, magnetic</td>
<td>(m)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Potential, electric scalar</td>
<td>(V)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Potential, magnetic vector</td>
<td>(A)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Reactance</td>
<td>(X)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Reactance</td>
<td>(R')</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Resistance, surface</td>
<td>(R)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Resistivity, surface</td>
<td>(s)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
<tr>
<td>Resistivity, volume</td>
<td>(r)</td>
<td>(\mu^{-1})</td>
<td>(m^{-1})</td>
</tr>
</tbody>
</table>
Table VI
Numerical values for empty space in the rationalized mks system.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocity of light</td>
<td>(c = 2.99776 \times 10^8) meters/second</td>
</tr>
<tr>
<td>Capacititivity</td>
<td>(\varepsilon_0 = 8.85525 \times 10^{-12}) farad/meter</td>
</tr>
<tr>
<td>Permeability</td>
<td>(\mu_0 = 4\pi \times 10^{-7}) \approx 1.25664 \times 10^{-6}) henry/meter</td>
</tr>
<tr>
<td>Intrinsic impedance</td>
<td>((\mu_0/\varepsilon_0)^{-1}) = 376.707 ohms</td>
</tr>
<tr>
<td>Intrinsic admittance</td>
<td>((\varepsilon_0/\mu_0)^{-1}) = 2.65458 \times 10^{-3}) mho</td>
</tr>
</tbody>
</table>

Numerical values of atomic constants in the rationalized mks system.*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faraday constant (0^{16} = 16)</td>
<td>(F = 96,522 \pm 7) coulombs/gm equivalent</td>
</tr>
<tr>
<td>Avogadro number (0^{16} = 16)</td>
<td>(N = (6.0251 \pm 0.0004) \times 10^{23}) 1/mole</td>
</tr>
<tr>
<td>Planck constant</td>
<td>(h = (6.6234 \pm 0.0011) \times 10^{-34}) joule sec</td>
</tr>
<tr>
<td>Electronic charge</td>
<td>(e = (1.60199 \pm 0.00016) \times 10^{-10}) coulomb</td>
</tr>
<tr>
<td>Specific electronic charge</td>
<td>(c/m = (1.75936 \pm 0.00018) \times 10^{12}) coulombs/kg</td>
</tr>
</tbody>
</table>

INDEX

(Problem numbers are italicized and enclosed in parentheses with the number of the page on which they occur)

A

Aberration, electromagnetic waves, 579, 580
Admittance, 360
Air gap, magnetic circuit, 293, 297–299
in ring magnet, 432–434
slotted pole piece, 297–299
Airplane, ground speed, 576, 577
Ampere unit of current, 218, 260
Ampere’s experiment, 260, 280
Anderson bridge, 364
Anisotropic medium, axis, electric, 22
capacitivity, 21
currents in, 248, 249
electromagnetic waves in, 445–447
energy density in, 31
Laplace’s equation in, 50
permeability of, 287, 422–424
Antenna, 473, 486
array, 483, 486, (7–10, 502)
bicontrical, 481–483, (18, 19, 504)
in cavity, 545–547
(See also Cavity resonator)
directivity, 484
earth effects, 486
gain, 484
input impedance, 468
(See also Impedance, input)
linear, 473–479
center driven, 476
charge density on, 473
current density on, 473
fields, distant, 476–478
near, 474, 475
half-wave multiple, 476, (6, 502)
with losses, 477, 478
potentials of, 474
power radiation, 477, 479, 486
progressive wave radiation, 478
radiation resistance, 477
terminal load, 475
Antenna, linear, transmitting pattern,
484, (7, 9, 10, 502)
loop, 488–490, (11, 502)
radiation resistance, 477, 482, 483, 490
(See also Resistance)
slot, (59, 60, 509)
in wave guide, 523, 524
(See also Wave guide)
Argument of complex number, 72
Associated Legendre functions, 147–158, 160–168
applications, 153, 157, 158, 162–169,
(89, 209), (90, 210), 263, 267, 272–274, (21–24, 301), (25, 302), (313–315), (12, 13, 323), 397, 400, 410,
411, (2, 5, 416), (11, 18, 417),
(29, 419), 487–489, 491–493, 500,
(18, 19, 504), (39, 40, 506)
argument imaginary, 149, 151, 160–167, 263, (21, 22, 301)
large, 149, 161, 169
real, 148–168
biaxial harmonics, 154, 155
differential equations of, 147
integral of product, 149, 151
Laplace’s integral, 149
nonintegral order, 155, 156, (118, 214),
(119–121, 215), (57, 258)
recurrence formulas for, 152, 153
special values of, 153
tables of, 148, 149
in terms of Legendre functions, 148
vector surface function, 151
applications, 267, 538
Attenuation, constant of, 460
in hollow tubes, 513–518
(See also Wave guide)
in m-derived section, 375, 376
in simple filter circuit, 370, 374
of terminal filter section, 377
of transmission line, 377
Attenuation constant, 370–377, 460
INDEX

B

Barkhausen effect, 425
Barnett effect, 427

electrons in metals, 3

Ber and bei functions, 394–396, (20, 21, 418)

Bessel equation, 170

solution of, 171, 172

Bessel functions, 170–187

addition theorem, 179

argument infinite, 174

expansion in series of, 177

of first kind, 171

integral, definite, for, 182, 193

nonintegral order, 186

order negative, 186

order one-half, 186, 398–402, (2, 3, 416)

(See also spherical, above)

integrals of, 172, 174–176, 182, 183

of order zero, 180–185

derivatives and integrals, 181, 182

graph of, 181

inverse distance, 179

roots and numerical values, 180

recurrence formulas for, 173

of second kind, 171–174, 180, 181, 184, 185, 193

spherical, 186, 187, 198, 487–494, 500, (18, 19, 504), (39, 40, 506), 537, 538, (52, 555), (71, 558)

vector surface, 176, 266, 522, 523, 535

Bessel modified equation, 170, 187

solution of, 187

Bessel modified functions, 187–198

addition theorems, 194

argument complex, 189

infinite, 189

ber and bei functions, 394–396, (20, 21, 418)

first kind, 187–192

integrals of, 188, 192, 194

with complex argument, 189, 394–396

inverse distance, 194

order imaginary, 199

nonintegral, 197

one-half, 197–198, 396–402, 486–488

(See also spherical, above)

zero, 192–196

definite integrals for, 192, 193

integrals of, 192, 194

recurrence formulas, 188

second kind, 187–189

in terms of first kind, 187, 197

spherical, 198, 487–490, 493, 500, 501, (18, 19, 504)

(See also Bessel functions, spherical; Hankel functions)

Biot and Savart, law of, 275

Bipolar coordinates, (9, 61), (122–124, 215)

Brewster's law, 452

C

Capacitance, of bowl, (41, 204)

doF cavity resonator, 531

(See also Cavity resonator)

circuit for measurement, 348, 349, 361, 362, 364

from conjugate functions, 75

doF cylinder and plane, 78

doF cylinders, inside third, (33, 105)

two circular, 76–78

doF cylindrical capacitor, 28, 76–78

definition of, 26

doF disks, circular and elliptic, 114

distributed, 27

doF ellipsoid, 113

by inversion, 125

doF iris in wave guide, 526, (48, 49, 555)

mutual, 37–39, 119, 121, 122, 238

in network, general, 336
INDEX

Capacitance, of parallel-plate capacitor, 29
 with crystalline dielectric, 31, 32
 with right-angle bend, (60, 109)
of ring-shaped conductor, (96, 211), (119, 215)
self-, 37–39, 119, 121, 122, 238
in series and parallel, 26, 27
of sphere and plane, 121
 and plane dielectric, (36, 203)
 and two planes, (29, 202)
of spheres, intersecting, 125, (43, 45, 204)
 two, 27, 119, 121, 122
two connected, (27, 202)
two in contact, (23, 202)
of spherical capacitor, 27, 119, 121, 122, 142
of strip and confocal cylinder, (16, 102)
of two strips, coplanar, (58, 109)
in parallel planes, (59, 109)
of variable air capacitor, edge correction, (26, 104), (35, 105)
Capacitance bridge, 362
Capacitance coefficients, 37–39
 (See also Self-capacitance)
Capacitor, capacitance of, 26
 (See also Capacitance)
charging of, 329–331
cylindrical, 28
 off center, 76–78
definition of, 26
discharging, 329–331
energy of charged, 30
guard rings, 29
parallel-plate, 29
 with crystalline dielectric, 31
 energy of, 31, 32
 with right-angle bend, (60, 109)
in series and parallel, 26, 27
spherical, 27
 not concentric, 118–122, 142
variable air, edge correction, (26, 104), (35, 105)
Cavity resonator, 528–547
 with apertures, 539
 biconical, (58, 59, 556)
capacitance, 531
 complex, Hahn's method, 540, 541
coupling to, 544–547
Cavity resonator, coupling to, circular cylindrical, 544–546
 input resistance, loop, 545
 stub, 546
 M, between loop and mode, 545
 between stub and mode, 546
 potential multiplication, loop, 545
 stub, 547
by orifice, 547
rectangular, (66, 67, 557)
 by semicircular loop, (69, 70, 558)
 by transverse wire, (66, 67, 68, 557)
by stub, 545–547
 input reactance, 546
by wire loop, 542–544
 input impedance, 546
 M, between element and mode, 543
current, 530, 532, 534–538, 542–547
cylindrical, general, 528–530, 532, 533
 multiply connected, 535, 536
 coaxial, 537
 confocal elliptic, (60, 556)
 excentric circular, (61, 556)
excitation, 542–547
 (See also coupling to, above)
fields of, 532–535, 538, 540
inductance of, 530, 531, 536–538
normal modes of, 528–530, 532, 533
 534, 537–539
damping of, 531
 (See also quality factor, below)
 independence of, 529, 530
 parallelogrammatic, (66, 57, 556)
quality factor Q, 531–537, 539, 545, (54, 55, 57, 58, 60, 61, 556)
rectangular, 534
 with iris, (62–64, 557)
reentrant, 539–542, (65, 557)
resistance, 531
resonance frequency, 529, 531, 533
 535, 539–542, 544–546, (54–56, 556), (60, 557)
apertures, effect of, 539
damping, effect of, 531
spherical, 538, (71, 72, 558)
triangular, (54, 55, 556)
wave-length resonance, 529
 (See also resonance frequency, above)
wave surfaces in, (61–53, 556)
Charge, 2, 3
- on capacitor, 26
 (See also Capacitor)
- a-c, 357
 (See also Circuit)
collinear, 12, 13
- in conductor, 3
- dissipation of, 455
- on conductor, by induction, 2, 36, 55
 (See also Green's function)
cylindrical, 36
- by Green's reciprocation theorem, 36
- plane, 37
- spherical, 36
conservation of, Lorentz transformation, 565, 566, 576
distribution of, uniqueness, 25, 57
elementary, 3
- mass of, 3
line, near dielectric wedge, 70–72
image laws for, 69, 70
 (See also Images)
near plane with slit, 92
between planes, 84, 85
potential of, circular harmonics, 65
conjugate functions, 76
logarithmic, 63
moving, in magnetic and cylindrical
electric fields, 568, 569
- in magnetic field, energy, 567
- force, 566, 567, 576
- in uniform magnetic and electric
crossed fields, 577–579
- in uniform magnetic field, path, 567, 569
 - with retarding force, 569
point, 4
 (See also Green's function; Images;
 Inversion; Potential)
positive and negative, 1
potential of, 4
 (See also Potential for special cases)
space, 249–251
unit of, 2
Charge density, 3
- on antenna, 473
- on bowl, (42, 204)
on capacitor, parallel plate, 29
 - spherical, off center, 142
- on conductor, 18
- on disk, charged, 114
 - in longitudinal field, 162
Charge density, in double layer, 14, 57, 58
- on ellipsoid, 114
- in equivalent stratum, 57, 58
inversion of, 125
- on plane by point charge, 115
in problems, (13, 14, 102), (30, 104),
 (45, 107), (6, 12, 14, 200), (16, 201), (39, 203), (42, 47, 204), (62, 206), (68, 69, 72, 207)
on sheet, with circular hole, 162
 - with cycloidal corrugations, 80
on sphere by point charge, 116
uniqueness of, 25
Child's equation, 249–251
Circuit, a-c, 355–389
 - conjugate branches, 364
 - equivalent, (23, 24, 287)
- filters, 369–377
- general, 362–364
 - parameters of, 362
 - reciprocal relations in, 363
- negative resistance, 381–384
- nonsinusoidal electromotive forces,
 378–381, (15–18, 386)
power dissipated in, 357, 358
power factor, 358
power transmitted by, 361
series combinations of, 356, 357
steady state of, 355–389
Thévenin's theorem, 363
two inductively coupled, 365–368
forced oscillations of, 365–367
 - with low resistance, 367, 368
 - and tuned, 368, 369
resonance frequencies in, 366, 367
 (See also Current)
d-c, conjugate branches, 230
energy, mutual, 308, 309, 320
 (See also Mutual inductance)
of set of n, 320
energy of, 328
 (See also Self-inductance)
energy dissipation of, a minimum, 233
force, magnetic, between, 279, 280
 - 309, 310, 320
force on, in magnetic field, 279, 280
general network, 227–229
image of, 286
INDEX

Circuit, d-c, magnetic field of, 260–305
(See also Magnetic induction; Vector potential)
in parallel, 222
reciprocal relations in, 228
with repeated members, 224, 225
in series, 222
Thévenin’s theorem, 228
Wheatstone bridge, 223, 224
magnetic, 292, 293
air gap in, 293
anchor ring, 292
flux in, 292
magnetomotive force in, 292
reactance of, 292
with repeated members, 347, 348
series combinations, 328–332
condenser charge, 329, 330
condenser discharge, 329, 330
damping in, 329
oscillation frequency, 329
time constant of, 332
transient current, 327–354
decrement, logarithmic, 329
energy relations in, 327, 328
general network, amplitudes, 338
with constant electromotive force, 339, 340
modes, of decay, 337–339
of oscillation, 337–339
natural modes, 339
parameters, 335, 336
solutions for, 337, 338
integrated effects of, 348, 349
with mutual inductance, 332–334
from pulses, 349–351
square pulse, 349
triangular pulse, 350, 351
two inductively coupled, 332, 333, 340–347
amplitudes in, 342, 343
with low resistance, 345–347
and tuned, 346, 347
oscillations of, 343–345
Circular current loops, coaxial, d-c forces between, 281, 282
magnetic d-c field of, 270, 271, 274, 275
mutual inductance of, coaxial, 313
not coaxial, 313, 314
rotating in field, 355
self-inductance of, 319, 320
Circular current loops, variable current, radiation, 488–490
screening, by plane sheet, 407, 408
vector potential of, 270, 271, 274
Circular harmonics, 63–69
(See also Harmonics)
Clausius-Mossotti formula, 33
Coercive force, 426
Complementary function, 327, 339
Complex numbers, 72, 73
Conductivity, 221
Conductor, boundary conditions, on current, 231
electrostatic, 17, 18, 35
capacitance of, 26
(See also Capacitance)
charges in, 3
charges on, 17
(See also Charge; Charge density)
definition of, 1
distant, capacitances of, 38
electromagnetic waves in, 454–456
(See also Electromagnetic waves)
ergy of system of charged, 39
extended, current distribution in, 231
(See also Current)
in field, effect of insertion, 57
force on charged, 18, 34, 39, 40
linear, currents in, 221–230
(See also Circuit; Current)
stress on surface of, 18, 34
in contact with dielectric, 34
torque on charged, 39, 40
(See also Torque)
Cone, Green’s function for, 156–158
Confocal conicoids, 112, 113
Confocal coordinates, 95, 158–169
Confocal cylinders, elliptic, 90, 91
hyperbolic, 90, 91
parabolic, 84
Confocal ellipsoids, 113, 114
Confocal hyperboloids, 112, 113, 158–169
Confocal spheroids, oblate, 158–169
prolate, 167–169
Conformal transformations, 72–109
for airfoil, 94
applications, current flow, 235–237, (44–50, 256)
electric, 80, 84–88, 90, 92, 94–100, 103–109
electromagnetic waves, 463, 526–528
magnetic, 297–299, (35–38, 304)
Conjugate transformations, boundaries
in parametric form, 79, 80
for current, electric, 234–237, 245
for cycloidal corrugated sheet, 80
for cylinder, circular to elliptic, 94
for cylinders, two, 76–78, 81, 82
determination of required, 80, 81
for ellipses, confocal, 90, 91, 94
for grating, 86, 91, 98–100, (22, 103)
(See also Uniform field)
for hyperbolas, confocal, 90, 91
equilateral, 84
for parabolas, confocal, 84
for plane, half into whole with slit, 92
for plate with circular ridge or groove,
(49, 107)
for polygon with rounded corners, 98
Schwarz transformation, 82–101
for angle, odd, 100–101
one negative, 86, 87, 92
one positive, 84
zero, 85
for angles, two, 89–91
doublet, 87
inversion, 87, 88
plane, half into strip, 85, 86, 91
on Riemann surface, 93
for wedge, 84
for strip, into bipolar orthogonal circles, 81
flat, 91, 94
(See also Conjugate functions)
Conical boundaries, 142, 146, 155–159
Conical box, Green’s function, 157, 158
Conical coordinates, (4, 61)
Conicoids, confocal, 112, 113
Conjugate conductors, a-c network, 363–365
d-c network, 220, 230
Conjugate functions, 72–109, 234–237,
463, 526–528
applications in problems, (17, 102 to
60, 109), (55, 258), (42, 256 to 50,
257), (55, 258), (55–88, 304), (13,
14, 16, 466), (48–50, 555)
capacitance from, 75
for current flow, 234–237
in strip of variable width, 235–237
for cylinder, elliptic, 90, 94
elliptic dielectric, 95–98
for cylinders, two circular, 75, 76
determination of required, 80, 81
Conjugate functions, doublet, line charge, 87
for grating, of circular cylinders, 99–
100
of flat strips, 91
of small wires, 86
for inversion, 87, 88
for line charge, 76
near plane with slit, 92, 93
between planes, 86
for magnetic field, 297–299
under slotted pole piece, 297–299
orthogonality of, 74
for plane with slit, 92, 93
resistance from, 234, 237
on Riemann surface, 93
for strip, charged, 90, 91
for transmission line conductor, 463
for wedge, 84
(See also Conjugate transformations)
Continuity equation, 218, 222, 243, 245,
248, 440, 472, 473
in anisotropic medium, 248, 249
Kirchhoff’s laws, 222
in spherical sheet, 243, 244
in surface of revolution, 245, 246
in thin curved sheet, 243
in three dimensions, 218, 231–233, 237,
242, 243, 248
in two dimensions, 233–237
Coulomb’s law, 2, 15, 16
limitations, 2
Coupled circuits, 332–334, 340–347, 365–
369
(See also Circuit)
Crystal, electrical properties of, 21
(See also Anisotropic medium)
Curie’s law, 422
Curl, 50, 52
in cylindrical coordinates, (1, 60)
in orthogonal coordinates, 52
in spherical coordinates, (2, 60)
Stokes’ theorem, 49
vector, Green’s theorem, 54
Current, alternating, 355–389
in antenna, 473–486
(See also Antenna)
in cavity resonator, 530
(See also Cavity resonator)
complex notation, 356
in extended mediums, 390–419
(See also Eddy currents)
Current, alternating, in filter circuits, 369-378
 graphical representation, 359
 in inductively coupled circuits, 365-369
 in network branches, 363, 364
 phasor, 356
 power dissipation, 357-359, 391
 power factor, 358
 power transmission, 361
 resonance, 358
 root mean square, 358
 vector diagram, 359
 wattless component, 358
 (See also Circuit, d-c)
 direct, 218-259
 in anisotropic mediums, 248-250
 boundary conditions, 231, 237, 238
 circulating in network, 223, 224, 238
 continuity of, 218, 222, 243, 245, 248
 density of, 218, 221, 234
 distribution of, in cylinder, solid, 240, 241
 in extended mediums, 231-243
 general theorems on, 232, 233
 magnetic field effect on, 232
 in sphere, solid, 239, 240
 in spherical shell, 243, 244
 in stratified earth, 241-243
 in strip of variable width, 235-237
 in surface of revolution, 245, 246
 in thin curved sheet, 243-246
 heating effect of, 221, 233
 image of, in permeable surface, 286, 289
 Kirchhoff's laws, 221, 223, 224, 227, 324-330, 333, 353, 357, 366, 368, 373
 magnetic field of, 260-305
 (See also Magnetic induction; Vector potential)
 in network branches, 228
 space-charge, 249-251
 steady-state, 340
 in three dimensions, 231-233, 238, 243, 248
 in two dimensions, 233-238, 287-290
 unit of, 218, 260
 vector potential of, 263
 displacement, 390, 440
 eddy, 390-420
 (See also Eddy currents)

 Current, shell, equivalent, of magnet, 427, 428
 for sphere and horseshoe, 428, 431
 transient, 327-354
 in circuit, inductively coupled, 332, 333, 340-347
 simple, with mutual inductance, 332, 333
 without mutual inductance, 328-332
 complementary function, 327, 339
 in network, general, 335-340
 from pulse of finite voltage, 349-351
 with repeated members, 347, 348
 (See also Circuit, transient)

 Curvilinear coordinates, 50-52
 (See also Orthogonal coordinates)

 Cylinder, d-c distribution in, 240, 241
 eddy currents in, 393-396
 (See also Eddy currents)
 electromagnetic waves on, 457, 458
 (See also Electromagnetic waves)
 in electrostatics, (28, 36, 63, 109), 177-180, 184, 185, 189-191, 195, 196, (91, 210, 96, 211)
 (See also Capacitance; Green's function; Images; Uniform field)
 uniformly magnetized, 434

 Cylindrical box, Green's function, 179, 180

 Cylindrical coordinates, curl, (1, 60)
 Laplace's equation, 52, 53, 169
 solution of, 170
 (See also Bessel functions; Bessel modified functions)
 vector potential forms in, 266, 267

 Cylindrical dielectric boundaries, 66-69, 95-98, 194-196
 Cylindrical harmonics, 63-69, 169
 Cylindrical ring, potential inside, 184, 185, 196, 197
 Cylindrical shell, field of currents in, 279

D

 Damping of electric circuit, 328-332
 critical, 329, 339
 of eddy currents, 400-402, 413-415
 Decrement, logarithmic, 329
 Determinant, modular, 338
 Diamagnetic susceptibility, 422
 (See also Susceptibility)
INDEX

Diamagnetism, 421
Dielectric boundary conditions, 18–20, 94, 95
Dielectric constant, 2, 4, 14, 17
in crystals, 21
increase of, effect, 59, 60
stress dependence in liquid, 33
(See also Capacitance)
Difference equations, 120, 224, 225
Dipole, electric, 5–7, 10, 471
forces on, 6
interaction of, 6, 7
oscillating, radiation from, 471
in wave guide, 521–524, (24, 25, 26, 551)
(See also Wave guide)
potential, 6
torque on, 6
magnetic, 260, 261, 270, 434, 489
classical moment, definition of, 434, 435
interactions of, 435
loop moment, definition of, 260, 261, 270
oscillating, radiation from, 489
rotating, eddy currents from, 404–407
vector potential of, 270, 435
Disk, circular, capacitance of, 114
potential of, 114
in Bessel functions, (102, 212)
and point charge, (85, 209)
and ring charge, (87, 209)
surface density on, 114
in uniform field, 163, 164
elliptic, capacitance of, 114
surface density on, 114
Displacement, 14, 20, 21
(See also Electric displacement)
Divergence, 50
in curvilinear coordinates, 51
Divergence theorem, 48, 49
(See also Gauss's theorem)
Doppler effect, 579, 580
Double current sheet, 496
Double layer, electric, 14, 58
magnetic, 261, 290
Earth, current, with resisting cone, (57, 258)
in stratified, 241–243
effect of, on antenna, 486
Eddy currents, 390–420
in plane sheets, 402–408
by image method, 403–407
by rotating dipole, 404–408
map of, 407
shielding effect of, 407, 408
torque on rotating dipole, 404, 405
in plane surface of block, 392, 393
power dissipation in, 391, 393, 411, 413, 455
propagation of, in conductor, 391
in solid cylinder, 394–396
in solid sphere, a-c, 396–400
transient, 400–402
in spherical coordinates, 396, 397
in thick cylindrical shell, 393, 394, 413–415
in thin cylindrical shell, 411–413
by bifilar lead, (17, 417)
power dissipation in, 413
shielding effect of, 412
in thin spherical shell, 408–411
power dissipation in, 411
shielding effect of, 411
in tubular conductor, 393, 394, 413–415
vector potential, 390–392, 396–404, 409–415
Einstein and de Haas effect, 427
Elastance, 336
mutual, 36–39, 238
self-, 36–39, 238
Electric charge, 3
dissipation of, in conductor, 455, 456
(See also Charge)
Electric dipole, 5–7, 10
(See also Dipole)
Electric displacement, 14, 15, 18, 20, 21, 440
boundary conditions on, 18, 19
in crystals, 21, 22, 441, 446, 447
in plane wave, 444
Electric field, axially symmetrical, 268
in cavity resonator, 529, 540
(See also Cavity resonator)
dielectric body in, 58, 59
energy density in, 31
of moving charge, 570, 572
retarded, 572
INDEX

Electric field, neutral points and lines, 153
 propagation equation, 441, 442
 (See also Electromagnetic waves)
 in conductor, 455
screening of, 37, 38
stream function of, 74, 75, 94
stresses in, 15–17
superposition of, 35, 69, 86, 91, 95–97, 100, 102, 103, 117, 139, 140, 163, 179, 195
in two dimensions, 63–109
uniform, 6, 28, 30, 66, 91, 92, 95
 (See also Uniform field)
 in wave guides, 513–519, 526
 (See also Wave guide)
Electric intensity, 11, 74–75
Electric intensity, 3, 20, 74–75
 in anisotropic medium, 21, 22, 31, 445–447
boundary conditions, 18, 20, 94, 95
curl of, 307, 390
from electrodynamic potentials, 441
from Hertz vector, 442
in plane wave, 443–447
 in anisotropic medium, 445–447
in radiation fields, 441–443
 (See also Electromagnetic waves)
from vector potential, quasi-magneto-static, 308, 390
Electric multipole, 5, 6
Electric screening, 37, 38
Electrokinetic momentum, 334, 335
Electromagnetic induction, 307–325, 390–420
Electromagnetic waves, 440
aberration, 579–581
 in anisotropic medium, 445–447
polarization, 447
 ray, ordinary and extraordinary, 447
ray surface, 446
wave surface, 445
in cavities, 528–547
 (See also Cavity resonator)
from charge in motion, 570–574
 linearly accelerated, 573, 574
 in conductors, 455
in cylindrical coordinates, 494
 plane wave, 495
 between planes, (6–8, 548), (10, 11, 549)
 Electromagnetic waves, diffraction, from aperture, plane, 495–497
 in spherical shell, (39, 40, 506)
 in thin plane sheet, 495–499
 annular hole, (35, 36, 506)
circular hole, from loop, (41, 507)
slit, (42–46, 507), (47, 508)
small hole, (48–53, 508)
square hole, 497, 498, (34, 506)
 from cylinder, conducting, (14–16, 503)
dielectric, (17, 503)
Kirchhoff's formulas, (56–60, 509)
circular hole, (59, 60, 509)
 orthogonal functions in, 422–424
 from sphere, conducting, 491–493
dielectric, 491–493
 small, (13, 503)
Doppler effect, 579–581
double current sheet, 496
elliptic polarization, 452, 453
 from end of coaxial line, 499–501
energy, density in, 448
 propagation direction, 443, 444, 447
frequency, 452
group velocity, 464
in hollow tubes, 511–528
 (See also Wave guide)
 intensity of, 443
 momentum of, 448
 phase constant, 452, 459
 plane, 440–466
 attenuation constant, 459, 460
 on bifilar line, 462, 463
 characteristic impedance, 460, 462
 in conductor, 454–456
 on cylinder, conducting, 457–459
 from initial field at \(z = 0 \), 459
 with imperfect conductor, 462
 with imperfect dielectric, 459, 460
 from time variation at \(z = 0 \), 459
 dielectric, (20–24, 504), (25, 29, 505)
 dielectric coated, (32, 505)
in cylindrical coordinates, 494, 495
 intrinsic impedance, 459, 460
 on lecher wire system, 462
 matching at discontinuity, 460, 461
 on plane with dielectric layer, (7, 8, 465), (30, 31, 505)
Electromagnetic waves, plane, polarization of, 444, 452, 453
polarizing angle, 452
propagation constant, 460, 461
reflection of, 448-451
from conductor, 456, 457
from dielectric plate, (3, 464)
from discontinuity, 460, 461
total, 453, 454
refraction of, 449-451
in spherical coordinates, 488
on transmission line, 457-463, (10-16, 466)
Poynting's vector, 443
pressure of, 448
propagation equation, 441, 442
in conductor, 454-457
cylindrical solution, 494
for plane wave, 488
spherical solution of, 487
for plane wave, 488
signal velocity, 464
from slot antenna, (54, 55, 509)
from sphere, oscillating, 490
spherical, 468-509
from antennas, 473-486
(See also Antenna)
from current element, 471
from dipole, electric, 471
magnetic, 488, 489
rotating, (5, 502)
Hertz vector, (12, 466), 470
from loop, uniform current, 488, 489
from multipole, 470
potential, scalar retarded, 470, 471, 572
vector retarded, 471, 572
on transmission lines, 377-378, 457-463, (10-16, 466)
uniqueness theorem, 486
wave length, 452
wave number, 459
Electromotance, a-c, 355-389
complex, 355-378
harmonic, 355-378
periodic, but not harmonic, 378-381, (15, 18, 386)
Fourier's series method, 378, 379
sawtooth form, 378, 379
square wave, (16, 18, 386)
Electromotance, a-c, periodic, repeated
transient method, 380, 381
sawtooth form, 380, 381
square wave, (15, 17, 386)
vector diagram, 359
definition of, 219, 220
d-c, 219, 220, 231
(See also Potential)
distributed, 220
in electromagnetic wave, 440
(See also Electromagnetic waves)
gradient of, 220
induction of, 307, 440
in mutual inductance, 311
in self-inductance, 316
transient pulse in circuit, 349-351
square pulse, 349
triangular pulse, 350, 351
transient superimposed on constant, 339
Electron, 3
heavy, 3
(See also Mesotron)
inertia, 3
in metals, 3
negative, 3
positive, 3
space charge of, 249-251
spin of, 427
Electrostatic lens, 198, 199
Electrostriction, 33
Ellipsoid, charged, 113, 114
Ellipsoidal coordinates, 112
Elliptic cylinder coordinates, (5, 61)
Energy, absorption of, in conductor, 218, 221, 223, 358, 391
and capacitvity, 59
of capacitor, charged, 30, 328
of cavity resonator, 529, 530
(See also Cavity resonator)
of charge, moving electric, 568
of conductors, charged, 30, 40
conservation of, 334, 335, 450, 454, 562, 568
in current network, 328
density of, in electric field, 30, 31
in electromagnetic wave, 448
in anisotropic medium, 445
in magnetic field, 310, 311
of dielectric body in field, 58, 59
dissipated as heat, 221, 233
dissipation of, a minimum, 233
INDEX

Energy, in inductance, 311, 315, 317, 320, 328
kinetic, in circuit, 328, 334
mass relation, 568
mutual, of electric dipoles, 7
of magnetic needles, 435
of a circuits, 320
of two circuits, 308–310
of permeable body in field, 321, 322
potential, in circuit, 30, 328, 334
propagation of, 370–378
electromagnetic waves, 443
(See also Electromagnetic waves)
filter circuits, 370–377
transmission lines, 377, 378
(See also Transmission line)
wave guides, 511–528
(See also Wave guide)
radiated, from linearly accelerated charge, 572–574
from oscillator, 471
(See also Electromagnetic waves, spherical)
Equipotential surfaces, 9, 10, 111
maps of, 9, 10, 91, 92, 195
(See also Potential)
Equivalent stratum, Green’s, 57, 58

F
Faraday, law of induction, 307, 316, 355
in extended mediums, 390, 440
in linear circuits, 307, 316, 355
in Maxwell’s equations, 440
in surfaces, 409, 411
Filters, attenuation constant, 370, 374–376
band-pass, 373, 374
attenuation in, 374–376
cutoff, 373–375
composite, 376, 377
termination of, 376, 377
frequency characteristics, 372–376
impedance, 370–377
characteristic, 370, 371, 373–375
input, 372
iterative, 370–377
output, 372, 376
m-derived, 374–376
mid-series section, 369
mid-shunt section, 369
phase constant, 370, 374–376
propagation constant, 370–373, 375, 376
Filters, simple T and π section, 370–376
terminal conditions, 371, 372, 376, 397
Flux, electric, 10–12, 74, 75
magnetic, 269
in air gap, 293, 297–299
in anchor ring, 292, 293
changing, 307, 355
leakage in transformer, 294–296
and mutual inductance, 311
and self-inductance, 315, 316
unit of, weber, 292
Flux density, magnetic, 261
(See also Magnetic induction)
Force, on charged conductors, 39, 119
on charged spheres, 119
coercive, 426
on diamagnetic bodies, 322, 421
on dielectric bodies, 58, 59
on dipoles, 7
from eddy currents, 405, 406, (5, 416), (9, 10, 12, 16, 417), (21, 418)
on electric circuits, 279–282, 309, 310, 320, (5, 299), (6, 7, 10–13, 15, 297), (8, 323)
on fibers, electrostatic, (6, 7, 101), (12, 16, 102)
from Green’s electrostatic, (6, 7, 101), (12, 16, 102)
lines of, 8
(See also Lines of force)
magnetic, on boundary, 321
between magnetic needles, 435
magnetizing, 424
on moving charges, 565–567, 576
on paramagnetic bodies, 421
on permanent magnets, 429–431, 435
of point charge on tangent spheres, 124
between sphere and plane, 121
on two spheres, charged, 119
uncharged in field, (125, 216)
transformation equations for, 564, 565
Foucault currents, 390–420
(See also Eddy currents)
Fourier series, 65, 196, 378–380
a-c electromotive force, irregular form, 378–380
sawtooth, 379
square, (16, 18, 386)
(See also Bessel modified functions; Harmonics)
in cavity fields, 529, 532–535
in wave guides, 514–516
Fourier-Bessel integral, 183
<table>
<thead>
<tr>
<th>Frequency, a-c, 355–389</th>
</tr>
</thead>
<tbody>
<tr>
<td>band-passed in filters, 373–376</td>
</tr>
<tr>
<td>characteristics of simple filters, 372</td>
</tr>
<tr>
<td>of m-derived filters, 374, 375</td>
</tr>
<tr>
<td>of terminal filter section, 376, 377</td>
</tr>
<tr>
<td>of wave guide, 512–518</td>
</tr>
<tr>
<td>(See also Wave guide)</td>
</tr>
<tr>
<td>resonance, 358, 359</td>
</tr>
<tr>
<td>(See also Cavity resonator)</td>
</tr>
<tr>
<td>of inductively coupled circuits, 365–369</td>
</tr>
<tr>
<td>of capacitor discharge, 329–331</td>
</tr>
<tr>
<td>Doppler effect on, 579–581</td>
</tr>
<tr>
<td>of electromagnetic waves, 452</td>
</tr>
<tr>
<td>(See also Electromagnetic waves)</td>
</tr>
<tr>
<td>natural or proper, 329</td>
</tr>
<tr>
<td>of circuit with repeated members, 347, 348</td>
</tr>
<tr>
<td>of general network, 338, 339</td>
</tr>
<tr>
<td>of inductively coupled circuits, 340–347</td>
</tr>
<tr>
<td>of sphere, conducting, 490, 491</td>
</tr>
<tr>
<td>of plane wave, 452</td>
</tr>
<tr>
<td>Fresnel's equation, 445</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall effect; longitudinal, 232</td>
</tr>
<tr>
<td>transverse, 232</td>
</tr>
<tr>
<td>Hankel functions, applications, (21, 505), (26, 30, 31, 506), (8, 548), (15, 549), (17, 20, 550)</td>
</tr>
<tr>
<td>(See also Bessel functions, spherical)</td>
</tr>
<tr>
<td>Green's reciprocation theorem, 34, 35, 54</td>
</tr>
<tr>
<td>with dielectrics, 54</td>
</tr>
<tr>
<td>Green's theorem, 48, 53–55, 131</td>
</tr>
<tr>
<td>(See also Gauss's theorem)</td>
</tr>
<tr>
<td>vector analogue, 54</td>
</tr>
<tr>
<td>Guard rings, 29</td>
</tr>
<tr>
<td>Gyromagnetic effects, 426, 427</td>
</tr>
</tbody>
</table>

| Harmonic electromotive force, 355–389 |
| (See also Circuits, a-c; Current, alternating) |

<table>
<thead>
<tr>
<th>Harmonics, biaxial, 154, 155</th>
</tr>
</thead>
<tbody>
<tr>
<td>circular, 63–69</td>
</tr>
<tr>
<td>for charge, line, 65</td>
</tr>
<tr>
<td>for circuit, shielding of bifilar, 288, 289</td>
</tr>
<tr>
<td>for currents in cylindrical shell, 279</td>
</tr>
<tr>
<td>cylindrical, 63, 127</td>
</tr>
<tr>
<td>(See also Bessel functions)</td>
</tr>
<tr>
<td>vector surface, 176, 266</td>
</tr>
<tr>
<td>spherical, 127, 158–169</td>
</tr>
<tr>
<td>(See also Spherical harmonics)</td>
</tr>
<tr>
<td>vector surface, 151, 267</td>
</tr>
<tr>
<td>spheroidal, 127, 158–169</td>
</tr>
<tr>
<td>(See also Spheroidal harmonics)</td>
</tr>
<tr>
<td>surface, 131, 158</td>
</tr>
<tr>
<td>(See also Surface harmonics)</td>
</tr>
<tr>
<td>three dimensional, 125–199</td>
</tr>
<tr>
<td>zonal, 132</td>
</tr>
<tr>
<td>(See also Surface harmonics)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hertz vector, 442, 470, 471</th>
</tr>
</thead>
<tbody>
<tr>
<td>aberration, 579, 580</td>
</tr>
<tr>
<td>Doppler effect, 579–581</td>
</tr>
<tr>
<td>propagation equation, 441, 442</td>
</tr>
<tr>
<td>retarded, 472</td>
</tr>
<tr>
<td>spherical wave, 470, 471</td>
</tr>
<tr>
<td>Horn, sectorial, (15, 16, 549), (17, 18, 21, 22, 550)</td>
</tr>
<tr>
<td>Hysteresis, 425, 426</td>
</tr>
</tbody>
</table>
INDEX

Images, of charges, line, in conductors, 68-70, 88, 89
in dielectrics, 68-70
point, in conductors, 114-121, 123, 124, 179, 184
in dielectrics, 116, 117
of current circuits, 266, 289, 290
in cylinder, circular conducting, 69, 70
circular dielectric, 68, 69
circular intersecting, 89
in dielectric plate, 184
of eddy currents in plane sheet, 402-408
by inversion, 89, 124, 125
in planes, intersecting, 70, 89
in sphere, conducting, 116
in spheres, two, in contact, 124
intersecting, 125
separated, 118-121
in wave guides, 521, 523, (17, 550), (23, 24, 551), (31, 552), (36, 57, 553)

Impedance, 356-380
bridge, 361, 362
characteristic, 370-377, 512
of conical transmission line, 480
of filter, from cutoff frequencies, (39, 388)
m-derived, 374-377
in pass band, 374, 375, 377
from resonance frequencies, (38, 388)
terminal section, 376, 377
of transmission line, 378
of wave guide, 512
(See also Wave guide)
normalized, 525
input, 372, 378, 461
of biconical antenna, 482, (19, 504)
of cylindrical guide, 525
from coaxial line, 525
of electrode in rectangular guide, (30, 31, 552), (36, 37, 553)
of parallel plate line, (9, 548)
normalized, 526
sectorial horn, (15, 16, 549), (17, 18, 21, 22, 550)
slot antenna, (55, 509)
intrinsic, of medium, 459, 460
mesh, 362
mutual, 362

Impedance, output, 372, 376, 378, 461
phasor, 356-379, 459, 461, 512
series and parallel, 360
vector addition of, 360

Induced charge, 2
(See also Charge)

Inductance, 311-320
mutual, circuits with, 332-334, 336-348, 362, 365-369
circuits for measuring, 348, 349
of circular loops, coaxial, 313
and coplanar, (4, 322)
not coaxial, 313, 314, (23, 25, 325)
around permeable cylinder, (14, 323)
of coaxial coils, 313, (21, 26, 325)
definition and units of, 311
of electrode with cavity mode, 543-547
in general network, 335-340, 362
of solenoid, infinite, and loop, 313
of toroidal coil linking loop, 313
variable, 314, 315

self-, 315
in a-c circuits, 358-382
of bifilar lead, rigorous, 318-320
shielded, (10, 323)
circuit for measuring, 361, 362, 364
circuits with, 328-389
current growth and decay in, 331, 332
of circular loop, 317, 318
on permeable cylinder, (15, 324)
of cylinder, solid, at high frequencies, 396
definition and units of, 315
in general network, 335, 336, 362
high-frequency, of cylinder, 396
of solenoid, 318
of thin wire, 316, 317
in vector diagram, 359, 360
from vector potential, 315, 319

Induction, coefficient of, 36-38
(See also Mutual capacitance)

electric, 2
(See also Charge; Green’s function)
electromagnetic, in extended mediums, 390-420
in linear circuits, 307-325
Faraday’s law of, 307, 316, 355
magnetic, 261, 262
(See also Magnetic induction)
Inductive reactance, 356
Insulator, 1
(See also Dielectric boundary conditions)
Integral, particular, 327, 330, 333, 339, 355–358
Intensity, electric field, 3, 20, 74, 75
in anisotropic medium, 20, 22, 31
boundary conditions, 18–20, 94, 95
in dielectric, 20
(See also Potential)
magnetic field, 290, 291
boundary conditions, 291
unit of, 291
(See also Magnetic induction)
Intrinsic impedance, 459, 460
Inverse distance, 4
(See also Potential)
Inverse-square law, 2
limitations, 2
(See also Coulomb’s law)
Inversion, 87–89, 122–125
in three dimensions, 122
 capacitance by, 125
geometrical properties, 122
of images, 122–124
of planes, intersecting, 125
of spheres, intersecting, 125
of surface, conducting, charged, 124, 125
in two dimensions, 87–89
images by, 88, 89

J

Joule’s law, 221

K

Kelvin bridge, 230
Ker and kei functions, 394
diffraction theory, (56–60, 509)

L

Laplace’s equation, 50–53, 64, 73, 126, 129, 159, 168, 169, 231, 519
current applications, 231
Laplace’s equation, in cylindrical coordinates, 53, 169
for nonhomogeneous dielectric, 50–53
for nonisotropic dielectric, 50
in orthogonal curvilinear coordinates, 51
in rectangular coordinates, 50
for rotated conjugate functions, 126
in spherical coordinates, 52, 127, 129
in spheroidal coordinates, oblate, 127, 159
prolate, 127, 168
in three dimensions, solutions, 127–216
in two dimensions, solutions, 63–110
Laplace’s operator, 50–53
applied to vector, 262, 265–267, 390–392, 396–397, 400, 441, 442, 455, 487, 511, 519
(See also Laplace’s equation)
Legendre coefficient, 135
(See also Legendre polynomial)
Legendre equation, 132
solution of, in series, 133
 recurrence formulas for, 133, 134
Legendre functions, 142–169
associated, 148
(See also Associated Legendre functions)
first kind, 148
 hypergeometric series for, 147
order complex, 155
order fractional, 147
second kind, 142–146
with imaginary argument, 145, 146
potential applications, 146
 recurrence formulas for, 143, 152, 153
series for, argument greater than one, 143
argument less than one, 144, 145
special values for, 145
in terms of polynomials, 144, 145
Legendre polynomials, 134
applications of, 139–142, (57, 205–79, 208), 239, 267, 272–275, 281, 282, 313–315
argument imaginary, 138
 imaginary and infinite, 138
real and infinite, 135
derivative of, 136
 expansion in terms of, 137
 graph of, 138
integrals of, 136, 137
Legendre polynomials, recurrence formulas for, 136
Rodriguez formula for, 135
table of, 137, 138
Lens, electrostatic, 198
Lines of force, electric, between charges, 8
of charges, collinear, 12
at conducting boundary, 18
at dielectric boundary, 20
differential equation of, 7, 8
of dipole, 9, 10
at infinity, 13
maps of, 9, 10, 67, 68, 77, 81, 86, 91,
92, 96, 195
stresses in, 15–17
magnetic, 260, 261
maps of, 296, 433
(See also Magnetic induction)
Logarithmic decrement, 329
Logarithmic potential, 63–65, 76
Lorentz transformation, 560, 561

M
Magnet, cylindrical, 429, 434, 435
equivalent current shell, 427, 428
horseshoe, 430–432
needle, 429, 434, 435
permanent, 426–435
boundary conditions, 429
ring, with air gap, 432, 434
spherical, 429, 430
in permeable medium, 430
Magnetic circuit, 292, 293
Magnetic cutoff of thermionic rectifier,
568, 569
Magnetic dipole, 260, 270, 434, 435
interactions of, 435
moment definition of, classical, 435
loop, 260, 270
in wave guide, (28, 552), (83, 34, 553)
(See also Wave guide)
Magnetic field, energy density in, 310, 311
intensity, 290, 291, 426, 427
boundary conditions, 291
unit of, oersted, 291
(See also Magnetic induction)
maps of, 296
potential of, scalar, 290, 291
(See also Magnetomotance)
stresses in, 321
Magnetic field, vector, 262
(See also Potential)
Magnetic flux, tubes of, 269
(See also Flux)
Magnetic force, on boundaries, 321
on circuits, 279–280, 312, 320
Magnetic hysteresis, 425, 426
Magnetic inductance, 311–320
(See also Inductance)
Magnetic induction, 260–262
a-c, in conductor, cylindrical, 393, 394,
413–415
spherical, 397–400
from eddy currents in plane sheet,
406
shielding of, 408
in anisotropic medium, 287, 445, 447
of antenna, 475
(See also Antenna)
of bifilar circuit, 260, 270
shielded, 288, 289
Biot and Savart law for, 274, 275
boundary conditions, 283–285
in cavity resonators, 529
(See also Cavity resonator)
curl of, 262, 390
of currents, in cylindrical shell, 279
in spherical shell, 272, 274
in cylindrical hole in cylindrical rod,
278
definition of, 260, 261
of dipole, oscillating, electric, 471
magnetic, 489
divergence of, 262
of eddy currents, from vector potential,
390
in electromagnetic waves, 444
(See also Electromagnetic waves)
of electron, linearly accelerated, 572–
574
in motion, 570–572
retarded value, 572
force of, on moving charge, 566, 567,
576
from Hertz vector, 442
line integral of, 262, 280
of linear circuit, 275
do loop, circular, 270, 271, 274, 275
do magnetization, 282, 283
from moving charge, 570, 572, 573
normal to A, 392
under pole piece, slotted, 297–299
INDEX

Magnetic induction, propagation of, 391, 441, 442
 in conductor, 391, 454–456
 of solenoid, helical, 276, 277
 in sphere, 396–399
transient, in solid sphere, 400–402
tubes of, equation, 269, 275
refraction of, 292
in two dimensions, 287–290
from two scalar potentials, 391, 392
uniqueness of, 264
Magnetic interaction of currents, 260–305
Magnetic moment, 260, 428, 435
Magnetic needle, 428, 429, 434, 435
Magnetic permeability, 261
 (See also Permeability)
Magnetic pole, 429
Magnetic potential, scalar, 290, 291
 (See also Magnetomotive force)
 vector, 262
 (See also Potential)
Magnetic reluctance, 292, 293, 297–299, 431
Magnetic retentivity, 426
Magnetic shell, 261
Magnetic susceptibility, 422
 (See also Susceptibility)
Magnetic vector potential, 262
 (See also Potential)
Magnetism, induced, 262, 421
 (See also Magnetization; Permeability)
 permanent, 425–427
 (See also Magnet; Magnetization)
Magnetization, 282–284, 422, 423, 427, 428
 in crystal, 423
curve of, ferromagnetic, 424
 of horseshoe magnet, 430–432
intensity of, 282–284, 422, 427, 428
 of needle, 428, 429, 434, 435
 of ring magnet, 432–434
by rotation, 427
rotation by, 427
uniform, 427, 428
Magnetizing force, 424
 on horseshoe magnet, 430–432
Magnetomotance, 290–292, 430, 431
 boundary conditions, 291
Magnetron, 568, 569
Mass, energy relation, 568
longitudinal and transverse, 564, 565
variation of, with speed, 562, 564
Maxwell, displacement current, 390, 440
equations, 440
 in variance, Lorentz transformation,
 565, 574–576
 gyromagnetic effects, 427
image method for eddy currents, 403, 404
Mesh, a-c, 355–389
d-c, 221–230
transient current, 335–339
 (See also Current)
Mesotron, 3
Millikan, charge on electron, 3
Mode, of cavity resonator, 528–547
 (See also Cavity resonator)
of circuit, 338, 339
 (See also Circuit)
of propagation, 511–528
 (See also Wave guide)
Modulus of complex number, 72
Momentum, electrokinetic, 334, 335
 of plane wave, 447, 448
Multipole, 6, 470
 radiation from, 470, 489, 490, (1–3, 501)
Mutual capacitance, 37–39, 118–122, 238
Mutual elastance, 36–39, 238
Mutual inductance, 311, 543, 544
 (See also Inductance)
N
Network, a-c, general parameters, 362
d-c, general parameters, 227
transient, general parameters, 335, 336
 (See also Circuit; Current)
O
Ohm’s law, 220, 221, 356, 440
Operators in general network, 336–339
Optic axis of crystal, 446
Orthogonal coordinates, 50–52
curl, 52
divergence, 51
gradient, 51
Laplace’s equation, 51
Poisson’s equation, 51
by rotation of conjugate functions, 126, 127
Orthogonal and equipotential surfaces, 111
Orthogonality of conjugate functions, 74
INDEX

609

P

Paramagnetism, 421

Parallel-plate, 28, 29

Permeability, 261, 421, 422

in anisotropic mediums, 287, 423

boundary conditions, 283-286

energy of field, 310, 311

of ferromagnetic bodies, 424-426

in magnetic circuit, 292, 293

from magnetization, 283

pressure dependence, 321

relative, 261

temperature dependence, 422

variable, 283

Phase of a-c current, 357-359

angle of, in vector diagram, 359

constant of, in electromagnetic waves, 459, 460

in filter circuit, 370, 373-375

in m-derived filter section, 375

in transmission line, 378

(See also Current)

Phasor, 356-379

Plane, conducting, and cylinder, 77, 78

with groove or ridge, (49, 107)

with hole, 161, 162

image, of line charge in, 70

of point charge in, 114, 115

semi-infinite, with slit, 92

and sphere, 121

transformation, 84

dielectric, image, of line charge in, 70

of point charge in, 115, 116

Plane grating, 86, 90, 91, 98-100

(See also Uniform field)

Planes, intersecting, 70, 84, 89

(See also Images)

parallel, 28, 29

(See also Parallel plate conductors)

Plane waves, 421-466

(See also Electromagnetic waves)

Poisson's equation, 51, 55, 56, 249, 250, 469

inorthogonal curvilinear coordinates, 51

solution of, 55, 56

for space charge, 249-251

Polarization of electromagnetic wave, 444-447, 450-453, 457

in anisotropic medium, 446, 447

from antenna, 475-478

(See also Antenna)

circular, 453

in diffraction, 491-493

(See also Electromagnetic waves, diffraction)

from dipole oscillator, 471, 489

elliptic, 453

by reflection from conductor, 456, 457

total, 453, 454

in wave guide, 511-528

(See also Wave guide)

Polarizing angle, 452

Positron, 3

Potential, of current distribution, 220

boundary conditions, 231

in cylinder, solid, 240, 241

in extended mediums, 231-243

in sphere, solid, 239, 240

in spherical shell, 243, 244

in stratified earth, 242, 243

in strip of variable width, 235-237

in surface of revolution, 245, 246

in thin curved sheet, 243

in two dimensions, 233-237

(See also Electromotive force)

quasi-vector, 285, 286, 312

boundary conditions, 285, 312

of linear current normal to interface, 286

scalar electrodynamic, 441, 442, 472

of charge in motion, 571, 572

of dipole oscillator, 471

from Hertz vector, 442, (12, 466)

propagation equations of, 442

relation of, to vector, 442
Potential, scalar electrodynamic, retarded, 472
 of charge in motion, 572
types of, 469
scalar electrostatic, 4–216
 of axially symmetrical field, 60
 boundary conditions, 18–20, 94, 95
 of conductors in uniform field, 66–68,
 162–164, 168, 169, (120, 121, 123, 215)
 (See also Uniform field)
of confocal conicoidal conductors, 112–114
 conical boundaries, 142, 146, 155–
 158, (78, 79, 208)
 (See also Uniform field)
differential equation of, 50, 53
 (See also Laplace’s equation)
of dipole, 6, (115, 214)
of disk conductor, 114, 162–165, (63, 206), (85–87, 209), (108, 212)
of double layer, 14, 58
of electrostatic lens, 198
function, 74
gradient, 5, 51
 (See also Electric field)
of harmonic charge distribution, on
 oblate spheroid, 165, 166
 on prolate spheroid, (89, 209)
on sphere, 131, 132
in hollow cylindrical ring, 184, 185,
 (105, 212)
by images, 69, 70, 113–119, 123, 124
by inversion, 87–89, 123, 124
of line charge, 63, 65, 76
 (See also Circular harmonics; Con-
 jugate functions; Images)
and dielectric wedge, 70–72
logarithmic, 63, 65, 76
maps of, 9, 10, 81, 91, 92
maxima and minima of, 13
near neutral points, 153
of point charge, 4, 5, 55, 166, 167,
 179, 194
 in Bessel functions, 179
 in Bessel modified functions, 194
 in cylindrical hole in dielectric,
 195, 196
near dielectric plate, 183, 184
in oblate spheroidal harmonics, 162–167

INDEX

Potential, scalar electrostatic, of point
 charge, in prolate spheroidal
 harmonics, 169, (90, 210)
in spherical harmonics, 130, 132,
 139–142, 146, 153, 157, 158
(See also Green’s functions;
 Images)
of polygon, 82
(See also Conformal transformation for
details)
of quadrupole, 6
 of ring charge, 139, (86, 209), (99, 211), (101, 212)
in spherical shell, 139, 140
 and stream function, 74, 75, 94
superposition of, 5, 35, 69, 86, 91,
 95–97, 100, 103, 104, 117, 139,
 140, 164, 179, 183, 195
of surface electrification, 5, 56
in three dimensions, 111–216
of torus, charged, (118, 214)
 uncharged, between planes, (101, 212)
in two dimensions, 63–110
 uniqueness of, 25, 56, 57
 of volume electrification, 5, 56
 of wedge with boss, 128, 129, (107–
 111, 213)
 zero of, 4
scalar magnetostatic, 290, 291
(See also Magnetomotance)
vector, electrodynamic, 441, 442
 boundary value type of, 469
 uniqueness of, 486
of charge in motion, 571–572
 of conical transmission line, 479
curl of, 441
(See also Magnetic induction)
of current loop, 488–490
of dipole oscillator, electric, 471
 magnetic, 489, 490
divergence of, 442
from Hertz vector, 442, 471
 normal to B, 392
normalized in cavity, 542, 543
orthogonal properties of, 542
of plane waves, 440–466
(See also Electromagnetic waves)
propagation equations of, 552
(See also Electromagnetic waves)
<table>
<thead>
<tr>
<th>INDEX</th>
<th>611</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential, vector, of radiation from aperture, 596</td>
<td>Potential, vector magnetostatic, from two scalar potentials, 265, 266</td>
</tr>
<tr>
<td>(See also Electromagnetic waves, diffraction)</td>
<td>of uniform field, 263</td>
</tr>
<tr>
<td>relation of, to scalar potential, 442, 469</td>
<td>uniqueness of, 264</td>
</tr>
<tr>
<td>(See also Cavity resonator)</td>
<td>a-c, in conductors, 390–392, 396–399</td>
</tr>
<tr>
<td>retarded, 472, 572</td>
<td>in solid sphere, 396–399</td>
</tr>
<tr>
<td>of antenna, 474</td>
<td>in spherical shell, 408–411</td>
</tr>
<tr>
<td>of charge in motion, 572</td>
<td>of eddy currents by images, 403–408</td>
</tr>
<tr>
<td>solution for, in cylindrical coordinates, 494</td>
<td>electric field from, 308</td>
</tr>
<tr>
<td>in spherical coordinates, 487</td>
<td>propagation, equation of, in conductor, 391</td>
</tr>
<tr>
<td>of spherical waves, 468–509</td>
<td>shielding, by thin cylindrical shell, 411–413</td>
</tr>
<tr>
<td>(See also Electromagnetic waves)</td>
<td>by thin plane sheet, 404, 407, 408</td>
</tr>
<tr>
<td>uniqueness of, 486</td>
<td>by thin spherical shell, 411</td>
</tr>
<tr>
<td>of waves in tubes, 511–528</td>
<td>transient, in solid sphere, 400–402</td>
</tr>
<tr>
<td>vector magnetostatic, 262–305</td>
<td>in spherical shell, 410</td>
</tr>
<tr>
<td>of axially symmetrical field, 268</td>
<td>in thick cylindrical shell, 413–415</td>
</tr>
<tr>
<td>of bifilar circuit, 269, 270</td>
<td>from two scalar potentials, 391, 392</td>
</tr>
<tr>
<td>shielded, 288, 289</td>
<td>Potential coefficients, 36–39, 238</td>
</tr>
<tr>
<td>boundary conditions, 283–285</td>
<td>(See also Mutual elastance; Self-elastance)</td>
</tr>
<tr>
<td>of circular loop, 270, 271, 274</td>
<td>Potential energy, of charged capacitor, 30, 39</td>
</tr>
<tr>
<td>in Bessel functions, (27, 302)</td>
<td>of dipoles, electric, 7</td>
</tr>
<tr>
<td>in modified Bessel functions, (26, 302)</td>
<td>magnetic, 435</td>
</tr>
<tr>
<td>in oblate spheroidal harmonics, (22, 301)</td>
<td>Power, average, 358</td>
</tr>
<tr>
<td>in prolate spheroidal harmonics, (24, 301)</td>
<td>dissipation of, by eddy currents, 391, 393, 395, 400, 411, 413, 513, 514, 531</td>
</tr>
<tr>
<td>of currents in cylindrical shell, 279</td>
<td>in cavity, 531</td>
</tr>
<tr>
<td>of dipole, 270</td>
<td>(See also Cavity resonator)</td>
</tr>
<tr>
<td>of linear current, 286</td>
<td>in plane surface of solid, 393</td>
</tr>
<tr>
<td>normal to interface, 286</td>
<td>in skin effect, 393, 395, 400</td>
</tr>
<tr>
<td>of magnetic needle, 435</td>
<td>in solid cylinder, 395</td>
</tr>
<tr>
<td>and magnetization, 282–284</td>
<td>in solid sphere, 400</td>
</tr>
<tr>
<td>and mutual inductance, 311</td>
<td>in thin cylindrical shell, 413</td>
</tr>
<tr>
<td>(See also Inductance)</td>
<td>in thin spherical shell, 411</td>
</tr>
<tr>
<td>opposite groove, (36, 304)</td>
<td>in wave guide, 513, 514</td>
</tr>
<tr>
<td>orthogonal expansion for, cylindrical coordinates, 266, 267</td>
<td>in resistance, 221, 233</td>
</tr>
<tr>
<td>spherical coordinates, 267</td>
<td>a minimum, 233</td>
</tr>
<tr>
<td>under pole piece, slotted, 297, 299</td>
<td>radiation of, from antenna, 477, 479, 482, 486</td>
</tr>
<tr>
<td>of ring magnet, 432–434</td>
<td>(See also Antenna; Poynting's vector)</td>
</tr>
<tr>
<td>of shell transformer, 294–296, (32, 303)</td>
<td>root mean square, 358, 359</td>
</tr>
<tr>
<td>of spherical current shell, 272–274</td>
<td>transmitted by aperture, 501</td>
</tr>
<tr>
<td>inside spherical shell, 272–274</td>
<td>(See also Electromagnetic waves, diffraction)</td>
</tr>
<tr>
<td>in three dimensions, 262–287, 294–296</td>
<td>vector diagram, 359</td>
</tr>
<tr>
<td>in two dimensions, 287–290, 297–299</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Index</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>612</td>
<td>Power factor, 358</td>
</tr>
<tr>
<td></td>
<td>Poynting vector, 443</td>
</tr>
<tr>
<td></td>
<td>angle with wave front, 444</td>
</tr>
<tr>
<td></td>
<td>from antenna array, 486</td>
</tr>
<tr>
<td></td>
<td>broadside, 486</td>
</tr>
<tr>
<td></td>
<td>endfire, (7, 9, 502)</td>
</tr>
<tr>
<td></td>
<td>end-to-end, (60, 52, 508)</td>
</tr>
<tr>
<td></td>
<td>complex, 461</td>
</tr>
<tr>
<td></td>
<td>in conductor, 456</td>
</tr>
<tr>
<td></td>
<td>in crystal, 446</td>
</tr>
<tr>
<td></td>
<td>definition of, 443</td>
</tr>
<tr>
<td></td>
<td>diffracted, from slit, (46, 507), (47, 508)</td>
</tr>
<tr>
<td></td>
<td>from hole, (50, 58, 508)</td>
</tr>
<tr>
<td></td>
<td>from dipole, 471</td>
</tr>
<tr>
<td></td>
<td>energy density in, 447, 448</td>
</tr>
<tr>
<td></td>
<td>for linear antenna, 477</td>
</tr>
<tr>
<td></td>
<td>reflected and refracted, 450, 452</td>
</tr>
<tr>
<td></td>
<td>reflection from conductor, 456, 457</td>
</tr>
<tr>
<td></td>
<td>in wave guide, 514</td>
</tr>
<tr>
<td></td>
<td>into wave guide from orifice, 524</td>
</tr>
<tr>
<td></td>
<td>Pressure, hydrostatic, in dielectric, 32</td>
</tr>
<tr>
<td></td>
<td>of plane electromagnetic wave, 448</td>
</tr>
<tr>
<td></td>
<td>Priestley's law, 2</td>
</tr>
<tr>
<td></td>
<td>(See also Coulomb's law)</td>
</tr>
<tr>
<td></td>
<td>Propagation constant, 369–378</td>
</tr>
<tr>
<td></td>
<td>of filter, simple, 369–376</td>
</tr>
<tr>
<td></td>
<td>m-derived type, 374–376</td>
</tr>
<tr>
<td></td>
<td>of free space, 459, 460</td>
</tr>
<tr>
<td></td>
<td>of transmission line, 377, 378</td>
</tr>
<tr>
<td></td>
<td>Propagation equation, 441, 442</td>
</tr>
<tr>
<td></td>
<td>solution of, for cavity, 529, 532–535, 538, 540</td>
</tr>
<tr>
<td></td>
<td>in cylindrical coordinates, 494</td>
</tr>
<tr>
<td></td>
<td>for hollow tubes, 513, 514, 516–518</td>
</tr>
<tr>
<td></td>
<td>in spherical coordinates, 487</td>
</tr>
<tr>
<td></td>
<td>Proton, 3</td>
</tr>
<tr>
<td></td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td>Quadrupole, electric, 6, 470, (1–3, 501), (4, 502)</td>
</tr>
<tr>
<td></td>
<td>Quality of cavity, 531–537, 539, 545, (54, 55, 57, 58, 60, 61, 556)</td>
</tr>
<tr>
<td></td>
<td>Quartic equation, 340–342</td>
</tr>
<tr>
<td></td>
<td>Quincke electrostriction, 32</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Radiation, electromagnetic, 421–558</td>
</tr>
<tr>
<td></td>
<td>(See also Electromagnetic waves)</td>
</tr>
<tr>
<td></td>
<td>reactance, 482</td>
</tr>
<tr>
<td></td>
<td>resistance, 472, 477, 482, 490, 501</td>
</tr>
<tr>
<td></td>
<td>Reactance, 356</td>
</tr>
<tr>
<td></td>
<td>Reciprocity theorem, Green's, 34, 35, 54</td>
</tr>
<tr>
<td></td>
<td>Refraction, of electric lines of force, 20</td>
</tr>
<tr>
<td></td>
<td>of magnetic lines of force, 292</td>
</tr>
<tr>
<td></td>
<td>optical, 448–450</td>
</tr>
<tr>
<td></td>
<td>(See also Electromagnetic waves)</td>
</tr>
<tr>
<td></td>
<td>Refractive index, 449, 452</td>
</tr>
<tr>
<td></td>
<td>Relativity, special, 560–581</td>
</tr>
<tr>
<td></td>
<td>applications, 570–581</td>
</tr>
<tr>
<td></td>
<td>conservation of charge, 565, 566, 576</td>
</tr>
<tr>
<td></td>
<td>invariance of Maxwell equations, 565, 574, 575</td>
</tr>
<tr>
<td></td>
<td>Lorentz transformation, 560, 561</td>
</tr>
<tr>
<td></td>
<td>mass, transverse and longitudinal, 564, 565</td>
</tr>
<tr>
<td></td>
<td>variation of, with velocity, 562–564</td>
</tr>
<tr>
<td></td>
<td>postulates of, 560</td>
</tr>
<tr>
<td></td>
<td>Relativity transformations, for acceleration, 562</td>
</tr>
<tr>
<td></td>
<td>for force, 564, 565</td>
</tr>
<tr>
<td></td>
<td>for velocity, 561, 562</td>
</tr>
<tr>
<td></td>
<td>Relaxation, time of, 455</td>
</tr>
<tr>
<td></td>
<td>Reluctance, magnetic, 292, 293, 297–299, 431, 434</td>
</tr>
<tr>
<td></td>
<td>of air gap, 293, 297–299</td>
</tr>
<tr>
<td></td>
<td>with slotted pole piece, 297–299</td>
</tr>
<tr>
<td></td>
<td>of anchor ring, 292, 293</td>
</tr>
<tr>
<td></td>
<td>Resistance, in a-c networks, 356</td>
</tr>
<tr>
<td></td>
<td>(See also Impedance)</td>
</tr>
<tr>
<td></td>
<td>from capacitance, 234, 238</td>
</tr>
<tr>
<td></td>
<td>of cavity resonator, 531</td>
</tr>
<tr>
<td></td>
<td>definition of, 220</td>
</tr>
<tr>
<td></td>
<td>between electrodes, cylindrical, 234</td>
</tr>
<tr>
<td></td>
<td>distant, 238</td>
</tr>
<tr>
<td></td>
<td>spherical, 238</td>
</tr>
<tr>
<td></td>
<td>high-frequency, of cylinder, 395</td>
</tr>
<tr>
<td></td>
<td>input, of biconical antenna, 482</td>
</tr>
<tr>
<td></td>
<td>of cavity loop, 545</td>
</tr>
<tr>
<td></td>
<td>of cavity stub, 546</td>
</tr>
<tr>
<td></td>
<td>of coaxial into rectangular guide, 525</td>
</tr>
<tr>
<td></td>
<td>of resonant slot, (65, 509)</td>
</tr>
<tr>
<td></td>
<td>of transmission line, 378</td>
</tr>
<tr>
<td></td>
<td>limits of, 246, 247</td>
</tr>
<tr>
<td></td>
<td>negative, 381–384</td>
</tr>
<tr>
<td></td>
<td>radiation, 472, 477, 482, 490, 501</td>
</tr>
<tr>
<td></td>
<td>specific, 221</td>
</tr>
<tr>
<td></td>
<td>(See also Resistivity)</td>
</tr>
<tr>
<td></td>
<td>of strip, abrupt width change, 235–237</td>
</tr>
<tr>
<td></td>
<td>tapered width change, (65, 259)</td>
</tr>
<tr>
<td></td>
<td>in transient networks, 328–354</td>
</tr>
<tr>
<td></td>
<td>in vector diagram, 350, 360</td>
</tr>
<tr>
<td></td>
<td>Resistivity, 221</td>
</tr>
<tr>
<td></td>
<td>of anisotropic medium, 248, 249</td>
</tr>
<tr>
<td></td>
<td>Retentivity, magnetic, 426</td>
</tr>
</tbody>
</table>
INDEX

Riemann surface, 93
Rodrigues's formula, 134, 135

S
Schwarz transformation, 82-101, 103-109
(See also Conformal transformation)
Screening, 37, 38
magnetostatic, by permeable cylindrical shell, 288, 289
by permeable spherical shell, 291
quasi-magnetostatic, by eddy currents, 404, 408
in plane sheets, 404, 408
in thick shell, cylindrical, 415
in thin shell, cylindrical, 412
spherical, 411
Self-capacitance, 37-39, 119, 121, 238
Self-elasticity, 37-39
Self-inductance, 315-320
(See also Inductance)
Shielding, 37, 38, 288, 289, 404, 408, 411, 412
(See also Screening)
Skin depth, 393, 514, 531
Skin effect, 393-396
on plane surface, 393
on solid cylinder, 394-396
on solid sphere, 398-400
on tubular conductor, 393-394
(See also Eddy currents)
Snell's law of refraction, 449
Solenoid, 276, 277
(See also Inductance; Magnetic Induction)
Sphere, crystalline, in magnetic field, 423, 424
with harmonic charge distribution, 131, 132
images in, 116-120, 124
and orthogonal wedge, 128, 129
oscillations of, forced, 491-493
free, 490, 491
and plane, force, 121
solid conducting, d-c, in, 237-243
eddy currents, a-c, in, 397-400
transient in, 400-402
uniformly magnetized, 428-430
torque on, in permeable medium, 430
Spheres, capacitance between two, 27, 119, 121, 122
in contact, induced charge on, 124
dielectric, hollow, in field, 140, 141
Spheres, force between two, charged, 119
uncharged, in field, (126, 216)
images in two, 118-120, 124, 125
intersecting, capacitance, 125
Spherical harmonics, 129-158
applications, current distribution, 239, 240
eddy currents, 397, 400, 410, 411,
(2, 5, 416), (11, 417)
electromagnetic waves, 487-489, 491-493, 500, (18, 19, 504), (39, 40, 506), 538
electrostatics, 131, 132, 139-142, 153, 156-158, (70, 207, 79, 208)
linear circuits, 272-275, 281, 313-315
magnetism permanent, 427-435
vector potential expansions, 267
(See also Surface harmonics)
Spherical shell, d-c, current distribution in, 243-245
eddy currents in, a-c, 410, 411
transient, 409, 410
magnetic field of currents in, 272-275
Spherical shells, several concentric, 35
Spheroidal coordinates, 158, 159, 167, 168
Spheroidal harmonics, oblate, 127, 158-166
applications, electrostatic, 161-167, (80, 81, 208) (84-88, 209)
linear circuits, (22, 301)
dielectric spheroid, (80, 81, 208) (84, 209)
inverse distance, 166, 167
potential of disk, 162-164
potential of harmonic charge distribution, 165, 166
of plate with hole, 161, 170
vector of current loop, (22, 301)
prolate, 167-169
applications, electrostatic, (82, 83, 208), (84, 89, 209), (90, 210)
to linear circuits, (24, 301), (25, 302), (12, 13, 323)
dielectric spheroid, (82, 83, 208), (84, 208)
inverse distance, (90, 210)
mutual inductance, (18, 323)
potential of harmonic charge distribution, (89, 209)
vector of current loop, (24, 302)
Spheroidal harmonics, prolate, self-inductance, (12, 323)
spheroid in uniform field, 168
Static machines, 3, 218, 219
Steady state, of electric circuit, a-c, 355-389
after transient, 327, 330, 333, 339
Stokes’s theorem, 49, 307, 309
Stream function, for eddy currents, 402, 406, 407
electrostatics, 74, 75, 94
boundary conditions, 94
for steady currents, 234
Stress, on conducting surface, 18, 19, 33, 34
in dielectric, compressible, 32
liquid, 33
on dielectric boundary, 18, 33, 34
in electric field, 15-17
in magnetic field, 320, 321
Surface density, 3
(See also Charge; Potential)
Surface harmonics, 130, 131, 146
differential equation for, 130
orthogonality of, 131
vector, cylindrical, 176, 266, 267
spherical, 151, 267
zonal, 132, 142
(See also Legendre polynomial)
complex order, 155
nonintegral order, 146, 147
second kind, 142-146
argument imaginary, 145, 146
recurrence formulas for, 143
series for, 142, 143
special values of, 145
in terms of Legendre polynomials, 144, 145, 147
(See also Associated Legendre functions)
Susceptibility, 422, 423
of crystals, 423
temperature dependence, 422

T
Tension on tubes of force, 15, 16
Tensor dielectric constant, 21
Thevenin’s theorem, 363
d-c, 228
Time constant of circuit, 332
Tolman, R. C., metallic conduction, 3
relativity experiment, 562

Toroidal coordinates, (8, 61), (117, 214)
Torque, on charged conductors, 40, (20, 103), 164, 165
on crystalline sphere, magnetic, 424
on current loop, magnetic, 260
on cylindrical shell rotating in magnetic field, (16, 417)
on diamagnetic bodies, 322, 421
on dielectric body, 50
on dielectric elliptic cylinder, 97, 98
on dielectric spheroid, (84, 209)
on dipole, electric, 7
near dielectric sphere, (116, 214)
magnetic, 434, 435
rotating over conducting sheet, 404, 406
on disk in electric field, 162-165
on magnetic needles, 435
on paramagnetic bodies, 321, 322, 421
on spherical magnet, inhomogeneous field, 430
uniform field, 430
on spherical shell rotating in magnetic field, (16, 417)
on strip in uniform electric field, (20, 103)
Torus, capacitance, (119, 215)
charged freely, (118, 214)
uncharged between planes, (101, 212)
in uniform field, (120, 121, 215)
coaxial, (120, 215)
transverse, (121, 215)
Transformations, conformal, (see Conformal transformations)
Lorentz, 560, 561
(See also Relativity)
Transformer, 365-369
shell-type, leakage, 294-296
(See also Mutual inductance)
Transients, eddy currents, 400-402, 409, 410, 412-415
linear circuits, 327-354
repeated, 380, 381
Transmission line, a-c, 377, 378
bifilar, 462, 463
imperfect conductor, 463
coaxial, 518, 519, 524
nonreflecting breaks, (12, 13, 549)
plane discontinuity, 519, 520
radiation from end of, 499, 501
confocal, elliptic, (14, 466)
conical, 479, 480
Transmission line, a-c, cylindrical, general, 457, 458
characteristic impedance, 460
circular, mutually external, (13, 466)
one inside, (16, 466)
dielectric, (20-24, 504), (25-29, 505)
dielectric coated, circular, (32, 605)
plane, (30, 31, 505)
hollow-tube, 511-528
(See also Wave guide)
linear, 377, 378
reflection at discontinuity, 460, 461
sectorial horn, (15, 16, 549), (17, 18, 21, 22, 550)
d-c, continuous leakage, 226
periodic leakage, 224, 225
Tubes, of flow, current, 231, 240
of force, 14, 15
pressure in, 16
refraction at dielectric boundary, 20
tension along, 16
of induction, 269
(See also Magnetic induction)

Uniform field, electric, spheres in, orthogonally intersecting, (44, 204)
uncharged, (125, 124, 215), (125, 216)
spherical shell, dielectric, in, 140, 141
spheroid, oblate dielectric, in, (80, 81, 208), (84, 209)
prolate conducting in, 168, 169
prolate dielectric in, (82, 83, 208), (84, 209)
torus in, (120, 121, 215)
transient, oscillations in sphere from, 490, 491
magnetic, a-c eddy currents, solid sphere, 397-400
transient eddy currents, solid sphere, 400, 401
magnetostatic, charge motion in, 568, 569, 577-579
in cylindrical hole, 278
cylindrical shell, permeable, in, (20, 301)
and electric, charge motion in, 577-579
energy in, 310
magnetic needle in, 435
relativity transformation of, 575, 577
screening of, by permeable shell, 291
sphere, crystalline, in, 423, 424
permeable in, (17, 301)
uniformly magnetized in, 429, 430
spherical shell in, 291
vector potential of, 263
Uniform magnetization, 427, 428
Uniqueness theorem, for current distribution, 232
for electromagnetic waves, 486, 487
for electrostatics, 25, 56, 57
for magnetostatics, 264
Units, capacitance, farad, 26
capacitance, 2
charge, coulomb, 2
esu, 2
conversion tables, 586-588
current, ampere, 215, 260
dimensions of, 590
elastance, farad, 26
electromagnetic, 586-588
electromotance, 219, 220
electrostatic, 586-588
field intensity, electric, 4
magnetic, 290, 291
INDEX

Units, flux, weber, 292
flux density, magnetic, 261
Gaussian, 586–588
inductance, mutual, 311–315
self-, 315–320
magnetic induction, 261
magnetomotance, 292, 293
permeability, 261
potential, 4
power, 221
reluctance, 292, 293
resistance, 221

V
Vector, analogue to Grein’s theorem, 54
potential, 262
(See also Potential)
surface harmonics, 151, 174
Bessel, 174, 266, 267, 522, 535
Legandre, 151, 267, 539

W
Wave, definition of, 443
Wave equation, 441, 442
(See also Propagation equation)
Wave form, harmonic, a-c, 355–389
irregular periodic, 378–381
sawtooth, by Fourier’s series, 379, 380
by repeated transients, 380, 381
square, (15–18, 386)
Wave guide, 511–528
attenuation in, 513–515, 518, (6, 7, 548)
characteristic impedance, 512
circular cylindrical, 516–518
attenuation, 518
excitation, by coaxial line, 524
by dipole, azimuthal, (32, 552), (34, 553)
longitudinal moment, 522, 523, (33, 553)
radiation from end, 499–501
radial moment, 521, 522
with vane, (48, 47, 555)
coaxial, 518, 519
plane discontinuities, 519, 520, (48, 49, 50, 555)
radiation from end, 499–501
into circular guide, 524, 525
into rectangular guide, (35, 553)
coupling to, 520–525, (23, 551 to 43, 554)
cutoff wave length, 512
excitation, 520–525, (23, 551 to 43, 554)
Wave guide, excitation, through orifice, 521, 524, 525
fields, general, 513
special cases, 514, 516–518
normalized impedance, 525
rectangular, 514–516
attenuation, 515
excitation, by coaxial line, (35, 553)
by dipole, longitudinal, (28, 551)
transverse, (24, 26, 551)
by loop, rectangular, (29, 552), (43, 554)
circular, (30, 552)
by small loop, (23, 27, 551), (28, 552)
longitudinal moment, (28, 552)
transverse moment, (27, 551)
by transverse wire, (36, 37, 38, 553), (40, 554)
plane discontinuities, 525–528, (48, 49, 50, 555)
capacitative, 525, 526, (48, 555)
inductive, 527, 528, (49, 50, 555)
transverse electric modes, 487, 511
transverse magnetic modes, 487, 511
triangular, 516, (44, 45, 554)
wave surfaces in, (1, 2, 547), (3–5, 548)
wave velocity, phase, 513
signal, 513
Wave length, guide, 513
guide cutoff, 513
Wave meter, 366
Waves, electromagnetic (see Electromagnetic waves)
velocity, group, 464, 513
phase, 464, 513
signal, 464, 513
Weber unit of flux, 292
Wedge, conducting, 84
dielectric, 70–72
orthogonal, to surface of rotation, 128, 129
Wedge functions, 199
Wheatstone bridge, 223
X
X-ray radiation from accelerated electron, 572–574
Z
Zonal harmonics, 132, 142
(See also Surface harmonics)